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Abstract— Modern innovations in the design of sensors and the 

convergence of computing, cognition and communications have 

led to many new possibilities in incorporating AI-techniques in 

Assistive Technology (AT) for elderly people. Combining wearable 

sensors (body sensors) with sensors and computing capabilities of 

smartphones, a set of experiments were performed to test various 

AI-algorithms for the detection of critical events such as accidental 

falls, prolonged stationary states and going astray from residence 

of “Elderly Living Independently At Home, (ELIAH)”. Selected 

results from studies related to both critical and trivial events are 

used to test different AI models (threshold, Artificial Neural 

Networks (ANN), Support Vector Machines (SVM), k-Nearest 

Neighbors algorithm (kNN). The AI models are versatile enough 

to identify clearly fall from non-fall events. After selecting suitable 

features based on sensor data fusion, AI model using only wrist-

based sensors flawless detection of events related to fall. A 

proposed system architecture for implementing these detection 

models in an application software for smartwatch and smartphone 

can serve to alert accidental faults as well as going astray of 

ELIAH. Data fusion with video images is also discussed. 

Keywords—ELIAH (Elderly Living Independently At Home), 

Wearable sensors, body sensors, AI, Smartphones, fall detection, 
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I. INTRODUCTION  

Assistive technology (AT) deals with the usage and 
development of assistive, adaptive, and rehabilitative devices for 
people with disabilities, covering also the elderly living 
independently at home (ELIAH, our own acronym), in the 
context of this paper. When caring for ELIAH, most often, a 
critical event is that event indicated by a monitoring system in 
the form of alarms. Critical events must be handled often by 
emergency services alerted by specific alarms and frequently 
followed by subsequent actions by dedicated care personnel. 
Due to accidents involving falls under varying circumstances in 
bathrooms, on slippery roads during winter, or stumbling, about 
9000 persons fracture neck of the femur (upper part of the thigh 
bone) every year in Norway alone. About 60% of these injured 
persons die within five years. In 2017, 400 persons with fracture 
of the femur died due to ensuing complications. These data show 
that some measures have to be taken to reduce this number of 
accidents and possibly to eradicate them completely. These data 
are found in various sources in the media as well as in the reports 
available in the archives of public health, [1] and [2].  

II. FALLS AND THEIR SIGNIFICANCE FOR ELIAH 

According to a recent Norwegian study, fall is the most 
frequent critical event encountered by ELIAH, [3]. According to 
[4], AT should promote self-dependency, allow community 
dwelling, increase the elderly user’s participation in ICT-based 
assistance and provide insightful data to health professionals, 
caregivers, family members etc. in our case ELIAH. Safety 
alarms and relevant action by care personnel are proper for 
ELIAH.  

Fig.  1 shows common problems encountered by ELIAH and 
how welfare technology can lead to some improvement of their 
angst situations. This paper addresses the "safety- and security 
technology for creating a secure framework around the user”.  
An important aspect regarding IoT and healthcare solutions is 
that we need to have focus on data security, cyber security and 
data privacy, including the new GDPR directive. 

 

Fig. 1. Cognitive impairment and the angst for falls as discussed in [5]. 

To illustrate the state of the art, it is interesting to refer to the 
technology push in this sector, in Norway by the Telenor as 
illustrated in Fig. 2. Telenor is a Norwegian Telecommunication 
company providing tele, data and media communication 
services. Data acquisition platforms are commonly the link 
between ELIAH, the alarm central, relatives and other relevant 
actors. “Telenor Objects”, Telenor’s digitalization platform 
within the health and welfare sector, has created a generic data 
acquisition platform called ‘Shepherd’, which manages the 
communication and data transmission between the user’s house 
and the other actors involved, as shown in Fig. 2. Some of these 
functionalities are offered by providers of alarm 
systems/security technology based on sensor networking with 
some aspects of push messages using mobile telephones and 
email.  

In the context of safety and security of ELIAH, an intelligent 
and unobtrusive wearable sensor package along with the 
ubiquitous smartphone as schematically illustrated in Fig. 3, 



 

may offer one possible solution, when the user is not expected 
to be an expert in the technological aspects of these devices. 
Given that a scenario of sensors is available, the technology 
provider can cater to the handling of critical events, using an 
architecture for sensor fusion shown in Fig. 4.   Most of the 
systems have their own DCUs (Data Collection Units). 

 
Fig. 2. Shepherd solution currently under development by Norwegian 

Telecommunication Company Telenor with possibilities for handling data from 

devices from different vendors [6] 

 

Fig. 3. Measurands logged in with wearable sensors and smartphone  

 

Fig. 4. Fusing sensors’ data for unobstrusive supervision. PC section can be an 
embedded algorithm in a dedicated intelligent unit such as the one indicated in 
Fig. 2. Ambient sensor unit consists of temperature, magnetic flux, IR etc. As 
the title suggests, only body sensors are considered in this paper. DCU (Data 
Collection Units) 

An idea of the measurands involved and their ranges can be 
seen in the TABLE I below. Threshold for acceleration values 
along 3-axis are calculated by simulating different fall 
conditions. The threshold values are shown in Table I. Above 
these values, the system detects fall. The range of acceleration is 
[-2g 2g], g being the acceleration of gravity. An increasing 
advancement in communication technology, especially wireless 
protocols such as Wi-Fi, ZigBee and Bluetooth and recently 5G 
and the extension of services with IoT, [7], enables monitoring 
systems to expand in terms of usability and range for remote 
measurements.  

Depending on the sensor placement on the body, the 
sampling rates obviously vary, e.g. upper arm 32 Hz, waist 0.2 
– 1.0 Hz, waist or wrist 30 Hz, ankle 128 Hz, chest, thigh and 
feet 32 Hz as typical values. In our studies, the sensors with 16 
bits resolution were mounted on the wrist and chest.  

An increasing advancement in communication technology, 
especially wireless protocols such as Wi-Fi, ZigBee and 
Bluetooth and recently 5G and the extension of services with 
IoT, [7], enables monitoring systems to expand in terms of 
usability and range for remote measurements, as shown in 
TABLE II. An updated version of the Bluetooth protocol 
(Bluetooth Core Specification v5.1) allows for positioning at 
centimeter level. Bluetooth can already be used in conjunction 
with indoor positioning systems, but with Bluetooth 5.1 there is 
a very accurate functionality to find the direction as well. 
Applications can be in indoor navigation and location services. 

TABLE I.  MEASURANDS WITH THEIR RANGES. BPM – BEATS PER MINUTE 

Sensor No./Measurand Low High 

1/ Acceleration-x -2g 2g 

2/Acceleration-y -2g 2g 

3/ Acceleration-z -2g 2g 

4/BPM/ number 55 110 

 

TABLE II. CHARACTERISTICS OF SOME WIRELESS NETWORKS (TYPICAL 

VALUES MAY VARY FROM VENDOR TO VENDOR).  

 

III. EVENTS RELATED SIGNAL TRAINS 

Based on the angst scenario portrayed in Fig. 1, the relation 
between falls, cognitive impairment, and solitude for elderly, 
and how one disability can provoke another leading to the 
elderly being prematurely moved into care-homes. AI models 
can help to detect falls and alert if a user has not returned home. 
TABLE III shows the different experiments conducted to log in 
data from wearable sensors shown in Fig. 3. 

TABLE III. EXPERIMENTS CONDUCTED WITH WEARABLE SENSORS 

Experiments 
Experimental Categories 

Fall Non-fall Comments 

Fall & non-fall 

indicating 

various 

scenarios 

𝐸𝑓𝑎𝑙𝑙=𝐸1−56  
Transition: 𝐸𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐸57−108 

Sedentary: 𝐸𝑠𝑒𝑑𝑒𝑛𝑡𝑎𝑟𝑦 = 𝐸109−120 

Walking: 𝐸𝑤𝑎𝑙𝑘𝑖𝑛𝑔 = 121−130 

Running: 𝐸𝑟𝑢𝑛𝑛𝑖𝑛𝑔= 𝐸131−140 

Exp.  1-56 

falls 

57 – 140 

different 

non-fall 

scenarios 

 

The fall and non-fall experiments were performed using 
different types of landing grounds and furniture commonly 
found in all home environments. Bed, sofa, chair, and an 
exercise mat representing the floor, were utilized when 
recording falls and non-fall experiments. Non-fall experiments 
include transitional motion like standing to sitting, sedentary 



 

motion like sitting and lying and continuous motion like walking 
and running. Fig. 5 and 6 show some signal trains obtained 
during the experiments. 

 

(a) Signal trains from sensors mounted on chest and wrists 

 

(b) Body sensors at wrist and 
chest with their respective 
orientations. 

 

(c) Android position data for ELIAH 

 

 

 

(d) Geofence activation based on GPS threshold levels 

Fig. 5. (a) Signal trains from wearable sensors obtained during events involving 
falls. (b) Acceleration and angular velocities from wearable sensors on the wrist 
and chest (c) Android unit used in position data collection (d) Geofence for 
ELIAH based on GPS threshold values. 

IV. FEATURE EXTRACTION 

After characteristics of the 𝐸 signal trains shown in Fig. 5 
and Fig. 6 the experimental data sets are processed for feature 
extraction. The data sets E1−140 (fall and non-fall) from the 
wearable sensors need to be preprocessed before using them in 
the AI models. The final feature matrix F(𝐸(130)𝑥𝐹(80)) does 

not have the same order of the E’s as E1−140 indicate, because of 

variable name handling in MATLAB. Feature extraction is 
shown in the flow diagram of Fig. 7. The activities involved in 

data processing and feature extraction of 𝐸1−140 data sets are 

illustrated in Fig. 8, where F is the feature matrix involving all 
the experiments, E, and features F, based on statistical, 
correlation and neural network processing. 

Fig. 6. Events involving fall, transition to sedentary followed by walking 

characterised by wearable sensors. Angular velocity sensor outputs from 

wearbale sensors  

In Fig. 7, interval extraction involves extracting the 
necessary time intervals from the signal trains such as those 
shown in Fig. 5 and 6.  Feature extraction involves determining 

the features of all 𝐸1−140 and construct the feature matrix F. 

Normalization is applied to all parameters involved in F. Some 
of the E’s are removed during outlier removal, as these E’s did 
not represent the data good enough to create AI models for fall 
detection, which could possibly affect the training process. 

 
 

Fig. 7. Graphical overview explaining the flow of activities involving interval 
and feature extraction as well as feature normalization and feature outlier 
removal.  

Relevant features, F, are extracted from the experimental 
data sets based on the domain knowledge obtained by studying 
the characteristics of the signal trains such as those shown in Fig. 
5 and Fig. 6. Initial features are generated into a feature matrix, 

F(E(𝑙 = 140)𝑥𝐹(𝑛 = 80)) representing all features for 𝐸1−20 

(samples), were 𝑙 is number of experimental data sets 𝐸 and 𝑛 is 
number of features F. Feature category used in this study is 
summarized in TABLE IV. Among different features used, one 
of the features correlation is shown in Fig. 8 for different 
“events”, such as running, sedentary, falling etc. Fig. 9 shows 
one tool for preprocessing the data for outlier removal indicating 
the removal of the data associated with the event “running”, 
which in the present context is a non-critical event.  

TABLE IV. FEATURE CATEGORY AND NUMBER OF FEATURES F  IN EACH 

CATEGORY OF E 

 

Using Fig. 8, the techniques used in finding the different 
states of the person based on data fusion is illustrated. The 



 

number of tests run in this particular experiment is also shown 
in Fig. 8.  

In Coviu, [6], video consulting is proposed for the elderly. 
Using video images, as applied in [8], but with focus on 
orientation of the trunk of the person, in the context of current 
study, for information on the person’s posture (horizontal, 
vertical etc.) along with the body sensors’ data will help to 
ascertain the seriousness of the fall.  

 

(a) Number of falls and the signals logged in with the respective sensors 
for AI processing. 

 

(b) Using correlation to detect conditions of fall, sedentary/walking etc. 

Fig. 8 Details of the fall experiments and results from one type of test using 
cross-correlation (a) Sensors used with the respetive number of tets runs (b) 
Signals during falls, in transition compared with those during sedentary and 
walking conditions.  

V. PERFORMANCE OF THE FALL DETECTION WITH AI MODELS  

Based on the optimal feature subset Ftestopt for each sensor 
type, on both chest and wrist placement, the performance in 
detecting the right event was assessed. A total number of 143 
different experiments were performed, consisting of Efall =E1-56, 
Etransition =E57-108, Esedentary =E109-120, Ewalking =E121-130, Erunning =E131-

140, Edoor =E141, Eposition =E142-143, out of which 140 experiments 
were fall related. The AI algorithms resulted in a experiment-
feature matrix F of size 140x80, which was used in different 
analysis. In this study 80% of the data were dedicated to training 
and 20% for testing. TABLE V shows the success rate for 
sensors in all placements. 

VI. THE SYSTEM ARCHITECTURE: 

The system described in this paper for ELIAH is unobtrusive 
and user friendly. Due to the size and the possibility of 
combining with smartphone and smartwatch, the modules are 
fashionable and less stigmatizing. However, the design expects 
availability and reliability of battery used in the wearable 
devices. 

TABLE V shows the success rate of the event detection 
using the system developed in this study. 

 
Fig. 9. Outlier removal using PCA. Score plot generated after performing PCA  
on F in Unscrambler. The E running experiments inside the red circle, is identified 
as outliers, and will be removed from F before training AI models for fall 
detection. 

TABLE V.  PERFORMANCE OF THE DATA FUSION MODELS IN DETECTING THE 

EVENTS. 

 

VII. ALERTING HEALTH/RESCUE PERSONNEL 

In a pilot study, a data fusion approach was developed to test 
the possibility of using existing data from sensors to alert health 
and safety personnel. The technique was based on data fusion 
from selected sensor modalities including video images, 
extending the work described in [5] and [8]. Some results are 
presented in [9], from which the data flow diagram is reproduced 
in Fig.10, in which MPU 6050, inertial sensor module for 
monitoring motion is used. 

The data flow for the pilot system is shown in Fig. 11. The 
flow diagram in Fig. 12 gives some of the details behind the alert 
activation based on the position of the person, e.g. vertical, 
supine etc. in different time segments. Different programming 
languages were used in the pilot study referred to in [9], to 
facilitate usage of existing machine learning software to 
implement the algorithms.  

 

Fig. 10 Simplified system for emergency alert using data from sensors and 
video images, leading to alert messages to health and safety personnel, e.g. 
ambulance, emergency admission in hospitals with MPU 6050, inertial sensor 
module for monitoring motion, [9]. 



 

 
Fig. 11 Data flow for the pilot system based on diverse sensor data and video 
images, [9]. 

 

 
Fig. 12 Alert system overview based on fusion of information from sensor data 
and video images, [9]. 

There are systems with body sensors, which detect changes 
in height and orientation with respect to a horizontal reference 
line. The Coviu method uses video images to detect these 
changes in posture and a variant of the method was tested along 
with the body sensors’ signals, which have also information on 
position, mobility/immobility and hence with a countdown 
mechanism can activate a push message for rescue operation. 
Recently, many solutions have been presented for such functions 
with smart watches. 

Recently, in Japan a research group using video images and 
humanoids with cameras, has implemented a similar system 
using a set of body sensors and cameras mounted in the room 
occupied by the person. The cameras on roof within the 
movement area of the person under observation and on the robot 
along with an array of sensors on the floor detected the supine 
position over an unusual length of time, the sensors on the floor 
effectively emulating a touch pad. In another application using 
push messages and cloud services for data flow, a system 
developed at USN in collaboration with the Telemark Hospital 

and local municipalities, is operating in Norway to alert people 
on air pollution levels exceeding limits stipulated by the 
authorities, [8]. A simplified representation of the system is 
given in Fig. 13. Ultimately, the involvement of health care 
personnel will be important for any elderly person. However, 
such technical HW/SW used in these supporting surveillance 
and assistance, “ease the burden on nursing staff and boost the 
autonomy of people still living at home”, according to Hirohisa 
Hirukawa, director of robot innovation research at Japan’s 
National Institute of Advanced Industrial Science and 
Technology, as presented in [10]. 

VIII. CONCLUSIONS 

A fusion of these evolving technologies and usage of 

reliable programming platforms will help to realize a system to 

implement the unobtrusive supervision of elderly living 

independently at home. An example of a sensor-networking 

scenario with various sensors in a typical living environment of 

an elderly living alone is schematically presented in Fig. 13. 

 
Fig. 13. Example of a sensor-networking scenario with various sensors in a 
typical living environment. Home Central can communicate with other services 
and actors as shown in Fig. 14. 

A system for alerting contact persons/relatives in case 

of emergencies may be configured according to the schematic 

shown in Fig. 14 (a). The system for alerting needs a web 

browser functioning properly and reliably. The HW/SW 

ancillaries for the system are shown as developed for 

monitoring and surveillance of the levels of gaseous and 

particulate pollutants in different Norwegian cities, [11]. The 

alert system with push notification in the context of ELIAH is 

schematically illustrated in Fig. 14 (b), which is a variant of 

Shepherd shown in Fig. 2 of Telenor Objects.  

The results from our studies and developments in 

Japan indicate that it is possible to realize an unobtrusive 

service for supervising elderly with push notifications to 

relevant healthcare personnel. Diverse data from the living area 

of the elderly along with those from the body sensors can be 

successfully fused to improve the living conditions of the 

elderly by addressing cognitive impairment and the fear for falls 

as well as reducing the detrimental effects of solitude and 

dementia. 

At the sensor data level, the system which has been 

tested and in operation for environmental alert using push 

services described in [11], can be modified as shown in Fig. 15 

to alert health personnel/relatives in case of emergencies 

discovered by sensors’ and video data fusion. Figure 14(c) 

shows the push alert to rescue personnel on 02.02.2019, which 



 

saved the life of a 67-year old man in Norway, [15]. 

Smartwatches typically have all or some of the  following 

communication protocols and sensors: Bluetooth, Wi-Fi, NFC 

(Near Field Communication), GPS, accelerometer, gyroscope, 

ambient light sensor, microphone speaker, heart rate sensor, 

ECG, blood pressure, etc. 

 
(a) Push notification in atmospheric emission alerts 

 
(b) Push Notification in ELIAH 

 
(c) Actual successful 
rescue operation with 4G 
on 02.02.2019 with fall 
detection using SMART 
watch in Norway, [15]. 

  
Fig. 14. (a) Push notification for environmental pollution monitoring as an 
example for the current study. The sytem uses Microsoft Azure for data storage, 
running programs and push alerts. More details in [11]. (b) Schematic 
represenation of push notification in ELIAH with the sensor-networking 
scenario of Fig. 13. ( c) A successful rescue operation in the context of ELIAH 
at 04.14 AM on 02.02.2019. 

 
Fig. 15. The four modules, ELIAH data from sensors/video, server, 

web browser and personal device such as smartphone, for alerting health 

personnel/relatives in case of emergencies, adpated with modifications from 

[11]. 
In the system described in [11], data and algorithms 

were all handled and executed in Microsoft Azure platform. 

Different platforms are available for this type of application 

from many vendors. The selection of this service will be 

determined by its reliability and conformity with the 

stipulations from the authorities. Some interesting scenarios 

with IoT in such applications are presented in [12]. IEEE-11073 

deals with the standardization of telemonitoring with sensors, 

data from them and associated systems meant for ELIAH, [13]. 

A good review on wearable sensors is presented in [14]. 

Ambient sensor unit may consist of temperature, 

magnetic flux, IR etc. As the title suggests, only body sensors 

are considered in this paper. Using GPS coordinates or the 

updated version of the Bluetooth protocol v5.1, a geofence 

could be defined and in the context of ELIAH, for persons with 

dementia moving out of the geofence, a push signal can be sent 

to alert relevant people with the information of the actual 

position of the person for “rescue” operations, [5]. 
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