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Abstract 

Good models for building thermal behaviour are an important part of developing building energy 

management systems that are capable of reducing energy consumption for space heating through 

model predictive control. A popular approach to modelling the temperature variations of buildings is 

grey-box models based on lumped parameter thermal networks. By creating simplified models and 

calibrating their parameters from measurement data, the resulting model is both accurate and shows 

good generalisation capabilities. Often, parameters of such models are assumed to be a combination 

of different physical attributes of the building, hence they have some physical interpretation. In this 

paper, we investigate the dispersion of parameter estimates by use of randomisation. We show that 

there is significant dispersion in the parameter estimates when using randomised initial conditions for 

a numerical optimisation algorithm. Further, we claim that in order to assign a physical interpretation 

to grey-box model parameters, we require the estimated parameters to converge independently of 

the initial conditions and different datasets. Despite the dispersion of estimated parameters, the 

prediction capability of calibrated grey-box models is demonstrated by validating the models on 

independent data. This shows that the models are usable in a model predictive control system. 
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1 Introduction 

A large part of the world’s energy production is used for heating and cooling buildings. The 

fraction of total energy production consumed for utilities in commercial and residential buildings has 

been estimated at 32% by the International Energy Agency (IEA), according to [1]. Even though modern 

building techniques are able to reduce the energy used for heating, the renewal rate of buildings is 

low. Berthou et al. [2] reports renewal rates of 1% per year in France. This illustrates the need for good 

building energy management systems (BEMS) in existing buildings as well.  

A model predictive control (MPC) system is an attractive solution for use in a BEMS. Models of 

building thermal behaviour can be used to predict the heating and cooling time of a building. In a MPC 

system, a model is used to simulate the system ahead in time in order to find a sequence of inputs that 

controls the system to the desired state. In a BEMS, the use of MPC will allow for improved tracking of 

the temperature setpoint as well as minimization the energy consumption [2, 3]. Predictions of future 

system inputs are readily available from weather forecasts, which helps to facilitate the use of MPC.  

There have been several publications studying the use of MPC for building thermal control. In [4] 

the authors use both active heating and passive solar blinds to control indoor air temperature. The 

paper also gives a thorough introduction to the various MPC control methods, such as deterministic 

and stochastic MPC. In [5] a complete building model is developed as a set of layered models and used 

in an MPC. The authors report an energy saving of 63% in thermal energy and 29% in HVAC electric 

energy, for a four-month test period. These examples show the potential benefits of using MPC for 

building thermal control. They also show the importance of a good prediction model for MPC to be 

feasible.  

There are a number of different modeling approaches that can be used to model the thermal 

behaviour of a building in an MPC system [6]. In Perera et al. [1], a white-box model based on mass 

and energy balance is derived and calibrated for specific buildings. This type of model gives a set of 

ordinary and/or partial differential equations (ODE/PDE) that must be discretised and solved. For 

complex models, a large number of parameters are required that can be difficult to identify. Another 

approach to modelling is the use of black-box models, which relies solely on measurement data 

without any prior knowledge of the building, e.g. ARMAX [7, 8] or PLS-R  [9, 10] models. These types 

of models show high prediction accuracy, but do not usually allow the application of physical 

knowledge to define the model. This approach also produces models with low generalisation between 

different buildings, which makes building-to-building comparisons of models difficult [11]. Comparing 

the thermal behaviour of buildings can be of interest for the purposes of energy consumption 

classification. 



Another approach to modelling thermal behaviour of buildings is the use of grey-box models [2, 

3, 12, 13]. A grey-box model is based on a simplified structure derived from a cognitive understanding 

of the physics involved. For the heating of buildings, the model structures may consist of thermal 

networks [14], i.e. resistor-capacitor circuit equivalent lumped parameter models. Rather than deriving 

the full model as in [1], the simplified model structure is developed from an understanding of the heat 

transfers involved in a building, which provides directly a reduced order model. This process can be 

referred to as ‘cognitive’ model development [14]. The parameters of such models are lumped 

parameters, i.e. each parameter represents a combination of multiple physical quantities. Such 

parameters must be identified from measurement data, since they are generally difficult to compute 

based on technical building specifications. A grey-box model therefore uses a combination of the 

white- and black-box approaches [15]. 

It is often assumed that the parameters of such models can be assigned physical meaning. The 

identified parameters are compared to the physical properties of the building [16, 17]. For 

interpretation of model parameters to be justified, we suggest that the results of the parameter 

estimation process must show a low degree of dispersion, e.g. be independent of the initial guess 

parameter vector for the estimation algorithms. Estimation of parameters is required to give similar 

results when using different datasets from the same building.  

The estimation of parameters requires the measurement data to contain enough dynamic 

information about the system to accurately calibrate the model [16, 18-20]. Since the subject of this 

work is physical buildings, the experimental design is challenging. The outdoor weather conditions acts 

as a model input, particularly the outdoor temperature. Further, it is of interest to estimate the 

parameters under realistic conditions for an occupied building. Hence the choice of excitation of the 

system is limited. Lack of dynamic information in the data is known to give problems with practical 

identifiably [19]. 

Since all the parameters of a grey-box model must be estimated, an additional challenge with 

calibrating grey-box model parameters is over-parameterisation [16]. This is known to give non-

convergent parameter estimates, since an over-parameterised model has undetermined optimal 

parameters, i.e. infinitely many solutions exist. 

While challenges caused by practical identifiably and/or over-parameterisation may give reason 

to question the physical interpretation of the estimated parameters the models may still be usable in 

an MPC. In this work, the dispersion of parameter estimates under different experimental conditions 

is investigated using multiple sets of experimental data from a real building. Further, calibrated models 

are validated on indepenant data to show that they are capable of predicating the thermal behaviour 

of the test building, hence rendering them usable in an MPC system. 



2 Model, methods and measurements 

A common approach to parameter estimation is the use of numerical optimisation [19], either 

directly [2] or in the form of a maximum likelihood (ML) method [17, 21]. When using numerical 

optimisation, it is of interest to investigate the dispersion in the estimated optimal parameters under 

different experimental conditions. In particular, it is interesting to study if the initial guess for the 

optimisation affects the estimated parameters. 

2.1 Model and parameters 

The model used in this paper is a thermal network model of a building [3, 14, 16, 17, 20, 22], 

presented using an electrical circuit equivalent model. Thermal resistance is modelled as resistors and 

thermal capacitance as capacitors. The resulting model is a circuit where the temperature is used as 

the driving potential, and the flow through the circuit is the heat flow. This approach has been used in 

a number of published papers on modelling building thermal behaviour, e.g. [3, 13].  

 

 

Figure 1 - The R3C2 thermal network model 

 

The focus of this paper is estimation of the model parameters. For simplicity, only one model is 

investigated, and the model structure is chosen as a minimalistic representation of the experimental 

building from which the calibration data is collected. The model is shown in Figure 1. This model is 

similar to the R3C2 model used in [2], but the resistance for ventilation is removed since there is no 

ventilation system installed in the test building. 

The model consists of two states Tb and Tw, which correspond to the interior temperature of the 

building and the wall temperature respectively. Wall temperature is measured on the inner surface of 

the wall. For each state there is an associated capacitance, Cb and Cw. These capacitances represent 



the building’s ability to store thermal energy in the interior and the building envelope, e.g. walls, floor 

and ceiling. The remaining three model components are resistances. Rb represents the thermal 

resistance between the building interior and the wall. Rw is the resistance to heat flow through the 

wall, i.e. between the state Tw and the outside temperature. The third resistance Rg represents the 

resistance to heat flow through the parts of the building envelope that are not included in the state 

Tw, such as windows and the door. The driving forces of the system are Q  and T∞, where  Q  is a heat 

flow source, e.g. an electric heater. The outside temperature is modelled as a potential source T∞. 

Deriving equations from a thermal network model can be done with, for example, Kirchhoff’s 

node potential law [23, 24]. Each state in the circuit, Tb and Tw, is assigned to a circuit node and the 

flow into and out of each node is balanced. The model can be written in state-space form as a set of 

ordinary differential equations (ODEs) [18]: 
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The parameter vector is then defined as: 

T
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The output from the model is the states themselves, and both states are directly measurable. The 

measurement equations are therefore found by including the measurement noise terms vb and vw with 

the system states: 
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The measurement noise vb and vw is assumed zero mean Gaussian with standard deviation rb and 

rw: 

   ~ 0, , ~ 0,b b w wv N r v N r        (5) 

Both measurements are temperatures from the same Data Acquisition (DAQ) system, hence it is 

reasonable to expect that they have similar noise characteristics. This is verified by computing the 

standard deviation for both measurements over a range of measurements where the temperatures 

are approximately constant. 

2.2 Deterministic approach to parameter estimation 

The state transition equations in the model are an approximation of the real system. Hence, there 

will be some unknown influence from modelling errors in the simulations. The state transition 



equations in eq. 1 and 2 are written as ODE’s. These could be extended to a set of stochastic differential 

equations (SDE) by the addition of a process noise term w [20]. The probability density function (pdf) 

of the process noise term w is not easily obtained, however it is often assumed Gaussian. This 

assumption can be checked during model validation [20, 21] by use of e.g. autocorrelation to verify 

that the residuals are indeed white noise This method can confirm the assumption of Gaussian process 

noise [20]. While the use of SDE’s is a more statistically solid approach [16, 17, 20, 21], it is also possible 

to treat the estimation problem as deterministic without the process noise term w [6, 25]. The model 

is then a set of deterministic ODE’s. This reduces the estimation of model parameters to a least squares 

curve fitting problem which can be solved directly by numerical optimization [2]. In this work, the 

deterministic curve fitting approach is used. 

2.3 Parameter ranges and nominal values 

A nominal parameter vector is used as a starting point for the estimation methods. These 

parameter values are based on trial and error experiments, together with prior knowledge of the 

approximate range where reasonable values may be obtained. The physical insight required as a 

starting point for these trial and error experiments is limited to the approximate order of magnitude 

of the parameters. It is assumed that this can be obtained for most practical buildings. It is not required 

that the nominal values themselves give a good prediction model for the building, only that they are 

approximately in the correct range. They are mainly used as normalisation constants, such that 

parameter estimation can be performed in unit scale, and to restrict the search space to a region of 

interest where reasonable parameter values may be obtained.  

 

 

 

Table 1 – Nominal parameter values and min./max. range 

 Rg [K/W] Rb [K/W] Rw [K/W] Cb [J/K] Cw [J/K] 

Nom. value (θ0) 0.160 0.060 0.100 1200k 1200k 
Min. (θmin) 0.048 0.018 0.03 360k 360k 
Max. (θmax) 0.272 0.102 0.170 2040k 2040k 
 

Table 1 gives a summary of the nominal parameter values with min./max. ranges used for the 

R3C2 model. The nominal values are chosen such that any region of interest in the parameter space is 

contained within +/-70% of each nominal value. Hence θmin = 0.3 * θ0 and θmax = 1.7 * θ0. In the 

following, discussions on the estimation of parameters and the shape of the objective function in 

parameter space are valid only within the ranges specified in Table 1.  



2.4 Numerical optimisation 

The subject of numerical optimisation used for parameter identification is covered in literature, 

e.g. [2, 19, 26]. Optimisation algorithms are used to find a minimum point of an objective function. In 

parameter estimation, this objective function is typically the model fit, i.e. the square error over a set 

of reference data compared to model simulations. In this work, the simulation error is computed over 

the whole calibration period, rather than using the one-step ahead prediction errors traditionally used 

in statistics [8, 20]. This results in a least squares curve fitting approach to parameter estimation, as 

discussed in section 2.2. This gives the objective function as the mean square error (MSE) between 

simulated and measured temperatures computed over the whole dataset. A standard quadratic norm 

[18] is chosen as the error function, i.e.: 
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Here, nx is the number of states (temperatures) and N is the number of samples in the dataset. 

The sum of squared error of each of the two temperature states is added together and the errors of 

all states are weighted equally. An alternative approach is to weight the errors by their uncertainty, 

e.g. the covariance of the measurements, as is typically done in the statistical approach to parameter 

estimation [20]. Since the temperatures are measured by the same DAQ system it is reasonable to 

assume similar uncertainty in both measurements and hence use equal weights on the error for both 

states. All samples in the calibration data ZN are assumed to have equal uncertainty, such that the 

weighting of the errors is also uniform in time. 

To simplify the evaluation of results, the objective score J is divided by the number of samples 

and the square root taken, thus giving the root mean square error (RMSE). This quantity has the same 

unit (℃) as the states. The optimisation algorithm works directly on the sum of square error objective 

J. 

The optimisation algorithm of choice in this paper is the Constrained Optimization BY Linear 

Approximation (COBYLA), which was developed by M.J.D. Powell [26]. The implementation is taken 

from the Accord.Net project [27]. There are two important settings of the algorithm, RhoEnd and 

MaxIttr. The first controls the accuracy of the optimised variables, while the second is a loop break to 

ensure the algorithm completes even if no optimal solution is found. In this project, RhoEnd is set to 

1e-4 and MaxIttr is 1e4. This allows COBYLA to find the solution with sufficient accuracy. In all following 

cases, the algorithm completes without reaching the maximum number of iterations. 



2.5 Experimental setup and data 

The building of interest in this paper is an experimental setup built in 2014 at the campus of 

University College of Southeast Norway, in Porsgrunn [28].  

 

Figure 2 - A view of the experimental building with floorplan 

 

Figure 2 shows a view of the test building from the outside, together with the floor plan. This 

building has support structures made out of concrete so it is not in contact with the ground. The inner 

volume is approximately 9.4 m3 and sealed such that neither natural ventilation nor mechanical 

ventilation is provided. The building has three small windows of each 60x90 cm2, one in each of the 

south, east and west directions, and a door of 90x120 cm2 in the north direction. Three buildings 

surrounding the experimental building limit the solar irradiation through the windows.  

The building envelope is constructed using layers of diverse materials, including wooden cladding, 

glass wool, air fill, polyethylene vapour barriers, wood, cement chipboard, particleboard and 

cardboard. There are three different types of walls each having unique construction by compounding 

different materials stated above. Roof and floor of the building also have different composition in each. 

The experimental building has an electrical heater of 375W consisting of a thermostat controller, 

a measurement system, and a logging computer that uses approximately 100W. The measurement 

system consists of sensors for measuring the inside and outside temperatures and humidity, air 

pressures, rainfall, and wind speed and wind direction, and total power usage. The power usage is 

logged every 10 seconds, the temperatures and humidity are logged every 10 minutes, and the 

weather data is logged every 30 minutes. All data is stored in CSV (Comma Separated Values) files. The 

temperature sensors are mostly of the silicon type (TMP 36) with an accuracy of +/- 1 ℃. Data was 

collected using multiple data from these CSV files, and pre-processed. During the pre-processing steps 

the data was filtered, combined and re-sampled by linear interpolation. This gives a combined dataset 



where all the variables of ZN are known at the same time instants ti, regardless of the initial sampling 

times for the different CSV files. In the final dataset, a sampling time of dt=10 minutes is used. 

Measurement data was collected from the building during November and December 2015. Since 

buildings are exposed to weather, experimental design options are limited. This poses a challenge in 

ensuring that the calibration data contains sufficient dynamic information for parameter estimation. 

If buildings are occupied, this poses further restrictions on the experimental design. The data used 

here is derived from an empty building, but under realistic experimental conditions, i.e. exposed to 

weather and other unmeasured disturbances.  

Since the window area exposed to solar irradiation is limited and the data was collected during 

the winter in Norway, heat gain from solar irradiation is assumed negligible. Hence, in order to limit 

the model complexity, the solar irradiation is not included in the dataset or the model. 

 

 

 

 

Table 2 - List of datasets 

Dataset name Start time End time Length [h] N 

Nov1 02.11.2015 17.18.00 10.11.2015 00.08.00 175 1050 
Nov2 10.11.2015 00.18.00 17.11.2015 07.08.00 175 1050 
Dec1 04.12.2015 18.00.00 11.12.2015 08.50.00 159 954 
Dec2 11.12.2015 19.40.00 17.12.2015 00.00.00 124.5 747 

 

A list of four datasets, including identifying names, is given in Table 2. Estimation of parameters, 

i.e. fitting a model structure to a particular physical system, requires information about that system in 

the form of a set of measurements ZN [18]. This set contains both reference data in the form of system 

outputs y and information about the excitations for the system in the form of system inputs u, i.e.: 

 1 1 2 2, , , ,..., ,N

N NZ y u y u y u        (8) 

If the states are directly measurable, as is the case with building temperatures, the outputs are 

simply equal to the states with the addition of measurement noise. The measured states yi in ZN are 

temperatures Tb and Tw. The inputs ui consist of the outside temperature T∞ and power consumption 

Q  of the building.  



 

Figure 3 - Plots of all datasets. On the left side, temperatures for building interior Tb (black), 

building wall Tw (grey) and outdoor temperature T∞ (light grey) are shown. On the right side, the power 

consumed in the building is plotted (black). The datasets Nov1, Nov2, Dec1 and Dec2 are plotted from top 

to bottom respectively. 

 

The contents of each of the four datasets are plotted in Figure 3. These datasets were generated 

by introducing arbitrarily chosen steps in the thermostat setting of the electric heater in order to 

simulate realistic variations in setpoint for a building in use. While this approach may be inferior to, for 

instance, a pseudo random binary sequence (PRBS) [22], it is more realistic since it mimics temperature 

changes of a building in use. Changing temperature setpoints from a low to a high setting (approximate 

step sizes of 10°C to 20°C are used here) takes a significant time, typically around 1248 hours. This is 

reflected in the slow response to the step in supplied power, shown in the plots of data. 

A constant minimum power consumption of about 100W is observed in Figure 3. This power is 

consumed by computer equipment used for data logging in the test facility. When the on/off 

thermostat control turns the heater on, an additional 350W of power is drawn by the heater.  



When the heater is regulating the temperature at a setpoint requiring less than full capacity 

(<100% on-time), there are spikes in the power consumption data caused by the thermostat switching 

the heater on and off. These spikes are present in the November data, but not in the December data. 

In November, the heater was set at a maintainable temperature setting of approximately 25°C, i.e. the 

system is under on/off control. In December, the heater setpoint was turned to maximum, which is 

higher than the achievable temperature at full power under the given experimental conditions. Hence, 

the heater was constantly on for long periods of time. 

For the parameter estimation, all the supplied power is included in Q . Hence the input to the 

model is taken directly from the data as shown here. This is a simplification, since some power is 

consumed by other equipment in the building. However, it is assumed that all the supplied energy is 

converted to heat, either by the electric heater or the other equipment. For simplicity, the total heat 

generation from all appliances is denoted as a single heater. 

3 Results 

The R3C2 model is based on the physical structure of a building and the parameters are estimated 

using measurement data. The thermal parameters of buildings are assumed to be time invariant. 

Hence, it is expected that there exists a single, true, parameter vector for the grey-box model 

determined by the physical properties of the building. Convergence of parameter estimates towards 

such a parameter vector can be considered a requirement for physical interpretation of the final 

model. The results presented here are computed mainly from the Nov1 dataset. 

The denomination degrees of freedom (DOF) is used to describe the number of free parameters 

in the estimation problem. The R3C2 model has five parameters, constituting five DOF.   

3.1 Maximum degrees of freedom, five estimated parameters 

The first method used to investigate the parameter space of the model is a simple Monte Carlo 

approach. In the following results, M = 50000 simulations of the model are executed. Model 

parameters are randomly and independently drawn from the range θmin ≤ θ ≤ θmax, given in Table 1. 

This is similar to a simple random search, except that we are interested in the collection of all results, 

not just the one with the lowest RMSE. The resulting plots consist of points, one for each simulation, 

which gives a view of the shape of the objective function J in parameter space. The abscissa of the 

plots represents parameter values and the ordinate axis represents the resulting root mean square 

error (RMSE) for each simulation. 

In this section, all five parameters of the R3C2 model are free, i.e. they are estimated as opposed 

to kept constant. 



 

Figure 4 - Monte Carlo simulations with 5 degrees of freedom. This figure shows the resulting 

scatter plots for the parameters.  

 

As shown in Figure 4, most of the randomly drawn parameter vectors are not optimal since the 

RMSE is higher then the minimum. However, some solutions fall close to the minimum RMSE of 

0.591°C for the R3C2 model and Nov1 dataset. When all five parameters are estimated, the objective 

function is flat in the minimum RMSE region. Since there is no clear minimum, the estimated parameter 

from an optimisation algorithm will not converge to a single parameter vector but rather produce 

vectors in an optimal range, all with the same minimum RMSE. 

The next method is also based on Monte Carlo (MC) simulations. Randomly drawn parameters 

are used as the initial guess of a numerical optimisation algorithm (COBYLA). The initial guess and the 

subsequent parameter estimate are plotted for all iterations of the optimisation algorithm. The points 

are interconnected by a line in order to identify which particular initial guess corresponds to each 

solution. Each plot consists of 50 iterations, i.e. repeated randomised initial guesses followed by 

execution of the optimisation algorithm. 



 

Figure 5 - Randomised initial guess and estimated solution is plotted together. This figure shows 

the results of applying the bespoke method to the R3C2 model simulated in the Nov1 dataset.  

 

As shown in Figure 5, the optimisation algorithm finds optimal solutions, i.e. RMSE ~ 0.6°C, from 

all 50 starting points, but the resulting optimal solution varies significantly with the initial guess. The 

parameter estimates do not converge. Based on the plots in Figure 4, this is expected. Figure 5 further 

shows that the RMSE objective function is flat around the minima, since many equally good solutions 

exist for a large range of parameter values. 

3.2 Reduced degrees of freedom, 4 free parameter 

As discussed, we expect the estimated parameters to converge towards a true, physically 

determined, parameter vector. Since the results so far indicate that this is not the case, an explanation 

for the dispersion in parameter estimates is needed.  

Over-parameterization [16], i.e. too many degrees of freedom (DOF) in the estimation problem, 

is one plausible explanation for the observed flatness of the objective function. The DOF is reduced by 

fixing one parameter at a constant value, thus reducing the number of free parameters to estimate. 

Reduction in freedom is only applied to the estimation problem, by the reduction of free variables, and 



does not affect the model structure. All five parameters are used in the simulations and the model 

remains the same. 

The parameter chosen to be kept as constant is Rg. This parameter represents the thermal 

resistance of windows and doors, i.e. the part of the building envelope directly exposed to both interior 

and exterior temperatures. Because Rg represents doors and windows, which usually have known ‘UA’ 

values [1], it is assumed that Rg would be the easiest to compute based on building technical 

specifications. UA values are computed as the product of U and A, where U is the reciprocal of thermal 

resistance per area and A is the area. Hence, knowing R or U for all windows and doors, as well as their 

area A allows for computation of Rg = 1 / (UgAg). 

 

Table 3 - Building specification according to manufacturer of windows and door 

 U [W/m2K] A [m2] UA [W/K] R [K/W] 

Door 1.2 1.76 2.1 0.48 
Windows 1.3 1.57 2.0 0.50 
Total - - 4.1 0.24 

 

As shown in Table 3, the specifications give a theoretical Rg of 0.24. However, this includes only 

one door and three windows. Comparing the R3C2 model to the building, Rg is also expected to include 

any other element of the building that gives a direct influence between outside temperature and 

indoor air temperature without affecting the wall temperature. Hence, the theoretical Rg can be 

considered an upper bound of the true Rg, as any contribution by remaining building elements can 

only lower Rg. Note therefore that it is considered acceptable that the theoretical Rg is in the upper 

region of the nominal range defined in Table 1. 

First, the parameter space for the reduced DOF case is observed by using MC simulation of 

parameter space. 



 

Figure 6 - Scatter plots of MC simulation in parameter space. This figure shows the results of 

applying MC simulation of the parameter space to the R3C2 model simulated on the Nov1 dataset, with a 

fixed parameter Rg = 0.24 [K/W]. 

 

 

Figure 7 - Randomised initial guess and optimal solution is plotted together. This figure shows the 

results of applying the bespoke method to the R3C2 model simulated on the Nov1 dataset. With reduced 

freedom in the estimation problem, the trajectories of the optimsation now show a distinct convergent 

pattern, independent of the initial random guess. 

 

As shown in Figure 6, the MC simulations of the parameter space now show a significantly 

different shape of the objective function, which now has a well defined minimum. Subsequently, 

optimisation is now expected to converge towards a single parameter vector. 



Comparing Figure 7 with Figure 5, it is evident that the dispersion in estimated parameters is 

significantly decreased. Based on the MC simulations of parameter space shown in Figure 6, it is 

reasonable to conclude that the objective function has more pronounced minima when one DOF is 

eliminated from the estimation problem. With a distinctly convex objective function, the optimiser is 

able to find the same optimal solution independent of initial guess.  

Multimodal objective functions are a typical challenge of numerical optimisation. This has not 

been discussed here, since the plots from the MC method are used to show that the objective function 

is either flat or unimodal in the region of interest. 

3.3 Quantitative comparison of results from DOF reduction 

In order to quantitatively compare the cases presented in sections 3.1 and 3.2, the standard 

deviation (SD) of estimated parameter values is computed. 

  

Table 4 – Sample standard deviation of parameter estimates, as a percentage of nominal value 

 Rg [%] Rb [%] Rw [%] Cb [%] Cw [%] 

5 DOF 19.23 14.43 10.05 5.093 12.18 
4 DOF - 0.066 0.079 1.230 2.208 
 

Table 4 lists the SD as a percentage of the nominal value, as a measure of the dispersion of 

estimated parameters from both the cases with five and four DOF. By reducing the number of free 

parameters, the dispersion of the parameter estimates is significantly reduced, in particular for the 

resistance parameters. Slightly more variation is observed in the two capacitance parameters. 

3.4 Comparing results from multiple datasets 

Until now, all results are taken from a single dataset, Nov1. As demonstrated, too many DOF will 

lead to a flat objective function, which in turn gives a large dispersion in estimated parameters. Next, 

it is of interest to introduce more data to the parameter estimation, namely the datasets Nov2, Dec1 

and Dec2. Thermal building behaviour parameters are assumed to change slowly with time, unless 

modifications to the building structure are introduced. For the datasets presented in section 2.5, no 

such modifications occurred. Hence, it is reasonable to assume that the parameter estimation methods 

will give similar results for the four datasets.  



 

Figure 8 - Comparing optimisation results and convergence for Rb over four datasets. The top left 

plot is for Nov1, top right for Nov 2, lower left for Dec1 and lower right for Dec2. 

 

 

Figure 9 – Comparing optimisation results and convergence for Cb over all four parameter sets. 

The top left plot is for Nov1, top right for Nov 2, lower left for Dec1 and lower right for Dec2. 

 
Figure 8 shows the plots from randomised initial guess to estimated parameter for the parameter 

Rb estimated on all four datasets using the four DOF model. As previously demonstrated for dataset 

Nov1, the parameter estimates converge independently of the initial guess per iteration of the 

method. This also holds for the other three datasets. However, the parameter value that gives 

minimum RMSE is different for each dataset, i.e. the solution for each dataset is not the same 

parameter vector. 



Figure 9 shows the results for the parameter Cb. The plots show that the estimated parameter 

values for Cb also vary between the four datasets, same as for Rb, although this variation is smaller for 

Cb than Rb. Similar results are obtained for the other two parameters. Next, it is useful to quantitatively 

compare the estimated parameter values and their corresponding variance, for all four datasets. 

 

Table 5 - Summary of average parameter estimates for all four datasets 

Dataset Rb [K/W] Rw [K/W] Cb [J/K] Cw [J/K] RMSE4 [K] RMSE5 [K] 

Nov1 0.057 0.066 1271k 1673k 0.592 0.591 
Nov2 0.041 0.079 1107k 1321k 0.842 0.835 
Dec1 0.033 0.072 1033k 1529k 1.008 1.010 
Dec2 0.029 0.087 852k 1241k 0.959 0.963 

 

 

Figure 10 – Estimated parameters for each dataset 

 

Estimated values for each parameter for all datasets are given in Table 5 and plotted in Figure 10. 

Columns RMSE4 and RMSE5 give the root mean square error (RMSE) of the simulations using estimated 

parameter vectors, from four and five DOF cases respectively. There are significant variations in the 

estimated parameters when comparing multiple datasets, e.g. Rb for Nov1 is twice as large as for Dec1 

and Dec2. It is unlikely that the thermal resistance between room interior temperature and wall 

temperature is halved in just four weeks. As such, these variations are probably not caused by physical 

effects. A plausible explanation is insufficient dynamic information content in the data. As discussed, 

this can lead to problems with practical identifiably [19]. 

An important observation from Table 5 is the similarity between RMSE values for the five and 

four DOF cases, as shown in the two last columns. While fixing Rg to a constant value – thereby 

removing it from the parameter estimation problem – decreases the dispersion of estimated 

parameters, this does not affect the final RMSE of the model with estimated parameters.   

 

Table 6 - Summary of parameter estimates’ sample standard deviation for all four datasets 



Dataset Rb [%] Rw [%] Cb [%] Cw [%] 

Nov1 0.065 0.079 1.230 2.208 
Nov2 0.079 0.027 1.252 1.995 
Dec1 0.066 0.070 0.854 1.250 
Dec2 0.105 0.027 1.078 2.144 

 

The standard deviation of parameter estimates, as a percentage of nominal values, is given in 

Table 6. As shown, the dispersion of parameter estimates is similar for all four datasets, even though 

the estimated parameter values are different. These results could indicate that the spread of the 

parameter estimates is problem specific, independent of the datasets, while the actual value of each 

parameter depends on the calibration data.  

3.5 Model validation 

In order to show that the identified model parameters could be used for predicting the thermal 

behaviour of the building, it is required to validate the model using new data, independent of the data 

used for parameter estimation. So far, the results are based on model fit, i.e. how well the model is 

able to fit a particular set of data. A superior measure of model accuracy is the models ability to predict 

the thermal behaviour using a new dataset. This validates the model performance in similar conditions 

as those of a Model Predictive Control (MPC) system. Hence it gives a good indication of the models 

performance used for the purpose of controlling the building temperature. The results in this section 

are based on the four DOF model. 



 

Figure 11 - Results from model simulation are plotted for all four datasets using the four parameter 

sets shown in Table 5.  The results on the diagonal of this figure are model fit results, while the off-diagonal 

elements are validation results.  For the validation plots the parameters are estimated using a dataset that 

is independent from the one used for inputs and measurement references. The model fit results are plotted 

on grey background to separate them from the validation results. The simulation results are plotted in grey 

while the reference data are plotted in black. 

 
The results for Tb from validating the model are shown in Figure 11. The columns represent the 

dataset used for validation while the rows show the dataset used for parameter estimation. This gives 

that the diagonal plots are model fit result, while the off-diagonal elements are model validation 

results. The model fit results on the diagonal are plotted on grey background to separate them from 

the validation results, and are included in the figure for comparison with validation results. The 

measured temperatures are plotted in black, and the simulated in gray. 

 

Table 7 - Simulation errors (RMSE) in Tb for all four datasets and parameter sets 

Identification 
dataset 

Input and reference dataset 
Nov1 Nov2 Dec1 Dec2 

Nov1 0.330 0.596 1.899 1.174 
Nov2 0.562 0.513 1.692 0.861 
Dec1 1.247 1.463 0.588 1.803 
Dec2 0.936 0.857 1.586 0.807 

 
 
 

Table 8 - Simulation errors (RMSE) in Tw for all four datasets and parameter sets 

Identification 
dataset 

Input and reference dataset 
Nov1 Nov2 Dec1 Dec2 



Nov1 0.492 2.095 2.494 5.605 
Nov2 1.326 0.668 1.119 2.528 
Dec1 1.068 0.833 0.822 2.958 
Dec2 2.155 1.471 2.460 0.526 

 

The RMSE results for all 16 combinations of dataset and parameter sets are given in Table 7 and 

Table 8. These results, together with the plots in Figure 11, show that the model is capable of giving 

good prediction accuracy also for unknown data, although the RMSE varies for different combinations. 

As for Figure 11, the diagonal elements on grey background are the model fit results, while off-diagonal 

elements in both tables are results from validating the model on independent data. The prediction 

error for Tb is around 0.5°C to 1.5°C for most cases, with some combinations approaching 2°C. 

Considering that MPC uses feedback, model prediction errors around 1C is likely adequate for the 

intended purpose. As evident from Table 8 the errors are significantly larger for Tw. However, in a 

building energy management system, it would be the interior temperature Tb that is of importance for 

the controller. 

4 Discussion 

It could be argued that physical interpretation of grey-box parameters for a building model 

requires that the parameter estimates converge towards a single point in parameter space. If the 

parameter estimates show a large dispersion in their description of a predominantly time-invariant 

physical system, they cannot be directly correlated to the specific physical properties of the building.  

However, the model as a whole may still be able to accurately predict the behaviour of the 

system, even if the parameters cannot be assigned a physical interpretation. This is illustrated in the 

model validation in section 3.5. The calibrated models where shown to give mean square errors of 

prediction of around 0.5°C to 1.5°C for a ~7 day test period for the internal building temperature Tb. 

Models with prediction errors of this magnitude may be considered usable in MPC systems. 

Despite acceptable model validation results, it is of interest to study the reasons for the observed 

dispersion of estimated parameters, since this gives reason to question the physical interpretability of 

the estimated parameters. The use of Monte Carlo (MC) sampling of parameter space together with 

scatter plots of the resulting root mean square error (RMSE) from simulations compared to 

measurement data was shown to provide a view of the objective function in parameter space. This 

allows visualisation of the convexity of the objective function, which in turn facilitates cognitive 

evaluation of the expected optimisation algorithm behaviour. 

A randomised initial starting point and repeated execution of optimisation algorithms were used 

to show that the optimal solution can depend on the starting point. Further, this dispersion in 



estimated parameters was shown to depend to some extent on the degrees of freedom (DOF) in the 

estimation problem, since  reducing the DOF in the estimation decreases the dispersion of estimated 

parameters.  

Despite reducing the number of estimated parameters, the results still do not converge to a single 

parameter vector when multiple calibration datasets are used. It is plausible that the datasets used in 

this work do not contain sufficient dynamic information to identify the model parameters. It is well 

known that lack of dynamic information in calibration data, caused by insufficient excitation of the 

physical system during data acquisition, may give rise to problems of practical identifiably [16, 18, 19]. 

Due to the experimental conditions encountered when collecting data on building thermal behaviour, 

ensuring that data contain sufficient dynamic information can be challenging.  

Another possible explanation for the observed behaviour of the parameters is that the simplicity 

of the model allows the estimation procedure to use model parameters to account for unmodeled 

effects in the physical system. Unknown disturbances, such as variations in humidity or wind, may not 

be similar between the four investigated datasets. 

5 Conclusion 
The use of multiple datasets for parameter estimation, as well as the use of MC methods, was 

shown to give insight into the dispersion of estimated parameters. The model with identified 

parameters was further shown to give good predictions of building thermal behaviour, and as such 

would be suitable for model predictive control. However, if physical interpretation of individual 

parameters is of interest, the dispersion in the parameter estimates needs to be eliminated. This can 

be done by addressing the challenges of practical identifiably through improved excitation of the 

physical system. Further, the over-parameterisation of the grey-box model can be reduced by limiting 

the number of free parameters in the estimation problem.  
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