
Sensur av hovedoppgaver
Universitetet i Sørøst-Norge
Fakultet for teknologi og maritime fag

Prosjektnummer: 2019-03
For studieåret: 2018/2019
Emnekode: SFHO3201-1 18H Bacheloroppgave

Prosjektnavn
Kontaktløs Posisjonssensor
Contactless Position Sensor

Utført i samarbeid med: Kongsberg Defence & Aerospace

Ekstern veileder: Stian Laugerud

Sammendrag: Denne rapporten omhandler en sensorsystem løsning med tilhørende
teststasjon for en kontaktløs posisjonssensor. Sensoren skal detektere en endring i
vinkelposisjon på en antenne eller andre pekemekanismer på en satellitt.
Undersøkelsene er gjennomført for å potensielt erstatte det nåværende systemet
som er i bruk, et potensiometer design. Utviklingen er gjort gjennom analyser, tester
og inspeksjon av design. Hovedområdene som er undersøkt omhandler deteksjon av
posisjon gjennom en endring av frekvens.
Stikkord:

• Posisjonssensor

• Oscillatorer

• Teststasjon
Tilgjengelig: JA

Prosjekt deltagere og karakter:
Navn Karakter

Anders Rønning

Hans Fredrik Jamtveit

Henrik Sæter

Jarand Solberg Strømmen

Magnus Berntsen Caro

Dato: 14. juni 2019

________________ _______________ _______________
Sigmund Gudvangen Karoline Moholth Aage V. Sørensen
Intern Veileder Intern Sensor Ekstern Sensor

Contactless
Position
Sensor
BACHELOR THESIS 2019

GROUP 3

Anders Rønning – Hans Fredrik Jamtveit – Henrik Sæter

Jarand Strømmen – Magnus Berntsen Caro

Published 23.05.2019

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

i Abstract

This report is concerned with discussing a sensor system solution with a coherent test
station for a contactless position sensor. The sensor shall detect change in angular position
of an antenna or other pointing mechanisms on a satellite. The study is conducted to
potentially replace the current system in use, a potentiometer design. The development
was done through analysis, tests and design review. Main areas researched revolves around
detecting position through change of frequency, knowing the position of the sensor by the
use of a precise stepper motor to count steps.

This report gives a suggestion of a theoretical solution. The sensor can achieve a
theoretical precision of 0.01° by the use of a Clapp oscillator. The coils on the stator shows
a change in inductance when affected by the rotor, giving the possibility to detect a change
in position. This report shows the possibility of using a contactless position sensor for the
detection of change in position. Further research is required regarding changes in
temperature and how it affects the electrical components in the sensor.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

ii Content

1 Introduction 1

2 Project description 2
2.1 Document history . 2
2.2 Introduction . 3
2.3 Project background . 3
2.4 Kongsberg Defence & Aerospace . 3
2.5 Project tasks and goals . 3

2.5.1 Primary goals: . 3
2.5.2 Secondary goals . 3

2.6 Project Stakeholders . 4
2.6.1 Stakeholder . 4
2.6.2 Primary stakeholders . 4
2.6.3 Secondary stakeholders . 4
2.6.4 Stakeholder requirements . 4

2.7 Project hierarchy . 6
2.7.1 Contactless Position Sensor project team 7
2.7.2 University of Southeast-Norway . 8
2.7.3 Kongsberg Defence & Aerospace . 8

2.8 Project timeline . 9
2.9 Updated project timeline . 11
2.10 Final project timeline . 13

3 Scrum 15
3.1 Document history . 15
3.2 Introduction . 16
3.3 Scrum values . 16

3.3.1 Courage . 16
3.3.2 Focus . 16
3.3.3 Commitment . 16
3.3.4 Respect . 17
3.3.5 Openness . 17

3.4 Scrum roles . 17
3.4.1 Scrum Master . 17
3.4.2 Product Owner . 17
3.4.3 Developer Team . 17

3.5 Scrum Artefacts . 18
3.5.1 Product Backlog . 18
3.5.2 Sprint Backlog . 18
3.5.3 Increment . 18

3.6 Scrum Events . 18
3.6.1 Sprint . 19
3.6.2 Sprint Planning . 19
3.6.3 Daily Scrum . 19

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

3.6.4 Sprint Review . 20
3.6.5 Sprint Retrospective . 20

3.7 Definition of Done . 21
3.8 CPS approach to Scrum . 21

3.8.1 Sprint . 21
3.8.2 Sprint Planning . 21
3.8.3 Daily Scrum . 21
3.8.4 Sprint Retrospective . 22
3.8.5 Definition of Done . 22
3.8.6 Online tool . 22
3.8.7 Roles . 22

4 Work routines 24
4.1 Document history . 24
4.2 Introduction . 25
4.3 Asana . 25

4.3.1 Asana routines . 25
4.4 General work . 25

4.4.1 Work hours and breaks . 25
4.5 Meetings and presentation . 25

4.5.1 Meetings . 26
4.5.2 Presentations . 26

5 Risk management 27
5.1 Document history . 27
5.2 Introduction . 28
5.3 Risk matrix . 29
5.4 Changes in risk analysis . 30
5.5 Comparison of iterations . 30
5.6 Risk analysis iteration 4 . 31

5.6.1 Hardware risks: . 31
5.6.2 Human risks: . 33
5.6.3 Management risks: . 35

6 Stakeholder requirements 36
6.1 Document history . 36
6.2 Introduction . 37
6.3 Stakeholder requirement specification . 38

7 Requirements 40
7.1 Document history . 40
7.2 Introduction . 41
7.3 System requirements . 42
7.4 Requirement specification . 43

7.4.1 Functional requirements . 43
7.4.2 Non-functional requirements . 44

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

8 User Story 47
8.1 Document history . 47
8.2 Introduction . 48
8.3 The Three C’s . 48
8.4 Implementation . 48
8.5 CPS User Stories . 50

9 Testing 51
9.1 Document history . 51
9.2 Introduction . 52
9.3 Test plan . 52

9.3.1 Example test ID . 52
9.3.2 Test template . 53
9.3.3 Testing of subsystems . 53
9.3.4 Example subsystem test ID . 54
9.3.5 Subsystem test template . 54

10 Sensor design 55
10.1 Document history . 55
10.2 Introduction . 56
10.3 Oscillator . 56
10.4 Oscillator tank . 56
10.5 Bias network . 56
10.6 LC oscillator . 57

10.6.1 Colpitts . 57
10.6.2 Clapp . 58
10.6.3 Hartley . 59
10.6.4 Amplifier . 59

10.7 Design tools . 60
10.7.1 OrCAD Capture CIS and OrCAD PCB editor 60
10.7.2 Electronics Explorer Board . 60

10.8 CPS circuit design . 60
10.8.1 First iteration oscillator . 61
10.8.2 Second iteration Colpitts oscillator 64
10.8.3 Third iteration Colpitts oscillator . 66
10.8.4 Fourth iteration Colpitts oscillator 68
10.8.5 Fifth iteration oscillators . 70
10.8.6 Sixth iteration oscillator . 72

10.9 Final oscillator iteration . 74
10.9.1 Common emitter amplifier . 74
10.9.2 Clapp oscillator circuit . 80

10.10CPS PCB design . 87
10.10.1 Material selection in PCB . 88
10.10.2 Pins and vias . 88
10.10.3 Stator . 90
10.10.4 Coil design . 93

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

10.10.5 Final coil design . 96
10.10.6 Rotor . 99
10.10.7 PCB ordering . 101

10.11Stator and rotor PCB . 101

11 Mechanical concepts 103
11.1 Document history . 103
11.2 Introduction . 104
11.3 Mechanical concept 1, KDA prototype . 104

11.3.1 Implementation of mechanical parts 104
11.3.2 List of parts . 104
11.3.3 Bracket, P.1.0.1 . 106
11.3.4 Cap, P.1.0.2 . 107
11.3.5 Assembly of KDA prototype, A.3.0.0 107
11.3.6 Step by step assembly, A.1.0.0 . 108
11.3.7 Design review, DR-A.1.0.0 . 108

11.4 Mechanical concept 2 . 109
11.4.1 Rotor and stator . 109
11.4.2 Housing . 111
11.4.3 Shaft . 112
11.4.4 Rotor fixture . 113
11.4.5 Assembly, A.2.0.0 . 114
11.4.6 Cross section, A.2.0.0 . 115
11.4.7 List of parts . 116
11.4.8 Design review, DR-A.2.0.0 . 116

11.5 Mechanical concept 3 . 116
11.5.1 Assembly concept 3, A.3.0.0 . 117
11.5.2 List of parts . 120
11.5.3 Housing, P-C3-3.0.1 . 121
11.5.4 Rotor fixture . 122
11.5.5 Shaft, P-C3-3.0.4 . 123
11.5.6 Fixture for electrical motor, P-C3-3.0.3 124
11.5.7 Design review, DR-A.3.0.0 . 124

11.6 Mechanical concept 4 . 125
11.6.1 Assembly concept 4, A.4.0.0 . 125
11.6.2 List of parts . 128
11.6.3 Housing, P-C4-4.0.1 . 129
11.6.4 Design review, DR-A.4.0.0 . 130

11.7 Choice of concept . 131
11.7.1 2D . 131
11.7.2 Tolerances . 131
11.7.3 2D-drawings of final concept . 133

11.8 Edits during manufacturing . 140

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

12 Bearings 141
12.1 Document history . 141
12.2 Introduction . 142
12.3 General . 142

12.3.1 Loads . 142
12.4 Rolling bearing types . 145

12.4.1 Tapered roller bearing . 145
12.4.2 Cylindrical bearing . 145

12.5 Ball bearing types . 146
12.5.1 Single row ball bearing . 146

12.6 Bearing selection . 147
12.6.1 SKF 6000-2RSH . 147

12.7 Bearing lubrication . 148
12.7.1 Dry Moly . 148

12.8 Bearing preload . 149
12.8.1 Springs . 150
12.8.2 Disc spring, 4293 . 150
12.8.3 Disc spring, 5028 . 151

13 Choice of materials 152
13.1 Document history . 152
13.2 Introduction . 153
13.3 Important elements . 153
13.4 Austenitic stainless steel . 154

13.4.1 Stainless steel 304, 316 . 154
13.4.2 Elongation of housing and shaft . 154

13.5 Passivation . 156
13.5.1 Nitric acid passivation . 156

14 KDA motor and SMC133-2 driver 157
14.1 Document history . 157
14.2 Introduction . 158
14.3 Stepper motor . 158
14.4 Stepper driver . 158
14.5 NanoPro software - first code version . 159

14.5.1 Arduino code - first code version . 160
14.5.2 Connection diagram . 162

14.6 SMCI33-2 driver problems and possible solutions 163
14.6.1 NanoJEasy . 163
14.6.2 Software development kit . 164

14.7 SMCI33-2 driver after researching . 164
14.8 Important about the SMCI33-2 driver . 164
14.9 Parameters unit - SMCI33-2 . 165
14.10Driver nonfunctional . 166
14.11Other drivers . 167

14.11.1 The EM402 - Leadshine . 167

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

14.12SMCI33-2 driver conclusion . 168

15 Final driver - DM420A 169
15.1 Document history . 169
15.2 Introduction . 170
15.3 Backup driver . 170
15.4 Driver control . 170

15.4.1 Stepper motor driver connection diagram 171
15.5 Parameters unit - DM420A . 171

15.5.1 Current . 171
15.5.2 Stepmode . 172
15.5.3 Speed . 172
15.5.4 Distance . 173
15.5.5 Direction . 173
15.5.6 Acceleration . 173

15.6 Conversions . 174
15.6.1 Distance . 174
15.6.2 Speed . 174

15.7 Communication protocol . 175
15.7.1 Parameter types . 175
15.7.2 Example parameter string . 176

16 Unified Modelling Language 177
16.1 Document history . 177
16.2 Introduction . 178
16.3 What is Unified Modelling Language . 178
16.4 Use cases . 178
16.5 Sequence diagrams . 179
16.6 Further reading . 180

17 CPS software planning 181
17.1 Document history . 181
17.2 Introduction . 182
17.3 Initial challenge . 182
17.4 First software concept . 182
17.5 Second software concept . 182
17.6 Third software concept . 183

17.6.1 Use Cases . 184
17.7 Third software concept architecture . 188

17.7.1 Why CPS test station utilises software architecture 188
17.7.2 Choosing the right architecture (Software architecture) 188
17.7.3 Objects/classes interaction (Sequence diagram) 189

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

18 Detecting frequency 193
18.1 Document history . 193
18.2 Introduction . 194
18.3 Frequency detection initial thoughts . 194

18.3.1 Frequency detection concept - DAQ 194
18.3.2 Frequency detection concept - USB oscilloscope 195
18.3.3 Frequency detection concept - FPGA 196
18.3.4 Frequency detection concept - Counter Integrated Circuit 197

19 Frequency calculation 201
19.1 Document history . 201
19.2 Introduction . 202
19.3 Explanation of frequency span . 202

20 Qt Framework 207
20.1 Document history . 207
20.2 Introduction . 208
20.3 Qt framework . 208
20.4 Qt Integrated Development Environment . 208
20.5 Qt Designer . 208
20.6 Not using Qt Designer . 209

21 Log files and directory structure 211
21.1 Document history . 211
21.2 Introduction . 212
21.3 Stakeholder requirement . 212
21.4 The directory structure . 212

21.4.1 Directory structure diagram . 212
21.5 Log and report file . 213

21.5.1 XML log file . 213
21.5.2 Example XML file output . 215
21.5.3 PDF report . 215
21.5.4 Log and report file name format . 216

21.6 Last step . 217
21.7 Calibration . 217
21.8 Doxygen documentation and code . 217

22 CPS graphical user interface 218
22.1 Document history . 218
22.2 Introduction . 219
22.3 GUI Concepts . 219

22.3.1 GUI concept 1 . 219
22.3.2 GUI concept 2 . 220
22.3.3 GUI concept 3 . 221
22.3.4 GUI concept 4 . 222
22.3.5 Choice of GUI concept . 222

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

22.4 Final graphical user interface . 222
22.4.1 File directory . 223
22.4.2 Control section . 223
22.4.3 Display CPS data section . 226

23 Source code 228
23.1 Document history . 228
23.2 Introduction . 229
23.3 Hardware configuration for developing and testing 229
23.4 Class diagram . 230
23.5 Include graphs . 230
23.6 Arduino source code flowchart . 231
23.7 Signals and slots in Qt . 233

24 Conducted tests 235
24.1 Introduction . 235
24.2 Test, KDA sensor T-C0-1.0.0 . 236
24.3 Subtest, inductance final concept Sub-T-2.0.0 240
24.4 Subtest, counter IC concept Sub-T-3.0.0 . 244
24.5 Subtest, height of rotor impact on inductance Sub-T-4.0.0 248

25 Improvements 253
25.1 Document history . 253
25.2 Introduction . 254
25.3 General system improvements . 254
25.4 Counter circuit improvements . 254
25.5 Software improvements . 254
25.6 Stepper motor improvement . 255
25.7 Oscillator improvements . 255

26 Conclusion 256

27 References 257

28 Appendix A - All iterations of risk analysis 262
28.1 Introduction . 262
28.2 Risk analysis - 25.01.2019 . 263

28.2.1 Hardware risks: . 263
28.2.2 Human risks: . 265
28.2.3 Management risks: . 267

28.3 Risk analysis - 27.02.2019 . 268
28.3.1 Hardware risks: . 268
28.3.2 Human risks: . 270
28.3.3 Management risks: . 272

28.4 Risk analysis - 20.03.2019 . 273
28.4.1 Hardware risks: . 273

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

28.4.2 Human risks: . 275
28.4.3 Management risks: . 277

28.5 Risk analysis - 1.05.2019 . 278
28.5.1 Hardware risks: . 278
28.5.2 Human risks: . 280
28.5.3 Management risks: . 282

29 Appendix B - Working with Qt 283
29.1 Document history . 283
29.2 Introduction . 284
29.3 Potentiometer values on a graphical user interface 284
29.4 Arduino code to read and send potentiometer value 284
29.5 Potentiometer reading GUI . 285
29.6 Working with Qt conclusion . 286

30 Appendix C - Directory structure doxygen documentation 287
30.1 Introduction . 287

31 Appendix D - Potentiometer reader GUI doxygen documentation 296
31.1 Introduction . 296

32 Appendix E - Final software doxygen documentation 321
32.1 Introduction . 321

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

iii List of Figures

1 Subsystem overview . 1
2 Project organisation map . 6
3 Initial project Gantt chart part 1 . 9
4 Initial project Gantt chart part 2 . 10
5 Updated project Gantt chart part 1 . 11
6 Updated project Gantt chart part 2 . 12
7 Final project Gantt chart part 1 . 13
8 final project Gantt chart part 2 . 14
9 Scrum values [47] . 16
10 Colpitts oscillator . 58
11 Design process from circuit schematic(left), simulation(middle) to PCB lay-

out(right) . 60
12 First Colpitts oscillator . 62
13 Output signal of first Colpitts oscillator . 62
14 PSpice FFT simulation of first Colpitts oscillator output 63
15 Output signal form breadboard circuit of first Colpitts oscillator 63
16 FFT oscilloscope first Colpitts oscillator . 63
17 Common emitter Colpitts oscillator . 64
18 FFT simulation common emitter Colpitts oscillator 65
19 3 channel Colpitts oscillator . 66
20 PSpice FFT simulation 3 channel oscillator 67
21 Oscilloscope FFT 3 channel Colpitts oscillator 67
22 Oscilloscope FFT 3 channel Colpitts oscillator 68
23 Oscilloscope FFT 3 channel Colpitts oscillator 69
24 Oscilloscope FFT 3 channel Colpitts oscillator 70
25 Oscilloscope FFT 3 channel Colpitts oscillator 70
26 Fifth iteration BJT Clapp oscillator . 71
27 Fifth iteration JFET Clapp oscillator variation 1 71
28 Fifth iteration JFET Clapp oscillator 2 . 71
29 Sixth iteration BJT Clapp oscillator . 72
30 Q-point of amplifier in figure 29 . 73
31 Sixth oscillator iteration input signal on Schmitt trigger 73
32 Common emitter amplifier . 75
33 Q-point of amplifier in figure 32, (VCEQ, ICQ) = (1.9357V, 1.1076mA) 79
34 Final iteration, 3 channel Clapp oscillator 82
35 PSpice FFT final oscillator . 83
36 Oscilloscope FFT of final oscillator output signal. 83
37 Spectrum analysis of signal from final oscillator 84
38 PSpice simulation of output signal of final oscillator 84
39 Plot from oscilloscope of output signal of final oscillator 85
40 Schmitt trigger and voltage divider . 86
41 Complete CPS circuit . 87
42 Trough hole pin diameter 1.2 mm (left) and Via diameter 0.4 mm (right) . . 89

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

43 Coil connection through hole pin . 90
44 3D model of stator PCB top side . 90
45 3D model of stator PCB top side. Position of the coils marked with white

silkscreen line . 91
46 Angel of coil placement and spacing between coils. Coil part centre(black

cross). Coil connection pin(red square) . 92
47 3D coil placement in stator . 93
48 Coil design in Orcad PCB Editor . 94
49 Coil 1: Single layer spiral coil . 94
50 Coil 2: Three layer spiral coil . 95
51 Coil 3: Three Layer curved rectangular coil 95
52 Coil 4: 7 Layer curved rectangular coil . 96
53 Coil 4 excel input table . 96
54 Coil 4 coordinate excel sheet . 96
55 Final coil design, layers connected in series with vias 98
56 Angle of copper layer in rotor . 99
57 Side view of rotor, . 100
58 Top view of rotor . 100
59 Copper layers in rotor . 100
60 Vias surrounding mounting hole to ensure grounding 101
61 Finished Stator PCB . 101
62 Finished rotor PCB . 102
63 Bracket, KDA prototype, P.1.0.1.1 . 106
64 Cap, KDA prototype, P.1.0.2 . 107
65 Assembly of KDA prototype, A.1.0.0 . 107
66 3D model of stator, concept 2 . 109
67 3D model of rotor, concept 2 . 110
68 Housing top view . 111
69 Housing bottom view . 112
70 Shaft, concept 2 . 113
71 Rotor fixture, concept 2 . 113
72 Assembly of concept 2, A.2.0.0 . 114
73 Cross section, A.2.0.0 . 115
74 Assembly of concept 3, A.3.0.0 . 117
75 Cross section, A.3.0.0 . 118
76 Top view, A.3.0.0 . 119
77 Bottom view, A.3.0.0 . 119
78 Housing concept 3, P-C3-3.0.1 . 121
79 Rotor fixture concept 3, P-C3-3.0.3 . 122
80 Shaft concept 3, P-C3-3.0.4 . 123
81 Shaft top section side view, P-C3-3.0.4 . 123
82 Fixture for electrical motor, P-C3-3.0.4 . 124
83 Assembly of concept 4, A.4.0.0 . 125
84 Cross section, A.4.0.0 . 126
85 Top view, A.4.0.0 . 127

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

86 Bottom view, A.4.0.0 . 127
87 Housing concept 4, P-C4-4.0.1 . 129
88 Housing top view, P-C4-4.0.1 . 130
89 Rotor Mount measures and tolerances, 2D 133
90 Shaft measures and tolerances, 2D . 134
91 Housing measures and tolerances, sheet 1, 2D 135
92 Housing measures and tolerances, sheet 2, 2D 136
93 Housing measures and tolerances, sheet 3, 2D 137
94 Housing measures and tolerances, sheet 4, 2D 138
95 Cap measures and tolerances, 2D . 139
96 Example, ball bearing [52] . 142
97 Radial load, [52] . 143
98 Thrust load, [52] . 144
99 Angular load, [52] . 144
100 Preloaded bearings, forces on balls . 149
101 Nanotech SMCI33-2 driver . 158
102 NanoPro motor settings tab . 159
103 NanoPro input settings tab . 160
104 Code version 1 connection diagram KDA driver and motor 162
105 Code version 2 connection diagram KDA driver and arduino 163
106 EM402 stepper driver by Leadshine . 167
107 Stepper motor driver connection diagram . 171
108 Use case example . 178
109 Sequence diagram example . 179
110 First software concept . 182
111 second software concept . 183
112 Third software concept . 184
113 CPS software base Use Case . 185
114 View CPS data Use Case . 186
115 Set parameters Use Case . 186
116 Control stepper motor Use Case . 187
117 Log CPS data Use Case . 187
118 software concept architecture . 188
119 Display CPS data sequence diagram . 189
120 Write log sequence diagram . 190
121 Execute with parameters sequence diagram 190
122 Calibrate sequence diagram . 191
123 Frequency detection DAQ concept . 195
124 Frequency detection USB oscilloscope concept 195
125 Frequency detection FPGA concept . 196
126 Counter integrated circuit concept . 197
127 Interface diagram . 198
128 Counter integrated circuit [54] . 199
129 Circuit diagram integrated circuit diagram 200
130 Stator on rotor . 205

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

131 Frequency depending on rotor position in steps 206
132 Qt Designer example . 209
133 Diagram of the directory structure . 212
134 GUI concept 1 . 219
135 GUI Concept 2 . 220
136 GUI Concept 3 . 221
137 GUI Concept 4 . 222
138 Directory view from final GUI . 223
139 Control section part 1 . 224
140 Control section part 2 . 225
141 Control section part 3 . 225
142 GUI realtime CPS data . 226
143 GUI current position . 226
144 Final graphical user interface . 227
145 Class diagram final software . 230
146 Include graph final software part 1 . 230
147 Arduino flowchart general . 231
148 Arduino flowchart clear counter . 232
149 Arduino flowchart snapshot register . 232
150 Arduino flowchart print bytes . 232
151 Arduino flowchart move steps . 233
152 Qt signal and slots part 1 . 234
153 Qt signal and slots part 2 . 234
154 Prototype from KDA . 239
155 Circuit for setup . 242
156 Stator in 3D printed test station . 243
157 Rotor in 3D printed test station . 243
158 Frequency at 0% covered, 0.6 mm distance 250
159 Inductance with 0% covered, 0.6 mm distance between rotor and stator . . . 250
160 Frequency at 0% covered, 1.4 mm distance 251
161 Inductance with 0% covered, 1.4 mm distance between rotor and stator . . . 251
162 Frequency at 100% covered, 0.6 mm distance 251
163 Inductance with 100% covered, 0.6 mm distance between rotor and stator . . 252
164 Frequency at 100% covered, 1.4 mm distance 252
165 Inductance with 100% covered, 1.4 mm distance between rotor and stator . . 252
166 Reading potentiometer on GUI system . 284
167 Qt potentiometer reading GUI . 286

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

iv List of Tables

1 Project description document history . 2
2 Scrum document history . 15
3 Work routines document history . 24
4 Risk management document history . 27
5 Risk matrix . 29
6 Probability and severity levels . 29
7 Color code description . 29
8 Changes done in risk analysis . 30
9 Management risks . 30
10 Hardware risks page 1 . 31
11 Hardware risks page 2 . 32
12 Human risks page 1 . 33
13 Human risks page 2 . 34
14 Management risks . 35
15 Stakeholder requirements document history 36
16 Stakeholder requirement template . 37
17 Stakeholder requirement specification 1/2 . 38
18 Stakeholder requirement specification 2/2 . 39
19 Requirements document history . 40
20 Requirement priority . 41
21 Verification criteria . 41
22 System requirement template . 42
23 Functional requirements . 43
24 Non-functional requirements . 44
25 Non-functional requirements . 45
26 Non-functional requirements . 46
27 User Story document history . 47
28 Example of User Story setup . 49
29 Overview of all User Stories and their respective requirements 50
30 Testing document history . 51
31 Example test template . 53
32 Example subsystem test template . 54
33 Sensor design document history . 55
34 BJT amplifier components . 76
35 Capacitor tolerance amplifier . 76
36 Clapp oscillator tank components . 80
37 Pin and via dimensions . 88
38 Specifications final coil design . 98
39 Mechanical concepts document history . 103
40 Tolerance symbols and descriptions, [21] . 132
41 Specific tolerances and values . 132
42 Bearings document history . 141
43 k-value and preload forces . 150

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

44 Choice of materials document history . 152
45 KDA motor and driver document history . 157
46 Overview of the stepmodes available on the SMCI33-2 driver 165
47 SMCI33-2 driver max speed per step resolution 165
48 SMCI33-2 driver max speed in °/s per step resolution 166
49 Other avaialbe SMCI33-2 driver parameter range with units 166
50 DM420A driver document history . 169
51 Overview of current settings on the DM420A driver 172
52 Overview of stepmodes available on the DM420A driver 172
53 Overview of possible speeds with the DM420A driver 173
54 Distance Overview of possible distances in each stepmode on the DM420A

driver . 173
55 Parameters to the Arduino Mega 2560 . 175
56 An example parameter string message to the Arduino Mega 2560 176
57 Explanation of the parameter string given in 56 176
58 Unified Modelling Language document history 177
59 CPS Software planning document history . 181
60 Detecting frequency document history . 193
61 Frequency calculation document history . 201
62 Speed table . 203
63 Qt Framework document history . 207
64 Log files and directory structure document history 211
65 Explanation of each node in an XML log file 214
66 Overview of libraries used to set up PDF report generation 215
67 CPS graphical user interface document history 218
68 Source code document history . 228
69 Hardware configuration . 229
70 Test, KDA sensor T-C0-1.0.0 . 236
71 Test, KDA sensor T-C0-1.0.0 . 237
72 Test, KDA sensor T-C0-1.0.0 . 238
73 Subtest, inductance final concept Sub-T-2.0.0 240
74 Subtest, inductance final concept Sub-T-2.0.0 241
75 inductance 2V . 242
76 inductance 5V . 242
77 Subtest, counter IC concept Sub-T-3.0.0 . 244
78 Subtest, counter IC concept Sub-T-3.0.0 . 245
79 Subtest, counter IC concept Sub-T-3.0.0 . 246
80 Subtest, counter IC concept Sub-T-3.0.0 . 247
81 Height of rotor impact on inductance Sub-T-4.0.0 248
82 Height of rotor impact on inductance Sub-T-4.0.0 249
83 Frequency depending on height of rotor . 250
84 Improvements document history . 253
85 Hardware risks page 1 - iteration 1 . 263
86 Hardware risks page 2 - iteration 1 . 264
87 Human risks page 1 - iteration 1 . 265

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

88 Human risks page 2 - iteration 1 . 266
89 Management risks - iteration 1 . 267
90 Hardware risks page 1 - iteration 2 . 268
91 Hardware risks page 2 - iteration 2 . 269
92 Human risks page 1 - iteration 2 . 270
93 Human risks page 2 - iteration 2 . 271
94 Management risks - iteration 2 . 272
95 Hardware risks page 1 - iteration 3 . 273
96 Hardware risks page 2 - iteration 3 . 274
97 Human risks page 1 - iteration 3 . 275
98 Human risks page 2 - iteration 3 . 276
99 Management risks - iteration 3 . 277
100 Hardware risks page 1 - iteration 4 . 278
101 Hardware risks page 2 - iteration 4 . 279
102 Human risks page 1 - iteration 4 . 280
103 Human risks page 2 - iteration 4 . 281
104 Management risks - iteration 4 . 282
105 Learning Qt document history . 283

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3

v Abbreviations

Phrase Description
AC Alternating current
AR Anders Rønning
BJT Bipolar Junction Transistor
CPS Contactless Positioning Sensor
DAQ Data acquisition
DC Direct current
EE Electronics Explorer
FFT Fast Fourier Transform
FPGA Field-programmable gate array
GUI Graphical User Interface
HFJ Hans Fredrik Jamtveit
HS Henrik Sæter
IC Integrated circuit
IDE Integrated Development Environment
JFET Junction gate Field-Effect Transistor
JSS Jarand Solberg Strømmen
KDA Kongsberg Defence and Aerospace
KSS Kongsberg Kongsberg Space & Surveillance
MBC Magnus Berntsen Caro
MoS2 Molybdenum Disulphide
MSVC Microsoft Visual Studio
PBI Product Backlog Items
PCB Printed Circuit Board
SDK Software Development Kit
STRQ Stakeholder requirement
UI User Interface
UML Unified Modeling Language
USB Universal Serial Bus
USN University of South-Eastern
Vcc Voltage common collector
XML eXtensible markup Language

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 1 of 389

1 Introduction

This bachelor thesis is initiated by Kongsberg Defence and Aerospace (KDA), University of
South-Eastern Norway (USN) and a group of five multidisciplinary students from USN.

A satellite is a moon, planet or machine that orbits a planet or star [34]. Humans use
satellites for a vast selection of tasks. They range from providing information about our
own planet, to research directed away from the earth. It is expensive to launch satellites
into space, thus from the moment they have been launched, long operational time is
expected. Space environment is also extremely harsh. There are extreme temperatures,
and external environmental conditions such as radiation. Human intervention is something
that is rarely done due to the nature of the environment. Therefore, as previously stated,
once a satellite is in space it must continue to work for the desired lifespan.

Satellites often use pointing mechanisms to ensure that data is sent, or received in the
correct direction, or to direct solar arrays towards the sun. Most of KDA’s space
applications are equipped with a position censor to read actual pointing position, however
the only solution KDA has integrated is a potentiometer design. This design reads actual
position of e.g. solar array by having parts that are continuously in contact. KDA is
looking for an alternative to the potentiometer design with extremely high accuracy, high
repeatability, and high reliability. To verify this, a test station shall also be developed.

The sensor system shall detect a position on a rotational axis and consist of one stationary
part and one rotating part. The sensor detects a change in frequency which correlates to a
specific angle. The change in frequency occurs in a LC oscillator. A rotor affects the
component value in the stationary LC oscillator by rotating over it without being in
contact, thus making it a contactless position sensor.

The entire system consist of four main subsystems depicted in figure 1. Oscillator, test
station, counter circuit, and coherent software.

Figure 1: Subsystem overview

The frequency value is generated and changed in the oscillator. The counter circuit
consists of a Schmitt trigger and a binary counter. The Schmitt trigger transforms the
sinusoidal wave to a square wave which then triggers the counter. The counter deals with
square waves better than with sinusoidal waves, and counts the frequency. The test station
makes sure the sensor can be tested properly under various conditions. The software
controls the stepper motor and makes sure the counted values are stored.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 2 of 389

2 Project description

2.1 Document history

Table 1: Project description document history

Version Date Author Description

1.0.0 18.01.2019 MBC Document created, added abstract, added project
background.

1.1.0 21.01.2019 MBC Added Kongsberg Defence & Aerospace, stakeholders
and group information.

1.2.0 22.01.2019 MBC Added project hierarchy, stakeholder requirements
and task summary.

1.2.1 24.01.2019 JSS Document review.

1.3.0 25.01.2019 MBC, AR Changed project description document history table,
added project goal, corrected error in organisation
map.

1.3.1 25.01.2019 AR Changed abstract to introduction.

1.3.2 24.03.2019 JSS Added paragraph in project background.

1.3.3 24.03.2019 AR Fixed a spacing issue.

1.4.0 25.03.2019 MBC Added updated Gantt chart.

1.5.0 12.05.2019 MBC Added final Gantt chart.

1.5.1 17.05.2019 MBC Proofread.

1.5.2 19.05.2019 AR Changed Kongsberg Defence & Aerospace to KDA.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 3 of 389

2.2 Introduction

This section will explain the reason for the task as well as information about the different
stakeholders that are involved in the project. This is important to assure stakeholders that
the task is understood, as well as assuring that the process is done correctly.

2.3 Project background

The project is based on creating a contactless positioning sensor that can replace today’s
potentiometer solution. A test station shall be developed to validate the crucial criteria
that the CPS need to pass for it to be used in space.

2.4 Kongsberg Defence & Aerospace

Kongsberg Defence & Aerospace (KDA) is a large company with many subsidiaries. Their
portfolio consists of surveillance and control of weapon-systems, missiles and
communications systems, and systems for command and control. KDA is Norway’s premier
supplier of defence and aerospace-related systems [27], and in December 2018 KDA
acquired a number of contracts worth 805 MNOK [31].

Kongsberg Space & Surveillance (KSS) is a subsidiary that delivers vast selection of
equipment related to maritime and space surveillance. This includes components and
equipment for the European heavy-lift launcher Ariane 5, scientific probes, surveillance
satellites and observation-satellites. KSS is world leading in supplying ground stations for
satellites, observation and scientific probes. KSS is also a provider of maritime domain
awareness systems and control centers. KSS is Norway’s largest supplier of equipment and
services to the European Space Agency (ESA) [26].

2.5 Project tasks and goals

Based on already existing solutions that read actual pointing position of different
equipment, KDA is interested in a system with an even lower possibility of malfunction.
The CPS team has therefore specified primary, and secondary project goal with purpose to
meet the requirements.

2.5.1 Primary goals:

• Trough analysis and review, make a functional contactless position sensor.

• Make a test station that can measure and log data about the angle of degree.

2.5.2 Secondary goals

• Test the sensor, and evaluate how it meets the different requirements given, such as
operation in extreme thermal conditions, vibrations resistance, how external
homogeneous magnetic fields affect the sensor.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 4 of 389

2.6 Project Stakeholders

2.6.1 Stakeholder

A stakeholder is anyone with an interest or concern in the project. The stakeholders can
affect the project, as well as be affected by it. One can often divide into several categories
of stakeholders, and for this project scope there are two main categories. Primary and
secondary stakeholders.

2.6.2 Primary stakeholders

The primary stakeholders for the CPS 2019 project are:

• University of Southeast-Norway (USN). USN have their own set of academic
requirements for student thesis, such as documentation, literature with scientific
standards, presentations and project planning. USN is therefore considered a primary
stakeholder for this project.

• KDA. KDA is the main employer of this project and therefore a primary stakeholder

• Contactless Position Sensor team. The CPS team is the group to research and
develop the project and therefore a primary stakeholder.

• External censor and advisor. The external censor and external advisor have influence
over the product, the process and the grade setting and therefore a primary
stakeholder.

• Internal censor and advisor. The internal censor and advisor both have influence over
the grading and the process of the project and is therefore considered a primary
stakeholder.

2.6.3 Secondary stakeholders

The secondary stakeholders for CPS 2019 project are:

• Vendors and suppliers. Different vendors and suppliers of equipment, material,
components have an indirect relation to the project and are therefore considered a
secondary stakeholder.

• Customers of KDA. The customers of KDA also have indirect relations to the project
and is therefore considered a secondary stakeholder.

2.6.4 Stakeholder requirements

Each primary stakeholder has a set of goals they want to achieve from the CPS 2019
project. While USN focuses more on the process of the project, KDA focuses more on the
technical solution.
University of Southeast-Norway:

• Project process

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 5 of 389

• Project model

• Project documentation

– Research

– Requirement Specification

– Project plan

– Risk

– Concept study

– Design description

– Test plan

– Test procedures

– Test reports

– Scientific standard

• Project presentations

– Presentation 1 - introduction to the project

– Presentation 2 - current progress and remaining tasks

– Presentation 3 - sale pitch and technical presentation

• Project product

Kongsberg Defence & Aerospace:

• Establish system requirements

• Develop, manufacture and test a contactless position sensor with the necessary
hardware, software and documentation

• Develop a test station with a convenient user interface to perform functional testing
and calibration of the sensor

• The sensor shall have the same mechanical interface as the position sensor used by
KONGSBERG today

• Verification of requirements shall happen through reviews, analysis and testing

• Documentation

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 6 of 389

2.7 Project hierarchy

The project is to be executed by 5 engineering students from University of South-Norway.
They have been assigned one advisor and one censor from KDA. The project team has also
been assigned one advisor and one censor from the University of Southeast-Norway.

Figure 2: Project organisation map

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 7 of 389

2.7.1 Contactless Position Sensor project team

The engineering students come from three different disciplines. There are two electrical
engineering students, two computer engineering students, and one mechanical engineering
student. They are all in their last year of their bachelors degree and this project is their
main thesis.

Anders Rønning
Electrical engineering
Product Owner
Phone: +47 452 52 178
Email: anders.ronning94@gmail.com

Hans Fredrik Jamtveit
Electrical engineering
Scrum Master
Phone: +47 924 30 598
Email: hans fredrik jam@hotmail.com

Magnus Berntsen Caro
Computer engineering
Developer
Phone: +47 480 23 353
Email: magnus.caro@outlook.com

Jarand Solberg Strømmen
Computer engineering
Developer
Phone: +47 934 62 615
Email: jarand ss@hotmail.com

Henrik Sæter
Mechanical engineering
Developer
Phone: +47 954 69 340
Email: henrik.saeter@hotmail.com

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 8 of 389

2.7.2 University of Southeast-Norway

The University of Southeast-Norway have provided the project with a censor and an
advisor.

The internal censor task is to censor all of the bachelor projects. The internal censor is also
to take part in a panel of 3 individuals that decide the individual grade of the project team
members. The internal censor must be present at all three presentations by the project
group.

The internal advisor task is to guide and support the students during the execution of the
project. The internal advisor is also a part of a panel of three persons who decides the
individual grade of the project
team members. The internal advisor must be present at all three presentations by the group.

Karoline Moholth
Internal censor
Phone: +47 310 08 898
Email: Karoline.Moholth@usn.no

Sigmund Gudvangen
Internal advisor
Phone: +47 310 08 905
Email: Sigmund.Gudvangen@usn.no

2.7.3 Kongsberg Defence & Aerospace

KDA shall provide the project team with an external censor and an external advisor.

The external censor task is to censor the bachelor project, and take part in a panel of three
persons that decide the individual grade of the project team members. The external censor
must be present at all three presentations by the project team.

The external advisor tasks are split into two parts. Firstly, the external advisor represent
the client and is therefore a customer. Secondly the external advisor is responsible to make
sure that the necessary resources from KDA are available for the project group. This
includes equipment/software, and information/guidance.

Aage Veljgaard
External censor
Phone: +47 975 74 979

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 9 of 389

Email: aage.soerensen@kongsberg.com

Stian Laugerud
External advisor
Phone: +47 472 38 500
Email: stian.laugerud@kongsberg.com

2.8 Project timeline

The project timeline starts at the first of January 2019 and ends when the third
presentation is finished tentatively mid June. The team has created an estimate of the
sprints from start to finish. Sprints are explained in section 3.6.1. This estimate will most
likely change as problems arises and experience is gained. The points at the bottom of the
figure shows a preliminary estimate of important project aspects. This chart will change as
the team focuses on having an agile project. The end of the project is when the grade is set
on the June 14.

Figure 3: Initial project Gantt chart part 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 10 of 389

Figure 4: Initial project Gantt chart part 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 11 of 389

2.9 Updated project timeline

As mentioned in section 2.8 the initial Gantt chart was prone to changes. The Gantt chart
has been updated and is illustrated in figure 5 and figure 6 During Sprint 6 the CPS team
discovered that the Scrum Events Sprint Review and Sprint Retrospective was more time
consuming than rewarding so the team decided to prolong the Sprints by one week. This
meaning that the Sprints would be 2 weeks until the middle of Easter whereas the Sprints
will go back to one-week Sprints. Other changes are minor ones such as the date for
presentation 2 and the end of the project which is now set to the date of the last
presentation. The date for the last presentation will also change one last time whereas that
date is set by USN.

Figure 5: Updated project Gantt chart part 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 12 of 389

Figure 6: Updated project Gantt chart part 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 13 of 389

2.10 Final project timeline

The final project timeline is illustrated in figure 7 and figure 8. After 22.04.19, the sprints
were to be shortened to down to one week each. This however was not done as the CPS
team was comfortable with the achievements and the dynamic of having two week sprints.

New milestones have been added and they are; The date the CPS team received the
printed circuits board ordered, and the mechanical test station. This allowed for testing
and drove the project further towards its end goal.

Overall, the project plan was predicted fairly precise, except from minor change. These
changes were presentation dates changing, and prolonging of sprints. Predicting this
accurate was possible due to the agile approach, enabled by using Scrum as a project
model. The CPS team was able to adapt the Scrum methodology in a way that benefited
the team.

Figure 7: Final project Gantt chart part 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 14 of 389

Figure 8: final project Gantt chart part 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 15 of 389

3 Scrum

3.1 Document history

Table 2: Scrum document history

Version Date Author Description

1.0.1 18.01.2019 HFJ Added Scrum.

1.1.1 23.01.2019 HS Document reviewed.

1.1.2 25.01.2019 AR Changed abstract to introduction.

1.1.3 17.05.2019 MBC Proofread.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 16 of 389

3.2 Introduction

This section will explain the different Scrum values, roles, artefacts, events, and the
approach to Scrum from the CPS team.

3.3 Scrum values

The Scrum values for the CPS team will aid to collaborate efficiently and achieve a
common goal. A proficient use of these values will help the team grow as engineers. [63]

Figure 9: Scrum values [47]

3.3.1 Courage

The CPS team members will do the right thing and try to accomplish tasks that are
challenging, even if they are uncertain on how to proceed. Courage also involves asking for
input or help from other members of the CPS team, as well as from the advisors.

3.3.2 Focus

The CPS team members will focus on the tasks at hand in each Sprint to not waste time
on unnecessary discussions and events. By using strict timeboxes that Scrum is based on,
this will be achieved.

3.3.3 Commitment

The CPS team members will commit to doing their best to be able to get the best possible
outcome of the project. Commitment to the tasks set in the Sprint Backlog will be
important to get a stable process in the project.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 17 of 389

3.3.4 Respect

The CPS team members will respect each other as their own equal to avoid conflict within
the team. Respecting the stakeholders is a given, but all the more important, for the CPS
team.

3.3.5 Openness

The CPS team will be open on all documentation and actions along the project so that
stakeholders will have a complete view of how the project evolves and also the challenges
along the way. This will add to the transparency of the project as well as trust in the CPS
team.

3.4 Scrum roles

Opposed to other project models Scrum only has a limited set of roles.

3.4.1 Scrum Master

The Scrum Master role in Scrum is to ensure and/or enforce a correct Scrum methodology.
This role also makes sure that everyone in the team understand Scrum theory and
practices it.

The Scrum Master takes part in the Sprint Retrospective Meetings to make sure
everything is done in the predetermined timebox, as well as making sure that every
member of the team is staying on topic. The Scrum Master is not supposed to take part in
this event himself, but only make sure Scrum theory is followed. This is however something
that every Scrum team needs to figure out what is best for themselves.

3.4.2 Product Owner

The Product Owner is responsible to make sure the Developer Team can maximise their
efficiency so that work can move on. This is achieved through the Product Backlog. The
Product Owner is responsible to make backlog items clear and described to the level
needed for the team to understand it.

The Product Owner is also responsible for ordering all equipment so the team can continue
to work and not be hindered by lack of equipment in the project.

3.4.3 Developer Team

The Developer Team consist of people who are working on the tasks on the Sprint board.
It is their duty to always have an assigned task if there are incomplete tasks in the Sprint
Backlog. This requires that the team is self-driven.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 18 of 389

3.5 Scrum Artefacts

Scrum has something called artefacts and these are the Product Backlog, Sprint Backlog
and Increment. They make the key information, regarding the value or work, transparent
to the Scrum team. Having Scrum artefacts the team gains a common understanding of
the work, values and goals.

3.5.1 Product Backlog

Product Backlog is a list that contain every requirement, function and ability the product
shall have. Early in the project the Product Backlog might not contain more than the
upper level requirements, but as the project progresses the Product Backlog increases in
size as requirements are broken down to smaller requirements.

Items in the Product Backlog is called Product Backlog Items (PBI’s). Requirements,
scenarios regarding the product and the market is likely to change during the project. This
will make changes in the Product Backlog necessary. PBIs often start of as high-level
requirements displayed as User Stories. As the project progresses the Product Owner
cooperate with the Development Team in refining the Backlog and breaking down the PBIs
to more manageable size items. The Product Owner is the sole person responsible for
keeping the Product Backlog in good condition. This is done by prioritising the items,
refining existing items and adding new ones. [36]

3.5.2 Sprint Backlog

Sprint Backlog is an Artefact that is created at the start of every Sprint. The Scrum Team
conducts the Sprint Planning, the product of this event is the Sprint Backlog. The Sprint
Backlog consist of PBIs that are broken down to functional tasks by the Development
Team. The Sprint Backlog is constructed to accomplish the Sprint Goals. Sprint Goals are
defined by the top PBIs. As the Development Team works through the Sprint Backlog and
completes task, they may discover that some task is unnecessary or that they have to add
task to the Sprint Backlog to reach the Sprint Goals. Changes in the Sprint Backlog can
only be done by the Development Team. [36]

3.5.3 Increment

An Increment is a product of the Scrum Team’s work in the Sprint. The Increment must
be something that is testable, usable, and meets the team’s definition of Done. It is ready
to be set into production, and is a small steps towards the vision and goal of Scrum Team.

3.6 Scrum Events

The Sprint is the main event in Scrum. All the other events are subevents of the Sprint.
The purpose of the Scrum Events is to inspect and adapt the different aspects of the Scrum
Team’s working process. Scrum Events are designed to increase the value of meetings
throughout the process. Time boxes are used on every event to ensure that the team uses

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 19 of 389

the events effectively. Inspection and transparency are fundamental in Scrum projects, the
events make the Scrum team able to be transparent and inspect their work and process
and make the necessary adaptations. Lack of implementation of any of the Scrum Events
effect the transparency and the teams ability to inspect and adapt their process. [36]

3.6.1 Sprint

A Sprint is a timeboxed iterative event where the team have Scrum Events and do
development work. Each Sprint contain the Sprint Planning, Daily Scrum, the
Development work, Sprint Review and the Sprint Retrospective. The timebox for a sprint
should not exceed one calendar month. The goal of a Sprint is to have a Done, potentially
releasable product Increment coherent with the Sprint Goal set by the Product Owner and
Development Team in the Sprint Planning Event. During the Sprint there should not be
made any changes in the Sprint Backlog that would decrease the ability of the
Development Team to reach the Sprint Goal. [36]

3.6.2 Sprint Planning

The Sprint Planning is a Scrum Event that that is led by the Product Owner and
facilitated by the Scrum Master but the whole Scrum Team participate in the event. The
Product Owner and the Development Team negotiate the Sprint Goals that should be the
product Increment of the Sprint. The Sprint Planning can be divided into two parts. The
first half of the event should be used by the Development Team to decide which Product
Backlog Items that should be included in the Sprint Backlog to ensure that the Sprint
Goals is accomplished. The PBIs are already prioritised during the Backlog Refinement.
The PBIs are often formulated as user stories. Because of this the second half of the Sprint
Planning should be used by the Development Team to break down the PBIs into tasks that
have to be accomplished to meet the Sprint Goals. [36]

3.6.3 Daily Scrum

Daily Scrum is a stand-up meeting. This is a 15-minute timeboxed event to create a plan
for the next 24-hours. This is done by inspecting the work done since the last Daily Scrum,
preferably held in the same location and at the same time each day. Time of day is ideally
in the morning as this helps setting an image of the day’s coming work. Only the
Development Team members should attend the Daily Scrum meeting, as they are the ones
who own the Sprint Backlog and are responsible to organise the work independently. Each
member of the team will explain these points:

• What did I do yesterday that helped the Development Team meet the Sprint Goal?

• What will I do today to help the Development Team meet the Sprint Goal?

• Do I see any impediment that prevent me or the development team from meeting the
Sprint Goal?

When the Daily Scrum has ended, the Development Team gathers and creates a detailed
plan for the rest of the day using the information shared in the Daily Scrum. The main

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 20 of 389

purpose of the Daily Scrum is to optimise the collaboration in the Development Team and
increase the probability of meeting the Sprint Goal. [36]

3.6.4 Sprint Review

A Sprint Review is held at the end of each Sprint. The Scrum Master makes sure everyone
included in the meeting understands the purpose and keeps within the time-box. The time
varies based on the Sprint length. The Increment is reviewed, and the Product Backlog
may be adapted. During the review the Scrum team and the key stakeholders collaborate
on what was done in the Sprint. During the Sprint Review the Scrum team has the
opportunity to get an honest feedback on the Increment of their product from the
stakeholders. Transparency is key in this meeting. The stakeholders should get the truth of
how the team is progressing and if the team is producing any business value. This is
essential in terms of getting feedback and the Scrum team can use it in order to inspect
and adapt their product Increment. This is done in order to meet the expectation of the
stakeholder. This is not a formal meeting or a status meeting. [49] [20]

Elements included in the Sprint Review:

• Attendees include the Scrum Team and key stakeholders invited by the Product
Owner;

• The Product Owner explains what Product Backlog items have been “Done” and
what has not been “Done”;

• The Development Team discusses what went well during the Sprint, what problems it
ran into, and how those problems were solved, or not solved;

• The Development Team demonstrates the work that it has “Done” and answers
questions about the Increment;

• The Product Owner discusses the Product Backlog as it stands. He or she projects
likely target and delivery dates based on progress to date (if needed);

• The entire group collaborates on what to do next, so that the Sprint Review provides
valuable input to subsequent Sprint Planning;

• Review of how the marketplace or potential use of the product might have changed
what is the most valuable thing to do next;

• Review of the time line, budget, potential capabilities, and marketplace for the next
anticipated releases of functionality and capability of the product.

3.6.5 Sprint Retrospective

Sprint Retrospective is a Scrum Event where the Scrum Team inspects itself. Every
member of the Scrum Team should participate in this event. The Scrum Master encourages
the team to make improvements to the development process. Such as making the process
more efficient and increase the quality by enhancing the work process. The team should

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 21 of 389

construct simple and specific procedures that should be adapted in order to achieve the
desired work process. The Sprint Retrospective gives every member of the Development
Team the possibility to give feedback on what prevents the team form working at its full
potential, and how to continue doing the things that make the team prosper. The event
takes place after the Sprint Review and prior to the next Sprint Planning.

A typical model for the Sprint Retrospective should include [48]:

• What went well in the Sprint

• What could be improved

• What will we commit to improve the next Sprint?

3.7 Definition of Done

In Scrum an important keyword is Definition of Done. The Definition of Done is a product
that can potentially be sent to the customer. With “potentially product” it means
something that can give value to the company, but not a 100% complete product. [35]

The Definition of Done is something every Scrum Team can in some degree change and fit
to their team and their goal. [37]

3.8 CPS approach to Scrum

3.8.1 Sprint

For the CPS team the duration of the Sprint has been set to one to two weeks due to the
time span of the entire project. One week in the early part of the project with the ability
to extend the Sprint duration to two weeks when project becomes more technical. The
CPS team starts off a Sprint on Fridays. In time for the Sprint Planning event the CPS
team has Refined the Product Backlog. From Friday to Thursday the team do development
work. The end of Thursday is used for Sprint Review and Sprint Retrospective.

3.8.2 Sprint Planning

Due to the setup of the CPS team both the Product manager and the Scrum Master will
participate as a Development Team member during the Sprint Planning.

3.8.3 Daily Scrum

During the CPS team’s Daily Scrum meeting the Scrum Master and Product Owner will
also participate because they also hold the roles as Development Team members. The
Scrum Master will ensure the time-box is kept and that the structure of the event is
according to the Scrum template.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 22 of 389

3.8.4 Sprint Retrospective

The CPS team conduct the Sprint Retrospective as the last event of the Sprint. The
Scrum Master organizes the event. The centre of the event is a whiteboard that is divided
into 3 sections, +, -, and ?. The team writes comments of sticky notes and places the notes
in one of the 3 sections. Plus section is for comments on what the team is good at. Minus
section is for comments on issues the team have and that they should improve. Question
mark section is for solutions to how the team can improve.

3.8.5 Definition of Done

In the CPS team the Definition of Done is not a potentially shippable product, but rather
an Increment towards the end goal and vision of the project. This is something that gives
value to the team’s end result.

Before something is consider Done it needs to be proofread by another team member. This
is an important step to minimize the risk for needing to redo a task. This also helps the
team to make a unified end document.

3.8.6 Online tool

The CPS team decided to use an online tool to help with organising Scrum. The decision
of an online tool was done early in Sprint 1. The process of picking the right online tool for
the team was to look into different sites that all advertised as a “Agile and Scrum tool”.

The decision ended on Asana. The reason behind the choice was positive reviews and that
it seemed intuitive to use. Asana is helping the CPS team to make an online backlog and a
place to leave daily reminders and notes for the team members.

If done correctly Asana is also making a time line over all task that is marked as Done and
sets a time stamp on it. Asana will automatically log every action done with every task so
that the team knows who created the task and when it was last edited. This can be used
by the team to make an Increment of all progression after every Sprint.

3.8.7 Roles

Since this is a bachelor thesis and we cannot have daily meetings with the KDA, one in the
team is needed to take the role as Product Owner. This is not standard procedure. It is
more common to have one person from the company to be the Product Owner.

The team only consists of 5 people and one aspect of the grading is how the team works
during the project process. The team has therefore decided to make some small
adjustments to the Scrum approach. The Scrum Master and Product Owner will be a part
of the Scrum Team. Instead of the Scrum Master making sure things were done correctly
on Retrospective and Daily Scrum meeting. The Scrum Master also needs to take part as a
Developer under those meetings.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 23 of 389

This was done so everyone on the CPS team had a voice on how they feel things are. This
is important for the group so everyone can express their opinion. This ties in with the
Scrum values explained earlier.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 24 of 389

4 Work routines

4.1 Document history

Table 3: Work routines document history

Version Date Author Description

1.0.0 15.01.2019 MBC Document created.

1.1.0 16.01.2019 MBC Document fix.

1.1.1 24.01.2019 JSS Document review.

1.1.2 25.01.2019 AR Changed abstract to introduction.

1.1.3 17.05.2019 MBC Proofread.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 25 of 389

4.2 Introduction

This chapter will explain the work routines agreed upon by the team. The document will
work as a guideline for each team member and a quality assurance for the team.

4.3 Asana

The team will use the project management tool Asana. This is an Agile project
management tool that will aid the team in maintaining a correct framework for this project.

4.3.1 Asana routines

1. Asana will be the main source for the project management.

2. During the sprint planning the team shall enter/edit the product backlog in Asana.

3. All tasks shall be entered in Asana and given a weight and importance.

4. Once a task has been taken by a team member, the start and due date for this task
shall be entered.

5. Once a task is finished it shall be moved to the review section.

6. A team member can only work on a maximum of 2 tasks at the time.

7. A team member cannot review their own work.

4.4 General work

These are the guidelines for taking breaks and working during the project.

4.4.1 Work hours and breaks

1. The work hours starts at an agreed upon time. This time is 09:00.

2. The team member administrates their own breaks. These breaks shall be fair and if
they exceed 15 minutes for regular breaks, or 30 minutes for lunch breaks, they shall
be deducted from the hour tracking.

3. Each team member shall track his work hours at the end of each day. This tracking
shall be fair, and the team member shall not lie about the hours worked.

4. Work breaks and lunch is included as work hours. As long as they do not exceed the
agreed upon amount of time, if they do they shall be deducted from the hour
tracking.

4.5 Meetings and presentation

There are guidelines for meeting with external client and internal advisor.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 26 of 389

4.5.1 Meetings

1. Each team member shall be dressed appropriately for meetings with both the
external client and the internal advisor.

2. Before each meeting a formal invitation shall be sent from the team to the
participants at least 2 workdays ahead of the meeting.

3. For each meeting, a team member shall be a notary.

4. After each meeting a formal meeting abstract shall be sent to all participants within
24 hours of the meeting.

4.5.2 Presentations

1. Each team member shall be dressed appropriately for presentations.

2. Each team member shall be prepared and show up at an appropriate time before
presentations.

3. The current documentation shall be sent to internal sensor, internal advisor, external
sensor and external advisor at least 2 workdays before the presentation.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 27 of 389

5 Risk management

5.1 Document history

Table 4: Risk management document history

Version Date Author Description

1.0.0 18.01.2019 JSS Document created.

1.1.0 18.01.2019 JSS First review.

1.2.0 20.01.2019 JSS Formatting, wrote introduction and abstract.

1.3.0 21.01.2019 JSS Second review, fixed risk analysis points, wrote risk
matrix

1.3.2 25.01.2019 AR Changed abstract to introduction.

2.0.0 20.03.2019 JSS Changed to risk analysis iteration 3.

3.0.0 09.05.2019 JSS Changed to risk analysis iteration 4.

3.0.1 17.05.2019 MBC Proofread.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 28 of 389

5.2 Introduction

This chapter contains the iterations of risk analysis for the CPS team and our mitigation
plan. The risks have been re-evaluated throughout the project.

Risk management is important to foresee possible complications to the project. By setting
up a detailed risk analysis the CPS team will be able to respond quickly and reduce the
risk of impeding the progress of the project.

The CPS team chose to include risk management as a measurement to increase the
possibility to accomplish the project within the time span. Scrum as an agile management
model does not have a set meaning on the use of risk analysis. Effectively under Sprint
planning and Sprint review the CPS team will assess the backlog items and give them a
weight where the risk of not accomplishing the task is considered. This will help the CPS
team mitigate the risks as the project progresses. The risk analysis will be re-evaluated
throughout the project to track change in risks, as well as to add in additional ones that
are discovered.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 29 of 389

5.3 Risk matrix

The risk matrix is used to calculate the level of risks. Probability is the chance of
occurrence, and severance is the impact it has on the project. The risk level is the
multiplication of the probability and the severity, and it signifies the total impact of a risk
on the project.

Table 5: Risk matrix

Table 6: Probability and severity levels

Level Probability Chance of occurence Level Severity
5 Almost certain 80 - 100% 5 Critical
4 Very likely 60 - 80% 4 Severe
3 Likely 40 - 60% 3 Moderate
2 Highly unlikely 20 - 40% 2 Minor
1 Not likely 0 - 20% 1 Minimal

Table 7: Color code description

Color Description
Minimal risk
Low risk
Moderate risk
High risk
Very high risk
Critical risk

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 30 of 389

5.4 Changes in risk analysis

This section will list the changes done to the risk analysis between the period of the third
iteration(20.03.2019) and the fourth iteration(1.05.2019). All iterations can be found in
section 28

Table 8: Changes done in risk analysis

Risk ID Column changed Type of change
R1.1.2 Mitigating action done Added
R1.2.1 Severity Updated
R1.2.3 Probability, Mitigating action done Updated, Added
R1.3.1.2 Mitigating action done Added
R1.3.1.4 Mitigating action done Added
R1.3.2 Mitigating action done Added
R2.1.1 Probability, Severity Updated
R2.3.1 Mitigating action done Added
R2.3.2 Mitigating action done Added
R2.4 Probability, Severity Updated
R2.5 Mitigating action done Added
R3.1.2 All New risk added
R3.1.3 ID, Risk, Description Changed, fixed typo
R3.2 Severity Updated
R3.3 Probability, Severity Updated
R3.4 Probability, Severity Updated

5.5 Comparison of iterations

Here is the changes in risk level within the three different categories of risks:

Table 9: Management risks

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 31 of 389

5.6 Risk analysis iteration 4

5.6.1 Hardware risks:

Table 10: Hardware risks page 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 32 of 389

Table 11: Hardware risks page 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 33 of 389

5.6.2 Human risks:

Table 12: Human risks page 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 34 of 389

Table 13: Human risks page 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 35 of 389

5.6.3 Management risks:

Table 14: Management risks

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 36 of 389

6 Stakeholder requirements

6.1 Document history

Table 15: Stakeholder requirements document history

Version Date Author Description

1.0.0 22.01.2019 HS Document created, added Stakeholder Requirements
template 6.3 and requirements 6.4.

1.0.1 18.01.2019 AR Small format change.

1.1.0 25.01.2019 MBC Changed project description document history table.

1.1.1 25.01.2019 AR Changed Abstract to introduction.

1.2.1 22.03.2019 JS updated requirements.

1.2.2 17.05.2019 MBC Proofread.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 37 of 389

6.2 Introduction

This chapter will introduce the requirements for the project given by KDA.

The CPS team decided to name the requirements given from KDA stakeholder
requirements. This makes it easier to keep track of the main requirements and have
traceability back to them as the project proceeds.

The template for the Stakeholder requirements will include two columns.

• STRQ. ID, the Stakeholder Requirement ID.

• Requirement, a description of the requirement.

Table 16: Stakeholder requirement template

STRQ. ID Requirement

X.X. The system shall ...

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 38 of 389

6.3 Stakeholder requirement specification

Table 17: Stakeholder requirement specification 1/2

STRQ. ID Requirement

1.1 The new sensor shall be a contactless position sensor

1.2 The system shall have continuous position adjustability

1.3 The system shall have a linearity of ± 0.05% today

1.4 The system shall have a repeatability on 0.001 degrees

1.5 The system shall weigh less than 100 grams

1.6
The sensor shall endure vibrations: sine vibration 30g
@ 5-100 Hz, random vibration 25 GRMS @ 20-2000 Hz

1.7
The system shall handle operational temperatures be-
tween -80°C and +120°C

1.8 The sensor shall have a redundant design

1.9
The sensor shall show no degradation in performance
due to variation in homogenic magnetic fields

1.10
The position sensor shall based on change in frequency
provide an accurate and analogue position value

1.11
The system shall use LC oscillators to generate fre-
quency

1.12
The CPS shall have the same mechanical interface as
the potentiometer currently in use

1.13
Spacing between stator and rotor vs pointing error shall
be characterised from 0.5mm to 3mm in order to evalu-
ate the limitations of the sensor

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 39 of 389

Table 18: Stakeholder requirement specification 2/2

STRQ. ID Requirement

1.14 Copper thickness of PCB shall be 17, 35 or 70 µm

1.15 Number of copper layers in PCB shall be ≤ 20

1.16
Minimum insulation distance on all layers in PCB shall
be > 120 µm

1.17 Distance between track and PCB edge > 0.7mm

1.18 Distance between screw hole and PCB edge > 1.0mm

1.19
The test station shall trough a graphical user interface
be able to show change in angle[°] and speed [°/s]

1.20
The test station shall log the results of a test in a format
which enables for extraction at a later time (all param-
eters and settings shall be included in the log file)

1.21
The following parameters shall be adjustable; step
mode(full, half, 32, 64 and 128), current, distance, dis-
tance, speed and acceleration

1.22

The test station shall include a <<Motor enable>> fea-
ture for activating the motor bridge (when this mode is
activated, the motor shall be in hold mode with the
specified current)

1.23
The test station shall include a <<Run>>feature for
allowing the motor to start rotating.

1.24 The test station shall have an accuracy of 0.01 degree.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 40 of 389

7 Requirements

7.1 Document history

Table 19: Requirements document history

Version Date Author Description

1.0.0 17.01.2019 HS Document created, added descriptions, priority-
and verification tables, 7.3.

1.0.1 18.01.2019 AR Small format change.

1.1.0 24.01.2019 HFJ Added section 4 & 5.

1.2.1 25.01.2019 MBC Changed project Requirements document history
table.

1.2.2 25.01.2019 AR Changed Abstract to introduction.

1.3.0 22.03.2019 JSS Added new nonfunctional requirements.

1.3.1 26.03.2019 MBC & HS Proofread and grammar correction.

1.3.2 17.05.2019 MBC Proofread.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 41 of 389

7.2 Introduction

In this chapter the CPS team, in collaboration with KDA, has specified the requirements
needed in this project. Requirements are formulated to give a better understanding of
what the system should include, and help achieve a better end result. The list of
requirements will be updated through the course of the project. To clarify the importance
of each requirement, the CPS team has decided to give each requirement a priority shown
in the table below.

Table 20: Requirement priority

A The requirement must be fulfilled to achieve an operational system
B The requirement should be fulfilled
C The requirement can be fulfilled

The requirements will undergo a verification process. Verification criterion needs
to be fulfilled for a requirement to be met. Methods of verification is shown in the table below.

Table 21: Verification criteria

T Verification by test
A Verification by analysis
R Verification by review of design

Each requirement will have a compliance status. If a requirement has not yet been
evaluated the status is set to ”Pending” If a method of verification is failed during
evaluation the status is set to ”Failed”. A requirement with the verification ID ”T.A.R.”
only need to be verified through one of the verification methods to be set as ”Verified”.
This means the given requirement has been met.

The requirements will have an individual requirement ID. The Req. ID will have a link
back to the wants and need of KDA. The CPS team has decided to include a table for each
requirement divided by seven columns. STRQ, the ID of the stakeholder requirement given
by KDA. Req. ID, including a requirement number with traceability to the Want/need,
and an abbreviation for the verification method. Requirement, describing the requirement.
”Pri.”, a letter given the priority of the requirement. Origin, an indication of who identified
the requirement. ”Evaluation”, referring to a test ID, analysis document or a design review
document. Status, a column for compliance status, ”Pending”, ”Verified” or ”Not verified”

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 42 of 389

Table 22: System requirement template

STRQ Req. ID Requirement Pri. Origin Evaluation Status

1.1
1.1.1
T.A.R.

The system shall... X XXX T. 1.1.1 Pending

7.3 System requirements

Correct and accurate system requirements is crucial to the success of any project. Having a
structured and systematic method of collecting, analysing and verifying stakeholder
requirements is necessary to develop the product the costumer wants. System requirements
is divided into functional and non-functional requirements. Functional requirements define
tasks a system should perform. Non-functional requirements define how the task shall be
performed.

When using Scrum as a project model the system requirement may be depicted as user
stories. User stories shall describe every function and ability that the system is to have.
The user stories by itself does not define the requirement in detail, but it contain enough
information to derive the requirements. In addition to describing the functions of the
system the user stories should have an acceptance criterion to help the development team
know when the user story is completed. Requirements may be delivered in the form of use
cases from the stakeholder. This is to prevent misunderstanding of the requirements. [22]

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 43 of 389

7.4 Requirement specification

7.4.1 Functional requirements

Table 23: Functional requirements

STRQ Req. ID Requirement Pri. Origin Evaluation Status

1.1 1.1.1 T.R.
The new sensor shall be a
contactless position sensor

A KDA
Design
review

Verified

1.2 1.2.1 T.R.
The CPS shall detect posi-
tion on continuously rotat-
ing mechanism

A KDA
Design
review

Verified

1.10 1.10.1 T.

The CPS shall based on
change in frequency provide
an accurate and analogue
position value

A KDA
Sub-T-
2.0.0,
Sub-T-4.0.0

Verified

1.11 1.11.1 T.R.
LC oscillators shall be used
to generate the frequency in
the CPS

A KDA
Design
review

Verified

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 44 of 389

7.4.2 Non-functional requirements

Table 24: Non-functional requirements

0
STRQ

Req. ID Requirement Pri. Origin Evaluation Status

1.3 1.3.1 T.R.
The linearity of the CPS
shall be ± 0.05 %

A KDA
Not
specified

Pending

1.4 1.4.1 T.
The CPS shall have a re-
peatability of 0.01° A KDA

Not
specified

Pending

1.5 1.5.1 T.A.
Weight of the CPS shall not
exceed 100 grams

A KDA
Not
specified

Pending

1.6 1.6.1 A.

The sensor shall endure vi-
brations: sine vibration 30g
@ 5-100 Hz, random vibra-
tion 25 GRMS @ 20-2000
Hz(To be considered. Test-
ing not required)

C KDA
Not
specified

Pending

1.7 1.7.1 T.
The system shall handle op-
erational temperatures be-
tween -80 °C and +120 °C

B KDA
Not
specified

Pending

1.8 1.8.1 A.R.
The sensor shall have a re-
dundant design

A KDA
Design
review

Verified

1.9 1.9.1 T.A.

The sensor shall show no
degradation in performance
due to variation in ho-
mogenic magnetic fields

A KDA
Not
specified

Pending

1.12 1.12.1 R.

The CPS shall have the
same mechanical interface
as the potentiometer cur-
rently in use

A KDA
Design
review

Verified

1.13
1.13.1
T.A.R.

Spacing between stator
and rotor vs pointing error
shall be characterised from
0.5mm to 3mm in order to
evaluate the limitations of
the sensor

A KDA
Design
review

Verified

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 45 of 389

Table 25: Non-functional requirements

STRQ Req. ID Requirement Pri. Origin Evaluation Status

1.14 1.14.1 R
Copper thickness of PCB
shall be 17, 35 or 70 µm

A KDA
Design
review

Verified

1.15 1.15.1 R
Number of copper layers in
PCB shall be ≤ 20

A KDA
Design
review

Verified

1.16 1.16.1 R
Minimum insulation dis-
tance on all layers in PCB
shall be > 120 µm

A KDA
Design
review

Verified

1.17 1.17.1 R
Distance between track and
PCB edge > 0.7mm

A KDA
Design
review

Verified

1.18 1.18.1 R
Distance between screw
hole and PCB edge >
1.0mm

A KDA
Design
review

Verified

1.19 1.19.1 T.R.

The test station shall
trough a graphical user
interface be able to show
change in angle[°] and speed
[°/s]

A KDA
Design
review

Verified

1.20 1.20.1 T.R.

The test station shall log
the results of a test in a
format which enables for
extraction at a later time
(all parameters and settings
shall be included in the log
file)

B KDA
Design
review

Verified

1.21 1.21.1 T.R.

The following parameters
shall be adjustable; step
mode(full, half, 32, 64 and
128), current, distance, dis-
tance, speed and accelera-
tion

B KDA
Design
review

Verified

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 46 of 389

Table 26: Non-functional requirements

STRQ Req. ID Requirement Pri. Origin Evaluation Status

1.22 1.22.1 T.R.

The test station shall in-
clude a <<Motor enable>>
feature for activating the
motor bridge (when this
mode is activated, the mo-
tor shall be in hold mode
with the specified current)

C KDA
Design
review

Verified

1.23 1.23.1 T.R.

The test station shall in-
clude a <<Run>>feature
for allowing the motor to
start rotating.

A KDA
Design
review

Verified

1.24 1.24.1 T.R.
The test station shall have
an accuracy of 0.01 degree.

A KDA Initial test Failed

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 47 of 389

8 User Story

8.1 Document history

Table 27: User Story document history

Version Date Author Description

1.0.0 23.01.2019 HS Document created, added User Story template.

1.1.0 24.01.2019 HS Added the Three C’s and INVEST.

1.1.1 25.01.2019 AR Changed abstract to introduction.

1.2.0 23.03.2019 JSS Added CPS User Story table.

1.2.1 26.03.2019 MBC Proofreading and corrections.

1.2.2 17.05.2019 MBC Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 48 of 389

8.2 Introduction

This section includes User Stories, their definition and how the CPS team has implemented
them. A User Story is a tool used to get a better understanding of tasks that needs to be
done in a project. User Stories are defined in the Product Backlog from the system
requirements and are written from a user/consumer perspective where every member of the
Scrum Team can write them.

8.3 The Three C’s

User Stories have three critical aspects called Card, Conversation and Confirmation.

Card, is a reminder to keep the User Story short. Card can also represent an actual card,
the User Story is written on to limit its size. The User Story should have just enough text
to identify the requirement, but not make up the entirety of the requirement [24].

• Who are we building it for? Who is the user? - ”As a <type of user>

• What are we building? What is the intention? - I want <some goal or objective>

• Why are we building it? What value does it bring for the user? - So that <benefit,
value>” [10]

Conversation means the requirement is conversed between developers and customers
through thoughts, opinions and feelings. The conversation takes place through the project
and is mostly verbal, however it can be supplemented with documentation as well. This is
an important process as requirements often tend to change during the course of a project.
Which also will lead to new or changed User Stories [24].

The final ”C” is confirmation. This is to make sure the User Story is correctly implemented
and successfully delivered. This is also called the Acceptance Criteria. At the beginning of
an iteration the customer tells the developer what he/she wants. This person also decides
the acceptance test of the User Story so that it shows its correctly implemented [24] .

8.4 Implementation

When it comes to writing a good User Story, the team has decided to follow the INVEST
model. Invest is an acronym for:

I - Independent
N - Negotiable
V - Valuable
E - Estimable
S - Small
T - Testable
[64]

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 49 of 389

The CPS has decided to implement User Stories as a high-level definition of a system
requirement. This means that a System Requirement will be divided into smaller tasks
defined as User Stories. One requirement may have more than one User Story.

Table 28: Example of User Story setup

Req. ID US. ID User Story

X.X.X. X.X.X.X. As a xxx, xxx want ... so that ...

X.X.X. X.X.X.X As a xxx, xxx want ... so that ...

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 50 of 389

8.5 CPS User Stories

Table 29: Overview of all User Stories and their respective requirements

Story
ID

Req ID User stories

US 1 1.9.1, 1.12.1 As a developer i want a stable frame for the test station so that
the frame does not degrade the accuracy of the CPS testing

US 2
1.2.1, 1.21.1,
1.19.1

As a developer I want to track the position of the test motor
continuously so that I can know its position at any time

US 3 1.1.1 As a developer I want to make the sensor contactless so that it
does not degenerate due to friction

US 4
1.10.1, 1.11.1,
1.13.1

As a developer I want to read the change in magnetic field so
that I can get an accurate position

US 5 1.3.1, 1.4.1 As a developer I want a drivetrain with high accuracy so that I
can get accurate reading from the CPS

US 6 1.11.1 As a developer I want to construct an oscillator so that I can
generate a magnetic field in the coils of the stator

US 7 1.3.1, 1.4.1 As a developer I want to read changes in Hz so I can use this
information to calculate the accuracy of the sensor

US 8 1.10.1 As a developer I want to use the change in Hz to calculate the
angle in degrees so that I can calculate the position

US 9 1.12.1 As a developer I want the CPS to have the same mechanical
interface as the potentiometer so that I can use it in the satellite

US 10 1.5.1 As a developer I want the CPS to weigh less than 100 grams so
that I can use it in a satellite

US 11 1.6.1 As a developer I want the CPS to endure vibrations so that i
can know its limits

US 12 1.7.1 As a developer I want the CPS to endure high and low temper-
atures so that I can use it in a satellite

US 13 1.8.1 As a developer I want the CPS to have a redundant design so
that I can use a backup if something goes wrong

US 14
1.14.1, 1.15.1,
1.16.1, 1.17.1

As a developer I want to construct a PCB with strict width and
height so that I can use it in space

US 15
1.19.1, 1.20.1,
1.21.1

As a developer I want to construct a PCB with strict width and
height so that i can use it in space

US 16
1.20.1, 1.22.1,
1.23

As a developer I want to make functions to turn on and run
the stepper motor so that I can log and move the stepper motor
between tests

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 51 of 389

9 Testing

9.1 Document history

Table 30: Testing document history

Version Date Author Description

1.0.0 22.01.2019 JSS Document created.

1.1.0 23.01.2019 JSS Added abstract, introduction, requirement test, exam-
ple ID and example test block.

1.2.0 24.01.2019 HS Added analysis and review.

1.2.2 25.01.2019 AR Changed abstract to introduction.

1.3.0 20.02.2019 HS Added test plan and edited test template.

1.3.1 26.03.2019 MBC Proofreading and corrections.

1.4.0 14.05.2019 HS Added section.

1.4.1 17.05.2019 MBC Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 52 of 389

9.2 Introduction

Verification of requirements is important to make sure that the system is achievable and
ensure progress. This will be done through testing, analysis and review. In this chapter the
CPS team will outline a thorough test plan and a test template.

9.3 Test plan

A test plan is important to have before conducting tests. Because the team is using an
incremental and iterative project model, multiple stages of testing will be conducted. The
tests will either be quantitative or qualitative. Quantitative tests are numeric and
measurable. Qualitative properties are properties that are observed and can generally not
be measured with a numeric result. To ensure high quality, the standard for the
documentation of the tests will include these points:

• Test ID; a unique ID for the test document.

• Requirement ID; to be able to trace it to what requirement the test relates to.

• Name; name/names of the person/persons conducting the test.

• Date and location; the actual date when the test takes place.

• Goal; what is the intention of the test.

• Hypothesis; an idea of the test outcome.

• Pass criteria; what result is needed to pass the test.

• Equipment; a list of equipment used in the test.

• Safety precautions; explanation of safety precautions

• Execution; explain the test procedure in detail step by step and sampling procedure.

• Result; a detailed description of the test result.

• Observations; external factors that may affect the test, temperature, noise etc.

• Analysis; interpretation of data analysis and other observations.

• Conclusion; interpretation of data analysis and other observations and compare it to
the hypothesis.

The unique test code will consist of a letter signifying that it is a test and a set of numbers
to have a unique id for each test. The test ID will also refer to which concept is being
tested, as shown in the example below.

9.3.1 Example test ID

T-C1-1.0.0

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 53 of 389

9.3.2 Test template

Table 31: Example test template

Test ID

Requirement ID

Name

Date and location

Goal

Hypothesis

Pass criteria

Equipment

Safety precautions

Execution

Result

Observations

Analysis

Conclusion

9.3.3 Testing of subsystems

As the team progresses and develops systems and subsystems, testing during the
development phase is important and valuable to give an indication of functionality.
However, some of the subsystems may not directly be tested up against a requirement. A
new Test ID is needed for these subsystems. The subsystems shall almost use the same
template as the final tests except from referring to a Requirement ID, the test refers to the
subsystem being tested instead. As the subsystems may be used in multiple concepts, a
concept will not be referred to either in the Test ID.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 54 of 389

9.3.4 Example subsystem test ID

Sub-T-1.0.0

9.3.5 Subsystem test template

Table 32: Example subsystem test template

Test ID

Subsystem

Name

Date and location

Goal

Hypothesis

Pass criteria

Equipment

Safety precautions

Execution

Result

Observations

Analysis

Conclusion

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 55 of 389

10 Sensor design

10.1 Document history

Table 33: Sensor design document history

Version Date Author Description

1.0.0 01.03.2019 AR Document created.

1.1.0 20.03.2019 AR Removed phase noise and JFET.

1.2.0 21.03.19 HFJ Sensor design.

1.3.0 22.03.2019 HFJ Added sections.

1.3.1 23.03.2019 JSS Proofread.

1.3.2 26.03.2019 HS & MBC Proofreading and corrections.

1.3.3 17.05.2019 MBC Proofreading and corrections.

1.3.0 18.05.2019 HFJ Added sections.

1.3.0 20.05.2019 AR Added section and combined two sections.

1.3.1 22.05.2019 HS Proffread and corrections

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 56 of 389

10.2 Introduction

To get a deeper understanding of how the sensor system works it is required to understand
the technical principle and its purpose. The oscillator circuit is the source for the base
frequency that is measured in the system. The frequency is going to be affected by the
rotor and it is important to know how this affects the system. This section will also explain
the electrical circuits and PCB design of the CPS.

10.3 Oscillator

An oscillator is a circuit that takes direct current (DC) and transforms it into alternating
current (AC). The AC can vary in form depending on the configuration of the circuit.
Sawtooth, square, triangle and sinusoidal waveform are different periodic signals that can
be produced from oscillator circuits [19] [18]. An oscillator can have many configurations
depending on the desired output.

Stakeholder requirement 1.11 from table 18 states that the CPS shall use an LC oscillator
(inductor (L) and capacitor (C)) to control the frequency. There are 3 possible candidates
for this; Hartley oscillator, Colpitts oscillators and Clapp oscillators.

10.4 Oscillator tank

To make a choice for the optimal oscillator for this project it is important to know how the
circuits work.

The main part of an oscillator is the tank. This is where the component’s values are chosen
to achieve the desired frequency. The tank consists of a capacitor and an inductive coil.
When the capacitor is charged from direct current it stores this energy and produces a
potential. The inductive coil stores the energy in form of an electromagnetic field [9].

When the capacitors have reached their maximum stored potential they start to discharge.
Then this electrostatic energy gets transferred to inductor that creates a magnetic field.
When capacitors are completely discharged and the inductor reaches its peak value, there
is no potential in the tank. The electromagnetic field is induced back to the coil. This
charges the capacitor. In an ideal circuit this is going to continue forever.

10.5 Bias network

For the oscillator to work as intended the circuit needs to meet some requirements.

• The phase shift in the feedback loop most be approximately 0°.

• The voltage gain Acl in the closed loop must equal [23].

Acl = AvB (1)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 57 of 389

Where Av is the amplifier gain and B is the attenuation of the feedback circuit [23].

B =
Vf

Vout
∼= iXC1

iXC2
=

XC1
XC2

=

(
1

2πfrC1

)
(

1

2πfrC2

) (2)

Cancelling the 2πfr

B =
C2

C1

(3)

Since
AvB = 1 (4)

Then the equation can be solved for Av

Av =
1

B
(5)

Replacing B gives

Av =
C1

C2

(6)

If the oscillator shall be self-starting, AvB needs to be greater than 1.

Av >
C1

C2

(7)

This is because the calculation is based on an ideal circuit with zero loss of energy.
However, a real circuit is going to have some loss of energy in from of heat. Hence the Av
needs to be slightly more than 1 [23].

The phase shift requirements is met by a total shift of 360° because of a 180° in the
transistor and another 180° in the feedback circuit.

In figure 10, there is a voltage divider to set the transistor in forward bias. This also sets
the Q-point so that the circuit does not go into saturation or cutoff. R17 limits the
collector current of the transistor. The bypass capacitor C19 is there to prevent any loss in
AC power in the amplified AC signal.

10.6 LC oscillator

10.6.1 Colpitts

The Colpitts (See figure 10) has two capacitors and an inductive coil in parallel in the tank
of the circuit. The tank is located on the far-left side and has component C18, C20 and L4.
In this configuration the equation for frequency is given as:

fr ∼=
1

2π
√

LCt
(8)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 58 of 389

Where Ct

Ct =
C18C20

C18 + C20

(9)

The advantage of this configuration is the simplicity of the circuit and the stable frequency.

Figure 10: Colpitts oscillator

10.6.2 Clapp

A Clapp oscillator is sometimes viewed as a modifier of Colpitts. The only difference in the
circuit layout is an extra capacitor. The new capacitor is placed in series with the coil, and
this change results in the adding of a component and change the value of CT , in the
equation.

Ct =
1

C1

+
1

C2

+
1

C3

(10)

fr ∼=
1

2π
√

LCt
(11)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 59 of 389

With the new capacitor it is possible to reduce the stray capacitance if the new capacitor is
much smaller than the two others.

10.6.3 Hartley

A Hartly configuration looks like a Colpitts oscillator. The difference is that the capacitors
and inductive coil have changed place. Consequently, the inductive coils are deciding the
attenuation.

Av =
L1

L2

(12)

Since the sensor is based on change in the inductive coils, this alternative is not practical
to use. It would also make the sensor need twice the number of coils as a Colpitts oscillator
or a Clap oscillator.

10.6.4 Amplifier

In the circuit there is a component called amplifier. The purpose of this is as the name
suggest, to amplify the signal. This is needed to sustain the desired signal. There are
several ways to achieve this. The most common way to do this in an oscillator circuit is by
implementing an operational amplifier; Bipolar junction transistor(BJT), or to use a
junction gate field-effect transistor(JFET).

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 60 of 389

10.7 Design tools

10.7.1 OrCAD Capture CIS and OrCAD PCB editor

OrCAD Capture CIS with PSpice and OrCAD PCB editor are the CPS team’s tools of
choice when developing oscillator circuits designs and PCB design. Schematics of the LC
oscillator circuits are drawn in Capture. When the components are correctly placed and
connected, the circuit is annotated using the correct standard. Simulating the design with
PSpice verifies that the components chosen result in the desired output signal.
Components values in Capture schematics are easily changed, giving the CPS team the
ability to test multiple values of components to tune the oscillator frequency to the desired
magnitude. PCB design of the CPS is conducted in OrCAD PCB editor. Components used
in the schematic in Capture CIS are transferred to OrCAD PCB editor. The design process
starts with design of the physical outline of the PCB. Then the components are placed on
the board and connected according to the rat’s nests that display which pins that shall be
connected. OrCAD PCB editor has the possibility to display the PCB in 3D and can be
used to review the component placement and the physical outline of the PCB.

Figure 11: Design process from circuit schematic(left), simulation(middle) to PCB lay-
out(right)

10.7.2 Electronics Explorer Board

Assembly of the oscillator circuits was done on an Electronics Explorer board (EE board)
form DIGILENT. The EE board is a breadboard containing a 4-channel oscilloscope,
DC/AC power supply and digital ports. The board is connected to a laptop via USB and
oscilloscope data can be displayed in the Waveforms software. This software can display
the FFT (Fast Fourier Transform) of the input signals.

10.8 CPS circuit design

The Colpitts and the Hartley oscillator are two types of LC oscillators. After reviewing the
two designs, the Colpitts oscillator was chosen as the team’s base design. Hartley oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 61 of 389

circuits contain a LC tank circuit with two inductors in series, with a capacitor in parallel,
to generate the oscillation. Colpitts oscillator circuits contain an LC tank circuit with two
capacitors in series with a inductor in parallel [19]. By reviewing the two circuits the
decision to use the Colpitts oscillator was made. In the CPS, the coil of the oscillator is
located on the stator circuit board and this makes the use of the Colpitts oscillator more
suitable in the team’s design.

10.8.1 First iteration oscillator

The CPS team’s first oscillator design used the coils in the prototype from KDA as the
inductive element in the oscillator. Knowing the inductance of the coils from testing (72), a
simple circuit was designed. The CPS teams approach began by designing a functional
circuit in Capture CIS. The oscillation frequency of a Colpitts oscillator is given by (8).
Knowing the inductance of the coil and the desired output frequency, rearranging the
formula with respect to C gives

C =
1

(2π)2f 2L
=

1

(2π)2(300 kHz)2 (19.2 µH)
= 14.66 nF. (13)

The total capacitance of C1 in series with C2 equals 14.66 nF. Finding the individual
component values C1 and C2 is done by rearranging the formula

C =
1

C1

+
1

C2

. (14)

The component values were chosen based on which component the CPS team had access to
in early moments of the project. Calculating C1 with C2 as a 47 nF capacitor gives

1

C1

=
1

C
− 1

C2

=
1

14.6 nF
− 1

47 nF
=

1

472.8 nF
= 21.8 nF. (15)

The CPS team used a 18 nF capacitor as it was the closest to 21.8 nF. This gives the
values C1 = 18 nF and C2 = 47 nF giving the oscillator the output frequency of

f =
1

2π

√
L ·
(

18 nF·47 nF
18 nF+47 nF

) = 318.4 kHz (16)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 62 of 389

Figure 12: First Colpitts oscillator

Simulating the design before assembling is used as a method of verifying the shape of the
sine wave. This is done to adjust the bias network if necessary. Simulating is also used to
check if the calculations of the oscillator frequency output is correct. The simulations are
compared with the oscilloscope data from the assembled oscillator circuit.

Figure 13: Output signal of first Colpitts oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 63 of 389

Figure 14: PSpice FFT simulation of first Colpitts oscillator output

Assembly of the oscillator circuit was done on the EE board. The output signal (Figure 15)
and the FFT data (Figure 16) is exported from the oscilloscope on the EE board.

Figure 15: Output signal form breadboard circuit of first Colpitts oscillator

Figure 16: FFT oscilloscope first Colpitts oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 64 of 389

Analysis of the simulation and the oscilloscope data shows that the simulated oscillator
circuit has an oscillation frequency of 318 kHz and a peak voltage of 296.5 mV, while the
breadboard circuit has a oscillation frequency of 326.35 kHz and a peak voltage of 171 mV.
This is an increase in frequency of 8.35 kHz and a decrease in peak voltage of 125.5 mV
from the simulation to the breadboard circuit.

10.8.2 Second iteration Colpitts oscillator

The next oscillator improvements were done to the bias network of the oscillator, to
improve the stability of the oscillator and reduce the phase noise. Improvements are shown
in figure 17. The improvements in phase noise is illustrated in figure 18.

Figure 17: Common emitter Colpitts oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 65 of 389

Figure 18: FFT simulation common emitter Colpitts oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 66 of 389

10.8.3 Third iteration Colpitts oscillator

Figure 19: 3 channel Colpitts oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 67 of 389

The 3 Channel Colpitts oscillator is based on the common emitter oscillator Colpitts in
figure 17. This oscillator is part of the assembly of our first prototype. Figure 20 shows the
three output frequencies of the oscillator circuit.

Figure 20: PSpice FFT simulation 3 channel oscillator

Assembly of the third oscillator was done with the prototype from KDA, mounted in a 3D
print of the first test station design. This made it possible to see the effect of the copper
plate on the coils as well as change in frequency when rotated over the coils.

Figure 21: Oscilloscope FFT 3 channel Colpitts oscillator

When the Copper plate covered one of the coils completely, an increase in frequency from
324 kHz to 399 kHz was detected. This is a change of 75 kHz.

In figur 24 the difference in amplitude is because of a missing couplings capacitor and the
tank circuit is affecting the signal in the bias network. The AC signal is also difference
since the values in the tree circuit have different values.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 68 of 389

Figure 22: Oscilloscope FFT 3 channel Colpitts oscillator

With this increase, the frequencies of channel 2 and 3 are almost overlapping. This may
cause problems when the change in output frequencies shall be used to detect an angle of
degree.

10.8.4 Fourth iteration Colpitts oscillator

In the fourth Colpitts oscillator the capacitor values were changed to increase the distance
between the 3 output signals.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 69 of 389

Figure 23: Oscilloscope FFT 3 channel Colpitts oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 70 of 389

Figure 24: Oscilloscope FFT 3 channel Colpitts oscillator

Figure 25: Oscilloscope FFT 3 channel Colpitts oscillator

10.8.5 Fifth iteration oscillators

The fifth iteration on the oscillator circuit began by implementing the new PCB coils into
the circuit. The inductance in the new PCB coils were measured at 110 µH which is an
increase of 90 µH in comparison to the previous coils. The goals was to implement the new
coils in the oscillation circuit and increase the stability of the oscillator. The CPS team
had researched LC oscillators that would have a better frequency stability than the
Colpitts oscillator, and the team started the design of a Clapp oscillator described in
section 10.6.2. This is a modification of the Colpitts oscillator. Clapp oscillator designs
with BJT (figure 26) and JFET (figure 27, 28) were tested.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 71 of 389

Figure 26: Fifth iteration BJT Clapp oscillator

Figure 27: Fifth iteration JFET Clapp oscillator variation 1

Figure 28: Fifth iteration JFET Clapp oscillator 2

All designs were simulated and assembled on breadboard. Oscillation was achieved but in
terms of stability none of the designs attained the stability necessary in the CPS. The BJT

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 72 of 389

Clapp oscillator was the design that provided the best stability. The decision was made to
continue the improvement of the BJT Clapp oscillator in effort to attain the desired
frequency stability.

10.8.6 Sixth iteration oscillator

The CPS depends on a integrated counter circuit to detect and measure the output signal
of the oscillator, as described in section 18.3.4. Accuracy of the integrated counter circuit
is at its most precise when the circuit is provided with a square wave signal. An SN74LS14
Schmitt trigger was used in the sine to square wave conversion before the signal is
distributed to the counter circuit. The SN74LS14 was replaced with Schmitt trigger
SN74HC14. SN74HC14 has similar characteristics as LS74LS14 and produce the same
output. The reason for replacing the SN74LS14 is because of SN74LS14 operating
temperature characteristics of 0 °C to +70 °C [55]. 74HC14 has a operation temperature
tolerance of -55 °C to +125 °C [56] which is more in compliance with requirement 1.7.1 in
Table 26. Bypass capacitors of 100 nF is placed on the VCC input of 74HC14 and
SN74LV8154 as recommended in the data sheets. The reason for placing a bypass capacitor
on the VCC pin is to ensure a stable VCC and to filter noise from the DC power supply.
74HC14 has with a VCC of +4.5 V a VT+ at 2.5 V and a VT− at 1.6 V. In order to function
as required the input signal must have a Vpp of + 3 V offset of above + 1 V to + 2 V. To
apply a offset to the signal of the oscillator a voltage divider is placed on the input of the
Schmitt trigger Figure 29. This provides the offset needed. Adding the Schmitt trigger with
the voltage divider to the circuit, changed the load of the oscillator circuit. Adaptations
had to be made to the bias network of the amplifier in order to make the circuit functional.

Figure 29: Sixth iteration BJT Clapp oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 73 of 389

Figure 30: Q-point of amplifier in figure 29

Simulation of the circuit in PSpice showed that the amplifiers input signal was driven into
saturation. This was cause by the magnitude of the input signal which was too large in
relation to the placement of the Q-point. This saturation became more significant when
the circuit output was inspected on a oscilloscope, as illustrated in figure 31.

Figure 31: Sixth oscillator iteration input signal on Schmitt trigger

When the circuit was assembled and tested the stability of the circuit did not meet the
demand.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 74 of 389

10.9 Final oscillator iteration

After review of the oscillator in section 10.8.6, the CPS team concluded that the reason
why the the oscillator achieved the desired stability was mostly due to the large gain in the
amplifier circuit, and low capacitance tolerance in terms of temperature and voltage
variation in the capacitors. The AC voltage gain of the amplifier is

Rc

r′e
= Av, (17)

where rc is RC and RL in parallel, RL becomes the resistance of the voltage divider on the
input of the Schmitt trigger

Rc =
RCRL

RC +RL

, (18)

Rc =
1 kΩ · 520 Ω

1 kΩ + 520 Ω
= 341 Ω, (19)

and re is

r′e =
25 mV

IE
, (20)

with IE calculated to 2.16 mA r′e is

r′e =
25 mV

2.16 mA
= 11.57 Ω, (21)

this leads Av to become

Av =
341 Ω

11.57 Ω
= 29.74. (22)

A voltage gain of 29.74 would cause the oscillator to become unstable. This gain exceeds
the gain needed to start and then retain the oscillation with the capacitors C1 = 15 nF and
C2 = 47 nF present in the circuit. A more comprehensive calculation was conducted with
MATLAB ion order to acquire the correct Q-point and AC voltage gain of the amplifier.

10.9.1 Common emitter amplifier

When designing the Clapp oscillator, an amplifier stage is needed to start the oscillation.
When the oscillation has reached its desired amplitude, the amplifier must sustain the
oscillation created in the oscillation tank. The amplifiers in the CPS oscillator circuits are
BJT common emitter with an voltage-divider and biased amplifier illustrated in figure 32.
The values of the circuit where calculated in MATLAB. The design and simulations of
these amplifiers where done in Orcad capture with PSpice. The components chosen in the
design-process of the amplifier stage are shown in table 34. Tolerance of the components is
important in order to achieve the required stability. Component tolerances is displayed in
table 35. Tolerances of capacitors is found in data sheet[12]. Tolerance of the resistors is
found by inspection.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 75 of 389

Figure 32: Common emitter amplifier

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 76 of 389

Table 34: BJT amplifier components

Component Type Reference Component value Unit

Voltage supply DC supply V1 5 V

Transistor 2n3904 Q1 100 β

Resistor Metal film R1 39 kΩ

Resistor Metal film R2 16 kΩ

Resistor Metal film RC 2.2 kΩ

Resistor Metal film RE1 91 Ω

Resistor Metal film RE2 470 Ω

Capacitor Ceramic X7R CE 100 nF

Capacitor Ceramic X7R Cin 100 nF

Capacitor Ceramic X7R Cout 100 nF

Table 35: Capacitor tolerance amplifier

Component Type Temp. tolerance Unit. tolerance

R1 Metal film 50 ppm ±1%

R2 Metal film 50 ppm ±1%

RC Metal film 50 ppm ±1%

RE1 Metal film 50 ppm ±1%

RE2 Metal film 50 ppm ±1%

CE Ceramic X7R ±15%, - 55 to + 125 C ° ± 10 F

Cin Ceramic X7R ±15%, - 55 to + 125 C ° ± 10 F

Cout Ceramic X7R ±15%, - 55 to + 125 C ° ± 10 F

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 77 of 389

The DC analysis [19] of the amplifier started with calculating the base voltage of the
transistor. The voltage-divider must supply the base of the transistor a minimum of 0.7v in
order to have the transistor operate in its active region. The Thevenin equivalent of the
base voltage provided is given by

VTH = (
R2

R1 +R2

)V CC, (23)

hence

VTH = (
16 kΩ

39 kΩ + 16 kΩ
)5 V = 1.4545 V. (24)

A VTH of 1.4545 V exceeds the required 0.7 V the transistor needs on the base terminal in
order become active. When the BJT is active current is allowed to flow from collector to
emitter. Work point of the transistor(Q-point) is the point on the DC load line where the
current going trough the collector(ICQ) and the voltage drop across the collector and
emitter(VCEQ) intersect. Calculation of ICQ and VCEQ is needed in order to determine the
Q-point. To find the emitter current the Thevenin equivalent of the base resistance RTH is
calculated. This is given by

RTH =
R1R2

R1 +R2

, (25)

hence

RTH =
39 kΩ · 16 kΩ

39 kΩ + 16 kΩ
= 11.345 kΩ. (26)

The emitter current is found by

IE =
VTH − VBE

(RE1 +RE2) + (RTH/βDC)
, (27)

resulting in

IE =
1.4545 V− 0.7 V

(91 Ω + 470 kΩ) + (11.345 kΩ/100)
= 1.1187 mA, (28)

where VBE= 0.7 V and βDC are found in the data sheet of 2N3904 [11]. The current of the
collector is given by

IC = IE − IB. (29)

In order to calculate the base current the resistance of the base terminal is found

RIN(BASE) =
βDCVTH
IE

. (30)

This results in

RIN(BASE) =
100 · 1.4545 V

1.1187 mA
= 130 kΩ, (31)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 78 of 389

which leads to

IB =
VTH

RIN(BASE)

, (32)

and by substituting with values

IB =
1.4545 V

130 kΩ
= 11.19 µA, (33)

the base current can be found. From IE and IB, IC can be calculated

IC = 1.1187 mA− 11.19µA = 1.1076 mA. (34)

In order to find the DC Q-point calculation of the emitter voltage(VE) and collector
voltage(VC) is required.

VE = (RE1 +RE2)IE, (35)

VE = (91Ω + 470Ω)1.1187 mA = 627.6 mV, (36)

VC = V CC −RCIC , (37)

VC = 5 V− (2.2 kΩ · 1.1076 mA) = 2.5634 V. (38)

The voltage between the collector and emitter terminal of the transistor is calculated

VCE = VC − VE, (39)

VCE = 2.5634 V− 627.6 mV = 1.9357 V. (40)

IC(SAT) is found by

IC(sat) =
VCC

RC +RE1 +RE2

, (41)

IC(sat) =
5 V

2.2 kΩ + 91 Ω + 470 Ω
= 1.8109 mA. (42)

VCE(off) is the same as VCC and equals 5 V. DC load line coordinates become
(VCE(off),IC(sat))=(5 V, 1.8109 mA). The AC load line of the amplifier is (Vce(off),Ic(sat)).
Rc is the resistance the AC signal sees on the output of the amplifier. Rc is the parallel
connection of RC and RL. RL of the amplifier is the two resistors in the voltage divider
placed on the input of the schmitt trigger figure40. The voltage divider provides the offset
voltage to the oscillator output signal before the signal enters the schmitt trigger. The
RTH of the voltage divider of the schmitt trigger is 6.667 kΩ. Rc is

Rc =
RCRL

RC +RL

, (43)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 79 of 389

Rc =
2.2 kΩ · 6.667kΩ

2.2 kΩ + 6.667kΩ
= 1.654 kΩ, (44)

This leads the AC load line(Vce(off),Ic(sat)) to become

Vce(off) = VCEQ + (ICQrc), (45)

Vce(off) = 1.9357 V + (1.1076 mA · 1.654 kΩ) = 3.7678 V. (46)

Ic(sat) is calculated by

Ic(sat) = ICQ + (
VCEQ
rc

), (47)

Ic(sat) = 1.1076 mA +
1.9357 V

1.654 kΩ
= 2.2778 mA. (48)

Amplifier Q-point is plotted in figure 33.

Figure 33: Q-point of amplifier in figure 32, (VCEQ, ICQ) = (1.9357V, 1.1076mA)

This places the Q-point at (VCEQ,ICQ)=(1.9357 V, 1.1076 mA). The Q-point is placed near
the center of the of the DC load line in order to prevent clipping.
Voltage gain of the amplifier is the output resistance of the amplifier divided by the emitter
resistance

Av =
Rc

r′e +RE1

, (49)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 80 of 389

where r′e is

r′e =
25 mV

IE
, (50)

r′e =
25 mV

1.1187 mA
= 22.346 Ω, (51)

hence

Av =
1.654 kΩ

22.98 Ω + 91 Ω
= 14.59. (52)

By itself this voltage gain of this amplifier would lead to clipping if a signal with the same
magnitude as the signal provided by the oscillation tank circuit. Because this amplifier is
used as the amplifier in a oscillator circuit the gain is just right to get the oscillation
started and to maintain the oscillation when the desired amplitude of the output signal is
reached. This improves the stability of the oscillator.

10.9.2 Clapp oscillator circuit

Advancements in the development of the counter circuit Section 18.3.4 has given the ability
to separately monitor the 3 outputs of the CPS sensor. This gives the advantage of having
3 oscillator with the same output frequency. Form the test 73 if was found that the
inductance stability in the frequency range form 40 kHz to 690 kHz was 111 µH ±2 µH.
Due to the stability of the region this is a appropriate frequency region to operate in.
Calculations in Section 19 proves that the ideal frequency range is between 400 kHz and
600 kHz. Operating in this region gives the delta frequency need to achieve the required
accuracy of the CPS. The components used in the tank circuit of the final oscillator is
shown in table 36.

Table 36: Clapp oscillator tank components

Component Type Reference Value Unit

Coil 6 layer curved rectangular PCB L 110 µH

Capacitor Ceramic COG C1 2 nF

Capacitor Ceramic COG C2 6.8 nF

Capacitor Ceramic COG C3 100 nF

From(10) and(54) frequency of oscillation can be determined

Ct =
1

2 nF
+

1

6.8 nF
+

1

100 nF
= 1.5219 nF, (53)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 81 of 389

fr ∼=
1

2π
√

110 µH · 1.5219 nF
= 388.983 kHz. (54)

The gain of the amplifier voltage gain(52) is reduced by implementing RE1 and the
increasing RL by increase of the resistors in the voltage divider in the Schmitt trigger stage
of the CPS. This leads to Av = 14.594. This is enough to start the oscillation and low
enough to have a stable output frequency.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 82 of 389

Figure 34: Final iteration, 3 channel Clapp oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 83 of 389

Figure 35: PSpice FFT final oscillator

FFT simulation was conducted PSpice. Plot of simulation is shown in figure 35. VdB peak
value = 6.6412 dB, f=387.800 kHz. X-axis = 200 kHz to 600 kHz, Y-axis= - 110 dB to +
15 dB.

Figure 36: Oscilloscope FFT of final oscillator output signal.

FFT analysis was conducted on oscilloscope plot of analysis shown in figure 36. VdB peak
value = 0.9816 dB, f = 385.750 kHz. X-axis = 200 kHz to 600 kHz, Y-axis= -100 dB to +
10 dB. This is compared with the simulation displayed in figure 36. A reduction of 5.6596
dB in vdB peak value is noticed. The frequency of the oscillator plot has is 2.05 kHz lower
than the simulation. Spectrum analysis was conducted on the spectrum analysis
application on the EE board. Result of analysis is shown in figure 37. X-axis = 200 kHz to
600 kHz, Y-axis= - 100 dB to + 10 dB.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 84 of 389

Figure 37: Spectrum analysis of signal from final oscillator

The improvements done to the bias network of the amplifier corrected the placement of the
Q-point. PSpice simulation of signal is shown in figure 38. Plot from oscilloscope showing
output signal can be seen in figure 39.

Figure 38: PSpice simulation of output signal of final oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 85 of 389

Figure 39: Plot from oscilloscope of output signal of final oscillator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 86 of 389

Figure 40: Schmitt trigger and voltage divider

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 87 of 389

The complete CPS circuit is shown in fig 41.

Figure 41: Complete CPS circuit

The final 3 channel BJT Clapp oscillator have a output frequency of 385.740 kHz measured
with oscilloscope. A oscillation frequency stability of ±1 Hz is achieved.

10.10 CPS PCB design

Requirement 1.12.1 from table 26, states that the PCB of the stator and rotor shall have
the same mechanical interface as the potentiometer currently in use. The measurements of
the potentiometers rotor and stator PCB were given as a mechanical blueprint from KDA.
PCB coils shall be placed on the stator PCB and parts of the rotor PCB shall contain
copper plating. An oscillator circuit shall be designed with the PCB coils on the stator
PCB as the inductive element. To achieve the accuracy needed to meet the requirements,
the design and placement of the coils is crucial. The stator depicted in figure 44 PCB is the
part that shall contain the coils of the CPS. The coils must be placed so that when the
copper plate segment of the rotor (figure 57), rotates over the stator, one or more of the

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 88 of 389

coils is/are affected. This means that the angle and spacing of the coils is of great
importance. The area of the rotor containing copper, shall be shaped to suit the location of
the coils and the angle of the coil’s short side. To meet requirement 1.3.1, 1.14.1, 1.2.1,
1.10.1, 1.10.2 and 1.10.3 in table 26. There has to be a change in the coils magnetic field,
due to the increasing or decreasing area of the coil covered and affected by the proximity of
the copper present in the rotor. The change in frequency has to be as proportional as
possible to the area covered by the rotor. A change in the magnetic field of a coil will cause
a reduction of the inductance in that particular coil. The CPS team hopes this change in
inductance will be proportional to the area of the coil which is covered by the rotor. The
reduction in the coils inductance will lead to a change in the oscillation frequency of the
oscillator having the that coil as the inductive element of the LC tank circuit. To achieve
this, the increase/decrease of coil area covered and affected by the the copper plated
section of the rotor, has to be linear to the rotational distance of the rotor. In an attempt
to achieve this, the two edges of the copper plated section of the rotor moving
perpendicular to the rotational direction of the rotor and the shortest sides of the coils is
designed to be parallel.

10.10.1 Material selection in PCB

The dielectric material in the PCB is FR-4 laminate. Other material choices like polyimide
materials were considered due to uncertainty regarding FR-4 material integrity and
expansion ratio when exposed to temperatures stated in requirement 1.7.1 and 1.7.2 in
table 26. After research of FR-4 used in this particular temperature range and discussion
with KDA regarding PCB materials used in their current sensor, FR-4 was found to be a
qualified choice of material in the CPS.

10.10.2 Pins and vias

Through the hole pins and vias, are holes that are drilled through the PCB and then
coated with copper internally. The connection pins included in the coil part (Figure 42)
have an electrical conductive connection to each layer of the stator PCB. Connection pins
are placed on each end of the coil (Figure 43) to enable soldering of wires to the coil. Vias
are similar to the through hole pins but they are completely filled with copper after they
are drilled. Vias included in the coil part (42) connect the layers of the coil. Trough hole
pins and vias are designed with the Padstack Editor software for Orcad.

Table 37: Pin and via dimensions

Part Drill Regular pad Thermal pad Anti pad Soldermask

TH pin coil C, 1.2 mm 2.0 mm 2.3 mm 2.3 mm 2.1 mm

Via coil C, 0.4 mm 0.6 mm 0.82 mm 0.82 mm 0.65 mm

Via ground C, 0.4 mm 0.8 mm 0 mm 0 mm 0 mm

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 89 of 389

When designing vias, the aspect ratio is the ratio between the board thickness and the
diameter of the drill hole in the via

AR =
BTH

DDH

, (55)

where BTH is board thickness, DDH is diameter of via drill hole and AR the aspect ratio.
With board thickness of 1.99136 mm and a Via drill hole diameter of 0.4 mm the aspect
ratio becomes

AR =
1.99136 mm

0.4 mm
= 4.9784 ≈ 5, (56)

giving an aspect ratio of 5:1. A small aspect ratio will give a stronger and more tolerant
via and also makes plating of the drill hole easier which helps ensuring the vias connection
to traces and planes in the PCB.

Figure 42: Trough hole pin diameter 1.2 mm (left) and Via diameter 0.4 mm (right)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 90 of 389

Figure 43: Coil connection through hole pin

10.10.3 Stator

The stator PCB is created with the same mechanical interface and dimensions stated in
the blueprint from KDA. The only deviation from this are the areas regarding hole pins of
the coil on the PCB. This deviation has been approved after conversation during status
meeting with KDA. Blueprint of stator states that the thickness shall be 2 mm ±0.18 mm.
The PCB is a 6 layer FR-4 laminate board. Dielectric layers consist of FR-4 laminate with
thickness of 203.2 µm. Conductor layers have a copper thickness of 71.12 µm on all layers.
Total thickness ends at 1.99136 mm which places the thickness within the acceptable range.

Figure 44: 3D model of stator PCB top side

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 91 of 389

Figure 45: 3D model of stator PCB top side. Position of the coils marked with white
silkscreen line

The coil parts cover a area of 45° in each direction form part centre (black cross in figure
46) which totals to 90°. The coils are placed (figure 46) with part centre 42.1 mm from
centre of the stator. First coil is placed with part centre at 25°, the second at 145° and the
third at 265°. This places the coil centres 120° apart with a spacing between coils of 30°.
The coil connection pins (red square in figure 46) are located 51 mm from stator centre.
Rotors radius is 48 mm which leads to coil connection pins being located outside of the
rotor’s radius. This contributes to making the magnetic field surrounding the coils as
uniform as possible over the coil’s entire length, regardless of rotational direction of the
rotor. Placing the connection pins outside of the area containing the coils makes soldering
wires easier.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 92 of 389

Figure 46: Angel of coil placement and spacing between coils. Coil part centre(black cross).
Coil connection pin(red square)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 93 of 389

Figure 47: 3D coil placement in stator

10.10.4 Coil design

The shape, dimensions and layers are parameters that determine characteristics of a coil.
The shape of the magnetic field is determined by the shape of the coil. Dimensions,
number of layers determine the inductance of the coil. Coil design on PCB using OrCAD
PCB editor is done by drawing PCB traces or by using the snap grid in the software to
ensure that the spacing between the traces is as desired. The spacing in the grid can be
adjusted in x and y direction to accurately place the traces. The other method available is
to use coordinates (distance and angle form the centre of the drawing) to specify each
point the trace shall go through. An Excel sheet is used to calculate the values. Arcs or
straight traces can be chosen.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 94 of 389

Figure 48: Coil design in Orcad PCB Editor

Many different shapes were designed and reviewed to see if they could be right for the
team’s design. The initial coils were single layer spiral coils as shown in figure 49. To
increase the strength of the magnetic field, multiple layer is added to the coil part. Shown
in figure 50 is a three layer spiral coil with through hole pins for connection of wire.

Figure 49: Coil 1: Single layer spiral coil

The initial coil design’s grid spacing was used to create the coils. In the later designs, when
the shape of the coils became more complex, the method of using a Excel sheet to calculate
the distance and angle of the coordinates for the coil became more convenient and accurate
than the method of adjusting the grid of the design.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 95 of 389

Figure 50: Coil 2: Three layer spiral coil

The shape of the coils that are to be placed within the stator, has to be adapted to fit into
the spacing between the centre cutout and the design outline of the stator PCB. This
spacing is of 11.4 mm. After reviewing the designs of the spiral shaped coils it was
concluded that spiral shaped coils would not meet the criteria mentioned in section 10.10.

Figure 51: Coil 3: Three Layer curved rectangular coil

Coil design 3 has better characteristics than the two previous design in terms of
proportional change in the inductance of the coil due to influence of the rotor. However,
the short sides of the coil will possibly cause a change of inductance that is not coherent
with the change of inductance over the rest of the coil. This is caused by the half circular
ends of the coil not having the same relation between change of inductance and portion of
the coil covered.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 96 of 389

Figure 52: Coil 4: 7 Layer curved rectangular coil

Coil 4 was designed with an excel sheet design by the CPS team. The Sheet contain a
input table (Figure 53) that automatically created the coordinate of distance and angle
(Figure 53) used to construct the coil. The coil was designed to have the same relation
between the rotational distance of the rotor and area covered over the entire length of the
coil. The width of the coil is the same throughout the entire length. The only deviations
are the spacing in the middle of the coil, the connection pins and the via in the centre.

Figure 53: Coil 4 excel input table

Figure 54: Coil 4 coordinate excel sheet

10.10.5 Final coil design

The objective of the design process of the final design was to create a coil which generated
a magnetic field that was as uniform as possible over the entire length of the coil and had a

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 97 of 389

high Q-factor(Quality factor).The Q-factor of a coil is determined by

QU =
ω0L

Rs

, (57)

Where ω0 is

ω0 =
1√
LC

, (58)

L is the inductance of the coil and Rs is the series loss of the inductor and have the unit Ω.
Serial connection of the 6 layers of the coil will result in a higher inductance since

Ltot,serial = L1 + L2 + L3 + L4 + L5 + L6, (59)

while a parallel connection of the layer would result in

Ltot,parallel =
1

Ltot
=

1

L1

+
1

L2

+
1

L3

+
1

L4
+

1

L5

+
1

L6

. (60)

This proves a serial connection causes a higher inductance. In terms of (58) increasing the
inductance of the coil in relation to Rs leads to a increase in Q-factor. To further increase
the inductance of the coil the current should flow in the same direction in all layers. Having
the windings in every layer run in the same direction will ensure this. Having the current
flow in the same direction on every layer increases the positive mutual inductance between
the layers [23] which will add to the total inductance of the coil. In design of the final coil
the excel sheet used in design of coil 4 was modified in order to produce a coil where the
layers where connected in series. First layer of the final coil is identical to the first layer of
coil 4. Coordinates describing the placement of the segments in the other 5 layers were
calculated so that all windings run in the same direction. The last coil segment in the layer
is connected to the next layer by a via. Specifications of the coil is stated in table 38.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 98 of 389

Table 38: Specifications final coil design

Specification Parameter Value Unit

Build method Coupling of layers Series Method

Layers Number of layers 6 Layers

Trace Trace width 0.254 mm

Trace Total length 1247.0366 mm

Trace Length per layer 207.83 mm

Trace Min.spacing between traces 0.2 mm

Windings Number of windings 9 Windings

Diameter Inner diameter of coil 3.7 mm

Diameter Outer diameter of coil 11 mm

Trace Total length 1247.0366 mm

Figure 55: Final coil design, layers connected in series with vias

From test24.3 the inductance of the final coil is found to be 110µH. The oscillator has a
oscillation frequency of f = 390.800 kHz. Resulting in ω0

ω0 = 2πf, (61)

ω0 = 2π · 390.800 = 2455468. (62)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 99 of 389

The resistance of the coil is measured to be 16Ω giving the coil a Q-factor of

Q =
2455468 · 110 µH

16 Ω
= 16.88. (63)

10.10.6 Rotor

The rotor is a 6 layer PCB containing 6 planes of copper which is grounded by the
connection to the screws going through the mounting holes shown in figure 60. Conductor
layers have a copper thickness of 71.12 µm. Dielectric layers contain FR-4 laminate with
thickness of 203.2 µm. Copper planes covers the rotor from 0° to 210° on layers 1 to 7.
Grounding of the 8 mounting holes is ensured by 8 vias (Figure 60) surrounding each
mounting hole. The grounding vias have a tin-plate finish on the top layer to prevent
oxidation of the exposed copper and to ensure contact between the screw and the ground
layers.

Figure 56: Angle of copper layer in rotor

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 100 of 389

Figure 57: Side view of rotor,

Figure 58: Top view of rotor

Figure 59: Copper layers in rotor

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 101 of 389

Figure 60: Vias surrounding mounting hole to ensure grounding

10.10.7 PCB ordering

Review and research of multiple manufacturers lead to All PCB.com being chosen as the
PCB manufacturer. The main criteria for choosing All PCB.com was price and delivery
time. Both the Serial and parallel coil were ordered. Some changes was done to the designs
before ordering. The number of layers were reduced form 8 to 6. This was due to extended
production time and a large increase in cost of the 8 layer PCB. The order was sent to the
manufacturer 04.04.19. 2 types of rotors were ordered. A 6 layer and a 2 layer. The 6 layer
rotor has a copper thickness of 35µm and the 2 layer rotor has copper thickness of 70 µm.
The shipment with the PCB’s arrived 24.04.19. Due to an error in the production one the
stator PCB’s had to be redone. This delayed the delivery by 3 days.

10.11 Stator and rotor PCB

Figure 61: Finished Stator PCB

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 102 of 389

The Inductance of the coils were measured and found to be 110µH.

Figure 62: Finished rotor PCB

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 103 of 389

11 Mechanical concepts

11.1 Document history

Table 39: Mechanical concepts document history

Version Date Author Description

1.0.0 13.02.2019 HS Document created, added introduction and imple-
mentation of mechanical parts

1.1.0 14.02.2019 HS Added section 12.3.3 to 12.3.7

1.3.0 08.03.2019 HS Began documentation of concept 3 and 4. Added
section 12.4 to 12.4.3

1.4.0 11.03.2019 HS Added section 12.5 to 12.5.6

1.5.0 23.03.2019 HS 12.6.

1.5.1 24.03.2019 JSS Proofread

1.6.0 14.05.2019 HS Added sections 12.7 to 12.8.3

1.7.0 15.05.2019 HS Added section 13

1.7.1 17.05.2019 MBC Proofreading and corrections.

1.7.2 22.05.2019 CPS team Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 104 of 389

11.2 Introduction

This chapter will cover iterations and increments of concepts through the design process.
Documentation covering the design choices in the concepts will be added throughout the
project and in more detail as a concept has been chosen. This includes topics such as
bearings, lubricants, springs, shafts and dowel pins. The most crucial requirements the
concepts revolves around are precision and temperature. (1.3.1 TR, 1.4.1 T, 1.7.1 T and
1.7.2 T) System requirements are found in section: 7.4. Each increment or concept will
have a design review. Tools used in the design process are SolidWorks CAD program and a
caliper to measure existing parts.

11.3 Mechanical concept 1, KDA prototype

Concept 1 is a prototype given to the team by KDA. This is a concept they worked on
several years ago. The team received this miniature model to get a better understanding of
how the system should work. The process of creating the design of the needed parts was
mainly done in SolidWorks and through measurements of already existing parts.

11.3.1 Implementation of mechanical parts

The prototype the team received was an assembly consisting of three PCB’s with wires,
metal housings for the PCB’s and a copper rotor. To test this as a complete system, the
team decided to mount the parts on an electrical motor, but to do so a bracket and a few
parts for a shaft was needed. The created parts are 3D-printed and nuts and screws are
bought.

11.3.2 List of parts

• Longs Stepper Motor, model: 17HS3404N

• PCB, stator

• Copper-rotor

• Housing for PCB

• 3D-printed bracket (P.1.0.1)

• 3D-printed cap (P.1.0.2)

• 8 X M1.5 flat head screw

• 4 X M3 screws

• 4 X M2.5 nut

• 4 X M4 nut

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 105 of 389

• 2 X m5 nut

• 4 X 0,5mm shim

• M5 bolt with half section threaded rod

• Coupling

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 106 of 389

11.3.3 Bracket, P.1.0.1

Part P.1.0.1 is a bracket mounted directly on the electrical motor. The intention of the
part is to give correct spacing between the rotor and stator as well as serving as cup for the
PCB housing.

Figure 63: Bracket, KDA prototype, P.1.0.1.1

The holes in the bottom of the part are concentric with the holes on the stepper motor for
precise fixturing.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 107 of 389

11.3.4 Cap, P.1.0.2

Part P.1.0.2 is the cap for the bracket. The intention of the part is to hold the PCB
housing steady. The part will be held in place and mounted on the bracket using four flat
head screws.

Figure 64: Cap, KDA prototype, P.1.0.2

11.3.5 Assembly of KDA prototype, A.3.0.0

The assembly is created in SolidWorks, and is how the actual prototype is set up.

Figure 65: Assembly of KDA prototype, A.1.0.0

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 108 of 389

11.3.6 Step by step assembly, A.1.0.0

1. Press the PCB housing in the bracket.

2. Fix the PCB to the housing using four flat head M1,5 screws.

3. Set the stepper motor on a flat surface

4. Mount the custom coupling on the shaft of the stepper motor

5. Mount one M5 nut on the threaded rod of the shaft.

6. Put one M4 nut over each hole on the stepper motor

7. Place the bracket on top of the nuts and align the holes on the bracket with the holes
of the stepper motor.

8. Guide the wires from the PCB out from the bracket through the holes between the
stepper motor and the bracket.

9. Fix the bracket to the motor by using four m3 screws with a 0,5mm shim between
the screw head and bracket.

10. Place the rotor on the shaft and let it rest on the M5 nut. Place a new M5 nut above
the rotor and tighten.

11. Place the cap over the PCB housing and align with the holes of the bracket. Fix the
cap using four M1.5 flat head screws.

11.3.7 Design review, DR-A.1.0.0

After doing tests on the prototype, the team got a better understanding of what the
system should look like, and which components should be included. Because the first
prototype is a miniature and is an incomplete system, the team was not able to test all
requirements. From the mechanical aspect of the prototype, the biggest problem was
getting a precise rotation on the rotor. One or more bearings around a shaft would help
obtain a straighter rotational axis. For the next increment the goal is to have the correct
scale of a model with a functional, concentric rotating, precise system. The system shall
also have the correct mechanical interface.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 109 of 389

11.4 Mechanical concept 2

In this section the CPS-team will explain the ideas behind the design of concept 2. By
studying the prototype given by KDA and doing extensive research on contactless systems,
the team started looking at different concepts. This concept is meant to be a part of the
design process and an increment of prototype 1 to get a better understanding of spacings
and parts needed to be included in the system and in the test station. This means that
choice of materials and alloying are not calculated, but are considered. The concept is a
full scale CAD model.

11.4.1 Rotor and stator

The current system used by KDA consists of a rotor and two stators. The second stator is
included for the system to be considered redundant. The first iteration of the concept will
focus on having one stator and a rotor just to achieve a functional system ready for testing.

Figure 66: 3D model of stator, concept 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 110 of 389

Figure 67: 3D model of rotor, concept 2

According to the requirements given by KDA, the mechanical interface must be the same
as the current system in use. This means the location of the holes on both stator and rotor
have to be designed identical to the potentiometer and current rotor. To ensure this, the
team designed a stator and rotor identical to KDA’s in SolidWorks. The team was
recommended by KDA to use PCB in both the stator and rotor and cover half of the rotor
in copper because of its conductive properties. More information on PCB materials can be
found in section 10.10.1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 111 of 389

11.4.2 Housing

Precision is a key factor for the sensor the CPS team is designing. To ensure that the
stator and rotor are mounted in a precise position dowel pins will be used. Dowel pins
allows extremely high tolerances for concentrisity and centricity and are used to guide one
part over another. The pin itself has strict tolerances in straightness and fitting to the hole
it is fitted to. To ensure a precise rotary axis, bearings shall be used around a shaft. The
outer diameter of the bearings will decide the design of the center hole. A provisional
bearing has been added to get an idea of how the system can look.

Figure 68: Housing top view

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 112 of 389

Figure 69: Housing bottom view

11.4.3 Shaft

The intention of the shaft is to have a rotor rotating over the stator. The tolerances
between bearings, housing and the shaft have to be strict to fulfil and measure
requirements, 1.3.1 TR, 1.4.1 T. The shaft will be preloaded on the inner ring of the
bearing and follow its roation. The outer ring of the bearing will be held in place by the
housing. Bearing information and calculations will be added once a bearing has been
chosen. The shaft will be directly mounted to an electric motor by using a bellow coupling.
The holes on the shaft are made to mount the rotor fixture. The small holes are mainly
made to make sure the position of the rotor mount is precise, while the center hole will
hold it in place with a M6 bolt. The two small holes may be replaced by dowel pins, this
will be discussed in the design review.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 113 of 389

Figure 70: Shaft, concept 2

11.4.4 Rotor fixture

The rotor fixture is a part that will sit between the shaft and the rotor. The intention of
the part is to fix the rotor in a precise concentric position over the shaft and stator. The
hole locations on the part match the holes on the rotor and have the same dimension as the
rotor currently in use by KDA. Dowel pins will also be used to guide the rotor in the
correct position over the rotor fixture.

Figure 71: Rotor fixture, concept 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 114 of 389

11.4.5 Assembly, A.2.0.0

Figure 72: Assembly of concept 2, A.2.0.0

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 115 of 389

11.4.6 Cross section, A.2.0.0

Figure 73: Cross section, A.2.0.0

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 116 of 389

11.4.7 List of parts

• Stator

• Rotor

• Housing

• 2x, Ball bearing, provisional

• Rotor Fixture

• Stepper Motor

• Shaft

• 4x, 1mm shim

• 2x, M10 nuts

• 18x, M3 bolts with shims

• M6 bolt, with shim

11.4.8 Design review, DR-A.2.0.0

Review of the assembly was done in collaboration with KDA. The goal of a precise rotary
concept was met by using two provisional ball bearings and a shaft. A few changes needed
to be made to go forward with the ideas behind the concept.

1. Fixture for a second stator considering the redundancy requirement. (1.8.1 AR)

2. Fixture for the stepper motor.

3. Using spring between the nut and the bearing to deal with the thermal expansion
was discussed.

4. Study bearings, lubrication and preloading. (Study of bearings, section: 12)

5. Find a coupling that fits the stepper motor from KDA.

6. Change the design of the shaft for milling.

7. Redesign the housing for milling.

8. Design the hosing so it can be fixed to a flat surface. Preferred to a table with hole
locations 50mm X 50mm.

11.5 Mechanical concept 3

This section will cover a full scale SolidWorks CAD model of concept 3. The changes
discussed in the DR-A.2.0.0 (Section: 11.4.8) have been made. This is an increment and
iteration from Concept 2.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 117 of 389

11.5.1 Assembly concept 3, A.3.0.0

Figure 74: Assembly of concept 3, A.3.0.0

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 118 of 389

Figure 75: Cross section, A.3.0.0

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 119 of 389

Figure 76: Top view, A.3.0.0

Figure 77: Bottom view, A.3.0.0

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 120 of 389

11.5.2 List of parts

• 2 x Stator

• Rotor

• Housing, P-C3-3.0.1

• 2 x deep groove single row ball bearing

• Rotor Fixture, P-C3-3.0.3

• Stepper Motor

• Fixture for electrical motor, P-C3-3.0.3

• Shaft, P-C3-3.0.4

• 1mm shim

• Disc spring

• M10 nut

• 24 x M3 bolts with shims

• M6 bolt, with shim

• 4 x M4 bolt with shims

• 4 x M2 nut with shims

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 121 of 389

11.5.3 Housing, P-C3-3.0.1

Figure 78: Housing concept 3, P-C3-3.0.1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 122 of 389

The changes made to the housing come from the DR-A.2.0.0 section 11.4.8. The reason
behind the bucket shape is mainly to have a way to mount the stepper motor to the rest of
the system, and to make the milling cheaper. Due to the requirements of position and
repeatability it is optimal to have as few parts as possible. This leads to a larger and
complex part. Splitting the housing into smaller parts would be more optimal for cost and
production, but would compromise precision, due to tolerances between parts. The top
part of the housing has fixtures for two stators. The second set of holes are mirrored
around the top plane of the part. It is made so that every bolt is reachable without
removing any of the stators. The square hole on the side of the housing is made to tighten
the coupling between the shaft and the stepper motor
during installation. The ears are made for mounting the station to a surface (50mm x 50mm).

11.5.4 Rotor fixture

The fixture for the rotor is similar to concept 2 (section 11.4). The only changes are the
holes for the dowel pins on the shaft for better concentric guidance.

Figure 79: Rotor fixture concept 3, P-C3-3.0.3

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 123 of 389

11.5.5 Shaft, P-C3-3.0.4

Figure 80: Shaft concept 3, P-C3-3.0.4

Figure 81: Shaft top section side view, P-C3-3.0.4

A few changes were made to the shaft from concept 2. Dowel pins were designed for guiding
the rotor fixture in the correct position. The small cut in the shaft was made for milling.
Due to the low load the system inflicts, the bearings have to be preloaded around the shaft
with a spring, also dealing with the thermal expansion and shrinking. The preload has
to be high enough to make sure that the shaft do not slip on the inner race of the bearing [51].

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 124 of 389

11.5.6 Fixture for electrical motor, P-C3-3.0.3

Figure 82: Fixture for electrical motor, P-C3-3.0.4

The intention of the part is to mount the motor to the part P-C3-3.0.1. The large hole in
the center of the part is made for the shaft of the electrical motor and for concentricity.
The four small holes are for mounting the part to the motor. This will be done with a M2
nut and a shim. The four larger holes are for fixturing to the part P-C3-3.0.1. It will be
mounted with four bolts with shims, M4.

11.5.7 Design review, DR-A.3.0.0

The concept covers the basic requirements of precision by having bearings around the
shaft. Depending on the lubricant, spring, preload of bearings and choice of materials, the
requirements dealing with temperature can be met. Documentation covering these topics
will be added. It was discussed to have the system concealed under a lid.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 125 of 389

11.6 Mechanical concept 4

This section will cover a full scale SolidWorks CAD model of concept 4. Some parts from
concept 3 are included in concept 4 and will not be further discussed in the sections below.

11.6.1 Assembly concept 4, A.4.0.0

Figure 83: Assembly of concept 4, A.4.0.0

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 126 of 389

Figure 84: Cross section, A.4.0.0

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 127 of 389

Figure 85: Top view, A.4.0.0

Figure 86: Bottom view, A.4.0.0

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 128 of 389

11.6.2 List of parts

• 2 x Stator

• Rotor

• Housing, P-C4-4.0.1

• 2 x SKF 6000-2RSH deep groove single row ball bearings

• Rotor Fixture, P-C3-3.0.3

• Stepper Motor

• Fixture for electrical motor, P-C4-3.0.3

• Shaft, P-C3-3.0.4

• 1 x, 1mm shim

• 1 x Disc spring

• 1 x M10 nut

• 30 x M2,5 bolts with shims

• M6 bolt, with shim

• 4 x M4 bolt with shims

• 4 x A2 nut with shims

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 129 of 389

11.6.3 Housing, P-C4-4.0.1

Figure 87: Housing concept 4, P-C4-4.0.1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 130 of 389

Figure 88: Housing top view, P-C4-4.0.1

The concept of this housing is to have the sensor concealed under a lid. This is to avoid
parts sticking out, and protect the sensor from some external electromagnetic noise. The
dowel pins guiding the PCB’s have been replaced by holes. This is so the dowel pins can be
made in a separate operation rather than milling of the housing.

11.6.4 Design review, DR-A.4.0.0

As the concept is very similar to concept 3, many of the design choices has already been
mentioned in section 11.5.7. Due to the stators being concealed under a lid, holes for
electrical wiring has to be taken in to consideration.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 131 of 389

11.7 Choice of concept

The process of designing the concepts has been done in an incremental way, which leads to
each concept going a step further from the previous. This means that the team will go
forward with Concept 4. KDA approved the design. Going forward, research of materials
and surface finish will be done.

11.7.1 2D

All 2D drawings are generated through SolidWorks. 2D-drawings are made so that the
manufacturer easily can see the measurements of the parts. The drawings contain both
general and spe-
cific tolerances 11.7.2. The drawings will also include specified materials and surface finishes.

11.7.2 Tolerances

The tolerances in the mechanical aspect of the system is a part of deciding how precise the
outcome and quality of the tests will be. Making sure that the rotary plane is parallel to
the stationary plane and that the position of the rotor is concentric to the spools on the
rotor. Going from a 3D model and to production of parts, it is the tolerances that ensures
how precise the parts are. The most significant tolerances for the created parts is the
positioning of the holes, parallelism, perpendicularity and flatness [2]. A general linear
tolerance of ± 0.2 mm and angular tolerance of 0.1° has been set for the drawings where
specific tolerances have not been specified. The reasoning behind the specific numbers of
the tolerances come from the requirements from KDA, wanting to have the same
mechanical interface as they use to this date.

The specific positioning tolerances refer to two or more letters, A, B and C. These letters
either refer to a surface or a plane, where the tolerance of position is relative to these
letters.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 132 of 389

Table 40: Tolerance symbols and descriptions, [21]

Table 41: Specific tolerances and values

Tolerance type Range of values [mm]
Position 0.02 - 0.5
Parallelism 0.02
Perpendicularity 0.02
Flatness 0.02

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 133 of 389

11.7.3 2D-drawings of final concept

Figure 89: Rotor Mount measures and tolerances, 2D

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 134 of 389

Figure 90: Shaft measures and tolerances, 2D

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 135 of 389

Figure 91: Housing measures and tolerances, sheet 1, 2D

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 136 of 389

Figure 92: Housing measures and tolerances, sheet 2, 2D

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 137 of 389

Figure 93: Housing measures and tolerances, sheet 3, 2D

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 138 of 389

Figure 94: Housing measures and tolerances, sheet 4, 2D

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 139 of 389

Figure 95: Cap measures and tolerances, 2D

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 140 of 389

11.8 Edits during manufacturing

During the process of ordering and manufacturing parts for the final system regarding the
test station, a few changes was made. The changes was mainly done due to lack of time at
the final stages of the project. To have the test station ready in time for testing before the
hand in of the final report plain steel was used as material in the parts, and no surface
finish was done. Stainless steel is more difficult and takes more time to work with
regarding threading small holes. This was one aspect that shortened the time by using
plain steel. A spring is not implemented for now either as the group focuses on testing in
room temperature and achieving the requirements dealing with precision.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 141 of 389

12 Bearings

12.1 Document history

Table 42: Bearings document history

Version Date Author Description

1.0.0 12.02.2019 HS Document created.

1.2.0 13.03.2019 HS Added section 12.3 to 12.3.1.

1.3.0 19.03.2019 HS Added section 12.4 to 12.5.

1.3.1 24.03.2019 JSS Proofread.

1.6.0 08.05.2019 HS Added sections 12.6 to 12.7

1.7.0 09.05.2019 HS Added section 12.8

1.3.2 17.05.2019 MBC Proofread and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 142 of 389

12.2 Introduction

In this chapter the CPS team will explain the general idea behind bearings and how they
can be applied to the project. The team will investigate different types of bearings and
come to a conclusion of which bearing is best suited for the test station. A specific bearing
will be chosen in the end of the bearing study, after all relevant requirements have been
taken into consideration. This includes potential loads the system will endure, thermal
factors and precision.

12.3 General

The purpose of a bearing is to allow linear or rotational movement and reduce friction
between mechanical parts while handling stress. The bearing often guides a rotating,
oscillating or sliding shaft, pivot or wheel. For simplicity a shaft will be used in examples.
Bearings have the same function and objective no matter the application. This is to keep a
shaft moving smooth and consistent while reducing friction. The reduction in friction
happens through the bearings rolling internal mechanism. The energy it takes to to slide or
move a shaft over the surface is greatly reduced. From the requirements given to the CPS
team from KDA, 1.2.1, 1.3.1 TR, 1.4.1 T, a very precise rotary system is needed in the test
station(Requirements can be found in section 7.4). Bearings will help accomplish this by
giving a smooth low friction rotation. Also, requirements dealing with temperature have to
be considered in this study for the requirements 1.7.1 T and 1.7.2 T. The lubrication and
choice of material of the bearings will cover these requirements.

Figure 96: Example, ball bearing [52]

12.3.1 Loads

A bearing is pushed the same way the load is moving. If the load applied to the bearing
exceeds the specifications of the bearing, it may fail. Therefore, it is important to
understand the load applied to the bearing and in which directions, so a correct bearing can

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 143 of 389

be chosen. There are three types of loads; radial load, thrust load and angular load. [52]

Radial load; when the direction of the load is at right angles to the shaft. The load pushes
down on the bearing. (Figure. 97) Radial means the direction of the radius. A radial load
pushes down from the outer race inward to the balls, cage and inner race at the centre of
the bearing. [52]

Figure 97: Radial load, [52]

Thrust load; when the direction of the load is parallel to the shaft. The load pushes
sideways on the bearing. (Figure. 98) Thrust means a pressure of pushing force exerted
sideways, pushing a shaft either right or left. This movement pushes the inner race of the
bearing in the same sideways direction. The line of pressure runs parallel to the shaft. [52]

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 144 of 389

Figure 98: Thrust load, [52]

Angular load; when the load is a combination of radial and thrust load. The load pushes
down and sideways on the bearing. (Figure. 99) As the load moves, it pushes against the
corner of the race and the pressure is transmitted through the corner of the inner race
diagonally to the opposite corner of the outer race. [52]

Figure 99: Angular load, [52]

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 145 of 389

12.4 Rolling bearing types

There are two categories of rolling bearing types; ball and roller. This section will cover the
roller types. There are three types of roller bearings; tapered, cylindrical and needle.
Cylindrical and needle bearings are non-tapered, this means the centre of each part run
parallel to one another. However, for the tapered rollers, the inner and outer race are not
parallel, which means if lines are drawn through the races they will coincide at one point.
[52]

12.4.1 Tapered roller bearing

Tapered bearings profile resembles more of a conic shape than a circle. This type of
bearing can handle all load types, in any combination.

Advantages:

• Cone shaped design which can align the rollers in the bearing perfectly with the cup
and cone without guidance by the cage.

• Does not have a minimum load requirement to prevent slipping between the inner
race and outer race.

Disadvantages:

• Struggles with dynamic misalignment because of the cone shape.

• Can handle less speed than more spherical bearing options.

• Requires a more complex housing.

12.4.2 Cylindrical bearing

The cylindrical bearing consists of four rolling parts; inner race, outer race, cage and
rollers. The rollers are placed evenly by the cage, which guides their movement between
the two races. Some of the cylindrical bearings have flanges on one or both races. This
permits limited free axial movement of a shaft while supporting the rollers. [52]

Advantages:

• High capacity under radial loads.

• Accurate guiding of the rollers.

• Limited free axial movement (only for bearings with flanges).

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 146 of 389

12.5 Ball bearing types

Ball bearings are the most common type of bearings used in industry application. There
are different types of ball bearings. This section will cover the single row bearing type,
which is the most relevant ball bearing type for the projects application.

Similar to the roller bearing types, the ball bearings task is to reduce friction. The main
difference between the two bearing categories is the shape of the rolling element. Ball
bearings are spherical. This means the contact between the two races will be different than
with the cylindrical rolling element. When no force is applied, the load is evenly
distributed through the races and balls. Once a load is applied the balls start to roll. This
motion causes the race to bulge out in front of the ball. The lower front quadrant of the
ball flattens, while the lower rear quadrant bulges [52]. This is a continuous process for
each ball as long as the load is in motion. The friction caused by this movement will
eventually wear the parts and in the end cause failure. To lessen this friction choosing the
correct lubrication is important [52].

12.5.1 Single row ball bearing

As the name indicates, this bearing type has a single row of balls. The single row bearing
consists of an inner and outer race, separator, shields and a seal. The separator separates
the balls and helps maintaining the distance between them. Shields protect the bearing
from dirt and particles to enter the bearing, while allowing excess lubricant to flow
through. They are placed between the two races. The seal is a barricade that prevents the
lubrication from leaking out. It also protects the bearing from moisture, fine dirt, particles
and other contaminants. Single row ball bearings can handle both thrust and radial loads
[52].

Advantages

• Good performance for both radial and thrust loads

• The deep groove allows thrust load in any shaft direction

• Contaminant free operation when seals are used.

• Housings can have a simple design depending on the use.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 147 of 389

12.6 Bearing selection

When designing the concepts, simplicity has been a key factor of how the system looks.
This has also affected the choice of a bearing type. As mentioned above, single row ball
bearings are the simplest types of bearings. To keep the rotation plane as parallel to the
stationary, a simple housing is wanted. Using a single row ball bearing allows the design of
the housing to be cylindrical and simple. Which again leads to less complications of
keeping the critical planes parallel. The system is also experiencing very small amounts of
force due to the low weight of components and little or no external forces. This is another
factor for choosing a simpler type of bearing.

12.6.1 SKF 6000-2RSH

The bearing the team has chosen to use is SKF 6000-2RHS. Specifications of the bearing
can be found in the data sheet [50]. The bearing is made of stainless steel, which is the
same material as the rest of the parts in the system. The process of selecting a bearing was
done by looking at the cad model, and see what dimension was possible to use. The
dimensions of the housing the bearings shall be mounted inside can easily be adjusted in
the cad model. This means the team had a lot of freedom selecting a bearing. In addition
to this, the forces the system is exposed to are very small. This makes a large bearing
unnecessary and will favour a smaller type of bearing to save weight.

The bearing itself will most likely not fulfil the requirements dealing with temperature
1.7.1 T. The reason for this is that most of the bearings from SKF have not been tested for
lower temperatures than -40 °C. However the use of external lubrication (Molybdenum
Disulphide) will create a dry film around the bearing and help isolate 12.7.1. This thin film
will work as a layer if isolation and makes it possible to fulfil the temperature requirements.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 148 of 389

12.7 Bearing lubrication

Selecting an external lubrication for the bearing is important to be able to fulfil the
requirement 1.7.1 T. Lubrication makes sure the bearing operates reliable during
operational conditions. Grease and oils are the most common form of lubrication in
bearings. Using grease can increase heat build-up. This happens when the bearing is
overfilled with grease between the balls and races. This causes the friction to increase, and
a rise in heat can occur [53]. However this is mostly a problem in high speed situations,
which the test station will not experience. Because of the temperature requirements
common oil and grease lubricants are not good enough and will fail for the CPS team’s
testing purposes. This is mostly because the extreme cold temperature effects on viscosity
of both oils and greases.

Because it is wanted from KDA to test in vacuum conditions at a later point, dry
lubrication is a solid option [44]. Dry lubrication is often used in extreme condition
environments. Particularly Molybdenum Disulphide (MoS2) dry lubrication films
containing MoS2 are suited for the temperature ranges and vacuum environments the
system will experience.

12.7.1 Dry Moly

Dry Moly is a lubricant produced by Ambersil [3]. Applying this lubrication to the selected
bearing will make sure it can withstand the changes in temperatures during testing. Due to
the low speed, and small amount of forces, the temperature requirement has been the most
important factor for choosing a lubrication. The lubrication applies a thin coating around
the metal surfaces of the bearing and works as isolation. A different option could be to use
a custom bearing using internal Molybdenum Disulphide lubrication suited for the
temperature range, instead of applying this externally. However this bearing type would be
more expensive, so the team has decided to go forward with the external lubrication
solution.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 149 of 389

12.8 Bearing preload

A ball bearing has internal radial clearing between the ball and the two races. By applying
force, in the form of preloading, the race and the ball will be in constant contact in the
same position. The two races of the bearing will be pulled away from each other and apply
pressure to the balls.

Figure 100: Preloaded bearings, forces on balls

Primary benefits of preloading bearings are: [51]

• Enhanced stiffness

• Reduced noise levels

• Improved shaft guidance

• Compensation for wear and settling

• Extended bearing service life

The most important benefits preloading provides for the system is improved shaft guidance
and compensation for wear and settling. Improved shaft guidance will help achieve a more
consistent and precise rotational axis. Also considering wear and settling, preloading helps.
The state of the bearing will change after use over time, and by preloading, this will be
minimized. This also applies for dynamic forces applied to the system such as
temperatures. The shaft will either expand or contract depending on the temperatures
applied, which will cause the bearing to experience dynamic forces. However just
preloading alone will not completely mitigate the effects. The shaft experiences deflection

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 150 of 389

during change in temperature, by using a spring to mitigate this, the dynamic forces on the
bearings will be mitigated.

12.8.1 Springs

The task of the spring is to mitigate the change in dynamic forces the bearing experiences
due to elongation of the shaft when temperatures varies. Relevant springs for the system
are disc springs. This spring type is circular and fits around the outer race of the bearing.
To select a specific spring, the team calculated the bearing preload force in kN [51]

F = k · d, (64)

where k is a factor for small electrical motors. d, is the bore diameter of the bearing [mm].
The value of k varies from 0.005 and 0.01 normally. However if the preload is to protect the
bearing from external vibrations the k-value should be set to 0.02. [51] Calculations will be
made for factor 0.005, 0.01 and 0.02.

Table 43: k-value and preload forces

k-value Preload force [N]
k = 0.005 50
k = 0.01 100
k = 0.02 200

From the calculations the preload should be between 50 N and 100 N under normal
circumstances and 200 N when external vibrations are applied. From these values it is
possible to select a fitting spring. The selection of a spring will happen by looking at the
dimensions needed which are decided by the outer race of the bearing and the diameter of
the shaft the spring is sitting around, as well as the spring force and deflection. Taking
these factors into consideration, the choice was between a low force disc spring and a
regular disc spring. As there is a big difference in the preload force, ranging from 50 N to
200 N it was decided to use two different springs depending on the uses and tests which
will be conducted.

12.8.2 Disc spring, 4293

The spring was selected from a lead manufacturer of springs; Lesjöfors. The 4293 disc
spring is meant for the 200 N preload and during external vibration testing. From the data
sheet, [29], at 25 % deflection of the spring, the spring force is 240.4 N. At 15 % deflection
this value is about 40 % less, which means for a preload of 200 N the spring will be
deflected between 15-25 %. At 25 % deflection the distance the spring is moved in height is
0,2 mm. From calculations of materials of the shaft the elongation expanding from room
temperature will be 0.16 mm (67). This means the spring will be able to mitigate the
entire range of elongation the system will experience.

The spring comes in different materials and alloys. The most important property for the
spring in this system is operational temperature. Because of this, the selected material is a

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 151 of 389

stainless steel type called EN 10270-3 – 1.4310 / X10CrNi18-
8 / AISI 302. [38] The operational temperature of this spring is between -200 °C and +250 °C.

12.8.3 Disc spring, 5028

5028: DSL 23,7X14,3X0,4 is a low force disc spring [30]. This spring is more suited for the
50 N preload, but cannot exceed the 75% spring force which is at 80.6 N. 50 N preload will
deflect the spring between 25-50% which means the spring will have moved between 0,125
mm and 0,250 mm. This spring will also mitigate the entire range of the shafts elongation.
This spring will be of the same material as the 4293, as it will experience the same range of
temperatures.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 152 of 389

13 Choice of materials

13.1 Document history

Table 44: Choice of materials document history

Version Date Author Description

1.0.0 16.05.2019 HS Document created, added section 13.2 to 13.4

1.2.0 17.05.2019 HS Added section 13.5

1.2.1 21.05.2019 HS Proofread

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 153 of 389

13.2 Introduction

In this section, the team will find a material best suited for the parts of the test station.
This section will also cover surface finish. This will mostly revolve around selecting a
material that can deal with the temperature requirements and testing in a vacuum
environment. Taken this into consideration and from tips given by KDA the team has
decided to mainly look into austenitic stainless steel types. As well as looking into the
effects of elongation.

13.3 Important elements

To be able to select a material, the team has to know which factors are most important to
the system. For the test station, corrosion resistance is important because of moisture
occurring during temperature testing. Mechanical properties, the most important being the
thermal expansion coefficient. The thermal expansion coefficient and the length of the part
decides how much the parts expands or contracts. It is important to understand how much
the parts will expand because it is a factor that can influence the precision the sensor will
be able to measure. The most critical parts considering temperature is the shaft and
housing of the test station. Due to changes in temperature it was decided to implement a
spring to make sure constant force always is applied to the bearings 12.8.1. However the
spring does not help mitigate the elongation, just the forces caused by elongation.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 154 of 389

13.4 Austenitic stainless steel

Austenitic stainless steel types are known for extremely good corrosion resistance and
being non-magnetic. They contain chromium and nickel and are referred to as 300-series
[59]. A tips from KDA was to look into the specific stainless steel types 304, and 316. The
reason aluminium is not considered in the system is mostly because of the high thermal
expansion coefficient. Almost double of plain steel alloys [57]

13.4.1 Stainless steel 304, 316

The 304 stainless steel and 316 stainless steel are very similar alloys. Among the two, the
304 type is most commonly used and is the cheapest. What makes the 316 stainless steel
more expensive is the Molybdenum value of approximately 2% [59]. 316 also contains
slightly more nickel, which makes it more corrosion resistant. This makes the 316 superior
to 304 considering corrosion.

Looking at the thermal expansion coefficients of the two, 316 has the lowest coefficient [59].
For the range of temperatures the system will experience, 304 has a coefficient of 17.3,
while 316 has 16.0 [57] This means when the materials are exposed to change in
temperature 304 will experience a larger change in volume than 316. The thermal
expansion coefficient is linear which means how much the material expands is also affected
by the size of the part.The thermal coefficient of a material is expressed by, the materials
coefficient multiplied by 10−6°C−1 [58]. For these reasons 316 will be chosen over 304.

13.4.2 Elongation of housing and shaft

To calculate the elongation of the housing and the shaft, the length of the parts and the
change in temperature are the key factors. The elongation can be expressed as,

∆L = L0α∆T, (65)

where ∆L is the elongation. L0 is the initial length of the
part. α is the thermal expansion coefficient of the material. ∆T is the change in temperature.

The elongation of the shaft can be expressed as,

∆L1 = 98.9 mm · 16(10−6 °C−1)200 °C = 0.32 mm. (66)

This elongation will be the full range from -80 °C to +200 °C. However half of the
elongation will be expansion, hand half will be contraction. This means the shaft will
expand from 20 °C and upwards, and contract from 20 °C and downwards by:

∆L2 = 98.9 mm · 16(10−6 °C−1)100 °C = 0.16 mm (67)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 155 of 389

The elongation of the housing can be expressed as

∆L3 = 195 mm · 16(10−6 °C−1)200 °C = 0.62 mm. (68)

Elongation from 20 °C to 120 °C,

∆L4 = 195 mm · 16(10−6 °C−1)100 °C = 0.31 mm (69)

since the rotor is mounted on the top of the shaft, and the stator is mounted on top of the
housing, the expansion can be halved. this is because the parts expand in either direction.
from the middle and upwards the housing will expand in one way, and downwards another
way. since both rotor and stator are mounted in the top section of the parts, they will
follow the expansion in the same direction. Because of this the expansion can be halved
looking at the position change in the stator and rotor. Halving (67) the expansion from the
middle and upwards is ∆L5 = 0.080 mm. And for the shaft ∆L6 = 0.155 mm. LRS is the
distance between the rotor and the stator.

LRS = ∆L6 −∆L5 (70)

LRS = 0.15 mm− 0.080 mm = 0.075 mm (71)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 156 of 389

13.5 Passivation

Passivation is a form of surface finish. It removes free iron from the surface of a creates a
thin dense layer of oxide []. Free iron appears on the surface of stainless steels after
manufacturing from forming tools. Passivation is a chemical treatment, and uses a specific
composition of acids to remove the free irons and other contaminants on the surface of the
material.

13.5.1 Nitric acid passivation

KVS-53 is a passivation process developed by KDA [6]. Because of the request of having a
high corrosion it was decided to add a surface finish. KDA has a lot of experience in this
field and suggested Nitric 2 or 3. What separates Nitric 2 and 3 is the % usage of nitric
acid and the temperature of the acid during the passivation process [1].

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 157 of 389

14 KDA motor and SMC133-2 driver

14.1 Document history

Table 45: KDA motor and driver document history

Version Date Author Description

1.0.0 18.02.2019 JSS Document created.

2.0.0 14.03.2019 JSS Added other ways to control stepper.

2.1.0 19.03.2019 JSS Added unit table and other drivers.

2.1.1 26.03.2019 HS & MBC Proofreading and corrections.

2.2.0 25.04.2019 JSS Added sections driver nonfunctional and conclusion.

2.2.1 17.05.2019 MBC Proofreading and corrections.

2.2.2 22.05.2019 CPS team Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 158 of 389

14.2 Introduction

This chapter will introduce the stepper driver and motor borrowed from KDA and how
they were implemented into the second concept for CPS.

14.3 Stepper motor

The stepper motor borrowed from KDA is of unknown model, but from its datasheet, it is
of high quality as it is meant to be used for space applications. It is a two-phase stepper
motor and has a low operation voltage of 1.8 V and current of 1.6 A. Without
microstepping, the motor has 400 steps in one rotation. It has four coils in total, but two
are mainly used. The other two can be used for redundancy or to give the motor a stronger
torque if needed. The stepper motor will be used to control the rotation of the CPS and as
a way to measure the accuracy of the sensor. By counting the steps the stepper motor has
moved, the location of the sensor can be determined.

NanoTec also provided a technical manual for the driver [43] that provides detailed setup
for the NanoPro software and driver.

14.4 Stepper driver

An SMCI33-2 stepper [41] motor driver was borrowed from KDA. It is desired to measure
the angle of the CPS with a 0.01° precision, thus a stepper motor capable of turning with
such a small amount each step is needed. The SMCI33-2 driver is capable of micro-stepping
down to 1/64-steps [40]. With the stepper motor also borrowed from KDA that has a
default step resolution of 400 steps per rotation, the motor is capable of gaining a total 25
600 steps per rotation giving a 0.014° rotation per step. With this it is not possible to
measure every degree in a circle down to a 0.01° change of angle, but still possible to test
precision of the 25 600 different angles that the stepper motor and driver can give.

Figure 101: Nanotech SMCI33-2 driver

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 159 of 389

14.5 NanoPro software - first code version

The SMCI33-2 driver has an integrated controller and can with the accompanying software
NanoPro [41] be used to gain full control of the stepper motor. In NanoPro it is possible to
change the current and drive step angle that suits the motor and tell it to either use full
steps, to be able to see the rotation easier for debugging of the arduino code, or 1/64th
steps resolution to test the accuracy of the sensor. This software has high functionality if
used properly but is difficult to take use of, as there are unknown phrasings and the
documentation on the software is light.

The phase current and phase current during idleness is of high importance here. The
stepper motor that was borrowed from KDA has a low operating voltage of 1.8 V and an
operating current of 1.6 A. This makes it possible to use three 9V batteries in series, as a
power supply to deliver just short of the 27 V it is required as low current, to not damage
the stepper motor.

Figure 102: NanoPro motor settings tab

The driver is set to run the motor on a clock pulse on input 6 on the driver, and to change
direction depending on if the input 1 is high (counter clockwise) or low (clockwise).

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 160 of 389

Figure 103: NanoPro input settings tab

14.5.1 Arduino code - first code version

Code listing 1 is the first code version used to test how it is to control the stepper motor
through the SMCI33-2 driver using the NanoPro software. It is an endless loop that will
take the motor 2000 steps in one direction for so to change and step the same amount
back. It was mainly used to get to know the Nanopro software and later to see the sensor
in action.

The pin number 6 is used to control the direction of the driver and pin number 9 is used to
send a pulse to the driver. ”Int steps” is amount of steps the motor will go in one direction
and the ”stepDirection” is to keep track of which direction it is currently moving.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 161 of 389

1 /* Initialize pin numbers,
2 * and variables */
3 const int dir = 6;
4 const int clk = 9;
5 int steps = 2000;
6 int stepDirection = 0;
7
8 /* Deciding pinmode and */
9 void setup() {

10 // initialize pins
11 pinMode(dir, OUTPUT);
12 pinMode(clk, OUTPUT);
13
14 digitalWrite(dir, LOW);
15 digitalWrite(clk, LOW);
16 }
17 /* Running x amount of steps before changing direction and

repeating */
18 void loop(){
19 \\Counterclockwise
20 if (stepDirection == 1){
21 for (int e = 0; e < steps; e++){
22 digitalWrite(clk, HIGH);
23 delay(1);
24 digitalWrite(clk, LOW);
25 delay(1);
26 }
27 digitalWrite(dir, LOW);
28 stepDirection = 0;
29 }
30 //Clockwise
31 else if (stepDirection == 0){
32 for (int e = 0; e < steps; e++){
33 digitalWrite(clk, HIGH);
34 delay(1);
35 digitalWrite(clk, LOW);
36 delay(1);
37 }
38 digitalWrite(dir, HIGH);
39 stepDirection = 1;
40 }
41 }

Listing 1: Arduino code - first code version

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 162 of 389

14.5.2 Connection diagram

Illustrated in figure 104 is a simplified connection diagram. Three 9 V batteries was used
as a power supply. The wires on the stepper motor is both colour coded and named
depending on which coil they belong to.

Figure 104: Code version 1 connection diagram KDA driver and motor

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 163 of 389

14.6 SMCI33-2 driver problems and possible solutions

The nanotec SMCI33-2 driver has been challenging to make use of after the updated
stakeholder requirement 1.21 - 1.23 in table 18 where a more fine control of the stepper
motor is required to change the speed, acceleration, distance, holding current, current when
driving and stepmode. Because of this the previous way of controlling the stepper motor is
not adequate as they can not be controlled through our own software.

Other ways Nanotec has for communicating and controlling the stepper motor driver has
been explored and problems encountered along the way.

14.6.1 NanoJEasy

NanoJEasy is another software that is compatible with the SMCI33-2 driver and controls it
in a different way than NanoPro. In NanoJEasy a program based on the Java programming
language can be written and compiled to a program package that is transferred to the
driver. This Java program allows for control over all the parameters that are needed to be
able to change, but sending in and receiving data from the driver cannot be done through a
USB connection this way. Other means of controlling the driver must be researched.

As the driver has 6 input pins, 1 analogue input pin and 3 output pins, it is possible to use
these to communicate through a custom-made communication protocol. Sending
information from our software to the Arduino is fully possible and translating this
information into PWM signals should be possible. Currently there are difficulties to get the
analogue input pin on the driver to give a valid reading. If this can be fixed, then the
analogue in combination with the 6 input pins can be used to generate the high numbers
necessary for the parameters. Output pins from the SMCI33-2 driver can be used to verify
that the values were properly transferred and that it is ready to receive new messages.
NanoTec has included a programming manual for NanoJEasy [42].

Arduino Mega 2560 SMCI33-2

Input 1 - 6

Analog in

Output 1 - 3

Pin 2 - 7

Pin 8

Pin 11 - 13

Figure 105: Code version 2 connection diagram KDA driver and arduino

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 164 of 389

14.6.2 Software development kit

With the NanoPro software there was an accompanying development kit for USB
communication with the driver. Upon further research into the SDK, there was a problem
of an outdated library that could not function on newer version of the .NET framework.
Because of lack of knowledge around .NET, an email was sent to NanoTec in case there
was a ready solution for the incompatibility.

The library that is available through the SDK would be easier to implement into the
current main software program as using the arduino to translate messages would not be
needed. Nanotec has included a programming manual for the library [42].

14.7 SMCI33-2 driver after researching

After extensive research into what the driver has to offer, the different ways to control the
driver, the problems to efficiently communicating, the outdated software and C++ library,
research for other alternatives that may provide an easier solution has started. The mail to
NanoTec was answered and no solution for the outdated C++ library was available.

14.8 Important about the SMCI33-2 driver

The driver can be susceptible to a power surge if connected to a charging laptop. To avoid
this unplug the laptop while configuring the driver or apply a USB power surge protector.

The firmware can be configured directly in the controller, but can cause unexpected
consequences if not careful. If something were to happen where the firmware cannot be
reset back to a clean version, then the driver would have to be sent in to Nanotec for a
factory reset.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 165 of 389

14.9 Parameters unit - SMCI33-2

Stepmode:
The stepmode will be configured with a number signifying the step resolution of the
stepmode.

Table 46: Overview of the stepmodes available on the SMCI33-2 driver

Stepmode Number
Full step 1

Half of a step 2
Quarter of a step 4

Fifth of a step 5
Eight of a step 8
Tenth of a step 10
16th of a step 16
32nd of a step 32
64th of a step 64

Speed:
The max possible speed changes depending on the stepmode the driver is currently in and
is measured in Hz. This is given in Hz in the programming manual [42] as a stepper motor
moves with steps, this will make it so move the same amounts of steps per second as the
current frequency is set to.

Table 47: SMCI33-2 driver max speed per step resolution

Stepmode Speed in frequency
1/2 step 1 to 32 000 Hz
1/4 step 1 to 64 000 Hz
1/8 step 1 to 128 000 Hz
1/16 step 1 to 256 000 Hz
1/32 step 1 to 512 000 Hz
1/64 step 1 to 1 000 000 Hz

Figure 77 and 80 illustrates that a frequency can be converted to angular rotation with
expression (73).

Angular resolution is given by

N =
360°
M

, (72)

where M is the number of steps per rotation.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 166 of 389

Angular rotation is given by
ωdeg = NSωstep, (73)

where N is angular resolution from (72), S is the step resolution of the driver shown in
table 47 and ωstep is the speed in frequency.

Table 48: SMCI33-2 driver max speed in °/s per step resolution

Stepmode Speed in °/s
1/2 step 0.45 to 14 400 °/s
1/4 step 0.1125 to 14 400 °/s
1/8 step 0.05625 to 14 400 °/s
1/16 step 0.0.028125 to 14 400 °/s
1/32 step 0.0140625 to 14 400 °/s
1/64 step 0.00703125 to 14 062.5 °/s

Other parameters:
The other parameters are as follows:

Table 49: Other avaialbe SMCI33-2 driver parameter range with units

Parameter From min to max values
Current 0 to 150%
Distance 0 to 25 600 steps

Acceleration 0.019 to 2988 Hz/ms

The current goes in percentage of the operating current of 2 A. This means it has a current
range of 0 A to 3 A.

Acceleration can take in values ranging from 1 to 65 535 as parameter (X). The values in
the table is the min and max acceleration allowed after the conversion. The formula to
convert it from a parameter to Hz/ms can be found in the programming manual [42], and
is:

ω = ((3000.0/sqrt(X))− 11.7), (74)

Where ω is hz/ms, X is parameter value

14.10 Driver nonfunctional

While testing configurations and communication protocols with the SMCI33-1 it has
become unstable and will lose the communication connection after approximately 20
seconds of operating. Because of this, it was decided to acquire a new driver without an

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 167 of 389

integrated controller which limits the variables that can be controlled but makes it easier
to build a functional setup. The final driver chosen was the DM420A driver from longs
motor [32].

14.11 Other drivers

Replacement drivers has been researched in case it proved too difficult to control the
SMCI33-2 driver. One candidate that will allow to control most parameters through our
software was found. However it did not allowed for the control off all parameters so
researching replacement drivers will continue. The focus will still be on setting up the
SMCI33-2 driver as it currently has the best control over the stepper motor. This is partly
because of the time frame for the project and making use of a new driver could cause
unexpected issues.

14.11.1 The EM402 - Leadshine

The EM402 driver by Leadshine [28] has capacity to go down to 1/512th microstep
resolution if configured with their software, which is higher than the current SMCI33-2
driver. It can supply a low enough current for our stepper motor. On the negative side:
few parameters can be controlled by external software which includes the stepmode and
current reduction. Acceleration and speed can be controlled through the Arduino mega by
changing the delay between each step, and distance can be controlled with amount of steps.
The stepmode and current can also be controlled by dip switches on the driver, but these
do not give as many options as their software.

After reconsideration this driver was no longer suited as it was decided to go against
software dependant drivers due to difficulties during integration with the software to be
developed.

Figure 106: EM402 stepper driver by Leadshine

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 168 of 389

14.12 SMCI33-2 driver conclusion

Because of all the problems to get the SMCI33-2 driver stabile and functional it has been
replaced with a new stepper motor, the DM420A from Longs-motors [32].

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 169 of 389

15 Final driver - DM420A

15.1 Document history

Table 50: DM420A driver document history

Version Date Author Description

1.0.0 25.04.2019 JSS Document created.

1.0.1 17.05.2019 MBC Proofreading and corrections.

2.0.0 10.05.2019 JSS Document updated and proofread.

2.0.1 22.05.2019 CPS team Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 170 of 389

15.2 Introduction

This chapter will introduce the stepper driver that was decided to use in the end and the
communication protocol to control it through an Arduino Mega 2560.

15.3 Backup driver

The SMCI33-2 driver started behaving erratically where the communication cut off after 20
seconds of operation time. This made it too unstable to use for the project and an
alternative driver was needed as a replacement. Since the mechanical interface that has
been developed for the project has a strict design since it has been made for the stepper
motor borrowed from KDA. So in choosing a backup driver it was important that it could
drive this stepper motor without damaging it with a higher voltage and current than it can
sustain. With this in mind the DM420A stepper driver from Longs Motor was chosen [32].

15.4 Driver control

The control of the DM420A was easier to implement than the SMCI33-2 with an
integrated controller. It does not have full control over all the desired parameters listed in
stakeholder requirement 1.21 in table 18. Unlike the SMCI33-2 which had the possibility to
control all parameters through code, the DM420 can only control the speed, distance and
acceleration through code. The Stepmode and current can be controlled through
DIP-switches on the driver itself.

To run the driver an Arduino Mega 2560 is used to give digital signals to activate the
motor bridge, choose direction for the motor to run, give a pulse for each step it is to move
and a +5 V power supply used for the digital signals. (5 V used alongside on of the other
signals to activate a PNP transistor that functions like a switch.)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 171 of 389

15.4.1 Stepper motor driver connection diagram

Illustrated in figure 107 is a connection diagram for the DM420A stepper motor driver with
the stepper motor and the Arduino Mega 2560.

Figure 107: Stepper motor driver connection diagram

15.5 Parameters unit - DM420A

15.5.1 Current

With the DM420A driver the stepmode and current are controlled with dip-switches on the
driver itself. The configurations possible are described in the tables below.
Root mean square (RMS)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 172 of 389

Table 51: Overview of current settings on the DM420A driver

Peak current RMS Switch 1 Switch 2 Switch 3
0.44 0.31 ON ON ON
0.62 0.44 OFF ON ON
0.74 0.52 ON OFF ON
0.86 0.61 OFF OFF ON
1.46 1.03 ON ON OFF
1.69 1.20 OFF ON OFF
2.14 1.51 ON OFF OFF
2.83 2.00 OFF OFF OFF

Switch 4: On = Half current
Off = Full current

15.5.2 Stepmode

The stepmode table described here is not identical to the one on the driver itself as a 400
steps stepper motor is used, instead of a 200 steps stepper motor which is what is used for
the table on the driver.

Table 52: Overview of stepmodes available on the DM420A driver

Steps in full rotation Micro step resolution Switch 5 Switch 6 Switch 7
400 1/1 ON ON ON
800 1/2 OFF ON ON
1600 1/4 ON OFF ON
3200 1/8 OFF OFF ON
6400 1/16 ON ON OFF
12800 1/32 OFF ON OFF
25600 1/64 ON OFF OFF
51200 1/128 OFF OFF OFF

15.5.3 Speed

The speed depends on the stepmode the driver is currently in. Due to limitations on the
stepper motor the speed becomes unstable at values above 180°/s. This happens because
the coils inside the stepper motor start switching quicker than the motor can rotate the
shaft connected to the motor leaving it to just vibrate at one spot. The minimum speed is
restricted due to an integer limitation in the code.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 173 of 389

Table 53: Overview of possible speeds with the DM420A driver

Stepmode Min speed Max speed
1/1 0.0009°/s (0.001 step/s) 180°/s (200 step/s)
1/2 0.00045°/s (0.001 step/s) 180°/s (400 step/s)
1/4 0.000225°/s (0.001 step/s) 180°/s (800 step/s)
1/8 0.0001125°/s (0.001 step/s) 180°/s (1600 step/s)
1/16 0.00005625°/s (0.001 step/s) 180°/s (3200 step/s)
1/32 0.000028125°/s (0.001 step/s) 180°/s (6400 step/s)
1/64 0.0000140625°/s (0.001 step/s) 180°/s (12800 step/s)
1/128 0.00000703125°/s (0.001 step/s) 180°/s (25600 step/s)

15.5.4 Distance

The max distance is set to 10 full rotations in a single motion. Since the goal of the project
is to test the accuracy of the sensor, being able to run further would not be helpful. The
least distance it can travel depends on the stepmode it is in as the minimum distance is
limited to one step. The step to degree ratio can be seen below in table 54.

Table 54: Distance Overview of possible distances in each stepmode on the DM420A driver

Stepmode Min distance Max distance
1/1 0.9°(1 step) 3600°(4000 steps)
1/2 0.45°(1 step) 3600°(8000 steps)
1/4 0.225°(1 step) 3600°(16000 steps)
1/8 0.1125°(1 step) 3600°(32000 steps)
1/16 0.05625°(1 step) 3600°(64000 steps)
1/32 0.028125°(1 step) 3600°(128000 steps)
1/64 0.0140625°(1 step) 3600°(256000 steps)
1/128 0.00703125°(1 step) 3600°(512000 steps)

15.5.5 Direction

There was no requirement to control the direction the stepper motor would turn, but with
the new driver this became a function that was not too difficult to add when the
communication protocol was set up. Therefore it is possible to change the direction of the
driver.

15.5.6 Acceleration

Because of the change in stepper motor driver the acceleration has become difficult to
adjust. Even though the CPS can set up a decreasing delay between each step to add an
acceleration. With a finer understanding of how slow the test station is in need of moving
to accurately gather the position, the control of acceleration would be very limited or not
have an impact for the test.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 174 of 389

15.6 Conversions

To give the user some choices in the speed and the distance of the sensor there was a need
to convert the values given by the GUI to the ones that the Arduino could use.

15.6.1 Distance

Distance can be given as either steps or degrees. For the Arduino this value needs to be
specified as steps, so if it is given as degrees in the GUI this will need to be converted to
steps. This conversion is given by

` =
∆θdeg(

N

S−1

) , (75)

where ∆θdeg is the angular rotation, N is the angular resolution from (72), S is the step
resolution of the driver shown in table 52.

Therefore

` = round

(
∆θdegS

−1

N

)
, (76)

The equation needs to be rounded as the steps can only be given as an integer.

15.6.2 Speed

The rotational speed can be given as either step/s or degree/s. For the Arduino the speed
needs to be converted to a delay that will be used for each step it takes. Because of this
both step/s and degree/s needs to be converted to a delay.

To convert from step/s to delay this expression is used

τ =

(
1

(ωstepk)

)
0.5, (77)

where ωstep is the speed, k is the constant 10−6.

To convert from °/s to delay this expression is used

τ =

(
(N/S−1)

(ωdegk)

)
0.5, (78)

where ωdeg is the speed, k is the constant 10−6, N is angular resolution from (72), S is the
step resolution of the driver shown in table 52.

At times being able to convert back from the Arduino values could be necessary for

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 175 of 389

debugging or if it is desirable to view both speed units at the same time.
To convert from delay values to step/s this expression is used

ωstep =

(
1

(τk)

)
0.5, (79)

where τ is the delay, k is the constant 10−6

To convert from delay values to °/s this expression is used

ωdeg =

(
(N/S−1)

τk

)
0.5, (80)

Where τ is the delay, k is the constant 10−6, N is angular resolution from (72), S is the step
resolution.

15.7 Communication protocol

The communication to run the DM420A goes through the Arduino Mega 2560 to generate
digital signals that the driver requires. To transfer type of parameter as well as the value
for said parameter a communication protocol was set up so that all the information could
be transferred in a single transfer. This protocol is set up to take the parameter type and
value and use ”:” as a break character to divide the values. If multiple parameters are
transferred at the same time they will be divided with ”&” character.

15.7.1 Parameter types

These are the parameters that are sent to the Arduino. The user will be able to choose
other units to set parameters of speed and distance which will be converted to match these
parameters before it is sent to the Arduino. Some parameters are restricted to a max value
that is below what the system can process as any higher values would not be reasonable to
conduct testing with.

Table 55: Parameters to the Arduino Mega 2560

Parameter Description Value range
1 Enable signal to turn on the motor

bridge
0 for off, 1 for on

2 The direction the motor turns 0 for clockwise, 1 for counterclock-
wise

3 Speed of the motor in delay between
steps

1 µs to 10+ days

4 Distance to run in steps and starts a
run

0 steps to 510 200 steps

5 Start calibration sequence A numerical value will start it
6 Runs the motor continuously 0 for off, 1 for on

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 176 of 389

15.7.2 Example parameter string

Table 56: An example parameter string message to the Arduino Mega 2560

1:1&2:0&3:50&4:51200

As mentioned above, each type of parameter is split with ”&”, the table shows each
sections of the string after this split has been made.

Table 57: Explanation of the parameter string given in 56

String section Explanation
1:1 Enable signal, set high
2:0 Direction signal, set low for clockwise
3:50 Speed delay, set to 50 µs. It will use 100 µs per step. Two delays are used.

4:51200 Distance, set to 51200 steps

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 177 of 389

16 Unified Modelling Language

16.1 Document history

Table 58: Unified Modelling Language document history

Version Date Author Description

1.0.0 19.03.2019 MBC Document created. Added sections 2 and 3.

1.2.0 20.03.2019 MBC Added section 5 and 6.

1.2.1 23.03.2019 JSS Proofread.

1.2.2 26.03.2019 MBC & HS Proofreading and corrections.

1.3.0 13.05.2019 MBC Added explanation of extend and include dependen-
cies.

1.3.1 17.05.2019 MBC Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 178 of 389

16.2 Introduction

This section will explain what Unified Modelling Language (UML) is and explain two
simplified examples of UML diagrams. It will give a light introduction to UML to give the
reader insight in what it is and how it benefits our project. The section will not cover every
aspect of UML but instead give a simplified top view of it. The reasoning behind this is
that it will prepare any reader who does not have any previous knowledge about UML and
the CPS teams approach to UML.

16.3 What is Unified Modelling Language

”The unified Modelling Language is a visual language that provides a way for
people who analyse and design object-oriented systems to visualise, construct

and document the artefacts of software systems and to model the business
organisations that use such systems” [5].

This means that it can be used to develop software systems, but unlike a programming
language UML is a high-level specification language used to describe the functionality of
the system. It consists of a set of elements and rules that describe how to use it and is
useful to plan and develop software systems.

UML can provide a graphical representation of how the system works in multiple levels of
complexity. By using the different elements that UML offers, one can describe nearly every
subsystem of the product. This can be particularly effective in explaining software related
artefacts to a customer who may not have a software related background.

16.4 Use cases

Figure 108: Use case example

Figure 108 represents a simplified example of a use case diagram of a phone. The phone
user is called an actor and is either a person or another system that interacts with use
cases. The blue bubbles are use cases and in this example, refer to upper level functions of
the system. The green square that encapsulates the use cases is the subsystem. In this case
the subsystem is the phone and it aids in visualising the functionality of the phone and

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 179 of 389

how a user may interact with it.

The arrow with the label ”Include” is called a dependency and describes the bubbles
relations to each other. In this case an include tells us that the bubble pointed to is a
direct consequence of the parent bubble. If the parent bubble action is done, then the
included bubble will immediately follow and be done. Similarly, the arrow labelled
”Extend” describes a similar dependency, but where the include dependency is absolute,
the extend dependency is optional. This means that the bubble that is extended is not
something that has to be done, but optional.

16.5 Sequence diagrams

Another useful element of UML are sequence diagrams. They are used to visualise the
interaction between different classes/objects in the software.

Figure 109: Sequence diagram example

In this diagram the Y-Axis represents time elapsed, and the x-Axis holds the different
lifelines. The boxes colour coded by green blue and yellow are lifelines in this diagram.
They represent the participation of said class/object in this interaction.

The boxes labelled ”Object/Class” with dotted lines, are called lifeline notation. They
represent the participation of said object or class in an interaction. Having the dotted lines
connected to the lifeline shows that the class or object is already created and will continue
to be so after any interaction is done.

The solid boxes covering the dotted lines represent events. If a message is sent to object 1
an event occurs. Object 1 starts processing and performing tasks and when done notifies

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 180 of 389

that it is done.

The grey box is called a frame. The frame specifies events or actions that happen inside
this frame. In figure 109 there exists a loop frame. This means that the interactions inside
this frame are redone until the loop is done.

16.6 Further reading

This has been a light introduction to what UML, use cases and sequence Diagrams are.
For a further and more in depth explanation of UML a recommendation is the Object
Management Groups website [45].

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 181 of 389

17 CPS software planning

17.1 Document history

Table 59: CPS Software planning document history

Version Date Author Description

1.0.0 22.03.2019 MBC Document created, and added subsection 1 to 4.

1.1.0 24.03.2019 MBC Added subsection 5 to 8.

1.1.1 25.03.2019 JSS Proofread.

1.1.2 26.03.2019 HS & MBC Proofreading and corrections.

1.2.0 13.05.2019 MBC Updating UML diagrams and their description.

1.2.1 14.05.2019 MBC Finalised UML diagram descriptions.

1.2.4 17.05.2019 MBC Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 182 of 389

17.2 Introduction

To model the software system of the CPS bachelor project, planning is necessary. It was
given a set of requirements and they were analysed, in order to plan the software system
that was be developed. This section will explain the initial concept as well as explore the
current software concept that was chosen to be further developed.

17.3 Initial challenge

Initially there was a challenge in regard to how to model the system for KDA. There was no
requirements specifying software functionality, but instead a task summary which included
a somewhat broad task. This task stated that a test station with a convenient user
interface to perform functional testing and calibration of the sensor, was to be developed.
Different ideas were discussed about how to model the software for the test station.

17.4 First software concept

Different ideas were explored. First we considered having the test station software
stationary on a local computer such as a Raspberry Pi3, shown if figure 110. This concept
would eliminate the need for any user to bring a laptop to perform functional testing and
calibrating of the sensor.

Figure 110: First software concept

This concept was discarded as the complete system concept evolved. To be able to test in
different locations the test station needed to be portable and having a stationary screen
would contradict this.

17.5 Second software concept

Iterating from the first concept the second concept evolved. The idea behind this concept
was to make it as easy as possible for users to use the test station. It would be built upon
a server client architecture, and the graphical user interface would be accessed by a
website. This would eliminate the need to install software or transport any test log from a

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 183 of 389

test station to personal work laptop. The possibilities of an app were discussed as it would
eliminate the need for any laptop or desktop to perform a functional test or calibration
from the users phone.

Figure 111: second software concept

This concept was also discarded after conversation with KDA as there where multiple
problems with this concept. KDA has strict security policies and to prevent any potential
IT security breaches, none of KDAs test equipment are connected to the internet.
Bluetooth technologies are also regulated due to the strict security and this resulted in the
CPS having to exclude the app as well.

17.6 Third software concept

After iterating throughout the previous concepts, the third concept was developed. It is
intended to run on a users work laptop thus does not violate any security precautions as
well as having great portability. After the second software concept iteration the team
received updated requirements and software requirements had to be implemented. The
software team could start to plan the test station software.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 184 of 389

Figure 112: Third software concept

The concept is based around a layered software architecture, as shown in figure 118, and is
intended to run on a local laptop, preferably the users work laptop. The users laptop is
already cleared for usage in KDA, thus the only remaining security issue is to clear the
software once it is developed. The stakeholder requirements 1.19 to 1.23 in table 18 state
that the test station shall be able to display data, run with different parameters, log data
which enables for later extraction, as well as include ”run” and ”motor enable” features.
The following Use Case diagrams as shown in the next section, was created.

17.6.1 Use Cases

As mentioned in in section 16, the usage of Use Cases and other UML diagrams, has the
purpose of describing the interaction between users, systems, and subsystems. The
following Use Case diagrams was developed to understand how the software system would
behave and to use it as a template. The Use Cases was designed with the stakeholder
requirements in mind. The requirements 1.19 to 1.23 from 18 describe functionality of the
test station software. The base Use Case diagram illustrated in figure 113 was then created.

This Use Case features functionality that is explained general enough to not allow for
concept discussions on how to implement it, but at the same time specific enough to
understand what functionality is modelled.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 185 of 389

Figure 113: CPS software base Use Case

The green Use Case states ”View CPS data”. This Use Case stems from stakeholder
requirements 1.10 and 1.19, which state that the position shall be based on change in
frequency and provide an accurate and analogue position value, as well as that the test
station shall trough a graphical user interface be able to show change in degree and speed.
The next Use Case states ”Set parameters” and derived from stakeholder requirement 1.21.
This requirement described different parameters that the test station was to include. The
ability to change these parameters allows for an extensive test station and variety in
testing.Trough the test station the user also needed the ability to control the rotation of
the sensor inside the test station. It was decided in a conversation with the stakeholder
that the test station was to utilise a stepper motor with a high degree of accuracy and
repeatability. Therefore the dark blue Use Case states ”Control Stepper motor”. The last
Use Case states ”Log CPS data” and derives from stakeholder requirement 1.21. This
requirement describes that the test station needs to log test data with all of it is parameters
in a format which enables for extraction at a later time. As stated above these descriptions
are general enough to understand what system function needed to be performed, and
specific enough to not confuse it with other functions. After creating the base Use Case
from figure 113, a decision to further describe the different Use Case in detail and add
more specific functions, was made. The following Use Case diagrams illustrates the
different Use Cases explained above with more specific functions and dependencies.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 186 of 389

Figure 114: View CPS data Use Case

The first one is the ”View CPS data” Use Case. As seen in figure 114 The user can view
the actual frequency value from the CPS and also see the expected frequency. In addition
to this the user can also view the current position of the rotor. Lastly the user can also
view previously logged data, and access the data if desired.

Figure 115: Set parameters Use Case

The next Use Case ”Set parameters” is illustrated in figure 115. This one is more complex
because of the different parameters that needed to be implemented due to the
requirements. The user is able to set the direction of the stepper of motor. This is
described as an include as it is something that has to happen if the user sets the direction.
The user is also able to both set the current parameter and the step mode parameter. The
last two parameters; speed and distance both have includes to describe that the mode in
which the user sets speed and distance has to be specified. When a user changes the speed

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 187 of 389

of the stepper motor, it is necessary to specify if the user wants to use steps per seconds or
degrees per second. This applies to the distance parameter as well, as it is possible to both
decide to move in number of steps or degrees.

Figure 116: Control stepper motor Use Case

The next Use Case is illustrated in figure 116 and it is not as complex as earlier Use Case.
Here the user can enable the stepper motor bridge to allow for movement. The user is also
able to execute with the selected parameters. Lastly the user is able to perform calibration
of the CPS. This is necessary as calibration sets the blueprint for the degrees and its values
in frequency. The comparison of actual frequency and expected frequency is between the
real-time data and the data collected during the calibration.

Figure 117: Log CPS data Use Case

The last Use Case is illustrated in figure 117. This one is special as there are two includes,
and one extend dependencies. When a log of CPS data is written the user has to set log
data, such as different parameters, and different project information such as project name,
test ID, etc. When an log is written a XML file is generated with the data available. Lastly
the user has the opportunity to specify if generating a PDF test report is desirable, but
this is as mentioned optional hence the extend dependency.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 188 of 389

17.7 Third software concept architecture

17.7.1 Why CPS test station utilises software architecture

Developing software systems without a certain structure or architecture can often result in
an unpredictable situation. As the source code increases in complexity, it can prove
difficult to change parts of the code as one change might effect more of the system than
intended. Results of this can be time consuming debugging that could have been avoided.
Another reason to utilise software architecture is the handover to the customer. The
customer may want to maintain or further develop the system and by having an
unorganised code, this can be complicated.

This can be prevented by structuring the software by what is called software architecture.
There are many types of software architectures that are widely used in software
development, and choosing the wrong architecture for the system can complicate the
development instead of helping to structure it. An example of a software architecture is the
server client type which the second concept was based on (see section 17.5).

17.7.2 Choosing the right architecture (Software architecture)

The architecture chosen was the layered architecture, and it is based upon splitting
components into horizontal layers as shown in figure 118. Each layer only communicates
with neighbour layers. An example of this is how the presentation layer illustrated cannot
communicate directly with the functional layer, but instead communicates trough the
control layer. Each layer has a specific role, or responsibilities in the software system. An
example is that the presentation layer does not need to know how to control the driver, but
instead only has to present the user the option to control it.

Figure 118: software concept architecture

The presentation layer only handles the graphical display of data, or sends instructions to
the control layer. This functionality is derived from STRQ 1.19 in table 18.

The control layer is responsible for handling the instructions from the presentation layer

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 189 of 389

and initiates other components such as the logging of data, or driving the motor with
different parameters, as stated in the STRQ 1.21 in table 18.

The functional layer is where the system functions are coupled with the corresponding
hardware/software. Here the circuit that makes up the contactless position sensor is
interfaced with the software enabling data reading from the sensor. Other data about
parameter, angles, speed etc is processed and logged in the desired format (See STRQ 1.20
in table 18), and the motor to drive the rotation of the rotor is interfaced with the software
to control different parameters (See STRQ 1.21 in table 18).

17.7.3 Objects/classes interaction (Sequence diagram)

As previously mentioned in section 16, sequence diagrams illustrate the interactions
between the classes or objects in the system. It was decided to incorporate this type of
diagram to further develop an understanding of how to model the software and to enforce
the Use Case diagrams. There are in total four sequence diagrams showcasing the
interactions between hardware and software in different scenarios. The usage of the layered
architecture described in section 17.7.2 is further reinforced by the following figures by
having every class or object not skipping its parent or child layer to exchange data.
Everything from the graphical user interface goes through the control system, and the
same applies the other way around. Everything going to the user interface goes through
the control system first.

Figure 119: Display CPS data sequence diagram

The first sequence diagram illustrated in figure 119 showcases the sequence of interactions
while displaying CPS data on the GUI. This sequence starts at the CPS itself, which is
always pouring out analogue data to the microcontroller. Following the arrival of new
sensor data, the microcontroller packets the data in an appropriate manner and sends it to
the software via the control system. Here the data packet is disassembled and dissected
and displayed on the GUI. All of this will happen continuously, unless a command to do

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 190 of 389

something else has been issued, thus this sequence is placed inside a infinite loop. Although
being labelled infinite loop, it can be broken as mentioned.

Figure 120: Write log sequence diagram

The second sequence diagram is illustrated in figure 120, and the number of interactions is
somewhat smaller due to the nature of the interaction. Writing a log is something that
happens after the user initiates it or after an calibration run. This sequence starts by the
control system receiving an initiate message. The control system then invokes logging
system and provides it with the necessary information to write a log. When writing the log
is finished it is displayed in the GUI in its appropriate folder, described in the folder
structure section 21.

Figure 121: Execute with parameters sequence diagram

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 191 of 389

The third sequence is illustrated in figure 121 and showcases the sequence interactions after
the user presses the run button. This sequence starts by having the user pressing the
run/start button. The control system then pieces together a data packet containing the
necessary information such as how many steps, and at what speed. This is then sent to the
microcontroller which executes this by looping and performing the operations needed.
However, after the control system sends the data packet it will update the position data
and then display it to the GUI. This is information that is controlled trough the control
system thus not having to pass it to the microcontroller and back.

Figure 122: Calibrate sequence diagram

The last sequence is the calibrate sequence, and this one incorporates the writing log and
the execute with parameters sequence. This is the sequence that lays the blueprint for
further testing of the CPS and is therefore important. The previous sequences such as
displaying data and writing logs, are dependent on the calibration in order to provide max
value information. Viewing the analogue data produced by the CPS, has higher value if its
possible to compare it to an expected value. This sequence starts by having the user
pressing a calibrate button. The control system then receives this information and initiates
the calibration process. Here there are two loops. One that contains the microcontroller
and stepper motor system, and one which contains the control system and microcontroller.
The inner loop takes one step and stores the data of the CPS corresponding to each step.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 192 of 389

This is done 100 times and this data set is then sent to the control system. Getting 100
analogue data sets is also looped 512 times. This is because there are a total of 51200 steps
at the highest resolution of the stepper motor, and the calibration needs to measure the
analogue data at every step. When the calibration is done it is logged and then made
accessible to the GUI.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 193 of 389

18 Detecting frequency

18.1 Document history

Table 60: Detecting frequency document history

Version Date Author Description

1.0.0 06.05.2019 MBC Documented created. Added subsection 1 to 3.

1.1.0 08.05.2019 MBC Documented created. Subsided introduction, and other
sections.

1.2.0 12.05.2019 MBC Added circuit diagram.

1.3.0 14.05.2019 MBC Added interface diagrams and reference to test.

1.3.1 17.05.2019 MBC Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 194 of 389

18.2 Introduction

Detecting the frequencies in the different coils is an important aspect of the CPS project.
Stakeholder requirement 1.10 from 18 state: ”The CPS shall based on change in
frequency provide an accurate and analogue position value. This means that a
solution to the problem of how to detect a frequency, had to be discovered. This subsection
will explain the approach to detect the different frequencies in the different coils from the
CPS sensor.

18.3 Frequency detection initial thoughts

Initially the team wanted to recreate the analogue signal in the eventual software, to be
able to get precise measurements. As mentioned in the introduction above, the it was
concluded that frequencies of 6 digits were needed to be detected. To recreate these signals
an ADC (analogue to digital converter) was needed. This ADC would have to have a set of
specifications to accurately represent the analogue signal as a digital signal.

By using the prototype received by KDA, it was discovered that frequencies over 1 MHz
gave an unstable and electric noise-filled signal, while frequencies under 1 MHz gave a
signal with a higher tolerance for electric noise 24. Thus, the team needed to detect
frequencies which consisted of 6 digits, for example a frequency of 850 KHz.

According to the Nyquist criterion, any sampling rate less than twice the highest frequency
of the analogue signal, can result in a false representation of the analogue signal [7]. This
means that it was needed to sample with at least twice and some more of the highest
frequency that the analogue signals would have. It was then concluded that having a
sampling rate of at least 2 MHz would be sufficient. To recreate the analogue signal with
the desired precision, the CPS then wanted a resolution of 12 bits. This way the team
could represent 4096 voltage values and reach the desired level of precision.

Based on these criteria, concepts that could perform the desired task at the desired level of
precision was researched. As the different concepts where researched it was found that
recreating the analogue signal, was not the only solution.

18.3.1 Frequency detection concept - DAQ

This concept explores the idea of using already built/created equipment, to allocate time
to other aspects of the project. The team researched the possibilities of buying a dedicated
data acquisition device, that could be interfaced with a laptop and the CPS software as
illustrated in figure 123. This concept would allow for focusing on other tasks, as most of
the groundwork such as converting the analogue signal and sending it to a laptop, would
already exist. Searching such devices was harder than anticipated and led to trouble
finding a device that could be used. Either the sampling rate would be insufficient for an
accurate recreation of the analogue signal, or the resolution would be too small to represent
the binary value of the frequency. Price of the DAQ devices was also a challenge as most of
the DAQ’s that the team found would cost about 60% of the allocated money given for this

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 195 of 389

project, which was needed to cover the cost of milling the test station frame. After
discussions with the external advisor, a less complicated concept was developed.

Figure 123: Frequency detection DAQ concept

18.3.2 Frequency detection concept - USB oscilloscope

After discussing other concepts to detect frequency, one member of another project group
(Martin Larsen) tipped about the USB oscilloscopes from Diligent. The oscilloscopes are
the model called Analog Discovery, and they come with accompanying software.

Figure 124: Frequency detection USB oscilloscope concept

This software allows you to create scripts in different programming languages, as well as
having an accessible API. This API made it possible to add library and access its
members. This concept is illustrated in figure 124.
In listing 2, it is
illustrated how to connected a Analog Discovery device in C++ by utilising its software API.

HDWF hdwf ;
STS s t s ;
double ∗ rgdSamples ;
i n t cSamples ;
i n t cChannel ;
char szError [5 1 2] = {0} ;

s td : : cout << ”Open automat i ca l l y the f i r s t a v a i l a b l e dev i c e \n” ;
i f (! FDwfDeviceOpen(−1 , &hdwf)) {

FDwfGetLastErrorMsg (szError) ;
s td : : cout << ”Device open f a i l e d ” << s zError ;
// re turn 0 ;

}

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 196 of 389

std : : cout . f l u s h () ;

Listing 2: Accessing Digilent Waveform API in C++

Although receiving this tip, there were several problems with the concept. First, the
oscilloscope has two channels, while the CPS has three coils that need to be read. This
results in not having to utilise two devices. Having two devices compromises the desire to
make the test station as portable and free of devices to plug in, as possible. Another
problem was the possibility of recreating the desired signal. Although having sufficient
sampling rate at up to 100 MSPS, 14 bits is not as high as preferred [13]. After discussing
possibilities another concept was discovered.

18.3.3 Frequency detection concept - FPGA

One of the earlier concepts to detect frequencies was based around an FPGA. An FPGA is
a logic device which consists of programmable switches and generic logic cells [8]. With
many logic cells and fast internal clock speeds, they can be programmed to perform a
diverse number of tasks. These tasks can range from creating simple logic circuits to create
fairly complicated CPUs.

Figure 125: Frequency detection FPGA concept

This concept included several tasks the FPGA would have to perform to be able to be
utilised as a viable concept. First, the FPGA would need to store the analogue data sets
for recreating the analogue signal to digital. Then it would need to be able to transfer the
data sets to software for processing. The team discussed the possibility of using an external
Analogue digital converter connected to the FGPA and then saving the analogue data in a
buffer. This buffer would then be sent to the software through a USB UART bridge. A
UART is a universal asynchronous receiver transmitter device that enables for serial
communication. This concept is illustrated in figure 125.

Using the BASYS 3 FPGA board was considered viable because of its specifications and
availability. With internal clock speeds exceeding 450MHz and 1,800 Kbits of fast block
ram [14], the BASYS 3 FPGA would suit the CPS test station well. Depending on which
ADC that would be utilised with this concept, this board could be used with the CPS as
the frequencies in the CPS coils would not exceed 300MHz.

This would be a viable option, but the CPS project has a time constraint of 5 months, and

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 197 of 389

this concept required that the buffer, UART, and the interfaces needed would be built from
scratch. At the time working with the detection of the frequencies started, there was not
sufficient time left to implement the FPGA solution from scratch. During development
several time-consuming problems was encountered. Problems that took a longer time to
solve, than first anticipated. This combined with the remaining time left, led to the choice
of another concept.

18.3.4 Frequency detection concept - Counter Integrated Circuit

As mentioned earlier in subsection 18.3, and subsubsection 18.3.1, a lightweight and
simplified concept was developed after talking to the external adviser. This concept is
illustrated in figure 126

Figure 126: Counter integrated circuit concept

This concept is different from the other concepts whereas it does not revolve around
sampling and quantifying the signal, but instead counting the number of rising edges over a
period of time. Given that the period of time spent counting could be repeated with
marginal errors, this could be used to represent a value close to the original sine wave.
With this concept the device requirements shift from sample rate and quantization
resolution, to how fast the counter can count and how high. With an ideal circuit, counting
the rising edges of the sine wave over 1 second would result in the number counted
representing the actual frequency.

To start and stop the counter in question an Arduino Mega 2560 microcontroller was
utilised. In this concept communication speed is not prioritised, thus enabling the use of
the arduino. The counter works independently with a minor exception of getting start and
stop signal, which can be done through the arduino. The value extracted from the counters
is then sent over serial communication to the software on the users laptop. With a clock
speed of 16MHz it was concluded that it was sufficient.

Figure 127 illustrates how this concept is interfaced with the software. This diagram

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 198 of 389

illustrates viewing of CPS data and then moving to a new position in order to read new
sensor data.

Figure 127: Interface diagram

Building the counter on an FPGA was also considered but found that an integrated circuit
(IC) chip could serve as a viable option. The counter could be controlled trough an
arduino in which had already been utilised in earlier work, see section 29. After researching
possible counter circuits, a possible IC was found. This was the SN74LV8154 IC with dual
16-Bit binary counters [54], illustrated in 128.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 199 of 389

Figure 128: Counter integrated circuit [54]

This IC consists of two 16 bits counters that can be connected to a 32 bit counter. This is
done by connecting the RCOA pin to the CCKBEN pin. It also features an internal storage
register to save the output of the counters at a desired time. With 8 outputs the counted
data has to be extracted by cycling trough the high and lower bytes of both the counters.
This is done by driving logic high and low to the GAL, GAU, GBL and GBU. The counters
also feature a synchronous clear, which can be used to reset the counter before each
counting. Due to its availability and price the decision to order this counter and continue
testing it was made. However there where some concerns using this counter circuit, which
where confirmed when testing the IC. When counting a square wave analogue signal the
counter worked perfectly, but once a sine wave was utilised, the rising edge was not steep
enough to trigger the counting consistently. This problem resulted in utilising a
Schmitt-Trigger as illustrated in figure 126. The green box with the label SN7LS14N
(Schmitt-Trigger) is an IC with Schmitt-Triggers. This is an active circuit which holds the
current state of the signal until a certain threshold has been reached. This meaning if an
analogue high is changed to analogue low, the Schmitt-Trigger does not change to low until
its voltage threshold is reached. The same goes for the other way around.

Figure 129 illustrates how the counters are connected to the arduino and how they share
the same control signals.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 200 of 389

Figure 129: Circuit diagram integrated circuit diagram

Through testing (24.4), it was discovered that the SN74LV8154 was precise and could be
utilised in the test station. This test concluded that using an arduino would be possible
although not providing an ideal environment for data acquisition, it would be enough to
provide the proof of concept needed. This reasoning combined with the limited time left on
the project led to the team continued developing this concept with said components.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 201 of 389

19 Frequency calculation

19.1 Document history

Table 61: Frequency calculation document history

Version Date Author Description

1.0.0 11.05.2019 AR Created document.

1.1.0 17.05.2019 AR Changed name of subsection and added Self reso-
nance.

1.1.1 17.05.2019 MBC Proofreading and corrections.

1.1.2 22.05.2019 CPS team Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 202 of 389

19.2 Introduction

This section is going to discuss the choice of frequency and frequency span. This section
will also describe how the rotor affects the circuit and output frequency.

19.3 Explanation of frequency span

The CPS team tested how the rotor affected the inductance in the coils in test 24.3, and
how precise the counter was in the test 24.4. With this information, the frequency span
needed to detect change in degrees could be calculated. The frequency span is the
difference between the highest and lowest frequency that the oscillator produces. The
oscillator will produce a higher frequency when the copper plate is covering the coil, see
section 73. With a bigger frequency span, the measurement on the counter circuit can be
more precise, hence it is desirable with a high frequency span.

The inductance in the coil is 110 µH without any interaction from the rotor. When the coil
is fully covered by the rotor the inductance is approximate 55 µH. The expression for
frequency is given by (54).

From table 54 in section 15.5.2, the highest resolution of the motor is 0.00703125° per step.
With this it is possible to calculate how much the frequency is changing with per step. One
coil on the stator is covering 90 degrees out of 360 degrees. Hence

51200 steps

360°
· 90° = 12800 steps. (81)

With 51200 steps on the motor, 12800 steps are required to go from covering 0% to 100%
for one coil.

The counter can detect a change of approximate 5 Hz. Taking account for some variation
and margin of error it was assumed to reliably count every 10 Hz. To get an accuracy of
0.01 degrees it was required to get 10 Hz difference for 1 step. Hence the required
frequency span is,

Fspan = (12800 steps)(10 Hz) = 128000 Hz. (82)

A calibration is a full 360° rotation where the main goal is to look at every position and see
a change for 4 out of 5 steps to achieve the desired requirement. See table 62.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 203 of 389

Table 62: Speed table

Step Angle
1 0.00703125°
2 0.0140625°
3 0.02109375°
4 0.028125°
5 0.03515625°
6 0.0421875°
7 0.04921875°
8 0.05625°
9 0.06328125°
10 0.0703125°
11 0.07734375°

It is possible to use 1 second to count the rising edges in the signal, which would result in
an approximation of the frequency. Then the rotor needs to move for 20 ms to rotate 1
step, and 20 ms to stabilise at this position. Totalling the time spent,

(1 s + 20 ms + 20 ms)51200 = 53248 s, (83)

and convert seconds to hours,

53248 s

60(s/m)60(m/h)
= 14.79 Hours ≈ 15 Hours, (84)

it is going to take approximate 15 hours for one calibration.

This would be acceptable for a one time calibration run, but to properly test the sensor it
must be calibrated in various conditions. Therefore this is not desirable.

To reduce the calibration time, it is possible to sample faster than every second. The
problem with this is that the counters will count less then what the real frequency is. The
counters also cannot count decimal points. That disqualifies the option to just multiply the
sum to get the real frequency. Lowering the count time also lowers amount of data. A
solution to this is to increase the frequency span to account for the loss in data.

With an frequency span of 200k it is possible use 0.65 s for instead for 1 s on each step.

(200k Hz)(0.65 s) = 130kHz, (85)

where 130 kHz is the relative frequency span when counting at 0.65 seconds. This give use
the possibility to calibrate using 0.65 s and will reduce the calibration time,

(0.65 s + 20 ms + 20 ms)51200 = 35328 s, (86)

and convert seconds to hours.

35328 s

60(s/m)60(m/h)
= 9.813 Hours ≈ 10 Hours (87)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 204 of 389

A concern with the formula for frequency in a Clapp oscillator is not linear. So from step 0
to 1, there is significant less change in frequency than from step 12799 to step 12800. This
can lead to a situation where the sensor cannot read the values before the rotor has
reached a certain threshold.

To prevent this, it is desirable to get a greater frequency span than 128000 Hz. These
calculations are in an ideal scenario and can vary in a physical model. The frequency for
each step is given by,

F =
1

2π
√
LcoveredC

, (88)

where x is the number of steps and Lcovered is how much the inductance get reduced when
the coil is fully covered,

Lcovered = L− (55 · 10−6)

(
x

12800Step

)
. (89)

An example on this is,

Lcovered = (115 · 10−9) H− (55 · 10−6) H

(
1

12800Step

)
, (90)

where x now are the first step and L is the inductance in the coil with no covered. Putting
this back into (91) and set C equal to 1.5 µH gives,

F =
1

2π

√
((115 · 10−6)H− ((55 · 10−6)H(1

12800Step)))(1.5 · 10−9)F

= 380435 Hz. (91)

If step are changed from 1 to 2 and every other value is the same, then this gives a
frequency of 380442 Hz.

The frequency change between step 1 to step 2 is,

380442 Hz− 380435 Hz = 7 Hz. (92)

When calculating frequency span it is important to find how many steps that needs to be
covered before the counter circuit can see change. However, the other coils are going to see
a change. One coil is 100 % covered while the others are 59/90 degrees covered and 1/90.
This means that the change in the last coil can accommodate for lack of change in the
other coil. This happens because the rotor is 210 degrees. See figure 130, where the light
green part of the rotor is copper. This gives a visual representation of how the rotor always
covers two coils.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 205 of 389

To keep the precision of the sensor, it is important to make sure that coil A changes in Hz
when coil C is at the point with minor changes. This goes the other way around for all of
the coils.

Figure 130: Stator on rotor

When the rotor cover 1 step of coil A, then coil C is covered 8534 steps out of 12800.
Putting 8534 in (91) gives 464311 Hz and step 8535 gives 464324. This give an frequency
change of 13 Hz. Therefor a calibration of 1 second per step is possible and a calibration of
0.65 second is possible if the margin of error is ignored.

Figure 131 shows the estimate on how the frequency is going to change with steps covered
by the rotor.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 206 of 389

Figure 131: Frequency depending on rotor position in steps

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 207 of 389

20 Qt Framework

20.1 Document history

Table 63: Qt Framework document history

Version Date Author Description

1.0.0 20.03.2019 MBC Document created and started subsection 2.

1.2.0 21.03.2019 MBC Finished subsection 2.

1.3.0 23.03.2019 MBC Added subsection 3 to 6.

1.3.1 25.03.2019 JSS Proofread.

1.3.2 26.03.2019 MBC & HS Proofreading and corrections.

1.3.2 15.05.2019 MBC Proofreading and corrections.

1.3.3 22.05.2019 CPS team Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 208 of 389

20.2 Introduction

This section will explain what it is and how to use the Qt framework. It will explore some
core concepts needed to understand the final source code for the CPS project.

20.3 Qt framework

Qt is a framework for creating applications that support a vast selection of platforms.
Examples of popular ones are Windows, OS X, Linux, Android and iOS [60]. Qt as a
framework means that it is not an independent programming language but instead adds
functionality to already existing and supported programming languages. This means that it
can be viewed as an external library that can be included and used. Qt is written in C++
and uses a preprocessor to extend C++ with different features. The way the preprocessor
handles Qt extended C++ files makes it possible for Qt applications/classes/projects to be
compiled by other C++ compilers like Microsoft Visual Studio(MSVC), Clang, MinGW etc
[60]. This is relevant as it shows how well it can be integrated with ”regular” C++ code.

20.4 Qt Integrated Development Environment

Qt also comes with its own Integrated Development Environment (IDE) called Qt creator.
This IDE runs on the three major platforms, Windows, OS X and Linux. Qt Creator is a
rich IDE with syntax highlighting, debugger, intelligent code completion etc. It can also be
added to MSVC via an add-in [60]. Navigating trough the IDE is simple and effective. The
IDE offers the user the option to choose different modes. By choosing an appropriate mode
a user can browse sample code or tutorials or access the project menu, or design GUI using
the designer mode. The compiler also offers traditional directory view and output windows.
Other standard IDE elements are present like the directory view, menu bar and output
window.

20.5 Qt Designer

The Qt framework offers to both write GUI elements directly in C++ or instead utilise a
design tool called Qt Designer. Qt Designer is a drag and drop environment where one can
create and customise the graphical user interface to the users liking.

Adding a widget trough the creator mode does not add code to the main project C++
files, but instead adds XML nodes to a UI file which at compile time gets translated to
C++ code that can be compiled. The XML nodes in the UI file is illustrated in 3.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 209 of 389

Listing 3: Qt Designer XML example

Figure 132: Qt Designer example

In figure 132, different application layout properties are represented in the menu under
”Layouts”. These and the ”Spacers” properties are used to edit the position of different
widgets. The ”Buttons” section represent different buttons that can be dragged and
dropped into the application window. This widgets properties can then be edited by
accessing the properties window.

Styling widgets trough Qt is quick and effective as one can use Cascade Style Sheets bases.
Here its possible to change name, dimensions, texts, and further edit the widgets properties.

20.6 Not using Qt Designer

With Qt using the Qt Designer tool is optional. It is possible to add widgets by hard-coding
as shown in figure 4. In this example a button object is created and has geometry set.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 210 of 389

Listing 4: Qt button example

The connect function is Qt’s alternative to callbacks. A callbacks are when executable code
is sent as parameters. In relation to GUI development, when a button is changed or a radio
button is checked, something may be required to happen. In listing 4, when connect is
called it connects the button with the slot/function. In this example this slot/function will
resize the button and sets the text to the string specified. Thus each time this button is
called, this function is called.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 211 of 389

21 Log files and directory structure

21.1 Document history

Table 64: Log files and directory structure document history

Version Date Author Description

1.0.0 15.03.2019 JSS Document created.

1.1.0 18.03.2019 JSS Added introduction, the directory structure, the
solution, file name format, directory structure di-
agram.

1.1.1 26.03.2019 HS & MBC Proofreading and corrections.

2.0.0 12.05.2019 JSS Adding PDF generation and updating XML gener-
ation.

2.0.1 17.05.2019 MBC & AR Proofreading and corrections.

2.0.2 22.05.2019 CPS team Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 212 of 389

21.2 Introduction

This chapter will introduce the directory structure that is auto-generated when a new log
file is made and what the log files contains.

21.3 Stakeholder requirement

Stakeholder requirement 1.20 in table 18 states: ”The test station shall log the results of a
test in a format which enables for extraction at a later time (all parameters and settings
shall be included in the log file)”.

21.4 The directory structure

As the CPS system will generate a log file after each test run, it would be helpful to have
these files sorted in a way that allows for easier extraction when the user requires it. That
is why it was decided to set up a directory structure where the user specifies the name of
the project, the component ID that is to be tested and the test ID, from this the directory
structure will be auto generated with new folders if needed. It will not allow earlier log files
be overwritten if they share the same name. The exclusion from this is the calibration file
that has a need to be updated after each calibration run. The name for the calibration file
needs to be static for the program to find it.

21.4.1 Directory structure diagram

Figure 133: Diagram of the directory structure

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 213 of 389

One project can have multiple components tested.
Each component can be tested in multiple different tests.
Each test can be run multiple times generating multiple files. Both XML and PDF.

21.5 Log and report file

There are two types of files that can be generated.

21.5.1 XML log file

Extensible markup language (XML) is designed to store and transport information in self
descriptive nodes. It has been useful to store and extract information from custom nodes
that describes the information they contain. Since the tests for accuracy requires it to be
compared to a baseline in ideal conditions, which is the conditions the calibration is ran in.
And the tests for linearity requires a list of the frequency values in a rotation, which is
essentially what the calibration does.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 214 of 389

The parameters and information that is to be saved in the XML log file is described here in
table 65. The difference in colour signifies a change in the parent node. an example file can
be seen in the section 21.5.2

Table 65: Explanation of each node in an XML log file

Node Description Parent
node

TestID The ID of the test that is to be conducted. This is the
main node

None

Date The date the test is conducted TestID
Test personnel Te person conducting the test TestID
Project name The name of the project TestID
Component ID The ID of the component to be tested TestID
Test ID The ID of the test that is to be conducted, this is a node

with the same name and information as the main node
TestID

Notes Special notes considering the test TestID
Parameters A list of parameters TestID
Stepmode The stepmode of the driver Parameters
Current The current setting on the driver Parameters
Distance The distance it is to change Parameters
Speed The speed of the driver Parameters
Gear ratio If gears are present to increase the step resolution, this

the the gear ratio
Parameters

Results A list of results, if multiple tests are ran there will be one
result node per run

TestID

Result A list of saved values from the test Results
CoilA The measured values of CoilA Result
CoilA Expected The expected values of CoilA gathered from the calibra-

tion file
Result

CoilB The measured values of CoilB Result
CoilB Expected The expected values of CoilB gathered from the calibra-

tion file
Result

CoilC The measured values of CoilC Result
CoilC Expected The expected values of CoilC gathered from the calibra-

tion file
Result

Degree The location of the sensor in degrees in relation to the
calibration file

Result

Step locations The location of the sensor in steps in relation to the cal-
ibration file

Result

PugiXML [25] is used to build up, edit and save the XML file. PugiXML is an XML
processing library for C++ which can be compiled together with the project without the
need for library files.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 215 of 389

21.5.2 Example XML file output

Listing 5: Directory structure - Example XML

21.5.3 PDF report

The other file that can be generated is a complete PDF report with information from the
current run compared with the calibration file. This is an extra function not needed by the
stakeholder requirement but allows users to save time by auto generating this report ready
for export without the user having to set it up themselves. These reports can also be
generated for the calibration run if needed.

Libraries used for PDF report:
To generate the PDF report the external library LibHaru [16] was used. This library,
unlike pugiXML, was not easy to integrate into our project. The library had two libraries
that it depended on. All libraries can be seen in the following table:

Table 66: Overview of libraries used to set up PDF report generation

Library Description Dependencies
LibHaru
[16]

Used to generate PDF documents, not capable of reading
or editing existing PDF document

Libz & LibPNG

Libz [33] Used for data compression and decompression None
LibPNG
[46]

Used for PNG image manipulation Libz

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 216 of 389

Challenges along the way:
The developers of LibHaru has set up the library so it can function with as many compilers
as possible, and as such there is no premade library files that can be included in a project.
These need to be generated from their GitHub project [15]. This can be done multiple
ways depending on the compiler use. Cmake compiler was used to generate a MSVC 2017
compatible project. This had to be done for the two other libraries beforehand as it is
required to link the lib files from Libz and LibPNG to successfully make the project. After
the MSVC project was successfully generated it had to be build and compiled, this made
sure that the .lib files could be implemented into our project. The lack of prior knowledge
around these kind of libraries made this very difficult to complete even with the
installation instructions as there were a certain level of familiarity with compilers that
seemed to be needed.

After the .lib files were successfully made, linking them to the project was troublesome as
there were other files that needed to be added as well since the .lib files were dependant on
them. These included the path to the header files for all three libraries, the path to the .lib
file for each of the libraries and the name of each .lib file needed to be specified for the
compiler to find them. After all this LibHaru was up and running.

Making these libraries for the native compiler in Qt creato was also triedr, but this proved
too troublesome and instead the compiled used for Qt was changed to MSVC 2017.
Formatting the PDF report:
Formatting a PDF with the use of Libharu was challenging as every element that was to be
placed needed to have a starting point. The default anchor point, that is where the
measurement started from, was in the bottom left of the new page. All measurement was
in pixels so the grid to draw on was small.

To make the page setup easier to alter, constant variables for calculating distances was
used. This was to simplify the calculations needed to get a default page format. This did
take a lot of experimenting to complete, but was worth it in the end.

It was planned to have the chance to do multiple tests and have them documented in the
same report, but because of troubles this was not accomplished. Even so it was taken into
consideration when the PDF generation was set up so the box containing the test results is
dynamic and will expand to new pages if the amount of tests run exceeds the pages. This
has been tested up to 1024 pages of results. This was made use of when generating a PDF
report on a calibration run. The text box for the notes is also dynamic just in case there is
a lot to take into consideration for a test, but the notes text box is limited to only one
additional page.

21.5.4 Log and report file name format

The log file and report file generated will have the current date as its name and will have
the format:

YYYY-MM-DD–HH-MM-SS.xml

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 217 of 389

This means that it will be dated by year, month, day, hour, minute and seconds.

21.6 Last step

One problem that occurred was that if the program were to shut down after a calibration,
the reference used to see the location of the rotor on the sensor would be reset and make
the calibration invalid.

As a step to keep the calibration file valid the CPS set up an external file that would be
generated and updated every time the stepper motor moved the rotor. This would keep
track of the last position of the rotor and keep the recent calibration valid. The filetype
used was an XML file as team already had a way to access, change and save these kinds of
files through the PugiXML library mentioned in section 21.5.

There was a second approach considered to solve this problem which was to save a variable
that would keep track of the location in the flash memory on the Arduino. That is the
memory that is retained even when the Arduino is shut down. Since this value was needed
on the control side of the system, that is on the PC, this would need to be sent over by the
Arduino and caught by the computer which was proven to be difficult. Accessing the flash
memory would not have been easy to accomplish either.

21.7 Calibration

Calibration is crucial in our project as it is desired to test the stakeholder requirement 1.3
in table 18. For this the software was in need of a calibration file which had all frequency
values logged for each step in a full rotation. The values would be from when the sensor
was in ideal conditions to set a base line for testing. A comparison between these
calibrated values and new values read from the CPS under other conditions would give an
error margin which will be used to see if the accuracy and linearity of the sensor are high
enough to pass the requirement.

21.8 Doxygen documentation and code

The doxygen documentation for the directory structure can be found in section 32. The
full Visual studio solution and clean text version can be found in the attachments under
the folder:Final Test Station Software.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 218 of 389

22 CPS graphical user interface

22.1 Document history

Table 67: CPS graphical user interface document history

Version Date Author Description

1.0.0 23.03.2019 MBC Document created, and added subsection 1 to 3.

1.0.1 25.03.2019 JSS Proofread.

1.0.2 26.03.2019 HS & MBC Proofreading and corrections.

2.0.0 14.05.2019 MBC Started on final GUI section.

2.1.0 15.05.2019 MBC Finished description of the GUI.

2.1.1 17.05.2019 MBC & AR Proofreading and corrections.

2.1.2 20.05.2019 MBC Proofreading and corrections.

2.1.3 22.05.2019 CPS team Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 219 of 389

22.2 Introduction

Communication with primary stakeholders during the development of the project is
important, as it gives the stakeholder the possibility to understand and influence the end
product. The CPS team has designed GUI concepts. This chapter will explain the different
GUI mockups that have been created and explain which one the CPS team and KDA chose
to iterate further and base the CPS test station GUI on.

22.3 GUI Concepts

These GUI concepts where drawn in Microsoft Visio as it allowed for quick and easy
editing. They do not represent the final product, but are intended to act as
iterations/inspiration for the final product. Note that the display of data is prone to
change and does not need to be identical. This means some of the graphs may end up
having other means of representing data such as digital numbers or other widgets.

22.3.1 GUI concept 1

Figure 134: GUI concept 1

GUI concept 1 illustrated in figure 134, is based on push buttons and text fields to enter
custom data. The idea is that the user selects parameters by pressing the appropriate push
buttons, and once a parameter is pushed the button gets highlighted. STQR 1.19 from
table 18 states that the test station shall be able to show change in degree and speed and
that is accomplished by having said data projected on the graphs. STQR 1.20 to 1.23 from
table 18 are represented as buttons and the file directory is shown in the middle of the GUI.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 220 of 389

22.3.2 GUI concept 2

Figure 135: GUI Concept 2

GUI concept 2 illustrated in figure 135 is an alternative version of GUI concept 1, expect
instead of having buttons to set parameters slider bars are used. This would give the user
the possibility to have more options inside each parameter. An example of this would be
the difference in motor speed options from figure 134 and figure 135. In figure 134 the user
has 3 choices of motor speed, ”min”, ”middle”, and ”max” while in figure 135 the slider
has 5 options. Having better options inside each parameter would greatly increase the
value of the test station as it can offer a more diverse set of environments.

GUI concept 3 illustrated in figure 136 Is the same as GUI concept 2, expect that the file
directory is moved to the left of the GUI. This concept is inspired by the Windows
Explorer where the directory view is moved to the left. Having the directory as this is
frequently used in software that require a directory view and can be what users might find
comfortable.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 221 of 389

22.3.3 GUI concept 3

Figure 136: GUI Concept 3

GUI concept 4 illustrated in figure 137, is a variation off the other concepts, where the file
directory is cut out from the GUI. It would still be present in form of a drop-down menu
bar located at the top of the GUI. This solution could potentially free up window space for
other functions or graphical representations illustrated by the graphs surrounding the
middle.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 222 of 389

22.3.4 GUI concept 4

Figure 137: GUI Concept 4

22.3.5 Choice of GUI concept

After conversation with KDA about GUI concepts the group and KDA agreed to further
develop GUI concept 3. KDA found the sliders the most fitting although they wanted to
further iterate and add an input field to let the users add custom values to the parameters.
The idea is to further improve this concept and optimise it as to give the best user
experience as possible.

22.4 Final graphical user interface

This section will explain how the final graphical user interface for the test station works
and how it was developed.

As mentioned in section 22 the CPS team decided to further develop concept 3. The final

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 223 of 389

graphical user interface is illustrated in figure 144. During the development of the GUI, the
team focused on meeting the stakeholder requirements 1.19 to 1.23 from table 18.

22.4.1 File directory

The GUI can be split into 3 categories which are directly connected to the Use Cases and
the stakeholder requirements. The leftmost category is the section where saved logs and
the calibration file appears. This is an extensive directory view which allows the user to
navigate through different projects, components and tests. The file directory is further
explained in section 21. Following this the user can access the files from the rightmost
directory window. Once the program starts running, two objects of the Qt class
QFileSystemModel is instantiated. This class provides data models for the local filesystem
[61].

Figure 138: Directory view from final GUI

The objects gets different root paths, as to display the correct path. The leftmost model
gets set to an upper level root and the rightmost model gets the same root initially. After
styling the objects they are then connected to the corresponding user interface widgets. In
this case they are coupled to a listView widget, and this enables for the usage of predefined
slots. As mentioned in section 20 slots are called once its connected signals are emitted. In
relation the directory view once a user clicks on a folder or a file, it’s root path is extracted
and set as a new root for that file. This way the users can both open and close files. In the
rightmost section the files, inside the selected folder, are displayed. As with the tree view
once the user selects a file, its root path gets extracted and with that path as a parameter
a function from QDesktopServices class is called. This function accesses the file at the
given root path. This functionality is illustrated from the Use Case diagram in figure 114.

22.4.2 Control section

The middle section of the GUI is where the user can set parameters and control the test
station. This section can again be categorised in 3 sections; control, parameters, and
project information. The control category is where the user initiates an action or a
sequence of actions. The project-information category is where the user inputs useful
information about the project, and lastly the parameters category is where the parameters
for testing are set. As illustrated in figure 139 there are in total eight buttons available for
the user. These buttons initiates different segments of code that perform different tasks.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 224 of 389

Figure 139: Control section part 1

”GENERATE PDF” is a checkable button and when its highlighted, as shown in figure
139, it enables the generating of a PDF version of the log. The ”WRITE LOG” button is
not checkable and when clicked, takes all of the current data, parameters and associated
data from the calibration file and generates XML document. As mentioned earlier, if the
”GENERATE PDF” button is highlighted, a PDF format of the report will also be
generated. The buttons labelled ”DIRECTION COUNTER-CLOCKWISE” and
”DIRECTION CLOCKWISE” are checkable buttons and when one is selected, the other
one is deselected. These button set the direction of the rotation by the stepper motor. The
last four buttons are labelled ”START”, ”CALIBRATE”, ”CONTINUOUSLY RUN” and
”RECONNECT ARDUINO”. These buttons all have a common denominator that they all
initiate segments of code that communicates with an Arduino. Figure 127 illustrates how
the software and hardware is interfaced and depicts a simplified communication run. On
start up of the program an QSerialPort object is created and given the appropriate
configuration to setup a serial connection with the arduino. If, however the arduino gets
disconnected while the program is connected, the reconnect button will close the previous
connection and open a new one. This way the software does not have to be exited and
opened again. The start button takes all of the set parameters and builds a QByteArray
consisting of different information about the speed of the motor and how many steps to
move. A QByteArray is the Qt version byte array. This bytearray is sent to the arduino to
perform the given motion. The last button is the calibrate button. Upon clicking this
button a pre-constructed instruction is sent to the arduino, and the calibration process is
started. Due to memory constraints on the Arduino Mega 2560 only 100 samples of the
three coils can be transmitted by the arduino at one time. Therefore the arduino transmits
the data set of 100 values then starts recording new values. This is looped 512 times and is
due to the stepper motors max resolution of 51200 steps. This way the calibration will
provide a detailed description of each possible degree when testing.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 225 of 389

Figure 140: Control section part 2

Figure 140 illustrates the information the user can enter. There are 5 text input fields
where the user can specify the name of the project, name of the user, the component being
tested, and special notes if there are any special circumstances that need to be considered.
The text input fields have placeholder text that disappears once the user starts typing.
Inputting information in these text fields assures that folders are created and the tests are
not all saved in the same folder.

Figure 141: Control section part 3

The last category is the parameter section, and consists of the tools the user needs to be
able to set different parameters for testing. The first three parameters; gear ration, current,
and step mode are all parameters the user needs to manually change on the different
hardware devices. Changing them on the GUI only ensures that the values are changed on
the data log. While gear ratio is a text input field where the user decides what to write,
the current and speed parameter are both drop down menus. The speed and distance
parameter can be set by either using the slider or entering the value directly in the
spinbox. In addition to this, the user can decide to set these parameters in either degrees/s

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 226 of 389

or steps/s. This is done by using the combobox next to the ”SPEED/DISTANCE” label.
The value selected is displayed on the LCD widget.

22.4.3 Display CPS data section

The rightmost category of the GUI consists of the displaying of realtime data and expected
data from the calibration. Here the realtime data from the counter circuit is displayed on
lcd widgets as well as being plotted to a graph in realtime. The graph is made using a
custom Qt library called QCustomPlot.

Figure 142: GUI realtime CPS data

Depicted in figure 142, the data from the counter is projected on both the LCD display
and the graph. In the bottom left corner, it is possible to see the expected value (from the
calibration) at the given degree or step position. This allows for quick comparison and not
having to write a test-log and then compare the values.

Figure 143: GUI current position

The last data that is displayed on the graphical user interface is the position data. Here
the user is displayed what the current degree is in and what the equivalent in steps. Every
time the position changes the new position is stored in a XML file that allows for the GUI
to ”remember the last position” if the application is closed.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 227 of 389

Figure 144: Final graphical user interface

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 228 of 389

23 Source code

23.1 Document history

Table 68: Source code document history

Version Date Author Description

1.0.0 15.05.2019 MBC Document created. Added hardware configuration.

1.2.0 16.05.2019 MBC Added class diagram and information.

1.2.1 17.05.2019 MBC & AR Proofreading and corrections.

1.2.2 20.05.2019 MBC Proofreading and corrections.

1.2.3 22.05.2019 MBC Proofreading and corrections.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 229 of 389

23.2 Introduction

This section will show the different classes in the project. An in-depth explanation of every
member used in this project, can be read in the doxygen generated report, which is
attached as appendix 32.

23.3 Hardware configuration for developing and testing

The CPS test station software has been developed and tested on the following hardware
configuration.

Table 69: Hardware configuration

Hardware configuration

Manufacturer Asus

Model Zenbook 14

CPU Intel(R) Core(TM) i7-8565U CPU 1.99 GHz

RAM 16.0 GB (15.8 Usable)

GPU 1 Nvidia GeForce MX150

GPU 2 Intel(R) UHD Graphics 620

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 230 of 389

23.4 Class diagram

The class diagram illustrated in figure 145 illustrates the different classes in the final source
code. This diagram depicts the classes in the test station software as well as the
relationship between them. The external library classes are not documented in the final
doxygen-report, but it is possible to read more about them on the official documentation
for PugiXML [25], LibHaru [16] and QCustomPlot [17].

Figure 145: Class diagram final software

23.5 Include graphs

Illustrated in figure 146, the include graph generated by MSVC2017. The files created
and/or added manually by the CPS team are grouped in the large box. External libraries
such as Libharu and Qt are present but placed inside the ”others” box.

Figure 146: Include graph final software part 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 231 of 389

23.6 Arduino source code flowchart

The flowcharts illustrated in figures 147, 148, 149 and 150 shows how the arduino source
code works. This code is responsible for reading and sending CPS data to the GUI, as well
as controlling the rotor on the test station. The first flowchart (figure 147) showcases the
loop that is run continuously on the microcontroller. First the microcontroller checks for
incoming messages over serial connection. If there is incoming data, the data is stored in a
variable and then a sub-process is initiated with the received data. If the serial connection
is clear and a calibration variable is set to false, the microcontroller then clears the 32bit
counters 18. After clearing a delay is initiated and after a certain amount of time the
content on the counters is saved to its internal storage register. Then it is extracted from
this register and sent over serial connection to the CPS test station GUI. Lastly the serial
message is flushed, which means that the microcontroller waits for the outgoing message to
be sent before doing anything new. The loop starts from the top again.

Figure 147: Arduino flowchart general

The microcontroller clears the counter by driving the appropriate control pins high and low
as stated in the SN74LV8154 [54] datasheet. This sub process is illustrated in figure 148.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 232 of 389

Figure 148: Arduino flowchart clear counter

Figure 149 illustrates the sub process of storing the value of the counters at a given point in
time. This is done by triggering the RCLK pin on the counters. Doing this stores the value
of the counters on the internal storage register on the IC and enables it for extraction. The
values are then extracted and stored by cycling trough the four bytes of the 32 bit counter.

Figure 149: Arduino flowchart snapshot register

The next sub process is illustrated in figure 150. Here the stored bytes from the counters
are put together in a byte array in order to get their correct complete representation of the
number counted. The microcontroller then puts the values of the three counters together in
a message string and sends it over serial communication for the CPS test station GUI.

Figure 150: Arduino flowchart print bytes

The last sub process is the control. The moveStep() functions takes in the byte array that
has been read through the serial communication decipher it. An explanation of the byte
array values can be found in the section 15.7 with an example string that can be found in
section 15.7.2.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 233 of 389

The number 0 is added to the end of the byte array which will be used to exit the function
when done. What the function does, is looking through the bytearray for the first & sign
and move everything before that sign into another variable. For explanation reasons, the
bytearray will be called ”command”. This will be the type of parameter and the value that
belongs to it. The second thing the function does is looking through this new variable,
2command”, for the sign and moves everything before that into another new variable
called ”paraId”. So ”paraId” will now be the ID of the parameter that is to be changed,
and remaining in the ”command” variable will be the value of that parameter. Renaming
the ”command” variable to ”paraVal” too keep it descriptive.

Now that the parameter ID is saved in ”paraId” and the value for that parameter is saved
in ”paraVal” we can use it to control the stepper motor driver. After the last split there is
a switch case which looks at the ”paraId” variable to see which parameter is to be changed
and depending on the parameter the ”paraVal” variable will be used to change settings for
the stepper motor driver.

This was just for one of the parameters in the first bytearray so this will loop and look for
the next & and repeat the process. When the program has gone through the entire
bytearray it will encounter the number 0 which signals the end of the command line and is
used to exit the function.

Figure 151: Arduino flowchart move steps

23.7 Signals and slots in Qt

When the different buttons and widgets are interacted with by the user, a signal is emitted
and a slot is executed. Many of the widgets utilised in the software, already has built in
connection between these signals and slots. An example of this is when the user clicks a
button. A signal is then emitted and the slot (defined by the software) is run.Two
examples of this practice is explained bellow, but a further explanation can be found in he
doxygen report for the final software 32.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 234 of 389

When data is sent from the arduino to the software, the QSerialPort detects this and emits
a signal. This signal is called readyRead() [62], and is emitted once new data is available
on the serial port. This signal is connected to a slot which results in that particular slot
executing every time the signal is emitted. This is depicted in figure 152.

Figure 152: Qt signal and slots part 1

The process of plotting CPS data, runs in a similar matter. A QTimer object emits a
signal with a given interval which triggers the execution of a slot. In this case the slot is
realtimeDataSlot() and is responsible to plot the new content on the graph while removing
the old content. This is depicted in figure 153.

Figure 153: Qt signal and slots part 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 235 of 389

24 Conducted tests

24.1 Introduction

This section will contain the tests performed by the CPS team.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 236 of 389

24.2 Test, KDA sensor T-C0-1.0.0

Table 70: Test, KDA sensor T-C0-1.0.0

Test ID T-C0-1.0.0

Requirement ID 1.10.

Name Hans Fredrik Jamtveit / Anders Rønning

Date and location Elektrolabb 1, USN, Kongsberg

Goal Find inductance of coils in prototype form KDA.

Hypothesis Inductance of the coil will be found

Pass criteria Inductance is found

Equipment

• Prototype form KDA. The prototype consisted of a 3 cm wide
circular circuit board with three non circular coils. Wires were
attached to all of the three coils. In addition there was a half
circular shaped copper plate with the possibility to mount a
thin metal rod in the middle. Prototype shown in(Figure 154)

• 2 multimeter

• 1 signal generator

• 1 resistor 47Ω

• Wires

.

Safety precautions Turn off signal generator when handling components

Execution 1. Calculating/measuring inductance
Connecting a coil in series with a resistor creates a Low-Pass filter
[23]. The cutoff frequency ωc [rad/s] of the RL filter is

ωc =
R

L
. (93)

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 237 of 389

Table 71: Test, KDA sensor T-C0-1.0.0

Execution Where R is the resistance [Ω] of the resistor and L is the inductance [Henry]
of the inductor. The cutoff frequency is stated in Hz and has to be in rad/s

ωc = 2πf, (94)

The inductance of an inductor can be calculated by measuring the voltage
drops across the resistor and the inductor while increasing the frequency of
the input. When the voltage drop across the inductor and the resistor is
equal the filter is at the cutoff frequency. The cutoff frequency is noted. At
the cutoff frequency the reactance of the inductor

XL = 2πfL, (95)

is equal to the resistance of the resistor given by

R = ωcL. (96)

At ωc
XL = R. (97)

Substituting XL with R
R = 2πfL, (98)

Where R is the resistance of the resistor and f is the input frequency where
the voltage drop across the inductor and the resistor is equal. Rearranging
the formula with regards to L gives the following equation

L =
R

2πf
. (99)

2. Testing prototype
While the sensor was attached to the signal generator and the resistor the
CPS team tested how the copper plate affected the output of the sensor.
The findings were that hovering the copper plate at different distances over
the coil changed the amplitude and phase of the output. The frequency of
the output did not change. Calculations and measurements of the induction
showed a decrease in inductance while the copper plate was in proximity of
the inductor(1,08mm measured with caliper).

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 238 of 389

Table 72: Test, KDA sensor T-C0-1.0.0

Result 1. Calculating/measuring inductance
With a resistor at 47Ω and a cutoff frequency of 388,60 KHz this gives an
inductance of:

L =
47 Ω

2π × 388, 66 KHz
= 19, 249 µH , (100)

measuring the inductance of the inductor with the electronic explorer
board(EE Board) and the WaveForms software inductance meter results
in the same inductance of 19 µH.
2. Testing prototype
By using (8), the inductance was calculate to be

L =
47 Ω

2π438, 96 KHz
= 17, 04 µH , (101)

this shows a decrease of 2,2 µH.

Observations No significant external factors

Analysis Finding the inductance makes design of the oscillator which is to be con-
nected to the sensor easier. No change of frequency was detected in the
test. This was as expected. The change in inductance proves that the
concept is possible.

Conclusion Results from the test of inductance shows that the presence of the rotor
over the coils of the sensor decreases the inductance in the coils. There is
no change in frequency while the rotor is over the coil of the stator when
using a signal generator as input on the coil. There is a change in phase
and amplitude of the output. Using the inductor of the sensor as a part
of an LC oscillator and then exposing the inductor to the copper of the
rotor will cause a frequency change of the output. This is because the
frequency of oscillation in a LC oscillator [19] is determined by

f =
1

2π
√
LC

, (102)

and a decrease in the coil inductance from exposure to the copper plate
confirms this.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 239 of 389

Figure 154: Prototype from KDA

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 240 of 389

24.3 Subtest, inductance final concept Sub-T-2.0.0

Table 73: Subtest, inductance final concept Sub-T-2.0.0

Test ID Sub-T-2.0.0

Requirement ID -

Name Anders Rønning & Hans Fredrik Jamtevit.

Date and location 13.05.2019

Goal To find the inductance of the coils in the stator.

Hypothesis It should be around 50 µH to 400 µH.

Pass criteria Connection from power to ground. Approximate the same induc-
tance for all three coils on one stator.

Equipment Waveform software, Electronics Explorer, oscilloscope, 1000 Ω resis-
tor, 3 shims 0.60mm, stator and rotor.

Safety precautions Made sure everything was properly connected to ground before con-
necting to power.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 241 of 389

Table 74: Subtest, inductance final concept Sub-T-2.0.0

Execution Setting up the circuit like in figure 155. In the Waveforms software
select ”Impedance”. Inside the new tab set the option to inductance. In
setting the resistor needs to match the one in the circuit diagram. It is
important to notice the value of the voltage amplitude.

The physical setup was done in the 3D printed mount. The way
to get the rotor in the same position every time was to push it as far
into the wall of the mount every time. The use of shims on top of the
stator to achieve the same height every time is also necessary. For each
position of the rotor the position was measured against a marked paper
with angles. See figure 156 and 157. In this way the measurement was
more or less consistent each time.

Observations This was done before the final test station was finished and therefore the
result are approximations of what the real values are.

There should also be a test to see how much the height of the
rotor affects the inductance.

Analysis -

Results From the results in table 76, it shows that inductance is almost constant
within the frequency range that is desired.

Conclusion With this method it is not possible to test the accuracy that is necessary
to determine an exact value for the inductance.

There should also be a test to see how much the height of the ro-
tor affects the inductance.

The values were within the acceptable range and therefore the ef-
fect from rotor on stator is approved and a successes.

This test should be repeated with the test station to verify that
this measurement is approximately correct.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 242 of 389

Table 75: inductance 2V

Covered of coil 400 kHz 800 kHz
No rotor 96µH 94µH

0° 95µH 93µH
25° 80µH 83µH
50° 72µH 74µH
75° 63µH 63µH
100° 55µH 55µH

Table 76: inductance 5V

Covered of coil 400 kHz 800 kHz
No rotor 113µH 115µH

0° 112µH 114µH
25° 97µH 99µH
50° 81µH 82µH
75° 72µH 73µH
100° 63µH 63µH

Figure 155: Circuit for setup

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 243 of 389

Figure 156: Stator in 3D printed test station

Figure 157: Rotor in 3D printed test station

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 244 of 389

24.4 Subtest, counter IC concept Sub-T-3.0.0

Table 77: Subtest, counter IC concept Sub-T-3.0.0

Test ID Sub-T-3.0.0

Requirement ID -

Name Magnus Berntsen Caro, Anders Rønning.

Date and location 26.04.2019

Goal Test to see if the counters can be utilised to count frequency and
how accurate they can perform

Hypothesis The SN74LV815 counter has sufficient technical specifications to be
able to count to the desired level of accuracy, therefore it is suitable
to be used in the CPS test station. Desired level of accuracy is down
to 3Hz

Pass criteria The SN74LV815 counter is able to count to the desired level of ac-
curacy with an error margin of ±5Hz.

Equipment

• GW INSTEK AAFG-2005 Arbitrary Function Generator

• SN74LV8154 Dual 16-Bit Binary Counters With 3-State Out-
put Registers

• Arduino Mega 2560 Rev 3

• Capacitor 100nF

Safety precautions Made sure everything was grounded and had correct amount of volt-
age, and read datasheet.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 245 of 389

Table 78: Subtest, counter IC concept Sub-T-3.0.0

Execution The SN74LV8154 counter was connected to the Ardunio Mega and a signal
from the signal generator was sent to the IC. The arduino program was set
up to take 100 samples to be able to find and net value and the margin of
error. The CPS team tested the following conditions;

1. 100KHz input, 999ms counting time, 100 samples

2. 800KHz input, 999ms counting time, 100 samples

3. 100KHz input, 250ms counting time, 100 samples

4. 800KHz input, 250ms counting time, 100 samples

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 246 of 389

Table 79: Subtest, counter IC concept Sub-T-3.0.0

Result Condition 1:

• Net value: 100035.55

• Max value: 100036

• Min value: 100035

• Difference between max and min value: 1

Condition 2:

• Net value: 800284.19

• Max value: 800288

• Min value: 800281

• Difference between max and min value: 7

Condition 3:

• Net value: 25034.97

• Max value: 25036

• Min value: 25034

• Difference between max and min value: 2

Condition 4:

• Net value: 200279.91

• Max value: 200286

• Min value: 200277

• Difference between max and min value: 9

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 247 of 389

Table 80: Subtest, counter IC concept Sub-T-3.0.0

Conclusion The CPS team was able to get precise and accurate counting from the
SN74LV8154 integrated circuit while counting low frequencies such as
100KHz. On the other hand when turning the frequency up to 800KHz
the accuracy suffered. From having a error margin of ±1 on 100KHz, the
CPS team experienced that the counter had an error margin of ±3.5 on
higher frequencies such as 800KHz. This is probably due to inconsistencies
produced by the control signals from the Arduino. Nevertheless this test has
passed the pass criteria as the CPS team was able to get precise readings
well within the desired level.

Moving forward the CPS team will continue to utilise an arduino see-
ing that there is limited time left of the project. The team will however
consider other microcontroller as an alternative improvement should the
project be continued.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 248 of 389

24.5 Subtest, height of rotor impact on inductance Sub-T-4.0.0

Table 81: Height of rotor impact on inductance Sub-T-4.0.0

Test ID Sub-T-4.0.0

Requirement ID -

Name Anders Rønning & Jarand Solberg Strømmen.

Date and location 18.05.2019

Goal Look at the change of inductance when changing the height of the
rotor over the stator

Hypothesis The rotor affects the stator less the greater the distance between
them

Pass criteria Measurements done at the distances 0.6 mm and 1.4 mm

Equipment Waveform software, Electronics Explorer, oscilloscope, 1000 Ω resis-
tor, 9 shims 0.60mm, stator, rotor and 3D printed mount.

Safety precautions

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 249 of 389

Table 82: Height of rotor impact on inductance Sub-T-4.0.0

Execution Take a measurement on each of the distances 0.6 mm and 1.4 mm while
the coil tested is completely covered by the rotor. Then compare the
values of each of the three distances while the coil is not covered. The
way to get the rotor approximately in the same position each time was to
force it into the same section of the wall of the mount each time.

Observations The test was performed under an open container and was affected by
external noise from electrical equipment nearby.

Analysis -

Results The frequency is changing less whit bigger height difference between
rotor and stator. This is because the induction in the coil is affected less
the future away the rotor is.

Figure 5 shows the frequency when at 115 µH, with the induction
shown in figure 6. This applies for every set of figures. Table 83 shows
that the delta frequency drops with 100 kHz

Conclusion The hypothesis was correct. The inductance is affected less with a bigger
gap between rotor and stator. This is important information in further
use of the test station.

The ideal test would be to change the difference in position for ev-
ery 0.1 mm to understand the relationship between height of rotor and
induction in the coil.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 250 of 389

Table 83: Frequency depending on height of rotor

0% coverage 100% coverage
0.6 mm 497.805 kHz 709.879 kHz
1.4 mm 497.972 kHz 608.787 kHz

Figure 158: Frequency at 0% covered, 0.6 mm distance

Figure 159: Inductance with 0% covered, 0.6 mm distance between rotor and stator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 251 of 389

Figure 160: Frequency at 0% covered, 1.4 mm distance

Figure 161: Inductance with 0% covered, 1.4 mm distance between rotor and stator

Figure 162: Frequency at 100% covered, 0.6 mm distance

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 252 of 389

Figure 163: Inductance with 100% covered, 0.6 mm distance between rotor and stator

Figure 164: Frequency at 100% covered, 1.4 mm distance

Figure 165: Inductance with 100% covered, 1.4 mm distance between rotor and stator

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 253 of 389

25 Improvements

25.1 Document history

Table 84: Improvements document history

Version Date Author Description

1.0.0 22.05.2019 CPS team Created document

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 254 of 389

25.2 Introduction

This section will explain known issues and possible solutions.

25.3 General system improvements

When testing the whole system, it was not working as intended. The problem under the
first test was that the stepper motor would not rotate with less then 40 step in distance.
Thus the requirement of 0.01°cannot be tested at this point. Testing distance of 50 steps
can be completed an gives an change in frequency. This indicates that the system works
and a change in frequency can be detected.

When the stator and rotor was mounted in the test station the height difference was 0.52
mm. This spacing made the oscillator circuit not function. On higher frequency the
feedback was to small an the signal would stop oscillating. This height difference was
adjusted to 0.6 mm and it worked. When the oscillator did not function work, the shims
increased the height with 0.35 mm. This made the frequency span be 100 kHz. Under
further testing an improvements 0.1 mm shims shall be utilised.

25.4 Counter circuit improvements

While the counter circuit has the required specifications to count accurately [54], it is
dependent on control signals. These signals are currently emitted from an Arduino Mega
2560 and as discovered in testing 24.4 there is an error margin when counting.

The main potential sources for this problem is the microcontroller. This is likely due to
time inconsistency in driving pins from high to low and the other way around.

This problem could be solved by administrating signals from a microcontroller or FPGA
with a higher degree of consistency and accuracy. Utilising a Basys 3 FPGA board could
potentially offer a solution to this problem. The Arduino DUE [4] could also offer
improvements as it utilises a better processor.

25.5 Software improvements

Log files can currently only log a single position at a time or a whole calibration round.
There is no in-between which could be useful to have to log multiple positions on a single
test report.

Calibration can currently only be done in the highest resolution. It would be useful for this
to be dynamic and work in all step resolutions, but this was not implemented. This goes
for the calibration file as well, as it currently only can create a proper file if the resolution
is 1/128.

All of the user interface elements are shown in one window. The main goal with this was to
provide the user with all the necessary information in one place. With many information

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 255 of 389

elements present, the graphs are a bit small. This could be solved by splitting different
parts of the GUI into different windows.

Another improvement would be queuing commands. currently the user can select
parameters and send that built command to the arduino. Implementing queuing of
commands would enable for the user to queue multiple test runs and press run. This
combined with the ability to generate a log report with multiple test data present would be
beneficial.

25.6 Stepper motor improvement

When running 1 - 40 steps in 1/128 resolution the stepper motor is not able to move. It
will drain more current the further it is asked to go and if it asked to go far enough,
somewhere between 40 - 80 steps, it will jump to that location skipping all steps
in-between. Exactly why this is happening is unknown but it is theorised that when it has
such a short distance to move the change in the stepper motor’s coils is too low move the
stepper motor to counter the friction in the test station.

25.7 Oscillator improvements

The main improvement to the oscillator is to make it on an PCB. The reason is that a
breadboard is far from perfect and has noise that is affecting the circuit. This has been a
problem under development. Under development the capacitor have been a problem due to
leakage current. The leakage current made the oscillator not stabilise at the exact
frequency.

Shielding of the stator and rotor would also reduce the noise in the signal, this is can be
done with better grounding and no loose wires from the test station. Testing with the cap
of the test station attached would reduce noise from other electrical equipment nearby.

Smaller improvements would be to build the circuit with resistors with high tolerance.
This to avoid errors under testing of temperature requirement 1.7 from table 18.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 256 of 389

26 Conclusion

into the contactless position sensor
Research conducted in this report has shown that it is possible to create a contactless
position sensor with an accuracy of 0.01°. This report has also shown that developing a
test station with continuously rotating position is possible through design choices. The
developed test station meets the requirements needed to conduct all tests regarding
position. However due to the changes that had to be made during manufacturing, a spring
needs to be implemented for testing in various temperature conditions.

Analysis has shown that an LC oscillator has the capability to generate a sufficient
frequency span. With this frequency span it is possible to measure position accurate.
Considering research, calculations and testing, the CPS team considers the sensor to be
promising, but further testing of accuracy and space environment remains. The CPS team
considers that the sensor has potential to be used in other position tracking systems.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 257 of 389

27 References

[1] Advanced-Surface-Technologies-Inc. Passivation. https://www.astfinishing.
com/wp-content/uploads/2015/07/Passivation.pdf. Accessed 18.05.2019.

[2] Lars Hammare ake Björkman. Grundkurs, Ritningsregler/Ritteteknik. Björkman
utbildningsmaterial AB Lars Hammare utbildning AB, 1st edition, 01.01.2013.

[3] Ambersil. Dry molybdenum disulphide lubricant. https:
//docs-emea.rs-online.com/webdocs/1517/0900766b81517ef8.pdf.
Accessed 16.05.2019.

[4] Arduino. Arduino-due. https://store.arduino.cc/due. Accessed 22.05.2019.

[5] Simon Bennet. Schaum’s outline of UML. McGraw-Hill, 2nd edition, 2004.

[6] Ronald Berberg. Passivation of stainless steel. MortenHojem. Accessed 18.05.2019.

[7] William Bolton. Mechatronics Electronic cintrol systems in mechanical and electrical
engineering. Pearson Education, 6th edition, 2015.

[8] Pong P. Chu. FPGA prototyping by VHDL examples : Xilinx Spartan-3 version.
Wiley, spartan-3 edition, 2008.

[9] Circuitstoday. Colpitt oscillator.
http://www.circuitstoday.com/colpitts-oscillator. Published
13.08.2018.

[10] Mike Cohn. User stories.
https://www.mountaingoatsoftware.com/agile/user-stories.
Accessed 23.01.2019.

[11] Fairchild Semiconductor Corporat. 2n3904 npn general-purpose amplifier.
http://www.mouser.com/ds/2/149/2N3904-82270.pdf. Published 10.2014.

[12] KEMET Electronics Corporation. Goldmax, 300 series, conformally coated, x7r
dielectric, 25 – 250 vdc (commercial grade). https://www.elfadistrelec.no/
Web/Downloads/_t/ds/Goldman_X7R_eng_tds.pdf. Published 01.10.2017.

[13] Digilent. Analog discovery technical reference manual.
https://reference.digilentinc.com/_media/analog_discovery%
3Aanalog_discovery_rm.pdf. Published 18.03.2015.

[14] Digilent. Basys 3 fpga board reference manual.
https://reference.digilentinc.com/_media/basys3:basys3_rm.pdf.
Published 08.04.2016.

[15] Antony Dovgal. Libharu github repository. https://github.com/libharu.
Published 28.06.2015.

[16] Antony Dovgal. Libharu homepage. www.libharu.org. Accessed 08.04.2019.

https://www.astfinishing.com/wp-content/uploads/2015/07/Passivation.pdf
https://www.astfinishing.com/wp-content/uploads/2015/07/Passivation.pdf
https://docs-emea.rs-online.com/webdocs/1517/0900766b81517ef8.pdf
https://docs-emea.rs-online.com/webdocs/1517/0900766b81517ef8.pdf
https://store.arduino.cc/due
Morten Hojem
http://www.circuitstoday.com/colpitts-oscillator
https://www.mountaingoatsoftware.com/agile/user-stories
http://www.mouser.com/ds/2/149/2N3904-82270.pdf
https://www.elfadistrelec.no/Web/Downloads/_t/ds/Goldman_X7R_eng_tds.pdf
https://www.elfadistrelec.no/Web/Downloads/_t/ds/Goldman_X7R_eng_tds.pdf
https://reference.digilentinc.com/_media/analog_discovery%3Aanalog_discovery_rm.pdf
https://reference.digilentinc.com/_media/analog_discovery%3Aanalog_discovery_rm.pdf
https://reference.digilentinc.com/_media/basys3:basys3_rm.pdf
https://github.com/libharu
www.libharu.org

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 258 of 389

[17] Emanuel Eichhammer. Introduction.
https://www.qcustomplot.com/index.php/introduction. Published
18.03.2015.

[18] Electronics-tutorials. Lc oscillator basics. https:
//www.electronics-tutorials.ws/oscillator/oscillators.html.
Accessed 24.03.2019.

[19] Thomas L. Floyd. Electronic Devices. Pearson Education, 9th edition, 2014.

[20] Richard Gratton and Dave West. Scrum reboot this time with the values™.
https://scrumorg-website-prod.s3.amazonaws.com/drupal/
2017-12/Case-Study_Intarlinks-Reboot_July2017v3.pdf. Accessed
17.01.2019.

[21] Jeremy Hill. Gdt 101: An introduction to geometric dimensioning and tolerancing.
https://www.fictiv.com/hwg/fabricate/
gdt-101-an-introduction-to-geometric-dimensioning-and-tolerancing.
Published 14.02.2017.

[22] itemis.com. Requirements engineering with scrum. https://www.itemis.com/
en/agile/scrum/compact/requirements-engineering-with-scrum/
stage-2-of-the-product-backlog. Accessed 23.01.2019.

[23] Susan Riedel James Nilsson. Electric Circuits. Pearson Education, 10th edition, 2015.

[24] Ron Jeffries. Essential xp: Card, conversation, confirmation.
https://ronjeffries.com/xprog/articles/
expcardconversationconfirmation/?fbclid=IwAR1CeQi_
L0xOIn23V8bR5sHOy7saUVqUJXJnN9DK2J7rp4pMoONWQMYYOAg. Published
30.08.2001.

[25] Arseny Kapoulkine. Pugixml. https://pugixml.org/. Published 04.04.2018.

[26] Kongsberg-Defence-&-Aerospace. Space surveillance. https://www.kongsberg.
com/en/kds/products/spacetechnologyandsystems/#. Accessed
21.01.2019.

[27] Kongsberg-Defence-&-Aerospace. Systems, kongsberg defence & aerospace.
https://www.kongsberg.com/en/kds/. Accessed 21.01.2019.

[28] Leadshine. Em402 step motor driver.
http://www.leadshine.com/productDetail.aspx?type=products&
category=stepper-products&producttype=stepper-drives&subtype=
general-stepper-drives&series=em&model=EM402. Accessed 13.03.2019.

[29] Lesjöfors. 4293: Ds 22,5x11,2x0,6.
https://catalog.lesjoforsab.com/ds-22-5x11-2x0-6. Accessed
15.05.2019.

https://www.qcustomplot.com/index.php/introduction
https://www.electronics-tutorials.ws/oscillator/oscillators.html
https://www.electronics-tutorials.ws/oscillator/oscillators.html
https://scrumorg-website-prod.s3.amazonaws.com/drupal/2017-12/Case-Study_Intarlinks-Reboot_July2017v3.pdf
https://scrumorg-website-prod.s3.amazonaws.com/drupal/2017-12/Case-Study_Intarlinks-Reboot_July2017v3.pdf
https://www.fictiv.com/hwg/fabricate/gdt-101-an-introduction-to-geometric-dimensioning-and-tolerancing
https://www.fictiv.com/hwg/fabricate/gdt-101-an-introduction-to-geometric-dimensioning-and-tolerancing
https://www.itemis.com/en/agile/scrum/compact/requirements-engineering-with-scrum/stage-2-of-the-product-backlog
https://www.itemis.com/en/agile/scrum/compact/requirements-engineering-with-scrum/stage-2-of-the-product-backlog
https://www.itemis.com/en/agile/scrum/compact/requirements-engineering-with-scrum/stage-2-of-the-product-backlog
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/?fbclid=IwAR1CeQi_L0xOIn23V8bR5sHOy7saUVqUJXJnN9DK2J7rp4pMoONWQMYYOAg
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/?fbclid=IwAR1CeQi_L0xOIn23V8bR5sHOy7saUVqUJXJnN9DK2J7rp4pMoONWQMYYOAg
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/?fbclid=IwAR1CeQi_L0xOIn23V8bR5sHOy7saUVqUJXJnN9DK2J7rp4pMoONWQMYYOAg
https://pugixml.org/
https://www.kongsberg.com/en/kds/products/spacetechnologyandsystems/#
https://www.kongsberg.com/en/kds/products/spacetechnologyandsystems/#
https://www.kongsberg.com/en/kds/
http://www.leadshine.com/productDetail.aspx?type=products&category=stepper-products&producttype=stepper-drives&subtype=general-stepper-drives&series=em&model=EM402
http://www.leadshine.com/productDetail.aspx?type=products&category=stepper-products&producttype=stepper-drives&subtype=general-stepper-drives&series=em&model=EM402
http://www.leadshine.com/productDetail.aspx?type=products&category=stepper-products&producttype=stepper-drives&subtype=general-stepper-drives&series=em&model=EM402
https://catalog.lesjoforsab.com/ds-22-5x11-2x0-6

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 259 of 389

[30] Lesjöfors. 5028: Dsl 23,7x14,3x0,4.
https://catalog.lesjoforsab.com/dsl-23-7x14-3x0-4. Accessed
15.05.2019.

[31] Kyrre Lohne. Kongsberg awarded crows contracts valued 805 mnok. https:
//www.kongsberg.com/en/kds/news/2018/desember/kongsberg%
20awarded%20crows%20contracts%20valued%20805%20mnok/. Published
31.12.2018.

[32] Longs-Motor. Longs motor dm420a stepper drver.
http://www.longs-motor.com/stepper-motor-driver-dm542a.html.
Accessed 25.04.2019.

[33] Jean loup Gailly Mark Adler. Libharu homepage. https://zlib.net/. Published
15.01.2017.

[34] Sandra May. What is a satellite?
https://www.nasa.gov/audience/forstudents/5-8/features/
nasa-knows/what-is-a-satellite-58.html. Published 07.08.2017.

[35] Ian Mitchell. The definition of done pattern. https://www.scrum.org/
resources/blog/walking-through-definition-done. Published
31.05.2017.

[36] Ian Mitchell. The scrum guide™.
https://www.scrum.org/resources/blog/typical-sprint-play-play.
Published 24.02.2017.

[37] Ian Mitchell. Walking through a definition of done. https://www.scrum.org/
resources/blog/walking-through-definition-done. Published
31.05.2017.

[38] Mollificio-Modenese. Stainless steel wire en 10270-3. http://tiny.cc/3ltx6y.
Accessed 15.05.2019.

[39] Vannevar Morgan. Qt-temperature-sensor/ds18b20 qt/dialog.cpp.
https://github.com/vannevar-morgan/Qt-Temperature-Sensor/
blob/master/DS18B20_Qt/dialog.cpp. Published 18.03.2015.

[40] NanoTec. Smci33-2 driver datasheet.
https://en.nanotec.com/fileadmin/files/Baureihenuebersichten/
Motorsteuerungen/Product_Overview_SMCI33.pdf. Accessed 06.02.2019.

[41] NanoTec. Smci33-2 driver product page.
https://en.nanotec.com/products/1037-smci33-2/. Accessed
06.02.2019.

[42] NanoTec. Smci33-2 driver programming manual.
https://en.nanotec.com/fileadmin/files/Handbuecher/
Programmierung/Programming_Manual_V2.7.pdf. Published 25.06.2013.

https://catalog.lesjoforsab.com/dsl-23-7x14-3x0-4
https://www.kongsberg.com/en/kds/news/2018/desember/kongsberg%20awarded%20crows%20contracts%20valued%20805%20mnok/
https://www.kongsberg.com/en/kds/news/2018/desember/kongsberg%20awarded%20crows%20contracts%20valued%20805%20mnok/
https://www.kongsberg.com/en/kds/news/2018/desember/kongsberg%20awarded%20crows%20contracts%20valued%20805%20mnok/
http://www.longs-motor.com/stepper-motor-driver-dm542a.html
https://zlib.net/
https://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what-is-a-satellite-58.html
https://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what-is-a-satellite-58.html
https://www.scrum.org/resources/blog/walking-through-definition-done
https://www.scrum.org/resources/blog/walking-through-definition-done
https://www.scrum.org/resources/blog/typical-sprint-play-play
https://www.scrum.org/resources/blog/walking-through-definition-done
https://www.scrum.org/resources/blog/walking-through-definition-done
http://tiny.cc/3ltx6y
https://github.com/vannevar-morgan/Qt-Temperature-Sensor/blob/master/DS18B20_Qt/dialog.cpp
https://github.com/vannevar-morgan/Qt-Temperature-Sensor/blob/master/DS18B20_Qt/dialog.cpp
https://en.nanotec.com/fileadmin/files/Baureihenuebersichten/Motorsteuerungen/Product_Overview_SMCI33.pdf
https://en.nanotec.com/fileadmin/files/Baureihenuebersichten/Motorsteuerungen/Product_Overview_SMCI33.pdf
https://en.nanotec.com/products/1037-smci33-2/
https://en.nanotec.com/fileadmin/files/Handbuecher/Programmierung/Programming_Manual_V2.7.pdf
https://en.nanotec.com/fileadmin/files/Handbuecher/Programmierung/Programming_Manual_V2.7.pdf

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 260 of 389

[43] NanoTec. Smci33-2 driver technical manual.
https://en.nanotec.com/fileadmin/files/Handbuecher/
Motorsteuerungen/SMCI33_Technical-Manual_V2.2.pdf. Published
11.08.2010.

[44] NHBB-Inc. Grease dry film lubricants. https://nhbb.com/reference/
rod-ends-bearings/grease-dry-film-lubricants.aspx. Accessed
16.05.2019.

[45] Object-Management-Group. Object management group website.
https://www.omg.org/index.htm. Accessed 20.03.2019.

[46] Guy Eric Schalnat Andreas Dilger other contributors. libpng homepage.
http://www.libpng.org/pub/png/libpng.html. Published 21.04.2019.

[47] Scrum.org. Scrum value poster.
https://www.scrum.org/resources/scrum-values-poster. Accessed
23.01.2019.

[48] Scrum.org. What is a sprint retrospective? https:
//www.scrum.org/resources/what-is-a-sprint-retrospective.
Accessed 17.01.2019.

[49] Scrum.org. What is a sprint review?
https://www.scrum.org/resources/what-is-a-sprint-review.
Accessed 17.01.2019.

[50] SKF-Group. 6000-2rshs.
https://www.skf.com/group/products/bearings-units-housings/
ball-bearings/deep-groove-ball-bearings/
deep-groove-ball-bearings/index.html?designation=6000-2RSH.
Accessed 09.05.2019.

[51] SKF-group. Bearing preload. https://www.skf.com/binary/21-299896/
0901d1968065f1f4-Bearing-preload_tcm_12-299896.pdf. Accessed
09.02.2019.

[52] SKF-group. Pole position, bearing self study guide.
https://www.skf.com/binary/79-69177/457640.pdf. Accessed 10.03.2019.

[53] SMB-Bearings. Ball bearing lubricants. https:
//www.smbbearings.com/technical/bearing-lubrication.html.
Accessed 16.05.2019.

[54] Texas-Instruments. Sn74lv8154 dual 16-bit binary counters with 3-state output
registers. http://www.ti.com/lit/ds/symlink/sn74lv8154.pdf.
Published 10.2015.

[55] Texas-Instruments. Snx414 and snx4ls14 hex schmitt-trigger inverters.
http://www.ti.com/lit/ds/symlink/sn74ls14.pdf. Published 11.2016.

https://en.nanotec.com/fileadmin/files/Handbuecher/Motorsteuerungen/SMCI33_Technical-Manual_V2.2.pdf
https://en.nanotec.com/fileadmin/files/Handbuecher/Motorsteuerungen/SMCI33_Technical-Manual_V2.2.pdf
https://nhbb.com/reference/rod-ends-bearings/grease-dry-film-lubricants.aspx
https://nhbb.com/reference/rod-ends-bearings/grease-dry-film-lubricants.aspx
https://www.omg.org/index.htm
http://www.libpng.org/pub/png/libpng.html
https://www.scrum.org/resources/scrum-values-poster
https://www.scrum.org/resources/what-is-a-sprint-retrospective
https://www.scrum.org/resources/what-is-a-sprint-retrospective
https://www.scrum.org/resources/what-is-a-sprint-review
https://www.skf.com/group/products/bearings-units-housings/ball-bearings/deep-groove-ball-bearings/deep-groove-ball-bearings/index.html?designation=6000-2RSH
https://www.skf.com/group/products/bearings-units-housings/ball-bearings/deep-groove-ball-bearings/deep-groove-ball-bearings/index.html?designation=6000-2RSH
https://www.skf.com/group/products/bearings-units-housings/ball-bearings/deep-groove-ball-bearings/deep-groove-ball-bearings/index.html?designation=6000-2RSH
https://www.skf.com/binary/21-299896/0901d1968065f1f4-Bearing-preload_tcm_12-299896.pdf
https://www.skf.com/binary/21-299896/0901d1968065f1f4-Bearing-preload_tcm_12-299896.pdf
https://www.skf.com/binary/79-69177/457640.pdf
https://www.smbbearings.com/technical/bearing-lubrication.html
https://www.smbbearings.com/technical/bearing-lubrication.html
http://www.ti.com/lit/ds/symlink/sn74lv8154.pdf
http://www.ti.com/lit/ds/symlink/sn74ls14.pdf

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 261 of 389

[56] Texas-Instruments. Snx4hc14 hex schmitt-trigger inverters.
http://www.ti.com/lit/ds/symlink/sn74hc14.pdf. Published 12.1982,
REVISED 10.2016.

[57] The-Engineering-ToolBox. Coefficients of linear thermal expansion.
https://www.engineeringtoolbox.com/
linear-expansion-coefficients-d_95.html. Accessed 17.05.2019.

[58] The-Engineering-ToolBox. Linear thermal expansion. https://www.
engineeringtoolbox.com/linear-thermal-expansion-d_1379.html.
Accessed 18.05.2019.

[59] The-Nickel-Development-Institute. Design guidelines for the selection and use of
stainless steel. https://www.nickelinstitute.org/media/1667/
designguidelinesfortheselectionanduseofstainlesssteels_9014_
.pdf. Accessed 17.05.2019.

[60] The-Qt-company. About qt. https://wiki.qt.io/About_Qt. Published
23.05.2018.

[61] The-Qt-Company. Qfilesystemmodel class.
https://doc.qt.io/qt-5/qfilesystemmodel.html. Accessed 15.05.2019.

[62] The-Qt-Company. Qiodevice class.
https://doc.qt.io/qt-5/qiodevice.html#readyRead. Accessed
22.05.2019.

[63] Gunther Verheyen. There’s value in the scrum values.
https://guntherverheyen.com/2013/05/03/
theres-value-in-the-scrum-values/. Published 03.05.2013.

[64] Bill Wake. Invest in good stories, and smart tasks. https://xp123.com/
articles/invest-in-good-stories-and-smart-tasks/?fbclid=
IwAR3XinjY8FkZ5oYr04HCZEmFo_KgeaUSO_BzfYVxdVzPpP9x7HZBZSqysFE.
Published 17.08.2003.

http://www.ti.com/lit/ds/symlink/sn74hc14.pdf
https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html
https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html
https://www.engineeringtoolbox.com/linear-thermal-expansion-d_1379.html
https://www.engineeringtoolbox.com/linear-thermal-expansion-d_1379.html
https://www.nickelinstitute.org/media/1667/designguidelinesfortheselectionanduseofstainlesssteels_9014_.pdf
https://www.nickelinstitute.org/media/1667/designguidelinesfortheselectionanduseofstainlesssteels_9014_.pdf
https://www.nickelinstitute.org/media/1667/designguidelinesfortheselectionanduseofstainlesssteels_9014_.pdf
https://wiki.qt.io/About_Qt
https://doc.qt.io/qt-5/qfilesystemmodel.html
https://doc.qt.io/qt-5/qiodevice.html#readyRead
https://guntherverheyen.com/2013/05/03/theres-value-in-the-scrum-values/
https://guntherverheyen.com/2013/05/03/theres-value-in-the-scrum-values/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/?fbclid=IwAR3XinjY8FkZ5oYr04HCZEmFo_KgeaUSO_BzfYVxdVzPpP9x7HZBZSqysFE
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/?fbclid=IwAR3XinjY8FkZ5oYr04HCZEmFo_KgeaUSO_BzfYVxdVzPpP9x7HZBZSqysFE
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/?fbclid=IwAR3XinjY8FkZ5oYr04HCZEmFo_KgeaUSO_BzfYVxdVzPpP9x7HZBZSqysFE

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 262 of 389

28 Appendix A - All iterations of risk analysis

28.1 Introduction

This appendix contain all iterations, including the current, of the risk analysis.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 263 of 389

28.2 Risk analysis - 25.01.2019

28.2.1 Hardware risks:

Table 85: Hardware risks page 1 - iteration 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 264 of 389

Table 86: Hardware risks page 2 - iteration 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 265 of 389

28.2.2 Human risks:

Table 87: Human risks page 1 - iteration 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 266 of 389

Table 88: Human risks page 2 - iteration 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 267 of 389

28.2.3 Management risks:

Table 89: Management risks - iteration 1

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 268 of 389

28.3 Risk analysis - 27.02.2019

28.3.1 Hardware risks:

Table 90: Hardware risks page 1 - iteration 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 269 of 389

Table 91: Hardware risks page 2 - iteration 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 270 of 389

28.3.2 Human risks:

Table 92: Human risks page 1 - iteration 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 271 of 389

Table 93: Human risks page 2 - iteration 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 272 of 389

28.3.3 Management risks:

Table 94: Management risks - iteration 2

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 273 of 389

28.4 Risk analysis - 20.03.2019

28.4.1 Hardware risks:

Table 95: Hardware risks page 1 - iteration 3

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 274 of 389

Table 96: Hardware risks page 2 - iteration 3

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 275 of 389

28.4.2 Human risks:

Table 97: Human risks page 1 - iteration 3

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 276 of 389

Table 98: Human risks page 2 - iteration 3

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 277 of 389

28.4.3 Management risks:

Table 99: Management risks - iteration 3

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 278 of 389

28.5 Risk analysis - 1.05.2019

28.5.1 Hardware risks:

Table 100: Hardware risks page 1 - iteration 4

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 279 of 389

Table 101: Hardware risks page 2 - iteration 4

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 280 of 389

28.5.2 Human risks:

Table 102: Human risks page 1 - iteration 4

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 281 of 389

Table 103: Human risks page 2 - iteration 4

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 282 of 389

28.5.3 Management risks:

Table 104: Management risks - iteration 4

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 283 of 389

29 Appendix B - Working with Qt

29.1 Document history

Table 105: Learning Qt document history

Version Date Author Description

1.0.0 26.03.2019 MBC, HS & JS Document created.Proofreading and correc-
tions.

2.0.0 17.05.2019 MBC Changed setup of sections and moved this sec-
tion to appendix.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 284 of 389

29.2 Introduction

This section will explain the activities that went in to learning Qt, and how it is related to
the end software product.

29.3 Potentiometer values on a graphical user interface

The Qt framework is an extensive framework as explained in section 20, and despite
knowing C++, learning the Qt framework was necessary. At the end of the project the
system will read data from the contactless position sensor, thus the team decided to learn
Qt by projecting a potentiometer. The potentiometer value was to be sent by arduino to
the GUI, and if the user wanted to, log the sample data.

29.4 Arduino code to read and send potentiometer value

Figure 166: Reading potentiometer on GUI system

Figure 166 illustrates how the potentiometer is connected to the arduino, which sends data
to the GUI trough serial communication. The arduino code is listed in listing 6.

1 //Initialise the potmeter pin.
2 int potPin = A12;
3 //Integer to store potvalue.
4 int val = 0;
5
6 void setup() {
7 //Start serialcommunication
8 //at baudrate 9600.
9 Serial.begin(9600);

10 }

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 285 of 389

11
12 void loop() {
13 //Store the potentiometer
14 //value read from analogpin
15 //potpin.
16 val = analogRead(potPin);
17 //Print the value over serial
18 //communication and flush the
19 //serial channel
20 Serial.print(val);
21 Serial.print(",");
22 Serial.flush();
23 //Then wait for 50ms before
24 //looping over again.
25 delay(50);
26 }

Listing 6: Arduino code to read and send potentiometer values

The arduino code loops trough a sequence of reading analog data and storing it in an
integer. Then this value is sent over serial communication, followed by a comma. Then the
serial communication is flushed and the program waits 50ms before repeating.

29.5 Potentiometer reading GUI

The comma that is sent after the potentiometer value has the effect of a escape sign. When
data is sent over serial communication, it is not guaranteed that all the data will be
received at once. Data can be split and result in incorrect readings. This can be prevented
by having a buffer on the receiving end, that stores everything in the the first element of a
list until a comma is received. This has been implemented by a GitHub user called
Vannevar-Morgan. How the list is split up can be viewed in the dialog.cpp file at the
Vannevar-Morgan github [39]. Not wanting to spend time ”reinventing the wheel”, this
solution was implemented.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 286 of 389

Figure 167: Qt potentiometer reading GUI

The GUI created in Qt to read the potentiometer value is illustrated in figure 167. This
GUI allows for selection of up to 4 users and the option to start and stop the logging of
files. The user also has the option to write .txt file and reset the log. The log, is the
window with text that is located under the title ”Contactless Position Sensor”. The graphs
are created using an external library called QCustomPlot [17]. The potentiometer value is
also displayed in digits between the graphs and the log window.

29.6 Working with Qt conclusion

Working on this has given a better understanding of how Qt works, and how Qt can be
used to the final software solution. The development of the potentiometer reader GUI has
not been done with the layers architecture as a focus, as the main objective was to learn
the tools. The full Qt Solution and and clean text version can be found in the attached
folder QtAttachments.

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 287 of 389

30 Appendix C - Directory structure doxygen

documentation

30.1 Introduction

This appendix contains the doxygen documentation for the directory structure code as of
25.03.2019.

My Project

Generated by Doxygen 1.8.15

i

1 Class Index 1

1.1 Class List . 1

2 Class Documentation 3

2.1 fileGenerate Class Reference . 3

2.1.1 Detailed Description . 3

2.1.2 Member Function Documentation . 3

2.1.2.1 fileStruct() . 3

2.1.2.2 gen() . 4

Generated by Doxygen

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

fileGenerate . 3

2 Class Index

Generated by Doxygen

Chapter 2

Class Documentation

2.1 fileGenerate Class Reference

Public Member Functions

• void gen ()

Test function for new approaches.
• void fileStruct (std::string &prName, std::string &cName, std::string &tID, std::string &peName, std::string

¬e, std::string &sMode, std::string &cur, std::string &dist, std::string &spd, std::string &acc)

Function to create directory and xml file.

2.1.1 Detailed Description

Definition at line 5 of file fileGenerate.h.

2.1.2 Member Function Documentation

2.1.2.1 fileStruct()

void fileGenerate::fileStruct (

std::string & prName,

std::string & cName,

std::string & tID,

std::string & peName,

std::string & note,

std::string & sMode,

std::string & cur,

std::string & dist,

std::string & spd,

std::string & acc)

Function to create directory and xml file.

Current working function for generating a directory structure and xml file to log parameters and settings from an
external source. The paramaters are all the variables that will be gathered from the GUI

4 Class Documentation

Parameters

prName A string parameter for the project name

cName A string parameter for the component id

tID A string parameter for the test id

peName A string parameter for the personnel name

note A string parameter for notes about the test

sMode A string parameter for stepmode setting of the driver

cur A string parameter for the current setting of the driver

dist A string parameter for the distance setting of the driver

spd A string parameter for the speed setting of the driver

acc A string parameter for the acceleration setting of the driver

Definition at line 136 of file fileGenerate.cpp.

2.1.2.2 gen()

void fileGenerate::gen ()

Test function for new approaches.

This is a test function only used to test new approaches and is not part of the end code

Definition at line 41 of file fileGenerate.cpp.

The documentation for this class was generated from the following files:

• C:/Users/magnu/Documents/Bachelor project testing/fileGenerate.h
• C:/Users/magnu/Documents/Bachelor project testing/fileGenerate.cpp

Generated by Doxygen

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 296 of 389

31 Appendix D - Potentiometer reader GUI doxygen

documentation

31.1 Introduction

This appendix contains the doxygen documentation for the Potentiometer reader GUI as of
26.03.2019.

QtLearn

Generated by Doxygen 1.8.15

i

1 Namespace Index 1

1.1 Namespace List . 1

2 Hierarchical Index 3

2.1 Class Hierarchy . 3

3 Class Index 5

3.1 Class List . 5

4 Namespace Documentation 7

4.1 Ui Namespace Reference . 7

4.1.1 Detailed Description . 7

5 Class Documentation 9

5.1 MainWindow Class Reference . 9

5.1.1 Detailed Description . 11

5.1.2 Constructor & Destructor Documentation . 11

5.1.2.1 MainWindow() . 11

5.1.2.2 ∼MainWindow() . 12

5.1.3 Member Function Documentation . 12

5.1.3.1 graphStyle . 12

5.1.3.2 on_button_start_log_clicked . 12

5.1.3.3 on_button_stop_log_clicked . 12

5.1.3.4 on_button_user_1_clicked . 12

5.1.3.5 on_button_user_2_clicked . 13

5.1.3.6 on_button_user_3_clicked . 13

5.1.3.7 on_button_user_4_clicked . 13

5.1.3.8 on_button_write_reset_clicked . 13

5.1.3.9 readSerialPort . 13

5.1.3.10 realtimeDataSlot . 13

5.1.3.11 setupRealtimeData . 14

5.1.3.12 updatePotList . 14

5.1.3.13 updatePotVal . 14

5.1.4 Member Data Documentation . 14

5.1.4.1 arduino . 15

5.1.4.2 arduinoProductId . 15

5.1.4.3 arduinoVendorId . 15

5.1.4.4 button1Pressed . 15

5.1.4.5 button2Pressed . 16

5.1.4.6 button3Pressed . 16

5.1.4.7 button4Pressed . 16

5.1.4.8 currentUser . 16

5.1.4.9 dataRecieved . 17

5.1.4.10 dataTimer . 17

Generated by Doxygen

ii

5.1.4.11 documentNumber . 17

5.1.4.12 ok . 17

5.1.4.13 parsedData . 18

5.1.4.14 QStr . 18

5.1.4.15 serialBuffer . 18

5.1.4.16 serialData . 18

5.1.4.17 startLog . 19

5.1.4.18 tmpQstring . 19

5.1.4.19 ui . 19

Generated by Doxygen

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

Ui
Namespace . 7

2 Namespace Index

Generated by Doxygen

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

QMainWindow
MainWindow . 9

4 Hierarchical Index

Generated by Doxygen

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

MainWindow
Mainwindow class . 9

6 Class Index

Generated by Doxygen

Chapter 4

Namespace Documentation

4.1 Ui Namespace Reference

Namespace.

4.1.1 Detailed Description

Namespace.

This provides a namespace.

8 Namespace Documentation

Generated by Doxygen

Chapter 5

Class Documentation

5.1 MainWindow Class Reference

Mainwindow class.

#include <mainwindow.h>

Inheritance diagram for MainWindow:

MainWindow

QMainWindow

Collaboration diagram for MainWindow:

MainWindow

QMainWindow

10 Class Documentation

Public Member Functions

• MainWindow (QWidget ∗parent=nullptr)

A public constructor.

• ∼MainWindow ()

A public destructor.

Private Slots

• void readSerialPort ()

A private slot for reading serial data.

• void updatePotVal (QString)

A private slot for updating the lcd display.

• void updatePotList (QString)

A private slot for updating the data list.

• void setupRealtimeData ()

A private slot for seting up the graph.

• void realtimeDataSlot ()

A private slot for updating the graph data.

• void on_button_user_1_clicked ()

A private slot for marking a button as pressed.

• void on_button_user_2_clicked ()

A private slot for marking a button as pressed.

• void on_button_user_3_clicked ()

A private slot for marking a button as pressed.

• void on_button_user_4_clicked ()

A private slot for marking a button as pressed.

• void graphStyle ()

A private slot for styling the graphs.

• void on_button_start_log_clicked ()

A private slot for starting the logging.

• void on_button_stop_log_clicked ()

A private slot for stopping the logging.

• void on_button_write_reset_clicked ()

A private slot for stopping the logging.

Private Attributes

• Ui::MainWindow ∗ ui

A private variable.

• QByteArray serialData

A private QByteArray variable.

• QString serialBuffer

A private Qstring variable.

• QString parsedData

A private QString variable.

• QString QStr

A private QString variable.

• QString tmpQstring

Generated by Doxygen

5.1 MainWindow Class Reference 11

A private QString variable.

• std::string currentUser = "User not selected yet"

A private string variable.

• QTimer dataTimer

A private QTimer variable.

• QSerialPort ∗ arduino

A private QSerialPort variable.

• long documentNumber = 0

A private long variable.

• double dataRecieved

A private variable.

• bool ok

A private double variable.

• bool startLog = false

A private variable.

• bool button1Pressed

A private variable.

• bool button2Pressed

A private variable.

• bool button3Pressed

A private variable.

• bool button4Pressed

A private variable.

Static Private Attributes

• static const quint16 arduinoVendorId = 9025

A private static const quint16 variable.

• static const quint16 arduinoProductId = 66

A private static const quint16 variable.

5.1.1 Detailed Description

Mainwindow class.

This is the class that provides the main application window.

Definition at line 36 of file mainwindow.h.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 MainWindow()

MainWindow::MainWindow (

QWidget ∗ parent = nullptr) [explicit]

A public constructor.

This is the constructor for the MainWindow Class.

Generated by Doxygen

12 Class Documentation

5.1.2.2 ∼MainWindow()

MainWindow::∼MainWindow ()

A public destructor.

This is the destructor for the MainWindow Class.

5.1.3 Member Function Documentation

5.1.3.1 graphStyle

void MainWindow::graphStyle () [private], [slot]

A private slot for styling the graphs.

This slot sets the style of the graphs by setting color, background color etc.

5.1.3.2 on_button_start_log_clicked

void MainWindow::on_button_start_log_clicked () [private], [slot]

A private slot for starting the logging.

This slot starts the logging of data, by setting a boolean value to "true".

5.1.3.3 on_button_stop_log_clicked

void MainWindow::on_button_stop_log_clicked () [private], [slot]

A private slot for stopping the logging.

This slot stops the logging by setting a boolean value to "false".

5.1.3.4 on_button_user_1_clicked

void MainWindow::on_button_user_1_clicked () [private], [slot]

A private slot for marking a button as pressed.

This slot sets user 1 as the selected user, and deselects the other user that was selected. user buttons. This
function also sets the currentUser string to "User 1"

Generated by Doxygen

5.1 MainWindow Class Reference 13

5.1.3.5 on_button_user_2_clicked

void MainWindow::on_button_user_2_clicked () [private], [slot]

A private slot for marking a button as pressed.

This slot sets user 2 as the selected user, and deselects the other user that was selected. user buttons. This
function also sets the currentUser string to "User 2"

5.1.3.6 on_button_user_3_clicked

void MainWindow::on_button_user_3_clicked () [private], [slot]

A private slot for marking a button as pressed.

This slot sets user 3 as the selected user, and deselects the other user that was selected. user buttons. This
function also sets the currentUser string to "User 3"

5.1.3.7 on_button_user_4_clicked

void MainWindow::on_button_user_4_clicked () [private], [slot]

A private slot for marking a button as pressed.

This slot sets user 4 as the selected user, and deselects the other user that was selected. user buttons. This
function also sets the currentUser string to "User 4"

5.1.3.8 on_button_write_reset_clicked

void MainWindow::on_button_write_reset_clicked () [private], [slot]

A private slot for stopping the logging.

This slot stops the logging by setting a boolean value to "false".

5.1.3.9 readSerialPort

void MainWindow::readSerialPort () [private], [slot]

A private slot for reading serial data.

Sending serial data is not always reliable and data can be split. This function takes the serial data and puts in if the
correct sign recieved.

5.1.3.10 realtimeDataSlot

void MainWindow::realtimeDataSlot () [private], [slot]

A private slot for updating the graph data.

This function updates the

Generated by Doxygen

14 Class Documentation

Parameters

QString String read from readSerial();

5.1.3.11 setupRealtimeData

void MainWindow::setupRealtimeData () [private], [slot]

A private slot for seting up the graph.

This function was used to test the library QCustomGraph. It is not used.

5.1.3.12 updatePotList

void MainWindow::updatePotList (

QString) [private], [slot]

A private slot for updating the data list.

This function updates the list widget with the paramaterasdasd

Parameters

QString String read from readSerial();

5.1.3.13 updatePotVal

void MainWindow::updatePotVal (

QString) [private], [slot]

A private slot for updating the lcd display.

This function updates the lcd widget with the paramater

Parameters

QString String read from readSerial();

5.1.4 Member Data Documentation

Generated by Doxygen

5.1 MainWindow Class Reference 15

5.1.4.1 arduino

QSerialPort∗ MainWindow::arduino [private]

A private QSerialPort variable.

This is the variable used to establish serial communication.

Definition at line 223 of file mainwindow.h.

5.1.4.2 arduinoProductId

const quint16 MainWindow::arduinoProductId = 66 [static], [private]

A private static const quint16 variable.

This variable is used to identify the arduino product ID for serial communication.

Definition at line 237 of file mainwindow.h.

5.1.4.3 arduinoVendorId

const quint16 MainWindow::arduinoVendorId = 9025 [static], [private]

A private static const quint16 variable.

This variable is used to identify the arduino vendor for serial communication.

Definition at line 230 of file mainwindow.h.

5.1.4.4 button1Pressed

bool MainWindow::button1Pressed [private]

A private variable.

Details.

Definition at line 272 of file mainwindow.h.

Generated by Doxygen

16 Class Documentation

5.1.4.5 button2Pressed

bool MainWindow::button2Pressed [private]

A private variable.

Details.

Definition at line 278 of file mainwindow.h.

5.1.4.6 button3Pressed

bool MainWindow::button3Pressed [private]

A private variable.

Details.

Definition at line 284 of file mainwindow.h.

5.1.4.7 button4Pressed

bool MainWindow::button4Pressed [private]

A private variable.

Details.

Definition at line 290 of file mainwindow.h.

5.1.4.8 currentUser

std::string MainWindow::currentUser = "User not selected yet" [private]

A private string variable.

This is the string used to store the current user, and its initially set to no one.

Definition at line 209 of file mainwindow.h.

Generated by Doxygen

5.1 MainWindow Class Reference 17

5.1.4.9 dataRecieved

double MainWindow::dataRecieved [private]

A private variable.

Details.

Definition at line 253 of file mainwindow.h.

5.1.4.10 dataTimer

QTimer MainWindow::dataTimer [private]

A private QTimer variable.

This is the timer used in decicing how often to replot the graphs.

Definition at line 216 of file mainwindow.h.

5.1.4.11 documentNumber

long MainWindow::documentNumber = 0 [private]

A private long variable.

This variable is incremented each time a file is logged. The files are logged with this long in the file name. Example:
"test0.txt" and when the new logfile is saved and this variable is now "1" the next file is saved as "test1.txt"

Definition at line 247 of file mainwindow.h.

5.1.4.12 ok

bool MainWindow::ok [private]

A private double variable.

This variable is the nummerical value that gets added to the graphs.

Definition at line 260 of file mainwindow.h.

Generated by Doxygen

18 Class Documentation

5.1.4.13 parsedData

QString MainWindow::parsedData [private]

A private QString variable.

This variable is used to store the second buffer item, and be further used by the widgets.

Definition at line 185 of file mainwindow.h.

5.1.4.14 QStr

QString MainWindow::QStr [private]

A private QString variable.

This variable is used to store the message as it is converted to the appropiate type.

Definition at line 193 of file mainwindow.h.

5.1.4.15 serialBuffer

QString MainWindow::serialBuffer [private]

A private Qstring variable.

This variable is used to store the incomming data in a buffer as to guarantee that the whole message is recieved.
See the mainwindow.cpp file for more information.

Definition at line 177 of file mainwindow.h.

5.1.4.16 serialData

QByteArray MainWindow::serialData [private]

A private QByteArray variable.

This is the bytearray used to store recieved bytes from the arduino.

Definition at line 167 of file mainwindow.h.

Generated by Doxygen

5.1 MainWindow Class Reference 19

5.1.4.17 startLog

bool MainWindow::startLog = false [private]

A private variable.

Details.

Definition at line 266 of file mainwindow.h.

5.1.4.18 tmpQstring

QString MainWindow::tmpQstring [private]

A private QString variable.

This variable is used to store the message as it is converted to the appropiate type.

Definition at line 201 of file mainwindow.h.

5.1.4.19 ui

Ui::MainWindow∗ MainWindow::ui [private]

A private variable.

This is the mainwindow object used to access different widgets to the UI.

Definition at line 160 of file mainwindow.h.

The documentation for this class was generated from the following file:

• C:/Users/magnu/Desktop/QtDoxygen/source code/mainwindow.h

Generated by Doxygen

20 Class Documentation

Generated by Doxygen

CPS
Rev 3.1.0

Contactless Position Sensor
Group 3 Page 321 of 389

32 Appendix E - Final software doxygen

documentation

32.1 Introduction

This appendix contains the doxygen documentation for the Potentiometer reader GUI as of
26.03.2019.

Contactless Position Sensor - Final software report - Bachelor group 3

Generated by Doxygen 1.8.15

i

1 Hierarchical Index 1

1.1 Class Hierarchy . 1

2 Class Index 3

2.1 Class List . 3

3 File Index 5

3.1 File List . 5

4 Class Documentation 7

4.1 arduino_control_final Class Reference . 7

4.1.1 Detailed Description . 9

4.1.2 Member Function Documentation . 9

4.1.2.1 aLowerByte() . 10

4.1.2.2 aUpperByte() . 10

4.1.2.3 bLowerByte() . 11

4.1.2.4 buildString() . 11

4.1.2.5 bUpperByte() . 12

4.1.2.6 clearCounter() . 12

4.1.2.7 loop() . 13

4.1.2.8 moveStep() . 13

4.1.2.9 printBytes() . 14

4.1.2.10 saveBytes() . 14

4.1.2.11 setup() . 15

4.1.2.12 snapShotRegister() . 15

4.1.3 Member Data Documentation . 16

4.1.3.1 a1 . 16

4.1.3.2 a2 . 17

4.1.3.3 a3 . 17

4.1.3.4 a4 . 17

4.1.3.5 c1 . 17

4.1.3.6 c2 . 18

4.1.3.7 c3 . 18

4.1.3.8 c4 . 18

4.1.3.9 calibrating . 18

4.1.3.10 CCLR . 19

4.1.3.11 clk . 19

4.1.3.12 currentValueA . 19

4.1.3.13 currentValueC . 19

4.1.3.14 currentValueL . 20

4.1.3.15 dir . 20

4.1.3.16 enb . 20

4.1.3.17 GAL . 20

Generated by Doxygen

ii

4.1.3.18 GAU . 21

4.1.3.19 GBL . 21

4.1.3.20 GBU . 21

4.1.3.21 l1 . 21

4.1.3.22 l2 . 22

4.1.3.23 l3 . 22

4.1.3.24 l4 . 22

4.1.3.25 message . 22

4.1.3.26 para . 23

4.1.3.27 RCLK . 23

4.1.3.28 runStepCount . 23

4.1.3.29 size . 23

4.1.3.30 varSpd . 24

4.2 cps_ts_gui Class Reference . 24

4.2.1 Detailed Description . 30

4.2.2 Constructor & Destructor Documentation . 30

4.2.2.1 cps_ts_gui() . 30

4.2.3 Member Function Documentation . 30

4.2.3.1 dataRealtime() . 30

4.2.3.2 getArduinoInfo() . 30

4.2.3.3 graphStyle() . 31

4.2.3.4 on_calibrateButton_clicked . 31

4.2.3.5 on_componentInput_textChanged . 31

4.2.3.6 on_currentComboBox_currentIndexChanged . 31

4.2.3.7 on_directionClockwiseButton_clicked . 32

4.2.3.8 on_directionCounterClockwiseButton_clicked . 32

4.2.3.9 on_distanceComboBox_currentIndexChanged . 32

4.2.3.10 on_distanceSlider_valueChanged . 32

4.2.3.11 on_distanceSpinBox_valueChanged . 33

4.2.3.12 on_gearRatioInput_textChanged . 33

4.2.3.13 on_generatePdfButton_clicked . 33

4.2.3.14 on_listView_doubleClicked . 34

4.2.3.15 on_motorEnableButton_clicked . 34

4.2.3.16 on_notesInput_textChanged . 34

4.2.3.17 on_projectInput_textChanged . 34

4.2.3.18 on_reconnectButton_clicked . 35

4.2.3.19 on_runButton_clicked . 35

4.2.3.20 on_speedComboBox_currentIndexChanged . 35

4.2.3.21 on_speedSlider_valueChanged . 35

4.2.3.22 on_speedSpinBox_valueChanged . 36

4.2.3.23 on_startButton_clicked . 36

4.2.3.24 on_stepmodeComboBox_currentIndexChanged 36

Generated by Doxygen

iii

4.2.3.25 on_testInput_textChanged . 37

4.2.3.26 on_treeView_clicked . 37

4.2.3.27 on_userInput_textChanged . 37

4.2.3.28 on_writeLogButton_clicked . 38

4.2.3.29 readSerial . 38

4.2.3.30 realtimeDataSlot . 38

4.2.3.31 updateCoils . 38

4.2.3.32 updateExpectedValue() . 39

4.2.3.33 writeSerial . 39

4.2.4 Member Data Documentation . 39

4.2.4.1 arduino . 39

4.2.4.2 arduinoProductId . 40

4.2.4.3 arduinoVendorId . 40

4.2.4.4 calib . 40

4.2.4.5 calibList1 . 41

4.2.4.6 calibrateListAAAAAAAA . 41

4.2.4.7 calibrateListBBBBBBBB . 41

4.2.4.8 calibrateListCCCCCCCC . 41

4.2.4.9 componentID . 42

4.2.4.10 currentStep . 42

4.2.4.11 currentValue . 42

4.2.4.12 dataCoilA . 42

4.2.4.13 dataCoilB . 43

4.2.4.14 dataCoilC . 43

4.2.4.15 dataList . 43

4.2.4.16 dataTimer . 43

4.2.4.17 directionValue . 44

4.2.4.18 dirModel . 44

4.2.4.19 distanceMode . 44

4.2.4.20 distanceValue . 44

4.2.4.21 fileModel . 45

4.2.4.22 gearRatio . 45

4.2.4.23 motorEnable . 45

4.2.4.24 notesInput . 45

4.2.4.25 parsedData . 46

4.2.4.26 projectName . 46

4.2.4.27 serialBuffer . 46

4.2.4.28 serialData . 46

4.2.4.29 speedMode . 47

4.2.4.30 speedValue . 47

4.2.4.31 stepMode . 47

4.2.4.32 testID . 47

Generated by Doxygen

iv

4.2.4.33 ui . 48

4.2.4.34 userName . 48

4.2.4.35 writePDF . 48

4.3 fileGenerate Class Reference . 48

4.3.1 Detailed Description . 49

4.3.2 Member Function Documentation . 49

4.3.2.1 fileStruct() . 49

4.3.2.2 getCalData() . 51

4.3.2.3 lastPos() . 51

4.4 pdfGenerate Class Reference . 52

4.4.1 Detailed Description . 52

4.4.2 Member Function Documentation . 53

4.4.2.1 fileStruct() . 53

4.5 writeArduino Class Reference . 54

4.5.1 Detailed Description . 55

4.5.2 Member Function Documentation . 55

4.5.2.1 calculateDistance() . 55

4.5.2.2 calculateSpeed() . 55

4.5.2.3 wArd() . 56

5 File Documentation 57

5.1 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/arduino_←↩

control_final.c File Reference . 57

5.1.1 Macro Definition Documentation . 57

5.1.1.1 ARDUINO_CONTROL_FINAL_H . 57

5.1.1.2 BAUD . 57

5.1.1.3 DELAY_TIME . 58

5.1.1.4 INPUT_SIZE . 58

5.2 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/cps_ts_gui.h File
Reference . 58

5.3 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/fileGenerate.h
File Reference . 59

5.3.1 Macro Definition Documentation . 59

5.3.1.1 FILEGENERATE_H . 59

5.4 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/pdfGenerate.h
File Reference . 60

5.4.1 Macro Definition Documentation . 60

5.4.1.1 PDFGENERATE_H . 60

5.5 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/writeArduino.h
File Reference . 61

5.5.1 Macro Definition Documentation . 61

5.5.1.1 WRITEARDUINO_H . 61

Generated by Doxygen

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

arduino_control_final . 7
fileGenerate . 48
pdfGenerate . 52
QDialog

cps_ts_gui . 24
writeArduino . 54

2 Hierarchical Index

Generated by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

arduino_control_final . 7
cps_ts_gui

A class for the graphical user interface and its content . 24
fileGenerate

A class for generating files and getting calibration data . 48
pdfGenerate

A class for generating PDF reports . 52
writeArduino

A class for calculating parameters to arduino message code 54

4 Class Index

Generated by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/arduino_control_final.c
57

C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/cps_ts_gui.h . . . 58
C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/fileGenerate.h . . . 59
C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/pdfGenerate.h . . . 60
C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/writeArduino.h . . . 61

6 File Index

Generated by Doxygen

Chapter 4

Class Documentation

4.1 arduino_control_final Class Reference

Collaboration diagram for arduino_control_final:

arduino_control_final

+ para
+ size
+ CCLR
+ GAU
+ GAL
+ RCLK
+ GBL
+ GBU
+ enb
+ dir
and 20 more...

+ setup()
+ loop()
+ moveStep()
+ saveBytes()
+ printBytes()
+ buildString()
+ bUpperByte()
+ bLowerByte()
+ aUpperByte()
+ aLowerByte()
+ clearCounter()
+ snapShotRegister()

8 Class Documentation

Public Member Functions

• void setup ()

A public member.

• void loop ()

A public member.

• void moveStep (char message[])

A public member.

• void saveBytes ()

A public member.

• void printBytes ()

A public member.

• String buildString ()

A public member.

• void bUpperByte ()

A public member.

• void bLowerByte ()

A public member.

• void aUpperByte ()

A public member.

• void aLowerByte ()

A public member.

• void clearCounter ()

A public member.

• void snapShotRegister ()

A public member.

Public Attributes

• int para

A global int variable.

• byte size

A global byte variable.

• const int CCLR = 11

A global const int variable.

• const int GAU = 9

A global const int variable.

• const int GAL = 8

A global const int variable.

• const int RCLK = 7

A global const int variable.

• const int GBL = 5

A global const int variable.

• const int GBU = 6

A global const int variable.

• const int enb = 2

A global const int variable.

• const int dir = 3

A global const int variable.

• const int clk = 4

Generated by Doxygen

4.1 arduino_control_final Class Reference 9

A global const int variable.

• volatile long varSpd = 50

A global volatile long variable.

• bool calibrating = false

A global bool variable.

• unsigned long currentValueA = 0

A global unsigned long variable.

• unsigned long currentValueC = 0

A global unsigned long variable.

• unsigned long currentValueL = 0

A global unsigned long variable.

• long runStepCount = 0

A global long variable.

• String message = ""

A global string variable.

• byte a1

A global byte variable.

• byte a2

A global byte variable.

• byte a3

A global byte variable.

• byte a4

A global byte variable.

• byte c1

A global byte variable.

• byte c2

A global byte variable.

• byte c3

A global byte variable.

• byte c4

A global byte variable.

• byte l1

A global byte variable.

• byte l2

A global byte variable.

• byte l3

A global byte variable.

• byte l4

A global byte variable.

4.1.1 Detailed Description

Definition at line 8 of file arduino_control_final.c.

4.1.2 Member Function Documentation

Generated by Doxygen

10 Class Documentation

4.1.2.1 aLowerByte()

void arduino_control_final::aLowerByte () [inline]

A public member.

Function to change the outputregister to get the lower bytes of the A counter.

Definition at line 579 of file arduino_control_final.c.

Here is the caller graph for this function:

arduino_control_final
::aLowerByte

arduino_control_final
::saveBytes

arduino_control_final
::snapShotRegister

arduino_control_final
::loop

arduino_control_final
::moveStep

arduino_control_final
::buildString

4.1.2.2 aUpperByte()

void arduino_control_final::aUpperByte () [inline]

A public member.

Function to change the outputregister to get the upper bytes of the A counter

Definition at line 563 of file arduino_control_final.c.

Here is the caller graph for this function:

arduino_control_final
::aUpperByte

arduino_control_final
::saveBytes

arduino_control_final
::snapShotRegister

arduino_control_final
::loop

arduino_control_final
::moveStep

arduino_control_final
::buildString

Generated by Doxygen

4.1 arduino_control_final Class Reference 11

4.1.2.3 bLowerByte()

void arduino_control_final::bLowerByte () [inline]

A public member.

Function to change the outputregister to get the lower bytes of the B counter

Definition at line 547 of file arduino_control_final.c.

Here is the caller graph for this function:

arduino_control_final
::bLowerByte

arduino_control_final
::saveBytes

arduino_control_final
::snapShotRegister

arduino_control_final
::loop

arduino_control_final
::moveStep

arduino_control_final
::buildString

4.1.2.4 buildString()

String arduino_control_final::buildString () [inline]

A public member.

Function to build the message string that will be sent and deconstructed at the user interface. First we make sure
that the string is cleared, and then we build the string and send it with 100 sensor readings at the time. The counters
are reset and counts for x ammount of time before saving the the values stored.

Definition at line 502 of file arduino_control_final.c.

Here is the call graph for this function:

arduino_control_final
::buildString

arduino_control_final
::clearCounter

arduino_control_final
::snapShotRegister

arduino_control_final
::aLowerByte

arduino_control_final
::aUpperByte

arduino_control_final
::bLowerByte

arduino_control_final
::bUpperByte

Generated by Doxygen

12 Class Documentation

Here is the caller graph for this function:

arduino_control_final
::buildString

arduino_control_final
::moveStep

arduino_control_final
::loop

4.1.2.5 bUpperByte()

void arduino_control_final::bUpperByte () [inline]

A public member.

Function to change the outputregister to get the upper bytes of the B counter.

Definition at line 531 of file arduino_control_final.c.

Here is the caller graph for this function:

arduino_control_final
::bUpperByte

arduino_control_final
::saveBytes

arduino_control_final
::snapShotRegister

arduino_control_final
::loop

arduino_control_final
::moveStep

arduino_control_final
::buildString

4.1.2.6 clearCounter()

void arduino_control_final::clearCounter () [inline]

A public member.

Function to clear the counters

Definition at line 595 of file arduino_control_final.c.

Here is the caller graph for this function:

arduino_control_final
::clearCounter

arduino_control_final
::loop

arduino_control_final
::moveStep

arduino_control_final
::buildString

Generated by Doxygen

4.1 arduino_control_final Class Reference 13

4.1.2.7 loop()

void arduino_control_final::loop () [inline]

A public member.

This member is the loop. This is the main arduino loop and it does one of 2 things. First it checks if there are
incoming messages. If there are the message is deciphered and parsed as a parameter into the function that
controls the stepper motor. If however there are no incomming messages, the counters will count and the result will
be sent to the software.

Definition at line 279 of file arduino_control_final.c.

Here is the call graph for this function:

arduino_control_final
::loop

arduino_control_final
::moveStep

arduino_control_final
::clearCounter

arduino_control_final
::snapShotRegister

arduino_control_final
::printBytes

arduino_control_final
::buildString

arduino_control_final
::aLowerByte

arduino_control_final
::aUpperByte

arduino_control_final
::bLowerByte

arduino_control_final
::bUpperByte

4.1.2.8 moveStep()

void arduino_control_final::moveStep (

char message[]) [inline]

A public member.

This member cycles through the command string and changes settings and/or drives the motor.

Definition at line 303 of file arduino_control_final.c.

Here is the call graph for this function:

arduino_control_final
::moveStep

arduino_control_final
::buildString

arduino_control_final
::clearCounter

arduino_control_final
::snapShotRegister

arduino_control_final
::printBytes

arduino_control_final
::aLowerByte

arduino_control_final
::aUpperByte

arduino_control_final
::bLowerByte

arduino_control_final
::bUpperByte

Generated by Doxygen

14 Class Documentation

Here is the caller graph for this function:

arduino_control_final
::moveStep

arduino_control_final
::loop

4.1.2.9 printBytes()

void arduino_control_final::printBytes () [inline]

A public member.

Function to print the values collected.

Definition at line 469 of file arduino_control_final.c.

Here is the caller graph for this function:

arduino_control_final
::printBytes

arduino_control_final
::loop

arduino_control_final
::moveStep

4.1.2.10 saveBytes()

void arduino_control_final::saveBytes () [inline]

A public member.

Function to get the values from the counters.

Definition at line 430 of file arduino_control_final.c.

Generated by Doxygen

4.1 arduino_control_final Class Reference 15

Here is the call graph for this function:

arduino_control_final
::saveBytes

arduino_control_final
::aLowerByte

arduino_control_final
::aUpperByte

arduino_control_final
::bLowerByte

arduino_control_final
::bUpperByte

4.1.2.11 setup()

void arduino_control_final::setup () [inline]

A public member.

This member is run once the arduino us turned on. It sets the different registers to input registers, sets the different
pinmodes, resets the counters, and gives the driver default values.

Definition at line 232 of file arduino_control_final.c.

4.1.2.12 snapShotRegister()

void arduino_control_final::snapShotRegister () [inline]

A public member.

Function to save the content of the counters on the IC internal register

Definition at line 606 of file arduino_control_final.c.

Generated by Doxygen

16 Class Documentation

Here is the call graph for this function:

arduino_control_final
::snapShotRegister

arduino_control_final
::aLowerByte

arduino_control_final
::aUpperByte

arduino_control_final
::bLowerByte

arduino_control_final
::bUpperByte

Here is the caller graph for this function:

arduino_control_final
::snapShotRegister

arduino_control_final
::loop

arduino_control_final
::moveStep

arduino_control_final
::buildString

4.1.3 Member Data Documentation

4.1.3.1 a1

byte arduino_control_final::a1

A global byte variable.

This variable is used to hold the values of the A counter

Definition at line 146 of file arduino_control_final.c.

Generated by Doxygen

4.1 arduino_control_final Class Reference 17

4.1.3.2 a2

byte arduino_control_final::a2

A global byte variable.

This variable is used to hold the values of the A counter

Definition at line 153 of file arduino_control_final.c.

4.1.3.3 a3

byte arduino_control_final::a3

A global byte variable.

This variable is used to hold the values of the A counter

Definition at line 160 of file arduino_control_final.c.

4.1.3.4 a4

byte arduino_control_final::a4

A global byte variable.

This variable is used to hold the values of the A counter

Definition at line 167 of file arduino_control_final.c.

4.1.3.5 c1

byte arduino_control_final::c1

A global byte variable.

This variable is used to hold the values of the B counter

Definition at line 174 of file arduino_control_final.c.

Generated by Doxygen

18 Class Documentation

4.1.3.6 c2

byte arduino_control_final::c2

A global byte variable.

This variable is used to hold the values of the B counter

Definition at line 181 of file arduino_control_final.c.

4.1.3.7 c3

byte arduino_control_final::c3

A global byte variable.

This variable is used to hold the values of the B counter

Definition at line 188 of file arduino_control_final.c.

4.1.3.8 c4

byte arduino_control_final::c4

A global byte variable.

This variable is used to hold the values of the B counter

Definition at line 195 of file arduino_control_final.c.

4.1.3.9 calibrating

bool arduino_control_final::calibrating = false

A global bool variable.

This variable is used to check if calibrating or not.

Definition at line 101 of file arduino_control_final.c.

Generated by Doxygen

4.1 arduino_control_final Class Reference 19

4.1.3.10 CCLR

const int arduino_control_final::CCLR = 11

A global const int variable.

This is the pinmapping for the CCLR pin on the SN74LV8154 counter.

Definition at line 31 of file arduino_control_final.c.

4.1.3.11 clk

const int arduino_control_final::clk = 4

A global const int variable.

This is the pinmapping for the clk pin on the DM420A driver.

Definition at line 87 of file arduino_control_final.c.

4.1.3.12 currentValueA

unsigned long arduino_control_final::currentValueA = 0

A global unsigned long variable.

This variable is used to store the value of coil A from arduino regster A

Definition at line 109 of file arduino_control_final.c.

4.1.3.13 currentValueC

unsigned long arduino_control_final::currentValueC = 0

A global unsigned long variable.

This variable is used to store the value of coil B from arduino regster C

Definition at line 116 of file arduino_control_final.c.

Generated by Doxygen

20 Class Documentation

4.1.3.14 currentValueL

unsigned long arduino_control_final::currentValueL = 0

A global unsigned long variable.

This variable is used to store the value of coil C from arduino regster L

Definition at line 123 of file arduino_control_final.c.

4.1.3.15 dir

const int arduino_control_final::dir = 3

A global const int variable.

This is the pinmapping for the direction pin on the DM420A driver.

Definition at line 80 of file arduino_control_final.c.

4.1.3.16 enb

const int arduino_control_final::enb = 2

A global const int variable.

This is the pinmapping for the enb pin on the DM420A driver.

Definition at line 73 of file arduino_control_final.c.

4.1.3.17 GAL

const int arduino_control_final::GAL = 8

A global const int variable.

This is the pinmapping for the GAL pin on the SN74LV8154 counter.

Definition at line 45 of file arduino_control_final.c.

Generated by Doxygen

4.1 arduino_control_final Class Reference 21

4.1.3.18 GAU

const int arduino_control_final::GAU = 9

A global const int variable.

This is the pinmapping for the GAU pin on the SN74LV8154 counter.

Definition at line 38 of file arduino_control_final.c.

4.1.3.19 GBL

const int arduino_control_final::GBL = 5

A global const int variable.

This is the pinmapping for the GBL pin on the SN74LV8154 counter.

Definition at line 59 of file arduino_control_final.c.

4.1.3.20 GBU

const int arduino_control_final::GBU = 6

A global const int variable.

This is the pinmapping for the GBU pin on the SN74LV8154 counter.

Definition at line 66 of file arduino_control_final.c.

4.1.3.21 l1

byte arduino_control_final::l1

A global byte variable.

This variable is used to hold the values of the C counter

Definition at line 202 of file arduino_control_final.c.

Generated by Doxygen

22 Class Documentation

4.1.3.22 l2

byte arduino_control_final::l2

A global byte variable.

This variable is used to hold the values of the C counter

Definition at line 209 of file arduino_control_final.c.

4.1.3.23 l3

byte arduino_control_final::l3

A global byte variable.

This variable is used to hold the values of the C counter

Definition at line 216 of file arduino_control_final.c.

4.1.3.24 l4

byte arduino_control_final::l4

A global byte variable.

This variable is used to hold the values of the C counter

Definition at line 223 of file arduino_control_final.c.

4.1.3.25 message

String arduino_control_final::message = ""

A global string variable.

This variable is the message that gets built and sent to the software. This message contains the values of the coils,
and is initialised as empty.

Definition at line 139 of file arduino_control_final.c.

Generated by Doxygen

4.1 arduino_control_final Class Reference 23

4.1.3.26 para

int arduino_control_final::para

A global int variable.

This is the parameterset, containing both parameter type and its value.

Definition at line 17 of file arduino_control_final.c.

4.1.3.27 RCLK

const int arduino_control_final::RCLK = 7

A global const int variable.

This is the pinmapping for the RCLK pin on the SN74LV8154 counter.

Definition at line 52 of file arduino_control_final.c.

4.1.3.28 runStepCount

long arduino_control_final::runStepCount = 0

A global long variable.

This variable is used to store number of steps stepped during the continuously run mode.

Definition at line 130 of file arduino_control_final.c.

4.1.3.29 size

byte arduino_control_final::size

A global byte variable.

This is size for the command message array.

Definition at line 24 of file arduino_control_final.c.

Generated by Doxygen

24 Class Documentation

4.1.3.30 varSpd

volatile long arduino_control_final::varSpd = 50

A global volatile long variable.

This is the default speedvalue for the stepper motor.

Definition at line 94 of file arduino_control_final.c.

The documentation for this class was generated from the following file:

• C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/arduino_control_final.c

4.2 cps_ts_gui Class Reference

A class for the graphical user interface and its content.

#include <cps_ts_gui.h>

Generated by Doxygen

4.2 cps_ts_gui Class Reference 25

Inheritance diagram for cps_ts_gui:

cps_ts_gui

+ stepMode
+ speedMode
+ distanceMode
+ directionValue
+ currentStep
+ motorEnable
+ speedValue
+ distanceValue
+ writePDF
+ calib
and 16 more...
- ui
- dirModel
- fileModel
- arduino
- serialData
- serialBuffer
- parsedData
- arduinoVendorId
- arduinoProductId

+ cps_ts_gui()
+ getArduinoInfo()
+ dataRealtime()
+ graphStyle()
+ updateExpectedValue()
- realtimeDataSlot()
- on_treeView_clicked()
- on_listView_doubleClicked()
- on_speedComboBox_current
IndexChanged()
- on_speedSlider_valueChanged()
- on_speedSpinBox_valueChanged()
- on_distanceComboBox
_currentIndexChanged()
- on_distanceSpinBox
_valueChanged()
- on_distanceSlider_valueChanged()
- on_currentComboBox
_currentIndexChanged()
and 19 more...

QDialog

Generated by Doxygen

26 Class Documentation

Collaboration diagram for cps_ts_gui:

cps_ts_gui

+ stepMode
+ speedMode
+ distanceMode
+ directionValue
+ currentStep
+ motorEnable
+ speedValue
+ distanceValue
+ writePDF
+ calib
and 16 more...
- ui
- dirModel
- fileModel
- arduino
- serialData
- serialBuffer
- parsedData
- arduinoVendorId
- arduinoProductId

+ cps_ts_gui()
+ getArduinoInfo()
+ dataRealtime()
+ graphStyle()
+ updateExpectedValue()
- realtimeDataSlot()
- on_treeView_clicked()
- on_listView_doubleClicked()
- on_speedComboBox_current
IndexChanged()
- on_speedSlider_valueChanged()
- on_speedSpinBox_valueChanged()
- on_distanceComboBox
_currentIndexChanged()
- on_distanceSpinBox
_valueChanged()
- on_distanceSlider_valueChanged()
- on_currentComboBox
_currentIndexChanged()
and 19 more...

QDialog

Public Member Functions

• cps_ts_gui (QWidget ∗parent=Q_NULLPTR)

A public constructor.

• void getArduinoInfo ()

A public member.

• void dataRealtime ()

Generated by Doxygen

4.2 cps_ts_gui Class Reference 27

A public member.

• void graphStyle ()

A public member.

• void updateExpectedValue (QString arg1, QString arg2, QString arg3)

A public member.

Public Attributes

• std::string stepMode = "128"

A public string variable.

• std::string speedMode = "step"

A public string variable.

• std::string distanceMode = "step"

A public string variable.

• int directionValue = 0

A public int variable.

• int currentStep = 0

A public int variable.

• short motorEnable = 0

A public short variable.

• long speedValue = 1

A public long variable.

• long distanceValue = 1

A public long variable.

• bool writePDF = true

A public boolean variable.

• bool calib = false

A public boolean variable.

• QTimer dataTimer

A public QTimer variable.

• QString currentValue = "0.31 RMS Current"

A public QString variable.

• QString gearRatio = "Gear ratio not selected"

A public QString variable.

• QString projectName = "Project name not selected"

A public QString variable.

• QString userName = "UserName not selected"

A public QString variable.

• QString componentID = "Component ID not selected"

A public QString variable.

• QString testID = "Test ID not selected"

A public QString variable.

• QString notesInput = "Notes not selected"

A public QString variable.

• QString dataCoilA

A public QString variable.

• QString dataCoilB

A public QString variable.

• QString dataCoilC

A public QString variable.

Generated by Doxygen

28 Class Documentation

• QStringList dataList

A public QStringList variable.

• QStringList calibList1

A public QStringList variable.

• long calibrateListAAAAAAAA [51200]

A public long[] variable.

• long calibrateListBBBBBBBB [51200]

A public long[] variable.

• long calibrateListCCCCCCCC [51200]

A public long[] variable.

Private Slots

• void realtimeDataSlot ()

A private slot.

• void on_treeView_clicked (const QModelIndex &index)

A private slot.

• void on_listView_doubleClicked (const QModelIndex &index)

A private slot.

• void on_speedComboBox_currentIndexChanged (int value)

A private slot.

• void on_speedSlider_valueChanged (int value)

A private slot.

• void on_speedSpinBox_valueChanged (double arg1)

A private slot.

• void on_distanceComboBox_currentIndexChanged (int value)

A private slot.

• void on_distanceSpinBox_valueChanged (double arg1)

A private slot.

• void on_distanceSlider_valueChanged (int value)

A private slot.

• void on_currentComboBox_currentIndexChanged (int value)

A private slot.

• void on_stepmodeComboBox_currentIndexChanged (int value)

A private slot.

• void on_projectInput_textChanged (const QString &arg1)

A private slot.

• void on_componentInput_textChanged (const QString &arg1)

A private slot.

• void on_testInput_textChanged (const QString &arg1)

A private slot.

• void on_userInput_textChanged (const QString &arg1)

A private slot.

• void on_notesInput_textChanged ()

A private slot.

• void on_gearRatioInput_textChanged (const QString &arg1)

A private slot.

• void on_directionCounterClockwiseButton_clicked ()

A private slot.

• void on_directionClockwiseButton_clicked ()

Generated by Doxygen

4.2 cps_ts_gui Class Reference 29

A private slot.

• void on_writeLogButton_clicked ()

A private slot.

• void on_calibrateButton_clicked ()

A private slot.

• void on_generatePdfButton_clicked ()

A private slot.

• void on_startButton_clicked ()

A private slot.

• void on_motorEnableButton_clicked ()

A private slot.

• void on_runButton_clicked ()

A private slot.

• void on_reconnectButton_clicked ()

A private slot.

• void readSerial ()

A private slot.

• void updateCoils (QString sensor_reading_1, QString sensor_reading_2, QString sensor_reading_3)

A private slot.

• void writeSerial (const QByteArray &data)

A private slot.

Private Attributes

• Ui::cps_ts_guiClass ui

A private variable.

• QFileSystemModel ∗ dirModel

A private variable.

• QFileSystemModel ∗ fileModel

A private variable.

• QSerialPort ∗ arduino

A private variable.

• QByteArray serialData

A private variable.

• QString serialBuffer

A private QString variable.

• QString parsedData

A private QString variable.

Static Private Attributes

• static const quint16 arduinoVendorId = 9025

A private const quint16 variable.

• static const quint16 arduinoProductId = 66

A private const quint16 variable.

Generated by Doxygen

30 Class Documentation

4.2.1 Detailed Description

A class for the graphical user interface and its content.

This class is the base class of the project. It contains the controlsystem and the graphical user interface.

Definition at line 31 of file cps_ts_gui.h.

4.2.2 Constructor & Destructor Documentation

4.2.2.1 cps_ts_gui()

cps_ts_gui::cps_ts_gui (

QWidget ∗ parent = Q_NULLPTR)

A public constructor.

This is the constructor for the cps_ts_gui.

4.2.3 Member Function Documentation

4.2.3.1 dataRealtime()

void cps_ts_gui::dataRealtime ()

A public member.

This member sets up the graphs from the QCustomPlot library and connects the signal emmited from the

See also

dataTimer, with the
realtimeDataSlot() member.

4.2.3.2 getArduinoInfo()

void cps_ts_gui::getArduinoInfo ()

A public member.

This member prints the product information about the devices present on the serialport, in order to setup automatic
connection used in the constructor.

Generated by Doxygen

4.2 cps_ts_gui Class Reference 31

4.2.3.3 graphStyle()

void cps_ts_gui::graphStyle ()

A public member.

This member styles the graphs setup in order to make them fit the theme of the GUI.

4.2.3.4 on_calibrateButton_clicked

void cps_ts_gui::on_calibrateButton_clicked () [private], [slot]

A private slot.

This slot is used to start the calibration-mode. First the different variables are cleared and the calibration command
is sent to the arduino. Then a continuously loop is started. First a number of samples is sent from the arduino and
then deciphered and saved in the apropriate calibration arrays. This is repeated untill the calibration is done.

4.2.3.5 on_componentInput_textChanged

void cps_ts_gui::on_componentInput_textChanged (

const QString & arg1) [private], [slot]

A private slot.

This slot stores the component name the user inputs.

Parameters

arg1 A QString pointer varible that holds the the text the user enters

4.2.3.6 on_currentComboBox_currentIndexChanged

void cps_ts_gui::on_currentComboBox_currentIndexChanged (

int value) [private], [slot]

A private slot.

This slot changes the

See also

currentValue variable acordingly.

Parameters

value A int variable that holds the index value of the combobox.

Generated by Doxygen

32 Class Documentation

4.2.3.7 on_directionClockwiseButton_clicked

void cps_ts_gui::on_directionClockwiseButton_clicked () [private], [slot]

A private slot.

This slot decides the direction of rotation on the stepper motor. If the oposite direction button is selected, it is
deselected.

4.2.3.8 on_directionCounterClockwiseButton_clicked

void cps_ts_gui::on_directionCounterClockwiseButton_clicked () [private], [slot]

A private slot.

This slot decides the direction of rotation on the stepper motor. If the oposite direction button is selected, it is
deselected.

4.2.3.9 on_distanceComboBox_currentIndexChanged

void cps_ts_gui::on_distanceComboBox_currentIndexChanged (

int value) [private], [slot]

A private slot.

This slot changes the

See also

distanceMode variable and changes the max and min value of the slider and spinbox. This combobox changes
the distance paramters from degrees to steps and visa versa.

Parameters

value A int variable that holds the index value of the combobox.

4.2.3.10 on_distanceSlider_valueChanged

void cps_ts_gui::on_distanceSlider_valueChanged (

int value) [private], [slot]

A private slot.

This slot changes the \distanceValue accordingly.

Generated by Doxygen

4.2 cps_ts_gui Class Reference 33

Parameters

value A int variable that holds the value of the slider

4.2.3.11 on_distanceSpinBox_valueChanged

void cps_ts_gui::on_distanceSpinBox_valueChanged (

double arg1) [private], [slot]

A private slot.

This slot changes the

See also

speedValue accordingly.

Parameters

arg1 A float variable that holds the value of the spinbox.

4.2.3.12 on_gearRatioInput_textChanged

void cps_ts_gui::on_gearRatioInput_textChanged (

const QString & arg1) [private], [slot]

A private slot.

This slot stores the gear ratio the user inputs.

Parameters

arg1 A QString pointer varible that holds the the text the user enters

4.2.3.13 on_generatePdfButton_clicked

void cps_ts_gui::on_generatePdfButton_clicked () [private], [slot]

A private slot.

This slot selects if a PDF version of the log is to be created as well as an XML version.

Generated by Doxygen

34 Class Documentation

4.2.3.14 on_listView_doubleClicked

void cps_ts_gui::on_listView_doubleClicked (

const QModelIndex & index) [private], [slot]

A private slot.

This slot extracts the root path from the double-clicked item in the list view, and calls the open-function from the
QDesktopServices library and opens the selected file.

Parameters

index A QModelIndex pointer to the index of the file object

4.2.3.15 on_motorEnableButton_clicked

void cps_ts_gui::on_motorEnableButton_clicked () [private], [slot]

A private slot.

This slot is used to enable and disable the stepper motor.

4.2.3.16 on_notesInput_textChanged

void cps_ts_gui::on_notesInput_textChanged () [private], [slot]

A private slot.

This slot stores the notes the user inputs.

4.2.3.17 on_projectInput_textChanged

void cps_ts_gui::on_projectInput_textChanged (

const QString & arg1) [private], [slot]

A private slot.

This slot stores the project name the user inputs.

Parameters

arg1 A QString pointer varible that holds the the text the user enters

Generated by Doxygen

4.2 cps_ts_gui Class Reference 35

4.2.3.18 on_reconnectButton_clicked

void cps_ts_gui::on_reconnectButton_clicked () [private], [slot]

A private slot.

This slot is used to reconnect the arduino. It closes the connection to the object created and recreates the serial
object. Then the com ports are searched for the correct product and vendor ID, and if found it connects with
approriate settings.

4.2.3.19 on_runButton_clicked

void cps_ts_gui::on_runButton_clicked () [private], [slot]

A private slot.

This slot writes the command for continous rotation on the stepper motor.

4.2.3.20 on_speedComboBox_currentIndexChanged

void cps_ts_gui::on_speedComboBox_currentIndexChanged (

int value) [private], [slot]

A private slot.

This slot changes the

See also

speedMode variable and changes the max and min value of the slider and spinbox to suit the aproriate values.
This combobox changes the speed paramters from either degrees per seconds to steps per seconds.

Parameters

value A int variable that holds the value of the spinbox

4.2.3.21 on_speedSlider_valueChanged

void cps_ts_gui::on_speedSlider_valueChanged (

int value) [private], [slot]

A private slot.

This slot changes the

See also

speedValue accordingly.

Generated by Doxygen

36 Class Documentation

Parameters

value A int variable that holds the value of the slider

4.2.3.22 on_speedSpinBox_valueChanged

void cps_ts_gui::on_speedSpinBox_valueChanged (

double arg1) [private], [slot]

A private slot.

This slot changes the

See also

speedValue accordingly.

Parameters

arg1 A double variable to hold the content of the spinbox

4.2.3.23 on_startButton_clicked

void cps_ts_gui::on_startButton_clicked () [private], [slot]

A private slot.

This slot builds a command message from the combination of parameters set by the user. This command is then
sent to the arduino for the execution of the command.

4.2.3.24 on_stepmodeComboBox_currentIndexChanged

void cps_ts_gui::on_stepmodeComboBox_currentIndexChanged (

int value) [private], [slot]

A private slot.

This slot changes the

See also

stepMode variable acordingly.

Generated by Doxygen

4.2 cps_ts_gui Class Reference 37

Parameters

value A int variable that holds the index value of the combobox.

4.2.3.25 on_testInput_textChanged

void cps_ts_gui::on_testInput_textChanged (

const QString & arg1) [private], [slot]

A private slot.

This slot stores the test name the user inputs.

Parameters

arg1 A QString pointer varible that holds the the text the user enters

4.2.3.26 on_treeView_clicked

void cps_ts_gui::on_treeView_clicked (

const QModelIndex & index) [private], [slot]

A private slot.

This slot takes the active element's root path and set the new root path to this one. This way the tree is expanded
one level.

Parameters

index A QModelIndex pointer to the index of the directory object

4.2.3.27 on_userInput_textChanged

void cps_ts_gui::on_userInput_textChanged (

const QString & arg1) [private], [slot]

A private slot.

This slot stores the user name the user inputs.

Parameters

arg1 A QString pointer varible that holds the the text the user enters

Generated by Doxygen

38 Class Documentation

4.2.3.28 on_writeLogButton_clicked

void cps_ts_gui::on_writeLogButton_clicked () [private], [slot]

A private slot.

This slot takes all available data such as parameters, project info, current CPS data, expected CPS data and creates
a XML document from it. If the PDF bool is true, a PDF version is also created.

4.2.3.29 readSerial

void cps_ts_gui::readSerial () [private], [slot]

A private slot.

This slot checks if the program is in calibration mode and then reads serial data from the serial port. If the CPS is
calibrating, it does nothing but if not it continues to aquire data. The data is split by an escape sign and the software
aquires bytes continously. By placing the incomming bytes in a buffer and splitting it by the escape sign, we can
know when the full message has been recived and then further process the data.

4.2.3.30 realtimeDataSlot

void cps_ts_gui::realtimeDataSlot () [private], [slot]

A private slot.

This slot adds new values to the graph plot and then replots every time it's called.

4.2.3.31 updateCoils

void cps_ts_gui::updateCoils (

QString sensor_reading_1,

QString sensor_reading_2,

QString sensor_reading_3) [private], [slot]

A private slot.

This slot updates the value displayed on the lcdNumber widgets with the current parameters.

Parameters

sensor_reading←↩

_1
A QString variable that holds the current data on coil A

sensor_reading←↩

_2
A QString variable that holds the current data on coil B

sensor_reading←↩

_3
A QString variable that holds the current data on coil C

Generated by Doxygen

4.2 cps_ts_gui Class Reference 39

4.2.3.32 updateExpectedValue()

void cps_ts_gui::updateExpectedValue (

QString arg1,

QString arg2,

QString arg3)

A public member.

This member updates the expected coil values (given as parameters) and displays them on their respective "ex-
pected" location on the gui.

Parameters

arg1 A QString parameter for coil A data

arg2 A QString parameter for coil B data

arg3 A QString parameter for coil C data

4.2.3.33 writeSerial

void cps_ts_gui::writeSerial (

const QByteArray & data) [private], [slot]

A private slot.

Clear the serialBuffer and parsedData variable and write To the arduino with the given bytearray.

Parameters

data A QByteArray pointer that holds the command to be sent

4.2.4 Member Data Documentation

4.2.4.1 arduino

QSerialPort∗ cps_ts_gui::arduino [private]

A private variable.

This is a pointer object. This is the object that is used in the serial communication

Definition at line 567 of file cps_ts_gui.h.

Generated by Doxygen

40 Class Documentation

4.2.4.2 arduinoProductId

const quint16 cps_ts_gui::arduinoProductId = 66 [static], [private]

A private const quint16 variable.

Arduino Mega: This variable is used to identify the product on the serial coms and if it maches this product ID and
the vendor ID

See also

arduino_uno_vendor_id it establishes a connection.

Definition at line 610 of file cps_ts_gui.h.

4.2.4.3 arduinoVendorId

const quint16 cps_ts_gui::arduinoVendorId = 9025 [static], [private]

A private const quint16 variable.

Arduino Mega: This variable is used to identify the product on the serial coms and if it maches this vendor ID and
the product ID

See also

arduino_uno_vendor_id it establishes a connection.

Definition at line 601 of file cps_ts_gui.h.

4.2.4.4 calib

bool cps_ts_gui::calib = false

A public boolean variable.

This variable is used to start and stop the calibration sequence. It is initialised to false.

Definition at line 119 of file cps_ts_gui.h.

Generated by Doxygen

4.2 cps_ts_gui Class Reference 41

4.2.4.5 calibList1

QStringList cps_ts_gui::calibList1

A public QStringList variable.

This variable is used to store the incomming calibration data.

Definition at line 212 of file cps_ts_gui.h.

4.2.4.6 calibrateListAAAAAAAA

long cps_ts_gui::calibrateListAAAAAAAA[51200]

A public long[] variable.

This array is used to store the calibration data from coil A.

Definition at line 219 of file cps_ts_gui.h.

4.2.4.7 calibrateListBBBBBBBB

long cps_ts_gui::calibrateListBBBBBBBB[51200]

A public long[] variable.

This array is used to store the calibration data from coil B.

Definition at line 226 of file cps_ts_gui.h.

4.2.4.8 calibrateListCCCCCCCC

long cps_ts_gui::calibrateListCCCCCCCC[51200]

A public long[] variable.

This array is used to store the calibration data from coil C.

Definition at line 233 of file cps_ts_gui.h.

Generated by Doxygen

42 Class Documentation

4.2.4.9 componentID

QString cps_ts_gui::componentID = "Component ID not selected"

A public QString variable.

This variable is used to store the component ID of the component being tested. It is initialised to "Component ID not
selected".

Definition at line 164 of file cps_ts_gui.h.

4.2.4.10 currentStep

int cps_ts_gui::currentStep = 0

A public int variable.

This variable is used to store the current step position.

Definition at line 80 of file cps_ts_gui.h.

4.2.4.11 currentValue

QString cps_ts_gui::currentValue = "0.31 RMS Current"

A public QString variable.

This variable is used to decide the current value and is initialised as 0.31 RMS current.

Definition at line 133 of file cps_ts_gui.h.

4.2.4.12 dataCoilA

QString cps_ts_gui::dataCoilA

A public QString variable.

This variable is used to store the data from coil A

Definition at line 185 of file cps_ts_gui.h.

Generated by Doxygen

4.2 cps_ts_gui Class Reference 43

4.2.4.13 dataCoilB

QString cps_ts_gui::dataCoilB

A public QString variable.

This variable is used to store the data from coil B

Definition at line 191 of file cps_ts_gui.h.

4.2.4.14 dataCoilC

QString cps_ts_gui::dataCoilC

A public QString variable.

This variable is used to store the data from coil C

Definition at line 197 of file cps_ts_gui.h.

4.2.4.15 dataList

QStringList cps_ts_gui::dataList

A public QStringList variable.

This list is used to store the incomming data from the arduino. This list is then split to extract the different coil data.

Definition at line 205 of file cps_ts_gui.h.

4.2.4.16 dataTimer

QTimer cps_ts_gui::dataTimer

A public QTimer variable.

This variable is used as a timer for plotting graphs on the GUI.

Definition at line 126 of file cps_ts_gui.h.

Generated by Doxygen

44 Class Documentation

4.2.4.17 directionValue

int cps_ts_gui::directionValue = 0

A public int variable.

This variable is used to decide what direction the stepper motor shall move.

Definition at line 73 of file cps_ts_gui.h.

4.2.4.18 dirModel

QFileSystemModel∗ cps_ts_gui::dirModel [private]

A private variable.

This is a pointer object. This is the object used as the directory view.

Definition at line 551 of file cps_ts_gui.h.

4.2.4.19 distanceMode

std::string cps_ts_gui::distanceMode = "step"

A public string variable.

This variable is used to store the type of distance the user can control. It is initialised to steps.

Definition at line 66 of file cps_ts_gui.h.

4.2.4.20 distanceValue

long cps_ts_gui::distanceValue = 1

A public long variable.

This variable is used to control how far the user wants to turn on the stepper motor. It is initialised as 1.

Definition at line 103 of file cps_ts_gui.h.

Generated by Doxygen

4.2 cps_ts_gui Class Reference 45

4.2.4.21 fileModel

QFileSystemModel∗ cps_ts_gui::fileModel [private]

A private variable.

This is a pointer object. This is the object that is used as the file view.

Definition at line 559 of file cps_ts_gui.h.

4.2.4.22 gearRatio

QString cps_ts_gui::gearRatio = "Gear ratio not selected"

A public QString variable.

This variable holds information of the gear ratio the system is testing with. It is initialised to "Gear ratio not selected".

Definition at line 141 of file cps_ts_gui.h.

4.2.4.23 motorEnable

short cps_ts_gui::motorEnable = 0

A public short variable.

This variable is used to control if the stepper motor shall be enabled or not.

Definition at line 87 of file cps_ts_gui.h.

4.2.4.24 notesInput

QString cps_ts_gui::notesInput = "Notes not selected"

A public QString variable.

This variable stores the notes for the testing. It is initalised as "Notes not selected"

Definition at line 179 of file cps_ts_gui.h.

Generated by Doxygen

46 Class Documentation

4.2.4.25 parsedData

QString cps_ts_gui::parsedData [private]

A private QString variable.

This variable is used to store the recieved data from the serial communication. The variable is then split to extract
the different coildata.

Definition at line 590 of file cps_ts_gui.h.

4.2.4.26 projectName

QString cps_ts_gui::projectName = "Project name not selected"

A public QString variable.

This varible is used to store the project name. It is initialised to "Project name not selected".

Definition at line 148 of file cps_ts_gui.h.

4.2.4.27 serialBuffer

QString cps_ts_gui::serialBuffer [private]

A private QString variable.

This variable is used to buffer the recived bytes from the serial communication.

Definition at line 582 of file cps_ts_gui.h.

4.2.4.28 serialData

QByteArray cps_ts_gui::serialData [private]

A private variable.

This is a QByteArray and is the first variable to store the data from the serial communication.

Definition at line 575 of file cps_ts_gui.h.

Generated by Doxygen

4.2 cps_ts_gui Class Reference 47

4.2.4.29 speedMode

std::string cps_ts_gui::speedMode = "step"

A public string variable.

This variable is used to store the type of speed the user can control. It is initialised to steps per second.

Definition at line 58 of file cps_ts_gui.h.

4.2.4.30 speedValue

long cps_ts_gui::speedValue = 1

A public long variable.

This variable is used to control what speed the user wants to set on the stepper motor. It is initialised as 1.

Definition at line 95 of file cps_ts_gui.h.

4.2.4.31 stepMode

std::string cps_ts_gui::stepMode = "128"

A public string variable.

This variable is used to change the stepmode. It is initialised to the largest resolution of the stepper motor.

Definition at line 50 of file cps_ts_gui.h.

4.2.4.32 testID

QString cps_ts_gui::testID = "Test ID not selected"

A public QString variable.

This variable is used to store the test ID for the test being performed. It is initialised to "Test ID not selected".

Definition at line 172 of file cps_ts_gui.h.

Generated by Doxygen

48 Class Documentation

4.2.4.33 ui

Ui::cps_ts_guiClass cps_ts_gui::ui [private]

A private variable.

The user interface object.

Definition at line 543 of file cps_ts_gui.h.

4.2.4.34 userName

QString cps_ts_gui::userName = "UserName not selected"

A public QString variable.

This variable is used to store the username of the active user performing tests. It is initialised to "UserName not
selected".

Definition at line 156 of file cps_ts_gui.h.

4.2.4.35 writePDF

bool cps_ts_gui::writePDF = true

A public boolean variable.

This variable is used to decide if a PDF version of the log is to be generated or not. It is initialised to true.

Definition at line 111 of file cps_ts_gui.h.

The documentation for this class was generated from the following file:

• C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/cps_ts_gui.h

4.3 fileGenerate Class Reference

A class for generating files and getting calibration data.

#include <fileGenerate.h>

Collaboration diagram for fileGenerate:

fileGenerate

+ fileStruct()
+ getCalData()
+ lastPos()

Generated by Doxygen

4.3 fileGenerate Class Reference 49

Public Member Functions

• void fileStruct (std::string &prName, std::string &cName, std::string &tID, std::string &peName, std::string
¬e, std::string &sMode, int sModeInt, std::string &cur, std::string &dist, std::string &spd, bool pdfGen, bool
calib, std::string &gearRatio, long calibA[], long calibB[], long calibC[], std::string &coilAV, std::string &coilBV,
std::string &coilCV, std::string &expectedValueA, std::string &expectedValueB, std::string &expectedValueC,
std::string ¤tStep, std::string &calibratedDegree)

Function to create directory and xml file.

• std::string getCalData (int step)

Function to get data from the calibration XML file.

• int lastPos (int pos, int direction)

Function to log the last position.

4.3.1 Detailed Description

A class for generating files and getting calibration data.

This class has three functions; filestruct(), getCalData() and lastPos(). Filestruct takes the different parameters
and projectinformation set by the user, the sensordata stored in the calibration file and the current sensordata, and
generates a XML file.

Definition at line 13 of file fileGenerate.h.

4.3.2 Member Function Documentation

4.3.2.1 fileStruct()

void fileGenerate::fileStruct (

std::string & prName,

std::string & cName,

std::string & tID,

std::string & peName,

std::string & note,

std::string & sMode,

int sModeInt,

std::string & cur,

std::string & dist,

std::string & spd,

bool pdfGen,

bool calib,

std::string & gearRatio,

long calibA[],

long calibB[],

long calibC[],

std::string & coilAV,

std::string & coilBV,

std::string & coilCV,

std::string & expectedValueA,

std::string & expectedValueB,

std::string & expectedValueC,

Generated by Doxygen

50 Class Documentation

std::string & currentStep,

std::string & calibratedDegree)

Function to create directory and xml file.

Current working function for generating a directory structure and xml file to log parameters and settings from an
external source. The parameters are all the variables that will be gathered from the GUI

Generated by Doxygen

4.3 fileGenerate Class Reference 51

Parameters

prName A string parameter for the project name

cName A string parameter for the component id

tID A string parameter for the test id

peName A string parameter for the personnel name

note A string parameter for notes about the test

sMode A string parameter for stepmode setting of the driver

sModeInt A Int parameter for stepmode setting of the driver

cur A string parameter for the current setting of the driver

dist A string parameter for the distance setting of the driver

spd A string parameter for the speed setting of the driver

pdfgen A bool parameter for the choice of generating a pdf

calib A bool parameter for the choice of calibration

gearRatio A string parameter for the gearratio of the system (if available)

calibA[] A long array parameter containing calibration data of coil A

calibB[] A long array parameter containing calibration data of coil B

calibC[] A long array parameter containing calibration data of coil C

coilAV A string parameter for the active value of coil A

coilBV A string parameter for the active value of coil B

coilCV A string parameter for the active value of coil C

expectedValueA A string parameter for the expected value of coil A

expectedValueB A string parameter for the expected value of coil B

expectedValueC A string parameter for the expected value of coil C

currentStep A string parameter for the current step position

calibratedDegree A string parameter for the calibrated degree

4.3.2.2 getCalData()

std::string fileGenerate::getCalData (

int step)

Function to get data from the calibration XML file.

This function takes the current number of steps and parses trough the calibration file, until it reaches the same
amount of steps taken and returns the CPS data on all three coils and the calibrated degree as a string.

Parameters

step An int parameter that holds the current step position

4.3.2.3 lastPos()

int fileGenerate::lastPos (

Generated by Doxygen

52 Class Documentation

int pos,

int direction)

Function to log the last position.

This function takes the current number of steps taken and the direction of the movement and updates the position
then returns it. This way the position is saved between system restarts

Parameters

step An int parameter that holds the current number of steps taken

step An int parameter that holds the direction the steps took

The documentation for this class was generated from the following file:

• C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/fileGenerate.h

4.4 pdfGenerate Class Reference

A class for generating PDF reports.

#include <pdfGenerate.h>

Collaboration diagram for pdfGenerate:

pdfGenerate

+ fileStruct()

Public Member Functions

• int fileStruct (char ∗date, char ∗fName, std::string &prName, std::string &cName, std::string &tID, std::string
&peName, std::string ¬e, std::string &sMode, std::string &cur, std::string &dist, std::string &spd, bool calib,
std::string &gearRatio, long calibA[], long calibB[], long calibC[], std::string &coilAV, std::string &coilBV, std←↩

::string &coilCV, std::string &expectedValueA, std::string &expectedValueB, std::string &expectedValueC, float
degreeValue, std::string ¤tStep)

Function to generate a PDF report file.

4.4.1 Detailed Description

A class for generating PDF reports.

This class generates the PDF documents for both the calibration run and the regular reports.

Definition at line 11 of file pdfGenerate.h.

Generated by Doxygen

4.4 pdfGenerate Class Reference 53

4.4.2 Member Function Documentation

4.4.2.1 fileStruct()

int pdfGenerate::fileStruct (

char ∗ date,

char ∗ fName,

std::string & prName,

std::string & cName,

std::string & tID,

std::string & peName,

std::string & note,

std::string & sMode,

std::string & cur,

std::string & dist,

std::string & spd,

bool calib,

std::string & gearRatio,

long calibA[],

long calibB[],

long calibC[],

std::string & coilAV,

std::string & coilBV,

std::string & coilCV,

std::string & expectedValueA,

std::string & expectedValueB,

std::string & expectedValueC,

float degreeValue,

std::string & currentStep)

Function to generate a PDF report file.

Current working function for generating a PDF report file to log parameters, settings and test results from an external
source. The values for the pointers are generated in fileGenerate.cpp while the other parameters are all variables
that will be gathered from the GUI

Parameters

date A pointer parameter to a char variable containing the current date

fname A pointer parameter to a char variable containing the save path and file name

prName A string parameter for the project name

cName A string parameter for the component id

tID A string parameter for the test id

peName A string parameter for the personnel name

note A string parameter for notes about the test

sMode A string parameter for stepmode setting of the driver

cur A string parameter for the current setting of the driver

dist A string parameter for the distance setting of the driver

spd A string parameter for the speed setting of the driver

calib A bool parameter for the choice of calibration

gearRatio A string parameter for the gearratio of the system (if available)

Generated by Doxygen

54 Class Documentation

Parameters

calibA[] A long array parameter containing calibration data of coil A

calibB[] A long array parameter containing calibration data of coil B

calibC[] A long array parameter containing calibration data of coil C

coilAV A string parameter for the active value of coil A

coilBV A string parameter for the active value of coil B

coilCV A string parameter for the active value of coil C

expectedValueA A string parameter for the expected value of coil A

expectedValueB A string parameter for the expected value of coil B

expectedValueC A string parameter for the expected value of coil C

degreeValue A float parameter that holds the current position of the sensor in degrees

currentStep A string parameter for the current position of the sensor in step

The documentation for this class was generated from the following file:

• C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/pdfGenerate.h

4.5 writeArduino Class Reference

A class for calculating parameters to arduino message code.

#include <writeArduino.h>

Collaboration diagram for writeArduino:

writeArduino

+ calculateSpeed()
+ calculateDistance()
+ wArd()

Public Member Functions

• long int calculateSpeed (std::string stepMode, std::string speedMode, int speedVal)

Function to calculate the command message content for speed.

• long int calculateDistance (std::string stepMode, std::string distMode, int distVal)

Function to calculate the command message content for distance.

• std::string wArd (int aEnb, long int aDist, int aSpd, int aDir)

Function to build the command message and send it to the Arduino.

Generated by Doxygen

4.5 writeArduino Class Reference 55

4.5.1 Detailed Description

A class for calculating parameters to arduino message code.

This class calculates the speed and distance values from user parameters to values usable for the Arduino. It also
combines the message string of parameters that is to be sent to the Arduino.

Definition at line 11 of file writeArduino.h.

4.5.2 Member Function Documentation

4.5.2.1 calculateDistance()

long int writeArduino::calculateDistance (

std::string stepMode,

std::string distMode,

int distVal)

Function to calculate the command message content for distance.

This functions takes in the parameters set by the user and converts them to a value representing the distance that
the stepper motor is to move.

Parameters

stepMode A string parameter that holds the active resolution to the steppermotor

speedMode A string parameter that holds the active distancemode

speedMode A string parameter that holds the active speedvalue

4.5.2.2 calculateSpeed()

long int writeArduino::calculateSpeed (

std::string stepMode,

std::string speedMode,

int speedVal)

Function to calculate the command message content for speed.

This functions takes in the parameters set by the user and converts them to a value representing the speed of the
stepper motor.

Parameters

stepMode A string parameter that holds the active resolution of the steppermotor

speedMode A string parameter that holds the active speedmode

speedMode A string parameter that holds the active speedvalue

Generated by Doxygen

56 Class Documentation

4.5.2.3 wArd()

std::string writeArduino::wArd (

int aEnb,

long int aDist,

int aSpd,

int aDir)

Function to build the command message and send it to the Arduino.

This functions takes in parameters and creates the command for the movement that is to be performed and then
sends it to the Arduino.

Parameters

aEnb An int parameter that holds the enable\disable signal for thestepper motor

aDist An int parameter that holds the calculated command content for the movement of the stepper motor

aSpd An int parameter that that holds the calculated command content for the speed of the stepper motor

aDir An int parameter that holds the direction the driver is to turn

The documentation for this class was generated from the following file:

• C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/writeArduino.h

Generated by Doxygen

Chapter 5

File Documentation

5.1 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/arduino←↩

_control_final.c File Reference

Classes

• class arduino_control_final

Macros

• #define ARDUINO_CONTROL_FINAL_H
• #define BAUD 9600
• #define DELAY_TIME 100
• #define INPUT_SIZE 255

5.1.1 Macro Definition Documentation

5.1.1.1 ARDUINO_CONTROL_FINAL_H

#define ARDUINO_CONTROL_FINAL_H

Definition at line 3 of file arduino_control_final.c.

5.1.1.2 BAUD

#define BAUD 9600

Definition at line 4 of file arduino_control_final.c.

58 File Documentation

5.1.1.3 DELAY_TIME

#define DELAY_TIME 100

Definition at line 5 of file arduino_control_final.c.

5.1.1.4 INPUT_SIZE

#define INPUT_SIZE 255

Definition at line 6 of file arduino_control_final.c.

5.2 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/cps←↩

_ts_gui.h File Reference

#include <QSerialPort>
#include <QPixmap>
#include <QPainter>
#include <QMessageBox>
#include <QTimer>
#include <QDesktopServices>
#include <QUrl>
#include <QFileSystemModel>
#include <QtWidgets/QDialog>
#include "ui_cps_ts_gui.h"
#include "qcustomplot.h"
#include "windows.h"
#include <stdio.h>
#include <stdlib.h>
#include <fstream>
#include <iostream>
#include <string>
#include <list>
#include <iterator>
#include <vector>
Include dependency graph for cps_ts_gui.h:

C:/Users/magnu/Desktop
/Doxygen/Doxygen source
/cps_ts_gui_21_05_2019

- Copy/cps_ts_gui.h

QSerialPort QPixmap QPainter QMessageBox QTimer QDesktopServices QUrl QFileSystemModel QtWidgets/QDialog ui_cps_ts_gui.h qcustomplot.h windows.h stdio.h stdlib.h fstream iostream string list iterator vector

Classes

• class cps_ts_gui

A class for the graphical user interface and its content.

Generated by Doxygen

5.3 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/fileGenerate.h File
Reference 59

5.3 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/file←↩

Generate.h File Reference

#include <string>
Include dependency graph for fileGenerate.h:

C:/Users/magnu/Desktop
/Doxygen/Doxygen source
/cps_ts_gui_21_05_2019

- Copy/fileGenerate.h

string

Classes

• class fileGenerate

A class for generating files and getting calibration data.

Macros

• #define FILEGENERATE_H

5.3.1 Macro Definition Documentation

5.3.1.1 FILEGENERATE_H

#define FILEGENERATE_H

Definition at line 3 of file fileGenerate.h.

Generated by Doxygen

60 File Documentation

5.4 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/pdf←↩

Generate.h File Reference

#include <string>
Include dependency graph for pdfGenerate.h:

C:/Users/magnu/Desktop
/Doxygen/Doxygen source
/cps_ts_gui_21_05_2019

- Copy/pdfGenerate.h

string

Classes

• class pdfGenerate

A class for generating PDF reports.

Macros

• #define PDFGENERATE_H

5.4.1 Macro Definition Documentation

5.4.1.1 PDFGENERATE_H

#define PDFGENERATE_H

Definition at line 3 of file pdfGenerate.h.

Generated by Doxygen

5.5 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/writeArduino.h File
Reference 61

5.5 C:/Users/magnu/Desktop/Doxygen/Doxygen source/cps_ts_gui_21_05_2019 - Copy/write←↩

Arduino.h File Reference

#include <string>
Include dependency graph for writeArduino.h:

C:/Users/magnu/Desktop
/Doxygen/Doxygen source
/cps_ts_gui_21_05_2019

- Copy/writeArduino.h

string

Classes

• class writeArduino

A class for calculating parameters to arduino message code.

Macros

• #define WRITEARDUINO_H

5.5.1 Macro Definition Documentation

5.5.1.1 WRITEARDUINO_H

#define WRITEARDUINO_H

Definition at line 3 of file writeArduino.h.

Generated by Doxygen

62 File Documentation

Generated by Doxygen

