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Abstract

Acoustic transducers are used for a variety of applications, ranging from medical to

maritime uses. In the maritime sector, underwater transducers can be used for appli-

cations such as seabed mapping, fishing and communication. Significant strides have

been made in each of these applications, resulting in high performance transducers.

However, as these transducers are being used with increasingly higher power, duty

cycles and wider bandwidth, the heat generation within these systems has become

an important design criteria. Indeed, it is clear that excessive temperatures can

cause damage to underwater transducers.

One of the key contributors to the energy dissipation in underwater transducers

is the active part, namely the piezoelectric material. The thesis concentrates on

predicting the energy dissipation in a piezoelectric rod given known external condi-

tions such as driving voltage and frequency of operation. To achieve this, the work

initially focused on developing a characterisation method to characterise the rele-

vant piezoelectric constants based on a global optimisation algorithm and a 1D or

3D FEM model. It was found that the piezoelectric loss, a parameter normally con-

sidered negligible, was an independent parameter which could be estimated through

the developed characterisation method. In addition to this finding, it was shown

the use of two cost functions in the global optimisation algorithm could negate the

effects of noise on the characterised material constants. Finally, a local optimisa-

tion algorithm was used instead of a global optimisation algorithm to demonstrate

that these types of methods can converge to local minima without adequate initial

material constants.

The next step of the PhD was to predict the power dissipation density in the

piezoelectric rod given the characterised material parameters. The initial goal was
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to quantify the contribution from the mechanical, electrical and piezoelectric losses

to determine whether the piezoelectric loss is indeed negligible. However, the most

significant finding of this step was that the mechanical, electrical and piezoelectric

contributions changed depending on the piezoelectric constitutive form used. This

demonstrates that although the losses are associated with a specific mechanism un-

der Holland’s notation, such as mechanical, electrical and piezoelectric energy dissi-

pation, they are in fact not associated directly with the physical energy dissipation

mechanisms and must not be treated in this manner. This finding is emphasised by

the fact that the contribution to the power dissipation from the imaginary part of

the piezoelectric constant is negative. In addition, this study on the power dissipa-

tion in piezoelectric materials demonstrated that the loss parameters that originate

from the BVD model should not be used as the loss parameters under Holland’s

notation as this results in a different power dissipation.

The final step of the PhD was to validate the temperature rise predicted from the

characterised material parameters by comparing it to the measured temperature rise.

This stage of the PhD found that the spatial distribution of the temperature rise

across the length of the piezoelectric rod was better modelled by the predicted spatial

distribution of the power dissipation density as opposed to a spatially constant power

dissipation density. It also determined that from a practical point of view, using a

power dissipation density that is constant in space was adequate for most purposes

as the differences were not large.
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Chapter 1

Introduction and Background

1.1 Background

Underwater acoustic transducers are in use in many maritime sectors such as fish-

ing, oil and gas and defence. The acoustic transducer industry has continuously

been improving the performance of these instruments in order to adapt to the ever

increasing demands of the applications. This has resulted in underwater transducers

that can operate with increasingly higher duty cycles, bandwidths and power.

Figure 1.1: Two examples of underwater transducers used in maritime industries.

Pictures taken from Kongsberg Maritime website.

Although all of these improvements have resulted in higher performance trans-

ducers, this has also affected the amount of power that is dissipated by the trans-

ducer. Indeed, increasing the duty cycle gives the transducer less time to cool down.

1



M. Wild: Heat generation in underwater transducers

Increasing the power means that a higher amount of power is also dissipated. This

will cause the transducer to heat up, significantly in some cases. The result is that

some high performance transducers may not be able to operate at the highest desired

power in order to limit the heat generation [2, 3].

High temperatures within the transducer can affect the integrity of the struc-

ture and materials within. Indeed, the various layers can start to delaminate in a

transducer given high temperatures [4]. It may also cause premature ageing of the

materials in the transducer [5, 6]. The materials inside the transducer have tem-

perature dependent material properties, and therefore operating the transducer at

higher temperatures may change the behaviour of the transducer away for the orig-

inal design objectives. Indeed, studies have quantified the temperature dependency

of the piezoelectric material [7, 8].

Figure 1.2: Simplified schematic of a transducer. The active layer can either be a

piezoelectric material or a composite.

The power dissipation in the materials in a transducer originates from the inher-

ent energy loss mechanisms in these materials, shown in Fig. 1.2. This is called the

mechanical loss in the passive mechanical materials such as the matching and back-

ing layer. In the electrodes and other electrical components, there is also a dielectric

loss. In the active layer of the transducer, the piezoelectric material has three loss

mechanisms that are commonly named the mechanical, dielectric and piezoelectric

loss. This makes the piezoelectric component more complicated to characterise,

as the mechanisms are interlinked. The piezoelectric material can be a significant

2
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contributor to the total power dissipation in the active layer [9].

1.2 Previous work on heat generation in trans-

ducers

As heat generation can limit the performance of high power transducers, it is a sub-

ject that has received attention in the literature for medical, non destructive testing

and underwater transducers. Abboud et al., recognising that thermal management

in high power transducers was an important aspect of the design process, modelled

the temperature rise in an underwater transducer under different conditions [10].

One of the main conclusions from that study was that the quality of the temper-

ature prediction required accurate characterisation of the material parameters. In

the medical transducer industry, the maximum temperature the surface of an ul-

trasound probe can reach is strictly regulated to protect the patient from harm.

Studies have focused on predicting the temperature rise specifically at the surface

of the transducer [11, 12, 13, 14].

Researchers have investigated different techniques to mitigate the problems asso-

ciated the temperature rise within the transducer. Part of the research has focused

on using materials that reduce the power dissipation in the transducer whilst main-

taining the performance [15, 2]. Other studies have focused on using materials that

stay stable as the temperature increases. Hollenstein et al. used modified materials

for medical transducers that stayed stable even with repeated temperature cycling

due to sterilisation demands [16]. Finally, Hirose et al. have shown that for the

same vibration velocity, the efficiency of the piezoelectric material was higher at

the antiresonance than at the resonance frequency due to lower losses at higher

powers [17]. This should result in a lower temperature rise for the same acoustic

performance.

3
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1.3 Research Goals and Approach

As the piezoelectric material is an important contributor to the power dissipation

in underwater transducers, the PhD focused on the piezoelectric component. The

aim of this PhD was to determine whether the spatially dependent power dissi-

pation density in a piezoelectric material, for known operational conditions, could

be sufficiently accurately predicted given a robust characterisation method. If suc-

cessful, this would be the first step to ensure that the temperature rise could be

accurately predicted in a model for a particular transducer design. Thus, the ther-

mal performance of the underwater transducer could be taken into account as a

design criterion. This would also enable the design of a high power transducer to

be optimised to maximise performance whilst minimising the temperature rise.

The approach taken in the PhD was to initially set up a robust characterisation

method to characterise the important material parameters that govern the power

dissipation in a piezoelectric material. As the transducer of interest in the case of

this PhD has a 1-3 composite as the active layer, shown in Fig 1.3, the particu-

lar shape of interest is a piezoelectric rod excited in the length extensional mode.

This characterisation method was developed as the IEEE Standard on Piezoelec-

tricity characterisation method [18] does not take into account the piezoelectric loss

parameter. Multiple studies on this subject showed that accurately characterising

these material parameters, including the piezoelectric loss, was important in order

to accurately predict the power dissipation in a piezoelectric material. Furthermore,

the characterisation method was also developed to understand the dependency the

material parameters, and therefore the power dissipation, have on external effects

such as the driving voltage or temperature. Indeed, this thesis shows the tempera-

ture and driving voltage dependency of the piezoelectric material parameters.

The second stage of the PhD project was to model the spatially and frequency

dependent power dissipation density in a piezoelectric rod, given the material prop-

erties characterised in the first stage. This was achieved through the use of a 1D

Mason model and the power dissipation density as a result of the general Poynting

vector for piezoelectric materials. Given the electric and mechanical fields predicted

in a 1D Mason model, the power dissipation density can be calculated using the

4
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Figure 1.3: Simplified schematic of a 1-3 composite where the grey material is the

piezoelectric material and the surrounding black material is made of epoxy.

divergence of the general Poynting vector. The divergence of the general Poynting

vector results in an equation with three terms which have been previously named the

mechanical, dielectric and piezoelectric contribution to the power dissipation den-

sity. One of the goals of this second stage was initially to quantify the importance of

these different contributions to the total power dissipation. However, it was shown

that distinguishing between a mechanical, dielectric and piezoelectric contribution

to the power dissipation does not hold when considering physical mechanisms within

the piezoelectric material. This was demonstrated by comparing the mechanical, di-

electric and piezoelectric contributions to the total power dissipation for different

piezoelectric constitutive forms.

The final stage of the PhD project was to verify the spatially dependent tem-

perature rise in a piezoelectric rod given the predicted spatially dependent power

dissipation density from the previous stage. To achieve the goal of this stage, the

temperature profile along the length of a piezoelectric rod was measured with ther-

mocouples placed on the surface of the material. The temperature of the piezo-

electric rod was then modelled in a 3D FEM model using the spatially dependent

power dissipation density predicted from the previous stage. For comparison, the

temperature of the piezoelectric rod was also modelled in a 3D FEM model using

a spatially constant power dissipation density to determine the importance of the

spatial dependence of the power dissipation density.

5
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1.4 Impact of results

The intent of the first stage of the project was to determine the uniqueness of the

piezoelectric loss as a parameter in the piezoelectric model. The developed charac-

terisation method fits the predicted admittance spectrum from a 1D Mason model

to the measured admittance curve of the sample of interest using an optimisation

algorithm. The size of the search space of the piezoelectric loss parameter was kept

deliberately large to test whether the parameter would converge to a meaningful

value. Under these conditions, the piezoelectric loss parameter did converge to a

specific value in the characterisation algorithm. Indeed, a sensitivity analysis showed

that the cost function of the optimisation algorithm is sensitive to the piezoelectric

loss. The impact of using different cost functions when using optimisation algo-

rithms to characterise piezoelectric materials was analysed. For both the impedance

and admittance based cost functions, the uncertainty of the characterised material

parameters increased as the noise in the measured data increased. Noise at the an-

tiresonance frequency in the measured admittance spectrum is a particular problem

for high impedance samples, such as piezoelectric rods. However, the average of the

estimated material parameters from the two cost functions for high levels of random

noise remained close to estimated material parameters for low levels of noise. The

use of two cost functions is therefore advantageous when the measured data has high

levels of random noise.

The second stage of the PhD focused on quantifying the contributions to the

power dissipation density in piezoelectric materials. In industry and in the literature,

a significant amount of assumptions surround the importance of the mechanical,

dielectric and piezoelectric loss in piezoelectric materials. It is common to ignore the

piezoelectric loss as it is assumed to have a negligible effect on the power dissipation.

There are also many assumptions surrounding the importance of the mechanical and

dielectric loss at the resonance and antiresonance frequency. However, this project

showed that the mechanical, electrical and piezoelectric contributions depend on the

piezoelectric constitutive form used and therefore assumptions cannot be based on

physical mechanisms in the piezoelectric material. This is emphasised by the fact

that the piezoelectric contribution to the total power dissipation can be negative.

6
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The impact of this result is to show that the mechanical, dielectric and piezoelectric

loss should be viewed as macroscopic parameters in a model rather than be attached

to physical mechanisms.

The predicted and measured spatially dependent temperature along the length of

the piezoelectric rod was compared in the final stage of the PhD. Although there were

some discrepancies in the match between the measured and modelled temperatures,

the difference between the temperature rise at the edge and the centre of the rod

matched well. This gives confidence that characterising the losses under Holland’s

representation of loss can be used to determine the spatial dependence of the power

dissipation density in piezoelectric materials. The impact of this is that the spatial

dependence of the temperature rise in a piezoelectric material can be predicted by

accurately characterising the material parameters.

1.5 Structure of Thesis

The thesis is divided into five chapters. The first chapter gives background infor-

mation on the motivation and impact of the PhD project. The second chapter

introduces the theory of piezoelectricity and the different representations of losses

in piezoelectric materials. This is followed by a short review of the characterisation

methods currently in use in the literature. The chapter continues with an overview

of the characterisation method developed in the PhD. The characterisation method

detailed in this thesis was first documented in a conference paper [19] which was

then extended into a journal article [20]. Finally, the chapter ends with some addi-

tional work on the temperature dependency of the piezoelectric material constants

that was not published.

The third chapter introduces the theory of power dissipation density in piezo-

electric materials calculated from the general Poynting vector. This is followed by

a review of the studies that predict the power dissipation in piezoelectric materials.

An overview of the second stage of the PhD project which focused on the power dis-

sipation density in the piezoelectric rod is then given. This work was published in a

journal article [21]. A comparison of the power dissipation density in a transducer

as a result of Holland’s representation and the IEEE Standard on Piezoelectricity

7
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representation of loss is then described [22].

The fourth chapter introduces previous studies on the measurement and mod-

elling of the temperature rise in piezoelectric materials. This is followed by an

overview of the work from the third stage of the PhD on the prediction of the spa-

tially dependent temperature rise in a piezoelectric rod, which was submitted as a

journal article.

The final chapter concludes the thesis. An overview of the important results is

given followed by suggestions for future work on the subject.

8



Chapter 2

Characterisation of piezoelectric

materials

In order to predict the power dissipation in a piezoelectric rod, accurate material

parameters were needed. In the initial stages of the PhD, it was clear that the

material parameters provided by the piezoelectric manufacturer were not accurate

enough. The reasons for this lack of accuracy could be due to the material having

been characterised at a different frequency. Another cause could be the effect the

dicing process has on the material properties. Therefore, a characterisation method

was developed to determine the parameters more accurately. A characterisation

method would also be invaluable to determine the driving voltage and temperature

dependency of the piezoelectric material parameters. An additional goal of the

characterisation method was to determine the uniqueness of the imaginary part

of the piezoelectric constant, also known as the piezoelectric loss. Indeed, it is

common to neglect this parameter as it is assumed to be negligible or non-unique.

This chapter will first give an overview of piezoelectric theory. This will be followed

by a brief overview of the physical mechanisms that are thought to be responsible

for the energy loss in piezoelectric materials. Then, the different representations

of loss used in the industry and literature will be described. Following on from

this, the characterisation method and the subsequent results, detailed in two of the

articles [19, 20], will be described. Finally, a final section will give an overview

of the calculated temperature dependency of the piezoelectric material parameters

9
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estimated from the developed characterisation method as well as the results of the

characterisation method when neglecting the piezoelectric loss.

2.1 Piezoelectric theory

The project concentrated solely on piezoelectric materials made from lead zirconate

titanate, or PZT as it is more commonly known. This material has ∞m type

symmetry, which greatly reduces the number of material parameters. For such

a material, the governing equations that determine the relationship between the

stress, strain, electric field and electric displacement field are called the piezoelectric

constitutive equations and are given here:

S = sDT + gtD,

E = −gT + βTD,
(2.1)

where S is the strain tensor, T is the stress tensor, E is the electric field vector, D

is the electric displacement vector, sD is the elastic compliance tensor at constant

electric displacement field, g is the piezoelectric constant tensor, βT is the electric

impermittivity tensor at constant stress and t denotes the transpose. The tem-

perature dependence of the piezoelectric constitutive equations is carried by these

material constants.

The PhD focused on 1-3 composite structures that is composed of piezoelectric

rods polarised along the length axis as shown in Fig. 2.1. This structure has a length

extensional mode, which is the mode used in 1-3 composites. The length extensional

mode in a long piezoelectric rod can be treated as a 1D problem by assuming that

T1 = T2 = 0, E1 = E2 = 0, D1 = D2 = 0 and dD3

dx3
= 0 near the resonance frequency.

If the shear stress and strains are then also omitted, Eq. 2.1 is then reduced to

S3 = sD33T3 + g33D3,

E3 = −g33T3 + βT
33D3,

(2.2)

where the 33 subscripts indicate the (3, 3) tensor indices. This can also be trans-

formed to the d-form of the piezoelectric constitutive equations as

10
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S3 = sE33T3 + d33E3,

D3 = d33T3 + εT33E3,
(2.3)

where sE33 is the elastic compliance at constant electric field, d33 is the piezoelectric

constant, εT33 is the relative electric permittivity at constant stress.

Figure 2.1: A piezoelectric rod polarised in the direction of the bold arrow.

2.2 Physical processes of losses in piezoelectric

materials

The physical processes that govern energy loss in piezoelectric ceramics is typically

separated into two categories: intrinsic and extrinsic losses [23]. Intrinsic losses are

associated with lattice deformation of the unit cell. An example of an intrinsic effect

is the deformation of the lattice through an external electric field which causes the

polarisation of a unit cell to reorient itself in a different direction. Although piezo-

electric materials that can easily change the polarisation direction have enhanced

piezoelectric properties, they also exhibit higher energy loss. This would suggest

that there is a loss mechanism associated with reorientation of the polarisation di-

rection under an electric field. Extrinsic losses are due to energy loss originating

from phenomenons on a larger scale such as domain wall motion. Domain walls are

the boundaries between two electrical domains with different polarisation directions

11
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in a piezoelectric material. Under an applied electric field, these domain walls will

move, but with a delayed response thus causing a hysteretic response. This causes

extrinsic energy loss in the piezoelectric material.

2.3 Representations of loss in piezoelectric mod-

els

There are different representations of loss in use for piezoelectric materials. The

simplest and one of the most common representations for losses in piezoelectric ma-

terials originates from lumped models such as the BVD model. Another common

representation is the one introduced by Holland which is applicable for distributed

models such as the 1D Mason or 3D FEM model [24]. Finally, less common rep-

resentations of loss use established viscoelastic models such as the Zener or Debye

model which can give an insight into the physical mechanisms of energy loss in the

piezoelectric material.

2.3.1 Lumped losses

The most common representation of loss in piezoelectric materials is through two

material parameters called the mechanical quality Qm and dielectric loss tan(θ).

These parameters can be introduced into the Butterworth-Van-Dyke (BVD) equiv-

alent circuit of a piezoelectric material (Fig. 2.2). The BVD equivalent circuit is

considered to be a lumped model of the piezoelectric material. This is the represen-

tation that is used to characterise piezoelectric materials in the IEEE Standard on

Piezoelectricity [18].

The mechanical quality Qm can be determined by measuring the sharpness of

the resonance in the measured admittance curve as shown in Fig. 2.3, with

Qm =
fr

f2 − f1
, (2.4)

where fr is the resonance frequency and f1 and f2 are the frequencies at which the

value of the admittance is 3 dB less than the value of the admittance at fr. This

12
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Figure 2.2: The BVD model for a piezoelectric material. The branch on the right is

called the motional branch whilst the branch on the left is called the static branch.

can also be determined through the BVD model using the following relationship

between the mechanical quality and the components of the motional branch:

Qm =
(L1/C1)

1/2

R1

. (2.5)

The dielectric loss tan(θ) is typically determined by measuring the capacitance

of the piezoelectric material away from the resonance frequency. This can either be

at a low frequency or at a high frequency. In the IEEE Standard on Piezoelectricity,

the dielectric loss is determined at a low frequency, and is therefore implemented as

the imaginary part of the electric permittivity at constant stress. For a piezoelectric

rod excited in the length extensional mode, the electric permittivity at constant

stress, εT33, becomes

εT33 = εT33
′(1− j tan(θ)). (2.6)

This parameter can then used as the electric permittivity for the static capacitance

C0 shown in the static branch of Fig. 2.2.
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Figure 2.3: The method for determining the mechanical quality using the measured

admittance curve at the resonance frequency.

2.3.2 Holland’s representation of loss

For distributed models such as the Mason model or Finite-Element-Method (FEM)

models, it is typical to use Holland’s representation of loss [24]. Using Uchino and

Hirose’s notation [25], the material parameters are considered complex under this

representation and are defined as

sE = sE ′(1− j tanφ),

εT = εT ′(1− j tan θ),

d = d′(1− j tan δ),
(2.7)

where sE ′ is the real part of the complex elastic compliance tensor at constant

electric field, εT ′ is the real part of the complex relative electric permittivity tensor

at constant stress, d′ is the real part of the complex piezoelectric constant tensor,

tanφ is the mechanical loss tangent, tan θ is the dielectric loss tangent and tan δ is

the piezoelectric loss tangent. In this case, the losses are considered isotropic and

are therefore scalars. However, the losses are in reality anisotropic and can also be

14
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represented as tensors to reflect this.

Given the 1D assumptions for a piezoelectric rod introduced in Section 2.1,

Eq. 2.7 simplifies to

sE33 = sE33
′(1− j tanφ),

εT33 = εT33
′(1− j tan θ),

d33 = d′33(1− j tan δ),
(2.8)

where sE33
′ is the real part of the elastic compliance at constant electric field,

d′33 is the real part of the piezoelectric constant, εT33
′ is the real part of the relative

electric permittivity at constant stress.

2.3.3 Other representations of loss

There are disadvantages to using the lumped loss model and Holland’s represen-

tation of loss. Indeed, these representations are only valid over a limited range of

frequencies and do not take into account the frequency dependent nature of attenu-

ation in piezoelectric materials. They are also acausal, the behaviour of the material

depends on the future, which means that these models may not represent physical

mechanisms. Other models such as the Zener model, also known as the Debye model,

are an initial step to overcome these issues. Powell et al. characterised a piezoelec-

tric material at different frequencies using Holland’s representation and found that

the Debye model fit well to the frequency dependent curve of the dielectric constants

[26]. More complicated models known as fractional models have also been found to

fit the frequency dependent curve of the piezoelectric constants very well [27]. The

advantage of these models is that they can be used to interpret the physical pro-

cesses underlying energy loss in piezoelectric materials. The disadvantage of these

models is that they require more parameters to be characterised. This may not be

practical for applications that are only interested in a limited range of the frequency

spectrum.
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2.4 Characterisation of piezoelectric materials in

the literature

There are numerous methods described in the literature that characterise materials

in different manners. Probably the most commonly used characterisation method

is described by the IEEE Standard on Piezoelectricity [18]. This method, described

briefly in section 2.3.1, uses impedance measurements of piezoelectric samples of

different shapes to analytically determine the piezoelectric constants that govern

the different resonance modes. By characterising piezoelectric materials of different

shapes, the full material tensors can be determined. Generally, the piezoelectric

material constants provided by the piezoelectric material manufacturers are deter-

mined using this method. Multiple studies use the IEEE Standard method and an

impedance measurement to characterise the piezoelectric material constants, includ-

ing the mechanical quality and dielectric loss [28, 29, 15].

The IEEE Standard method is an analytical method that characterises two

loss mechanisms. In order to include the piezoelectric loss in the characterisa-

tion method, Sherrit et al. used complex material parameters in the 1D Mason

and KLM models for the thickness mode to obtain a set of equations which can

be used to determine the piezoelectric material constants in a similar manner to

the IEEE Standard method [30]. This was generalised by Sherrit and Mukherjee to

determine the material parameters, including the piezoelectric loss, for a variety of

piezoelectric sample shapes with different resonance modes [31]. The importance of

the piezoelectric loss was also recognised by Uchino and Hirose who developed an

equivalent circuit that could take the piezoelectric loss into account [25]. This equiv-

alent circuit was then generalised to determine the piezoelectric material constants,

including anisotropic mechanical, dielectric and piezoelectric losses, for samples of

different shapes [32].

The methods described so far have used analytical expressions to extract the

material constants from a measured impedance curve. A different approach is to

use an optimisation algorithm and a suitable model of the piezoelectric material

to fit the modelled impedance curve to the measured impedance curve. Kwok et
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al. developed a method based on the optimisation approach with a 1D model [33].

Using an optimisation algorithm approach also renders the use of numerical models,

such as FEM models, to characterise piezoelectric materials possible. This approach

has been documented in multiple studies [34, 35, 36, 37, 38]. The advantage of these

methods is that the full piezoelectric material constants can be determined with

less samples of different shapes than the analytical methods. However, Mansoori et

al. found that some material constants were not identifiable when using only one

sample [39]. The disadvantage is that these methods are computer intensive and

can require a significant amount of iterations to determine so many parameters.

2.5 Outline of the characterisation method

2.5.1 Goals and Method

The characterisation method developed in this project was based on fitting the

modelled impedance or admittance curve to the measured impedance or admittance

curve by varying the material parameters using an optimisation algorithm. There

are six material parameters to determine based on Eq. 2.8. One of these material

parameters is the imaginary part of the piezoelectric constant, also known as the

piezoelectric loss. In many studies, the piezoelectric loss is normally considered to

either be negligible or not an independent parameter. Therefore, one of the goals was

to determine whether the characterisation method could find a unique piezoelectric

loss parameter. A global optimisation algorithm was used to find the correct material

parameters. The impedance of the piezoelectric rod is measured using an impedance

analyser. The modelled admittance was initially calculated using a FEM model of

the piezoelectric rod in COMSOL and the global optimisation algorithm used was

simulated annealing [19]. The optimisation algorithm fits the modelled curve to the

measured curve by minimising the cost function which is given by

CY =

√√√√ 1

M

M∑

m=1

∣∣∣∣
Ymea(m)− Ymod(m)

Ymea(m)

∣∣∣∣
2

, (2.9)
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where Ymea(m) and Ymod(m) are the discrete measured and the discrete modelled

complex electrical admittances and M is the number of sample points.

It was found that using a FEM model in this method was computer intensive and

algorithms such as simulated annealing require a significant amount of iterations to

reach a solution. Studies mentioned in section 2.4 that use FEM models to char-

acterise the piezoelectric material used local optimisation algorithms, which need

less iterations but can miss the global minimum. As one of the goals of this project

was to understand whether the piezoelectric loss is unique, a global optimisation

algorithm was necessary.

Therefore, in order to overcome these limitations, the FEM model was replaced

with a 1D Mason model [20] (shown in Fig.2.4) and the simulated annealing solver

was replaced with the scatter search and local nonlinear problem solver [40]. The

1D Mason model can take into account complex material parameters and is not

computer intensive. For a piezoelectric rod excited in the length extensional mode,

simplifying from a 3D to 1D model is valid and only has a small influence on the

accuracy of the characterised material parameters. The scatter search and local

nonlinear problem solver is not as robust as simulated annealing, but it is much

faster at finding the global minimum for simple problems.

Characterisation of piezoelectric materials using this type of method can be

achieved using cost functions based on the impedance, admittance or both. This

study investigated whether there was any difference between using an impedance or

admittance based cost function. The admittance based cost function is shown in

Eq. 2.10 and the impedance based cost function is

CZ =

√√√√ 1

M

M∑

m=1

∣∣∣∣
Zmea(m)− Zmod(m)

Zmea(m)

∣∣∣∣
2

, (2.10)

where Zmea(m) and Zmod(m) are the discrete measured and the discrete modelled

complex electrical impedances. It was also found that for piezoelectric rods, the

admittance at the antiresonance frequency can be very low. This meant that the

antiresonance peak tended to be affected by random noise, as shown in Fig. 2.5,

which could affect the characterisation of the piezoelectric rod. The magnitude of the

effect of random noise on the determined material parameter values was quantified
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Figure 2.4: Mason 3-port equivalent circuit for the mechanical motion and electrical

current of a piezoelectric rod following [1]. u1 and F1 are the velocity and force on

the left surface, u2 and F2 the velocity and force on the right surface, and I0 and V0

the current and voltage at the electrical port.

in the study. In addition, the determined material parameters were compared to

the material parameters determined using the IEEE Standard method. Finally, a

local optimisation algorithm was used instead of the global optimisation algorithm

to test whether a global algorithm is needed.

2.5.2 Results

The results of this study showed that the algorithm found a clear minimum for the

piezoelectric loss (Fig. 2.6). This would suggest that it is an independent parameter

in the model, even though the admittance is not as sensitive to this parameter as it

is to the mechanical loss. The admittance and impedance cost functions found the

same solution and showed similar sensitivity to the material parameters. However,

with increasingly higher levels of random noise in the measured data, the estimated

material parameters from the admittance and impedance based cost functions di-

verged from each other. Whilst the noise had a small influence on the real parts

of the material constants, the effect was more pronounced for the loss components.

Furthermore, whilst the solution from the impedance and admittance based cost
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Figure 2.5: Admittance curve for piezoelectric rod. Note the noise at the antireso-

nance frequency.

functions diverged from each other, the average of the two solutions remained within

a tolerable range of the original solution.

-1 0 1 2 3 4 5
0

0.1
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0.3

C
Y

Piezoelectric loss

Figure 2.6: Admittance cost function CY value as a function of parameter value.

The parameter values have been normalised with respect to the initial data ainit.

All the local minima are represented by red triangles.

The determined materials parameters using this characterisation method were

compared to those determined using the IEEE Standard method. Although the real

part of the material constants were very comparable, the determined loss compo-

nents were significantly different. It was also found that the IEEE Standard had

higher standard deviations when the impedance measurement was repeated com-

pared to the developed characterisation method.
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Finally, the characterisation method converged to a local minimum when a local

optimisation algorithm was used with the manufacturer data used as the initial

point for the solver. If the material parameters determined by the IEEE Standard

were chosen as initial parameters, the local optimisation algorithm converged to

the global minimum. This shows that using a local optimisation algorithm can be

disadvantageous as the initial points need to be chosen carefully.

2.6 Further unpublished work on characterisation

To further investigate the importance of the piezoelectric loss when characterising

a piezoelectric material, the characterisation method was implemented without a

piezoelectric loss. The determined material parameters as a result of removing the

piezoelectric loss from the characterisation method are shown in Tab. 2.1. The cost

function of the global minimum for the characterisation method without the piezo-

electric loss is twice as large as the cost function value found in the characterisation

method with the piezoelectric loss included. A higher cost function signifies that

the modelled admittance curve does not fit as well to the measured admittance

curve. Furthermore, the determined dielectric loss when the piezoelectric loss is not

included is negative. This would result in a negative total power dissipation in the

piezoelectric material and is therefore not a reasonable value [24].

Using such a characterisation method, the temperature dependence of the ma-

terial parameters could be investigated. The impedance was measured on a piezo-

electric rod placed in an oven at two different temperatures, 25◦C and 50◦C. The

results of the characterisation are shown in Tab. 2.2. All of the material parameters

increase from 25◦C to 50◦C. This is especially true for the loss components which

increase by up to 25%. Understanding how the material parameters change with

temperature is important for transducer designers as this can affect the performance

and behaviour of the piezoelectric material.
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Table 2.1: Comparison of determined material parameters with and without the

piezoelectric loss included in the list of material parameters to determine in the

characterisation method. The cost function value the minimum found is also shown.

Material With Without

Parameters piezoelectric loss piezoelectric loss

sE33
′ [×10−12m2/N] 17.18 17.19

εT33
′ 1490.5 1487.5

d′33 [pC/N] 320.3 320.3

tan(φ) 0.0139 0.0125

tan(θ) 0.0154 -0.0201

tan(δ) 0.0195 0

CY 0.0201 0.0401

Table 2.2: Comparison of determined material parameters characterised at different

temperatures.

Material 25◦C 50◦C

Parameters characterisation characterisation

sE33
′ [×10−12m2/N] 16.91 17.04

εT33
′ 1730.1 1865.5

d′33 [pC/N] 320.1 335.8

tan(φ) 0.0123 0.0145

tan(θ) 0.0198 0.0245

tan(δ) 0.0205 0.0249
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Chapter 3

Power dissipation in piezoelectric

materials

Following on from the characterisation of a piezoelectric rod in the first chapter,

the goal of this second stage was to model the power dissipation density in the

piezoelectric rod. The power dissipation can be further investigated by quantifying

the importance of the contributions from the characterised loss constants. This

would determine whether the piezoelectric loss is negligible, as is commonly assumed,

or whether it has an important contribution. Furthermore, it is shown that linking

the imaginary part of the material constants, also known as the mechanical, dielectric

and piezoelectric loss, to a physical process is not recommended [21]. This chapter

starts by introducing the generalised Poynting vector, which is used to calculate

the power dissipation density in a piezoelectric rod. This is followed by a review

of previous studies on the subject of power dissipation in piezoelectric materials.

Then, the power dissipation density in a piezoelectric material is modelled and its

contributions are investigated [21]. The chapter concludes with a study on the

consequences of mixing the IEEE Standard and Holland’s representation of loss

when considering power dissipation in a transducer.

3.1 Generalised Poynting Vector

The Generalised Poynting Vector is described by Holland [24] and Auld [41]. It is

an amalgamation of the energy flux vector for mechanical and electromagnetic fields
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and is given as

Σ =
1

2
(E×H∗ −T · u∗), (3.1)

where H is the magnetic field, u is the particle velocity, ∗ marks the complex con-

jugate and · is the inner product.

The power dissipation density for piezoelectric materials can be derived from

Eq. 3.1 as

P =
1

2
ωIm(E ·D∗ + T : S∗), (3.2)

where P is the power dissipation density, ω is the angular frequency and : is the inner

product of second order tensors. Using 1D assumptions for the length extensional

mode of a piezoelectric rod, Eq. 3.2 simplifies to

P =
1

2
ωIm(E3D

∗
3 + T3S

∗
3). (3.3)

Thus with a suitable model for the electric and mechanical fields of the piezo-

electric rod, the power dissipation density in the material can be calculated as a

function of frequency and space.

3.2 Previous work on power dissipation in piezo-

electric materials

There are multiple methods for modelling the power dissipation in piezoelectric

materials. It is common to assume that the power dissipation in a piezoelectric

material is spatially independent. An example of this is shown in Uchino and Hirose’s

study on loss mechanisms in piezoelectric materials [25]. In this work, the total

power dissipation as a result of the mechanical, dielectric and piezoelectric losses is

calculated. The power dissipation is then assumed to be uniform in the piezoelectric

slab. When modelling the power dissipation in a transducer, the power dissipation

density can be assumed to be uniform over the piezoelectric material to simplify the

model [13].

A more detailed model of the power dissipation density in piezoelectric materials

can take into account the spatial dependency throughout the material. Thomas et
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al. modelled the power dissipation density across a piezoelectric slab in the d31 mode.

In this case, it was found that the power dissipation as a result of the mechanical and

piezoelectric loss were negligible for a piezoelectric slab under electrical excitation

at a low frequency [42].

3.3 The power dissipation density and its contri-

butions in a piezoelectric rod

3.3.1 Theory

Combining Eqs. 2.3 and 3.3 gives the following equation for the power dissipation

density in a piezoelectric rod:

P =
1

2
ωIm(E3d

∗
33T

∗
3 + E3ε

T∗
33E

∗
3 + T3s

E∗
33 T

∗
3 + E∗3d

∗
33T3). (3.4)

Based on Eq. 3.4, there are four terms that contribute to the power dissipation

density in a piezoelectric rod. The power dissipation density can be separated into

three contributions as

P = Pd,1 + Pd,2 + Pd,3, (3.5)

where

Pd,1 =
1

2
ωIm(T3s

E∗
33 T

∗
3 ),

Pd,2 =
1

2
ωIm(E3ε

T∗
33E

∗
3),

Pd,3 =
1

2
ωIm(E3d

∗
33T

∗
3 + E∗3d

∗
33T3).

The term Pd,1, which is associated with mechanical constants, can be interpreted

as the mechanical contribution to the total power dissipation density [24, 42]. The

same reasoning can be applied to Pd,2 which can be interpreted as the electrical

contribution and Pd,3 could be interpreted as the piezoelectric contribution. The

separation of the power dissipation density into these contributions inherently asso-

ciates these mechanical, dielectric and piezoelectric losses with a particular physical

mechanism. At first glance, Eq. 3.5 would appear to fulfill the goal of quantifying

the importance of the mechanical, electrical and piezoelectric contributions to the

25



M. Wild: Heat generation in underwater transducers

power dissipation density. This would then determine whether the piezoelectric con-

tribution can truly be considered negligible. An equally valid method of quantifying

the contributions to power dissipation density in a piezoelectric rod would be to use

the g-form of the constitutive piezoelectric equations. Indeed, combining the g-form

of the piezoelectric constitutive equation (Eq. 2.2 and Eq. 3.3) gives the following

equation for the power dissipation density in a piezoelectric rod

P =
1

2
ωIm(T3s

D∗
33 T

∗
3 +D3β

T
33D

∗
3 − T3gE33D∗3 + T3g

∗
33D

∗
3). (3.6)

This can also be separated into three contributions as

P = Pg,1 + Pg,2 + Pg,3, (3.7)

where

Pg,1 =
1

2
ωIm(T3s

D∗
33 T

∗
3 ),

Pg,2 =
1

2
ωIm(D3β

T
33D

∗
3),

Pg,3 =
1

2
ωIm(−T3g33D∗3 + T3g

∗
33D

∗
3).

In a similar manner to the d-form, Pg,1 is interpreted as the mechanical con-

tribution, Pg,2 the electrical contribution and Pg,3 the piezoelectric contribution.

The difference between the contributions as a result of the d-, e-, h- and g-form

piezoelectric constitutive equations will be investigated in the results.

The total power dissipation in the piezoelectric rod and its contributions as a

function of frequency is also investigated in the results. The total power dissipation

Ω in the piezoelectric rod and its contributing terms are given by

Ω = A

∫ L

0

Pdx3 = Ωs,1 + Ωs,3 + Ωs,3, (3.8)

where A is the cross sectional area of the piezoelectric rod, L is the length of the

piezoelectric rod, s is the piezoelectric constitutive form used and

Ωs,n = A

∫ L

0

Ps,ndx3 (3.9)

where n = 1, 2, 3. It follows that Ωs,1, Ωs,2 and Ωs,3 are interpreted as the mechan-

ical, electrical and piezoelectric contribution to the total power dissipation in the

piezoelectric rod. It is important to note that although there is a requirement for
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Table 3.1: List of the material parameters for the piezoelectric rod used in this

study.

Material
Value

Constants

sD33 [10−12 ×m2/N] 7.80− 0.31j

βT
33 [108 ×m/F] 1.16 + 0.0033j

g33 [10−2 × Vm/N] 2.34− 0.02j

ρ [kg/m3] 7500

the total power dissipation density to be positive, this requirement does not apply to

the individual contributions. Indeed, Ωs,3 has been shown to be negative in previous

studies [43].

3.3.2 Method

Through the use of the 1D Mason model, Fig. 2.4, and Eq. 3.5, the contributions for

the different piezoelectric constitutive forms are calculated for a piezoelectric rod

with dimensions 3mm× 3mm× 20mm made of EDO EC-69 as a function of fre-

quency and spatial position. The material parameters for EDO EC-69 are shown in

Tab. 3.1. The piezoelectric material parameters originate from a full characterisation

of EDO EC-69 with anisotropic losses [7].

3.3.3 Results

The frequency and spatially dependent power dissipation density and its contribut-

ing terms for the d-form in the piezoelectric rod are shown in Fig. 3.1. It is clear

that the mechanical contribution is the most dominant of the three contributions.

However, the results also show that the piezoelectric contribution is negative over

certain parts of the frequency spectrum. It is therefore difficult to reconcile the

negative contribution for the piezoelectric constant with a physical mechanism.

The comparison between the spatially dependent contributions for the different

piezoelectric constitutive forms is shown in Fig. 3.2 at the resonance frequency. It can
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Figure 3.1: Power dissipation density as a function of frequency and position along

the length of the rod for the mechanical contribution Pd,1, the electrical contribution

Pd,2, the piezoelectric contribution Pd,3 and the total power dissipation density P .

be seen that there is no unique mechanical, electrical and piezoelectric contribution if

the contributions are defined in the same manner described in Eq. 3.5. Furthermore,

separating the contributions in this manner results in a mechanical contribution

larger than the total power dissipation density and a negative contribution from the

piezoelectric constants. The dielectric contribution remains largely negligible for all

forms.

The total power dissipation and its three contributions are shown for each form in

Fig. 3.3. These results confirm the conclusions from Fig. 3.2 that the contributions

are different for different forms over the frequency range. Additionally, Fig. 3.3 also

shows that for some of the piezoelectric constitutive forms, the power dissipation

at frequencies near the resonance frequency are not completely dominated by the

power dissipation as a result of the mechanical constants as is usually assumed.

Indeed, for the g- and h-form, the contribution from the piezoelectric constants is not

negligible at the resonance frequency. There are other parts of the spectrum where

the contribution from the mechanical constants is overtaken by other contributions.

In the e-form, the piezoelectric and electrical contribution dominate at frequencies
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Figure 3.2: Power dissipation density as a function of position along the length of

the rod. Ps,1 is interpreted as the mechanical contribution, Ps,2 is interpreted as

the electrical contribution and Ps,3 is interpreted as the piezoelectric contribution

where s is the piezoelectric constitutive equation form used. P is the total power

dissipation density due to all the contributions.

larger than the antiresonance frequency.

This study initially demonstrated that there is no unique mechanical, electrical

or piezoelectric contribution. It is therefore not recommended to attach any physical

meaning to the losses, from which the power dissipation expressions are derived from.

This is commonly seen in the literature when the piezoelectric loss is considered

negligible as the loss due to piezoelectric energy conversion is low. It is also common

to assume that the power dissipation at the resonance frequency is mainly due to

the mechanical constants, whereas this is not necessarily the case as is shown in the

h- and g-form. In this particular case for EDO-EC 69, the contribution from the

dielectric constants is the smallest.
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Figure 3.3: Power dissipation contributions relative to the total power dissipation

as a function of frequency along the length of the rod. Ωs,1 is interpreted as the

mechanical contribution, Ωs,2 is interpreted as the electrical contribution and Ωs,3

is interpreted as the piezoelectric contribution where s is the piezoelectric consti-

tutive equation form used. Ω is the total power dissipation density due to all the

contributions.

3.4 The comparison of the power dissipation in a

transducer as a result of two representations

of loss

There are two common representations of losses in piezoelectric materials which were

discussed in section 2.3. The first is the IEEE Standard on Piezoelectricity which

has two loss mechanisms, the mechanical quality and the dielectric loss. The second

representation is the one predominantly used in this thesis, Holland’s representation,

which has three loss mechanisms at work. It is usual to only have the losses from

the IEEE Standard representation supplied by the piezoelectric manufacturer. It

is also common that these supplied losses are then used in distributed models as

the imaginary part of the material constants [29]. As the piezoelectric loss is not
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supplied, the piezoelectric constant is considered real. This study aimed to quantify

the consequence of using the losses as a result of the IEEE Standard method as

complex parameters in a distributed model in the way losses are defined under

Holland’s representation [22].

3.4.1 Method

The impedance of a piezoelectric plate made of PZ27 with a thickness of 7.5mm and

a diameter of 15cm is modelled using the 1D Mason model (Fig. 2.4) and the mate-

rial parameters characterised using Holland’s representation [44]. The impedance is

then used to characterise the material parameters using the IEEE Standard method

which uses the BVD model. Under Holland’s notation, there are six parameters,

with three loss mechanisms defined as the imaginary part of the material constants.

Under the IEEE Standard method, there are five parameters: three material con-

stants, the mechanical quality and the dielectric loss. The material parameters as a

result of the two characterisation methods are shown in Tab. 3.2 implemented using

Holland’s representation. The aim of the study is to determine whether the power

dissipation calculated as a result of these two material data sets, both implemented

as complex material constants, is different. To further demonstrate this, the power

dissipation is modelled for a complete plate transducer model to determine whether

the discrepancy between the two material data sets has any effect on the calculated

power dissipation in a transducer model. The temperature rise as a result of the two

power dissipation calculations is modelled and compared to quantify the effect the

difference between the two characterised material parameter sets has on a temper-

ature model. The plate transducer schematic and surrounding thermal conditions

is shown in Fig. 3.4, with GRP as the matching layer and Silicone rubber used for

the backing layer. The thermal, mechanical and piezoelectric material parameters

for all materials are shown in Tab. 3.2.

3.4.2 Results

The comparison of the distribution of the power dissipation density throughout the

transducer stack as a result of the two material data sets is shown in Fig. 3.5.
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Figure 3.4: Transducer schematic slice with thermal boundary conditions. h is the

convection coefficient.

Table 3.2: List of the material parameters for the materials used in the transducer.

There are two material data sets for PZ27 based on the two representations in

piezoelectric materials.

Material Silicone
GRP

PZ27

Constants Rubber Holland [24] IEEE Std. [18]

Elastic Modulus E GPa 0.014 16.4

Poisson Ratio ν 0.48 0.44

Mechanical Quality Qm 50 100

Mechanical stiffness cD33 GPa 129 + 0.21j 129 + 0.28j

Electric impermittivity εS33 108 ×m/F 1.49 + 0.021j 1.53 + 0.022j

Piezoelectric constant h33 109 × V/m 2.10 + 0.013j 2.24

Density ρ kg/m3 1150 2020 7500

Thermal conductivity k W/mK 0.14 0.04 1.8

Specific heat capacity Cp J/kgK 1175 700 420

Layer thickness mm 50 3.75 7.5
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Figure 3.5: Comparison of the power dissipation density as a result of the two rep-

resentations of loss throughout the transducer at the resonance frequency, 250kHz.

There is a clear discrepancy between the power dissipation density distribution at

the piezoelectric layer. Indeed, the power dissipation density is much larger using

the IEEE Standard material parameters than it is for the parameters characterised

using Holland’s representation. Although the discrepancies aren’t as significant,

there is still a difference between the two models in the backing and matching layer.

Therefore, the discrepancy in the material parameters in the piezoelectric material

propagates to the surrounding materials.

Fig. 3.6 shows the resulting steady state temperature throughout the transducer

for the boundary conditions in Fig. 3.4 and power dissipation density distributions in

Fig. 3.5. There is a difference of up to 7◦C in the predicted steady state temperature

between the two power dissipation density models. The difference in steady state

temperature between the two models is spread out over the length of the transducer.

These results demonstrate that the loss parameters determined using the IEEE

Standard on Piezoelectricity, the mechanical quality and dielectric loss, are not

equivalent to the loss parameters determined using Holland’s representation. It is
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Figure 3.6: Comparison of the steady state temperature as a result of the two rep-

resentations of loss throughout the transducer at the resonance frequency, 250kHz.

therefore not recommended to use the mechanical quality and dielectric loss param-

eters supplied by the manufacturer as the imaginary component of the mechanical

and dielectric constants for distributed models.
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Chapter 4

Temperature distribution in a

piezoelectric rod

A characterisation method was developed in order to determine the loss parameters

of a piezoelectric rod. The goal of this chapter is to validate the material parameters

determined by the characterisation method. In order to validate the characterisation

method, the spatially dependent temperature profile in the piezoelectric rod as a

result of the predicted power dissipation density profile is compared to the measured

temperature profile in the piezoelectric rod. If the validation is successful, this would

demonstrate that once the piezoelectric material parameters are determined using

the characterisation method, then the temperature rise can be predicted for a given

frequency and voltage. These material parameters could then confidently be used

in a temperature model of the transducer in the design phase. This chapter starts

by reviewing previous work on the prediction or measurement of the temperature

rise in piezoelectric materials. The results of the comparison between the predicted

and measured spatially dependent temperature rise in the piezoelectric rod are then

presented.
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4.1 Previous studies on thermal modelling in piezo-

electric materials

It is common to treat the temperature distribution as constant in space for piezo-

electric materials [45, 46, 32, 47]. The temperature in the piezoelectric material

can be measured using a thermocouple that is thermally coupled to the sample us-

ing thermal grease or paste. Another measurement technique uses an infrared spot

thermometer, which has the advantage of being a non-contact method and therefore

does not affect the vibration pattern of the sample. These methods measure the

temperature in a single spot on the sample and the temperature throughout the

sample is considered to be equal to the temperature at that spot. These are robust

methods that yield good results when compared with a predicted temperature model

that is spatially uniform.

A number of studies have measured and predicted the spatially distributed tem-

perature rise throughout a piezoelectric sample. Joo et al. predicted and measured

the spatial distribution of the temperature rise throughout a piezoelectric trans-

former [48]. The temperature distribution was measured using an infrared camera

and modelled using FEM. The shape of the steady state temperature rise along the

lateral length of the transformer was captured very well. However, the absolute

temperature rise was underestimated. The study also demonstrated the importance

of modelling the temperature rise with temperature dependent material constants

if the temperature increase is significant. Thomas et al. modelled the spatial distri-

bution of the power dissipation density in a piezoelectric slab in a similar manner

to the method used in this project [42]. Based on this spatially distributed power

dissipation density, the temperature in a piezoelectric slab is predicted for various

thermal conditions. These are compared to the predicted temperature given a spa-

tially constant power dissipation density in the piezoelectric slab. The study shows

that the temperature rise difference between the centre and the edge of the slab is

more accentuated for the spatially distributed model than it is for the spatially con-

stant power dissipation density model. Hu et al. modelled and measured the spatial

distribution of temperature for a piezoelectric bar used as a transformer [49, 50].
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The temperature rise along the length of the piezoelectric material was measured

using an infrared camera. There was good agreement between the modelled and

measured steady state temperature rise.

4.2 Comparison between the measured and mod-

elled spatially distributed temperature along

the length of a piezoelectric rod.

The goal of this PhD was to predict the spatially distributed temperature rise along

the length of a piezoelectric rod. This was achieved by modelling the temperature

rise in a piezoelectric rod given a spatially distributed power dissipation density

as calculated in Section 3.1 for a particular voltage and frequency from the char-

acterised material parameters determined using the method shown in Section 2.5.

The predicted temperature rise is compared to the measured spatial distribution of

the temperature rise along the length of the rod. The first goal of this comparison is

that this would determine whether the characterised material parameters from the

characterisation method can be used to accurately predict the temperature rise in a

piezoelectric material. The second goal is to determine whether Holland’s represen-

tation, a very useful approximation for narrow frequency ranges, can be practically

used to predict the spatial distribution of the power dissipation density accurately

in a piezoelectric material given its inherent assumptions.

The first part of this paper concentrated on characterising the piezoelectric ma-

terial, PZT5A1, at a voltage of 40 V. Indeed, to attain a meaningful temperature

rise, a higher voltage was needed. Therefore the impedance of the piezoelectric rod

needed to be measured with a driving voltage of 40 V to characterise the material

parameters. However, impedance analysers are typically limited to small signal lev-

els, only a couple of volts. Therefore, a different experimental setup was developed

to calculate the impedance of the piezoelectric rod at higher voltages. The material

parameters as a result of this characterisation were then used to predict the spatially

distributed power dissipation density in the piezoelectric rod. This power dissipa-

tion density profile is used as the heat generation term in a thermal FEM model of
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the piezoelectric rod. For comparison, a constant power dissipation density profile is

also used as the heat generation term in the FEM model. This would show whether

it makes a practical difference to use a spatially distributed power dissipation density

as opposed to a spatially uniform power dissipation density distribution. Finally, the

modelled temperature for both power dissipation density distributions are compared

to the measured temperature distribution with the same thermal boundaries.

4.2.1 Characterising the nonlinearity in a piezoelectric rod

The material parameters of piezoelectric materials change with voltage amplitude.

Indeed, the voltage was shown to have an effect on the resonance peak in the admit-

tance spectrum by Uchino et al. [32]. In order to determine the material parameters

for higher voltages, the characterisation method from Section 2.5 was implemented

using an impedance curve measured at higher voltages. A different experimental

method, shown in Fig. 4.1, to measure the impedance of the piezoelectric was de-

veloped. In this measurement setup, the voltage is measured over the piezoelectric

rod and sense resistor in channel 1 of the oscilloscope. The current through the

piezoelectric material is derived from the voltage over channel 2, which measures

the voltage over the sense resistor. The signal generator sweeps the frequency range

of interest and the power amplifier amplifies the signal to the desired voltage of inter-

est. An issue with measuring the impedance in this manner is that the piezoelectric

material can heat up during the measurement. As the temperature can also have

an effect on the material properties, the measurement setup had to be modified to

avoid heating the piezoelectric material up as the impedance was being measured.

Therefore, a thermocouple was placed on the sample to ensure that the piezoelectric

material cooled below a minimum threshold temperature before the next frequency

sample was taken.

Using the experimental setup, the voltage dependency of the admittance was

measured and is shown in Fig. 4.2. It can be seen that even for low voltage increases,

there is a significant effect on the resonance peak in the admittance spectrum. The

resonance frequency is shifted towards the lower frequencies and the peak is damped

as the voltage increases. The effect on the antiresonance peak is not very significant.
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Figure 4.1: Electrical setup to measure the impedance at higher voltages. Channel

1 of the oscilloscope measures the voltage whilst Channel 2 is used to derive the

current over PZT5A1

Table 4.1: List of the material parameters for the piezoelectric rod used in this study

compared with the material parameters determined at low driving voltage using an

impedance analyser.

Material parameters Small signal 40 V

Symbol Dimensions values values

sD33 10−12 ×m2/N 6.68 + 0.009j 11.0− 0.02j

βT
33 107 ×m/F 6.27 + 0.1j 6.75 + 0.28j

g33 10−2 × Vm/N 2.57− 0.01j 2.27− 0.02j

ρ kg/m3 7750 7750

This is similar to the findings by Uchino et al. but for a smaller range of voltage

amplitudes. This has a significant effect on the characterised material parameters.

These are shown in Tab. 4.1. The effect seems to affect the mechanical constants

the most.

4.2.2 Power dissipation density model

To predict the temperature rise in the piezoelectric rod, the spatial distribution of

the power dissipation density was modelled. The power dissipation density spatial

distribution along the length of the rod can be modelled using the equations in

Section 3.1. Given the material parameters characterised at 40 V in Tab. 4.1, the

spatial distribution of the power dissipation density is shown in Fig. 4.3 at 68 kHz.
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Figure 4.2: The admittance of the piezoelectric rod PZT5A1 as a function of volt-

age amplitude. As the voltage increases, the resonance frequency reduces and the

resonance peak is damped.

The power dissipation density is predicted to be more than two times larger in

the centre of the rod than at the edges of the rod. The second power dissipation

density curve in Fig. 4.3 is constant in space. To simplify the thermal model, the

power dissipation density can be assumed to be constant in space for ultrasound

transducers where the piezoelectric layer is only one of the components. Modelling

the temperature rise in the piezoelectric rod with the constant power dissipation

curve will show whether using a spatial distribution of power dissipation density

makes any practical difference or whether a constant power dissipation density is

adequate enough.

4.2.3 Temperature model and measurement

The spatial distribution of the temperature along the length of the piezoelectric

rod is measured using an experimental setup shown in Fig. 4.4. In this setup,

the piezoelectric rod is placed in a container made of Ebazell 160, a thermally

insulating material. In this manner, the air inside the container can be assumed

to be independent of the air outside the box, thus rendering the convection rate
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Figure 4.3: Two modelled spatial distributions of the power dissipation density along

the length of piezoelectric rod.

more stable. There are five thermocouples in total in the setup. Three of those

thermocouples are placed on the surface of the piezoelectric rod and measure the

temperature at the edge (TC 1), a quarter way along the length (TC 2) and at the

centre (TC 3) of the piezoelectric rod as shown in Fig. 4.4. The temperature is only

measured on one half of the rod as it is assumed to be symmetric with respect to the

centre of the rod. The fourth thermocouple (TC 4) measures the air temperature

inside the container. The final thermocouple (TC 5) measures the temperature

where the copper wire exits the container. The piezoelectric material is excited

through the copper wires using a signal generator and power amplifier to achieve a

peak voltage of 40 V. The piezoelectric material is excited for 10 minutes and then

allowed to cool down before the next measurement is taken. The measurement was

repeated five times in order to quantify the uncertainty of the measurement.

A FEM model of the temperature measurement was then built and simulated

in COMSOL. The model is shown in Fig. 4.5 and carries a few assumptions in

order to reduce the computation time of the model. As the temperature is assumed

to be symmetrical with respect to the centre of the rod, only half of the rod is

simulated and there is a symmetry boundary condition. As the container is small,

the air temperature is assumed to be constant in space and equal to the temperature

measured by TC 4. The boundary of the model is where the copper wire exits the

container, where the temperature is set equal to the temperature measured by TC 5.
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Figure 4.4: Schematic of the temperature measurement showing the placement of

the thermocouples. TC stands for thermocouple. TC 1, 2 and 3 measure the temper-

ature along the length of the piezoelectric rod. TC 4 measures the air temperature

in the container and TC 5 measures the temperature where the copper wire exits

the container.

Table 4.2: List of the thermal material parameters used in the temperature model.

The piezoelectric thermal material parameters originate from [51].

Materials parameters
PZT5A1

Silver Copper

Name Dimensions electrodes wire

Thermal conductivity W/(mK) 1.2 429 400

Heat Capacity J/(kgK) 320 235 385

Density kg/m3 7750 10500 8940

Emissivity N/A 0.5 0 0

There is convection into the air along the copper wire, electrode and piezoelectric

material. There is also radiation at the surface of the piezoelectric material. Finally,

the power dissipation density curves in Fig. 4.3 are used as the heat source in the

model. The thermal properties of the materials in the model are shown in Tab. 4.2.

4.2.4 Results

Figs. 4.6 and 4.7 show the results of the models and measurements as a function

of time for TC 1, 2 and 3 for both power dissipation density curves in Fig. 4.3.

The measured data shows a clear trend, even with uncertainties taken into account,
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Figure 4.5: Schematic of the model in COMSOL with the boundary conditions

shown. The model shows half of the experimental setup as the temperature is

considered symmetric with respect to the centre of the rod. There is convection into

air at the copper wire, electrodes and piezoelectric material. There is also radiation

from the piezoelectric material into the surrounding area. The piezoelectric rod is

resting on the Ebazell material which is considered to be a perfect insulator in the

model.

where the temperature at TC 1 increases the least whilst the temperature at TC 3

increases the most of the three thermocouples. The temperature at TC 2 is evenly

space between the temperatures measured at TC 1 and TC 3.

Based on the spatially distributed power dissipation curve, where the power

dissipation density is larger at the centre of the rod than at the edges, the modelled

data should show the same trend as the one shown in the measured data. The

modelled data in Fig. 4.6 does have the same trend, with the temperature at TC 1

increasing the least and the temperature at TC 3 increasing the most. However,

the modelled temperature curve does not track the measured temperature curve

completely. Indeed, the model initially underestimates the heating rate up until

approximately 200 seconds. After 200 seconds, the model overestimates the heating

rate and at 600 seconds, the final time sample, the model has overestimated the

temperature rise.
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Figure 4.6: Measured and modelled temporal temperature dependence of TC 1, 2

and 3 for a spatially distributed power dissipation density. Note that the measured

data covers a range of temperatures for each time sample to show the uncertainty

associated with the measurement.

Fig. 4.7 shows the modelled temperature curves at TC 1, 2 and 3 for a power

dissipation density that is constant in space compared with the measured data. The

modelled temperature at TC 1 increases the least whilst the modelled temperature

at TC 3 increases the most. This trend is the same as the the one in the measured

data and the modelled temperature as a result of the spatially distributed power

dissipation density. It also does not track the measured data completely in a similar

manner to the modelled data in Fig. 4.6. However, the difference between the

modelled temperature at TC 1 and TC 3 at 600 seconds is clearly smaller in Fig. 4.7

than it is in Fig. 4.6. The difference at 600 seconds between TC 1 and TC 3 is 8%

for the mean value of the measured data, 7% for the spatially distributed power

dissipation density model and 4.3% for the spatially constant power dissipation

density model. This would suggest that the model with the spatially distributed

power dissipation density captures the behaviour of the piezoelectric material better

than the model with the spatially constant power dissipation density. This further

appears to confirm that Holland’s representation of losses in piezoelectric materials,

in coordination with the generalised Poynting vector, is adequate for modelling the
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Figure 4.7: Measured and modelled temporal temperature dependence of TC 1,

2 and 3 for a power dissipation density that is constant in space. Note that the

measured data covers a range of temperatures for each time sample to show the

uncertainty associated with the measurement.

spatial distribution of the temperature in a piezoelectric rod.

4.2.5 Conclusion

The work in this section aimed to determine whether Holland’s representation with

characterised material parameters could adequately predict the spatial distribution

of the power dissipation density in a piezoelectric rod. The previous two stages

of the PhD thesis characterised the material constants and power dissipation den-

sity using Holland’s representation based on a measured impedance curve. It was

therefore important to verify the two previous stages of the PhD. This verification

takes the form of Fig. 4.6 which compares the predicted and measured temperature

distribution.

It was determined that the physical shape of the spatial distribution of the power

dissipation density along the length of the piezoelectric rod is more similar to the

spatially distributed curve in Fig. 4.3 than it is to a power dissipation density which

is constant in space. This was the conclusion based on the difference in tempera-

ture between TC 1 and 3 at the final time of 600 seconds. This, therefore, bolsters
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the suggestion that given a well executed characterisation of the piezoelectric ma-

terial, the temperature can be adequately predicted. This is an important finding

for transducer designers as once the piezoelectric material is characterised, the tem-

perature increase for a given excitation in a transducer stack can confidently be

predicted. Thus, the transducer design can be tweaked in order to reduce the tem-

perature increase, especially at important points. In order to increase the accuracy

of the prediction, it is also clear that more accurate thermal material parameters

are needed.
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Chapter 5

Conclusion

This thesis outlined the development of a characterisation method followed by the

prediction and verification of the power dissipation density and temperature pro-

file along the length of a piezoelectric rod as a result of the determined material

parameters.

The piezoelectric loss was demonstrated to be a unique parameter in Holland’s

representation of loss. The use of two cost functions, one based on the impedance

and the other based on the admittance, was shown to mitigate the effect of noise on

the characterised material parameters. Another finding in the development of the

characterisation method was that using a local optimisation with the manufacturer

data could lead to the characterisation method finding a local minimum instead of

the global minimum.

The importance of each loss mechanisms’ contribution to the power dissipation

in the piezoelectric material was quantified. Although the power dissipation can

be separated into a contribution that originates from the mechanical, electrical and

piezoelectric constants, this separation is arbitrary. Indeed, the contributions from

the mechanical, electrical and piezoelectric losses changed depending on the piezo-

electric constitutive equation used. Furthermore, the piezoelectric contribution was

negative over parts of the frequency spectrum. Therefore, it was concluded that it

is not recommended to attach the loss parameters to specific physical mechanisms.

Finally, the temperature rise in the piezoelectric rod was predicted using the

characterised material parameters determined in the first stage of the PhD. This
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was compared to the measured temperature rise in the piezoelectric rod. It was de-

termined that although the thermal material parameters needed to be characterised

better, the temperature difference between the edge and centre of the rod compared

well between the measured and modelled data.

48



Bibliography

[1] J. L. Butler and C. H. Sherman, Transducers and Arrays for Underwater Sound,

2nd ed. Springer, New York, 2016, ch. 3, pp. 123–124.

[2] N. P. Sherlock and R. J. Meyer, “Modified single crystals for high-power under-

water projectors,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 59,

no. 6, pp. 1285–1291, Jun. 2012.

[3] H. J. Lee, S. Zhang, Y. Bar-Cohen, and S. Sherrit, “High temperature, high

power piezoelectric composite transducers,” Sensors, vol. 14, no. 8, pp. 14 526–

14 552, Aug. 2014.

[4] A. C. S. Parr, R. L. O’Leary, and G. Hayward, “Improving the thermal stability

of 1-3 piezoelectric composite transducers,” IEEE Trans. Ultrason., Ferroelect.,

Freq. Control, vol. 52, no. 4, pp. 550–563, Apr. 2005.

[5] C. Richard, H. Lee, and D. Guyomar, “Thermo-mechanical stress effect on 1–3

piezocomposite power transducer performance,” Ultrasonics, vol. 42, no. 1-9,

pp. 417–424, Apr. 2004.

[6] P. N. Bilgunde and L. J. Bond, “Effect of thermal degradation on high temper-

ature ultrasonic transducer performance in small modular reactors,” Physics

Procedia, vol. 70, pp. 433–436, 2015.

[7] R. G. Sabat, B. K. Mukherjee, W. Ren, and G. Yang, “Temperature dependence

of the complete material coefficients matrix of soft and hard doped piezoelectric

lead zirconate titanate ceramics,” J. Appl. Phys., vol. 101, p. 064111, Mar. 2007.

[8] S. Sherrit, G. Yang, H. Wiederick, and B. Mukherjee, “Temperature dependence

of the dielectric, elastic and piezoelectric material constants of lead zirconate

49



M. Wild: Heat generation in underwater transducers

titanate ceramics,” in Proceedings of the International Conference on Smart

Materials, Structures and Systems, Bangalore, India, Jul. 1999, pp. 121–126.

[9] J. Pastor, C. Richard, and H. Nguyen Viet, “Predicting the losses and the

efficiency of a 1-3 piezo-composite transducer through a partial homogeneization
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Understanding the energy loss in piezoelectric materials is of significant importance for manufac-

turers of acoustic transducers. The contributions to the power dissipation due to nonzero phase

angles of the mechanical, electrical, and piezoelectric constants can be separated in the expression

for power dissipation density. However, this division into separate contributions depends on the

piezoelectric constitutive equation form used. Thus, it is problematic to identify any of the three

terms with a specific physical domain, electric or mechanical, or to a coupling as is common in the

discussion of loss in piezoelectric materials. Therefore, assumptions on the phase of the material

constants based on this distinction could be erroneous and lead to incorrect piezoelectric models.

This study demonstrates the challenge of distinguishing mechanical, electrical, and piezoelectric

losses by investigating the power dissipation density and its contributions in a piezoelectric rod for

all four piezoelectric constitutive equation forms. VC 2018 Acoustical Society of America.

https://doi.org/10.1121/1.5057443

[WM] Pages: 2128–2134

I. INTRODUCTION

Understanding loss in piezoelectric materials and having

the ability to model the effects these mechanisms have on

the behaviour of the material is of significant importance to

acoustic transducer manufacturers. Energy loss in piezoelec-

tric materials, the active part of the transducer, affects

important characteristics of the transducer such as the band-

width or the amount of heat generated. It is therefore benefi-

cial to manufacturers to be able to include the effects of

energy loss in piezoelectric models in the design phase. In

this paper, the effect the imaginary terms of the material con-

stants, commonly known as loss tangents, of a piezoelectric

rod have on the power dissipation is quantified. This analysis

is performed using the four common piezoelectric constitu-

tive equation forms, the g-, d-, e-, and h-forms.

The power dissipation within a piezoelectric material

originates from physical microscopic energy loss mecha-

nisms associated with lattice deformation, domain, and grain

effects.1 Macroscopically, the net effect of these physical

mechanisms is modeled in different ways. For ultrasound

transducer design, it is common to use the mechanical qual-

ity factor Qm, which is related to the sharpness of the reso-

nance peak, and the dielectric loss tanðdÞ as a means of

representing energy loss in these materials.2–4 Holland5

introduced the complex representation of the material con-

stants in the piezoelectric constitutive equations. Under

Holland’s notation, the material constants in the strain-

charge form, also known as the d-form of the piezoelectric

constitutive equations, are complex in order to introduce a

phase lag between the mechanical and electrical fields, a

valid approximation for low losses and narrow frequency

bands. In this representation, a nonzero phase in the mechani-

cal, dielectric, and piezoelectric constants gives rise to loss

terms that are conventionally named the mechanical, dielectric,

and piezoelectric loss.6–8 This terminology is now in common

use in the literature considering characterisation of piezoelec-

tric materials. Indeed, one-dimensional (1D) equivalent circuits

such as the Krimholtz-Leedom-Matthaei (KLM) and Mason

model can easily be implemented with complex material con-

stants and so these parameters can be characterised using simi-

lar methods to those defined by the IEEE Standard on

Piezoelectricity.7–9 Finite-Element-Method (FEM)-based char-

acterisation, which fits the modelled impedance curve to the

measured impedance curve, has also been developed to take

complex material constants into account.10–12

Whilst the characterisation methods mentioned above

take into account all three loss terms, it is also habitual in

practice and in research to ignore the imaginary part of the

piezoelectric constants.13–15 The reasoning behind this

assumption is that the effect of the piezoelectric loss term

is negligible compared to the mechanical and electrical loss

terms. On the other hand, studies have shown that the pie-

zoelectric loss term can in fact have a significant contribu-

tion, especially with regards to power dissipation.6,7 To this

end, Uchino et al.16 have developed characterisation meth-

ods and equivalent circuits which include all three loss

terms. Uchino and Hirose6 distinguish between the inten-

sive losses, the losses for the d-form material constants,

and extensive losses, the losses for the h-form, also known

as the stress-voltage form, material constants. They con-

clude that the intensive mechanical loss is the dominant

loss mechanism at resonance, whilst the intensive dielectric

loss is dominant outside of resonance for a plate. Similara)Electronic mail: marcus.wild@usn.no
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conclusions are stated in other studies dealing with losses

in transducers.17–19

Uchino and Hirose6 consider the individual extensive

loss terms to have real physical meaning. Similar statements

that attach a physical mechanism to the complex representa-

tion of losses are regularly seen across the literature.11,20,21

Sherrit and Mukherjee22 specify that a distinction should be

made between macroscopic behaviour of the piezoelectric

material, described by the complex material constants, and

the microscopic behaviour in the material.

A generalised Poynting vector can be defined as the sum

of the electrical and mechanical energy flux in a piezoelectric

material.5,23 It has been used to explicitly quantify the contri-

bution the various material constants have towards the power

dissipation in a piezoelectric material.24,25 Thomas et al.24 use

complex material constants to model the power dissipation in

a length extensional piezoelectric slab. The power dissipation

is then separated out into a mechanical, electrical, and piezo-

electric contribution. Mezheritsky25 derives the same expres-

sions for the three contributions and notably demonstrates that

the piezoelectric contribution to the power dissipation can be

negative over parts of the frequency spectrum.

This study aims to gain a deeper understanding into the

effect the various complex material constants have on the

power dissipation in a piezoelectric material. However,

rather than limiting the study to one piezoelectric constitu-

tive form, the contributions from the complex material con-

stants for the four common forms will be compared. In order

to achieve this, a fully characterised piezoelectric rod will be

simulated using the 1D Mason model. The output from the

1D model will be used as the input into the generalised

Poynting vector which will give four different expressions

for the power dissipation density in a piezoelectric rod, one

for each formulation of the constitutive equations. From this,

the total power dissipation can be calculated as a function of

frequency.

II. THEORY

A. Piezoelectric equations for a length extensional rod

The g-form, also known as the strain-voltage form, pie-

zoelectric constitutive equations are given by

Sp ¼ sD
pqTq þ gpmDm;

Em ¼ �gpmTp þ bT
mnDn; (1)

where S is the strain tensor, T is the stress tensor, E is the

electric field tensor, D is the electric displacement tensor, sD

is the elastic compliance tensor at constant electric displace-

ment field, g is the piezoelectric constant tensor, bT is the

electric impermittivity tensor at constant stress, and m, n, p,

q are the tensor indices. The temperature dependence of the

piezoelectric constitutive equations is carried by these mate-

rial constants. These material constants are complex in order

to represent the phase lags between the field tensors as

defined by Holland.5

For the case of a long rod with 1m symmetry, electro-

des on either end and lateral dimensions smaller than the

longitudinal wavelength as shown in Fig. 1, T1¼T2¼ 0,

E1¼E2¼ 0, D1¼D2¼ 0, and dD3=dx3 ¼ 0 at resonance.26

In addition, the shear stress and strain are omitted. Given

these assumptions, the g-form of the piezoelectric constitu-

tive equations in Eq. (1) is conveniently simplified to a 1D

problem where

S3 ¼ sD
33T3 þ g33D3;

E3 ¼ �g33T3 þ bT
33D3: (2)

The d-, e-, and h-forms, also known as the strain-charge,

stress-charge, and stress-voltage forms of the piezoelectric

constitutive equations can then derived from the g-form [Eq.

(2)] so that

S3 ¼ sE
33T3 þ d33E3;

D3 ¼ d33T3 þ eT
33E3; (3)

T3 ¼ cE
effS3 � eeffE3;

D3 ¼ eeffS3 þ eS
effE3; (4)

T3 ¼ cD
effS3 � heffD3;

E3 ¼ �heffS3 þ bS
effD3: (5)

The material properties derived from the g-form are

listed in Table I. The 33 subscripts indicate the (3, 3) tensor

indices. This is the case for the d-form given our assump-

tions and the 1m symmetry of the material. The material

FIG. 1. A piezoelectric rod polarised in the direction of the bold arrow.

TABLE I. List of the material parameters for the piezoelectric rod used in

this study.

Material

Constants Value

sD
33 ½10�12 �m2=N� 7.80 � 0.31j

bT
33 ½108 �m=F� 1.16 þ 0.0033j

g33 [10�2�Vm/N] 2.34 � 0.02j

q [kg/m3] 7500
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constants with “eff” as subscript are 1D effective material

constants and do not represent the actual (3, 3) value of the

material tensor.

B. Generalised Poynting vector

The generalised Poynting vector R for a piezoelectric

material is given by

R ¼ 1

2
E�H� � T � u�ð Þ; (6)

where H is the magnetic field, u is the particle velocity, *

marks the complex conjugate, and � is the inner product.

The power dissipation density for piezoelectric materi-

als can be derived from Eq. (6) as5

P ¼ 1

2
xIm E � D� þ T : S�ð Þ; (7)

where P is the power dissipation density, x is the angular

frequency and : is the inner product of second order tensors.

Using 1D assumptions for the length extensional mode of a

piezoelectric rod, Eq. (7) simplifies to

P ¼ 1

2
xIm E3D�3 þ T3S�3

� �
: (8)

Inserting the expressions for D3, S3, T3, and E3 from the

g-, d-, e-, and h-form piezoelectric equations into Eq. (8)

yields four different expressions for the power dissipation

density consisting of three terms. In the case of the g-form,

this yields

P ¼ Pg;1 þ Pg;2 þ Pg;3; (9)

where

Pg;1 ¼
1

2
xIm T3sD�

33 T�3
� �

¼ � 1

2
xjT3j2Im sD

33

� �
;

Pg;2 ¼
1

2
xIm D3b

T
33D�3

� �
¼ 1

2
xjD3j2Im bT

33

� �
;

Pg;3 ¼
1

2
xIm �T3g33D�3 þ T3g�33D�3

� �
¼ �x Re T3ð ÞRe D3ð Þ þ Im T3ð ÞIm D3ð Þð ÞIm g33ð Þ:

For the d-form,

P ¼ Pd;1 þ Pd;2 þ Pd;3; (10)

where

Pd;1 ¼ �
1

2
xjT3j2Im sE

33

� �
;

Pd;2 ¼ �
1

2
xjE3j2Im eT

33

� �
;

Pd;3 ¼ �x Re E3ð ÞRe T3ð Þ þ Im E3ð ÞIm T3ð Þð ÞIm d33ð Þ:

For the e-form

P ¼ Pe;1 þ Pe;2 þ Pe;3; (11)

where

Pe;1 ¼
1

2
xjS3j2Im cE

eff

� �
;

Pe;2 ¼ �
1

2
xjE3j2Im eS

eff

� �
;

Pe;3 ¼ �x Re E3ð ÞRe S3ð Þ þ Im E3ð ÞIm S3ð Þ
� �

Im eeffð Þ:

For the h-form,

P ¼ Ph;1 þ Ph;2 þ Ph;3; (12)

where

Ph;1 ¼
1

2
xjS3j2Im cD

eff

� �
;

Ph;2 ¼
1

2
xjD3j2Im bS

eff

� �
;

Ph;3 ¼ �x Re S3ð ÞRe D3ð Þ þ Im S3ð ÞIm D3ð Þ
� �

Im heffð Þ:

For all four forms, the power dissipation density has been

split into three terms. Ps,1, where s is the form used, which only

consists of mechanical terms in all four forms, has previously

been interpreted as the mechanical contribution to the total

power dissipation density.6,24,25 Using the same logic, Ps,2,

which only consists of electrical terms, could be interpreted as

the electrical contribution, and Ps,3, which only consists of pie-

zoelectric terms, could be interpreted as the piezoelectric con-

tribution to the total power dissipation density.

The total power dissipation X in the piezoelectric rod

and its contributing terms are given by

X ¼ A

ðL

0

Pdx3 ¼ Xs;1 þ Xs;3 þ Xs;3; (13)

where A is the cross sectional area of the piezoelectric rod, L
is the length of the piezoelectric rod and

Xs;n ¼ A

ðL

0

Ps;ndx3; (14)

where n¼ 1, 2, 3. It follows that Xs,1, Xs,2, and Xs,3 are inter-

preted as the mechanical, electrical, and piezoelectric contri-

bution to the total power dissipation in the piezoelectric rod.

It is important to note that although there is a requirement

for the total power dissipation density and power dissipation

to be positive, this requirement does not apply to the individ-

ual contributions. Indeed, Xs,3 has been shown to be negative

in previous studies.25

III. METHOD

To illustrate the effect the loss terms exhibit on the power

dissipation in a piezoelectric material, the 1D Mason model,

shown in Fig. 2, was used to calculate the behaviour of a pie-

zoelectric rod at the fundamental resonance of the length

extensional mode. The circuit parameters are given by

C0 ¼ eS
33A=L;

Nc ¼ Ad33=LsE
33; Za ¼ jqcA tanðkL=2Þ;

c ¼ 1=
ffiffiffiffiffiffiffiffiffi
sD

33q
q

; Zb ¼ �jqcA= sinðkLÞ; (15)
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where L is the length of the rod, A is the cross sectional area

of the rod, c is the speed of sound, k¼x/c¼ 2p/k is the

wave number, with k the wavelength, and q is the density of

the piezoelectric material.

It was assumed that there are no external forces acting

on the rod (F1¼F2¼ 0) and that the electrodes at the termi-

nals were of negligible thickness. The driving voltage in the

model is arbitrarily set to 1Vp as this value does not affect

the comparisons in this linear analysis. The material con-

stants of EDO EC-69, listed in Table II from a full character-

isation study by Sabat et al.,27 were used as the input into

the model. The rod has dimensions 3 mm� 3 mm� 20 mm.

Using the 1D Mason model and the characterised mate-

rial constants, the power dissipation density of the piezoelec-

tric rod as a function of position in the rod and frequency

can be calculated. This is achieved by using the expression

for power dissipation density as shown in Eq. (7). The three

contributing terms for all four forms [Eqs. (9)–(12)] are cal-

culated at the resonance and antiresonance frequency in

order to determine the importance of each quantity. The

same procedure is followed for the power dissipation as a

function of frequency [Eqs. (13) and (14)].

IV. RESULTS

The contributions from the terms detailed in Eqs.

(9)–(12) to the total power dissipation density are shown in

Fig. 3 at the resonance frequency and in Fig. 4 at the antire-

sonance frequency. The contributions have been separated

into Ps,1, Ps,2, and Ps,3, where s is the form of the piezoelec-

tric constitutive equation. These contributions are different

depending on the form used, even though the total contribu-

tion is identical for a given frequency.

At resonance, for all four forms, Ps,1, the term associ-

ated with mechanical fields is the dominating term which

contributes the most to the total power dissipation density P.

Ps,2, the term associated with the electrical fields, contributes

the least to P in all cases. Ps,3, the term associated with a

mixture of electrical and mechanical fields, is mostly negli-

gible except for the h-form, where it has a significant nega-

tive contribution to the total power dissipation density. It is

important to note that in the d-, e-, and h-form, Ps,3 has a

negative contribution at least for part of the piezoelectric

rod, whereas Ps,1 and Ps,2 are always positive. The sign of

Ps,1 and Ps,2 is completely determined by the sign of the

imaginary part of the mechanical and electrical material con-

stants, whereas the sign of Ps,3 is also determined by the

phase differences between the electrical and mechanical

fields.

At the antiresonance frequency, Ps,1 is still the dominat-

ing term for all four forms, especially in the g- and h-forms

(where Pg;1 ’ Ph;1 ’ P). Pd,3, Pe,3, Pd,2, and Pe,2 account for

a significant portion of the total power dissipation density.

Indeed, Pe;2 þ Pe;3 ’ Pe;1.

The normalised contributions as a function of frequency

from the terms detailed in Eqs. (14) to the total power dissi-

pation are shown in Fig. 5. The contributions have been sep-

arated into Xs,1, Xs,2, and Xs,3 and normalised with respect to

X, where s is the form of the piezoelectric constitutive equa-

tion. The interplay between the various terms changes as a

function of frequency and with each form. Most notably,

Xs,3 changes sign near the resonance or antiresonance fre-

quency for all four forms. In the d- and e-form, the frequency

at which Xs,3 changes sign, the resonance frequency, is also

the frequency at which Xs,2 is at its minimum and is approxi-

mately null. Consequently, at the resonance frequency,

Xs;1 ’ X. The same conclusions can be drawn for the g- and

h-form at the antiresonance frequency. In other parts of the

frequency spectrum, X is not dominated by one contribution

but more evenly distributed between two or more contribu-

tions. For the g-form at the resonance frequency, Xg,1, Xg,2,

and Xg,3 account for 80%, 3%, and 17% of the total power

dissipation, respectively. At the antiresonance frequency in

the e-form, Xe,1, Xe,2, and Xe,3 account for 50%, 10%, and

40% of the total power dissipation, respectively.

A three-dimensional (3D) FEM model of the same pie-

zoelectric material and shape was simulated using COMSOL

in order to check the validity of the results from the 1D

FIG. 2. Mason 3-port equivalent circuit for the mechanical motion and elec-

trical current of a piezoelectric rod (Ref. 26). u1, F1, u2, and F2 are the

velocity and force on either end of the rod, and I0 and V0 the current and

voltage at the electrical port.

TABLE II. List of the derived material constants for the different forms of

the piezoelectric constitutive equations.

Material Material Transform

Constants Property from g-form

sE
33 Elastic compliance at constant electric field sD

33 þ
g2

33

bT
33

eT
33 Electric impermittivity at constant stress

1

bT
33

d33 Piezoelectric constant
g33

bT
33

cE
eff Elastic stiffness at constant electric field

1

sE
33

eS
eff Electric permittivity at constant strain eT

33 �
d2

33

sE
33

eeff Piezoelectric constant
d33

sE
33

cD
eff Elastic stiffness at constant electric displacement field

1

sD
33

bS
eff Electric impermittivity at constant strain bT

33 þ
g2

33

sD
33

heff Piezoelectric constant
g33

sD
33
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FIG. 3. The power dissipation density, P, in the piezoelectric rod and its three contributions as a function of x3 at resonance for all four forms.

FIG. 4. The power dissipation density, P, in a piezoelectric rod and its three contributions as a function of x3 at antiresonance for all four forms.
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Mason model. There is excellent agreement between the 1D

and 3D model at the frequency of interest with errors low

enough to have no effect on the conclusions.28

V. DISCUSSION

Depending on the piezoelectric constitutive equation

form used, the contributions to the power dissipation den-

sity from the mechanical, electrical, and piezoelectric con-

stants are different at resonance and antiresonance (Figs. 3

and 4). Most notably, the contributions from the piezoelec-

tric constants can be negative over certain areas of the rod.

This is also the case for the contribution from Xs,3 to the

total power dissipation in the rod as a function of fre-

quency (Fig. 5). For all four forms, the contributions from

the piezoelectric constants are negative over parts of the

spectrum. On this point, there is agreement with the

Mezheritsky25 analysis on the contribution from the piezo-

electric constant.

Due to the different nature of the three contributions to

the power dissipation density for each form, attaching any

physical meaning to the individual terms, and therefore to

the imaginary part of the material constants, is not recom-

mended. The results show that in various forms, Ps,1, which

has been interpreted as the mechanical power dissipation

density in other studies, can be larger than the total power

dissipation density in the rod. Clearly this is not consistent

when considering power dissipation and cannot meaning-

fully be attributed to a physical mechanism. Similarly, Ps,3,

which has been interpreted as the power dissipation density

as a result of imperfect energy conversion between the

mechanical and electrical domain, is negative over parts of

the frequency spectrum.

The phenomenological description of piezoelectric

materials requires complex material constants to model mac-

roscopic behaviour of the energy loss in the material.

However, in reality, the imaginary parts of the material con-

stants have a complicated relationship with the microscopic

sources of these energy loss mechanisms. Sherrit and

Mukherjee22 resort to more complicated phenomenological

models in order to relate the microscopic sources of energy

loss to the macroscopic behaviour.

The practical implication of not attaching any physical

meaning to these contributions is to reduce the amount of

assumptions based on physical interpretations of the energy

loss terms in the material constants when modeling piezo-

electric materials. For example, the common perception that

the imaginary part of the piezoelectric constant, commonly

known as the piezoelectric loss, is negligible based on the

limited effect of the energy loss due to imperfect energy con-

version between the mechanical and electrical domain does

not hold based on the results of this study. In all four forms,

Xs,3 clearly has more of an effect on the total power dissipa-

tion in the rod than Xs,2, which is commonly associated with

dielectric loss (Fig. 5). Furthermore, assuming that only

mechanical energy is dissipated at resonance does not

always hold depending on the form used. Indeed, in the g-

and h-form in Fig. 5, Xs,3 contributes a significant amount to

the total power dissipation X (approximately 17% in the

case of the g-form). Ignoring these effects could lead to

FIG. 5. The three normalised contributions to the total power dissipation as a function of frequency for all four forms. The contributions are normalised with

respect to the total power dissipation, X. The resonance and antiresonance frequency are annotated.
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erroneous piezoelectric models, especially when considering

heat generation.

Although the findings from this study are partly based

on effective material parameters in the e- and h-form, the

conclusions still hold when only considering the true mate-

rial parameters in the d- and g-forms. Only the power dissi-

pation as a result of fields in the x3-direction were included

as this study was conducted with a 1D model. This study can

also be conducted in 3D using FEM in order to include the

lateral fields; however, these have a minimal effect on the

total power dissipation at the fundamental resonance in the

length extensional mode of a piezoelectric rod. The behav-

iour of only one material with a specific shape was analysed

in this work. Determining whether the particular assump-

tions that apply to this shape and material, such as the domi-

nance of the imaginary parts of the mechanical constants in

the d- and e-form at resonance, can be generalised to other

materials and shapes would require a more comprehensive

study.

VI. CONCLUSION

The power dissipation density and power dissipation as

a result of the complex representation of material constants

was calculated in a piezoelectric rod using the 1D Mason

model at the fundamental length extensional resonance for

all four forms of the piezoelectric constitutive equations.

Although the total power dissipation density and total power

dissipation remain the same for all piezoelectric constitutive

forms, the contributing terms vary significantly. There is

therefore no means of extracting a unique mechanical, elec-

trical, and piezoelectric contribution with any individual

physical meaning from this phenomenological model.

Hence, the phase of the material constants does not reflect

the energy loss from one specific physical loss mechanism,

but rather a complicated combination of a number of these

physical loss mechanisms. Therefore, this study has demon-

strated that any assumptions on the imaginary part of the

material constants based on real mechanical, electrical, and

piezoelectric power dissipation mechanisms does not hold in

this type of phenomenological model.
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