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Preface

This thesis is submitted to University of South-Eastern Norway (USN) for the degree
of Doctor of Philosophy to the Department of Electrical Engineering, Information
Technology, and Cybernetics under the Faculty of Technology, Natural Sciences, and
Maritime Sciences. The research work is funded by the Ministry of Education and
Research of the Norwegian Government, for four years with 25% teaching duties
and starting from September 2014.

The work is mainly related to flow measurement in the return line of drilling
fluid circulation while drilling. In any drilling operations, wellbore stability is the
primary objective for safe and efficient drilling. The study focuses on the usage of
the delta flow measurement (i.e., the difference between inflow and return flow)
for maintaining the wellbore stability. An accurate return flow measurement is a
comparatively challenging task, which is investigated in this study.

For the return flow measurement, a simple and accurate flow measurement sys-
tem using Venturi constriction is presented that may replace an existing uniform
open channel. For the study, three different types of existing flow models are in-
vestigated. Different machine learning based flow models are developed. The mod-
els are tested in a flow loop available at USN, Campus Porsgrunn using synthetic
drilling fluids with rheological properties that are comparable with water-based
drilling mud. The experimental results show that the models are applicable for non-
Newtonian fluid flow measurements. I hope the models will be of use in the real
drilling operations for both inflow and outflow measurements.
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Summary

In drilling oil & gas wells, pressure control is essential for several reasons, but pri-
marily for safety. The wellbore pressure should be maintained within the pressure
window to avoid the kick and fluid loss while drilling. During drilling, wellbore
pressure can be measured in real-time, but it is a challenge to determine the pressure
window. One possible way to monitor wellbore pressure is the delta flow method,
where the difference between inflow and return flow is utilized to indicate the kick
or the fluid loss. For delta flow method, inflow measurement is comparatively easy
as the inflowing fluid is a single phase fluid with known rheological parameters.
The returning fluid is a multiphase fluid contaminated with rock cuttings, sand, for-
mation fluids/gases, etc. and is a challenge to measure.

The primary objective of this PhD work is to develop models or sensor systems
to estimate the return flow through an open channel in drilling circulation loops.
During the work, different flow measurement systems are analysed, modified, and
developed. The performance of the measurement systems is evaluated based on the
standard requirements needed for a suitable flowmeter. All the experimental works
are performed using a flow loop available at University of South-Eastern Norway,
Campus Porsgrunn. The flow loop consists of an open channel with Venturi constric-
tion for flow measurement. For the study, drilling fluids with different rheological
properties are used.

The analysis performed using an already existing flow measurement systems for
an open channel with uniform geometry shows that these measurement systems
are limited by the fluid rheology and accuracy. Three different flow models (i.e.,
upstream-throat levels based, upstream level based and critical level based) for the
fluid flow through an open channel with Venturi constrictions are analysed. All of
the three models are accurate and meet the standard requirements in a favourable
condition. Upstream-throat levels based flow model (with mean absolute percent-
age error (MAPE) of 2.33%) and upstream level based flow model (with MAPE of
2.92%) need a proper tuning of a kinetic energy correction factor depending on the
type of flow regime. The flow regime depends on the rheological parameters of
a fluid and the rheological parameters of return flow changes in each circulation
while drilling. Due to this reason, these two flow models are not reliable for return
flow measurement without a proper tuning of the correction factor. The critical level
based flow model (with MAPE of 5.81%) is comparatively less affected by the cor-
rection factor. The limitation of this model is to locate a critical level position within
the throat section along the Venturi constriction. In this study, instead of performing
a direct critical level measurement, it is estimated based on the fuzzy logic regulator
and fixed position upstream level measurement. The modifications in the critical
level based flow model give improved estimates of the flow.

One possible problem using the Venturi constriction can be an accumulation of
solid particles within the conversing section of the constriction. In this case, return
flow through an inclined open channel can be a simple solution, which accelerates
the accumulated sediments. The flow study using an inclined open channel shows
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that the model is reliable up to the inclination angle of 0.4 [deg]. The results are valid
for the geometry of the open channel used in the experiments.

Due to the limitation of these flow models with the need for a proper selection of
the correction factor, different machine learning based flow models are developed.
Volumetric flow based machine learning models are highly accurate with MAPE up
to 2.05 % and are applicable for fluids with different rheological parameters. These
models are based on level measurements without cumbersome tuning of various pa-
rameters and hence useful in open channel return flow measurements of any fluids.
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Chapter 1

Introduction

1.1 Background

In extracting oil and gas, one important phase is the drilling operation, where the
reservoir is connected to the surface through a drill pipe. In drilling operations,
drilling fluid (often termed as ‘drilling mud’) is circulated in a closed loop. A typical
drilling fluid circulation loop is shown in Figure 1.1. The drilling fluid is continu-
ously pumped down, from the mud tank to wellbore through the drill pipe, and is
circulated through the annulus back to the surface. The returning fluid comes to the
fluid treatment system, where drill cuttings are filtered, and appropriate additives
are added to the fluid to make sure its properties stay within the specifications. The
circulation is continued until the desired depth is reached. The drilling fluids are
non-Newtonian, which helps:

• to remove rock-cuttings from the downhole due to their high viscous nature
with a high yield point,

• to lubricate the drill bit, and

• to keep the wellbore pressure within the pressure window limits to prevent
kicks and their losses, (Bourgoyne et al., 1986; Caenn, Darley, and Gray, 2011a).

This PhD work is related to monitoring and controlling of wellbore pressure
for ensuring wellbore stability. For any reservoir, there exist pressure limits (often
termed as ‘pressure window’) where the drilling operations can be performed safely.
A simple example of pressure window diagram is shown in Figure 1.2. In a typical
pressure window diagram, a lower bound is a formation pore pressure (Pf ) and an
upper bound is a formation fracture pressure (Pf f ). These variables are only roughly
known, based on e.g. seismic analysis, and varies with depth and geological proper-
ties of the formation. However, for safe and efficient drilling, the wellbore pressure
(Pb) should be within the pressure limits. The major component contributing to the
wellbore pressure is the hydrostatic pressure exerted due to the fluid in the annulus,
(Bourgoyne et al., 1986).

Two main problems (fluid loss and kick) might occur in the case of reservoir
failure as shown in Figure 1.3a. If the wellbore pressure is greater than the forma-
tion pore pressure (i.e., Pb > Pf ), the high-pressure drilling fluid displaces the low-
pressure formation fluids and enters into formation pores resulting in a fluid loss. If
the wellbore pressure further increases and exceeds the formation fracture pressure
(i.e., Pb > Pf f ), the drilling fluids will fracture the formation and the fluid loss in-
creases. This is a state of fluid loss while drilling. In the case of wellbore pressure
lower than the formation pore pressure (i.e., Pb < Pf ), the high-pressure formation
fluids and gases influx into and displace low-pressure drilling fluids. It is a state of
kick while drilling. The kick should be detected as early as possible, as it can lead to
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wellbore stability problems and in extreme case, it can result in the blowout of the
whole rig, for example, the Deepwater Horizon explosion, (Hauge and Øien, 2012).

FIGURE 1.1: The circulation of drilling fluid while drilling an oil well.
The open channel in the return flow is highlighted. Arrows indicate

flow direction. Adapted from (Jack, 2018).

FIGURE 1.2: A typical pressure window showing the wellbore pres-
sure, and the lower and upper pressure limits. Adapted from (Bour-

goyne et al., 1986).

1.2 Early Kick/Loss Detection

Early detection of these unwanted conditions (i.e., kick and loss) can lead to less
fluid loss, less formation damage, lower drilling cost, and increased safety. Kick and
loss can be detected in real-time either by using different surface measurements or
by using downhole measurements. Different types of kick/loss detection methods
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used in both conventional drilling and managed pressure drilling (MPD) are pre-
sented in (Cayeux and Daireaux, 2013; Johnson et al., 2014; Ayesha, Venkatesan, and
Khan, 2016). However, the focus of the study is on early kick/loss detection for
conventional drilling operations.

1.2.1 Mud log Data Method

Early kick detection using a real-time mud logging data is still the first choice
method in conventional drilling operations. Mud logging is a continuous record-
ing and analysing of a real-time well site information. The mud log data consist of
pit gain, return flow rate, rate of penetration (ROP), drop in pump pressure, total gas
(TG), pump off gas (POG), and connection gas (CG). In this method, a state of kick
is suspected with the increase in pit gain, return flow rate, ROP, and gas contents.
Hence, there is a need for human interpretation to continuously analyse and moni-
tor the logged data for decisive actions against the unwanted conditions. (Anfinsen
and Rommetveit, 1992; Ahmed, Hegab, and Sabry, 2016)

1.2.2 Mud Tank Volume Method

An early indication of kick and fluid loss can be detected by monitoring the volume
of drilling fluid in the mud tank, highlighted in (Anfinsen and Rommetveit, 1992). It
is a straightforward way to monitor kick/loss but is not always reliable as discussed
in (Cayeux and Daireaux, 2013). Interpreting the active mud tank volume may be
difficult if a significant amount of the circulating mud is buffered in the return flow
lines, shale shakers and other transfer tanks. The direct addition of base water/oil
and fluid additives may be interpreted as gain, and the transfer of drilling mud from
the active mud tank to another tank may look like a loss.

1.2.3 Delta Flow Method

Delta flow method is one of the simplest methods of detecting kick and loss, which
was first introduced in (Speers and Gehrig, 1987) and later discussed in (Orban,
Zanner, and Orban, 1987; Orban and Zanker, 1988; Lloyd et al., 1990; Schafer et al.,
1991; Haeusler, Makohl, and Harris, 1995). Delta flow method uses the difference
between the inflow of drilling fluid into the wellbore and the return flow of drilling
fluid from the wellbore to detect unusual conditions as shown in Figure 1.3b. The
case of inflow > return flow, is an indication of a fluid loss and the case of inflow <
return flow, is an indication of a kick.

1.2.4 Other Methods

Standpipe and annular discharge pressures method presented in (Reitsma, 2010; Re-
itsma, 2011; Mills et al., 2012) can be used for early detection of kick and loss. In this
method, the pressure drops are measured in the inflow section (i.e., standpipe pres-
sure (SPP)) and return flow section (i.e., annular discharge pressure (ADP)) to iden-
tify the abnormal conditions. An early kick/loss detection based on the downhole
annular pressure measurements are discussed in (Hutchinson and Rezmer-Cooper,
1998; Ayesha, Venkatesan, and Khan, 2014; Ayesha, Venkatesan, and Khan, 2016).
The usage of the travel time of pressure waves through the drill string and annulus
to identify kick/loss is presented in (Codazzi et al., 1992; Stokka et al., 1993). (Harg-
reaves, Jardine, and Jeffryes, 2001; Kamyab et al., 2010; Cayeux and Daireaux, 2013)
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presented different numerical methods for kick/loss detections. Compared to con-
ventional drilling, MPD provides significantly better kick detection. For example,
the kick volumes detected using MPD kick detection system can be much smaller
compared to kick detection system of conventional drilling as discussed in (Nas,
2011; Grayson and Gans, 2012). MPDs using delta flow method uses Coriolis mass
flow meter for flow measurements, and the Coriolis meter readings are not reliable
in the presence of excessive gas. (Patel, Cooper, and Billings, 2013) presented an ad-
vanced gas extraction and analysis system, which can be used downstream of MPD
choke and before the Coriolis meter. The gas extraction system removes most of the
gas ahead of the flow measurement.

Typically, drilling operations in oil & gas wells have real-time data of the well-
bore pressure and are monitored in the drilling fluid circulation system on the plat-
form, (Bourgoyne et al., 1986). However, the pressures of the formation being drilled
are challenging to estimate and difficult to measure. Therefore, this PhD work fo-
cuses on the delta flow method for the early kick/loss detection.

(a) (b)

FIGURE 1.3: a) Block diagram of wellbore instability scenario, high-
lighting a state of kick or fluid loss. b) Block diagram of delta flow

method, indicating an early detection of kick or fluid loss.

1.3 Inflow/Return Flow Meters

For inflow and return flow measurements, several flow measurement systems are
discussed in the literature, (Speers and Gehrig, 1987; Orban, Zanner, and Orban,
1987; Orban and Zanker, 1988; Johnsen et al., 1988; Orban, Zanker, and Orban,
1988; Schafer et al., 1991; Loeppke et al., 1992). For inflow measurements, Corio-
lis mass flow meter, conventional pump stroke counter, electromagnetic flow meter,
and pump rotary speed transducer can be used. For return flow measurement, stan-
dard paddle meter, electromagnetic flow meter, ultrasonic flow system, and Venturi
flow meter can be used. Table 1.1 shows the detailed specifications of these return
flow measurement systems. All of these flow measurements systems are tested and
being used in the drilling operations. For any flow meter to be applicable for drilling
fluid flow measurement, (Orban, Zanner, and Orban, 1987) has given several re-
quirements for a suitable flow meter as:

• The reliability and the accuracy of measurements should be guaranteed over
the full range of flow.
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• An accuracy of 1.5 - 3 [l/s] for the flow rates up to 75 [l/s] in a common drilling
operation environment.

• For any fluid with a viscosity range of 1 - 200 [cP] and density range of 1000 -
2160 [kg/m3], the accuracy should be maintained.

The inflow drilling fluid is relatively clean, pure, and has known rheological pa-
rameters. Therefore, the inflow rate can be measured using accurate flow meter like
Coriolis mass flow meter. The return flow drilling fluid is multi-phase fluid mixed
with rock cuttings, formation fluids, and gases. It is a challenging task to measure
return flow rate. In this PhD work, the focus is on using a Venturi constriction in the
open channel (as marked in Figure 1.1) for the return flow measurement. By mod-
ifying the existing open channel, the aim is to find a simple and cheap alternative
way of measuring return flow using non-intrusive level measurements.

1.4 Objectives

The primary objective of this PhD work is to investigate different flow measurement
system for the return flow measurement. For the study, the objective is divided into
two main tasks:

• Study and analyse existing open channel flow measurement systems

• Data fusion based modelling of open channel flow

1.5 Structure of Thesis

There are two parts in the thesis. Part I gives an overview of the work and is further
divided into separate chapters. Different types of flow measurement systems used in
a uniform geometry open channel or an open channel with Venturi constriction are
discussed in Chapter 2. An overview of the experimental set-up used in this work is
given in Chapter 3. Different flow measurement systems are analysed in Chapter 4.
In Chapter 5, an overview of different machine learning (ML)1 algorithms and their
performance are presented. Conclusion and future recommendation are discussed
in Chapter 6. Part II presents some of the selected articles related to the work.

1.6 Main Contributions

To meet the main objective of the PhD work, contributions are made in several as-
pects of the work. The summary of the work is given in Figure 1.4. The following
are the main contributions to the work:

• Three different existing open channel flow models are tested in the flow loop
as presented in Chapter 4. Experiments are performed using the fluids with
different rheological properties. Based on the analysis, a suitable modification
is implemented in one of the flow model (critical level based model), which
improved the performance of the model as discussed in Section 4.2.2 and Pa-
per A.

1Henceforth, Machine Learning is represented by ML.
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• Different ML based flow models are developed, which can accurately estimate
flow based on only level measurements as presented in Chapter 5, Paper B and
Paper C. All the ML algorithms are developed in MATLAB, and the models are
successfully implemented in LabVIEW software program for the experimental
study.

• The LabVIEW software program used to run the flow loop is upgraded con-
tinuously.

• Different drilling fluids with different rheological parameters are prepared to
circulate in the flow loop for flow studies. The recipe for preparing the fluids
and their rheological behaviours are presented in Section 3.3.3.

FIGURE 1.4: The structure of the thesis with the main elements – mod-
elling and data fusion.
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Chapter 2

Open Channel Flow Measurement

A flow of a fluid in a conduit with a free surface is an open channel flow. For example
rivers, canals and irrigation ditches, storm and sanitary sewer systems, sewage treat-
ment plants, industrial waste applications, transportation of non-Newtonian slur-
ries, etc. The flow measurement is important for most of these applications. In this
chapter, different types of open channel flow measurement systems are discussed.

2.1 Flow Measurement in Open Channels with Uniform
Cross-section

In the past years, there are several methods developed for flow measurement
through a uniform geometry open channel. Some of the selected methods are dis-
cussed in this section.

2.1.1 Chezy and Manning Equations

Back in 1768, Chezy developed an empirical equation for turbulent flow through an
open channel, which is given in Equation 2.1, (Chanson, 2004).

V = CChezy
√

RhsinΘ (2.1)

where V is average velocity of the fluid, CChezy is a coefficient to be adjusted based
on the roughness of the channel, Rh is a hydraulic radius, and Θ is a channel slope.

Similar to Chezy equation, an alternative flow equation is developed by Robert
Manning in 1889, which is given in Equation 2.2, (Chanson, 2004).

V =
1

nManning
(Rh)

2/3 √sinΘ (2.2)

where nManning is a coefficient that represents the roughness of the channel.
The applications of these models are limited as they need a proper tuning of the

coefficients (i.e., CChezy and nManning) and are applicable only for Newtonian fluids,
(Alderman and Haldenwang, 2007). Other similar models are discussed in (Alder-
man and Haldenwang, 2007).

2.1.2 Rainer Haldenwang’s Equation

There are several flow models used for non-Newtonian fluid flow starting with (Koz-
icki and Tiu, 1967), (Coussot, 1994), and other different flow models are discussed in
(Alderman and Haldenwang, 2007). Haldenwang et al. have been developing a re-
liable flow model for non-Newtonian fluid flow through a uniform geometry open
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channel, (Haldenwang, 2003; Burger, 2014; Burger, Haldenwang, and Alderman,
2010a; Burger, Haldenwang, and Alderman, 2014). In (Burger, Haldenwang, and Al-
derman, 2014), open channel flow models applicable to all types of non-Newtonian
fluids (Bingham-plastic, power-law, or Herschel-Bulkley fluid) are presented. Equa-
tion 2.3 and Equation 2.4 are the models used to estimate average velocity of the
fluid in laminar and turbulent flow respectively.

V =
Rh

2

[
(16/K)τw − τy

k

]1/n

(2.3)

V =

√
2τw

ρc1(RH)c2

where, RH =
8ρV2

τy + K
(

2V
Rh

)n

(2.4)

where K is the constant dependent on the geometry of the channel (for example K
is 17.6 for a trapezoidal channel, which is experimentally found in (Burger, Halden-
wang, and Alderman, 2010b)). τw is average wall shear stress, τy is a yield stress,
k is consistency index, n is flow behavior index, ρ is density, c1 and c2 are em-
pirical constants based on the geometry of the channel (for example c1 = 0.0851
and c2 = −0.2655 for a trapezoidal channel, (Burger, Haldenwang, and Alderman,
2010b)), and RH is Haldenwang’s Reynolds number.

The flow models given in Equations 2.3 and 2.4 depend on the rheological prop-
erties of the fluid. In drilling fluid circulations, the returning fluids have different
rheological properties in each circulation, and it is a challenge to perform real-time
rheology measurements. Hence, these models are not applicable for measuring the
return flow of drilling fluid while drilling.

2.1.3 Paddlemeter and Rolling Float Meter

In drilling operations, conventional flow meters like paddle meter and rolling float
meter are used for return flow measurements. In paddle meter, a spring-mounted
plate or paddle is placed in the return flow line, and the deflection of the paddle
is correlated with the average velocity of the fluid flow. The rolling float meter has
a wheel floating over the surface of the fluid. The height of the floating wheel is
closely related to the depth of the fluid and the flow rate. Some of the rolling float
meters consist of the magnetic rotary sensor on the wheel, which measures the spin
rate and thus flow rate. (Schafer et al., 1991)

These types of flow meters are used for return flow measurement in mud log
data method for detecting kick/loss but are not accurate enough for the delta flow
measurement as discussed in (Orban, Zanner, and Orban, 1987).

2.2 Flow Measurement in Open Channels with Venturi Con-
striction

2.2.1 Venturi Meter

A basic Venturi meter has a converging section, a throat, and a diverging section
as shown in Figure 2.1. The converging section of the Venturi region causes a local
increase in the flow velocity. The local gain in kinetic energy due to the increased
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velocity creates a local decrease in pressure (in a pipe flow) or local decrease in fluid
level (in an open channel flow). This effect is what Giovanni Battista Venturi in 1797
named the “Venturi Effect”. Later in 1888, Clemens Herschel became the first person
to introduce commercial Venturi tubes, (Herschel, 1888).

FIGURE 2.1: A Venturi meter with a converging section, a throat sec-
tion and a diverging section.

The pressure drop (or the change in fluid levels) within the Venturi region can be
used to measure the flow rate of the fluid. In the special case of steady and incom-
pressible fluids, Bernoulli’s equation can be used to derive pressure drop (or change
in fluid levels) and volumetric flow relation.

For a pipe flow, other measurement devices (like orifice plates, flow nozzles and
Venturi nozzles) can be used to create similar change in kinetic energy in a flow-
ing fluid. However, the Venturi meters are capable of handling large flow volumes
with very low permanent pressure loss in the system compared to other measuring
devices, (Tompkins, 1974; Evans, 2007).

For an open channel flow, weir (like V-notch weir) can be used to measure flow.
Basically, a weir has an obstruction in the flow path, which causes an increase in the
fluid level. The increased fluid level above the top of the weir is correlated to the flow
rate. As the fluid flow is obstructed in a weir, Venturi flumes are preferred for fluid
flow application with suspensions, like the return drilling fluid flow. (Bengtson,
2010)

For a basic Venturi flowmeter to be accurate, the fluid flow in the Venturi channel
has to be laminar, (Tompkins, 1974). Turbulent flow introduces factors which com-
plicate the measurement, e.g. non-linear frictional effects and three-dimensional ve-
locity vectors, (Tompkins, 1974). Therefore, a long upstream section that can assure
a laminar flow or a minimized fluctuation flow is required for reliable Venturi flow
measurements, (Tompkins, 1974).

Three different types of flow models based on the Venturi principle are intro-
duced in this section. The performance of these models is discussed in Chapter 4.
For these models, there should exist a critical flow within the throat section of the
channel. In the critical flow condition, there exists a hydraulic jump, which flows
backward and creates a sub-critical flow in the upstream1 section of the channel.

1Upstream and downstream sections are with respect to the critical point, which lies within the
throat section. Sections before and after the critical point are the upstream section and the downstream
section respectively.
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The computational fluid dynamics (CFD) simulations of backward propagation of
the hydraulic jump are studied in (Malagalage et al., 2013) and is shown in Fig-
ure 2.2. If the hydraulic jump does not propagate back to the start of the channel,
there exists a supercritical flow in the upstream. In this case, there is no critical flow
within the Venturi constriction, and hence the flow estimations of these models are
not reliable as presented in Chapter 4. Figure 2.3 shows a typical fluid level profile
through the open Venturi channel in the critical flow condition. There is a sub-critical
flow in the upstream section. Experimental level measurement shows that the up-
stream level slowly reduces towards the start of the channel as the energy in the
backward propagating fluid reduces. This results in slightly varying levels in the
upstream section.

FIGURE 2.2: CFD simulation of water (shown red in figure) flowing
through a Venturi flume. The flow direction is from right to left. a)
Starting of the flow. b) Water flows through the open channel. c)
Flowing water meets the Venturi constriction and experiences a hy-
draulic jump. d) The hydraulic jump leads to the back propagation
(reflected pressure wave) of the water. e) With sufficient increase in
potential energy, water starts to flow again. f)g)h) The back propaga-
tion (reflected pressure wave) of water gradually reaches to the start
of the open channel, giving a steady level in the upstream section.

(Malagalage et al., 2013)

FIGURE 2.3: A typical level profile of fluid flowing through the open
channel with Venturi constriction. The flow is sub-critical in the up-

stream section due to a hydraulic jump in the throat section.

2.2.2 Upstream-Throat Levels based Flow Measurement

This flow model estimates the volumetric flow based on the upstream and throat
level measurements, henceforth referred as upstream-throat levels based flow
model. Based on the fundamental Bernoulli principle, a flow model for an open
channel with Venturi constriction is given in Equation 2.5, (Ganji and Wheeler, 2010).

Qv = Cd A1A2

{
2g

{
(h2 − h1) + (z2 − z1)

α2A2
1 − α1A2

2

}}1/2

(2.5)
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where Qv is volumetric flow rate, Cd is coefficient of discharge, A is a cross-sectional
area, g is gravitational acceleration, h is fluid level, z is elevation with respect to the
datum, and α is kinetic energy correction factor or Coriolis coefficient. Subscripts
1 and 2 represent the variables and parameters at upstream and at throat section
respectively as shown in Figure 2.3.

2.2.3 Upstream Level based Flow Measurement

This flow model estimates the volumetric flow based on a single upstream level
measurement, henceforth referred as upstream level based flow model. A volumet-
ric flow rate through a trapezoidal open channel with Venturi constriction can be
estimated using a single upstream level as given in Equation 2.6, (ISO-4359, 2013).

Qv = CdCsCv

(
2
3

)3/2 ( g
α1

)1/2

b2h3/2
1 (2.6)

where Cs is shape coefficient, Cv is coefficient of velocity, and b is the bottom width
of the channel.

2.2.4 Critical Level based Flow Measurement

In the case of critical flow, the volumetric flow rate can be estimated using a critical
level measurement within the throat section as given in Equation 2.7. For a trape-
zoidal cross-section geometry, the mathematical details are given in Paper A.

This flow model requires the knowledge about the location of the critical level,
which is varying with the flow rate. A real-time positioning of a level sensor is not
a feasible task, and hence a study on critical level correction is performed under
Section 4.2.2. This flow model estimates the volumetric flow based on a critical level
measurements, henceforth referred as critical level based flow model.

Qv =


(

g
α2

)
h3

c(b2 + hc cot θ)3

b2 + 2hc cot θ


1/2

(2.7)

where hc is a critical level and θ is a channel slope angle.
Other similar flow measurement techniques are discussed in (Boiten, 2002; Ye-

ung, 2007; Berg et al., 2015; Agu et al., 2017).





17

Chapter 3

Experimental Set-up, Drilling
Fluids and Sensors

All the experimental works are performed using a flow loop available at University
of South-Eastern Norway (USN). A short overview of the flow loop, open Venturi
channel, drilling fluids, and sensor systems are given in this chapter.

3.1 Flow Loop

For the study of the return flow measurement using a Venturi constriction in an
open channel, a flow loop is available at USN, Porsgrunn Campus. The flow loop
is provided by Equinor ASA. The flow loop consists of a fluid tank, a fluid pump,
an open channel with Venturi constriction, Coriolis mass flow meters, a blender for
mixing, and other different sensors and sensor systems. Figure 3.1 shows a P&ID
of the flow loop. A fluid pump is used to pump the fluid from the tank, through
the pipelines, to the open channel, and back to the tank, completing a circulation
loop similar to the drilling mud circulation. The picture of the flow loop is shown
in Figure 1 in Paper B. The open channel consists of a Venturi constriction and three
ultrasonic level sensors (LT-1, LT-2, and LT-3), which are used to estimate flow rates.
Coriolis mass flow meter (FT-1) is used as a reference flow meter.

FIGURE 3.1: P&ID of the flow loop available at University of South-
Eastern Norway, Porsgrunn Campus.
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3.2 Open Venturi Channel

The flow loop consists of an open channel with Venturi constriction. The geometry
of the open channel is based on the standard geometry provided by (Bamo, 2009),
which can measure a flow rate up to 69 [l/s]. The CFD simulations studied in (Mala-
galage et al., 2013) (i.e., Figure 2.2 in Chapter 2) are based on the same geometry. In
the field, the range of flow can be increased by appropriately changing the geometry
of the channel. In (Bamo, 2009), dimensions and geometries needed for a flow rate
up to 695 [l/s] are given. Figure 3.2a shows a top view of the open channel. The
upstream of the channel is long enough to ensure the critical flow through the chan-
nel. Figure 3.2b shows a trapezoidal cross-sectional view of the channel. Further, the
channel is tiltable to an angle of ±2 degrees to the horizontal.

Figure 3.3 shows a 3D view of the open Venturi channel with three ultrasonic
level sensors. The positions of these three level sensors are easily adjustable and can
be used to scan a level profile in the channel. With reference to the flow models pre-
sented in Chapter 2, usually, two level measurements (one at the upstream section
and another at the throat section) are used.

(a) (b)

FIGURE 3.2: .
]Geometry of the open Venturi channel. a) Top View sketch. b) Cross-sectional view

sketch. All the dimensions are in [mm]. The information on dimensions is taken
from (Glittum et al., 2015).

FIGURE 3.3: An open channel with Venturi constriction and three
ultrasonic level sensors. (Chhantyal, Viumdal, and Mylvaganam,

2017a)
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3.3 Drilling Fluids

3.3.1 Background on Rheology of Drilling Fluids

Based on the rheological behaviour, fluids can be classified into Newtonian and non-
Newtonian fluids. Viscosity is defined as the ratio of shear stress to shear rate. For
Newtonian fluids, viscosity remains constant with changing shear rate (for example
water), whereas the viscosity of non-Newtonian fluids changes with shear rate (for
example drilling fluids). Non-Newtonian fluids exhibit mainly shear-thinning or
shear-thickening behaviours. (Caenn, Darley, and Gray, 2011b)

• Shear-thinning fluids: the viscosity of the fluids decreases with increasing
shear rate. Shear-thinning fluids can be pseudoplastic or viscoplastic in na-
ture. Pseudoplastic fluids flow as soon as shearing force or pressure is ap-
plied, whereas viscoplastic fluids flow after certain yield stress as shown in
Figure 3.4.

• Shear-thickening or dilatant fluids: the viscosity of the fluids increases with
increasing shear rate.

FIGURE 3.4: Shear stress vs. shear rate curve for both Newtonian
and non-Newtonian fluids. Adapted from (Caenn, Darley, and Gray,

2011b).

3.3.2 Shear-thinning Drilling Fluids

Drilling fluids should be preferably shear-thinning in nature as these fluids become
thick in a low-velocity flow and thin in a high-velocity flow. For the same volumet-
ric flow rate, the velocity of circulation fluid is high through the drill pipe and low
through the annulus due to the different cross-sectional area. As the velocity is high
through the drill pipe, the thickness of the fluid reduces and requires less pumping
energy. At the same time, the low velocity through the annulus increases the thick-
ness of the fluid, which will avoid the settling of rock cuttings. (Caenn, Darley, and
Gray, 2011b)

Drilling fluid behaviour can be described using two standard rheological mod-
els, i.e., Power Law model and Herschel-Bulkley model (often termed as modified
Power Law model). The models are defined in Equation 3.1. (Caenn, Darley, and
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Gray, 2011b)
τ = kγn, (Power Law Model)

τ = τy + kγn, (Herschel-Bulkley Model)
(3.1)

where τ is shear stress, τy is yield stress, γ is shear rate, k is consistency index, and
n is flow behaviour index (n=1 for Newtonian fluids, n<1 for shear-thinning fluids,
and n>1 for shear-thickening fluids).

3.3.3 Design and Production of Non-Newtonian Fluids

To study the flow measurement using Venturi channel, several non-Newtonian flu-
ids with rheology similar to real drilling muds are used. The drilling fluid used em-
ulating the properties of the drilling muds used in the field are water-based fluids
with potassium carbonate as densifying agent and xanthan gum as viscosifier.

A drilling mud with a high pH value is desirable to control corrosion rate and
hydrogen embrittlement, (Bourgoyne et al., 1986). In addition, the high pH is a
favourable environment for most of the viscosity control additives, (Bourgoyne et
al., 1986). Hence, Potassium carbonate is used, which is a white salt with the density
of 2420 [kg/m3], soluble in water (solubility of 112 [g]/100 [ml] water at 20◦C) and
forms strongly alkaline solution. The Equation 3.2 shows the exothermic dissolution
reaction while blending the fluid.

K2CO3(s) + H2O(l) → 2KOH(aq) + CO2(g) (3.2)

Xanthan gum is a polysaccharide secreted by the bacterium Xanthomonas
Campestris that are mostly used as a food additive and a rheology modifier. Xanthan
gum is highly pseudoplastic in nature. The hydrogen bond and polymer entangle-
ment make the structure of xanthan gum compact. When shear force is applied, the
polymers are de-aggregated, and the viscosity is reduced. The xanthan gum rapidly
retains its original viscosity after the shear force is removed. (Keltrol, 2007)

The amount of xanthan gum required to have a thicker fluid is about 0.1 − 0.5%
of a total volume of the solvent as suggested in (Logsdon, 2013). Excessive use of
xanthan gum not only increases the viscosity of the fluid but also increases the foam
and bubble size. A large amount of foams and air bubbles are unwanted features as
they affect the ultrasonic level measurements and the Coriolis readings.

Table 3.1 shows the chemical composition of different fluids used in the study.
All the fluids are non-Newtonian fluids with shear thinning nature as shown in Fig-
ure 3.5. Fluid-1 is water mixed with some residual fluids while changing the fluids
in the flow loop.

3.4 Sensors used in Experiments

In this work, three ultrasonic level sensors placed over the open Venturi channel and
the Coriolis mass flow meter are used. Coriolis mass flow meter is used a reference
flow meter. Figure 3.6 and Table 3.2 show the pictures of the measurement devices
and their technical specifications respectively.

When drilling fluid is circulated through the flow loop, a significant amount of
foams/air bubbles are observed. The amount of foam increases with increasing flow
rate. The ultrasonic level sensors are very sensitive to foams and air bubbles present
in the fluid. Therefore, it is important to either filter the foams before the level mea-
surements or implement some on-line signal filtering after the measurements.
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TABLE 3.1: Different fluids used in the study along with the corre-
sponding chemical compositions. Fluid 1 is a mixture of water with
residual fluids in the tank during the process of changing drilling

fluid in the flow loop.

Fluids Potassium
Carbonate
[%weight]

Xanthan
Gum
[%weight]

Density
[kg/m3]

Flow
Index
(n)

Consistency
Index
(k)

Fluid-1 - - 1015 0.97 0.01
Fluid-2 18 0.07 1145 0.63 0.05
Fluid-3 21 0.07 1190 0.64 0.04
Fluid-4 29 0.21 1240 0.47 0.23
Fluid-5 73 0.22 1340 0.82 0.03
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FIGURE 3.5: a) Shear stress vs. shear rate curves for all the types
of non-Newtonian fluids used in the study. b) Viscosity curves at
different values of shear rates for the all the fluids. The rheological
parameters are measured using Anton Paar Viscometer in Equinor

ASA laboratory. (Chhantyal et al., 2018)

(a) (b)

FIGURE 3.6: a) Rosemount-3107 ultrasonic level sensor, (Emerson,
2014). b) Endress+Hauser Promass 63F Coriolis mass flow meter, (En-

dress+Hauser, 2013).

To mechanically filter the foams before the level measurements, a simple filter
net is used in the open channel without disturbing the flow. Figure 3.7 shows the fil-
tration of foams using the filter net. The foams/air bubbles present in the circulating
fluids are highly reduced using the filter net.

Further, the signals from three ultrasonic sensors and Coriolis mass flow meter
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TABLE 3.2: Technical specifications of the ultrasonic level sensor and
Coriolis mass flow meter. Based on information from the vendors.

Measurement
Devices

Vendor (Model) Range Uncertainty

Ultrasonic level
sensors

Rosemount (3107) < 1 [m] ±2.5 [mm]

Coriolis
mass flow
meter

Endress + Hauser
(Promass 63F)

0 − 1000 [l/min] ±0.10 %

are passed through a moving average filter (MAF) with 10 previous observations.
The filtered signals are comparatively less noisy as shown in Figure 3.8. The filtered
ultrasonic level measurements will result in further stable flow rate estimations. In
general, Coriolis readings are stable and accurate as shown in Figure 3.8d. However,
Coriolis mass flow readings are not reliable in the presence of excessive amount of
foams/air bubbles. A detailed discussion on the performance of Coriolis mass flow
meter in the presence of foams/air bubbles is presented in Chapter 4.

(a) (b) (c) (d)

FIGURE 3.7: a) Drilling fluid (Fluid-5 is used) flowing through the
open Venturi channel. b) A simple filter net designed to filter foams.
c)d) The filter net is effectively filtering foams during the fluid circu-

lation.
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FIGURE 3.8: The level measurements using three ultrasonic level sen-
sors and the Coriolis mass flow meter readings are filtered using mov-
ing averaged filter with 10 previous observations. The level sensor

LT-1 is placed near to the start of the open channel.
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Chapter 4

Flow Measurement Techniques
with some aspects of Modelling

In this chapter, different flow measurement systems for open channels with Ven-
turi constriction are analysed. Mean absolute percentage error (MAPE) is used for
comparing and evaluating the performance of the measurement systems.

4.1 Coriolis Mass Flow Meter

A Coriolis mass flow meter can measure a fluid flow with high accuracy under
favourable conditions. Figure 4.1a shows the comparison of Coriolis mass flow read-
ings with the reference set-points for highly viscous fluid (here, Fluid-5 is used). Ex-
perimentally, it can be seen that the amount of air bubbles increases in the circulating
fluid as the flow rate increases. Further, the rate of increase in air bubbles is high for
high viscous fluids. Due to the increase in air bubbles, the Coriolis readings are af-
fected at high flow rates as shown in Figure 4.1a. The observations indicate that the
Coriolis readings are highly sensitive to air bubbles.

For the further verification, additional air bubbles are generated in the circulating
fluid using a blender, available in the flow loop. Figure 4.1b shows the Coriolis mass
flow meter readings with the set-points after using a blender. It can be observed that
the Coriolis readings are not reliable at all. With the running blender, there is a large
amount of air bubbles, even in the low flow rates resulting in a high fluctuation of
Coriolis readings.

The Coriolis mass flow meter tested with the drilling fluid consisting of a large
amount of air bubbles, mimicking the presence of formation gases while drilling
shows that the flow meter is not suitable for return flow measurements. However, it
can be used for inflow measurements where drilling fluids contain no impurities.

4.2 Open Channel Flow Models

The open channel flow models (i.e., upstream-throat levels based, upstream level
based, and critical level based) presented in Section 2.2 can measure fluid flow
through an open channel with Venturi constriction, both in the presence of excess
air bubbles or without air bubbles. Figure 4.2 shows the comparison of flow estima-
tions using two flow models (i.e., upstream-throat levels based and upstream level
based) while circulating the drilling fluid having excessive air bubbles. A similar
discussion is presented in Paper C.

The performance of the models in Figure 4.2 shows that the flow estimations
of these models are comparatively not affected by the air bubbles with regards to
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FIGURE 4.1: a) Coriolis mass flow meter readings are reliable in
the presence of low air bubbles and the readings are affected as the
amount of air bubbles increases. b) Coriolis mass flow meter readings
in the presence of excessive air bubbles are not reliable, (Chhantyal et

al., 2018).
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FIGURE 4.2: The flow models are capable of estimating reliable flow
rates in the case of excessive presence of air bubbles. (Chhantyal et

al., 2018)

Coriolis mass flow meter. However, excessive presence of air bubbles affect the ul-
trasonic level measurements, which will directly affects the flow rate estimations
of these models. There is a need for some filtering algorithms to improve the level
measurements. To further reduce the noise caused by the foam formation, ultrasonic
transducers might be replaced by the radar sensor, (Thapa et al., 2017).

Figure 4.3 shows the flow estimations of three different flow models with refer-
ence to randomly varying set-points. The performance of these models is evaluated
using MAPE as shown in Table 4.1. The comparison shows that both upstream-
throat levels based flow model and upstream level based flow model have highly
accurate flow estimations with MAPE of 2.33% and 2.92% respectively. The critical
level based flow model has the highest MAPE of 5.81%. It is due to the fact that a
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critical level position changes with the change in the flow rate1. In this comparison
study, flow estimations are based on the critical level position of 4.3 [l/s]. Due to
this reason, the ultrasonic level sensor is measuring the true critical level only for
4.3 [l/s]. Hence, the flow rate estimations are accurate for 4.3 [l/s] and nearby flow
rates.
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FIGURE 4.3: The comparison plot of flow rate estimations of three
different flow models. Fluid-5 is used.

TABLE 4.1: The comparison of the performance of three different flow
models based on Mean Absolute Percentage Error (MAPE).

Flow Models MAPE [%]
Upstream-throat levels based 2.33 %
Upstream level based 2.92 %
Critical level based 5.81 %

4.2.1 Tuning of Correction Factor

One of the limitations of these flow models is a need for tuning a kinetic energy cor-
rection factor (α) (in Equations 2.5, 2.6 and 2.7). The correction factor is introduced
to compensate for an error in average velocity consideration. A flow profile is differ-
ent for laminar and turbulent flow. In the laminar flow profile, the velocity of flow
is high on the surface and slows down towards the bed of the channel, in an open
channel flow. In the case of turbulent flow profile, the flow velocities are randomly
distributed. Therefore, the average velocity consideration is applicable only for tur-
bulent flow regime and hence, the correction factor is assumed to be ‘1’ for turbulent
flow and ‘2’ for laminar flow, (USYD, 2005). The selection of the correction factor
depends on the type of flow regime and the rheology of the fluid. The correction
factor should be tuned for different flow rates of the same fluid or for different flu-
ids. Based on the experimental results, the correction factor in the upstream section
is tuned between α1 = 1.2 to 1.4 for the fluids available in the flow loop. Figure 4.4

1 The change in a critical level position with respect to the change in the flow rate is shown in Figure
7b of Paper A.
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shows the upstream level based flow model fitted to a data using different values
of the correction factor. The best fitted upstream level based flow model is achieved
with the correction factor of α1 = 1.4. Further details are discussed in Paper C.
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FIGURE 4.4: Tuning of the kinetic energy correction factor (α1) in the
upstream section. (Chhantyal et al., 2018)

4.2.2 Corrected Critical Level based Flow Measurement

Experimentally, it can be observed that the flow through the throat section is usually
turbulent. Hence, there is no need to tune the correction factor in the throat sec-
tion (i.e., α2 = 1). Hence, two flow models (i.e., upstream-throat levels based and
upstream level based) are mainly affected by the selection of correction factor. The
critical level based flow model is comparatively less or not affected. However, the
limitation of this model is to identify a critical level for a given flow rate. Due to the
fact that the position of critical level changes with the flow rate, positioning a level
sensor within the throat section for critical level measurement is a challenging task
as illustrated in Paper A.

Instead of measuring a critical level directly, two critical level correction algo-
rithms are studied. They are a Fuzzy Logic based regulator and maximum specific
energy based regulator. These regulators estimate critical level based on throat level
measurement. Figure 4.5 shows an overview of the critical level correction algo-
rithms.

Fuzzy Logic based Regulator (FLR)

The correction of the critical level based flow rate estimations needs a suitable type
of regulator. To identify a regulator for our case, experiments were performed at
different flow rates. The detailed experimental procedure is presented in Paper A.
Figure 4.6 is the specific energy diagram showing the relation between specific en-
ergy and fluid level at different flow rates. The asterisk sign at different curves indi-
cates the minimum specific energy point, which corresponds to the critical level for
the given flow rate. An artificial neural network (ANN) fit is made for the different
critical levels, which shows a linear increase in the critical level with increasing flow
rate. This linear relationship confirms a need for a proportional (P-type) regulator.
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FIGURE 4.5: Overview of the critical level correction algorithms. h1,
h2 and hc are upstream level at 147 [cm] position, throat level at 156

[cm] position and critical level respectively.

The highlighted coordinate in Figure 4.6 shows a critical level of 53.72 [mm] for
the flow rate of 4.3 [l/s], which is the reference critical level considered for our
study. The reference critical level is measured using an ultrasonic level sensor at
156.2 [cm] position2 in the throat section. The ultrasonic sensor is fixed in this posi-
tion (at 156.2 [cm]) for further measurements. Figure 4.7 shows different level pro-
files within the Venturi constriction for different flow rates. The deviation (i.e., the
critical level (hc) at 4.3 [l/s] - ultrasonic throat level measurements (h2 at 156.2 [cm])
at any flow rates) is used as an input to Proportional (P) like Fuzzy Logic Controller
(FLC), and output is a proportional gain kp. Thus, obtained kp is used to correct
the ultrasonic throat level measurements, which eventually corrects the flow estima-
tions. The block diagram of the FLR correction algorithm is presented in blue color
in Figure 4.5.

The membership functions and rules of the Proportional (P) like FLC are shown
in Figure 4.8 and Table 4.2 respectively. The input fuzzy variables NB, NS, ZO, PS,
and PB represent Negative Big, Negative Small, Zero, Positive Small, and Positive
Big respectively. The output fuzzy variables LL, L, OK, H, and HH represent Low
Low, Low, OK, High, and High High respectively.

TABLE 4.2: If-Then Rule Matrix of the P-like Fuzzy Logic Controller.

Deviation Proportional Gain (kp)
NB LL
NS L
ZO OK
PS H
PB HH

Understanding the Rules of the P-like Fuzzy Logic Controller

• deviation ≈ zero: In this case, the flow rate is closer to the reference flow rate
(4.3 [l/s]) and the throat level measurement (h2 at 156.2 [cm]) is closer to the ref-
erence critical level (53.72 [mm]). Hence, the proportional gain (kp) is set closer
to 1, which makes no or fine adjustments in the throat level measurement.

2The position scale is given in Figure 2 of Paper A.
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critical level is 53.72 [mm] and the fixed position of the ultrasonic level

sensor is at 156.2 [cm] position. Fluid-5 is used.

• deviation is positive: In this case, the flow rate is lower than the reference flow
rate and the critical level position will shift towards the left (i.e., upstream)
of 156.2 [cm] position. As the upstream level is always greater than the down-
stream level, the proportional gain (kp) is set higher than 1 to increase the throat
level measurement.

• deviation is negative: In this case, the flow rate is higher than the reference
flow rate and the critical level position will shift towards the right (i.e., down-
stream) of 156.2 [cm] position. As the downstream level is always lower than
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(a) Input Variable ‘deviation’

(b) Output Variable ‘kp’

FIGURE 4.8: a) Input Variable “deviation" membership function.
b) Output Variable “Proportional Gain (kp)" membership function.
Membership functions generated using Fuzzy Logic Toolbox in Lab-

VIEW.

the upstream level, the proportional gain (kp) is set less than 1 to decrease the
throat level measurement.

Figure 4.9 shows the comparison of critical level based flow estimations before
and after the correction. The implementation of the regulator improved the error
percentage from 5.81% to 3.20%. However, the regulator is based on a single fluid
and needs to be recalibrated for other fluids.

Maximum Specific Energy based Regulator (MSER)

The Bernoulli flow principle gives the energy equation of flow for a steady and in-
compressible fluid. The energy equation can be transformed into specific energy
equation using specific weight resulting in Equation 4.1. The mathematical details
are given in Paper A.

Es = h +
(Qv/A)2

2g
(4.1)

where Es is specific energy.
Figure 4.10a shows specific energy profile of fluid flow along the Venturi flume

at different flow rates (plotted using Equation 4.1). These profiles show that the
minimum specific energy point changes with the flow rate. However, there exists
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FIGURE 4.9: The comparison of critical level based flow estimations
before and after the correction using the Proportional (P) like Fuzzy

Logic Controller. Fluid-5 is used.

a maximum specific energy point at the start of throat section (i.e., position = 147
[cm]), which does not change with the flow rate. The idea of MSER is to utilize
the measurement at this fixed position of maximum specific energy to estimate the
critical level.

For Fluid-4, the levels at maximum and minimum specific energies for seven
different flow rates are taken. Figure 4.10b shows a linear regression fit between the
levels at maximum and minimum specific energies. Along the x-axis, the upstream
level denotes the level at maximum specific energy, which is level measurements at
147 [cm] position along the channel. Along the y-axis, the critical level denotes the
level at minimum specific energy, which is experimentally identified using specific
energy diagrams. The linear relation shows that a critical level is 0.7455 times the
upstream level for the fluid under consideration (i.e., Fluid-4).

hestimated
c = 74.55% × hmeasured

upstream (4.2)

where hmeasured
upstream and hestimated

c are the measured upstream level at 147 [cm] position
along the channel and estimated critical level respectively. Further, the obtained
linear relation is also validated for Fluid-3 and Fluid-5 as shown in Figure 4.11a and
Figure 4.11b respectively. Similar to Fluid-4, actual critical levels for Fluid-3 and
Fluid-5 are obtained from corresponding specific energy diagrams. The predicted
critical levels are 74.55% of upstream level measurements at 147 [cm] position for
both fluids. The validation results show that the linear relation still holds for these
two fluids with MAPE of 1.20% and 0.61% for Fluid-3 and Fluid-5 respectively.

To evaluate the performance of the MSER correction algorithm, Fluid-5 is cir-
culated in the flow loop with varying flow rates. Two ultrasonic level sensors are
placed at the horizontal position of 147 [cm] and 156.2 [cm] to measure the level at
maximum specific energy and the level at minimum specific energy for 4.3 [l/s] flow
rate respectively. Figure 4.12a shows different level measurements including level
at 147 [cm] position (i.e. upstream level), level at 156.2 [cm] position, and estimated
critical level (i.e. 74.55% of level at 147 [cm]).

Figure 4.12b shows the comparison of flow rate estimations based on the level at
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FIGURE 4.10: (a) Specific energy profiles at different flow rates for
Fluid-4. For all the flow rates, the maximum specific energy is found
at the start of the throat section. (b) Linear relationship between up-
stream level measurements at the maximum specific energy point and

critical level measurements at the minimum specific energy point.
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FIGURE 4.11: Testing the linear relationship with other fluids. (a) The
linear relationship holds for Fluid-3 with mean absolute percentage
error (MAPE) of 1.20%. (b) The linear relationship holds for Fluid-5

with MAPE of 0.61%.

156.2 [cm] position and estimated critical level. As expected, the flow rate estima-
tions using level at 156.2 [cm] position are accurate for flow rates closer to 4.3 [l/s]
and are not reliable for flow rates away from 4.3 [l/s] with MAPE of 5.81%. How-
ever, the flow rate estimations based on estimated critical are capable of estimating
randomly varying flow rates with MAPE of 2.24%. The block diagram of MSER
correction algorithm is shown in green color in Figure 4.5.

Table 4.3 shows the comparison of flow rate estimations using critical level based
flow model before and after corrections using FLR and MSER.

Similarly, critical level can be estimated using an upstream level (i.e., steady fluid
level before the constriction).
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FIGURE 4.12: (a) Different level measurements including upstream
level at 147 [cm] position, estimated critical level (i.e. 74.55% of up-
stream level), and level at 156.2 [cm] position (i.e. critical level for the
flow rate of 4.3 [l/s]). (b) Comparison of flow rate estimations based
on level at 156 [cm] position and estimated critical level. Fluid-5 is

used.

TABLE 4.3: The performance of critical level based flow model is im-
proved using FLR and MSER.

Flow Models MAPE [%]
Critical level based 5.81 %
Correction with FLR 3.20 %
Correction with MSER 2.24 %

4.2.3 Flow Measurement with an Inclined Channel

The results so far show that the Venturi flow meter is capable of measuring flow with
acceptable accuracy. However, in the application of fluid flow with solid materials
may encounter challenges regarding the accumulation of sediments within the bot-
tom surface of the Venturi flow meter. In the case of non-Newtonian drilling fluid
flow containing rock cuttings, there is a high risk of accumulation of sediments.
One simple way to decrease this risk is by inclining the open channel at an angle
downwards in the direction of flow. Hence, this section presents the study of flow
measurement using inclined Venturi channel.

The flow loop used in this work has the possibility of inclining the Venturi chan-
nel up to 2 degrees downwards. From Chapter 2, the upstream-throat levels based
flow model defined by Equation (2.5) can handle different angles of inclination. The
term “z2 − z1” takes into account the angle of inclination. Figure 4.13 shows the
comparison of flow rate estimates using upstream-throat levels based flow model at
four different angles (0, 0.2, 0.5, and 0.7 degrees). The results show that the model
estimations are only acceptable for lower inclination angles (less than 0.5 degrees).

Figure 4.14 shows the variations in three different ultrasonic level measurements
(LT-1, LT-2, and LT-3) for 300 [kg/min] fluid flow at different angles of inclination.
The level measurements used in the analysis are the averaged values of level mea-
surements for each angle. The flow estimates using the upstream-throat levels based
model are not reliable, if there is no critical flow or if the downstream level measure-
ment is over 80% (also mentioned in (Bamo, 2009)) of upstream level measurement.
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FIGURE 4.13: The flow estimation of upstream-throat levels based
flow model at different angles of inclination. Fluid-5 is used.

In this analysis, LT-2 is upstream level measurement and LT-3 is a level measure-
ment at the throat. The locations of the three ultrasonic level sensors are shown in
Figure 3.3. For angles 0 to 0.4 degrees, the LT-3 level measurements are less than
80% of LT-2 level measurements. For this range of angles, the flow estimates us-
ing the model are reliable. From the angle of 0.5 degrees, the downstream level is
over 80% of the upstream level, and thus the flow estimates are not reliable. The
LT-2 level measurements are decreasing with an increase in angle of inclination as
shown in Figure 4.14. After a certain angle of inclination, the downstream level
measurements are higher than the upstream level measurements, which indicates
the absence of critical flow. Similar studies are carried for other flow rates. Exper-
imentally, it is seen that the critical flow does not exist when the angle exceeds 0.9
degrees for the Venturi channel used in this work.

In Figure 4.14, the variation in the measurements of another upstream level sen-
sor (LT-1) with varying angles of inclination is also shown. The possibility of using
the estimates of the model with different angles of inclination is further limited if
the upstream level is measured using LT-1. From Figuree 4.14, it can be seen that the
LT-1 upstream level measurement is lower than the LT-3 downstream level measure-
ment after 0.2 degrees angle. It shows that the flow rate estimation using the level
measurements of LT-1 and LT-3 are reliable only with an angle of inclination from
0 to 0.1 degrees. The study shows that the position of upstream level measurement
determines the possible inclination angle that the model can handle.
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FIGURE 4.14: Variation in three different ultrasonic level measure-
ments at different angles of inclination for 300 [kg/min] fluid flow.
The three different levels are indicated by the arrows in Figure 4.15.

FIGURE 4.15: The schematic visualization of critical flow regime
showing the reverse flow of fluids depending on the angles of incli-
nation of the open Venturi channel. Arrows indicate the levels given

by the ultrasonic sensors.

Figure 4.15 schematically shows the reason for the critical flow regime in the Ven-
turi channel, which is similar to the CFD simulation results presented in Figure 2.2
in Chapter 2. The freely flowing fluid experiences a critical depth in the throat of the
Venturi channel, which results in the reverse movement of waves. The increased up-
stream level measurements are used to estimate the flow rate through the channel.
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The traversing distance of reverse flow depends on the angle of inclination. For a
high value of inclination angle, there is either short and turbulent reverse flow or no
critical flow at all. In the case of using LT-2 and LT-3 for the flow rate estimation, the
level measurements are reliable up to 0.3 degrees. At an angle of 0.5 degrees, the LT-
2 ultrasonic level measurement is exposed to the turbulence of reverse flow waves,
resulting in unreliable flow estimates despite critical flow conditions. For higher an-
gles of inclination, LT-2 upstream level measurements are apparent level measure-
ments. Hence, the corresponding flow rate estimates are not accurate. Based on the
Figure 4.15, using LT-1 in combination with LT-3 leads to reliable flow rate estimates
only when the channel is horizontal.
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Chapter 5

ML Models for Flow Measurement

Machine Learning is a branch of Artificial Intelligence (AI), where “Machine” refers
to “programming algorithm” and “Learning” refers to “calibrating or training” the
algorithm. Hence, ML is a science of getting computer or software algorithms to
learn from data without being explicitly programmed, (Andrew, 2016).

Figure 5.1 shows a ML process. A data set is randomly divided into three different
sets; training set , validation set, and test set. The ML models are trained using the
training set. Figure 5.2 illustrates how ML models are trained, (Abu-Mostafa, 2012).
In the training process, the objective is to find an unknown target function ( f ) that
maps input (x) and output (y) variables. The training data sets are passed into a
learning algorithm, which will stepwise adjust some parameters of an initial model
(hypothesis) to match the input-output dataset. By the end of the training, the final
hypothesis ( fh) is considered as the closest match to the unknown target function
( f ).

Validation can be performed during or after the training. Hence, the validation
data set is used to validate each hypothesis during the training or the final hypothe-
sis after the training. Finally, the best obtained hypothesis is tested using the test set
data. In this thesis, the developed ML model refers to the best obtained hypothesis.

5.1 Data Pre-processing

To generate data for ML studies, experiments are performed in the flow loop. Three
ultrasonic level measurements above the open channel are used as input data and
the Coriolis mass flow meter readings are used as an output data. Figure 5.3 shows

FIGURE 5.1: A flowchart showing the complete ML processes with
training set, validation set, and testing set. (Chhantyal, Viumdal, and

Mylvaganam, 2017a)
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FIGURE 5.2: An overview of how ML algorithms are trained. (Abu-
Mostafa, 2012)

FIGURE 5.3: Top view of the open Venturi channel showing the lo-
cation of three ultrasonic level sensors. These ultrasonic level mea-
surements are used as input features for machine learning based flow

models.

a top view of the open Venturi channel with the locations of ultrasonic level sensors.
One, two, or all of these three level measurements are used as input feature(s) for
ML based flow models. The experimental data set are scaled to [0,1] or [-1,1] range
and are randomly divided into training, validation, and testing set.

5.2 ML Algorithms

The flow rate estimation based on the level measurements is a supervised regression
problem in ML. Several linear and non-linear ML regression algorithms are investi-
gated. All of these algorithms are written and trained in MATLAB. The developed
flow models are used in LabVIEW software program of the flow loop for experimen-
tal studies.

5.2.1 Linear Models for Flow Estimations

A model represented by a linear combination of model parameters (often termed as
coefficients or weights) is a linear model. In this work, following two linear regres-
sion models are used to estimate the flow rate based on level measurements.

1. Simple Linear Regression (SLR): In SLR, a linear model has a single or multiple
features as input.

2. Polynomial Linear Regression (PLR): In PLR, features with different degrees
of power are linearly combined.
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The models are trained using gradient descent algorithm with a cost function of
mean squared error (MSE).

5.2.2 Non-linear Models for Flow Estimations

To investigate a possible non-linear dependency between level and flow rate, dif-
ferent non-linear models are used in the study. Broadly, artificial neural network
(ANN) and support vector regression (SVR) approaches are implemented.

1. Artificial Neural Network:
ANN model is a non-linear model, which is trained to understand complex
patterns in the given data. Analogous to the human brain, artificial neurons
are connected to each other to make some decisions in ANN. The connection
weights and the bias term of each neuron are the model parameters of ANN.
In this study, several different types of ANN are used to estimate the flow rate
based on the level measurements.

(a) Feedforward ANN: is a static ANN that uses current inputs to estimate
current outputs. Details on feedforward ANN with several learning al-
gorithms are given in Paper B. In the paper, the presented results using
feedforward ANN models are trained with Bayesian Regularization (BR)
learning algorithm.

(b) Feedback ANN: is a dynamic ANN that uses current inputs, and previ-
ous inputs and outputs to estimate current outputs. Details on feedback
ANN are given in (Chhantyal et al., 2016b). In this thesis, the presented
results using feedback ANN models are trained with Real-Time Recurrent
Learning (RTRL) algorithm.

(c) Adaptive Neuro-Fuzzy Inference System (ANFIS): is a combination of
fuzzy logic system and artificial neural network. The model parameters
(parameters of membership functions) and rules of fuzzy inference sys-
tem are trained similar to ANN training. The ANFIS model for flow esti-
mation is developed using Fuzzy Logic Toolbox in MATLAB and details
are given in Paper B.

2. Support Vector Regression:
SVR model is developed by transforming an original data in the input space
into the higher dimensional feature space through non-linear mapping func-
tions. In this study, ultrasonic level measurements are transformed into higher
dimensional feature space using the Radial Basis Function (RBF). In this high
dimensional feature space, an optimized linear regression model is developed
to estimate the flow rate. Further details are given in Paper B.

5.3 Generalization of ML Models

A trained ML model should generalize a new data. Improper implementation of
learning algorithm can lead to either under-fitted or over-fitted models. An under-
fitted model cannot even justify training data. Hence the complexity of the model
should be increased. An over-fitted model might perfectly fit the training data but
has a large generalization error when tested with a new data set. In such cases, the
trained model is only suitable for the training data, which is a state of data memo-
rization. Therefore, a reliable ML model should be able to generalize a new data. All
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FIGURE 5.4: The comparison of flow rate estimations of different
mass flow ML models.

the models developed in this work are validated and tested with several new data
sets. Three different ways to avoid over-fitting problems are:

1. Large training data set:
All the models are trained with a large number of training data.

2. Regularization:
In feedforward ANN, a learning algorithm that can regularize (minimize) the
model parameters to avoid over-fitting is implemented.

3. Proper tuning of hyper-parameter:
To ensure an appropriate selection of hyper-parameters, a grid-search method
with cross-validation is used.

5.4 Performance Evaluation of ML based Flow Models

Due to limitations with the existing open channel flow models as discussed in Chap-
ter 4, different types of ML models are developed in this PhD work.

5.4.1 Mass Flow ML Models

As a start, ML models that can estimate mass flow rates based on the three ultrasonic
level measurements as inputs are studied. The mass flow study is presented in sev-
eral conference papers (Chhantyal et al., 2016c; Chhantyal et al., 2016d; Chhantyal,
Viumdal, and Mylvaganam, 2017b) and a detailed study is presented in Paper B.

Figure 5.4 and Table 5.1 shows the comparison of flow estimations using dif-
ferent mass flow ML models. The estimations of these models are accurate for the
considered range. But, these models are reliable only for the single fluid that is
used in the calibration/training process. Typically to have the same mass flow, a
low density fluid requires high volumetric flow and a high density fluid requires
low volumetric flow. Hence, a mass flow model based on only level measurements
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TABLE 5.1: The comparison of the performance of different mass flow
ML models based on Mean Absolute Percentage Error (MAPE).

Mass Flow ML Models MAPE [%]
Feedforward ANN 3.28 %
Feedback ANN 4.25 %
Support Vector Regression 6.43 %
Sugeno typed Fuzzy Logic 7.72 %
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FIGURE 5.5: The comparison of flow rate estimations of different vol-
umetric flow ML models.

are not reliable as the level can be different for a same mass flow rate of different
fluids. One possible way to generalize the mass flow models is by introducing den-
sity as another input along with three level measurements. Experimental results
presented in Paper C show that it is a possible solution. However, density measure-
ment is performed manually in most of today’s drilling platforms. This makes the
approach not practical in a real-time flow measurement in the current scenario. In
the context of non-Newtonian flow of drilling fluid monitoring and control, a patent
of (Song and Dykstra, 2017) via the oil & gas company Halliburton deals with real-
time monitoring of downhole drilling including general approaches for mud density
and viscosity estimations. Specific details are left open in the patent.

5.4.2 Volumetric Flow ML Models

Due to the limitation in generalizing several fluids using the mass flow models, volu-
metric flow ML models are developed. Volumetric flow models presented in Paper C
are based on single upstream level measurement and can generalize different fluids.
The experimental data using all the drilling fluids available in the test loop show
that the volumetric flow is highly correlated with upstream level. Hence, different
linear and non-linear models are developed to correlate volumetric flow and fluid
level. For the considered range (i.e., 3− 7.5 [l/s]), all the volumetric flow models are
highly accurate as shown in Figure 5.5 and Table 5.2.
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TABLE 5.2: The comparison of the performance of different volu-
metric flow ML models based on Mean Absolute Percentage Error

(MAPE).

Volumetric Flow ML Models MAPE [%]
Feedforward ANN 2.05 %
Polynomial Linear Regression 2.09 %
Support Vector Regression 2.37 %
Simple Linear Regression 4.76 %

To meet the flow range requirement (i.e., 0 − 75 [l/s]) given in Section 1.1 for a
suitable flow meter, the developed models are extrapolated. For the comparison, the
upstream level based flow model with α = 1.4 is used as a reference. The extrapola-
tion results show that the flow estimations using polynomial linear regression model
and support vector regression model are very close to the reference estimations. Fur-
ther, the results show that the simple linear regression and artificial neural networks
are limited to the calibration data range. Detailed analysis is given in Paper C. For
real implementations, all the ML models should be trained with datasets covering
the whole range of flow rates.

5.4.3 Recalibration of ML based Flow Models

Volumetric flow ML models are better than mass flow ML models as volumetric
models can be trained for different fluids. These models solely depend on the level
measurements (i.e., QML = f (h)) and do not consider the geometry of the channel.
Hence, these empirical models need recalibration before using in any other open
Venturi channel with different geometries. This is a limitation with ML based flow
models. However, the flow models discussed in Chapter 2 consider a geometry (i.e.,
bottom width (b)) of the channel along with level measurements (i.e., Q = f (h, b)).
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Chapter 6

Conclusions and Future
Recommendations

In this chapter, main conclusions of the thesis and possible future works are dis-
cussed.

6.1 Conclusions

This PhD work presents the study of different flow measurement systems for a non-
Newtonian fluid through an open channel. The primary focus is on measuring the
return flow of drilling fluid to maintain the wellbore stability by using the delta flow
method. In the first part of the work, several different types of flow measurements
systems are evaluated. A highly accurate Coriolis mass flow meter is tested with
the drilling fluid containing a large amount of air bubbles mimicking the entrained
gas in real drilling mud. The experimental results show that the Coriolis flow meter
readings fluctuate in the presence of excess air bubbles. Three different volumetric
flow models for an open channel with a Venturi constriction have reliable flow esti-
mations both in the presence of excess air bubbles or without air bubbles. However,
these flow models need a proper tuning of a suitable correction factor for reliable
flow estimations. Experimental results show that two models (i.e., upstream-throat
levels based and upstream level based) are highly affected by the correction factor
tuning. The third flow model (i.e., critical level based) is comparatively less affected
by the correction factor but has a limitation of identifying a critical level position for
flow estimation. The flow estimations of the critical level based model are improved
using proportional (P) like fuzzy logic regulator and by using estimated critical level
instead of measured critical level. Further, upstream-throat levels based flow model
is used for estimating the fluid flow through an inclined open channel. The experi-
mental results show that the flow estimations are reliable up to 0.4 [deg] angles for
the channel geometry used in the study.

In the second part of the work, ML based flow models are developed for flow
estimations based on level measurements. The presented mass flow rate based ML
models give highly accurate flow estimations. However, these models are only ap-
plicable to the fluid used in the training/calibrating process. With a density as an
additional input, the existing ML models are capable of estimating flow rates of dif-
ferent fluids used in the training process. Due to a limitation in a real-time density
measurement in a drilling platform, this solution is currently not feasible. More gen-
eralized ML models based on volumetric flow are developed. These models are only
based on the level measurements and are independent of any tuning parameters.
Experimental results using these models show that the flow estimations are highly
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accurate with an accuracy up to 2.05% and reliable for different fluids. The mod-
els are very simple and hence easily implemented in the return flow line of drilling
mud.

6.2 Recommendations for Future Work

This PhD work is able to answer many challenging questions regarding non-
Newtonian fluid flow measurement system through an open channel. Although
the objective of the study is fulfilled, several other challenges and questions arose
during the period.

6.2.1 Improving Level Measurements

In this study, the fluid level is measured using the ultrasonic level sensor. Ultrasonic
level measurements are affected by the turbulence and the air bubbles present in the
flowing fluid. Hence, the level measurements are noisy and unstable for high flow
rates and the fluids with an excess of air bubbles. In the study, mechanical filter nets
and signal filtering are used to improve the noisy level measurements. As the flow
models solely depend on the level measurements, the estimation accuracy is highly
correlated with the accurate level measurements. Therefore, the improvement in
the level measurement set up can lead to better flow estimations. A preliminary
test is carried out using radar sensor for level measurement. The test results show
that the radar sensor is more stable and accurate compared to the ultrasonic level
measurements. I would suggest replacing ultrasonic level sensors with radar level
sensors in the flow loop. There have been some promising results in using Lamb
waves with clamp-on excitation of ultrasonic waves for liquid flow metering, (Kip-
persund, Frøysa, and Lunde, 2012; Aanes et al., 2017; Xsens, 2018; Flexim, 2018). In
case of a drilling fluid flow in closed conduits, some of the currently existing sensor
modalities along with Lamb waves based ultrasonic flow metering can be used in
developing ML based algorithms for estimating the return flow.

6.2.2 Possibility of Density and Viscosity Estimations

The fluid level profile and the location of critical level changes with respect to the
change in flow rate, density and viscosity of the fluid. The varying level profile is
proportional to the fluid flow and density of the fluid. As the fluid flow can be
calculated using the proposed models, density can be estimated using the level and
fluid flow information.

The viscosity of the shear thinning fluids decreases with increase in the flow
rate. The decrease in the viscosity refers to the decrease in the resistance to flow, and
hence the position of critical level shifts towards the end of the throat. The shifts are
proportional to the flow rates and can be correlated with the viscosity of the fluid.
In addition, a preliminary study on estimating viscosity of non-Newtonian fluids
using ML algorithms is carried out in (Chhantyal et al., 2016a). The study was not
continued due to lack of real-time rheological parameter measurements in the flow
loop.

6.2.3 Study using Channels of Different Geometry

The current results are based on the channel geometry available in the flow loop at
USN. The future study must be carried out using channels with different geometries.
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The presented models and relationships should be validated with field installations.
Tuning these models for different geometries and at site involves a long-term test
with experimental planning. As a start, simulation study (for example CFD simula-
tions) for estimating flow using different channel geometries can be performed.
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Online Drilling Fluid Flowmetering in Open Channels with
Ultrasonic Level Sensors using Critical Depths
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Faculty of Technology, Natural Sciences, and Maritime Sciences, University College of Southeast Norway,
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Abstract
In drilling operations, non-Newtonian drilling fluid is
continuously circulated in a closed loop. One of the
ways to monitor and regulate drilling operations is by
accurately measuring the flow rate of circulating drilling
fluid before entering and after returning from the wellbore.
The circulating fluid flows in an open channel on the return
path from the wellbore. This work investigates the use of
Venturi constriction to estimate the non-Newtonian fluid
flow in an open channel. Based on the specific energy
principle, a relation between volumetric flow rate and
critical depth is developed, which is used to estimate the
flow rate based on the measured critical depth. To measure
a critical depth for a given flow rate, it is necessary to
locate a critical depth position in the Venturi flume. In this
study, the critical depth position is located using specific
energy diagram (at a minimum specific energy within the
Venturi constriction) and Froude Number approach (at a
Froude Number equals to 1). Based on the identified
critical depth, the flow conditions (subcritical, critical or
supercritical) along the Venturi flume are observed. The
location of the critical depth in the Venturi section is
found by performing experiments at 350 [kg/min] flow
rate of the fluid. Further, the developed critical depth flow
model is tested for randomly varying flow rates (250-500
[kg/min]) with the identified critical depth location. The
flow estimations of the model were within the acceptable
limit. However, it is found that the estimates for 350
[kg/min] are comparatively more accurate, which proves
that the critical depth and critical depth position depends
on the flow rate and rheological properties.
Keywords: open channel Venturi flume, non-Newtonian
flow, critical depth, ultrasonic scanning of open channel
flow

1 Introduction
Open channel flow is a flow of fluid in conduct with
a free surface. Examples of open channel flow are
rivers, irrigation ditches, canals, storm and sanitary sewer
systems, industrial waste applications, sewage treatment
plants, transportation of non-Newtonian slurries, etc. In
this work, a non-Newtonian drilling fluid flow in the open
channel is studied.

The drilling fluids used in the oil & gas industries are

non-Newtonian, which helps:

• to keep the bottom-hole pressure within a pressure
window of acceptable margins to prevent kicks and
their losses into down-hole environment,

• to lubricate the drill bit, and

• to remove swiftly the cuttings and debris from
down-hole due to their high viscous nature.

In drilling operations, the drilling fluid is continuously
pumped down to wellbore through the drill pipe and is
circulated through the annulus back to the surface where
the flow is conducted in an open channel.(Caenn et al.,
2011)

One way of maintaining the stability of bottom-hole
pressure is by monitoring and regulating the drilling fluid
flow rate. An early indication of wellbore instability can
be detected using delta flow method, which is based on
the difference between inflow and outflow measurements
of drilling fluid while circulating the fluid, (Maus et al.,
1979; Speers and Gehrig, 1987; Orban et al., 1987; Orban
and Zanker, 1988; Schafer et al., 1992; Lloyd et al., 1990).
Therefore, it is important to measure inflow and outflow
of drilling fluid accurately. It is convenient to measure
inflow accurately, as drilling fluids flowing in have known
rheological properties with negligible impurities. In
literature (Orban et al., 1987; Orban and Zanker, 1988;
Schafer et al., 1992), flow meters like conventional pump
stroke counter, rotatory pump speed counter, magnetic
flow meter, ultrasonic Doppler flow meter, and Coriolis
mass flow meter can be used to measure the inflow.
However, it is difficult to accurately measure the outflow
as the returning fluid contains rock cuttings, formation
gases, and formation liquids. In literature (Orban et al.,
1987; Orban and Zanker, 1988; Schafer et al., 1992), flow
meters like standard paddle meter, ultrasonic level meter,
a prototype rolling float meter, magnetic flow meter, and
Venturi flow meter can be used to measure the outflow.
In recent years, Rainer Haldenwang and his research
group has performed several open channel flow studies
in different cross-sectional shapes, (Burger et al., 2010,
2014; Kabwe et al., 2017). Our study focuses on the use
of Venturi flow meter in an open channel for drilling fluid
flow measurement.
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2 System Description
A flow loop is available at University College of Southeast
Norway (USN), Porsgrunn Campus for the study of
drilling fluid flow through an open channel Venturi flume.
The flow loop consist of a trapezoidal cross-sectional open
channel with Venturi constriction as shown in Figure 1 and
Figure 2. The flume can be inclined upto 2 degrees angle
to the horizontal. There are three adjustable ultrasonic
level sensors above the flume for flow depth measurements
at different section of the flume. Different model-drilling
fluids are available for testing purposes. For this study,
a water-based non-Newtonian shear thinning fluid with
a density of 1153 kg/m3 and viscosity of approximately
23 - 100 cP for corresponding shear rates of 500 - 1
s−1 is used. A centrifugal pump is used to circulate
model-drilling fluids in the flow loop through the open
channel.

Figure 1. An open channel with Venturi constriction and three
ultrasonic level sensors (LT-15, LT-17, and LT-18). (Chhantyal
et al., 2016)

Figure 2. Top and cross sectional view of open channel Venturi
flume with the position scale in centimetres. The Venturi
constriction is shown in three sections with positions p1-p2 as
converging section, positions p2-p3 as throat section, and p3-p4
as diverging section.

3 Methods
For a steady and incompressible fluid flow, the total energy
remains constant along the horizontal flow conduct. The
Bernoulli flow principle gives the energy equation of the
flow as,

P+ρgz+
ρv2

2
= constant (1)

where P is applied pressure, ρ is fluid density, g is
acceleration due to gravity, z is elevation, and v is average
fluid velocity.

Dividing Equation 1 by specific weight (γ = ρg) gives
specific energy equation as in Equation 2.

Es = h+ z+
v2

2g
(2)

where h is fluid depth.
If the bottom surface of the conduct is considered as the

datum, we can use z = 0 and Equation 2 becomes,

Es = h+
v2

2g
(3)

where Es is the specific energy of fluid and is dependent
on fluid depth and velocity of the fluid.

In open channel flow, the surface or profile of fluid flow
is studied using Hydraulic Grade Line (HGL) and Energy
Grade Line (EGL), which are defined by Equation 4 and
Equation 5 respectively.

HGL = h (4)

EGL = h+
v2

2g
(5)

Further using Q = v ·A, Equation 3 can be rewritten as,

Es = h+
(Q/A)2

2g
(6)

where Q is volumetric flow rate, and A is the
cross-sectional area. For a trapezoidal channel, the
cross-sectional area is A = h(b + hcotθ) where b is the
bottom width of the channel and θ is the slope angle of
the channel walls shown in Figure 2. Hence, the Equation
6 becomes,

Es = h+
Q2

2gh2(b+hcotθ)2 (7)

Using Equation 7, a specific energy diagram showing
the relation between specific energy (Es) vs. flow depth
(h) can be developed for a given flow rate. From
the specific energy diagram, different flow conditions
(subcritical, critical, or supercritical) can be identified. For
every value of given flow rate, there is a corresponding
associated critical depth, hc. Flow with a depth greater
than the critical depth is a subcritical flow and flow with a
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depth less than the critical depth is a supercritical flow. In
subcritical flow, the potential energy component is large
and in supercritical flow, the kinetic energy component
is large. Whereas, the critical depth is a position having
the minimum specific energy for the given flow rate in the
specific energy diagram. Hence, the critical depth can be
identified by equating the first derivative of Equation 7 to
zero.

dEs

dh
= 0, f or h = hc (8)

Using Equation 7 and Equation 8 with several
mathematical simplifications, the flow rate and the critical
depth relation can be obtained as in Equation 9,

Q =

[
gh3

c(b+hccotθ)3

b+2hccotθ

]1/2

(9)

In addition, Froude Number can be used to identify
the critical depth. The dimensionless Froude Number for
shallow fluid flow is given as the ratio of flow inertia to
the wave velocity as in Equation 10,

Fr =
v√

g(A/B)
(10)

where Fr is Froude Number and B is the free surface
width. For Fr<1 flow is subcritical flow, Fr>1 flow is
supercritical flow, and for Fr≈1 flow is critical flow.

For detail study on open channel flow energy principles,
refer to (Featherstone and Nalluri, 1982; Chaudhry, 2007).

4 Results
To study the flow profile and identify the critical depth,
the model-drilling fluid is circulated at five different flow
rates (Q = 275, 300, 350, 400, 450 [kg/min]) in 12 different
experimental set-ups. In each experimental set-up,
the three ultrasonic level measurements are uniquely
positioned along the Venturi-flume. As a result, 36
different flow depths are logged for each flow rate. These
flow depths are used to locate critical depth along the
Venturi constriction. Finally, the randomly varying flow
rates are estimated using the critical depth.

4.1 Flow Profile Study
To study the flow profile, 36 different flow depths at the
flow rate of 350 [kg/min] are fitted using an Artificial
Neural Network (ANN) based polynomial. Thus obtained
ANN based polynomial model for flow depth along the
Venturi flume is further used to plot Hydraulic Grade
Line (HGL) and Energy Grade Line (EGL) as shown in
Figure 3. The HGL shows the steady upstream depth
and is gradually reducing as the fluid flows through
the constriction. EGL represents the total energy head
available for the fluid at given flow rate. Within the
constriction, EGL has a convex shape with a minimum
specific energy, which represents the critical depth.

4.2 Specific Energy Diagram
Figure 4a shows a specific energy diagram within the
Venturi constriction for the flow rate of 350 [kg/min].
Locating the minimum specific energy in the specific
energy diagram, critical fluid depth is identified for the
given flow rate. Any flow with flow depth greater than
identified critical depth is subcritical flow and flow with
a depth less than the critical depth is supercritical flow as
shown in Figure 4a.

To identify the position of critical depth along the
Venturi throat section, specific energy vs. position is
plotted as shown in Figure 4b. The minimum specific
energy is obtained around 156 [cm] position, which lies
within the throat section of the Venturi constriction.

4.3 Froude Number Study
Froude Number is used to identify different flow
conditions and the position of critical depth as shown in
Figure 5. The flow is subcritical with Fr<1, critical with
Fr=1, and supercritical with Fr>1 as indicated in Figure 5.
Tracking the corresponding position for Fr=1, the critical
depth is around 156 [cm] position in the throat section of
the Venturi constriction.

4.4 Critical Depth Flow Model
The volumetric fluid flow can be estimated based on the
critical depth using the Equation 9. In the context of this
study, the flow rate is randomly varied and the critical
depth is measured at 156 [cm] position using an ultrasonic
level sensor. Figure 6 shows the comparison of estimates
of critical depth flow model against the randomly varying
mass flow rate setpoints. The original ultrasonic level
measurements are very noisy. So, the moving average
filter with last 10 samples is used to filter the noise to
some extent. Both of the flow estimates with and without
filtering are presented in Figure 6. The filtered estimates
seem to be less noisy compared to the unfiltered estimates.
However, the Mean Absolute Percentage Error (MAPE) is
slightly better for unfiltered estimates.

In Figure 6, it can be seen that the estimates are
comparatively much accurate for the flow rate of 350
[kg/min]. It is because the position of critical depth
measurement is chosen based on the critical depth position
of 350 [kg/min] flow rate. The critical depth and position
of critical depth are dependent on the flow rate and
rheological properties of the fluid.

Figure 7a shows the specific energy diagram of fluid
flow along the Venturi constriction at different flow rates.
It can be observed that with the increase in fluid flow
rate, the specific energy and critical depth of the fluid
increases. The primary reason for this is the increases
in fluid volume. The possible secondary reason is the
reduction in the viscosity of the fluid as flow rate increases
for the shear thinning model-drilling fluid.

Figure 7b shows the specific energy vs. position plot
in the throat section of Venturi constriction. It can
be observed that the minimum specific energy point is
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Figure 3. a) Experimental ultrasonic flow depth measurements with an Artificial Neural Network based polynomial fit. b) The
Hydraulic Grade Line and Engery Grade Line along the Venturi flume at the flow rate of 350 [kg/min]. The green dotted lines
indicate the different sections of Venturi constriction according to Figure 2.

(a) (b)

Figure 4. a) Specific energy diagram at the flow rate of 350 [kg/min] showing critical depth (at minimum specific energy point)
and different flow conditions. b) Specific energy vs. position diagram showing the exact critical depth position in the Venturi
constriction.

slightly shifting towards the end of the throat as the flow
rate increases, giving different critical depth position for
different flow rates. It is due to the momentum of the fluid
flowing through the Venturi constriction. The higher flow
rate fluid will flow faster within the fixed cross-section of
Venturi flume, providing extra momentum as the flow rate
increases.

5 Conclusion

In this work, one of the applications of open channel flow
in the field of drilling operations is investigated. In drilling
operations, non-Newtonian fluid is circulated in a closed
loop from the mud tank, into the bottom-hole and back to
the mud tank. The return flow is an open channel flow
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Figure 5. a) Experimental ultrasonic flow depth measurements with an Artificial Neural Network based polynomial fit. b) Froude
number along the Venturi constriction showing critical depth position and different flow conditions at the flow rate of 350 [kg/min].

Figure 6. The comparison of estimated flow rates using critical depth (with or without filter) against the randomly varying setpoints
based on Mean Absolute Percentage Error (MAPE).

and there is a need for accurate return flow for safe and
efficient drilling operations. The study investigates the use
of Venturi constriction in the return flow to estimate the
flow rates based on the critical depth measurements using
the test flow loop available at USN.

For the measurement of critical depths, specific energy
diagram and Froude Number approaches are used to locate
the critical depth position along the Venturi constriction.
Using specific energy diagram, critical depth and critical
depth position for a given flow rate are identified at
the location of minimum specific energy. Using Froude
Number, critical depth position is identified for the Fr
value equal to 1. In both approaches, different flow
conditions: subcritical flow, critical flow, and supercritical
flow along the Venturi flume are observed with respect to

the critical depth. Further, a critical depth flow model is
derived from specific energy equation, which can estimate
flow rate for measured critical depth.

The detailed study is performed for 350 [kg/min] flow
rate with the critical depth at 156 [cm] position in the
throat section of Venturi constriction. For randomly
varying flow rates, the estimates of critical depth flow
model with critical depth position at 156 [cm] are
compared with the setpoints. The comparison result
shows that the estimates are within the acceptable limits.
However, the estimates are more accurate for 350 [kg/min]
flow as the critical depth position for 350 [kg/min] is
chosen for critical depth measurement.

To investigate the effect of flow rates on critical depth,
specific diagram for different flow rates are studied.
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(a) (b)

Figure 7. a) Specific energy diagram at different flow rates. b) Specific energy vs. position diagram at different flow rates. The
asterisk signs with different colors indicate the point of minimum specific energy at different flow rates.

The study shows that as the flow rate increases the
specific energy increases, critical depth increases, and the
critical depth position shifts towards the end of the throat
section. The changes are due to the increase in fluid flow
momentum and change in rheological properties.

We foresee the future efforts in comparing and
investigating specific energy diagrams of different
model-drilling fluids at different flow rates to analyse the
relation between critical depth and rheological properties.
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Abstract: In oil and gas and geothermal installations, open channels followed by sieves for removal
of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow
rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular)
and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open
channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above
the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series
of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow
rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and
support vector regression algorithms applied to the data from temporal and spatial ultrasonic level
measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient
reliability, repeatability and uncertainty, providing a novel soft sensing of an important process
variable. Simulations, cross-validations and experimental results show that feedforward neural
networks with the Bayesian regularization learning algorithm provide the best flow rate estimates.
Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open
channels are discussed.

Keywords: soft sensing in open channels; non-Newtonian flow; ultrasonic scanning of open channel
flow; neural networks; Bayesian regularization learning; fuzzy logic; support vector regression

1. Introduction

One of the important phases in extracting oil and gas is drilling from the surface down to the
reservoir. Due to high temperature and pressure conditions in the bottom-hole, there is a high risk
of failure while drilling. Drilling fluid circulation plays a vital role in safe and efficient drilling
operations. The drilling fluid can be water-based or oil-based depending on the type of reservoir.
While drilling, the drilling fluid is continuously pumped down into the wellbore through the drill
pipe. The circulating drilling fluid returns to the surface through the annulus, i.e., the space between
the drill pipe and the wellbore. The drilling fluid circulation continues until the desired depth is
reached. The primary functions of drilling fluid circulation are stabilizing the wellbore, the cleaning
borehole and transporting rock cuttings. These functions are dependent on the properties of drilling
fluid, among which density, viscosity and flow rate are the most important ones. The viscosity and
other rheological properties of circulating fluid regulate the hole cleaning and transportation of rock
cuttings [1].

In the context of this paper, variations of viscosity are not taken into account. The drilling fluid
density is responsible for wellbore stability. For any reservoir, there exists a certain pressure window
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where the drilling operation can be performed safely. The pressure window extends from formation
pressure (Pf ) to formation fracture pressure (Pf f ). The wellbore pressure must be maintained within
this pressure window (Pf f − Pf ) for safe drilling. In the case of reservoir failure, two main problems
might occur. If the wellbore or bottom-hole pressure (Pb) is greater than formation pressure (Pf ),
the high-pressure drilling fluid displaces the formation fluids and enters into the formation pores,
causing a fluid loss. If the drilling fluid pressure is greater than formation fracture pressure (Pf f ),
it fractures the formation, and the fluid loss further increases, which is a state of lost circulation while
drilling. Alternatively, if (Pb < Pf ), the high-pressure formation fluids and gasses displace the drilling
fluid, which is the state of kick while drilling. The kick should be detected as early as possible, as it
can initially lead to wellbore stability problems, and in the extreme case, it might result in the blowout
of the whole rig, e.g., the Deepwater Horizon explosion [2]. The bottom-hole pressure depends on the
hydrostatic pressure exerted by the circulating drilling fluid, choke pressure and frictional pressure.
The hydrostatic pressure is mainly responsible for bottom-hole pressure, which is dependent on the
density of drilling fluid or drilling fluid weight. In this way, by monitoring the density of circulating
drilling fluid, the wellbore pressure can be maintained within the acceptable pressure window [1].

Loss of the drilling fluid, kick, unexpected changes in surge pressure and any uncontrolled high
flow rates of drilling fluid should be indicated to the operator (human or autonomous) by a timely
and preventive alarm, so that the operator takes the necessary actions to limit material damages and
hazards to personnel. The early detection of these problems can lead to less fluid loss, less formation
damage, lower drilling costs and, above all, increased safety with minimized maintenance costs.
One of the simplest methods for early detection is the so-called delta flow method, which utilize the
difference between inflow and outflow measurements in a circulation loop. To implement the delta
flow method, two flow measurements for drilling fluid entering the well (inflow) and drilling fluid
returning from the well (outflow) are needed. When the inflow exceeds outflow, lost circulation in the
loop is a possibility. On the other hand, for inflow less than outflow, the possible occurrence of kick is
indicated. Other different methods for kick and lost circulation detection are discussed in [3–6].

Therefore, the aim is to accurately determine the delta flow in the circulation loop. There are
different types of flow measurement systems for delta flow measurement in the literature [7–11].
To point out some of them, the conventional pump strokes counter, rotatory pump speed counter
and Coriolis mass flowmeter can be used for inflow measurement and the standard paddle meter,
ultrasonic level meter, a prototype rolling float meter and open channel Venturi flow meter can be
used for outflow measurements. With some adjustments, the magnetic flow meter and Doppler
ultrasonic flow meter can be used for both inflow and outflow measurements, although due to high
attenuation of ultrasonic signals in drilling fluids, this might not be a suitable option. The Coriolis
mass flowmeter delivers one of the smallest uncertainties in flow metering. It has a very high accuracy
with both Newtonian and non-Newtonian fluids. However, bubbles and mechanical vibrations affect
the Coriolis measurement [12]. Therefore, it is not appropriate to use for outflow measurement,
where the returning fluid contains rock cuttings, formation gasses and formation liquids. In addition,
the Coriolis meter is an expensive option. Different flowmeters based on reliability and accuracy are
discussed in [11]. The analysis concludes that the magnetic flowmeter or Doppler ultrasonic flowmeter
can be used for inflow measurement, and prototype rolling float meters can be used for outflow
measurement. Speers and Gerhrig [8] have presented the usage of magnetic flowmeters for delta
flow measurement. However, magnetic flowmeters are limited to water-based or conductive drilling
fluids. Another problem with magnetic flowmeters is the the requirement of a U-tube designed pipe to
ensure a complete filled pipe. With this desgin, there will be a settlement of rock cuttings in the U-tube
when the flow velocity is low. In this paper, the usage of an open channel with Venturi constriction is
presented where the limitations using the magnetic flowmeter no longer exist [9,10].

In an open channel with Venturi constriction, the upstream pressure relative to the level in the
control section is used to estimate the flow rate of the fluid [13]. Fluids flow from the subcritical to
supercritical flow condition due to the Venturi effect [14]. The critical depth is determined within the
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control section, and the level of the fluid in the upstream is measured. Ultrasonic or radar sensors can
be used for level measurement, which can be used to estimate the flow of the fluid through the open
channel [15].

To study the possibility of using Venturi constriction in an open channel for flow measurement,
a flow loop is available at University College of Southeast Norway (USN), Campus Kjølnes, Norway.
As a part of this study, the Computational Fluid Dynamics (CFD) simulation study is investigated
in [16,17]. The possibility of using the Saint Venant equation for non-Newtonian fluid through the
open channel is presented in [18]. The usage of the Ensemble Kalman Filter (EnKF) for estimating
non-Newtonian fluid flow in an open channel is studied in [19]. This mathematical approach presented
in [18,19] is computationally demanding and is only applicable to a slow system with a large sampling
time. These considerations indicate that for real-time monitoring and controlling purposes, these
approaches are not suitable. In [20], static Artificial Neural Network (ANN) and Support Vector
Regression (SVR) techniques are implemented for flow measurement in an open channel. The
simulation-based study shows that both static ANN and SVR models have more than a 100-times
faster response time as compared to the mechanistic model presented in [18,19]. With an assumption of
delta flow measurement as a dynamic problem, dynamic ANN with different learning algorithms is
investigated in [21]. Further, the Bernoulli equation can be implemented for the flow rate estimation.
The fundamental Bernoulli equation for the flow of an incompressible fluid in an inclined channel takes
the following form:

P1

ρg
+

u2
1

2g
+ z1 =

P2

ρg
+

u2
2

2g
+ z2 (1)

where P, u, z, ρ and g are fluid pressure, fluid velocity, elevation of the channel relative to the datum,
fluid density and acceleration due to gravity, respectively, with the subscripts indicating two distinct
positions in the inclined channel. The further simplification of Equation (1) along with continuity
equation, u1 × A1 = u2 × A2 gives Equation (2),

Qv = A1 A2

[
2g

{
(h2 − h1) + (z2 − z1)

A2
2 − A2

1

}]1/2

(2)

where Qv, h1, h2, A1 and A2 are volumetric flow rate, upstream level measurement, level measurement
at the throat, area before the constriction and area at the constriction, respectively. The mass flow rate
(Qm) of the fluid can be calculated as Qm = Qv × ρ.

In theory, the simplified equation (Equation (2)) can be used to estimate the flow rate using
a set of spatial samplings of the open surface of the fluid in the Venturi channel, leading to a
set of level measurements. However, due to non-ideal conditions (for example: compressible
fluid, sediments leading to variations of the cross-sections, fluctuations of the open surface of the
non-Newtonian fluid, varying velocity profile in the cross-section of the channel, etc.) and uncertainties
in the geometrical parameters (for example: cross-sectional area of the fluid in the channel, channel
elevation, etc.), we are resorting to a soft sensor approach using non-invasive measurements in this
work. Hence, the present paper focuses on using different empirical methods such as fuzzy logic,
ANN and Support Vector Machine (SVM) with both simulation and experimental results.

The system description is presented in Section 3, and different proposed methods are described in
Section 4. Finally, the results from simulations and experimental studies are presented in Section 5 and
Section 6, respectively.

2. Requirements for a Drilling Fluid Flowmeter

In an earlier paper [9], addressing the need for reliable and accurate flow measurement of
non-Newtonian fluids, the following features are expected from a suitable flowmeter:

• Over the full range of flow, the reliability and accuracy of measurements are guaranteed.
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• In the common drilling operational environment, an accuracy of 1.5–3 L/s for flow rates up to
75 L/s.

• For any type of drilling fluids (water and oil based) in the viscosity range 1–200 cP and density
range of 1000–2160 kg/m3, the accuracy should be maintained.

The methods presented here may be used for non-intrusive measurements of drilling fluids in
many sectors satisfying all these requirements. Although some changes in these expected features may
be seen in the practices of different operators, these can be used as design guidelines.

3. System Description

Figure 1 shows a flow loop available at USN consisting of a mud tank and a blender for mixing.
Different model-drilling fluids are available for testing purposes. The centrifugal pump is used to
pump the model-drilling fluid from the mud tank through the pipelines to the open channel with
Venturi constriction as shown in Figure 1b. The pumped fluid flows through the open channel and
down to the mud tank forming a complete flow loop. The flow loop includes different types of
measurement systems like the pressure transmitter, temperature transmitter, Coriolis mass flowmeters,
Gamma sensor dedicated for density measurement, differential pressure sensor, an open channel with
Venturi constriction, an inclination sensor and different ultrasonic level sensors.

(a) (b)

Figure 1. (a) Test flow loop at University College of Southeast Norway, Kjølnes Campus, showing mud
tank, blender, pump and Coriolis flowmeters. (b) Open Venturi channel with ultrasonic level sensors.

In this study, an accurate Coriolis mass flowmeter is used as a reference meter for all comparisons
of results from empirical models. The open channel has a trapezoidal cross-section with Venturi
constriction. The upstream length is long enough to ensure fully developed flow before entering
the constriction. Further, the channel can be inclined to the horizontal at different angles to analyze
different flow conditions. Three different ultrasonic level sensors are installed over the open channel,
giving levels of fluid in the channel, which will be used for flow measurements, as discussed in the
following sections. Figure 2a shows the 3D view of open channel with Venturi constriction and three
ultrasonic level sensors. The schematic of the system is given in Figure 2b.
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(a) (b)

Figure 2. (a) An open channel with Venturi constriction and three ultrasonic level sensors (LT-1, LT-2,
and LT-3). (b) Extremely simplified P&IDfor the flow loop with the measurands used in the study. The
schematic shows the “hard sensors” in the system under study. The focus is on drilling fluid (also
called “mud”) mass balance based on flow measurements [21].

For the current study, a model-drilling fluid consisting of potassium carbonate (as the densifier)
and xanthan gum (as the viscosifier) is used. The fluid is viscoplastic in nature with a density of
1153 kg/m3, and its viscosity values are within 23–180 cP for corresponding shear rates within
500–1 s−1.

This water-based non-Newtonian fluid with the properties given above is used in assessing the
performance of a method of estimating its volumetric flow by sampling the levels of the open surface
of the fluid flowing in the Venturi channel with an array of non-invasive ultrasonic level sensors.
The performance of this soft sensing of the flow rate should satisfy the criteria outlined in Section 2.

The first step in conceiving of a suitable empirical model is the identification of suitable input
feature space for estimating the mass flow rate of a drilling fluid. The Partial Least Square (PLS) method
used in steady state conditions from earlier studies [20] shows that two upstream level measurements,
LT-1 and LT-2, and the level measurement at the throat, LT-3, are highly correlated with Coriolis mass
flow measurement, as shown in the loading weights plot in Figure 3. The list of different measurement
devices with the respective technical specifications considered for the identification of input and output
features for empirical models is presented in Table 1.

Figure 3. Loading weight plot using the Partial Least Square (PLS) method to identify the most
important variables correlated with mass flow measurements. The three level measurements show
obviously high PLS scoring [20].
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Table 1. Technical specifications of different measurement devices considered for initial identification
of input and output features for empirical models. Based on information from the vendors.

Measurement Devices Vendor Model Range Uncertainty

Coriolis meter (flow rate) Endress + Hauser Promass 63F 0–1000 (L/min) ±0.10%
Coriolis meter (density) Endress + Hauser Promass 63F 0.8–1.8 (g/cc) ±0.001
Temperature transmitter Endress + Hauser TI00110REN14 −50–200 (◦C) ±0.19
Ultrasonic level sensor Rosemount 3107 0.3–12 (m) ±0.25%

Pressure transmitter Aplisens PCE-28 Smart 0–7 (bar) ±0.10%
Differential pressure Aplisens APRE-2000 0–250 (mbar) ±0.10%

For developing models, about 1800 data samples are used for each of the three input variables
(ultrasonic levels) and the single output variable (Coriolis flow rate). The samples are obtained at
the data sampling rate of one sample per second using compactDAQ in the LabVIEW environment.
The ranges, units and input/output types of each variable considered for modeling are tabulated in
Table 2. The simultaneous inputs and output measurements are shown in Figure 4. In Figure 4a, the
level measurements LT-1 and LT-2 are measuring almost the same upstream levels. LT-1 measures
comparatively lower levels, which is due to the energy losses during the backward flow of the fluid
initiated by the hydraulic jump near the constriction. The level measurements are noisy due to the
presence of foams in the flowing fluid and due to random uncertainties in ultrasonic measurements.
The data samples are normalized in the range of 0–1. From the 1800 normalized data samples, 75%,
12.5% and 12.5% of the data are used for training, validation and testing purposes, respectively.

Table 2. Input and output variables used in flow rate models with the units, ranges and variable types.

Variables Range Units Type

LT-1 37.2–107.5 mm Input
LT-2 28.9–78.3 mm Input
LT-3 44.3–106.6 mm Input

Coriolis mass flow rate 250–500 kg/min Output
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Figure 4. Input and output variables used in flow rate models. (a) Three ultrasonic level measurements,
namely LT-1, LT-2, and LT-3, as inputs. (b) Flow measurement using the Coriolis mass flowmeter as the
reference output [21].
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Figure 5. A Sugeno-type Fuzzy Logic architecture with outputs from “hard” sensors LT-1, LT-2 and LT-3
as crisp inputs and drilling fluid outflow as the crisp soft sensor output. Adapted from [22] and modified.

4. Methods Used with Selected Algorithms

In this work, different Artificial Intelligence (AI) methods are used to estimate the flow rate of the
non-Newtonian fluid. Under this section, AI methods like Fuzzy Logic (FL), feedforward and feedback
ANN and Support Vector Regression (SVR) are briefly discussed.

4.1. Fuzzy Logic Approach

Fuzzy Logic (FL) is an approach where the computing is based on degrees of truth rather than
crisp true or false values. The FL tool can be considered as a function that receives inputs and gives an
output based on the defined rules and membership functions. Analysis of the literature [23–26] shows
that the fuzzy logic approach can be successfully applied for learning, predicting and controlling.
Figure 5 shows the architecture of the Sugeno-type fuzzy logic with ANFIS used in predicting mass
flow rates based on three ultrasonic level measurements. In this work, the Sugeno-type fuzzy logic
with the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used.

4.2. Feedforward Artificial Neural Network

ANN is a kind of non-linear mapping system suitable for pattern recognition, regression problems,
image compression, etc. [27–33]. In the network, the bias of the neuron and weights between the
neurons are the model parameters. These model parameters are tuned based on a certain cost function
using a suitable learning algorithm [27,28]. A feedforward ANN is a static ANN that uses current
inputs to estimate current outputs. The architecture of the feedforward ANN always moves in one
direction as shown in Figure 6.

Figure 6. A feedforward artificial neural network architecture with an input layer, hidden layer and an
output layer. Three ultrasonic level measurements, LT-1, LT-2 and LT-3, are inputs to the network and
drilling fluid outflow as the soft sensor output from the network [20].
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In this paper, feedforward ANN with three different learning algorithms, Levenberg–Marquardt
(LM) learning, Bayesian Regularization (BR) learning and Scaled Conjugate Gradient (SCG) learning,
are investigated. The cost function for LM learning and SCG learning algorithms is the mean squared
error defined by Equation (3), and the generalization is performed using the early stop technique.
Both of these algorithms are faster in learning. However, regarding memory, LM learning takes more
memory compared to SCG learning [34]; whereas, the BR learning algorithm involves the minimization
of mean squared error and weight parameters of a network. The cost function for BR learning is
defined by Equation (4), and the generalization is performed using regularization [34].

J(w, b) =
1

2n

n

∑
i=1

(‖pi − Ti‖)2 (3)

J(w, b, λ) =
1

2n

n

∑
i=1

{
(‖pi − Ti‖)2 + λW2

}
(4)

where J represents the cost function, which is a function of weights (w) and bias (b). Parameters n,
p and T represent the number of samples, model prediction and target value, respectively. W is the
weight parameter vector and λ the regularization parameter or weight decaying factor.

4.3. Feedback Artificial Neural Network

A feedback ANN is a dynamic ANN that uses previous inputs and outputs to estimate current
outputs. The architecture of a fully-connected feedback ANN consisting of feedback loops and
self-feedback loops is shown in Figure 7.

Figure 7. The architecture for feedback ANN with self-feedback (denoted by green connections),
feedback loops (denoted by blue connections) and direct connections from inputs to the output neuron
(denoted by brown connections). Ultrasonic level measurements as input vectors to the network and
the drilling fluid flow rate as the output from the network [21].

In this paper, feedback ANN with three different learning algorithms, Back Propagation Through
Time (BPTT), Real-Time Recurrent Learning (RTRL) and Extended Kalman Filter Learning (EKF),
is studied. BPTT is an extension of the classical gradient-based back-propagation algorithm where the
feedback ANN architecture is unfolded into feedforward ANN with a different number of folds [35–38].
It converges faster, but it is an offline learning algorithm [35–38]. On the other hand, both RTRL and
EKF are online learning algorithm. RTRL is simple and the slowest converging algorithm, whereas
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EKF is complex and the fastest learning algorithm [35–38]. Mean squared error defined by Equation (3)
is used as a cost function in all three feedback learning algorithms.

4.4. Support Vector Regression

The Support Vector Machine (SVM) technique is applied in applications like classification
problems, pattern recognition, time series predictions and regression problems [39–42]. The basic
idea of the SVM technique is to perform a mapping of original data in the input space into the higher
dimensional feature space through non-linear mapping functions. In this paper, SVM is used in its
regression form, defined by (Equation (5)) as Support Vector Regression (SVR) [39].

y =
NSV

∑
i=1

(wi · φi(x)) + b (5)

where φ(x) (also represented as k(x, xi), k representing the kernel function) is the mapping function
from the input space to the feature space, b is the bias term, x represents the input, y represents the
output and NSV is the number of support vectors. The architecture of SVR used in this paper is shown
in Figure 8. Three ultrasonic level measurements (X) are transformed into higher dimensional feature
space using the Radial Basis Function (RBF) kernel. Thus, the obtained higher dimensional feature is
mapped with mass flow rate to develop a regression model.

Figure 8. An architecture of Support Vector Regression (SVR) showing a mapping from input space to
high dimensional feature space using the radial basis kernel function. Ultrasonic level measurements
as input vectors and the drilling fluid flow rate as the output [20].

4.5. Building AI Models

Different AI models are developed using the data from three ultrasonic level measurements LT-1,
LT-2 and LT-3 as inputs and Coriolis mass flow readings as the output. The dataset is normalized and
divided into three sets for training, validation and testing. Different empirical relations (hypothesis)
between inputs and output are developed using the training dataset. The empirical models developed
are then validated leading to the final hypothesis with associated optimal model parameters. Finally,
the eight models are tested for their performance. The flowchart for training, validating and testing all
the AI models is shown in Figure 9. A pseudocode for training, validating and testing different AI
models is presented below.

(a) % Get and normalize dataset
dataSet = GetDataSet()
data = Normalize(dataSet)
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(b) % Divide dataset into training, validation and testing sets
trainingData = FindTrainingSet(data)
validationData = FindValidationSet(data)
testData = FindTestSet(data)

(c) % Construct two arrays of different AI techniques and corresponding learning algorithms
arti f icial IntelligenceTechniques = {′ f uzzyLogicAlgorithm′, ′ f eed f orwardLMAlgorithm′,
′ f eed f orwardBRAlgorithm′, ′ f eed f orwardSCGAlgorithm′, ′ f eedbackBPTTAlgorithm′,
′ f eedbackRTRLAlgorithm′, ′ f eedbackEKFAlgorithm′, ′svrAlgorithm′}
LearningAlgorithms = {′ANFISLearningAlgorithm′, ′LMLearningAlgorithm′,
′BRLearningAlgorithm′, ′SCGLearningAlgorithm′, ′BPTTLearningAlgorithm′,
′RTRLLearningAlgorithm′, ′EKFLearningAlgorithm′, ′SVRLearningAlgorithm′}

(d) % Train different AI techniques using training data set
FOR algorithm = 1–8
arti f icial IntelligenceTechniques{algorithm} = LearningAlgorithms{algorithm}(trainingData)
ENDFOR

(e) % Validate all the AI techniques using the validation dataset
FOR algorithm = 1–8
Validate(arti f icial IntelligenceTechniques{algorithm}, validationData)
ENDFOR

(f) % Test all the AI techniques using test set
FOR algorithm = 1–8
Test(arti f icial IntelligenceTechniques{algorithm}, testData)
ENDFOR

Figure 9. A flowchart for training, validating and testing different AI techniques.

4.6. Cross-Validation for Model Selection

In this work, the cross-validation technique is used for model selection. For the purpose of model
selection, the dataset is divided into k number of folds (k = 10, in our case). Out of k subsets, the
(k− 1) set is used for training or calibrating the model, and remaining subsets are used for validating
or testing the model. The process is repeated by changing the validation subset, and then, the average
cross-validation error is calculated. The model with the lowest cross-validation error is considered to
be the best model using this technique [43,44].

Further, Table 3 shows the pros and cons of different AI methods used in this study. The selection
of a suitable model is application dependent.
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Table 3. Pros and cons of different AI methods used in this study.

AI Methods Pros Cons

Fuzzy Logic
Simple to implement and can
be a good alternative for
solving complex problems.

The performance depends on the
model parameters and rules.
Insufficient knowledge about the
system can degrade the performance.

Artificial Neural Network

Suitable for modeling non-linear
problems and one of the best
choices for a large number of
input features.

Training is computationally expensive.

Support Vector Regression
Works very well with non-linear
problems and is not biased by
outliers.

The algorithm is more complex and is
not the best method for a large number
of features.

5. Simulation Study

Based on the setup discussed in Section 3, the results of the simulation study are presented under
this section. As discussed in Section 3, we have measurements from three level measurements from
ultrasonic sensors LT-1, LT-2 and LT-3 and the Coriolis mass flowmeter. All the models are evaluated
using Mean Absolute Percentage Error (MAPE) and coefficient of determination R2. The low value of
MAPE represents the better performance of the model, as it gives the error percentage value. On the
other hand, the value of R2 closer to 1.0 indicates that the model predictions and target values are
highly correlated. The parameter tuning of models is one of the most important steps in empirical
modeling. In this paper, the parameters of ANN models are tuned based on the grid search method
followed by some adjustment using trial and error. Most of the parameters of the Sugeno-type fuzzy
logic model are tuned automatically, and the rest of the parameters are based on trial and error. Optimal
selection of SVR model parameters is made using the process described in [45]. Table 4 shows the
optimal parameters used in all the models. All the symbols used in Table 4 are given in Appendix A.

Table 4. The optimal parameters used in all the proposed models for estimating the flow rate of
the non-Newtonian fluid. All models implemented off-line using MATLAB. Model parameters,
mostly software specific, are described in the nomenclature.

Methods Optimal Parameters

Sugeno-type fuzzy logic Nm = 3, Nr = 27 Mm = Gaussian-type, output = linear-type
Feedforward ANN with LM learning Nh = 1, Nn = 4, α = 0.1, Epoch = 1000
Feedforward ANN with BR learning Nh = 1, Nn = 4, α = 0.1, Epoch = 1000

Feedforward ANN with SCG learning Nh = 1, Nn = 4, α = 0.1, Epoch = 1000
Feedback ANN with BPTT learning Nn = 7, α = 0.1, N f = 7, Epoch = 200, Ni = 1, No = 3
Feedback ANN with RTRL learning Nn = 7, α = 0.1, Epoch = 200, Ni = 4, No = 4
Feedback ANN with EKF learning Nn = 7, α = 0.1, Epoch = 200, Ni = 4, No = 4

Support vector regression with
RBF C = 500, ε = 0.01, σ = 0.1

Figure 10 shows the flow rate estimations of non-Newtonian fluid using all the proposed empirical
models compared to the Coriolis mass flow measurements. From these simulation studies, it can be
seen that all the proposed models can track the changes in flow rates with high accuracy and are
capable of describing both the steady state and dynamic behaviors of the fluid flow.
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Figure 10. The flow rate estimates of non-Newtonian fluid based on simulations compared to the flow
rate using from Coriolis meter. Both in static and dynamic conditions, simulation results and Coriolis
meter readings tally very well.

Table 5 shows the comparison of the results from different proposed models based on MAPE
and R2. Based on these performance criteria, feedforward ANN with Bayesian Regularization and
Levenberg–Marquardt learning algorithms are the best models to be implemented with the lowest
percentage error and highest correlation with target values. However, other proposed models also
have very accurate predictions.

Table 5. The comparison of the simulation performance in estimating output flow; all the proposed
models are based on MAPE or R2. Selected methods (represented by bold numbers) are considered in
cross-validation for model selection.

Methods MAPE (%) R2

Sugeno-type fuzzy logic 1.74 0.98
Feedforward ANN with LM learning 1.58 0.99
Feedforward ANN with BR learning 1.58 0.99

Feedforward ANN with SCG learning 1.97 0.99
Feedback ANN with BPTT learning 2.89 0.97
Feedback ANN with RTRL learning 2.57 0.98
Feedback ANN with EKF learning 2.71 0.98

Support vector regression with RBF 1.61 0.99

For further analysis, four different types of models are selected, one from each method.
The cross-validation technique with 10-folds is implemented in each of the selected models. Table 6
shows the selected models with corresponding cross-validation error. Based on the cross-validation
check, the best model for flow rate estimation is feedforward ANN with the Bayesian regularization
model, which has the lowest cross-validation error. It is due to the fact that the BR learning algorithm
uses regularization for the generalization of a model. The regularization parameter prevents the model
from being over-fit by minimizing the connection weights.
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Table 6. The model selection using the cross-validation technique.

Methods Cross-Validation Error (%)

Sugeno-type fuzzy logic 1.89
Feedforward ANN with BR learning 1.59
Feedback ANN with RTRL learning 2.70
Support vector regression with RBF 1.75

6. Experimental Study

Based on the simulation study, four different models, the Sugeno-type fuzzy logic model,
feedforward ANN with BR learning model, feedback ANN with RTRL learning and SVR with RBF
kernel model, are implemented in the flow loop. Figure 11 shows the experimental results obtained
with non-Newtonian fluid using these models. During the experiments, the set point is randomly
varied between 250 and 475 kg/min. In response, all the models can track the varying references with
good accuracy. Table 7 shows the comparison of the experimental performance of different models
based on MAPE, R2 and Root Mean Squared Error (RMSE). From the performance table, it can be seen
that the feedforward ANN with BR learning model having the lowest MAPE and RMSE of 3.28% and
0.3 L/s respectively, and the highest R2 of 94% is the best generalized model for estimating the flow
rate of the non-Newtonian fluid. However, all these models give much smaller RMSE with acceptable
uncertainties for a flowmeter needed for the current application.
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Figure 11. The flow rate estimates using feedback ANN with the RTRL learning algorithm, SVR with
the RBF kernel function, feedforward ANN with the Bayesian regularization learning algorithm and
Sugeno-type FL compared to the Coriolis meter readings.

Table 7. The comparison of the experimental performance of different models used for estimating flow
based on MAPE, R2 and RMSE.

Methods MAPE (%) R2 RMSE (kg/min) RMSE (L/s)

Sugeno-type fuzzy logic 7.72 0.83 34.94 0.51
Feedforward ANN with BR learning 3.28 0.94 20.90 0.30
Feedback ANN with RTRL learning 4.25 0.91 25.02 0.36
Support vector regression with RBF 6.43 0.89 28.30 0.41
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Figure 12 shows box plots for Coriolis flowmeter readings and feedforward ANN estimates at
different flow rates. As a reference, a varying setpoint is also included in the plots. In the box plot, a blue
box is an Interquartile Range (IQR), and the central red line is a median of measurements/estimates.
Two whiskers above and below the box are 1.5× IQR from the edge of the box, which corresponds
to the 99.3% confidence interval for a normal distribution. Hence, the size of a box represents the
spread or variance of measurements/estimates. Figure 12a shows that the sizes of boxes for Coriolis
readings are very small, and the medians are very close to the reference line. This represents the high
accuracy of the Coriolis flowmeter; whereas, the size of boxes for the estimates of feedforward ANN
are comparatively larger, as shown in Figure 12b. The sizes of boxes are small at low flow rates and
large at high flow rates, representing low and high variances, respectively. In addition, the medians
for feedforward ANN are slightly displaced from the reference line showing some limited accuracy
in estimations.
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Figure 12. Box plots showing the spread of the sensor measurements and model-based estimates at
different flow rates. Green dots, black dots and the red plus sign represent measurements/estimates
within the Interquartile Range (IQR), within the upper and lower bounds, but out of IQR, and outliers,
respectively. (a) Box plots for Coriolis mass flow meter readings. (b) Box plots for flow rate estimations of
feedforward ANN.

Further, feedforward ANN is considered under the repeatability test as shown in Figure 13.
Under similar conditions, three experiments are performed, and the estimates of feedforward ANN are
compared. For the comparison, only the steady state measurements are considered. Table 8 shows the
results of the repeatability test. The calculated MAPE and R2 show that the estimates of feedforward
ANN are highly repeatable.
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Figure 13. Repeatability test conducted on three different experiments under the same conditions.
The estimated flow rates using feedforward ANN in different experiments are compared against the
reference setpoints.
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Table 8. Repeatability test performed with three experiments under the same conditions. The results
are evaluated based on MAPE and R2.

Experiments MAPE (%) R2

1 1.97 0.975
2 1.90 0.977
3 2.01 0.975

The simulation and experimental study is summarized in Figure 14.

Figure 14. Overview of the strategies used during the simulation and experimental studies.
Feedforward with Bayesian Regularization (BR) learning comes out as the best approach for soft
sensing of the flow rate.

7. Conclusions

The drilling operation is one of the main phases of extracting oil and gas from the reservoir
in oil and gas industries. In the context of geothermal applications, it helps to reach the necessary
depth for achieving the high-temperature environment for heat transfer. In the context of oil and gas
boring operations, due to extreme conditions in the bottom-hole, there is a high risk of failure while
drilling. In unusual cases, there might be two problems while drilling: the influx of formation fluid
(i.e., kick) and loss of circulation fluid. One of the best ways to detect these problems is the delta
flow method, which utilizes the difference in inflow and outflow measurements of drilling fluid in
a flow loop. There are different methods to perform accurate inflow measurements discussed in the
literature. However, it is complicated to measure the outflow measurement accurately, particularly so
for non-Newtonian fluids. In this paper, we introduce different empirical models and present both
simulation and experimental results based on the comparison to readings from the Coriolis mass
flowmeter. The starting point for this particular investigation is the set of three ultrasonic height
measurements. The question is whether we can estimate the bulk flow velocity based only on these
three parameters using non-invasive techniques. This is where soft sensor models come into play.
The results from extensive experiments with non-Newtonian model-drilling fluids in the research
laboratory of Statoil and in the flow loop at USN are used to develop the soft sensor models presented
in this paper.

Different empirical models presented in this work are: the Sugeno-type fuzzy logic
model, feedforward ANN models with three learning algorithms (Levenberg–Marquardt learning,
Bayesian regularization learning and scaled conjugate gradient learning), feedback ANN models with
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three learning algorithms (back propagation through time, real-time recurrent learning and extended
Kalman filter learning) and support vector regression model with the radial basis function as the kernel
function. For these models, the partial least square method is used to identify the inputs and output
variables. In the simulation study, feedforward ANN with LM learning and BR learning are found to
be the best models based on the MAPE and R2. Further, some of the models are considered under the
10-fold cross-validation technique for suitable model selection. In this study, feedforward ANN with
BR learning is selected to be the best generalized model with the lowest cross-validation error. Similar
to simulation results, the flow rate estimates using feedforward ANN with BR learning are close to the
results from the experiments. However, all the presented models are capable of tracking both the static
and dynamic behavior of time-varying non-Newtonian fluid flow. The results presented here along
with the measurements based on the array of ultrasonic transducers confirm that the flow rate of the
drilling fluids could be measured satisfying the requirements specified in [9].

For future work, the quality and quantity of the training and validating datasets can be improved.
As the proposed modeling is mainly dependent on the type of data, we believe that improvement
in data measurement and extraction will improve the performance of the models. For this purpose,
the first step will be filtering the noise from the data and performing other signal processing techniques
to improve the signal information.

The technique presented here paves the way for realizing a simple and effective soft sensing
system for monitoring a commonly-occurring module in the fossil fuel and renewable industries,
viz. the operational unit for transport, cleaning recovery and mass balance budgeting of a costly and
environmentally-hazardous drilling fluid, which is non-Newtonian. The soft sensing of the fluid flow
rate using an array of non-intrusive and non-invasive ultrasonic transducers could spare the operators
expensive maintenance costs and improve autonomous operation of plants in conventional fossil fuel
and emerging renewable energy industries. For interested researchers, the data used in this study are
made available in the web portal of this journal.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/1424-
8220/17/11/2458/s1.
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Appendix A. List of Symbols and Abbreviations

Appendix A consist of a list of symbols and abbreviations used in this work.

Symbols Abbreviations
b Bias term AI Artificial Intelligence
C Punishing factor ANFIS Adaptive Neuro-Fuzzy Inference System
Epoch Maximum epochs for learning ANN Artificial Neural Network
g Acceleration of gravity BPTT Back Propagation Through Time
h Fluid level BR Bayesian Regularization
J Cost function CFD Computational Fluid Dynamics
Mm Type of membership function DP Differential Pressure
n Number of samples EKF Extended Kalman Filter
N f Number of folding FB Feedback
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Nh Number of hidden layers FF Feedforward
Ni Number of previous inputs FL Fuzzy Logic
Nm Number of membership function IQR Interquartile Range
Nn Number of hidden neurons LM Levenberg–Marquardt
No Number of previous outputs LT Level Transmitter
Nr Number of rules MAPE Mean Absolute Percentage Error
Nsv Number of support vectors PLS Partial Least Square
p Model predictions RBF Radial Basis Function
P Fluid pressure RMSE Root Mean Squared Error
Pb Formation pressure RTRL Real-Time Recurrent Learning
Pf f Formation fracture pressure SCG Scaled Conjugate Gradient
Qm Mass flow rate SVM Support Vector Machine
Qv Volumetric flow rate SVR Support Vector Regression
R2 Coefficient of determination USN University College of Southeast Norway
T Target
u Fluid velocity
w Weight
W Weight parameter vector
X Input matrix
Y Outputs
z Elevation relative to a datum
α Learning rate
ε Tolerance zone
ρ Fluid density
σ Width of RBF function
λ Regularization parameter
φ(·) Mapping function
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