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Abstract: Floods are considered one of the most disastrous hazards all over the world and cause
serious casualties and property damage. Therefore, the assessment and regionalization of flood
disasters are becoming increasingly important and urgent. To predict the probability of a flood,
an essential step is to map flood susceptibility. The main objective of this work is to investigate the use
a novel hybrid technique by integrating multi-criteria decision analysis and geographic information
system to evaluate flood susceptibility mapping (FSM), which is constructed by ensemble of decision
making trial and evaluation laboratory (DEMATEL), analytic network process, weighted linear
combinations (WLC) and interval rough numbers (IRN) techniques in the case study at Shangyou
County, China. Specifically, we improve the DEMATEL method by applying IRN to determine
connections in the network structure based on criteria and to accept imprecisions during collective
decision making. The application of IRN can eliminate the necessity of additional information to
define uncertain number intervals. Therefore, the quality of the existing data during collective
decision making and experts’ perceptions that are expressed through an aggregation matrix can
be retained. In this work, eleven conditioning factors associated with flooding were considered
and historical flood locations were randomly divided into the training (70% of the total) and
validation (30%) sets. The flood susceptibility map validates a satisfactory consistency between
the flood-susceptible areas and the spatial distribution of the previous flood events. The accuracy
of the map was evaluated by using objective measures of receiver operating characteristic (ROC)
curve and area under the curve (AUC). The AUC values of the proposed method coupling with the
WLC fuzzy technique for aggregation and flood susceptibility index are 0.988 and 0.964, respectively,
which proves that the WLC fuzzy method is more effective for FSM in the study area. The proposed
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method can be helpful in predicting accurate flood occurrence locations with similar geographic
environments and can be effectively used for flood management and prevention.

Keywords: flood susceptibility; GIS modeling; multi-criteria decision-making; interval rough
numbers; expert knowledge

1. Introduction

In recent decades, extreme weather events and meteorological disasters have frequently occurred
in the context of global warming. Climate change is considered a critical factor in the growth and
development of global warming [1–3]. As the most serious meteorological disasters, floods frequently
occur around the world and cause casualties and property losses [4–6]. According to statistics, the
current losses from floods among all natural disasters comprise 40%. The serious influences of floods
on natural ecosystems and human activities have become an important factor to restrict sustainable
development of societies and economies [4,7]. Therefore, the assessment and regionalization of flood
disaster risks are becoming increasingly important and urgent. Although it is a very difficult task to
prevent floods, we can predict and compensate for the disaster. To predict the probability of a flood,
an essential step is to map flood susceptibility.

Flooding is a complicated phenomenon and there are many human factors and natural factors
in the occurrence and development of floods. Among them, climate change plays an important role
for extreme flood occurrence [8,9]. For instance, climate change may influence land use and result in
flood hazards [10]. In recent years, the impact of climate change on flood risk and occurrence has been
studied at a global scale [11,12]. Flood susceptibility mapping (FSM) can identify and predict future
flood hazards based on statistical or deterministic methods. Mapping the areas that are susceptible to
historic disaster locations is crucial for flood prevention and management [13]. Furthermore, it can be
the basis for decision makers (DMs) to reduce the damage caused by disasters. To produce susceptibility
maps, prediction methods combine different conditioning factors and weights the importance of these
factors using subjective decision-making rules based on the experience of experts.

China has experienced severe floods since ancient times. In recent decades, the frequency
of floods and disaster losses have greatly increased [12]. Jiangxi province is located in the south
of China and characterized with a subtropical, warm, and humid monsoon climate. Specifically,
this area is influenced by the continental monsoon climate, and nearly twenty climate-warming,
extreme-weather and disaster-climate events occurred, especially floods, which have caused great
losses to the national economy [14]. According to the Ministry of Water Resources of the People’s
Republic of China, flood disasters have become very serious in recent years. For instance, the number
of floods reached 31 during 2003–2008, and the total number of deaths was 114. Therefore, flood
disaster risks assessment and regionalization must be conducted to avoid and reduce economic
losses in the study area. Many scholars around the world have studied flood disaster risks and
presented various methods to deal with the problem [7,15–17]. These commonly used methods can
be mainly divided into three categories: (1) hydrological methods of WetSpa [18], SWAT [19] and
HYDROTEL [18] and hydrodynamic approaches based on the shallow water equations initialized
by rainfall [9,13,20–23]. However, the time cost of parameter setting and model construction in these
methods is very high. (2) Statistical and data-driven methods. In the past decade, FSM has been
conducted using remote sensing data and geographic information system (GIS). Examples of the
GIS-based methods in flood contributions, including weights of evidence [24], logistic regression
(LR) [25], analytic hierarchy process (AHP) [26], frequency ratios (FR) [27,28]. These methods are often
based on statistical assumptions and the selection of flood conditioning factors is a challenging problem
in FSM. (3) Machine learning methods which can cope with complex nonlinear problems without
statistical assumptions [22], such as neuro-fuzzy logic [23], artificial neural networks (ANNs) [29,30],
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decision trees (DTs) [31], support vector machines (SVMs) [19,24,32]. The poor projection from
nonlinear structures due to different data ranges in the datasets is the main shortcoming of such
methods. Therefore, the optimal method to examine flood susceptibility is a complicated process and
this problem is still debated. As mentioned previously, GIS has been widely used to perform flood
modeling and risk mapping [31,33]. At present, the combination of multi-criteria decision analysis
(MCDA) and GIS is a fundamental strategy to deal with the problem of risk reduction and flood
management [1,12,26,34–39]. The integration of GIS and MCDA provides decision makers the single
option for geographical region and different weight coefficients for different options. It means that this
integration can create remarkable capabilities which complement each other. On the one hand, we
can use the GIS environment to manipulate, store, manage, analyze and visualize spatial data. On the
other hand, MCDA provides a rich mixture of procedures, techniques and algorithms to design and
structure the decision problems and evaluates the alternative decisions [40]. Using MCDA-GIS for
flood spatial prediction application can improve the understanding of uncertainties surroundings.

Recently, the integration of remote sensing (RS) and GIS have been used to map flooded
areas [39,41–45]. It is suitable to perform flood detection using remote sensing images. For prediction,
the detection is used to produce new ground truth data that are in agreement with the recent remote
sensing data. Furthermore, these RS data can be used for image classification to obtain land use/cover
information using well-known classifiers and the extraction of normalized difference vegetation index
(NDVI), etc. Meanwhile, the risk analysis of floods is unimaginative without the support of GIS due to
its powerful geostatistical tools. Following the recent contributions previously mentioned, we combine
the two techniques for FSM. The main objective of this work is to investigate a novel hybrid MCDA-GIS
technique to evaluate flood hazards, which is constructed by ensemble of decision making trial and
evaluation laboratory (DEMATEL), analytic network process (ANP) and interval rough numbers
(IRN) techniques. Specifically, we improve the DEMATEL method by applying IRN to determine
connections in the network structure based on criteria and to accept imprecisions during collective
decision making. The application of IRN can eliminate the necessity of additional information to
define uncertain number intervals. Therefore, the quality of the existing data during collective decision
making and experts’ perceptions that are expressed through an aggregation matrix can be retained.
The flood susceptibility map is the first step in the development of flood risk management and is
expected to be used by local governments for effective management planning purposes. In this paper,
the FSM application of the IRN-DEMATEL-ANP method is presented in the case study at Shangyou
County, China. To validate the effectiveness of the proposed method, the resultant susceptibility
map was compared with historical flood locations. Moreover, the commonly used objective measures
of receiver operating characteristic (ROC) curve and area under the curve (AUC) [46,47] were used
for evaluation.

The remainder of the paper is structured as follows. Section 2 briefly describes the study area
of Shangyou County, China and some available data. Section 3 introduces the proposed method and
the phases of this method. Section 4 reports the evaluation of flood-prone areas at Shangyou County.
The last section presents some concluding remarks and the future work.

2. Study Area and Data

2.1. Description of Study Area

The Shangyou area is located in Ganzhou in the southern Jiangxi Province. This area is located
in the northern hilly district of Nanling between longitudes 114◦00′ E and 114◦40′ E and latitudes
25◦42′ N and 26◦01′ N. The area and population of the Shangyou district are almost 1543.0 km2 and
3.22 million people, respectively. According to the Shangyou Meteorological Bureau, this district
belongs to a subtropical monsoon climate. The average annual sunshine time is 1708.3 h, which is an
intermediate level in Jiangxi Province, and the average annual temperature is 18.6 ◦C. January and July
are the coldest and hottest months in each year, with an average of −2.7 ◦C and 38.0 ◦C, respectively.
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During 1959–2016, the average annual rainfall was 1483.4 mm and it was between 933.7 and 2147.6 mm
from 1959 to 2014. The rainfall in the study area can greatly vary in spring and summer and the annual
rainy season is usually from April to August. Specifically, the average annual rainfall from June to
August is approximately 1055.8 mm and the largest daily rainfall can be over 105 mm during this time,
while the monthly rainfall from September to January is only 69.3 mm, which indicates that the rainfall
in these months is very small.

2.2. Available Data

To produce the flood inventory map is an important step in FSM. The optimal method to create
flood inventory maps is still debated [30]. In this study, field surveys and remote sensing images
were applied to create a flood inventory map, as shown in Figure 1, where “Nonflood” represents
locations without historical flood occurrences. The triangles and circles in Figure 1 denote historical
flood locations (HFLs) and locations without historical flood, respectively. Figure 2 illustrates some
flood field photos of the study area: https://www.baidu.com. The selection of flood conditioning
factors is another key issue that has been studied by many researchers. In this study, the factors of
altitude, slope, plan curvature, topographic wetness index (TWI), sediment transport index (STI),
NDVI, distance from rivers, rainfall, land cover/use, lithology, and soil were used to analyze the flood
susceptibility. Detailed information regarding these flood conditioning factors can be found in Table 1.
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Table 1. Available data used in the susceptibility assessment, including the data sources and associated factor classes for FSM in the study area.

Sub-Classification Source of Data GIS Data Type Scale or Resolution

Spatial database Data layers Spatial database Derived map Spatial database

Flood inventory Flood inventory
Jiangxi Meteorological Bureau

and Department of Civil
Affairs of Jiangxi province

Point and polygon - -

Topographic map

Slope

ASTER GDEM Version 2

GRID Slope gradient
(in degrees) 30 m

Elevation GRID Elevation 30 m
TWI GRID Topographic wetness index 30 m
SPI GRID Stream power index 30 m
STI GRID Sediment transport index 30 m

River Drainage network ARC/INFO
Line coverage Drainage network 30 m

Soil Soil
Institute of

Soil Science, Chinese
Academy of Sciences

Polygon Soil 1:1,000,000

Geology Map Lithology types China Geology Organization ARC/INFO coverage Lithology 1:200,0000

Land-use type Land use
Landsat 7 ETM + images

ARC/INFO GRID Land use 30 m

Normalized difference
vegetation index NDVI ARC/INFO GRID NDVI 30 m

Rainfall Rainfall Jiangxi Meteorological Bureau GRID Precipitation map (mm) 1:50,000



Remote Sens. 2019, 11, 62 7 of 31

3. Methodology

3.1. Methodological Background

Spatial MCDA consists several procedures, including the use of both geographic data,
the preferences of the decision maker (DM), the manipulation of these data and preferences according
to specified decision rules [40,48]. This method exploits the capabilities of GIS in the management
of spatial data and the flexibility of MCDA to combine real spatial information (e.g., slope and land
use) with value-based information (e.g., expert opinions, standards, and surveys) [49]. The main
advantage of integrating GIS and MCDA is that their specific capabilities can complement each
other. The methodological hierarchy of this paper is based on a MCDA-GIS structure. The proposed
methodology to define flood hazard zones at Shangyou County, China includes the main steps from a
methodological perspective as shown in Figure 3.
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In this study, we used ArcGIS 10.3 software to construct and collect all flood conditioning
factors in the GIS database of ESRI, which includes a completely new approach to the formulation
of spatial databases. Additionally, all the GIS analyses, including production and classification of
conditioning factor maps, conditioning factor standardization with fuzzy logic, conditioning factor
map reclassification, weighted linear combinations (WLC), aggregation methods and creation of
the final flood susceptibility maps, were conducted by using the ArcGIS 10.3 software. All these
functions that were used in these GIS analyses are included in the 3D and spatial-analyst extensions.
Meanwhile, FSI values and HFLs were produced from validation analysis and comparisons, and a
database in Microsoft Excel with Visual Basic support and the XLSTAT Add-in were used for the
DEMETAL-ANP method.

When solving real problems, the available conditioning factors have not the same contribution
to flood occurrence, thus the DMs should define importance of each conditioning factor by using
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appropriate weight coefficients (weights). The WLC method requires normalization of the weights.
After determining weight coefficients of the conditioning factors, the hybrid IRN-DEMATEL-ANP
method is used to calculate the normalized weight conditioning factors, and then apply the WLC
method to obtain final flood susceptibility maps.

3.2. IRN-DEMATEL-ANP Method

IRN-DEMATEL-ANP method is ensemble by IRN, DEMATEL and ANP methods, which is used
to calculate the normalized weight conditioning factors. We introduce this method followed by the
order of integration.

3.2.1. DEMATEL Method

The DEMATEL method was originally developed by the Science and Human Affairs Program of
the Battelle Memorial Institute of Geneva to study complex and intertwined problematic groups [50].
It is a comprehensive method in both the design and analysis of structural methods that are
characterized by causal relationships between complex factors [51]. The result of this method is
a sum of the direct and indirect effects of all the factors that are transferred to and received by
other factors. Meanwhile, the DEMATEL method is based on graph theory and used to identify the
dependent factors and degree of dependence between them. Specifically, it enables the visual planning
and solving problems so that all the relevant factors can be classified into causal and consequential
factors to better understand their interrelations. Moreover, it can improve our understanding of the
complex structure of the analysed problem and define relationships both between factors and between
the structure level and strength of factors [52].

In this paper, we improve the DEMATEL method by applying IRN [53] to accept imprecisions
during collective decision making. The application of IRN can eliminate the necessity of additional
information to define uncertain number intervals [54–58]. Therefore, the quality of the existing data
during collective decision making and experts’ perceptions that are expressed through an aggregation
matrix can be retained. Previous studies proved that the original DEMATEL method can be modified
to comply with their problems [59–62]. The improved IRN-DEMATEL method in this paper was
motivated by the work of Gigović et al. [38]. We will introduce IRN-DEMATEL in Section 3.2.3. The
basic idea of IRN is necessary to be illustrated first.

3.2.2. IRN Method

The interval rough numbers technique is used to deal with uncertainty. IRN consist of both lower
and upper limit interval rough sequences, which give the range of this uncertainty. The lower limit and
upper limit rough sequence contain detail object classes, and object classes are calculated by criterion
value. This is a construction process from top to bottom.

The theory of IRN is introduced in this subsection and the calculation details are provided in
Section 4.2. Before definition, the criterion number k and the expert number m are known. For each
pair-wise criterion, each expert gives an interval

[
zeL

ij , ze′U
ij

]
, where zij indicates the degree of the ith

criterion Ci affecting the jth criterion Cj, the superscripts eL and e’U represent the expert lower and
upper interval limits, respectively. And the expert serial number e is from 1 to m. The object classes are
defined as:

Lim
(

zeL
ij

)
=

1
ML

∑ zL
ij, subject to zL

ij ≤ zeL
ij (1)

Lim
(

zeL
ij

)
=

1
MU

∑ zU
ij , subject to zU

ij ≥ zeL
ij (2)

where ML and MU are the number meeting the constraints, L and U are the index of expert meeting
L, U ∈ [1, m]. It is worth noting that object classes count the numbers larger or less than the zeL

ij value
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given by the current expert e. For the ze′U
ij given by the current expert e, the definition form of ze′U

ij is

similar to zeL
ij , we just define zeL

ij as demonstration in this paper.
The rough sequences define as:

RN
(

zeL
ij

)
=
[

Lim
(

zeL
ij

)
, Lim

(
zeL

ij

)]
(3)

RN
(

ze′U
ij

)
=
[

Lim
(

ze′U
ij

)
, Lim

(
ze′U

ij

)]
(4)

IRN consists of this two rough sequences, and the IRN can be defined as

IRN
(

ze
ij

)
=
[

RN
(

zeL
ij

)
, RN

(
ze′U

ij

)]
(5)

In other word, IRN contains a total of four values in two intervals.

3.2.3. IRN-DEMATEL Method

IRN-DEMATEL can provide the network relationship map among criteria, and the CER diagram
is constructed by mapping all coordinate sets to visualize the complex interrelationship. For the
subsequent analysis, the matrix definitions need to be stated. The direct-relation fuzzy matrix Z
consists of the comparison of the pare-wise criteria value zij provided by each expert, and the definition
has completed before. The means of triangular fuzzy number z̃e

ij is the stack vector of min, average

and max values that form the average matrix Z̃e.

z̃e
ij = (z̃(l)ij,e, z̃(m)

ij,e , z̃(r)ij,e) (6)

where
z̃(l)ij,e = min

M

{
z(l)ij,e

}
, M = {1, 2, ...., e, . . . , m} (7)

z̃(m)
ij,e =

1
m

m

∑
t=1

z̃(m)
ij,t (8)

z̃(r)ij,e = max
M

{
z(r)ij,e

}
, M = {1, 2, ...., e, . . . , m} (9)

The normalized initial direct-relation matrix D is calculated by summing and normalize average
matrix Z̃e, the element dij in the D defines as:

dij =
z̃e

ij

Q
= (

z̃(l)ij,e

q(r)
,

z̃(m)
ij,e

q(m)
,

z̃(r)ij,e

q(l)
) (10)

Q = max

(
n

∑
j=1

z̃e
ij

)
=
(

q(l), q(m), q(r)
)

(11)

Q is the sum of Z̃e and D can be separated into submatrix (D1, D2, D3). The total-relationship
matrix is defined as:

T = lim
w→∝

(
D + D2 + . . . + Dw

)
= D(I − D)−1 (12)

where I is the identity matrix satisfied limw→∝(D + Ds + . . . D2
s + Dk

s ) = (I − Ds)
−1.

Each IRN consists of two rough sequences, and every rough sequence includes an upper and lower
approximation, so the normalized matrix of average perception D =

[
IRN(dij)

]
n×n can be divided into

four sub-matrices, i.e., D =
([

DL, DU], [D′L, D′U
])

, where DL =
[
Lim(dij)

]
n×n, DU =

[
Lim(dij)

]
n×n,

D′L =
[

Lim(d′ij)
]

n×n
and D′U =

[
Lim(d′ij)

]
n×n

. Moreover, lim
m→∞

(
DL)m

= O , lim
m→∞

(
DU)m

= O ,
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lim
m→∞

(
D′L
)m

= O and lim
m→∞

(
D′U

)m
= O , where O denotes a zero matrix. For a more effective

explanation, we calculate in these four sub-parts:

lim
m→∞

(
I + DL + D2L + . . . + DmL) = (I − DL)−1

lim
m→∞

(
I + DU + D2U + . . . + DmU) = (I − DU)−1

lim
m→∞

(
I + D′L + D2′L + . . . + Dm′L) = (I − D′L

)−1

and
lim

m→∞

(
I + D′U + D2′U + . . . + Dm′U) = (I − D′U

)−1


(13)

Therefore, the matrix of the total influences T can be obtained by calculating the
following elements:

TL = lim
m→∞

(
I + DL + D2L + . . . + DmL) = (I − DL)−1

=
[

Lim(tL
ij)
]

n×n

TU = lim
m→∞

(
I + DU + D2U + . . . + DmU) = (I − DU)−1

=
[

Lim(tU
ij )
]

n×n

T′L = lim
m→∞

(
I + D

′L + D2′L + . . . + Dm′L
)
=
(

I − D
′L
)−1

=
[

Lim(t
′L
ij )
]

n×n
and

T′U = lim
m→∞

(
I + D

′U + D2′U + . . . + Dm′U
)
=
(

I − D
′U
)−1

=
[

Lim(t
′U
ij )
]

n×n


(14)

where DL =
[
Lim(dij)

]
n×n, DU =

[
Lim(dij)

]
n×n, D′L =

[
Lim(d′ij)

]
n×n

and D′U =
[

Lim(d′ij)
]

n×n
.

The sub-matrices TL, TU , T′L and T′U represent the rough-interval matrix of the total influences
T =

([
TL, TU], [T′L, T′U

])
. A total-relationship matrix can be defined based on Equations (13) and (14):

T =


IRN(t11) IRN(t12) · · · IRN(t1n)

IRN(t21) IRN(t22) · · · IRN(t2n)
...

...
. . .

...
IRN(tn1) IRN(tn2) · · · IRN(tnn)

 (15)

where IRN(tij) =
[

RN(tL
ij), RN(tU

ij )
]

is a IRN that is used to express the indirect effects of factor i on
factor j. Then, the matrix T reflects the inter-dependence of each pair of factors.

The total-relationship matrix T, which are denoted as vectors R and C, respectively, and have rank
n × 1:

IRN(Ri) =

[
n

∑
j=1

IRN(tij)

]
n×1

=

[([
n

∑
j=1

tL
ij,

n

∑
j=1

tU
ij

]
,

[
n

∑
j=1

t′Lij ,
n

∑
j=1

t′Uij

])]
n×1

(16)

IRN(Ci) =

[
n

∑
i=1

IRN(tij)

]
1×n

=

[([
n

∑
i=1

tL
ij,

n

∑
i=1

tU
ij

]
,

[
n

∑
i=1

t′Lij ,
n

∑
i=1

t′Uij

])]
1×n

(17)

The value Ri denotes the sum of the i-th row of matrix T and shows the total direct and indirect
effects that criterion I delivers to other factors. Similarly, the value Ci is the sum of the j-th column of
matrix T and represents the total direct and indirect effects that factor j receives from other factors.
In cases where i = j, the equation (Ri + Ci) indicates the effect of the factors and the equation (Ri − Ci)
indicates the intensity of the factors compared to others [35].

The threshold value α is calculated as the mean of all elements in T, Equation (18):

α =
∑n

i=1 ∑n
j=1
[
IRN(tij)

]
N

(18)

where N denotes the number of matrix elements (15).
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And the CER diagram is constructed by mapping all coordinate sets of (Ri + Cj, Ri − Cj) to
visualize the complex interrelationship. The procedure for this method is described in the following
sections. The IRN-DEMATEL algorithm is shown as follows:

Algorithm 1: IRN-DEMATEL

Input: The expert pairwise comparison matrices Z
Output: CER diagram

Step 1: Analysis of factors by experts.
Step 2: Calculation of the average matrix Z̃e.

Step 3: A normalized initial direct-relationship matrix D = [IRN
(

dij

)
]
n×n

can be obtained based on the

average matrix Z.

Step 4: The total-relationship matrix T = [IRN
(

tij

)
]
n×n

.

Step 5: Calculate the sums of the rows Ri and columns Cj of the total-relationship matrix T [35].
Step 6: Set a threshold value (α) and construct a CER diagram.

3.2.4. IRN-DEMATEL-ANP Method

The ANP method considers the dependence and feedback of the criteria, which avoids the
hierarchical constraints. In fact, ANP is a generalization of the AHP method. The calculation of the
relative weights of criteria with traditional ANP mandates that the interdependence levels of factors
are treated as reciprocal values. On the contrary, the interdependence levels of factors do not have
reciprocal values when using the DEMATEL method, which is closer to real circumstances [63,64].
The following section deals with a novel approach, namely, the integration of the IRN-DEMATEL
method into the ANP method, i.e., the IRN-DEMATEL-ANP method, which is shown as follows:

Algorithm 2: IRN-DEMATEL-ANP

Input: Total-relation matrix T
Output: Weighted super matrix Wα

Step 1: Develop an unweighted super matrix.
Step 2: Create a normalized total-influence matrix for criteria Tc

α., which Tc
α is the normalized matrix of T

Step 3: Calculating the elements of the unweighted super matrix W, which is the transpose of Tc
α.

Step 4: Develop a weighted normalized super matrix Wα, which is TD
α multiplication by W. The weighted

normalized super matrix Wα can be calculated by the normalized influence matrix T with respect to the
perspectives. TD

α is the result of Tc
α divided by dimension.

Step 5: Find the limit of the weighted super matrix Wα, which multiply the weighted super matrix by itself
multiple times results in the limit super matrix. The weight of each evaluation criterion is solved.

The IRN-DEMATEL construct the total-relation matrix T and we need ANP to confirm the final
weight. Because the T is calculated in Algorithm 1. The Computation process of T is omitted and
T is as the Input in Algorithm 2. A network model for the ANP method should be defined prior to
the development of the unweighted super matrix. This network model can be defined based on the
total-relationship matrix and CER diagram.

The unweighted super matrix is created when each level with the total degree of influence from
the total-relationship matrix T is normalized by IR’DEMATEL. To normalize this matrix, we must
determine the sum of the column elements of the matrix.
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D1 D2 Dn

c11c12 . . . c1m1 c21c22 . . . c2m2 . . . cn1cn2 . . . cnmn

Tc =

D1

D2

Dn

c11

c12
...

c1m1

c21

c22
...

c2m2

cn1

cn2
...

cnmn



T11
c T12

c . . . T1n
c

T21
c T22

c . . . T2n
c

...
...

. . .
...

Tn1
c Tn2

c . . . Tnn
c



(19)

where the matrix T11
c contains factors from group D1 and influences with respect to the factors from

group D1, the matrix T12
c (20) contains factors from the group (criteria) D2 and influences with respect

to the factors from group D2, etc.

T12
c =



IRN(t12
c12) . . . IRN(t12

c1j) . . . IRN(t12
c1m1)

...
... . . .

...
IRN(t12

ci1) . . . IRN(t12
cij) . . . IRN(t12

c1m1)
...

...
...

IRN(t12
cm12) . . . IRN(t12

cm1j) . . . IRN(t12
cm1m1)


(20)

Normalization of total-influence matrix for criteria Tc
α is conducted once Tc is developed.

The criteria total-influence matrix Tc yields Tc
α after normalization. The normalized matrix Tc

α

is shown below Equation (21):

D1 D2 Dn

c11c12 . . . c1m1 c21c22 . . . c2m2 . . . cn1cn2 . . . cnmn

Tα
c =

D1

D2

Dn

c11

c12
...

c1m1

c21

c22
...

c2m2

cn1

cn2
...

cnmn



Tα11
c Tα212

c . . . Tα1n
c

Tα21
c Tα22

c . . . Tα2n
c

...
...

. . .
...

Tαn1
c Tαn2

c . . . Tαnn
c



(21)
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The total-influence matrix Tc describes the interdependence among the dimensions and criteria,
so we can transpose the normalized total-influence matrix Tc

α by the dimensions based on the basic
concept of ANP, resulting in the unweighted super matrix W = [Tc

α]’, as shown in Equation (22):

D1 D2 Dn

c11c12 . . . c1m1 c21c22 . . . c2m2 . . . cn1cn2 . . . cnmn

W = (Tα
c )′ =

D1

D2

Dn

c11

c12
...

c1m1

c21

c22
...

c2m2

cn1

cn2
...

cnmn



W11 W12 . . . W1n

W21 W22 . . . W2n

...
...

. . .
...

Wn1 Wn1 . . . Wnn



(22)

where the matrix W11 denotes the values of the factor influences from group D1 in relation to the other
factors from group D1.

The elements of the weighted normalized super matrix Wα can be obtained by multiplying the
elements from the unweighted super matrix W and the corresponding elements from the normalized
total-influence matrix Tα

D. The elements of the normalized total-influence matrix Tα
D can be obtained

by normalizing the total-influence matrix TD, as shown in Equation (23):

Tα
D =



IRN(tα11
D ) . . . IRN(tα1j

D ) . . . IRN(tα1n
D )

...
... . . .

...
IRN(tαi1

D ) . . . IRN(tαij
D ) . . . IRN(tαin

D )
...

...
...

IRN(tαn1
D ) . . . IRN(tαnj

D ) . . . IRN(tαnn
D )


(23)

where IRN(tαj
D ) = IRN(tj

D)/IRN(di) and the value of IRN(di) can be obtained from IRN(di) =

∑n
j=1 IRN(tij

D).
Once the elements of the matrix Tα

D are obtained, the elements of the new weighted super matrix
Wα can be calculated. The elements of the matrix Wα can be obtained by multiplying the normalized
total-influence matrix with dimensions Tα

D and unweighted super matrix W. It’s worth noting that the
weighted super matrix Wα need multiply itself several time in Step 5. We multiply the rough weighted
super matrix by itself multiple times to obtain the rough-limit super matrix, and then the weight of
each evaluation criteria can be obtained. The rough-interval weighted super matrix can be raised to
the limiting powers until the super matrix has converged and become a long-term stable super matrix
to obtain the global priority vectors, or IRD’ANP influence weights, such as lim

k→∞
= Wk, where W

denotes the limit super matrix and k denotes any number. Furthermore, we aggregate the criteria after
determining their weight coefficients [52].

4. Results

The procedures of the conditioning factor selection and zoning of flood hazards at Shangyou
County include six experts with experience in the fields of risk management, hydrology, spatial
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planning and environmental protection. These experts’ interviews were used to collect data that were
further processed and their opinions were aggregated.

4.1. Conditioning Factor Selection

The selection of flood conditioning factors is very important and complex, and many scientists
have different viewpoints regarding this topic. According to previous literature, topography, climate,
human activity and soil are the key factors for occurrence and development of floods [24,25].
As mentioned in Section 2.2, eleven conditioning factors were selected to analyse the flood susceptibility.
Figure 4C1–C11 shows all the factors that were uniformly transformed into a grid spatial size of
30 × 30 m and a grid of the Kelantan area was constructed.Remote Sens. 2019, 11, 62 14 of 32 
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Figure 4. Maps of the standardized criteria for the study area: (C1) altitude, (C2) slope, (C3) plan
curvature, (C4) TWI, (C5) STI, (C6) NDVI, (C7) distance from rivers, (C8) rainfall, (C9) land cover/use,
(C10) lithology, (C11) soil and final map.

4.2. MCDA-GIS Evaluation

This phase involves the standardization, experts’ work, weighting, summary analysis, and
aggregation and validation of all the conditioning factors to be considered in the decision making.
Since all the data were collected in various ways with different formats, the first step of MCDA is to
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normalize these data that can be used for comparison [38]. For this aim, the technique of the fuzzy
concept was used according to the literature and experience of the experts. The fuzzy logic concept is
flexible and suitable for modelling data in which there is no exact boundary of the set, determined by
0 or 1 [65]. In such cases, the affiliation of objects to a set is defined based on the degree of belonging to
one of the functions of sigmoidal, J-shaped, linear or user-defined. The membership functions that are
used often depend on the characteristics of the input data and the decisions and experience of experts.
In this study, we used the discrete classification in which experts directly determined the values of the
elements of fuzzy sets, as listed in Table 2. It should be noted that elements of the conditioning factors
of land cover/use, lithology and soil have categorical values. For the other conditioning factors, which
represented values of gradual change between locations, the elements of the set were standardized by
using the fuzzy concept based on the linear membership function. A scale ranging from zero to one
byte was used for fuzzification, where zero indicates the lowest hazard and one indicates the most
dangerous element of the set value in relation to the likelihood of flooding occurrence.

Table 2. Fuzzy standardization of the conditioning factors.

Conditioning Factors Fuzzy Membership Function Control Points/Value Points Final Utility

Altitude (C1) Linearly monotonically
decreasing c = 200 m; d = 800 m

0–200 m: equal to 1; 200–800 m:
between 0 and 1; more than 800 m:

equal to 0

Slope (C2) Linearly monotonically
decreasing c = 5◦; d = 25◦ 0◦–5◦: equal to 1; 5◦–25◦: between 0

and 1; more than 25◦: equal to 0

Curvature (C3) Linearly monotonically
decreasing c = -10; d = 10 0–−10: equal to 1; −10–10: between 0

and 1; more than 10: equal to 0

TWI (C4) Linearly monotonically
increasing a = 4; b = 12 0–4: equal to 0; 4–12: between 0 and 1;

more than 12: equal to 1

STI (C5) Linearly monotonically
decreasing c = 1; d = 50 0–1: equal to 1; 1–50: between 0 and 1;

more than 50: equal to 0

NDVI (C6) Linearly monotonically
decreasing c = 0; d = 50 −1–0: equal to 1; 0–0, 6: between 0 and

1; more than 0, 6: equal to 0

Distance from river (C7) Linearly monotonically
decreasing c = 100 m; d = 1000 m

0–100 m: equal to 1, 100–1000 m:
between 0 and 1; more than 1000 m:

equal to 0

Rainfall (C8) Linearly monotonically
increasing a = 1000 mm; b = 2000 mm

0–1000 mm: equal to 0; 1000–2000 mm:
between 0 and 1; more than 2000 mm:

equal to 1

Land cover use (C9) Discrete categorical data Water = 1; Residential = 0.9; Bare soil = 0.7; Grass = 0.5; Farmland = 0.3;
Forest = 0.1

Lithology (C10) Discrete categorical data D = 0.9; A = 0.8; I = 0.7; C = 0.6; G = 0.5; H = 0.4; B = 0.3; E = 0.2; F = 0.1

Soil (C11) Discrete categorical data WR = 0.9; ATc = 0.8; RGc = 0.7; CMo = 0.6; LVh = 0.5; ACh = 0.3;
ACu = 0.2; Alh = 0.1

After standardization, the experts should define the significance measures of the conditioning
factors by using the suitable coefficient weights (weights) or the conditioning factors weights. In this
work, the IRN-DEMATEL method was used by the experts to analyse the factors and six experts were
considered in this research. The following scale was used during evaluation: 1—very low influence,
2—low influence, 3—moderate influence, 4—high influence, and 5—very high influence. All the
experts participated in the evaluation of the clusters and conditioning factors. Once the evaluation by
the experts was completed, six pairwise comparison matrices were obtained, as shown in Table 3.
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Table 3. Expert comparison matrix in the pairwise conditioning factors.

Expert 1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 (0:0) (3:5) (3:5) (2:5) (2:4) (3:4) (3:5) (2:5) (2:4) (1:4) (4:4)
C2 (3:3) (0:0) (4:5) (1:4) (1:5) (2:5) (3:4) (3:4) (3:4) (2:4) (4:5)
C3 (5:5) (3:3) (0:0) (4:4) (4:5) (3:5) (2:4) (3:4) (3:3) (2:5) (4:4)
C4 (3:3) (5:5) (5:5) (0:0) (3:5) (2:4) (3:4) (3:4) (4:4) (3:4) (3:5)
C5 (3:5) (3:3) (3:5) (3:5) (0:0) (2:5) (3:4) (3:4) (4:5) (1:4) (3:5)
C6 (4:4) (4:4) (3:5) (2:5) (2:5) (0:0) (2:4) (2:4) (5:5) (2:5) (4:5)
C7 (4:4) (4:4) (4:5) (2:5) (2:4) (2:3) (0:0) (4:4) (2:4) (2:4) (3:4)
C8 (4:4) (4:5) (5:5) (1:5) (1:5) (4:4) (2:5) (0:0) (2:4) (1:4) (3:4)
C9 (3:3) (2:2) (4:4) (1:4) (1:5) (3:5) (4:4) (2:4) (0:0) (2:4) (3:3)

C10 (4:5) (2:2) (2:4) (5:5) (2:5) (2:4) (4:4) (2:5) (2:4) (0:0) (3:4)
C11 (1:2) (1:3) (2:4) (2:4) (1:4) (3:4) (3:4) (3:5) (2:4) (1:4) (0:0)

Expert 6

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 (0:0) (2:4) (2:3) (1:3) (1:5) (2:5) (2:3) (1:3) (1:5) (2:5) (3:4)
C2 (3:4) (0:0) (4:5) (1:5) (1:3) (2:3) (4:4) (2:3) (2:5) (2:5) (3:4)
C3 (3:5) (3:5) (0:0) (3:5) (3:3) (3:4) (2:3) (2:3) (2:5) (3:4) (4:5)
C4 (3:4) (4:5) (4:5) (0:0) (2:4) (2:3) (3:3) (4:4) (4:5) (2:3) (2:4)
C5 (4:5) (3:5) (3:4) (2:4) (0:0) (1:3) (4:5) (4:5) (3:4) (2:5) (3:4)
C6 (3:5) (3:4) (3:4) (1:4) (1:3) (0:0) (2:3) (1:5) (4:5) (3:3) (4:4)
C7 (3:5) (3:5) (4:4) (2:4) (2:3) (2:4) (0:0) (3:5) (1:5) (3:5) (3:3)
C8 (3:4) (4:4) (4:5) (1:4) (1:3) (4:5) (1:3) (0:0) (1:5) (2:5) (4:5)
C9 (2:4) (1:3) (4:5) (1:5) (1:3) (2:4) (3:5) (1:3) (0:0) (3:3) (2:5)

C10 (4:5) (1:3) (1:5) (4:5) (1:4) (1:3) (4:5) (1:3) (1:3) (0:0) (4:4)
C11 (1:3) (1:5) (1:3) (1:5) (1:3) (4:4) (2:3) (4:5) (1:5) (2:5) (0:0)

Table 3 lists expert comparison matrix in the pairwise conditioning factors. It can be seen that the
values of i and j are different, thus the experts expressed uncertainty when defining the influences of
the conditioning factors during evaluation. In accord with the implementation of the IRN-DEMATEL
method, the initial comparison matrices with pairwise conditioning factors are transformed into
interval rough. The IRN consists of two rough sequences. In the following, we show the formation of
rough individual sequences for a single position in conditioning factor matrices. The determination of
the elements of the interval rough comparison matrix elements z1, z2, . . . , z6 representing expert in
is demonstrated by calculating elements at the position C2–C3. Two rough sequences at the position
C2–C3 that constitute IRN are obtained for each matrix ze. Two classes of objects zL

ij and zU
ij are defined

for the position C2–C3 from the comparison matrices. Each class includes six elements:

zL
2,3= {4; 5; 4; 4; 3; 4}

zU
2,3= {5; 5; 5; 4; 4; 5}

Applying Equations (1) and (2), we can produce rough sequences for every object class. For the
first class, we obtain
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Expert 1
rough sequence for C2-C3

Lim
(

z1L
2,3

)
= Lim(4) = 1

5 (4 + 4 + 4 + 3 + 4) = 3.8

Lim
(

z1L
2,3

)
= Lim(4) = 1

5 (4 + 5 + 4 + 4 + 4) = 4.2

Expert 2
rough sequence for C2-C3

Lim
(

z2L
2,3

)
= Lim(5) = 1

6 (4 + 5 + 4 + 4 + 3 + 4) = 4.0

Lim
(

z2L
2,3

)
= Lim(5) = 1

1 (5) = 5.0

. . . . . .

. . .

Expert 6
rough sequence for C2-C3

Lim
(

z6L
2,3

)
= Lim(4) = 1

5 (4 + 4 + 4 + 3 + 4) = 3.8

Lim
(

z6L
2,3

)
= Lim(4) = 1

5 (4 + 5 + 4 + 4 + 4) = 4.2

For second object class,

Expert 1
rough sequence for C2-C3

Lim
(

z1U
2,3

)
= Lim(5) = 1

6 (5 + 5 + 5 + 4 + 4 + 5) = 4.67

Lim
(

z1U
2,3

)
= Lim(5) = 1

4 (5 + 5 + 5 + 5) = 5.0

Expert 2
rough sequence for C2-C3

Lim
(

z2U
2,3

)
= Lim(5) = 1

6 (5 + 5 + 5 + 4 + 4 + 5) = 4.67

Lim
(

z2U
2,3

)
= Lim(5) = 1

4 (5 + 5 + 5 + 5) = 5.0

. . . . . .

. . .

Expert 6
rough sequence for C2-C3

Lim
(

z6U
2,3

)
= Lim(5) = 1

6 (5 + 5 + 5 + 4 + 4 + 5) = 4.67

Lim
(

z6U
2,3

)
= Lim(5) = 1

4 (5 + 5 + 5 + 5) = 5.0

Thus, rough sequences that constitute IRN can be obtained:

Expert 1 IRN for C2-C3
RN(z1L

2,3) = [3.8, 4.2],RN(z1U
2,3) = [4.67, 5.0]

⇒ IRN(z1
2,3) = ([3.8, 4.2], [4.67, 5.0])

Expert 2 IRN for C2-C3
RN(z2L

2,3) = [4.0, 5.0],RN(z2U
2,3) = [4.67, 5.0]

⇒ IRN(z2
2,3) = ([4.0, 5.0], [4.67, 5.0])

. . . . . .

. . .

Expert 6 IRN for C2-C3
RN(z6L

2,3) = [3.8, 4.2],RN(z6U
2,3) = [4.67, 5.0]

⇒ IRN(z6
2,3) = ([3.8, 4.2], [4.67, 5.0])

The IRN of other comparison matrices are obtained by applying the same method as shown in
Table 4 as follows.

The interval rough matrices that refer to the responses are aggregated on the next level of the
IRN-DEMATEL method. The mean IRN values are obtained based on the conditioning factor response
matrices from Table 3 according to Equations (6)–(9). Therefore, the interval rough average matrix of
can be obtained as listed in Table 5 as follows.

Once the average matrix of the conditioning factors is obtained, the determination of the initial
direct-relationship matrix can be conducted. In this step, the initial direct-relationship matrix of the
conditioning factors is transformed into the total-relationship matrix of the conditioning factors, as
shown in Table 6.
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Table 4. Interval rough expert comparison matrix in the pairwise conditioning factors.

Expert 1

C1 C2 C3 C4 C5 ... C11

C1 [(0,0),(0,0)] [(2.5,3),(3,67,4,33)] [(2.5,3),(3,3.75)] [(1.5,2),(3,3.75)] [(1.5,2),(4.25,5)]

...

[(3,4),(4,4.25)]
C2 [(3,4),(3.75,4)] [(0,0),(0,0)] [(3.8,4.2),(4.47,5)] [(1,1,25),(3,75,5)] [(1,25,2),(3,4)] [(3,5,4),(3,67,4,33)]
C3 [(3,5),(4.25,5)] [(3,3.5),(3,5)] [(0,0),(0,0)] [(3.25,4),(4.25,5)] [(3,3.25),(3,4.25)] [(4,4),(4.75,5)]
C4 [(3,3.5),(3,4)] [(4,5),(4.75,5)] [(4.25,5),(4.75,5)] [(0,0),(0,0)] [(2,2.25),(3.5,4.67)] [(2.67,3.33),(4,4.5)]
C5 [(4,4.5),(3,5)] [(3,3.25),(3.5,5)] [(3,3.25),(3.67,4.33)] [(2.25,3),(4,4.5)] [(0,0),(0,0)] [(3,3.25),(3.67,4.33)]
C6 [(3.5,5),(3.75,4)] [(4,4.25),(3,4)] [(3,3.25),(4,4.5)] [(1.25,2),(3.67,4.33)] [(1,1.25),(3.4,25)] [(4,4.25),(4,4.5)]
C7 [(3.25,4),(4.25,5)] [(2,75,4),(4.25,5)] [(3.33,4.33),(4,4.25)] [(1,2),(4,4.5)] [(2,2),(3,4)] [(3,3.5),(3,3.5)]
C8 [(3,4),(3.5,4)] [(3.67,4.33),(4,4.5)] [(3.5,5),(4.25,5)] [(1,1),(3.33,4.33)] [(1,1),(2.5,4)] [(3,4),(4.5,5)]
C9 [(2.75,4),(2.75,4)] [(1.25,2),(2,3)] [(4,4.5),(4.5,5)] [(1,1.5),(3.5,5)] [(1.5,2),(2.5,4)] [(2.5,3),(3.25,5)]
C10 [(3.67,4.33),(4.5,5)] [(1.5,2),(2.25,3)] [(1.25,2),(3.5,5)] [(4.25,5),(4.5,5)] [(1,1.25),(2.67,4.5)] [(3,3.25),(3.75,4)]
C11 [(1,1.5),(2,3)] [(1,1.25),(2.75,5)] [(1.5,2),(2.33,3.5)] [(1.25,2),(3.5,5)] [(1,1),(2.33,3.33)] [(0,0),(0,0)]

Expert 6

C1 C2 C3 C4 C5 ... C11

C1 [(0,0),(0,0)] [(2,2.5),(4,5)] [(2,2.5),(3.75,5)] [(1,1.5),(3.75,5)] [(1,1.5),(3.5,4.67)]

...

[(2.67,3.33),(4,4.25)]
C2 [(2.67,3.33),(3,3.75)] [(0,0),(0,0)] [(3.8,4.2),(4.67,5)] [(1,1.25),(3.33,4.33)] [(1,1.25),(4,5)] [(3,3.5),(4,5)]
C3 [(2.33,3.67),(4,4.25)] [(3,3.5),(2.33,3.67)] [(0,0),(0,0)] [(3,3.25),(3.5,4.67)] [(3,3.25),(4.25,5)] [(4,4),(4,4.75)]
C4 [(2.67,3.33),(3,3.5)] [(4,4.75),(3.67,4.33)] [(3.5,4.67),(4,4.75)] [(0,0),(0,0)] [(2,2.25),(4.25,5)] [(2,3),(4.5,5)]
C5 [(3.67,4.33),(4.5,5)] [(2.5,4),(3,3.25)] [(3,3.25),(4,5)] [(2,2.25),(4.5,5)] [(0,0),(0,0)] [(3,3.25),(4,5)]
C6 [(2.5,4),(3,3.75)] [(2.67,3.33),(4,4.25)] [(3,3.25),(4.5,5)] [(1,1.25),(4,5)] [(1,1.25),(4.25,5)] [(4,4.25),(4.5,5)]

C7 [(2.5,3.67),(4,4.25)] [(2.33,3.33),
(4,4.25)] [(3.75,5),(4,4.25)] [(2,2),(4.5,5)] [(2,2),(3.67,4.33)] [(3,3.5),(3.5,4)]

C8 [(2.67,3.33),(3,3.5)] [(4,4.5),(4,5)] [(3.4,5),(4,4.25)] [(1,1),(3.75,5)] [(1,1),(3.5,5)] [(3.67,4.33),(4,4.5)]
C9 [(2.33,3.33),(2,2.75)] [(1,1.25),(1.67,2.33)] [(4,4.5),(4,4.5)] [(1,1.5),(3,4.5)] [(1.5,2),(3.5,5)] [(2,2.5),(2.67,3.67)]
C10 [(4,5),(4,4.5)] [(1,1.5),(1.5,2.67)] [(1,1.25),(3,4.5)] [(4,4.25),(4,4.5)] [(1,1.25),(3.25,5)] [(3.25,4),(3.75,4)]
C11 [(1,1.5),(1.67,2.33)] [(1,1.25),(2,4)] [(1,1.5),(2.75,4)] [(1,1.25),(3,4.5)] [(1,1),(2.75,4)] [(0,0),(0,0)]
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Table 5. Interval rough average matrix of the conditioning factors.

C1 C2 C3 C4 ... C11

C1 [(0,0),(0,0)] [(2.25,2.75),(3.83,4.67)] [(2.25,2.75),(3.38,4.38)] [(1.25,1.75),(3.38,4.38)]

...

[(2.83,3.67),(4,4.25)]
C2 [(2.83,3.67),(3.5,3.75)] [(0,0),(0,0)] [(3,3.5),(3.54,4.67)] [(1,1.25),(3.54,4.67)] [(3.25,3.75),(3.83,4.67)]
C3 [(2.67,4.33),(4.13,4.63)] [(2.67,4.33),(3,3.5)] [(0,0),(0,0)] [(3.13,3.63),(3.88,4.83)] [(4,4),(4.38,4.88)]
C4 [(2.83,3.67),(3,3.5)] [(4.38,4.88),(3.83,4.67)] [(4.38,4.88),(3.88,4.83)] [(0,0),(0,0)] [(2.33,3.17),(4.25,4.75)]
C5 [(3.83,4.67),(3.75,4.75)] [(3,3.25),(3,4.5)] [(3,3.25),(3.83,4.67)] [(2.13,2.63),(4.25,4.75)] [(3,3.25),(3.83,4.67)]
C6 [(3.4,5),(3.38,3.88)] [(2.83,3.67),(4,4.25)] [(3,3.25),(4.25,4.75)] [(1.13,1.63),(3.83,4.67)] [(4,4.25),(4.25,4.75)]
C7 [(2.88,3.83),(4.13,4.63)] [(2.54,3.67),(4.13,4.63)] [(3.54,4.67),(4,4.25)] [(1,2),(4.25,4.75)] [(3,3.5),(3.25,3.75)]
C8 [(2.83,3.67),(3.25,3.75)] [(3.83,4.67),(4,4.5)] [(3.25,4.75),(4.13,4.63)] [(1,1),(3.54,4.67)] [(3.33,4.17),(4.25,4.75)]
C9 [(2.38,2.88),(2.54,3.67)] [(1.13,1.63),(1.83,2.67)] [(4.25,4.75),(4,4.5)] [(1,1.5),(3.25,4.75)] [(2.25,2.75),(2.96,4.33)]

C10 [(4.25,4.75),
(3.83,4,67)] [(1.25,1.75),(1.88,2.83)] [(1.13,1.63),(3.25,4.75)] [(4.13,4.63),(4.25,4.75)] [(3.13,3.63),(3.75,4)]

C11 [(1,1.5),(1.83,2.67)] [(1,1.25),(2.38,4.5)] [(1.25,1.75),(2.54,3.75)] [(1.13,1.63),(3.25,4.75)] [(0,0),(0,0)]

Table 6. The total relationship matrix of the conditioning factors.

C1 C2 C3 C4 ... C11

C1 [(0.22,0.35),(0.56,0.78)] [(0.29,0.36),(0.62,0.94)] [(0.29,0.36),(0.70,1.00)] [(0.17,0.24),(0.72,1.02)] [(0.34,0.46),(0.76,1.01)]
C2 [(0.34,0.49),(0.65,0.86)] [(0.27,0.34),(0.55,0.87)] [(0.36,0.43),(0.72,1.03)] [(0.19,0.26),(0.74,1.05)] [(0.41,0.53),(0.78,1.04)]
C3 [(0.39,0.57),(0.68,0.88)] [(0.41,0.47),(0.62,0.95)] [(0.33,0.40),(0.66,0.95)] [(0.28,0.35),(0.77,1.05)] [(0.47,0.58),(0.80,1.04)]
C4 [(0.43,0.60),(0.66,0.85)] [(0.48,0.55),(0.65,0.94)] [(0.49,0.56),(0.75,1.01)] [(0.22,0.29),(0.69,0.95)] [(0.55,0.67),(0.83,1.03)]
C5 [(0.41,0.58),(0.71,0.91)] [(0.40,0.48),(0.67,0.99)] [(0.41,0.48),(0.79,1.07)] [(0.25,0.33),(0.82,1.09)] [(0.47,0.61),(0.86,1.08)]
C6 [(0.37,0.55),(0.67,0.87)] [(0.40,0.47),(0.64,0.94)] [(0.39,0.45),(0.76,1.03)] [(0.21,0.29),(0.77,1.05)] [(0.43,0.57),(0.82,1.04)]
C7 [(0.37,0.54),(0.67,0.85)] [(0.41,0.49),(0.61,0.90)] [(0.42,0.48),(0.73,0.99)] [(0.21,0.30),(0.76,1.01)] [(0.44,0.57),(0.79,0.99)]
C8 [(0.35,0.51),(0.62,0.85)] [(0.39,0.47),(0.60,0.94)] [(0.40,0.47),(0.69,1.02)] [(0.20,0.27),(0.71,1.04)] [(0.43,0.56),(0.75,1.02)]
C9 [(0.32,0.49),(0.56,0.79)] [(0.29,0.38),(0.52,0.85)] [(0.37,0.45),(0.65,0.96)] [(0.19,0.27),(0.65,0.97)] [(0.39,0.54),(0.68,0.97)]
C10 [(0.36,0.51),(0.62,0.83)] [(0.30,0.38),(0.55,0.86)] [(0.30,0.38),(0.67,0.97)] [(0.27,0.34),(0.71,0.98)] [(0.40,0.52),(0.72,0.97)]
C11 [(0.35,0.52),(0.61,0.79)] [(0.37,0.44),(0.63,0.90)] [(0.35,0.42),(0.72,0.96)] [(0.22,0.30),(0.73,0.98)] [(0.37,0.49),(0.70,0.90)]
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The values of total direct and indirect effects that the jth conditioning factor has received from
other conditioning factors and transferred to others can be obtained by summing the elements of the
total-relationship matrix of the clusters/conditioning factors at each row and column. These values
and the threshold value (α) of the total-relationship matrix are used to define CER diagram as shown
in Figure 5, which is created to visualize the complicated causal relationship of the conditioning factors
into a visible structural model.

Remote Sens. 2019, 11, 62 20 of 32 

 

The values of total direct and indirect effects that the jth conditioning factor has received from 
other conditioning factors and transferred to others can be obtained by summing the elements of the 
total-relationship matrix of the clusters/conditioning factors at each row and column. These values 
and the threshold value (α) of the total-relationship matrix are used to define CER diagram as shown 
in Figure 5, which is created to visualize the complicated causal relationship of the conditioning 
factors into a visible structural model. 

The elements of matrix T in Table 5 with values above the threshold value α are identified and 
mapped on the diagram, as shown in Figure 5, where the x–axis and denotes IRN Ci + Ri and the y–
axis denotes IRN Ci − Ri. These values are used to demonstrate the relationship between two factors. 
The arrows that denote a cause-and-effect membership are oriented from factors with values below 
α to elements with values above α. 

 
Figure 5. CER diagram. 

The weight coefficients of the conditioning factors were input into the IRN-ANP method based 
on the CER diagram. First, the elements of the interval-rough unweighted and weighted super 
matrices were calculated based on the total-relationship matrix of the conditioning factors. The total-
influence matrix T was included in the ANP method and the unweighted and weighted super 
matrices were obtained. The influential weights of the stable matrix were defined once the 
unweighted and weighted super matrices were computed. The weights of the conditioning factors 
were obtained based on the values in the weighted super matrix, as shown in Table 7. 

Table 7. Weight coefficients of the conditioning factors.Conditioning factor. 

 Weight Coefficient Rank Crisp Weight Coefficient 
Altitude (C1) [(0.034,0.331),(0.040,0.337)] 4 0.1002 

Slope (C2) [(0.079,0.253),(0.071,0.272)] 6 0.0910 
Curvature (C3) [(0.034,0.303),(0.031,0.357)] 5 0.0972 

TWI (C4) [(0.015,0.237),(0.026,0.320)] 7 0.0790 
STI (C5) [(0.020,0.142),(0.053,0.186)] 9 0.0538 

NDVI (C6) [(0.023,0.224),(0.023,0.257)] 8 0.0708 
Distance from rivers (C7) [(0.022,0.368),(0.011,0.497)] 3 0.1184 

Rainfall (C8) [(0.091,0.378),(0.089,0.380)] 2 0.1266 
Land cover/use (C9) [(0.093,0.501),(0.091,0.656)] 1 0.1776 

Lithology (C10) [(0.012,0.107),(0.013,0.139)] 11 0.0360 
Soil (C11) [(0.023,0.153),(0.023,0.170)] 10 0.0496 

Figure 5. CER diagram.

The elements of matrix T in Table 5 with values above the threshold value α are identified and
mapped on the diagram, as shown in Figure 5, where the x–axis and denotes IRN Ci + Ri and the
y–axis denotes IRN Ci − Ri. These values are used to demonstrate the relationship between two factors.
The arrows that denote a cause-and-effect membership are oriented from factors with values below α

to elements with values above α.
The weight coefficients of the conditioning factors were input into the IRN-ANP method based on

the CER diagram. First, the elements of the interval-rough unweighted and weighted super matrices
were calculated based on the total-relationship matrix of the conditioning factors. The total-influence
matrix T was included in the ANP method and the unweighted and weighted super matrices were
obtained. The influential weights of the stable matrix were defined once the unweighted and weighted
super matrices were computed. The weights of the conditioning factors were obtained based on the
values in the weighted super matrix, as shown in Table 7.

Table 7. Weight coefficients of the conditioning factors.Conditioning factor.

Weight Coefficient Rank Crisp Weight Coefficient

Altitude (C1) [(0.034,0.331),(0.040,0.337)] 4 0.1002

Slope (C2) [(0.079,0.253),(0.071,0.272)] 6 0.0910

Curvature (C3) [(0.034,0.303),(0.031,0.357)] 5 0.0972

TWI (C4) [(0.015,0.237),(0.026,0.320)] 7 0.0790

STI (C5) [(0.020,0.142),(0.053,0.186)] 9 0.0538

NDVI (C6) [(0.023,0.224),(0.023,0.257)] 8 0.0708

Distance from rivers (C7) [(0.022,0.368),(0.011,0.497)] 3 0.1184

Rainfall (C8) [(0.091,0.378),(0.089,0.380)] 2 0.1266

Land cover/use (C9) [(0.093,0.501),(0.091,0.656)] 1 0.1776

Lithology (C10) [(0.012,0.107),(0.013,0.139)] 11 0.0360

Soil (C11) [(0.023,0.153),(0.023,0.170)] 10 0.0496
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To validate the effectiveness of the proposed method, two popular methods that were
proposed recently were selected for comparison, including the crisp DEMTEL-ANP [29] and fuzzy
DEMTEL-ANP methods [35]. A symmetric form of triangular fuzzy numbers was used to calculate
the weight coefficients by applying the DEMTEL-ANP method. The comparison results are shown in
Figure 6. All the three methods generated sequences of weight coefficients that were characterized by
similar rank of C9 > C8 > C7 > C1 > C3 > C2 > C4 > C6 > C5 > C11 > C10 with different values.
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Figure 6 shows each interval number with two colour shades (dark and light): the darker shade
denotes the upper and lower ranges, while the lighter shade means the intersection of two rough
sequences of the IRN. The crisp DEMTEL-ANP method computes weight coefficients by applying
crisp numbers. Thus, any uncertainty and vagueness from the group decision making process can be
neglected. Meanwhile, uncertainties from group decision making in the fuzzy DEMTEL-ANP and
IRN-DEMTEL-ANP methods are represented by various dimensions of fuzzy and IRN of weight
coefficients. These interval values are the result of various mechanisms that are employed to treat
uncertainty and subjectivity. However, the fuzzy DEMTEL-ANP method handles uncertainty by
means of fuzzy sets with previously defined boundaries, which cannot be extended or narrowed, the
boundaries in IRN are flexible and can be adjusted to accommodate uncertainties in the data. Moreover,
the previously defined boundaries in the fuzzy DEMTEL-ANP method increase the subjectivity in the
group-decision-making process because the boundaries are defined based on subjective assessments.
This phenomenon can significantly affect the degree of uncertainty, which is represented in the
size of an interval, unlike in the IRN-DEMTEL-ANP method. Therefore, the proposed method can
efficiently measure uncertainties during conditioning factor evaluation and reflect the perception of a
decision maker.

4.3. Aggregation of Weighted Linear Combinations

WLC is the most commonly used method that is compensatory, meaning that a low result in
one conditioning factor can be compensated by high results in another, which is desirable for this
specific decision problem. Thus, WLC was selected as an aggregation method and it multiplied each
fuzzy standardized conditioning factor map (i.e., each raster cell of 30 × 30 m) with the weights of
the conditioning factors, obtaining different variations from the AHP method, and then summarizing
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the results. The mathematical expression for calculating the convenience index in the WLC method is
as follows:

S = ∑ wixi (24)

where S is the suitability index, wi is the normalized value of the factor weight and xi is the criterion
score of factor i. The WLC method was used to create a map of the aggregation of the conditioning
factors on the final map, which is displayed in the same range of fuzzy values from 0 to 1, based on
the employed conditioning factors and determination of their weights according to the scenario in
the previous section. Finally, the FSI scales were calculated using the defuzzification algorithm of the
standard deviation method using the Reclass Spatial Analyst Tool in ArcGIS 10.3 software. Each cell
is classified into five categories and has been assigned a new value from 1 to 5, representing the FSI
scales. The final results of the flood hazard assessment are provided in Figure 7.
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Figure 7. The final flood susceptibility map for the study area with historic flood locations.

Table 8 shows the five classes of the final flood susceptibility map with the covered area of the
study territory. According to the results in Table 8, the area with the largest FSI scale (FSI 5) was
71.6 km2 or 4.6% of the study area. Additionally, 329.8 km2 in the study area exhibited a high FSI
scale (FSI 4). These areas were mainly located in the eastern and southern regions, which have lower
altitudes, lowland relief and areas near river flows.
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Table 8. Areas of the classes from the final flood susceptibility map.

FSI
Area

Number of Cells (30 × 30 m)
(km2) %

FSI 1 Very low 118.4 7.7 131,544
FSI 2 Low 434.8 28.2 483,080
FSI 3 Moderate 588.4 38.1 653,747
FSI 4 High 329.8 21.4 366,514
FSI 5 Very high 71.6 4.6 79,534

4.4. Model Validation

The validation of flood susceptibility maps is an essential step during modelling. The prediction
performance of the WLC method and the FSI scales were evaluated by using a non-dependent threshold
approach of ROC [28]. The AUC is a synthetic index that is calculated for ROC curves and has been
generally used to evaluate the accuracy of flood susceptibility maps [25,27]. The AUC is the probability
that a positive event is classified as positive by the test given all the possible values of the test [66–70].
In addition, the model of this paper is established by expert knowledge, all historical flood samples
are considered.

First, historical flood locations were used as the validation set to evaluate the accuracy of the
prediction methods. The validation samples that represented flooded and non-flooded areas were
integrated into a single vector. We filled the attributes of these validation samples with the values of the
standardized conditioning factors and the values of the final maps from the WLC fuzzy method and
the FSI scales. Histograms of the final map values showed a high correlation between the locations of
the validation samples and the flood and non-flood areas. For the WLC fuzzy method, the maximum
and minimum values for the flood validation samples were 0.874 and 0.582, respectively, and the
standard deviation was 0.046, as shown in Figure 8a. In Figure 8b, the maximum and minimum values
for the non-flood validation samples were 0.597 and 0.182, respectively, and the standard deviation
was 0.106. In addition, the FSI scales in the final map ranged from 3.114 to 5 and 1 to 3.508 for the flood
and non-flood validation samples as shown in Figure 8c,d, respectively. The ROC curve corresponds to
the graphical representation of the specificity and sensitivity for the various possible threshold values.
The ROC curves and specificity/sensitivity diagrams for the WLC fuzzy model and FSIs are shown in
Figure 9.

The final results of the eleven flood susceptibility maps (maps generated through
IRN-DEMANTEL-ANP method) were validated by comparing them with the historical flood locations,
using the success-rate and prediction-rate methods. The success-rate results were obtained based on a
comparison of the flood grid cells in the training dataset with the eleven flood susceptibility maps.
The success rate measures how the flood analysis results fit the training dataset. This method divides
the area of a flood susceptibility map into five classes, ranging from the highest to the lowest FSI values
(Figure 7). The success-rate method uses the training dataset, therefore, it might not be a suitable
method for assessing the prediction capacity of the flood susceptibility models.

The prediction rate can explain how well the flood susceptibility models and flood conditioning
factors predict flood occurrence. In this study, the prediction-rate results were obtained by comparing
the flood grid cells in the validation dataset with the eleven flood susceptibility maps.
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Figure 8. Histograms of the WLC fuzzy (a,b) and FSI scales (c,d) for flood and non-flood
validation samples.

The area under the prediction-rate ROC curve was calculated. Figure 9 shows the prediction-rate
results of the eleven flood susceptibility maps obtained from IRN-DEMATEL-ANP models.

According to the experimental results, all the flood susceptibility maps had the most acceptable
and representable appearance with AUC above 0.95. The WLC fuzzy technique exhibited the best
cross-validated performance, followed by the FSI based technique. For instance, the WLC fuzzy
technique achieved a very high validation accuracy with an AUC value of 0.988, as shown in Figure 9a,b.
Meanwhile, both the visual assessment and quantitative validation through the ROC curve indicated
that the FSI based technique was an excellent prediction method with an AUC value of 0.964, as shown
in Figure 9c,d.
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Figure 9. ROC curves (a,c) and diagrams of the specificity/sensitivity (b,d) for the WLC fuzzy and
FSI methods.

5. Discussions

The main objective of this work is to investigate the use a novel hybrid MCDA-GIS technique to
evaluate FSM, which is constructed by ensemble of DEMATEL, ANP and IRN technique in the case
study at Shangyou County, China. In this paper, we improve the DEMATEL method by applying
IRN to determine connections in the network structure based on criteria and to accept imprecisions
during collective decision making. The application of IRN can eliminate the necessity of additional
information to define uncertain number intervals. Therefore, the quality of the existing data during
collective decision making and experts’ perceptions that are expressed through an aggregation matrix
can be retained.

The considered conditioning factors have not the same contribution to flood occurrence, thus
the decision makers should define importance of each conditioning factor by using appropriate
weight coefficients. The WLC method requires normalization of the weights. After determining weight
coefficients of the conditioning factors, the hybrid IRN-DEMATEL-ANP method is used to calculate the
normalized weight conditioning factors. Pair-wise comparisons of the criteria from the IRN-DEMATEL
method serve as the input parameters of the ANP method. The weight coefficients of the criteria are
obtained as the output values from the ANP method. Finally, WLC method is subsequently used in
the GIS environment to obtain the final flood susceptibility map.
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According to the importance determination of different used factors for FSM, results of the current
study showed that the most important conditioning factor are land cover/use, followed by rainfall,
distance from river, altitude and curvature.

Land cover/use is a very important factor in recognizing sensitive regions prone to flooding.
Strong correlation of the Land cover/use and flooding is not doubtable as each land use has its own
impact on increasing or decreasing the speed of water and therefore generating the flood. Vegetated
areas are most often represent protection zones that make the land less prone to flood occurrence [31].
Conversely, urban areas increase surface runoff due to the possession of large impermeable surfaces.

Also the effect of the rainfall was appraised as a main conditioning factor in flood occurrence.
The higher rainfall amount usually increases a chance of flood prone area [71]. In this work,
the available 1:50,000 rainfall data was considered in the experiments. The main reasons can be
summarized as follows: First of all, each factor was converted in the forms of spatially-defined layers
of maps with grid size of 30 × 30 m from the ASTER GDEM Version 2 and remote sensing data, along
with geological, meteorological and soil data that were provided by different government departments
for further analysis. In fact, the rainfall data with the resolution of 1:50,000 was suitable for this
study based on our experiments. Second, it is not appropriate for FSM under the assumption that
the higher the resolution, the better the result. Since we obtain a pixel-based susceptibility map,
using high resolution rainfall data may be useless for practical uses of the map. Moreover, it is not
statistically reasonable in most cases if the resolution of other input data cannot accord with the rainfall
one. Finally, there is no meteorological data in high resolution and only the 1:50,000 rainfall data are
publicly available. However, even if we obtain different factor layers with a very high resolution, the
available rainfall data can be interpolated to match the other data using the ArcGIS tool to support FSM.

In addition, one of the conditioning factors, which have high significant impact on flooding,
is distance from the river. River levels will increase due to the heavier precipitation during flooding,
causing an overflow of water into areas closest to the river bank [24]. The role of curvature in flood
occurrence in the study area was also quite remarkable. In the case of flood mostly occurred in the
area that has flat curvature. This was confirmed by many different authors [12,24,29,31,34], who also
confirmed that rainfall, land cover/use, curvature, elevation, and distance from river had higher
impacts on flooding.

On the other hand, in this study, STI, soil type and lithology had lowest importance for
flood occurrence. This is partly in agreement with findings reported in Chapi et al. [72] and
Shafizadeh-Moghadam et al. [73], even though distace from river was reported as the main effective
factor [72,73].

In order to assess the performance of the used IRN-DEMATEL-ANP method, the defined flood
susceptibility zones are compared with historical locations of flood events. For evaluation of the
method, the area under the curve (AUC) method was used and prediction rate curves were calculated.
The capability of IRN-DEMATEL-ANP method was evaluated using a non-dependent threshold
approach: the receiver operating characteristic (ROC) curve. Based on overall estimates, the proposed
approaches have shown the most acceptable results for mapping the flood occurrence in the study area.

Besides, the proposed modification of the DEMATEL and ANP using RN makes it possible to take
into account doubts that occur during the expert evaluation of criteria thus bridging the existing gap in
the methodology in the treatment of uncertainty based on RN. In such a way, the quality of the existing
data in the collective decision making process can be retained, as well as the experts’ perception, which
is expressed through the aggregation matrix. In the surveyed literature, no works on the problem of
FSM, taking into account the interdependencies between the criteria in the framework of the rough
number-based MCDM approach, have been found. The suggested method was validated through a
case study at Shangyou County.

Taking into account the causal relationship between the proposed criteria for FSM, it may be
stated that the DEMATEL methodology can support decision making by deriving a visual graph
showing the degree of their influence on the final result [74]. In more realistic conditions, the analytical
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network process (ANP) is also capable of handling interdependencies between the criteria, but it
assumes an equal cluster weight to obtain the weighted supermatrix [75,76]. To overcome this
shortcoming, DEMATEL-ANP is applied to find the influential weights of the criteria based on
the network relationship map [77]. The ANP technique is used to determine the weights of the
performance criteria based on the total relation matrix formed by the DEMATEL, thus avoiding
pairwise comparisons of the criteria required for ANP analysis [53]. Calculating the relative weights of
criteria using traditional ANP means that the levels of interdependence of the factors are treated as
reciprocal values. In contrast, in using the DEMATEL method, the levels of interdependence of factors
do not have reciprocal values, which is closer to real circumstances [42,43,78–81]. Because all of the
above, implementation DEMATEL method in ANP model gives more objective insight into weight
coefficient values.

The results obtained by the proposed method can be considered promising when the reliability
and stability of the ranking results are checked. The proposed model can identify the mutual influence
of the criteria, thereby aiding purchasing managers to better understand the performance-related
issues and to devise the appropriate improvement strategies. Furthermore, it allows for applying the
developed framework for case studies from the perspective of particular areas and comparing the
results by examining possible differences and their causes.

6. Conclusions

This work validates the application of a novel MCDA-GIS framework for FSM in the case of
Shangyou County, China. To accommodate uncertainties in the MCDA process, the IRN technique
is used to handle this problem. The application of IRN in the MADA process is presented through
the hybrid IRN-DEMTEL-ANP method. The final susceptibility map was obtained using the WLC
method. Some conclusions can be drawn as follows. First, the proposed method can conduct FSM
by combining both qualitative and quantitative methods. It can make full use of experts’ knowledge,
which is different from statistical learning methods. Second, the validation process was performed
based on the comparison of the historical flood locations to the different flood susceptible zones on the
final map. The higher AUC values demonstrate the effectiveness of the proposed method. Specifically,
according to the resultant FSI scales, 71.6 km2 (4.6%), 329.8 km2 (21.4%) and 588.4 km2 (38.1%) of
the study area were labelled with ‘very high’, ‘high’ and ‘moderate’, respectively, which proves that
Shangyou County is mostly located in the flood-prone areas. These high susceptible zones locate at the
eastern and southern areas which are near river flows with lower altitudes and lowland reliefs. In the
future, we will take some useful ideas on the relationship between planning and flood assessment
using the IRN-DEMTEL-ANP method, following the contributions of [82,83]. Moreover, the future
improvement of the proposed method may be based on classical fuzzy sets and the intervals of fuzzy
numbers when determining the parameters of the conditioning factors. Besides, the implementation
of individual phases of the Best-Worst method can be involved in the phases of the DEMATEL or
ANP methods.
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