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Abstract

This study deals with model adaptation of the AM2 model to an anaerobic digestion reactor of a water
resource recovery facility, namely a 6000 m3 reactor at VEAS WWRF, the largest of Norway. The model is
based on the mass balance with six states including acidogens, methanoges, alkalinity, organic substrate,
volatile fatty acid and inorganic carbon. The model adaptation is applied firstly to simulated reactor
data for testing the algorithms, and then to experimental data. The experimental data are collected
from laboratory analysis and online measurements from January to October 2017. The data of the first
100 days are used for model identification, and the remaining data for model validation. Identification
analysis is based on the Fisher Information Matrix and the Hessian matrix. Also, a sensitivity analysis of
the parameter estimates is accomplished.
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1. Introduction

Anaerobic digestion (AD) of wastewater is a biolog-
ical process to produce biogas consisting of methane
and carbon dioxide in the absence of oxygen. Math-
ematical models of the AD process can be useful for
control system design and testing, controller tuning,
model-based control, state and parameter estimation,
optimization of reactor design and operation, analysis,
training, etc.

Several mathematical models of the AD process
exist. The Anaerobic Digestion Model Number 1
(ADM1) is a well-known model with five stages includ-
ing disintegration, hydrolysis, acidogenesis, acetogen-
esis and methanogenesis Batstone et al. (2000). The
ADM1 model has 35 state variables with around 100
model parameters, and it represents the gases methane
(CH4), carbon dioxide (CO2) and hydrogen (H2). The

Hill model is a relatively simple model for representing
the behaviour of a biogas reactor with four state vari-
ables from which CH4 gas is calculated Hill and Barth
(1977). In the present study, the Anaerobic Digestion
Model number 2 (AM2) with six states and 13 model
parameters is applied Bernard et al. (2001). The model
is implemented in MATLAB.

Before using a model effectively, the values of un-
known model parameters have to be estimated from
experimental data. The main goal of this study is dy-
namic model adaptation to a simulated biogas reactor
and also to experimental data from the VEAS. The
model adaptation comprises estimation of the model
parameters and model validation. Root Mean Square
Error (RMSE) is used to evaluate both the model
identification and the model validation. Identifiabil-
ity analysis and sensitivity analysis are investigated.
The identifiability analysis is based on calculating and
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Figure 1: Comparison between ADM1 and AM2 models.

analyzing the Fisher Information Matrix (FIM). The
convexity of the optimization problem of the model
adaptation is analyzed with the Hessian matrix at the
estimated model parameters Ljung and Chen (2013).
The model identifiability is addressed also with a sensi-
tivity analysis. The need for identifiability analysis can
be stated as follows. When the measurement variables
are not influenced by one or several model parameters,
it is possible to have several different identified model
parameter sets.

There exist several studies about the model adapta-
tion to experimental data from different biogas reactors
based on different models. A pilot anaerobic reactor fed
with diary manure at Foss farm in Skien, Norway has
been adapted to the Hill model Haugen et al. (2013).
The AM2 model is used for production of biogas in the
raw industrial wine distillery vinasses in a local winery
at Narbonne, France Bernard et al. (2001). There are
several studies using the ADM1 model for biogas reac-
tors, such as olive mill solid waste Boubaker and Ridha
(2008), lignocellulosic biomass Koch et al. (2010), and
sewage sludge digestion for various water resource re-
covery facilities Shang et al. (2004, 2005).

The outline of the article is as follows. Section 2 in-

cludes a process description and the AM2 model equa-
tions. Section 3 explains about dynamic model adap-
tation of the AM2 model to a simulated biogas reac-
tor. The parameters of the model are identified and
the model will be evaluated based on the estimated
model parameter. Also a practical identifiability anal-
ysis is described based on the Fisher Information Ma-
trix (FIM) and the Hessian matrix. Then the model is
validated on a wide range of the operating conditions
covering 150 days. A sensitivity analysis for all model
parameter estimation is presented. Dynamic model
adaptation of the AM2 model to experimental data
from the VEAS reactors will be discussed in Section
4. Discussion and Conclusions are given respectively
in Section 5 and Section 6.

2. Process and model descriptions

2.1. Process description

The reactor at the VEAS plant has the form of a cylin-
drical tank. The diameter of the tank is 19 m, and the
maximum volume of the tank is 6000 m3. The reactor
is equipped with a level sensor. The effective volume
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can be calculated based on the height of the material
inside the reactor which is measured by the level sen-
sor. The reactor temperature is measured. The density
of the sludge is assumed same as water density, 1000
kg/m3.

The alkalinity ratio (AR), also denoted the
FOS/TAC ratio1, is the ratio between volatile fatty
acid, VFA, and alkalinity, cf. (1).

AR =
S2

Z
(1)

The AR expresses the reactor stability Lee et al. (2015).
AR less than 0.3 indicates a stable AD process Drosg
(2013).

An important parameter in AD processes is pH
which is included in the AM2 model. The reactor tem-
perature and pH have effects on the performance of
AD processes Hajji et al. (2016)Jayaraj et al. (2014).
Appropriate pH values for methane production in the
mesophilic temperature range is investigated in Kheire-
dine et al. (2014).

2.2. Selection of a dynamical model

In this study, the AM2 model is selected because it
is considerably simpler than the ADM1 model, while
comprising the relevant parameters and variables. In
Figure 1, the AM2 model is compared with the ADM1
model.

2.3. The original AM2 model

Figure 2 depicts an AD reactor with variables accord-
ing to the AM2 model.

In the AM2 model, organic material is converted by
microorganisms in two phases which are called acido-
genesis and methanization. In the first phase, the aci-
dogenic bacteria, X1, consume the organic substrate,
S1 , and produce CO2 and volatile fatty acids, S2. In
the second phase, the population of methanogenic bac-
teria, X2, uses the volatile fatty acids to produce CO2

and methane. Z and C are the total alkalinity and to-
tal inorganic carbon, respectively. Mass balances give
the following differential equations, which constitute
a state space model of the AD reactor Bernard et al.
(2001).

dX1

dt
= [µ1 − αD ] X1 (2)

dX2

dt
= [µ2 − αD ] X2 (3)

1Flchtige Organische Suren/Totales Anorganisches Carbonat
(German)

Råt 2

Din [1/d]

Biogas flow

 CH4   +   CO2

pH, AR, Temp

S1       S2     Z 

X1    X2     C 

Biogas

Dout[1/d]

Figure 2: An anaerobic digestion reactor with variables
according to the AM2 model.

dZ

dt
= D(Zin − Z ) (4)

dS1

dt
= D(S1 in − S1 ) − k1µ1X1 (5)

dS2

dt
= D(S2in − S2) + k2µ1X1 − k3µ2X2 (6)

dC

dt
= D(Cin − C ) − qC + k4µ1X1 + k5µ2X2 (7)

where Zin, S1in, S2in, Cin in (4)-(7) are, respectively,
concentration of the inflow of alkalinity, substrate, VFA
and dissolved inorganic carbon. D is the dilution rate,
or normalized flow, defined in (8).

D =
F

V
(8)

F is flow rate and V is the effective volume of the
reactor.

The flow of inorganic carbon from the liquid phase to
the gas phase, qC , is calculated accordance to Henry’s
law, cf. (9).

qC = kLa(C + S2 − Z − KH PC) (9)

where kLa is liquid-gas transfer coefficient, KH is
Henry’s constant, and PC is CO2 partial pressure.
Methane flow is directly related to the methanogenic
rate, µ2, cf. (10).

qM = k6µ2X2 (10)

The growth of acidogenic bacteria, µ1, is based on
Monod type kinetics and the growth of methanogenic
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Table 1: Experimental data from VEAS

Data Description Lab. analysis Measured Unit

F Inflow rate
√

L/s

TSin Inflow total solid
√

%

VSin Inflow volatile solid
√

%

Treac Reactor temperature
√ ◦C

qm+qc Biogas production
√

m3/h

CH4 Methane production
√

%

h Height of the material inside the reactor
√

m

TS Total solid
√

%

VS Volatile solids
√

%

S2 Volatile fatty acid
√

mmeq/L

Z Alkalinity
√

mmeq/L

B Bicarbonate
√

mmeq/L

pH pH
√

-

bacteria, µ2, is assumed based on Haldane type ki-
netics. The growth of bacteria depends on tempera-
ture and temperature change. Generally, an increase in
temperature before reaching the optimum growth tem-
perature will increase bacteria activity and the growth
of bacteria. If temperatures get more than the op-
timum growth temperature, enzyme activity will de-
crease Eddy et al. (2003). The consensus is that tem-
perature changes greater than 1◦C/d affect process
performance, thus temperature variations of less than
1◦C/d are recommended. In general, the variables in
the AM2 model are divided in three groups called state
variables, environmental variables, and model parame-
ters, respectively. The state variables and the environ-
mental variables are shown in Figure 3. In this study,
the model parameters are estimated based on observing
input-output and some of state variables are measured.

Din[1/d]

Biogas flow
AD Reactor

 CH4    

  CO2

X1       X2            Z              S1            S2            C 

Biogas flowrate 
[mmol/d]

X1in     X2in          S1in         S2 in         C in        pH in      B in         T

 pH    

FOSTAC (AR)

State variables

Environmental variables

Dout[1/d]

Figure 3: A block diagram of an AD reactor with the
AM2 model requirements.

2.4. Modified AM2 model

It can be assumed that a part of the microorganisms
continuously die during the process. In this study, we
propose to enhance the AM2 model with death rates of
acidoges and methanoges microbes, kd1, kd2, both with
values of 0.2 d−1, as in the AMD1 model Batstone et al.
(2000). Thus, (2) and (3) are modified to become (4)
and (5), respectively.

dX1

dt
= [µ1 − kd1 − αD ]X1 (11)

dX2

dt
= [µ2 − kd2 − αD ] X2 (12)

In the VEAS reactor, the inflow and outflow rates
may be different, implying a variation of the level and
hence the volume of the materials in the reactors varies.
Consequently, (4)-(7) are modified to become (13)-
(16).

dZ

dt
= DinZin − DoutZ (13)

dS1

dt
= DinS1in − DoutS1 − k1µ1X1 (14)

dS2

dt
= DinS2in − DoutS2 + k2µ1X1 − k3µ2X2 (15)

dC

dt
= DinCin − DoutC − qC + k4µ1X1 + k5µ2X2

(16)
Temperature has effect on reaction rates but is not

considered in the original AM2 model. The tempera-
ture dependency of the reaction rates may be based on
the van’t Hoff-Arrhenius model Eddy et al. (2003) or
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on the Hashimoto model Hashimoto et al. (1995). We
assume here the Hashimoto model, as it is based on a
study of the behaviour of a large number of real reac-
tors. The Hashimoto model was proven to represent
very well the temperature-dependency of AD reactor
dynamics in Haugen et al. (2013).

The Hashimoto model implies that the temperature
dependency of the maximum reaction rates is modelled
as in (17).

µmax(Treac) = cH Treac − µ0 (17)

for temperatures between 20
0

C and 60
0

C. cH is the
Hashimoto’s factor. µ0 is a constant value. We assume
that µimax in 35

0

C will be identified as a model pa-
rameter. Thus, the temperature dependency is applied
based on (18) for enhancement of the original AM2
model.

µimax(Treac) = cH .(Treac − 35) + µimax(35) (18)

The modified AM2 model is the original AM2 model
with aforementioned modifications.

2.5. Experimental data

Experimental data are collected daily from laboratory
analysis and from sensors installed on the pertinent
VEAS reactor for the period of 1st of January to 10th
of October 2017. The list of the collected data is men-
tioned in Table 1.

3. Model adaptation to a simulated
biogas reactor

Model adaptation is applied to a simulated model,
where of course the true parameter values are known,
as a necessary check of the selected parameter estima-
tion algorithm.

The model adaptation consists of two parts: (1) Pa-
rameter estimation, and (2) model validation where the
reliability of the model is validated with data not used
in the estimation Stare et al. (2006). Simulated data
over the first 100 days are used for estimation, and data
over 150 days for model validation.

15 model parameters are estimated, of which 13
model parameters are in the original AM2 model while
the remaining two are one parameter of Hashimoto’s
formula, (18), and Zdis, which is a parameter to repre-
sent uncertainty in the influent alkalinity, cf. (19).

dZ

dt
= Din(Zin + Zdis) − DoutZ (19)

3.1. Estimation method

3.1.1. Selection of a criterion

The parameter estimates are those minimizing the
quadratic criterion in (20).

J(θ) =

N∑
i=1

[Yp,i(θ) − Yr ,i ]
TQ [Y p,i(θ) − Yr ,i ] (20)

where Yr,i is the simulated “real” data vector, and
Yp,i(θ) is the prediction vector with respect to the
model parameters vector, θ, at the same instants ti.
In this study, Y is the so-called measurement vector
defined by (21).

Y = [ CH4 CO2 pH S2 Z ]T (21)

Q is a weight matrix defined by (22).

Q = W−1 (22)

where W is the inverse of the measurement error co-
variance matrix, (23).

W =


wCH4 0 0 0 0

0 wCO2
0 0 0

0 0 wpH 0 0
0 0 0 wz 0
0 0 0 0 wS2

 (23)

where

wy =
1

n

n∑
i=1

(y − ȳ)2 (24)

ȳ is the mean of measurement values for n samples
which is a proper subset of the original data.

3.1.2. Computational solution of the optimization
problem

We use the fmincon NLP solver in MATLAB to mini-
mize the criterion (20). In general, fmincon solves the
optimization problem of (25).

min
θ

J(θ) subject to : Aθ ≤ B, Aeqθ = Beq

LB≤ θ≤UB (25)

In the present parameter estimation problem, neither
the inequality constraints nor the equality constraints
are included. Thus, A, B, Aeq and Beq are empty
matrices. LB and UB are chosen respectively 10
time smaller and larger than the model parameters in
Bernard’s work Bernard et al. (2001).
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3.1.3. Assumptions

We do not have measurement data of the inflow inor-
ganic carbon. However, it is assumed that C equals to
0.0058 mol/L in a reactor fed with waste waster Berg-
land and Bakke (2016). The initial relation between

Table 2: The initial state in the AM2 model

Parameter Description Unit Value

X1init Concentration of g/L 0.06

acidogenic bacteria

X2init Concentration of g/L 0.22

methanogenic bacteria

Zinit Total alkalinity mmol/L 194

S1init Organic substrate g/L 17.78

concentration

S2init Volatile fatty acid mmol/L 16

concentration

Cinit Total inorganic carbon mmol/L 194.29

concentration

acidogens and methanoges bacteria is assumed as in
Haugen et al. (2013):

X1 = 3.4X2 (26)

Note that during the simulation, X1 and X2 evolve
individually and according to their material balances.

The assumed initial states are shown in Table 2.

Figure 4 shows the real inputs used as inputs to the
simulation.

Analysis of the feed sludge taken at representa-
tive conditions shows S2in = 82 mmol/L, Zin = 72
mmol/L, and pHin= 6.37. It is supposed that con-
centrations of VFA and alkalinity and pH in the feed
sludge are constant during the simulation.

One of the parameters to be estimated is the alkalin-
ity offset, Zdis, cf.19. Since Zin is not measured during
the preparing the data and also to satisfy the alkalin-
ity ratio threshold, Zdis must be estimated to have a
reasonable and stable process.

We assume that the simulated AM2 model has model
parameters as shown in Table 3. The initial model pa-
rameter values are according to Bernard et al. (2001).

3.2. Results of the parameter estimation

We decided to use simulated data over 100 days for
the parameter estimation. The time-step of 0.1 d. The
results of the parameter estimation are shown in Table
3. The table shows the results for noise-free measure-
ments and for noisy measurements where a uniformly
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Figure 4: Real inputs used as inputs to the simulation

distributed random noise is added to the noise-free sim-
ulated measurement. The noise was set to have ampli-
tude ±0.5% of the mean values of the parameter values.
For the noise-free case, the parameter estimates are vir-
tually equal to the parameter values used in the simu-
lator, indicating that the parameter estimation proce-
dure outlined in Section 3.1 works satisfactorily. There
are however parameter offsets in the case of noisy sim-
ulated measurements, which is to be expected.

3.2.1. Evaluation of impact of measurement noise

Root-Mean-Square Error, RMSE, is a useful criterion
to evaluate the relative quality of a parameter estima-
tion procedure Muroi and Adachi (2015). RMSE is
defined in (27).

RMSE =

√√√√∑N
i=1

[
yp,i

(
θ̂
)
− yr ,i

]2
N

(27)

where yp,i

(
θ̂
)

is model-predicted measurement and

yr,i is assumed real (but here: simulated) measurement
sample number i. Here, we use RMSE to evaluate the
impact of assumed measurement noise on the parame-
ter estimation. Table 4 shows RMSE for five simulated
measurements. It indicates small differences between
the simulated methane and carbon dioxide gas flows.
Therefore, both biogas productions resemble quite well
with the measured methane and carbon dioxide gas
flows. RMSE for pH, S2 and Z are also small with
acceptable differences.
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Table 3: Model parameter values for simulation model, initial states and estimated values with and without
added simulated measurement noise

Model Initial Simulated Estimated Estimated Unit

Parameters values∗ model values values

noise-free 1% noise

k1 42.14 100 100 102.06 -

k2 116.5 280 280 287.68 mmol/g

k3 268 300 300 316.62 mmol/g

k4 50.6 415 415 424.17 mmol/g

k5 343.6 385 385 404.34 mmol/g

k6 453 500 500 525.67 mmol/g

α 0.5 0.8 0.8 0.73 -

µ1max 1.2 1 1 0.89 d−1

µ2max 0.74 0.8 0.8 0.77 d−1

KS1
7.1 5 5 5.09 g/L

KS2
9.28 60 59.99 68.37 mmol/L

KI2 256 350 350.27 92.68 mmol/L

kLa 19.8 8.2 8.2 8.21 d−1

cH 0.013 0.013 0.013 0.053 -

Zdis 100 100 100 100.16 mmol/L

∗The initial values of the model parameters are based on Bernard et al. (2001).

Table 4: Evaluation of the parameter identification
based on RMSE

Simulated RMSE RMSE Unit

meas. noise-free 1% noise

CH4 1.59× 10−5 6.76× 10−2 mmol/L/d

CO2 4.6× 10−6 3.34× 10−2 mmol/L/d

pH 6.9× 10−8 5.93× 10−4 -

Z 1.9× 10−6 1.26× 10−1 mmol/L

S2 6.1× 10−4 3.05× 10−2 mmol/L

Table 5: The RMSE index for noise-free and noisy mea-
surements

Simulated Mean Maximum Maximum Unit

meas. value value difference

CH4 15.384 20.34 0.489 mmol/L/d

CO2 13.972 18.050 0.407 mmol/L/d

pH 7.463 7.552 0.003 -

Z 176.730 190.250 0.174 mmol/L

S2 5.015 5.986 0.361 mmol/L

The mean and maximum of the measurement val-
ues are calculated based on the identification data set
(150 days). The maximum difference between the esti-
mated data and the simulated one in the identification
period are mentioned in Table 5. Comparison between
the maximum differences and the mean of the measure-
ments indicates that the model error is acceptable.

3.2.2. Identifiability analysis

3.2.2.1. Structural and practical identifiability

Identifiability analysis is used to assess whether the
selected parameter estimation method will work. Two
methods of identifiability analysis are presented in the
following.
Structural identifiability

Structural identifiability, so-called theoretical iden-
tifiability, depends on the model and it is a property
of model structure Zhang et al. (2010). The structural
identifiability is based on a mathematical approach to
show the correlations among the parameters for noise-
less data under ideal conditions. For correlated param-
eters, a change in one parameter can be compensated

149



Modeling, Identification and Control

by a change in another parameter, and the model fit-
ness remain still satisfied. Therefore, structural iden-
tifiability is not sufficient to determine if the model
parameters can be estimated uniquely for poor data
Saccomani (2013).

Since there are 15 model parameters in the modified
AM2 model to identify and 5 measurement values, alge-
braically evaluating the structural identifiability of the
parameters is complicated. Also, since the goal of this
study is model adaptation to practical data it is possi-
ble that parameters which are structurally identifiable
are practically unidentifiable. Consequently, we do not
focus on the structural identifiability in this study.
Practical identifiability

Practical identifiability depends on experimental
condition and quality and the quantity of the mea-
surement variables Petersen et al. (2001). The prac-
tical identifiability is a numerical method to determine
whether it is possible to achieve a unique estimated
parameter set from the available data Dochain (2013).
The effect of a small deviation in each model param-
eter will be monitored to check the output sensitivity.
In fact, the practical identifiability of model parame-
ters is based on the output sensitivity function. The
Fisher Information Matrix (FIM), and the Hessian ma-
trix are used for this purpose. They are presented in
the following subsections.

3.2.2.2. Identifiability analysis with Fisher
Information Matrix

FIM is based on the sensitivity function, ∂y
∂θ , and the

measurement accuracy, cf. (28).

FIM =

N∑
i=1

[
∂yi
∂θ

]T
Q

[
∂yi
∂θ

]
(28)

where Q is the weight matrix. The size of the FIM
is p × p, where p is the number of the estimated pa-
rameters. FIM provides information about estimation
accuracy. Practical identifiability analysis is a numer-
ical approach which is performed by calculating the
FIM locally at the estimated parameters. If the de-
terminant of the FIM becomes zero, some sensitivity
functions are linear combination of each other. Thus,
the unique parameter values cannot be obtained from
the measurement data. The parameters are practically
identifiable when the determinant of FIM becomes non-
zero Li et al. (2018) or, in other terms, the FIM rank
becomes full and equals the model parameter number
Komorowski et al. (2011)Petersen et al. (2001).
Quality of identifiability analysis

It is necessary to check the quality of identifiability
to be certain about reliability of the estimated param-
eters.

One way to examine the quality of identifiability is
investigation on convexity of the model at the esti-
mated parameters based on condition number of the
FIM. The condition number of the FIM shows whether
the parameter estimation is in well-condition or ill-
condition.

Another way is investigation on sloppiness of model
based on distribution of the eigenvalues of the FIM.
Investigation on the eigenvalues of the FIM is useful
to determine if the model is a so-called sloppy model.
The concept of sloppiness was introduced in Brown and
Sethna (2003) when the model output is not sensitive
to changes in some of the model parameters which are
called sloppy parameters. Meanwhile, stiff parameters
are the model parameters that the model output is
sensitive on their changes. If there is a clear gap be-
tween the eigenvalues of the FIM of model, it means
there are some sloppy model parameters. The large
eigenvalues are corresponding to stiff parameter and
the small eigenvalues are corresponding to sloppy pa-
rameters. The existence of sloppy parameters causes
the case that it is impossible to identify all model pa-
rameters uniquely Villaverde (2019). In fact, the small
eigenvalues indicate that there are combinations among
some model parameters.

Identifiability analysis for the case study

We compute numerically the FIM at the estimated
model parameters with one percent changes. The de-
terminant of the FIM becomes non-zero, so the FIM is
full-rank matrix. The quality of identifiability analysis
based in the convexity of the model at the estimated
parameter set can be checked by computing the con-
dition number of the FIM at this point. The identifi-
ability of model parameters depends on the condition
number of the FIM Cintrón-Arias et al. (2009).

cond(FIM) =
λmax(FIM)

λmin(FIM)
(29)

The amount of the condition number of the FIM be-
comes 2.75 × 1012 which presents an ill-condition.

The eigenvalues of the FIM are as follows:

λ(FIM) =
[

7.5×108 2.45×108 5.7×107 ...

15.975 1.198 0.0003
]

It shows there are sloppy parameters for AM2 model in
respect of the collected measurements. Consequently,
there are some unidentifiable model parameters.

The FIM has another outcome which is computing
the standard deviation of the estimated parameters.
The square root of the diagonal elements on the in-
verse matrix of the FIM is the standard deviation of
the parameter estimation, SD in Table 6.
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Table 6: The estimated model parameters with their
standard deviations

parameter Estimated value SD∗ Target value

k1 102.06 0.22 100

k2 287.68 0.003 280

k3 316.62 1.131 300

k4 424.17 0.005 415

k5 404.34 0.001 385

k6 525.67 0.001 500

α 0.73 0.002 0.8

µ1max 0.89 0.003 1

µ2max 0.77 0.011 0.8

KS1
5.09 0.018 5

KS2
68.37 0.84 60

KI2 92.68 52.14 350

kLa 8.21 0.021 8.2

cH 0.053 0.0007 0.013

Zdis 100.16 0.02 100

* SD: Standard Deviation.

3.2.2.3. Identifiability analysis with Hessian matrix

The Hessian (matrix), H, of a function describes the
local curvature or convexity or positive definiteness of a
function. If all eigenvalues of the Hessian are positive,
the function is convex. The larger eigenvalues of the
Hessian, the stronger convexity. When the fmincon
function is used for parameter estimation, the Hessian
returned by the function expresses the identifiability of
the parameters Rothenberg et al. (1971). A weak local
identifiability occurs when eigenvalues of the Hessian
matrix are positive but close to zero Little et al. (2010).

For our parameter estimation problem using simu-
lated measurements, all of the eigenvalues of the Hes-
sian are positive indicating identifiability of the param-
eters. However, the Hessian condition number, which
is the ratio of the highest eigenvalue to the lowest eigen-
value Strang et al. (1993), indicates the degree of iden-
tifiability. The condition number is calculated. Its high
value of 1.8425×1012 expresses that the parameter es-
timation problem is ill-conditioned, and hence, the de-
gree of identifiability is low.

3.3. Model validation method

Since the quality of the parameter estimation depends
on the amount and quality of the measurement data
during the identification procedure, the performance of
the model with the estimated model parameter should
be evaluated in a wide range Dochain and Vanrol-
leghem (2001). The model validation is to determine
if the model is good enough for the presenting the be-

Table 7: The evaluation on the validation based on
RMSE for the simulated model

Simulated Mean Max. Max. RMSE Unit

meas. value value diff. 1% noise

CH4 17.22 27.02 0.424 4.22× 10−2 mmol/L/d

CO2 14.48 25.79 0.462 2.19× 10−2 mmol/L/d

pH 7.46 7.56 0.005 9.25× 10−4 -

Z 171.8 177.60 0.123 1.63× 10−1 mmol/L

S2 4.66 7.88 0.448 9.56× 10−2 mmol/L

haviour of a biogas process Guidi (2008). Based on the
estimated model parameters, we assess the behaviour
of the process on the validation data set. The valida-
tion is based on data from 150 days from mid of April
till October.

3.3.1. Evaluation of validation

RMSE is suggested for evaluation of both the parame-
ter identification and the model validation. The mean
values, maximum amounts and RMSE of the measure-
ment variables are computed on the validation set, and
are listed in Table 7. Based on the results, the model
error is ignorable comparing the mean values of the
measurement variables.

The results show that the model with estimated
model parameter can track a simulated biogas reactor
with 1% noise.

3.4. Sensitivity analysis

The sensitivity of the parameters expresses the reliabil-
ity of model parameter estimation. We calculate the
sensitivity of variable y to the parameters with (30)
Bernard et al. (2001).

σ∆θ
y =

1

T

T∑
0

y(θ + ∆θ, u, x0) − y(θ, u, x0)

y(θ, u, x0)
(30)

where y(θ, u, x0) is the simulated measurement variable
vector with the model parameter vector θ , the initial
state values, x0 and the input, u.

Figure 5 shows the sensitivity of the methane and
carbon dioxide production and pH and also on the
amount of VFA and alkalinity to the yield coefficients
which are part of the estimated model parameters.

According to the result of sensitivity plots in Figure
5, we may conclude:

• S2 is influenced by k1, k2 and k3. The effect of k1

is ignorable comparing to the effects of k2 and k3.

• Z is not influenced by yield coefficients.
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Figure 5: The sensitivity for the yield coefficient model parameters.
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Table 8: The initial values and the estimated model
parameter values regarding the experimental
data from the VEAS reactor

Model Initial Estimated Unit

Parameter values∗ values

k1 42.14 230.56 -

k2 116.5 5315.20 mmol/g

k3 268 1453.30 mmol/g

k4 50.6 32.47 mmol/g

k5 343.6 1886 mmol/g

k6 453 2465.70 mmol/g

α 0.5 0.3 -

µ1max 1.2 0.022 d−1

µ2max 0.74 0.23 d−1

KS1 7.1 0.71 g/L

KS2
9.28 92.72 mmol/L

KI2 256 2396.2 mmol/L

kLa 19.8 39.01 d−1

cH 0.013 0.006 -

Zdis 100 115.48 mmol/L
∗The initial values of the model parameters are based

on Bernard et al. (2001).

• CH4 is influenced by k1, k2, k3, k6. The effects of
k1 and k3 are ignorable comparing to the effects
of k2 and k6.

• CO2 is influenced by all yield coefficients, but the
most influences are regarding k5, k4 and k2 respec-
tively.

• pH is influenced by all yield coefficients. k4, k5 and
k6 have the most influences on pH. These effects
are less than 2%.

Among the yield coefficients as model parameters, k6

has a strong and direct effect on the methane produc-
tion. pH and carbon dioxide production are influenced
by k6 changes but these influences are just around 1 %
with regard to a 50% change in k6.

Sensitivity analysis regarding the rest of the model
parameters is discussed in Appendix A.

4. Model adaptation using
experimental VEAS data

In this section, we estimate the AM2 model parameters
using experimental data from the VEAS reactor. The
parameter estimates minimize the optimization crite-
rion (20).

Two methods are considered for minimization, the
gridding method, also known as the brute force

method, implemented from scratch in MATLAB, and
nonlinear programming (NLP) using the fmincon func-
tion in MATLAB. As the number of parameters to be
estimated is 15, the gridding method is impractical be-
cause of an execution time of days based on an ac-
ceptable accuracy of the parameter estimation. Hence,
fmincon function is chosen. Its execution time was a
few minutes. The initial values of the model parame-
ters are based on Bernard’s work Bernard et al. (2001)
and are shown in Table 8. The dilution rate, the reac-
tor temperature and the feed sludge profile are depicted
in Figure 4.

4.1. Parameter estimation and model
validation

The parameter estimation is implemented on 1200 sam-
ples over 100 days. The estimated model parameters
from the simulation are stated in Table 8. Both ex-
perimetal and simulated variables with the estimated
parameter values are shown in Figure 6. Comparison
between simulation results and measurements indicate
that the AM2 model can reproduce the behaviour of
the AD reactor in the VEAS for the pertinent period.

To evaluate the model adaptation, RMSE is calcu-
lated for both the model identification and validation,
see Tables 9 and 10.

Table 9: RMSE of error (deviation) between exper-
imental and simulated measurements with
adapted model for estimation data set

Measurement Mean RMSE Unit

CH4 45.68 6.03 mmol/L/d

CO2 31.57 5.65 mmol/L/d

pH 7.67 0.11 -

Z 187.12 5.42 mmol/L

S2 15.45 0.81 mmol/L

Table 10: RMSE of error (deviation) between exper-
imental and simulated measurements with
adapted model for validation data set

Measurement Mean RMSE Unit

CH4 47.84 7.83 mmol/L/d

CO2 26.88 5.65 mmol/L/d

pH 7.70 0.63 -

Z 173.75 15.79 mmol/L

S2 15.06 1.40 mmol/L
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Figure 6: The results of the model adaptation based on the experimental data collected from the VEAS. The
red curve is the experimental data and the blue curve is the AM2 model based on the estimated model
parameters. In time axis, the green band shows the identification period and the red band shows the
validation period.

4.2. Identifiability analysis

The RMSE values shown in Tables 9 and 10 indicate
that the model adaptation is acceptable. As an al-
ternative approach to identifiability analysis, Table 11
shows the FIM and the Hessian.

Table 11: The FIM and Hessian analysis for the iden-
tifiability analysis

Rank Condition Maximum Minimum

number eigenvalue eigenvalue

FIM 12 1.09× 1020 3.5× 1012 3.2× 10−8

Hessian 13 1.23× 1023 9.7× 1012 5.7× 10−8

The condition numbers of both the FIM and the Hes-
sian are very large, indicating that the model param-
eters are hardly identifiable using the given data set.
Which of the parameters which are not identifiable,
however, can not be identified.

5. Discussion

The modified AM2 model which has been adapted to
the VEAS reactor is a relatively simple model com-
pared with ADM1 model. Comparing with Hill’s
model, this model contains the pH, CO2, alkalinity and
inorganic carbon. Considering alkalinity is important
to calculate alkalinity ratio and monitor impact on the
stability and performance quality.

The modified AM2 model is assumed to be a suffi-
cient accurate model to represent the behaviour of the
biogas process.

In the original AM2 model, the impact of temper-
ature is not considered. In addition, it was assumed
that the effective reactor volume is constant. Temper-
ature and volume variations are taken into account in
the modified AM2 model.

In our study, the model adaptation is an optimiza-
tion problem to minimize the prediction error. Esti-
mation of model parameters is implemented for both
a simulator, where of course the true parameter val-
ues are known, and for a real VEAS plant from which
we have experimental data. In the simulation-based
model adaptation, the effect on measurement noise and
uncertainties are investigated. Regard to identifibility
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analysis based on FIM and Hessian matrix, the model
identification is in ill-condition and it shows the selec-
tive data are hardly sufficiently informative to estimate
reliably the model parameters.

The sensitivity analysis states which model parame-
ters have the most effect on measurements such as the
biogas production.

In this study, collected data is not enough informa-
tive to estimate the model parameters and there has
been lack of data in the inflow sludge. In the next
project, first of all, the characteristics of the sludge in
the VEAS including the concentration of the influent
VFA, Alkalinity and inorganic carbon should be mea-
sured during preparing the data. Uncertain measure-
ment of the influent alkalinity, Zin implies that we had
to add a new parameter, Zdis, to compensate alkalin-
ity disturbance and also to satisfy the AR condition to
have a stable performance.

Each model parameter has specific physical concept.
It is possible to measure and analyze some of them
indirectly. For example, kLa as a model parameter, can
be identified by measuring pH, C, flow rate and partial
pressure of CO2 at steady state Bernard et al. (2001).
Specially, kLa is an unidentifiable parameter because of
a low sensitivity on the measurement variable. In this
study, we could not compute this parameter because
of the lack of experimental measurements.

Volatile Suspended Solids, VSS is an informative pa-
rameter consisting of information about concentration
of acidogenic and methanogenic bacteria. VSS helps us
to be able to track the behaviour of X1 and X2 more
accurately.

Study on temperature dependence based on the Hoff-
Arrhenius model is suggested. It should be compared
with the Hashimoto temperature model.

6. Conclusions

In this study, we have adapted on the AM2 model to
both a simulated biogas reactor and to a real reactor at
the VEAS plant. The biogas process has some experi-
mental limitation such as alkalinity ratio. We state the
model adaptation as an optimization problem. To have
reliable identified model parameter set, we need to ana-
lyze the identifiability to be sure that there is just one
unique set. We focused on the practical identifiabil-
ity analysis. Investigation on convexity and sensitivity
and sloppiness are carried out around the estimated
points. The Hessian matrix and the Fisher Informa-
tion Matrix provide a good information which is useful
for a practical identifiability analysis. In spite of the
acceptable model error in the considered period, the
collected data is hardly not enough informative to ob-
tain reliable model parameters for the modified AM2

model.

A. Sensitivity analysis

Here, there is a discussion about the sensitivity of the
AM2 model based on the kinetics model parameters,
α, Hashimoto’s factor and Zdis.

Figure 7 shows that the sensitivity of the methane
and carbon dioxide production and pH and also on the
amount of the VFA and alkalinity concentrations to
the kinetic model parameters.

Based on Figure 7, we conclude:

• S2 is influenced by µ1max
, µ2max

, KS1
, KS2

and
KI2 . The effects of µ2max

and KS2
are remarkable

comparing of the effects of the rest of the kinetic
parameters.

• Z is not influenced by the kinetic parameters.

• CH4 is influenced by µ1max , µ2max , KS1 , KS2 and
KI2 . These influences are less than 2%.

• CO2 is influenced by µ1max , µ2max , KS1 , KS2 and
KI2 .

• pH is influenced by µ1max
, µ2max

, KS1
, KS2

and
KI2 .

• kLa, KS1
and KI2 have a little influence on the

simulated model measurement variables.

Table 12: The percent of the change on each measure-
ment variable regarding 50% changes in each
model parameter

%/50% S2 Z CH4 CO2 pH

k1 < 1↓∗ 0 < 1↓ < 2↓ � 1∗∗

k2 < 5 0 35 35 < 1↓

k3 10↓ 0 < 1↓ < 1↓ � 1

k4 0 0 0 35 < 2↓

k5 0 0 0 50 < 2↓

k6 0 0 50 < 1 < 1

α 20 0 < 1↓ < 1↓ � 1

µ1max
< 3↓ 0 < 1↓ < 6↓ � 1

µ2max 100↓ 0 < 1 < 1↓ < 1

KS1 < 1 0 < 1↓ < 1 � 1

KS2
40 0 < 1↓ � 1 � 1↓

KI2 < 1↓ 0 � 1↓ � 1 0

kLa 0 0 0 < 1 < 1

cH < 2↓ 0 � 1 ¡< −1↓ 0

Zdis 0 20 0 15↓ < 2
∗↓ means a reverse effect.
∗∗� 1 means the effect is less than 0.1 %.
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Figure 7: The sensitivity for the kinetic and kLa model parameters.
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Figure 8: The results of the sensitivity analysis for α, the Hashimoto factor and alkalinity disturbance.
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Figure 8 shows that the sensitivity of the methane and
carbon dioxide production and pH and also on the
amount of VFA and alkalinity concentrations to α, cH
and Zdis. The results of sensitivity analysis shows:

• S2 is influenced by α, cH . α has a direct effect on
VFA while as cH has reverse effect on VFA. Their
effects are 20% and 2%, respectively.

• Z is influenced by Zdis. There is no effect on al-
kalinity by changing in α or cH .

• CH4 is negligibly influenced by α, cH .

• CO2 is influenced by α, cH and Zdis.

• pH is influenced by α, cH and Zdis. The effects
of α and cH are ignorable comparing the effect of
Zdis on the pH.

Table 12 shows the percentage of the each individ-
ual model parameter effect on the each measurement
variable with regard to 50% changes in each model pa-
rameter.

This table shows that Ks1 , KI2 , kLa have ignorable
effects on the all five measurements so we can assume
these model parameters are unidentifiable based on the
collected data.

Nomenclature

The nomenclature is in alphabetical order.

C total inorganic carbon concentration
(mmol/L)

cH Hashimoto’s factor

D dilution rate (d−1)

k1 yield for substrate degradation

k2 yield for VFA production (mmol/L)

k3 yield for VFA consumption (mmol/L)

k4 yield for CO2 production (mmol/L)

k5 yield for CO2 production (mmol/L)

k6 yield for CH4 production (mmol/L)

kd death rate (d−1)

KH Henry’s constant (mmol/L per atm)

kLa a liquid-gas transfer constant (d−1)

KI2 inhibition constant (mmol/L)

KS1 half-saturation constant (g/L)

KS2
half-saturation constant (mmol/L)

PT total pressure (atm)

qC carbon dioxide flow rate (mmol/L per d)

qM methane flow rate (mmol/L per d)

S1 organic substrate concentration (g/L)

S2 volatile fatty acids concentration (mmol/L)

Treac reactor temperature (◦C)

X1 concentration of acidogenic bacteria (g/L)

X2 concentration of methanogenic bacteria
(mmol/L)

V effective volume of medium in the reactor
(L)

Z total alkalinity (mmol/L)

α fraction of bacteria in the liquid phase

µmax maximum specific growth rate (d−1)

Abbreviations

The abbreviations are in alphabetical order.

AD Anaerobic Digestion

ADM1 Anaerobic Digestion Model no.1

AM2 Anaerobic digestion Model no. 2

AR Alkalinity Ratio

FIM Fisher Information Matrix

RMSE Root Mean Square Error

TS Total Solid

VFA Volatile Fatty Acid

VS Volatile Solid

VSS Volatile Suspended Solids

WRRF Water Resource Recovery Facility
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