Linearization for Analysis of a Hydropower Model using Python
API for OpenModelica

Liubomyr Vytvytskyi

Bernt Lie

Department of Electrical engineering, Information Technology and Cybernetics, University of South-Eastern Norway,
Porsgrunn, Norway, { Liubomyr.Vytvytskyi,Bernt.Lie}@usn.no

Abstract

Even though almost all processes in the real world are de-
scribed by nonlinear models, nonlinear theory for analysis
of these models is far less developed than the theory for
linear models. Therefore model linearization is important
in order to make efficient analysis tools for these models.
This paper describes the possibility of automatic lin-
earization in Python for a hydropower system modeled in
OpenModelica using our in-house hydropower Modelica
library OpenHPL. Linearization is made using a Python
API. Simple uses of the linearized model for analysis and
synthesis are indicated.
Keywords: linearization, hydropower, Python API, Open-
Modelica

1 Introduction

1.1 Background

A transition towards more renewable energy sources is
currently taking place in Europe and all over the world.
This situation leads to increase in the use of flexible hy-
dropower plants to compensate the highly changing pro-
duction from intermittent energy sources such as wind and
solar irradiation. A high head hydropower system is con-
sidered for this study, because it takes up the main part of
all hydropower plants in Norway.

The possibility for modelling and simulating this hy-
dropower system takes an important role in order to make
efficient analysis tools for testing a designed controller for
stability and performance in different operating regimes.
One of such analysis tools can provide automatic lin-
earization; an approximate linear model allows for the use
of linear theory for analysis and synthesis which is much
better developed than nonlinear theory.

1.2 Previous Work

Basic mathematics and control theory needed to model,
analyze, and design feedback systems are provided in (As-
trom and Murray, 2010). Based on these methods, the lin-
earized hydropower model can be further tested and an-
alyzed for control purposes using a Python' package —
python-control (The Python Control Systems Library)?.

"https://www.python.org
2https://goo.gl/MtbYt £

https://doi.org/10.3384/ecp18153216

216

python-control is a Python module, where basic opera-
tions for analysis and design of feedback control systems
are implemented.

A Python API® for OpenModelica* already exists that
provides possibilities for controlling simulations of the
OpenModelica models via Python (Lie et al., 2016).
Python in turn gives much wider possibilities for plotting,
analysis, and optimization (e.g., using Python packages
matplotlib, numpy, scipy, etc.).

Some work on modeling a waterway for the high head
hydropower system together with a generator, the Fran-
cis turbine, and a governor, has already been done using
OpenModelica (Vytvytskyi and Lie, 2017, 2018). Unit
models have been assembled in our in-house Modelica’
library OpenHPLS.

1.3 Overview of Paper

In this paper, the main contribution is investigation of how
modern computer tools can make the workflow of anal-
ysis and design, including linearization and linear con-
trol analysis/design. This is the first paper that demon-
strates how linearization can be done using the Python API
for “non-academic” hydropower models of different com-
plexity. Model implementation is done in OpenModelica
using the OpenHPL library.

The paper is structured as follows: Section 2 gives a
system description of a high head hydropower system.
Section 3 gives an overview of the modeling tools and a
presentation of the hydropower model. Then automatic
linearization and a simple PI controller design are de-
scribed in Sections 4 and 5. Finally, discussion and con-
clusions are given in Section 6.

2 System Description

High head plants typically collect and store water in reser-
voirs in mountains, with tunnels leading the relatively
small flow of water down a considerable height differ-
ence to the aggregated turbine and generator. The electric-
ity, produced by the generator, is then transferred through
power lines to consumers. A typical structure for the high

3https://goo.gl/Qyiqq2

4https://openmodelica.org

Shttps://www.modelica.org

50pen Hydro Power Library is developed by the first author within
his PhD study.

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

https://www.python.org
https://goo.gl/MtbYtf
https://goo.gl/Qyjqq2
https://openmodelica.org
https://www.modelica.org

head hydropower plant is depicted in Figure 1 (Vytvytskyi
and Lie, 2017).

For simulations in this paper, the data from the Sunds-
barm hydropower plant in Telemark, Norway is used with
data provided in (Winkler et al., 2011), see Table 1 and 2.

Table 1. The waterway geometry of Sundsbarm hydropower
plant.

Waterway Height Length, m Diameter, m
unit difference, m

Reservoir 48 — —

Conduit 23 6600 5.8
Penstock 428.5 600 3

Surge tank 120 140 34
Discharge 0.5 600 5.8

race

Tail water 5

Table 2. The turbine geometry of Sundsbarm hydropower plant.

Turbine Nominal Nominal flow Nominal
type head, m rate, m> /s power, MW
Francis 460 24.3 104.4

3 Modeling
3.1 Modeling Tools

All modeling is done in OpenModelica, which is an open-
source Modelica-based modeling and simulation environ-
ment intended for industrial and academic usage’.

For modeling the hydropower system, library
OpenHPL is used. This is an in-house hydropower
library, where different parts of the waterway compo-
nents, such as reservoir, conduit, surge tank and turbine,
have been assembled. In this library, different waterway
components of the hydropower system are described by
both mass and momentum balance, and could include
compressible/incompressible water or elastic/inelastic
pipe walls. A better overview of the mathematical models
and methods used in this library is giving in (Vytvytskyi
and Lie, 2017; Splavska et al., 2017).

In addition, our hydropower library can also be con-
nected with other open source Modelica libraries such
as OpenIPSL® (Open-Instance Power System Library),
where a much wider variety of power system components
are presented. Together, the OpenHPL and OpenIPSL li-
braries give a possibility to develop a model for the whole
hydropower system that starts from the water in the reser-
voir and ends with the different electrical loads. Lineariza-
tion also works for more complex/detailed models than

7Some tutorials exist for Modelica — http://book.xogeny .
com, and OpenModelica — https://goo.gl/76274H
8http://openipsl.readthedocs.io/en/latest

https://doi.org/10.3384/ecp18153216

217

used here (e.g., a model for the whole hydropower sys-
tem), but space limitations restrict our presentation to sim-
pler cases.

3.2 Model Presentation

In this study, two cases of complexity for this system are
considered:

1. Simplified system with incompressible water and in-
elastic pipe.

2. More complex system that includes water compress-
ibility and pipe shell elasticity in the penstock.

Both these cases are straightforward to implement in
OpenModelica using the OpenHPL library. A block di-
agram that is relevant for both cases of the hydropower
system is presented in Figure 2. For simplicity, the wa-
ter levels in reservoir and tail water are considered to be
constant.

In both cases, the model has one input — turbine gate
opening — u;, and one output — turbine volumetric flow
rate — V.

4 Linearization

4.1 Overview

The Python API (Lie et al., 2016) provides a lineariza-
tion function that allows approximation of nonlinear DAE
models in OpenModelica to linear state space models in
Python.

First, the Modelica model is instantiated in Python us-
ing the OMPython package and the following command:

hps_s=ModelicaSystem("OpenHPL.mo","
OpenHPL.Tests.HPLiniarization","
Modelica") // for simpler model

hps_kp=ModelicaSystem("OpenHPL.mo", "
OpenHPL.Tests.HPLiniarizationKP", "
Modelica") // for complex model

After this, the input signal and simulation options are
set in Python for the simulation. Before linearization, the
model parameters are set to steady state values. Automatic
linearization is done from Python, where the matrices for
the general state-space representation of a linear system
are given using the following command:

As,Bs,Cs,Ds = hps_s.linearize() // for
simpler model
Akp, Bkp, Ckp,Dkp =

complex model

hps_kp.linearize() // for

4.2 Simple Model

First, the simple hydropower model is linearized. Through
linearization, the state-space matrices A, B, C and D are
generated:

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

http://book.xogeny.com
http://book.xogeny.com
https://goo.gl/76274H
http://openipsl.readthedocs.io/en/latest

Surge tank

Reservoir
H,
A
A
Intake race Hy
Guide vane
Manifold I Discharge
P Tail water
ai
Penstock
......................... H
........................ A
Wy y
Turbine .
Figure 1. Structure of the high head hydropower plant.
const
Yy
Y

surgeTank

reservoir intake .I g
o-.g. Kk

tail

tLMTe discharge

D P

v@

Figure 2. Model of the hydropower system.

[—44 34.107% 7.7-10°°
A=1|42 —40-103 —-1.1-107 (1)
| 0.0 997 0.0
[110.45
B= |—106.62)
| 00
C=[10 0.0 0.0] (3)
D = [0.0])

Information about the state, input and output vari-
ables and their order for the linearized simple model can
checked in Python using the following commands:

// for inputs

// for outputs
// for states

hps_s.getLinearInputs ()
hps_s.getLinearOutputs ()
hps_s.getLinearStates()

As mentioned above, this model has one input u = u;,
and one output y = V;,. The linearization algorithm gives

https://doi.org/10.3384/ecp18153216

218

a state vector with 3 elements: x = [V,,, Vs, m 7. Here, V,
and V; are the volumetric flow rates in the penstock and
surge tank respectively, m; is the water mass in the surge
tank. The linearization algorithm has actually considered
two more states (the water masses in the reservoir and tail
water). However, due to assumption of the constant water
level in those compartments, their rows in the A matrix are
zero vectors and can be neglected.

As seen, for this simpler case the linear model is of
low order. It is also known that the system is asymptoti-
cally stable if all eigenvalues of the A matrix have negative
real parts. Using the following command from the numpy
package, we find the eigenvalues:

linalg.eig(As)

The eigenvalues of A matrix are as follows:

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

—4.367
—0.003+0.06
—0.003 —0.06;

eig(A) =)

4.3 Complex Model

Next, the more complex hydropower model has been lin-
earized in the same way as was presented for the simpler
case. The state-space matrices are presented below in sim-
plified form due to their shape:

4.17 0.0
A — c R22><22 (6)
| 0.0 0.0
[0.0
B=|: | eR? (7
0.0
C=1[0.0 0.0] € R'*2 (8)
D = [0.036] ©9)

The inputs, outputs and states for the linearized com-
plex model are also provided using the following com-
mands:

// for inputs

// for outputs
// for states

hps_kp.getLinearInputs ()
hps_kp.getLinearOutputs ()
hps_kp.getLinearStates()

The input and output are the same as for the sim-
pler case. However in this case, the model consists
of 22 states that make it more space demanding, x =
(it i, pp,,-,Vs,mS]T. Here, two states are also relevant for
the surge tank: the volumetric flow rate, V;, and the water
mass, mg. On the other hand, the penstock now is de-
scribed by 20 equations — 10 for the mass flow rate —
rir, ;) and 10 for the pressure — p,,; (here, i is a cell num-
ber in range from 1 to n, where n is a number of discretiza-
tion points of the penstock). This is due to using the Finite
Volume method for the discretization of the more complex
model with compressible water and elastic pipe walls (the
penstock is divided in ten cells here).

In the same way as it was done for the previous simpler
case, the eigenvalue analysis of A matrix could be per-
formed. We found that this more complex system is also
asymptotically stable.

4.4 Bode Plot Comparison

After the hydropower model has been linearized and the
(A,B,C,D) matrices for the general state-space represen-
tation are defined for the two cases, some further analysis
for the linearized system might be done. For control pur-
poses, the frequency response of a system (Bode plot) can

ss(A,B,C,D)
phase, omega =

sys =

mag, bode_plot (sys, dB=True)

As an alternative, the transfer function H(s) of the sys-
tem could be found from:

H(s)=C(sI—A)"'B+D (10)

Here, s is the Laplace operator and for the frequency
response, define s = jw, where @ is frequency in radians.
After this, the Bode plot for the linearized hydropower
system can be plotted. The Bode diagram for the two cases
of the linearized hydropower model are shown in Figure 3.

Bode Diagram

e)
i) 0 er“\\\\\\\\\\§______
()
kel
2
S, —50 4. —— Complex case
2 Simpler case
1072 107! 10° 10 102 10° 10% 10° 10°
_. 5079 —— Complex case
o .
] Simpler case
S 04 -
()
n
£ -50 A \]
a

10°' 10° 10* 102 10° 10% 10° 10°
Frequency [rad/s]

102

Figure 3. Comparison of Bode plot for two cases of the hy-
dropower system.

S Design of PI Controller

Using the python-control package in Python, a simple PI
controller for the linearized hydropower models could be
designed and tuned.

First, the step response of the control signal for the lin-
earized hydropower model is found for the two cases, us-
ing the following command:

ss (As,Bs,Cs,Ds)
youts, Ts = step(sys_s)
sys_kp = ss (Akp,Bkp,Ckp,Dkp)
system
youtkp, Tkp =

Sys_s = // simple system

// complex

step (sys_kp)

The results of the control signal step response for both
the simple and the complex linearized models are shown
in Figure 4.

After this, a PI controller C,(s) = is tuned.

Then, the controller transfer function is defined in
Python using the control package and connected to the
hydropower system via feedback using the following com-
mands:

KPS+Ki
s

be interesting. CrPI = tE£([[[Kp, Kill], [[[1., O0.]]])
| his f the following com- Trs = feedback(sys_s*CrPI,1)
To plot this frequency response, . wing youts, Ts = step (Trs)
mands from the python-control package in Python canbe trxp = feedback (sys_kp*CrPI, 1)
used: youtkp, Tkp = step (Trkp)
https://doi.org/10.3384/ecp18153216 219 Proceedings of The 59th Conference on Simulation

and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

Step test

uie

20141

154

Output [m3/s]

—— Complex case
04 Simpler case

400 600 800 1000

Time [s]

0 200

Figure 4. Comparison of the step response for the simple and
complex linearized models.

The results of the step response for the reference value
for the PI controller that control the hydropower system
for the two cases are shown in Figure 5 and Figure 6. For
the two cases, the step response is done for two sets of
controller parameters.

Step test

—— Kp = 0.3; Ki = 10.0
Kp=10.3;Ki=1.5

Output [m?¥/s]
o
o

I
IS

o
[N

o
o

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time [s]

Figure 5. Step response for the simpler model with PI controller.

Finally, the designed and tuned PI control could be
checked on the original (nonlinear) hydropower model in
OpenModelica. The results of the step test for the output
and input are shown in Figure 7 — for the simpler case
and Figure 8 — for the more complex case.

6 Discussion and Conclusions

The possibility of automatic linearization of OpenModel-
ica models through Python using the Python API has been
presented in this paper.

Two cases with different model complexity for the hy-
dropower system have been linearized in order to show
the linearization capability of the Python API. Despite the
model complexity, the linearization algorithm finds the
state space matrices A, B, C, D.

After linearization, linear theory could be further used
for the model analysis and synthesis. Examples of analysis
has been presented by creating a Bode plot and designing

https://doi.org/10.3384/ecp18153216

220

Step test

— Kp=0.1;Ki = 10.0
Kp =0.1;Ki =35

\7_________.._ ______

124

1.04

0.8 1

0.6

Output [m3/s]

0.4

0.2 1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

Figure 6. Step response for the complex model with PI con-
troller.

Step test, original simpler model

20.0

19.5 4

Output [m3/s]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Kp=03;Ki=15

0.9

Input [-]

0.8 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

Figure 7. Step test for the nonlinear hydropower model, simpler
case.

a simple PI controller, using the already exist packages in
Python (numpy or python-control). The Bode diagram has
been plotted for two cases of the hydropower system in
order to show the frequency response of the models. Then
the possibility of PI controller design has been shown for
the two cases. The designed PI controller has also been
tested for the original (nonlinear) models in OpenModel-
ica.

Besides the presented examples of linear analysis,
many more other possibilities for analysis and synthesis
of the linearized model might be used, such as sensitivity
or stability analyses, etc.

References

Karl J. Astrom and Richard M. Murray. Feedback Systems: An
Introduction for Scientists and Engineers. Princeton Univer-
sity Press, 2010.

Bernt Lie, Sudeep Bajracharya, Alachew Mengist, Lena Buf-
foni, Arun Kumar, Martin Sjolund, Adeel Asghar, Adrian
Pop, and Peter Fritzson. API for Accessing OpenModelica
Models From Python. Proceedings of EuroSim 2016, Oulu,
Finland, 2016.

Valentyna Splavska, Liubomyr Vytvytskyi, and Bernt Lie. Hy-

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

Step test, original comlex model

N
©
S)

Output [m3/s]
=
o
w

,_\
©
o

T T T T

0 2 4 6 8 10
Kp =0.1;Ki = 3.5

0.80_ W

0.75 1

Input [-]

0 2 4 6 8 10
Time [s]

Figure 8. Step test for the nonlinear hydropower model, com-
plex case.

dropower Systems: Comparison of Mechanistic and Table
Look-up Turbine Models. Proceedings of 58th SIMS Con-
ference, Reykjavik, Iceland, 2017.

Liubomyr Vytvytskyi and Bernt Lie. Comparison of elastic vs.
inelastic penstock model using OpenModelica. Proceedings
of 58th SIMS Conference, Reykjavik, Iceland, 2017.

Liubomyr Vytvytskyi and Bernt Lie. Mechanistic model for
Francis turbines in OpenModelica. Proceedings of Mathmod
conferance, Wien, Austria, 2018.

Dietmar Winkler, Hege M. Thoresen, Ingvar Andreassen, Mag-
amage A. S. Perera, and Behzad R. Sharefi. Modelling and
Optimisation of Deviation in Hydro Power Production. In
Modelica Conference, 2011.

https://doi.org/10.3384/ecp18153216 221

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

	Introduction
	Background
	Previous Work
	Overview of Paper

	System Description
	Modeling
	Modeling Tools
	Model Presentation

	Linearization
	Overview
	Simple Model
	Complex Model
	Bode Plot Comparison

	Design of PI Controller
	Discussion and Conclusions

