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Abstract. Groundwater is one of the most valuable natu-
ral resources in the world (Jha et al., 2007). However, it is
not an unlimited resource; therefore understanding ground-
water potential is crucial to ensure its sustainable use. The
aim of the current study is to propose and verify new artifi-
cial intelligence methods for the spatial prediction of ground-
water spring potential mapping at the Koohdasht–Nourabad
plain, Lorestan province, Iran. These methods are new hy-
brids of an adaptive neuro-fuzzy inference system (ANFIS)
and five metaheuristic algorithms, namely invasive weed op-
timization (IWO), differential evolution (DE), firefly algo-
rithm (FA), particle swarm optimization (PSO), and the bees
algorithm (BA). A total of 2463 spring locations were iden-
tified and collected, and then divided randomly into two sub-
sets: 70 % (1725 locations) were used for training models
and the remaining 30 % (738 spring locations) were utilized
for evaluating the models. A total of 13 groundwater con-
ditioning factors were prepared for modeling, namely the
slope degree, slope aspect, altitude, plan curvature, stream
power index (SPI), topographic wetness index (TWI), ter-
rain roughness index (TRI), distance from fault, distance
from river, land use/land cover, rainfall, soil order, and lithol-
ogy. In the next step, the step-wise assessment ratio analysis
(SWARA) method was applied to quantify the degree of rele-
vance of these groundwater conditioning factors. The global
performance of these derived models was assessed using the
area under the curve (AUC). In addition, the Friedman and
Wilcoxon signed-rank tests were carried out to check and

confirm the best model to use in this study. The result showed
that all models have a high prediction performance; however,
the ANFIS–DE model has the highest prediction capability
(AUC = 0.875), followed by the ANFIS–IWO model, the
ANFIS–FA model (0.873), the ANFIS–PSO model (0.865),
and the ANFIS–BA model (0.839). The results of this re-
search can be useful for decision makers responsible for the
sustainable management of groundwater resources.

1 Introduction

Groundwater is defined as the water in a saturated zone
which fills rock and pore spaces (Berhanu et al., 2014;
Fitts, 2002), and groundwater potential is the probability
of groundwater occurrence in an area (Jha et al., 2010).
The occurrence and movement of groundwater in an aquifer
are affected by various geo-environmental factors includ-
ing lithology, topography, geology, fault and fracture and
their connectivities, drainage pattern, and land use/land cover
(Mukherjee, 1996). Geological strata act like a conduit and
reservoir for groundwater, while storage and transmissiv-
ity influence the suitability of exploitation of groundwater
in a given geological formation. Downhill and depression
slopes cause runoff and improve recharge and infiltration,
respectively (Waikar and Nilawar, 2014). Globally, ground-
water is a major source of drinking water for around 2 bil-
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lion people (Richey et al., 2015), and in agriculture, about
278.8 million ha of agricultural lands are irrigated by ground-
water (Siebert et al., 2013). Due to population and economic
growth, the demand for groundwater is anticipated to in-
crease in the future (Ercin and Hoekstra, 2014). For the case
of Iran, approximately two-thirds of the land is covered by
deserts, and groundwater is still the main water source for
drinking and other uses (Nosrati and Van Den Eeckhaut,
2012). According to Rahmati et al. (2016), groundwater in
Iran supplies around 65 % of the water use and the remaining
35 % is supplied by surface water. However, groundwater is
not an unlimited resource; therefore understanding ground-
water potential is crucial to ensure its sustainable use. One
of the most efficient methods for the protection and man-
agement of groundwater is to identify groundwater potential
zoning (Ozdemir, 2011b).

There are a number of methods for groundwater po-
tential zoning and exploitation. Traditional methods, i.e.,
drilling, geological, geophysical, and hydrogeological meth-
ods, are the most widely used (Israil et al., 2006; Jha et
al., 2010; Todd and Mays, 1980; Sander et al., 1996; Singh
and Prakash, 2002). However, they are time-consuming and
costly methods, especially for large areas. In recent years,
geographic information systems (GIS) and remote sensing
have become effective tools for groundwater potential map-
ping (Fashae et al., 2014) due to their ability to handle a huge
amount of spatial data.

In more recent years, some probabilistic models, such
as the frequency ratio (Oh et al., 2011), multi-criteria de-
cision analysis (MCDA; Kaliraj et al., 2014; Rahmati et
al., 2015), weights-of-evidence (Pourtaghi and Pourghasemi,
2014), logistic regression (Ozdemir, 2011a; Pourtaghi and
Pourghasemi, 2014), evidential belief function (Nampak et
al., 2014; Pourghasemi and Beheshtirad, 2015), and Shan-
non’s entropy (Naghibi et al., 2015), have been considered
for groundwater potential mapping. Bivariate and multivari-
ate statistical models have disadvantages in measuring the
relationship between groundwater occurrence and condition-
ing factors (Tehrany et al., 2013; Umar et al., 2014), whereas
the MCDA technique is a source of bias due to expert opin-
ion. Therefore, machine learning has been considered and
has proven efficient due to its ability to handle nonlinear
structured data from various sources with different scales.
In addition, machine learning requires no statistical assump-
tions. Among machine learning methods, the artificial neural
network (ANN) model is a widely used method for ground-
water mapping due to its computational efficiency (Sun et
al., 2016; Mohanty et al., 2015; Maiti and Tiwari, 2014).
However, the ANN model has a number of weaknesses such
as poor prediction and error in the modeling process (Bui
et al., 2016); therefore, hybrid models have been proposed.
Among hybrid frameworks, an ensemble of fuzzy logic and
neural networks, i.e., an adaptive neuro-fuzzy inference sys-
tem (ANFIS), has proven it is efficient in terms of high accu-
racy (Lohani et al., 2012; Emamgholizadeh et al., 2014; Zare

and Koch, 2018; Bui et al., 2018; Nourani et al., 2016; Tien
Bui et al., 2017; Pham et al., 2018a). It should be noted that
although an ANFIS model has a higher accuracy than other
models, it is still difficult to find the best internal weight val-
ues of ANFIS due to the limited nature of the adaptive algo-
rithm used (Bui et al., 2016). Thus, these weights should be
optimized by new metaheuristic optimization algorithms to
enhance the prediction accuracy of groundwater models.

The main goal of the current study is to propose and
verify integration of new metaheuristic optimization algo-
rithms with ANFIS for groundwater spring potential map-
ping (GSPM) in the Koohdasht–Nourabad plain, Iran. Ac-
cordingly, five new metaheuristic algorithms are investi-
gated, invasive weed optimization (IWO), differential evo-
lution (DE), firefly algorithm (FA), particle swarm optimiza-
tion (PSO), and the bees algorithm (BA). According to cur-
rent literature, it is the first time that such a study has been
conducted on groundwater potential mapping.

2 Description of the study area

The Koohdasht–Nourabad plain is located in the western
part of the Lorestan province (Iran) and covers an area
of around 9531.9 km2. It lies between latitudes 33◦3′28′′

and 34◦22′55′′ N and between longitudes 46◦50′19′′ and
48◦21′18′′ E (Fig. 1). The region is located in a semi-arid
area, with a mean annual precipitation of about 450 mm (Iran
Meteorological Organization, http://www.irimo.ir/, last ac-
cess: 1 May 2018). The altitude of the study area varies be-
tween 531 and 3175 m above sea level. The maximum slope
and minimum slope are 64 and 0◦, respectively. Geologically,
the study area is located in the Zagros structural zone of Iran
and is indicative of a Quaternary and Cretaceous–Paleocene
geologic timescale. The dominant land use/land cover of the
study area is moderate forest (20 %). Residential areas cover
about 3 % of the plain. Rock outcrops/Inceptisols are the
dominant soil types in the study area, covering about 51 %
of the study area. The population of the plain is 362 000 (ac-
cording to a 2016 census) and agriculture is the primary oc-
cupation. In this plain, groundwater is the main water source
for drinking and agricultural activities.

3 Methodology

An overview of the methodological approach is shown in
Fig. 2.

3.1 Data preparation

3.1.1 Groundwater spring inventory map

In groundwater modeling, spatial relationships between
groundwater springs and conditioning factors should be an-
alyzed and assessed to determine the best subset of these
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Figure 1. Groundwater well locations with a DEM of the study area.

factors. In the Koohdasht–Nourabad plain, a total of 2463
spring locations were provided by the Iranian Water Re-
sources Management Company. Most of these spring loca-
tions were checked during extensive field surveys using a
handheld GPS unit.

3.1.2 Construction of the training and testing datasets

Spatial prediction of groundwater potential mapping using
a machine learning model is considered a binary classifica-
tion with two classes, spring and non-spring. Therefore, a
total of 2463 non-spring locations were randomly generated
using the random point tool in ArcGIS10.2. According to
Chung and Fabbri (2003), it is possible to validate the model
performance using a cross-validation method that splits the
dataset into the two parts of spring and non-spring locations.
The first part is used for model building, which is called a
training dataset, and the other part is utilized for validation
of the model performance, called a testing dataset (Pham
et al., 2017a). In this study, a ratio of 70/30 was selected
randomly for generating the training and testing datasets
(Pourghasemi et al., 2012, 2013a, b; Xu et al., 2012). Accord-
ingly, both spring locations and non-spring locations have
been randomly divided into two groups for training (1725
locations) and validating (738 locations) purposes (Fig. 1).

Both the training and the testing datasets were converted to
a raster format, whereby spring pixels were assigned “1” and
non-spring pixels were assigned “0” (Bui et al., 2015), and

then, these pixels were overlaid with 13 groundwater condi-
tioning factors to extract their attribute values.

3.1.3 Groundwater conditioning factor analysis

Selection of the groundwater conditioning factors

After the initial selection of the conditioning factors, these
factors should be assessed for multicollinearity problems.
Multicollinearity takes place when two or more independent
conditioning factors are highly correlated, or, in other words,
interdependent (Li et al., 2010). Several methods have been
proposed to diagnose multicollinearity, and among them,
the variance inflation factor (VIF) and tolerance (TOL) are
widely used in environmental modeling (O’brien, 2007; Bui
et al., 2016); therefore, they were selected for this research.
Factors with VIFs greater than 5 and TOL less than 0.1 indi-
cate that multicollinearity problems existed (O’brien, 2007;
Bui et al., 2011). Another method, namely the information
gain ratio (IGR) technique, was applied to identify the rela-
tive importance of the conditioning factor and also to obtain
factors with null effect. These factors must be removed to
increase the accuracy of the model (Khosravi et al., 2018).

In the current study, 13 conditioning factors have been
selected, namely the slope degree, slope aspect, altitude,
plan curvature, stream power index (SPI), topographic wet-
ness index (TWI), terrain roughness index (TRI), distance
from fault, distance from river, land use/land cover, rain-
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Figure 2. Conceptual model of methodology applied in the current study.

fall, soil order, and lithology units. These factors have been
determined based on a literature review, characteristics of
the study area, and data availability (Nampak et al., 2014;
Mukherjee, 1996; Oh et al., 2011; Ozdemir, 2011b). The
process of converting continuous variables into categorical
classes was carried out based on our frequency analysis of
spring location (Khosravi et al., 2018) in order to define the
class intervals.

A digital elevation model (DEM) of the study area was
downloaded from ASTER Global DEM (https://asterweb.jpl.
nasa.gov/gdem.asp, last access: 20 April 2017) with a grid
size of 30× 30 m. Based on the DEM, slope degree, slope
aspect, altitude, plan curvature, SPI, TWI, and TRI were de-
rived. Slope degree has been divided in five categories us-
ing the quantile classification scheme (Tehrany et al., 2013,
2014), namely 0–5.5, 5.5–12.11, 12.11–19.4, 19.4–28.7, and
28.7–64.3◦ (Fig. 3a). Slope aspect is selected because it con-
trols solar radiation budgets that influence the groundwater
potential. Slope aspect has been provided in five different
classes, flat, north, west, south, and east (Fig. 3b). Altitude
was divided into five classes using the quantile classification
scheme, namely 531–1070, 1070–1385, 1385–1703, 1703–
2068, and 2068–3175 m (Fig. 3c). Plan curvature was divided

into three classes, namely concave (<−0.05), flat (−0.05 to
0.05), and convex (> 0.05) (Fig. 3d) (Pham et al., 2017a).

SPI is related to the erosive power of surface runoff,
whereas TWI relates to the amount of the flow that accu-
mulates at any point in the catchment. In this research, SPI,
TWI, and TRI were constructed using the System for Au-
tomated Geoscientific Analyses (SAGA) GIS 2.2 software,
and finally, were divided into five classes. These classes
are 0–48 664, 48 664–227 099, 227 099–583 969, 583 969–
1 330 153, and 1 330 153–4 136 452 for SPI (Fig. 3e). For
TWI, these classes are 2.1–4.6, 4.6–5.6, 5.6–6.6, 6.6–7.9, and
7.9–11.9 (Fig. 3f), and for TRI, these classes are 0–8.7, 8.7–
18.2, 18.2–29.9, 29.9–46.6, and 46.6–185 (Fig. 3g).

Distances from the fault and river for the study area were
generated with five classes using the Multiple Ring Buffer
tool in ArcGIS 10.2, 0–200, 200–500, 500–1000, 1000–
2000, and > 2000 m (Fig. 3h and i). Lithology plays a key
role in determining the groundwater potential due to differ-
ent infiltration rates of formation (Adiat et al., 2012; Nam-
pak et al., 2014). Land use/land cover of the study area was
obtained using Landsat 7 Enhanced Thematic Mapper plus
(ETM+) images that were downloaded from the US Geolog-
ical Survey (available at https://earthexplorer.usgs.gov, last
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Figure 3.
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Figure 3.
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Figure 3. Groundwater conditioning factors for the study area used
in this research: (a) slope degree, (b) slope aspect, (c) altitude,
(d) plan curvature, (e) SPI, (f) TWI, (g) TRI, (h) distance from fault,
(i) distance from river, (j) land use/land cover, (k) rainfall, (l) soil
order, and (m) lithology units.

access: 1 May 2018). Accordingly, 25 land use/land cover
types were recognized: agriculture (A), garden (G), dense
forest (DF), good rangeland (GR), poor forest (PF), water-
way (W), mixture of garden and agriculture (MGA), mixture
of agriculture with dry farming (MADF), mixture of agricul-
ture with poor garden (MAPG), dry farming (DF), fallow (F),
dense rangeland (DR), very poor forest (VPF), mixture of
waterway and vegetation (MWV), mixture of moderate for-
est and agriculture (MMFA), mixture of moderate rangeland
and agriculture (MMRA), mixture of poor rangeland and
fallow (MPRF), mixture of low forest and fallow (MLFF),
woodland (WL), moderate forest (MF), moderate rangeland
(MR), poor rangeland (PR), bare soil and rock (BSR), urban
and residential (UR), mixture of very poor forest (MVPF),
and rangeland (R) (Fig. 3j).

Rainfall is a major source of recharge for the groundwa-
ter. In this research, 15 years (2000–2015) of mean annual
rainfall data from four rain-gauge stations of the study area
were used. The rainfall map (Fig. 3k) with five categories
(300–400, 400–500, 500–600, 600–700, and 700–800 mm)
was generated using an inverse distance weighting method
due to a lower root mean square error (RMSE; Khosravi et
al., 2016a, b). A soil map at a scale of 1 : 50000 for the study
area was provided by the Iranian Water Resources Depart-
ment (IWRD). The soil types are soil rock outcrops/Entisols,
rock outcrops/Inceptisols, Inceptisols, Inceptisols/Vertisols,
and badlands (Fig. 3l).

Lithology for the study area, at a scale of 1 : 100000,
was provided by the Iranian Department of Geology Sur-
vey (IDGS). Accordingly, 30 classes were used: OMq, PeEf,
PlQc, K1bl, Plc, pd, TRKubl, TRJvm, MPlfgp, OMql, Plbk,
E2c, TRKurl, Qft2, MuPlaj, KEpd-gu, Kgu, Qft1, Ekn,
KPeam, PeEtz, Kbgp, EMas-sb, Mgs, TRJlr, Klsol, JKbl,
Kur, OMas, and Mmn (Fig. 3m). Finally, using ArcGIS 10.2
software, all the aforementioned groundwater conditioning
factors were converted to a raster format with a grid size of
30m× 30m for modeling purposes.

3.2 Spatial relationship between spring location and
conditioning factors

To assess the spatial relationship between spring location
and conditioning factors, in this research, step-wise assess-
ment ratio analysis (SWARA) (Keršuliene et al., 2010), a
multi-criteria decision-making (MCDM) analysis, was used.
SWARA has received great attention in various fields in the
last 5 years (Alimardani et al., 2013; Hong et al., 2018). The
working principles of SWARA are briefly described as fol-
lows.

Phase one. First, the experts will define the problem-
solving criteria. By using the practical knowledge of the ex-
perts, the priority for the criteria is determined and these cri-
teria are organized in descending order.

Phase two. The following trends are employed for the es-
timation of the weight of the criteria.

Starting from the second criterion, the respondent explains
the relative importance of the criterion j in relation to the
(j −1) criterion, and for each particular criterion as well. As
Keršuliene mentioned, this process specifies the comparative
importance of the average value, Sj , as follows (Keršuliene
et al., 2010):

Sj =

∑n
1Ai

n
, (1)

where n is the number of experts, Ai explicates the offered
ranks for each factor by the experts, and j stands for the num-
ber of the factor.

Subsequently, the coefficient Kj is determined as follows:

Kj =

{
1 j = 1
Sj + 1 j > 1 . (2)

Recalculation of weight Qj is done as follows:

Qj =
Xj−1

Kj
. (3)

The relative weights of the evaluation criteria are calculated
by the following equation:

Wj =
Qj∑m
j=1Qj

, (4)

where Wj shows the relative weight of j th criterion, and m
is the total number of criteria.

www.hydrol-earth-syst-sci.net/22/4771/2018/ Hydrol. Earth Syst. Sci., 22, 4771–4792, 2018



4778 K. Khosravi et al.: Spatial prediction of groundwater spring potential

3.3 Groundwater spring prediction modeling

As mentioned earlier, in this research, five new metaheuristic
optimization algorithms (IWO, DE, FA, PSO, and BA) were
investigated in order to optimize the parameters of ANFIS.
This section briefly presents the theoretical background of
these algorithms and ANFIS.

3.3.1 Adaptive neuro-fuzzy inference system

An adaptive neuro-fuzzy inference system (ANFIS) was pro-
posed by Jang (1993) to solve nonlinear and complex prob-
lems in one framework. ANFIS converts input data to fuzzy
inputs by using a membership function; there are different
membership functions that describe system behavior (Jang,
1993). ANFIS is applied to the Takagi–Sugeno–Kang (TSK)
fuzzy model with two “if-then” rules, both with two inputs,
x1 and x2, and one output, f (Takagi and Sugeno, 1985), as
follows:

Rule 1 : if x2 is A2 and x2 is B2,

then f2 = p2x2+ q2x2+ r2, (5)
Rule 2 : if x1 is A1 and x2 is B1,

then f1 = p1x1+ q1x2+ r1. (6)

Jang’s ANFIS consists of a feed-forward neural network with
six distinct layers. Detailed description of ANFIS can be
found in Jang (1993).

3.3.2 Metaheuristic optimization algorithms

The main goal of these algorithms is to find the optimal an-
tecedent and the consequent parameters of the ANFIS model
using IWO, DE, FA, PSO, and BA algorithms. Figure 4 il-
lustrates a general methodological data flow of the ANFIS
model.

Invasive weed optimization algorithm

Invasive weed optimization (IWO) mimics the colonizing be-
havior of weeds. Its design, by Mehrabian and Lucas (2006),
is based on the way that weeds find proper space for growth
and reproduction. One characteristic of this algorithm is its
simple structure; the number of input parameters is low and
it has strong robustness. Furthermore, it is easy to understand
and the same merit causes it to be used for solving diffi-
cult nonlinear optimization problems (Ghasemi et al., 2014;
Naidu and Ojha, 2015; Zhou et al., 2015). This algorithm
consists of four parts: initialization, reproduction, spatial dis-
persal, competitive exclusion, and termination condition.

Differential evolution algorithm

Differential evolution (DE) is an evolutionary algorithm for
finding global optimal answers for problems with contin-
uous space (Das et al., 2009). This algorithm starts by

producing a random population in which each individ-
ual of the population is a solution to the problem. Vec-
tor XG

i =

(
xG1, i,x

G
2, i,x

G
3, i, . . ., x

G
D, i

)
shows each individual

of the population, i = {0, 1, 2, . . ., NP} is a number denot-
ing each individual, in which D stands for the search di-
mension, or in other words, is a component problem, and
G= {0, 1, 2, . . ., Gmax} generation time, where Gmax is the
total number of generations.

By assuming the maximum and minimum of ev-
ery dimension of searching space, there are XL =(
x1, Lx2, L, . . ., xD,L

)
and XU =

(
x2, U , . . ., xD,U

)
, respec-

tively; initial population is defined by the following (Storn
and Price, 1997):

x0
j,i = xj, L+ rand (0,1)×

(
xj, U − xj, L

)
, (7)

where rand (0, 1) is a uniformly distributed random number
in [0,1]. Detailed description of DE can be found in Chen et
al. (2017).

Firefly algorithm

The firefly algorithm (FA) is as a metaheuristic algorithm,
proposed by Yang (2010), that is originated from the flashing
and communication behavior of fireflies. Like other swarm
intelligence algorithms, of which components are known as
solutions to the problems, in this algorithm, each firefly is
a solution and its light intensity is the objective function
value. In general, the FA follows three idealized rules as
given below: (1) all firefly species are unisex, with each of
them attracting other fireflies without considering their gen-
der (Amiri et al., 2013); (2) attractiveness of a firefly is re-
lated to its light intensity, and thus, from two flashing fire-
fly species, one with lower light intensity moves toward the
other one with higher light intensity; (3) light intensity of a
firefly is defined as an objective function value and must be
optimized.

Particle swarm optimization algorithm

The article swarm optimization (PSO) algorithm has been in-
spired by the way birds use their collective intelligence for
finding the best way to get food (Kennedy and Eberhart,
1995). Each bird implemented in this algorithm acts as a
particle that is in fact a representative of a solution to the
problem. These particles find the optimum answers for the
problem by searching in “n” dimensional space, and “n” is
the number of the problem’s parameters. For this purpose,
particles were scattered randomly in space at the beginning
of algorithm execution. Detailed description of PSO can be
found in Kennedy (2011).

Bees algorithm

The bees algorithm (BA), which was introduced by Pham
et al. (2005), is inspired by the foraging behavior of bees’
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Figure 4. General methodological flow of ANFIS.

colonies in search of food sources located near the hive. In
the initial setup, evenly distributed scout bees are scattered
randomly in different directions to identify flower patches.
After that, scout bees come back to the hive and start a
specific dance called the waggle dance. This dance is for
communicating with others in order to share the information
of discovered flower patches. The information indicates di-
rection, distance, and nectar quality of the flower patches,
and helps the colony to have proper evaluation of all flower
patches. After evaluation, scout bees come back to the lo-
cation of discovered flower patches with other bees, named
recruit bees. Dependent on the distance and the amount of
nectar, a different number of recruit bees is assigned to each
flower patch. In other words, those flower patches with better
nectar quality are designated more recruit bees. Recruit bees
then evaluate the quality of flower patches when performing
the harvest process, and leave the flower patches with a low
quality. Conversely, if the flower patch quality is good, it will
be announced during the next waggle dance.

3.4 Performance assessment of models

According to Chung and Fabbari (2003), without validation,
the results (achieved maps) of the models do not have any sci-
entific significance. Prediction capability of these five spatial
groundwater models must be evaluated using both success-
rate curves and prediction-rate curves (Hong et al., 2015).
Success-rate curves show how suitable the built model
is for groundwater potential assessment (Gaprindashvili et
al., 2014). Success-rate curves have been constructed using
groundwater potential maps and the number of spring lo-

cations used in the training dataset (Tien Bui et al., 2012).
Prediction-rate curves constructed using the testing dataset
demonstrate how good the model is and evaluate the predic-
tion power of the models. Therefore, it can be used for model
prediction capabilities (Brenning, 2005). The area under the
curve (AUC) of success and prediction rate is the basis for
assessing the accuracy of the groundwater potential models
quantitatively (Khosravi et al., 2016a, b; Pham et al., 2017b).
The AUC value varies from 0.5 to 1; the higher the AUC,
the better the prediction capability of models (Tien Bui and
Hoang, 2018; Ngoc-Thach et al., 2018).

In addition, the mean squared error (MSE) was further
used (Bui et al., 2016) as follows:

MSE=
∑n
i=1(Oi −Ei)

2

N
, (8)

whereOi andEi are observation (target) and prediction (out-
put) values in both training and testing datasets, and N is the
total samples in the training or the testing dataset.

3.5 Inferential statistics

3.5.1 Friedman test

Nonparametric statistical procedures such as the Friedman
test (Friedman, 1937) can be used regardless of statistical as-
sumptions (Derrac et al., 2011) and do not presuppose the
data to be normally distributed. The main aim of this test is
to find whether there is a significant difference between the
models’ performance or not. In other words, multiple com-
parisons are performed to detect significant differences be-
tween the behaviors of two or more models (Beasley and
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Table 1. Multicollinearity analysis of conditioning factors.

No. Groundwater conditioning Collinearity statistics
factor

TOL VIF

1 Slope degree 0.231 2.401
2 Slope aspect 0.206 4.270
3 Altitude 0.801 2.097
4 Plan curvature 0.513 1.446
5 SPI 0.410 1.689
6 TWI 0.541 2.113
7 TRI 0.328 1.939
8 Distance from fault 0.408 2.25
9 Distance from river 0.212 3.126
11 Land use/land cover 0.296 3.891
12 Rainfall 0.298 1.686
13 Soil order 0.205 4.039
10 Geology (unit) 0.215 4.150

Zumbo, 2003). The null hypothesis (H0) is that there are no
differences among the performances of the groundwater po-
tential models. The higher the p value, the higher the proba-
bility that the null hypothesis is not true, since if the p value
is less than the significance level (α = 0.05), the null hypoth-
esis will be rejected.

3.5.2 Wilcoxon signed-rank test

Because the Friedman test only illustrates whether there is
any difference between the models or not, this test does
not provide pairwise comparisons among compared mod-
els. Therefore, another nonparametric statistical test named
the Wilcoxon signed-rank test has been applied. To evaluate
the significance of differences between the performances of
groundwater potential models, the p value and z value have
been used.

4 Result and analysis

4.1 Multicollinearity diagnosis

Results of the multicollinearity analysis in this study are
shown in Table 1. The analysis revealed that as the VIF is
less than 5 and TOL is greater than 0.1, no multicollinearity
problems exist among conditioning factors.

4.2 Determination of the most important parameters

The most common method, the information gain ratio (IGR),
was applied to identify the most important conditioning fac-
tors. Result shows that all 13 conditioning factors affect
groundwater occurrence. The land use/land cover factor has
the most important impact on groundwater (IGR= 0.502),
followed by lithology (IGR= 0.465), rainfall (IGR= 0.421),

TWI (IGR= 0.400), soil (IGR= 0.370), TRI (IGR= 0.337),
slope degree (IGR= 0.317), altitude (IGR= 0.287), distance
to river (IGR= 0.139), aspect (IGR= 0.066), plan curvature
(IGR= 0.0548), distance to fault (IGR= 0.0482), and SPI
(IGR= 0.0323).

4.3 Spatial relationship between springs and
conditioning factors using the SWARA method

The spatial correlation between groundwater springs and
the conditioning factors is shown in Table 2. Regarding the
slope, the class of 0–5.5◦ shows the highest probability (0.45)
of groundwater spring occurrence. As the slope degree in-
creases, the probability of spring occurrence is reduced. In
the case of slope aspect, the east aspect (0.44) has the most
impact on spring occurrence. According to calculated results,
in terms of altitude, springs are the most abundant in altitudes
of 1703–2068 m (0.6). The SWARA model is high in flat ar-
eas (0.4), followed by areas with concave (0.38) and convex
(0.2) curvature. For SPI, the highest SWARA value is found
for the classes of 583 969–1 330 153 (0.46). In the case of the
TWI, the SWARA values decrease when the TWI reduces.
There is an inverse relationship between TRI and SWARA
values, and as the TRI increases, the SWARA value reduces.

Regarding distance from the fault, a distance less than
2000 m has the highest impact on spring occurrence, and with
an increase in distance (greater than 2000 m), the probability
of spring occurrence is reduced. Regarding distance to river,
it can be seen that the class of 0–200 m has the highest cor-
relation with spring occurrence (0.46) and there is an inverse
relationship between spring occurrence and SWARA values.
In the case of land use, the highest SWARA values are shown
for garden areas (0.219), followed by a mixture of garden and
agriculture (0.17) and agricultural areas (0.12), whereas the
lowest SWARA is for bare soil and rock (0.00063). Rain-
fall between 500 and 600 mm has the highest SWARA value
(0.61). The Inceptisols class has the highest SWARA values
(0.5), followed by rock outcrops/Entisols (0.39), rock out-
crops/Inceptisols (0.056), Inceptisols/Vertisols (0.028), and
badlands (0.014). The highest probability is shown for the
highly porous and very good water reservoir karstic Oligo-
Miocene and Cretaceous pure carbonate formation (OMq
and K1bl), the young and poorly consolidated highly porous
detrital rock units (PeEf and Plq), and the unconsolidated
Quaternary alluvium (PlQc).

4.4 Application of ANFIS ensemble models and their
assessment

In the current study, hybrids of the ANFIS model and
five metaheuristic algorithms were designed, constructed,
and implemented in MATLAB 8.0 software. These models
were built using the training dataset. Weights gained by the
SWARA method for each conditioning factor were fed as in-
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Table 2. Spatial correlation between the conditioning factors and spring locations using the SWARA method.

Factors Classes Comparative importance Coefficient wj= (X(j − 1))/ kj Weight wj/
of average value Kj Kj=Sj+ 1 sigma wj

Slope (degree) 0–5.55 1.000 1.000 0.454
5.55–12.11 0.300 1.300 0.769 0.349
12.11–19.43 1.500 2.500 0.308 0.140
19.43–28.77 2.000 3.000 0.103 0.047
28.77–64.37 3.500 4.500 0.023 0.010

Slope aspect East 1.000 1.000 0.448
North 1.000 2.000 0.500 0.224
West 0.300 1.300 0.385 0.172
South 0.100 1.100 0.350 0.156
Flat 0.8 1.05 0.31 0.121

Altitude (m) 1703–2068 1.000 1.000 0.608
1385–1703 2.200 3.200 0.313 0.190
2068–3175 0.800 1.800 0.174 0.106
531–1070 1.000 2.000 0.087 0.053
1070–1385 0.200 1.200 0.072 0.044

Plan curvature Flat 1.000 1.000 0.408
Concave 0.050 1.050 0.952 0.388
Convex 0.900 1.900 0.501 0.204

SPI 583969.72–1330153.27 1.000 1.000 0.466
227099.33–583969.72 1.000 2.000 0.500 0.233
48664.14–227099.33 0.200 1.200 0.417 0.194
0–48664.14 1.000 2.000 0.208 0.097
1330153.27–4136452.25 10.000 11.000 0.019 0.009

TWI 6.64–7.92 1.000 1.000 0.471
5.60–6.64 0.700 1.700 0.588 0.277
7.92–11.97 1.300 2.300 0.256 0.120
4.63–5.60 0.100 1.100 0.233 0.110
2.12–4.63 4.000 5.000 0.047 0.022

TRI 0–5.59 1.000 1.000 0.544
5.59–12.66 0.800 1.800 0.556 0.302
12.66–20.62 1.500 2.500 0.222 0.121
20.62–30.93 3.000 4.000 0.056 0.030
30.93–75.13 10.000 11.000 0.005 0.003

Distance from 0–200 1.000 1.000 0.242
fault (m) 200–500 0.050 1.050 0.952 0.231

500–1000 0.100 1.100 0.866 0.210
1000–2000 0.050 1.050 0.825 0.200
> 2000 0.700 1.700 0.485 0.118

Distance from 0–200 1.000 1.000 0.464
river (m) 200–500 1.900 2.900 0.345 0.160

500–1000 0.050 1.050 0.328 0.152
1000–2000 0.300 1.300 0.253 0.117
> 2000 0.100 1.100 0.230 0.107

Land use/ Garden 1.000 1.000 0.219
land cover Mixture of garden and agriculture 0.282 1.282 0.780 0.171

Agriculture 0.340 1.340 0.582 0.128
Mixture of poor rangeland and fallow 0.419 1.419 0.410 0.090
Fallow 0.233 1.233 0.333 0.073
Mixture of moderate rangeland and agriculture 0.294 1.294 0.257 0.056
Mixture of very poor forest 0.124 1.124 0.229 0.050
Mixture of waterway and vegetation 0.549 1.549 0.148 0.032
Moderate forest 0.205 1.205 0.122 0.027
Mixture of agriculture with dry farming 0.064 1.064 0.115 0.025
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Table 2. Continued.

Factors Classes Comparative importance Coefficient wj= (X(j − 1))/ kj Weight wj/
of average value Kj Kj=Sj+ 1 sigma wj

Woodland 0.030 1.030 0.112 0.024
Good rangeland 0.043 1.043 0.107 0.023
Rangeland 0.333 1.333 0.080 0.018
Poor rangeland 0.030 1.030 0.078 0.017
Poor forest 0.210 1.210 0.065 0.014
Moderate rangeland 0.281 1.281 0.050 0.011
Bare soil and rock 0.237 1.237 0.041 0.009
Dense rangeland 0.278 1.278 0.032 0.007
Dense forest 10.000 11.000 0.003 0.001
Waterway 0.000 1.000 0.003 0.001
Mixture of agriculture with poor garden 0.000 1.000 0.003 0.001
Very poor forest 0.000 1.000 0.003 0.001
Mixture of moderate forest and agriculture 0.000 1.000 0.003 0.001
Mixture of low forest and fallow 0.000 1.000 0.003 0.001
Urban and residential 0.000 1.000 0.003 0.001

Rainfall (mm) 600–700 1.000 1.000 0.617
700–800 2.200 3.200 0.313 0.193
800–900 0.600 1.600 0.195 0.121
500–600 1.500 2.500 0.078 0.048
400–500 1.300 2.300 0.034 0.021

Soil order Rock outcrops/Entisols 1.000 1.000 0.509
Rock outcrops/Inceptisols 0.300 1.300 0.769 0.392
Inceptisols 5.900 6.900 0.111 0.057
Inceptisols/Vertisols 1.000 2.000 0.056 0.028
Badlands 1.000 2.000 0.028 0.014

Lithology (unit) OMq 1.000 1.000 0.133
PeEf 0.309 1.309 0.764 0.101
PlQc 0.253 1.253 0.610 0.081
K1bl 0.113 1.113 0.548 0.073
Plc 0.014 1.014 0.541 0.072
pd 0.059 1.059 0.511 0.068
TRKubl 0.223 1.223 0.417 0.055
TRJvm 0.027 1.027 0.406 0.054
MPlfgp 0.048 1.048 0.388 0.051
OMql 0.015 1.015 0.382 0.051
Plbk 0.081 1.081 0.353 0.047
E2c 0.291 1.291 0.274 0.036
TRKurl 0.059 1.059 0.258 0.034
Qft2 0.335 1.335 0.194 0.026
MuPlaj 0.100 1.100 0.176 0.023
KEpd-gu 0.080 1.080 0.163 0.022
Kgu 0.566 1.566 0.104 0.014
Qft1 0.064 1.064 0.098 0.013
Ekn 0.109 1.109 0.088 0.012
KPeam 0.027 1.027 0.086 0.011
PeEtz 0.328 1.328 0.065 0.009
Kbgp 0.445 1.445 0.045 0.006
EMas-sb 0.310 1.310 0.034 0.005
Mgs 0.626 1.626 0.021 0.003
TRJlr 10.000 11.000 0.002 0.000
Klsol 0.000 1.000 0.002 0.000
JKbl 0.000 1.000 0.002 0.000
Kur 0.000 1.000 0.002 0.000
OMas 0.000 1.000 0.002 0.000
Mmn 0.000 1.000 0.002 0.000
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put into the training dataset. The results are shown in Figs. 5
and 6.

As can be seen in Fig. 5, the MSEs of the ANFIS–IWO
model, the ANFIS–DE model, the ANFIS–FA model, the
ANFIS–PSO model, and the ANFIS–BA model using the
training dataset are 0.066, 0.066, 0.066, 0.049, and 0.09, re-
spectively. This indicates that the ANFIS–PSO model has
the highest performance, whereas the ANFIS–BA model
presents the lowest one. The prediction performance of the
five models using the validation dataset is shown in Fig. 6.
MSEs of the ANFIS–IWO model, the ANFIS–DE model, the
ANFIS–FA model, the ANFIS–PSO model, and the ANFIS–
BA model are 0.060, 0.060, 0.060, 0.045, and 0.09, respec-
tively. Therefore, it could be concluded that the ANFIS–PSO
model and ANFIS–BA model have the highest and lowest
prediction performances, respectively.

However, it should be noticed that, in addition to accu-
racy, the execution speed of the five models was found to
be of significance. To measure this, the running time for
1000 iterations was estimated. The result is shown in Fig. 7.
It could be seen that the running time of the ANFIS–IWO
model, the ANFIS–DE model, the ANFIS–FA model, the
ANFIS–PSO model, and the ANFIS–BA model was 8036,
547, 22 111, 1050, and 6993 s, respectively. It can be con-
cluded that the ANFIS–DE model had the lowest running
time and the ANFIS–FA model had the maximum time.

On the other hand, it is possible to test how each model
achieves convergence in learning. Using the cost function
values, a convergence graph for all five models was con-
structed and shown in Fig. 8. The results show that cost
function values of the ANFIS–DE model and the ANFIS–
BA model were stable from 30 and 95 iterations, indicating
a rapid convergence of the models, while the ANFIS–PSO
model, the ANFIS–IWO model, and the ANFIS–FA model
showed a convergence after 650, 650, and 360 iterations, re-
spectively. This indicates a slow convergence.

4.5 Generation of groundwater spring potential maps
using ANFIS hybrid models

Once the five models were successfully trained and validated,
these models were used to compute groundwater spring in-
dices for all the pixels of the study areas. Then, these indices
were exported from MATLAB into ArcGIS10.2 software for
generating groundwater spring potential maps. Ultimately,
the achieved maps could be sorted into five classes: very low,
low, moderate, high, and very high (Fig. 9a–e).

Many methods can be used for determining thresholds for
the five classes: manual, equal interval, geometric interval,
quantile, natural break, and standard deviation. Selection of
a method depends on the characteristics of the data and the
distribution of the groundwater spring indexes in a histogram
(Ayalew and Yamagishi, 2005). If the indexes have a positive
or negative skewness, the quantile or natural break classifica-
tion is suitable for index classification (Akgun, 2012). In this

Figure 5. MSE and RMSE values of the five models using the train-
ing dataset of (a) ANFIS–IWO, (c) ANFIS–DE, (e) ANFIS–FA,
(g) ANFIS–PSO, and (i) ANFIS–BA. Frequency errors of the five
models using the train dataset of (b) ANFIS–IWO, (d) ANFIS–DE,
(f) ANFIS–FA, (h) ANFIS–PSO, and (j) ANFIS–BA.

www.hydrol-earth-syst-sci.net/22/4771/2018/ Hydrol. Earth Syst. Sci., 22, 4771–4792, 2018



4784 K. Khosravi et al.: Spatial prediction of groundwater spring potential

Figure 6. MSE and RMSE values of the five models using the val-
idation dataset of (a) ANFIS–IWO, (c) ANFIS–DE, (e) ANFIS–
FA, (g) ANFIS–PSO, and (i) ANFIS–BA. Frequency errors of
the five models using the validation dataset of (b) ANFIS–IWO,
(d) ANFIS–DE, (f) ANFIS–FA, (h) ANFIS–PSO, and (j) ANFIS–
BA.

Figure 7. Processing time used for training the five models.

Figure 8. Convergence plot of the models.

research, the histogram was checked and the results revealed
that the quantile method was better than other methods for
index classification.

4.6 Validation and comparisons of the groundwater
spring potential map

The prediction ability and reliability of the five achieved
maps have been evaluated using both the training and the val-
idation datasets. The results of the success rate revealed that
the ANFIS–DE model had the highest AUC value (0.883),
followed by the ANFIS–IWO model (0.882), the ANFIS–
FA model (0.882), the ANFIS–PSO model (0.871), and the
ANFIS–BA model (0.852) (Fig. 10a). Regarding the predic-
tion rate, all five models had a good prediction capability but
the ANFIS–DE model has the highest prediction rate (0.873),
followed by the ANFIS-IWO model (0.873) and the ANFIS–
FA model (0.873), the ANFIS–PSO model (0.865), and the
ANFIS–BA model (0.839)(Fig. 10b).

4.7 Statistical tests

The result of the Friedman test (Table 3) revealed that as
significance and chi-square values were less than 0.05 and
greater than 3.84, respectively, the null hypothesis was re-
jected. The result also indicated that there was a statistically
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Figure 9. Groundwater spring potential map using (a) the ANFIS–IWO model, (b) the ANFIS–DE model, (c) the ANFIS–FA model, (d) the
ANFIS–PSO model, and (e) the ANFIS–BA model.
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Figure 10. (a) Success rate and (b) prediction rate of the five models.

Table 3. Results of Friedman test.

No. Performed Mean Chi-square Significance
models rank

1 ANFIS–DE 3.04
2 ANFIS–IWO 3.13
3 ANFIS–FA 2.98 64.84 0.00
4 ANFIS–PSO 2.72
5 ANFIS–BA 3.12

significant difference between prediction capabilities of the
five models.

The results of the Wilcoxon signed-rank test showed that
both p values and z values were far from the standard val-
ues of 0.05 and from −1.96 to +1.96, respectively, except
for the ANFIS–FA model vs. the ANFIS–DE model and
the ANFIS–PSO model vs. the ANFIS–DE model (Table 4).
This indicates that there are statistically significant differ-
ences between models’ performance, except for ANFIS–FA
vs. ANFIS–DE and ANFIS–PSO vs. ANFIS–DE.

4.8 Percentage area

The percentage area of each class of final map resulting from
the five hybrid models is shown in Fig. 11. According to
the results of the ANFIS–DE, the most accurate model in
groundwater spring potential mapping, the percentage areas
of very low, low, moderate, high, and very high groundwa-
ter spring potential are about 19.06, 19.88, 21.72, 20.55, and
18.78 % of the study area, respectively.

5 Discussion

5.1 The impact of conditioning factor classes on GSPM

Assessment of conditioning factor is a necessary step in find-
ing the correlation analysis between the groundwater spring
and the conditioning factors. It should be noted that no uni-
versal guideline is available regarding the number and size

Figure 11. Percentage areas of different groundwater spring poten-
tial classes for five models.

of the classes as well as the selection of the conditioning fac-
tors. They were selected mostly based on characteristics of
the study area and previous similar studies (Xu et al., 2013).
As the slope increases, the probability of water infiltration re-
duces and runoff generation will increase. Thus, the steeper
the slope, the lower the spring occurrence probability. Ac-
cording to the results of the SWARA method, the springs
tend to occur at middle altitudes or on mountain slopes. Land
in the flat curvature class retains rainfall which then infil-
trates. Therefore, the amount of groundwater in these areas
is higher than for concave or convex curvature. The east as-
pect has more springs than other aspects. These results are
in accordance with Pourtaghi and Pourghasemi (2014), who
reported that most springs occurred at elevations of 1600–
1900 m with an east slope aspect (using the FR method).

TWI shows the amount of wetness, and it is obvious that
the more the TWI, the higher the groundwater springs prob-
ability occurrence is. The terrain roughness index (TRI), or
topographic roughness or terrain ruggedness, calculates the
sum of change in elevation between a grid cell and its neigh-
borhood, and the lesser the roughness, the higher the spring
potential mapping. The SPI shows that the erosive power of
the water and the mountainous area is higher than the plain
area. So, as the SPI increases, the spring potential occur-
rence increases. Rivers are one of the most important sources
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Table 4. Results of the Wilcoxon signed-rank test.

No. Pairwise comparison z value p value Significance

1 ANFIS–DE vs. ANFIS–BA −3.97 0.00 Yes
2 ANFIS–FA vs. ANFIS–BA −2.37 0.017 Yes
3 ANFIS–IWO vs. ANFIS–BA −2.35 0.018 Yes
4 ANFIS–PSO vs. ANFIS–BA −3.04 0.002 Yes
5 ANFIS–FA vs. ANFIS–DE −1.32 0.185 No
6 ANFIS–IWO vs. ANFIS–DE −3.96 0.00 Yes
7 ANFIS–PSO vs. ANFIS–DE −0.841 0.41 No
8 ANFIS–IWO vs. ANFIS–FA −3.19 0.001 Yes
9 ANFIS–PSO vs. ANFIS–FA −1.90 0.057 Yes
10 ANFIS–PSO vs. ANFIS–IWO −2.44 0.015 Yes

of groundwater recharge, and the nearer to river, the higher
the probability of spring occurrence. Also, as the rainfall in-
creases, the groundwater spring incidence increases, but in
the current study, some other conditioning factors affected
the spring occurrence.

Most of the springs were located in the garden land
use/land cover category. Therefore, it can be stated that the
gardens have been established near the springs. Pliocene–
Quaternary formation is newer on a geologic timescale, and
Quaternary formation has a higher potential for groundwa-
ter spring incidence due to high permeability. A fault causes
discontinuity in a volume of rock. Thus, the nearer to the
fault, the higher the spring occurrence probability will be.
Inceptisols soils are relatively new and are characterized
as only having a weak appearance of horizons. They are
the most abundant on the Earth (https://www.britannica.com/
science/Inceptisol, last access: 1 May 2018) and are mostly
formed from colluvial and alluvial materials. So, due to high
permeability and high rainfall infiltration, they have a high
potential for spring occurrence. In the case of lithological
units, there are four suitable rock types in a water reservoir
based on physical phenomena such as porosity and perme-
ability that consist of (1) unconsolidated sands and gravels,
(2) sandstones, (3) limestones, and (4) basaltic lava flows. In
this study area lithological units include sedimentary rocks,
mostly carbonate and detrital rocks, with cover of alluvium
and minor soil.

5.2 Advantages/disadvantages of the models and
performance analysis

The highest accuracy based on the MSE in both the training
and validation datasets is found for the ANFIS–PSO model.
However, based on the AUC of the success rate and the pre-
diction rate, the ANFIS–DE model has the highest perfor-
mance. The problem with the MSE comes from the fact that
it is based on the error assessment. But the models should
be acted upon holistically based on abilities. The AUC is
based on the true positive (TP), true negative (TN), false pos-
itive (FP), and false negative (FN) (Pham et al., 2018b), and

therefore is more accurate than the RMSE for comparison
(Termeh et al., 2018).

ANFIS has the potential to capture the benefits of both
a neural network and fuzzy logic in a single framework and
can be considered to be a robust model. ANFIS had some ad-
vantages including the following: (1) a much better learning
ability, (2) a need for fewer adjustable parameters than those
required in other neural network structure, (3) the allowance
of a better integration with other control design methods
through its networks, and (4) more flexibility (Vahidnia et
al., 2010).

Despite several advantages of ANFIS, determination of
the membership function is the biggest disadvantage of this
model. Finding the optimal parameter for a neural fuzzy
model in a membership function is difficult; therefore, the
best parameter should make use of other optimization mod-
els. This problem was addressed in this paper by being solved
using five metaheuristic algorithms, namely IWO, DE, FA,
PSO, and BA.

In the current study, the results showed that DE algo-
rithm optimized the parameter for the neural fuzzy model
better than the four other algorithms. The main DE algo-
rithm’s advantage is its simplicity as it consists of only three
parameters called N (size of population), F (mutation pa-
rameter), and C (crossover parameter) for controlling the
search process (Tvrdýk, 2006). Advantages of the DE al-
gorithm can be explained as follows: (1) ability to handle
non-differentiable, nonlinear, and multimodal cost functions,
(2) parallelizability to cope with computation-intensive cost
functions, (3) good convergence properties, and (4) random
sampling and combination of vectors in the present popula-
tion for creating vectors for the next generation.

Finally, it should be noted that each algorithm has some
advantages or disadvantages according to the optimization
problems which can be summarized as follows.

Some of the advantages of IWO include the manner of
reproduction, spatial dispersal, and competitive exclusion
(Mehrabian and Lucas, 2006) as well as the fact that seeds
and their parents are ranked together and that those with
better fitness survive and become reproductive (Ahmed et
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al., 2014). This algorithm can benefit from combined advan-
tages of retaining the dominant poles and the error minimiza-
tion (Abu-Al-Nadi et al., 2013).

The bees algorithm does not employ any probability ap-
proach, but it utilizes fitness evaluation to drive the search
(Yuce et al., 2013). This algorithm uses a set of parameters
that makes it powerful, including the number of scout bees
in the selected patches, the number of best patches in the
selected patches, the number of elite patches in the selected
best patches, the number of recruited bees in the elite patches,
the number of recruited bees in the non-elite best patches, the
size of neighborhood for each patch, the number of iterations
and the difference between the value of first and last itera-
tions.

The firefly algorithm’s advantages are summarized as
(1) the handling of highly nonlinear, multimodal optimiza-
tion problems efficiently, (2) non-utilization of velocities,
(3) its ability to be integrated with other optimization tech-
niques as a flexible method, and finally (4) no need of a good
initial solution to begin its iteration process.

Advantages of the particle swarm optimization (PSO) al-
gorithm can be summarized as follows: (1) particles update
themselves with the internal velocity; (2) particles have a
memory, which is important for the algorithm; (3) the “best”
particle gives out the information to others; (4) it often pro-
duces quality solutions more rapidly than alternative meth-
ods; and (5) it automatically searches for the optimum solu-
tion in the solution space (Wan, 2013).

As a result, there is no algorithm which works perfectly
for all optimization problems, and each algorithm has a dif-
ferent performance accuracy based on different data. New
algorithms, therefore, should be applied and tested, and fi-
nally the most powerful algorithm should be selected as the
conclusion of the research demands.

5.3 Previous works and future work proposal

Some research has been carried out on groundwater well
or spring potential mapping using bivariate statistical mod-
els (Nampak et al., 2014; Guru et al., 2017; Al-Manmi and
Rauf, 2016), random forests (Rahmati et al., 2016), and
boosted trees for regression and classification (Naghibi et
al., 2016). The ANFIS–metaheuristic hybrid models have
not been used in groundwater potential mapping. However,
these hybrid models have proven to be efficient in flood sus-
ceptibility mapping (Bui et al., 2016; Termeh et al., 2018)
and landslide susceptibility mapping (Chen et al., 2017).
Bui et al. (2016) ensemble the ANFIS using two optimiza-
tion models, namely a genetic algorithm (GA) and particle
swarm optimization (PSO), for the identification of flood-
prone areas in Vietnam. Termeh et al. (2018) used ANFIS–
ant colony optimization, ANFIS–GA, and ANFIS–PSO in
flood susceptibility mapping of the Jahrom basin, and stated
that ANFIS–PSO had higher prediction capabilities than the
other two models. Chen et al. (2017) applied three hybrid

models, namely ANFIS–GA, ANFIS–differential evolution
(DE), and ANFIS–PSO, for identifying the areas prone to
landslides in Hanyuan County, China. The results showed
that ANFIS–DE had a higher performance (AUC= 0.84),
followed by ANFIS–GA (AUC= 0.82) and ANFIS–PSO
(AUC= 0.78).

In general, the results of the present study, as well as pre-
vious research, find that by applying hybrid models, better
results could be achieved for spatial prediction modeling in-
cluding groundwater potential mapping. The ensembles of
ANFIS and metaheuristic algorithms can be applied for any
spatial prediction modeling such as groundwater potential
mapping, flood susceptibility mapping, landslide susceptibil-
ity assessment, gully occurrence susceptibility mapping, and
other endeavors at a regional scale and in other areas.

For future work, it is recommended that (1) the water qual-
ity of the Koohdasht–Nourabad plain be investigated and the
water quality of areas with high potential be determined for
different aspects such as drinking and agricultural and in-
dustrial activities, and (2) the groundwater vulnerability as-
sessment be applied by some common methods including the
DRASTIC model for which the zones with a high potential
for groundwater occurrence should be protected against pol-
lution.

6 Conclusion

Groundwater is the most important natural resource in the
world and about 25 % of all freshwater is estimated to be
groundwater. Thus, groundwater potential mapping has been
considered to be one of the most effective methods for the
management of groundwater resources for better exploita-
tion. The main results of the present study can be summa-
rized by the following points.

1. The results showed that although all models had good
results, the ANFIS–DE had the highest prediction
power (0.875), followed by ANFIS–IWO and ANFIS–
FA (0.873), ANFIS–PSO (0.865), and ANFIS–BA
(0.839).

2. According to the results of the SWARA method, most
springs existed in altitudes of 1703–2068 m, with a flat
curvature, east aspect, TWI of 6.6–7.9, TRI of 0–8.7,
SPI of 583 969–1 330 153, Inceptisols soil type, a slope
of 0–5.5◦, 0–200 m distance from river, 500–1000 m
distance from fault, rainfall between 500 and 600 mm,
and a garden land cover category, and in a Pliocene–
Quaternary lithological age with an OMq lithology unit.

3. Based on the information gain ratio, the most impor-
tant factors affecting groundwater occurrence are land
use/land cover, lithology, rainfall, and TWI. The least
important factors are plan curvature, distance to fault,
and SPI.
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4. Based on the ANFIS–DE model, a total of 39.33 % of
the study area has a high and very high groundwater
potential, situated in the north.

The results of the current study are helpful for the Iran Water
Resources Management Company (IWRMC) for sustainable
management of groundwater resources. Overall, the maps re-
sulting from these hybrid artificial intelligence algorithms
can be applied for the better management of groundwater re-
sources in the study area.

Data availability. Data are available for download at https://github.
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