

AIS Classifier

(draft)

Thomas Nordli

Tønsberg: Høgskolen i Vestfold, 2011
Notat 2/2011

Notat nr 2/2011 Høgskolen i Vestfold

© Høgskolen i Vestfold / Forfatteren

ISSN: 0808-131X

AIS Classi�er (draft)

Thomas Nordli <tn@hive.no>

June 29, 2011

Contents

1 Abstract 2

2 Introduction 2

2.1 What is AIS? . 2
2.2 Problem de�nition . 2
2.3 Assumptions and limitations . 2

3 Overview of the system. 3

3.1 Kystverket . 3
3.2 Project Server . 3
3.3 Instrumentation laboratory . 3

4 Expected Quality of the Data 3

5 Software 4

5.1 netcat . 4
5.2 devtools_ais . 4
5.3 TrackSplitter . 4
5.4 TrackDescriber . 4
5.5 TrackClassi�er . 5

6 Generation of the dataset 6

7 Result 7

8 Future work 7

8.1 Features . 8
8.2 Classes . 8
8.3 Data . 8
8.4 Implementation . 8

9 Conclusion 8

A Tracksplitter 8

B Track Describer 9

C TrackClassi�er 11

1

1 Abstract

This report describes a system that makes it possible to explore the AIS data
broadcasted by ships. The goal of such a system is to determine how/if it is
possible to predict the ship type solely based on AIS messages sent by ships,
ignoring the ships self proclaimed type.

The system is intended to be used to discover anomalous behavior by com-
paring the predicted type with the self proclaimed one. Eventually it is suppose
to work online, processing live feeds of data. By now it is only working o�ine.

The report is to be considered a draft, as the prototype is still missing vital
functions, and is not thoroughly tested.

2 Introduction

2.1 What is AIS?

Automatic Identi�cation System, is a system that obligates some ships to trans-
mit some data over VHF radio. The obligation is a part of the SOLAS conven-
tion and applies to all passenger ships, ships with tonnage of 300 or above in
international waters and cargo ships tra�cing national with tonnage of 500 or
above [4].

2.2 Problem de�nition

Is it possible to classify the ships based on the �elds in the AIS messages (exclud-
ing the ship type) alone? The prototype system described here is a contribution
to a framework for investigating this question.If the answer to the question turns
out to be positive, a software module based on the prototype system developed,
can be used for spotting anomalies and raising alarms. Anomaly detection sys-
tems have usually a high frequency of false positives, therefore the system must
have parameters that may be tuned to lower the false positive rates. Such a
software can be standalone or integrated with existing alarm systems.

2.3 Assumptions and limitations

This work is done under the assumption that there is detectable di�erences in
the normal behavior of di�erent classes of ships.AIS includes 27 message types.
Only message of type 1, and 5 for self proclaimed type, is treated in this report,
as these are the only one used in the prototype system.Since this project have
not yet identi�ed any e�ective discriminating features, only four of the �elds
from message type 1, are included. These �elds are rotation (ROT), course
over ground (COG), speed over ground (SOG) and heading (HEAD). The mean
and variance of these are used as features, giving feature vectors with eight
dimensions. These �elds and the statistics were chosen because they were easy
to implement, as examples to demonstrate the concept. They turned out to
have poor ciscriminatroy capabilities.

2

3 Overview of the system.

3.1 Kystverket

Kystverket, the Norwegian Coastal Administration, is the national agency for
coastal management, maritime safety and -communication in Norway. They
provide live AIS data for this project via a TCP server.

3.2 Project Server

A server running linux is set up to capture, prosess and store the data. The
software described below is run on this server.

3.3 Instrumentation laboratory

Vestfold University College has an maritime instrumentation lab with some AIS
equippement connected to an antenna on the roof. While waiting for Kystverket
to process our application for access to live AIS data, a Avosent ESP was pur-
chased, and connected to Seatex AIS 100 via an Connection box. The Avosent
ESP was con�gured to recieve data on an rs424 link and distributing it via TCP
on the lab's ethernet LAN. Via the university college ethernet switch, the data
was thereby availiable to the project server.

4 Expected Quality of the Data

Harati-Mokthari et al. discusses errors found in live data. Many of the ship
types are very vage or misleading, such as �vessel� or �cargo�. For several

3

types the regulations of use are ambiguous. One of the studies investigated
by Harati-Mokthari et al., found vessels that were registered with the same ves-
sel type in Lloyds register database, transmitted di�erent vessel types in the
AIS messages[2].

Kjerstad also describes some sources of errors that can be found in AIS
data[4].

5 Software

5.1 netcat

Netcat [3] is called the swiss army knife of TCP/IP. It is in this project used
to connect to the data soucres, recieve the data and printing it out to standard
output.

Command: nc nmea.hive.no 4002

5.2 devtools_ais

devtools_ais, a AIVDM/AIVDO decoder, is part of gpsd [6]. It is accompanied
with a detailed documentation of how to decode AIVDM/AIVDO sentences [5].
In this project it is used as a command line tool to convert AIVDM data, that
comes from the AIS recievers, to a common data format with comma-separated
values (CSV).

Command: ./devtools_ais.py -c

5.3 TrackSplitter

The CSV �le produced by devtools_ais, contains all recieved messages from all
ships. The features that we need, should be per ship, therefore a little script
is made, that reads the CSV �le and splits it into multiple �les named in a
directory. Each of the �les produced contains messages from one ship only. They
are named with the ship's MMSI number. The script is called tracksplitter, and
you can �nd it listed in appendix A.

5.4 TrackDescriber

Each of the �les produced by tracksplitter, is to be processed by trackdescriber.
Trackdescriber reads data from standard input (STDIN) and makes features
that characterize a 'track'. By track is here meant all messages comming from
one ship.As there is still not identi�ed any discriminating features, only a few
example features is implemented. Four �elds are used: ROT, SOG, COG and
HEAD. Each �eld is represented by an instance of a class called 'dataField'.

4

The class keeps track of three attributes: The sum, the sum of squares and the
number of recieved messages (n). Each time a new message arrives, the value
is passed to the method addData, and the three attributes are updated. If the
script is left running reading real time data (from a live feed, and not from a
�le), it will eventuall produce an arithmetic over�ow. The issue of arithmetic
over�ow is not yet dealt with.Four objects of this class is instantiated, one from
each of the above mentioned AIS �elds. STDIN is read line by line, adding
data for each line. Each line represents one AIS message. When the features
are to be generated (and printed to STDOUT, var() and mean() are called
for, producing the mean and variance. This gives a feature vector of eigth
dimensions. This printing is preceded with a aproriate header with meta data
intended for reading with a classi�er written using the python scripting interface
from the data mining tool orange[1].

TrackDescriber is listed in appendix B

5.5 TrackClassi�er

The script trackclassi�er reads the feature vectors generated by TrackDescriber,
and predict a ship type. As there are still no classi�ers developed, all the script
does at this point in time, is to do some evalution of the discriminating powers
of the perliminary features using some of the data mining techniques included
in Orange [1]. It currently uses the AIS ship type as the class. The reason for
this not being a good idea is explained in section 4.

TrackClassi�er is listed in appendix C
Below you can the result of a run.

$./trackClassifier.py

Classes: 26

Attributes: 8

After feature subset selection with margin 0.010 (8 attributes):

Outliers are now removed

Before feature subset selection (8 attributes):

0.069 varCog

0.058 meanHead

0.049 varRot

0.048 meanSog

0.047 varSog

0.040 meanRot

0.039 meanCog

5

0.035 varHead

Classification accuracies:

bayes 0.0142857142857

tree 0.201388888889

Classification accuracies (leave one out):

bayes 0.0208333333333

tree 0.201388888889

$

6 Generation of the dataset

Data is comming in as a stream of text over TCP connections, one line per
AIS packet. It is recieceved and logged to a �le with the unix command 'nc'
(netcat).

$ head -n5 data/hive/nohup.out

!AIVDO,1,1,,,13o02wnP000gk;LQv:uh0?vv0000,0*07

!AIVDM,1,1,,B,D02R3f1HpNfq6DO6D0,4*4F

!AIVDO,1,1,,,13o02wnP000gk;HQv:uP0?w20000,0*7E

!AIVDM,1,1,,A,13mDIj0P000h05FR0@:@0?w000O,0*36

!AIVDM,1,1,,B,13oE6P002Q0h;0VQwfTbS`Q200f,0*71

To start caputuring data the following command was used to log data comming
in through the antenna on thr roof.nohup nc nmea.hive.no 4002 &

The command nohup makes sure that the process created by the rest of the
commandline is disconnected from the current session, so that it will continue
after the session is terminated and the user that issued the command has logged
out. The logging will now continue until an authorized user stops it, the systems
shuts down or the storage space is �lled up.The tool 'devtools_ais' extracts the
packed bit�elds from the aquired AIS messages and converted to a 'csv' (comma
separated values) format.

$ head -n5 data/hive/nohup.out | ./devtools_ais.py -c

1,0,258999039,6,-128,0,0,6265198,35621623,0,511,31,0,0,0

20,0,2655160,1422,1,7,750,1125,1,7,1125,0

1,0,258999039,6,-128,0,0,6265196,35621622,0,511,33,0,0,0

1,0,257235400,0,-128,0,0,6291627,35655721,0,511,32,0,0,49183

1,0,259344000,0,0,161,0,6314003,35647122,2702,272,33,0,0,49198

Trackplitter reads the data produced by 'devtools_ais.py -c'. The data is split
by mmsi, and written to temporary �les in './tmp�les'. Each �le represents
data from one ship, and is named with its mmsi number.

$ ls tmpfiles/ | head -n5

156198689

205203000

205585000

209324000

209350000

Each �le in the directory contains information on one ship.

6

$ head -n5 tmpfiles/205203000

1,0,205203000,0,0,192,1,6336077,35873338,1810,180,54,0,0,81956

3,0,205203000,0,-15,193,1,6329874,35849725,1820,181,26,0,0,0

1,0,205203000,0,11,184,1,6369048,35786658,1740,174,54,0,0,81945

1,0,205203000,0,0,190,1,6370747,35779543,1730,173,12,0,0,21076

1,0,205203000,0,0,189,1,6371729,35775168,1730,173,36,0,0,81948

The track_describer Reads AIS messages from STDIN. It assumes that the mes-
sages is formatted as produced by './devtools.py -c', and that all the messages
originates in the same ship. Features are calculated and output is printed on
STDOUT.To be scalable, and to be able to continously processing data from live
streams, It is desiged in a way that it does not have to store all the data. Only
aggregations of data is stored (and updated for each incomming packet).The fol-
lowing command is used to write features of all the tracks to the �le tabulator
separated �le called 'data.tab'.

for F in tmpfiles/* ;do ./track_describer.py $F;done > data.tab

The �le 'data.tab' has to be provided with a header, giving names and types to
the columns. The column indicating the class (ship type) is also marked. This
is done giving the �le å header.

$ head -n5 data.tab

meanSog stdSog meanHead stdHead meanCog stdCog meanRot stdRot type

c c c c c c c c d

class

0.188781 29.984842 188.666667 27.537797 1802.664509 17832.525553 \

180.325782 173.444507 35

-0.452115 48.898434 41.386802 1782.776197 2222.091371 860973.688331 \

112.157699 6503.311616 70

The �rst line contains the �eld names, The second names declears type (c =
continous, d = discrete). The third line marks the column that indicates the
column that the classi�er should aim to predict.The �le 'data.tab' can now be
used by the tool trackClassi�er.

7 Result

The project has developed a system for producing data set, preprocessing the
data, extracting features and analyzing them. The software works only o�ine,
but is developed with the goal of beeing able to work both o�ine and online.Two
datasets are produced. One based on local messages recived from the antenna
on the roof. And one based on data comming from Kystverket.

8 Future work

This project has produced a framework for further investigation. In this section
you will �nd some a brief description of some of the work that should be done,
if the project is continued.

7

8.1 Features

As there is not yet identi�ed any features, this is something to do further work
on. When features are identi�ed more preprossessing on some of the �elds have
to be done. The details of the domains of �elds can be found in AIVDM/AIVDO
protocol decoding [5]

8.2 Classes

Search for classes � the AIS �eld ship type, is not usable as a class �eld in a
classi�ng algorithm. This is due to the unambigous use and regultations of the
�eld, as explained in section 4.

8.3 Data

Add a message timestamp to each recieved message.Consider other types of
data sources, in addition to AIS. This may be data from radar or from external
databases.

8.4 Implementation

Put the data in relational database. This will make it easier to query the data.
The issue of arithmetic over�ow in the trackdesciber.dataField.addData() must
be dealt with if the system is to be used in online processing.

9 Conclusion

A lot of work have been done to prepeare the ground for investigating the
possibilities of data mining the AIS messages. To answer the question whether
it is possible to classify the ships based on AIS data, while distrusting the ship
type �eld, the project have to be continued.

A Tracksplitter

The script is written as a part of this project to demultiplex the messages, based
on their origin.

Listing 1: tracksplitter.py

1 #!/ usr / bin /python
2 """ Reads data from standard input .
3 Data shou ld be produced by ' dev too l s_a i s . py −c ' .
4 The data i s s p l i t by mmsi , wr i t i n g f i l e s
5 in the ' . / tmp ' d i r e c t o r y
6 or the d i r e c t o r y g iven with opt ion '−d ' .
7

8 Each f i l e r ep re s en t s data from one ship ,
9 and i s named with the mmsi number """

10

11

12 import os , sys , getopt
13

14 i f __name__ == "__main__" :

8

15

16 d a t a f i l e d i r='tmp '
17 o , a = getopt . getopt (sys . argv [1 :] , ' d : ')
18 opts = {}
19 for k , v in o :
20 i f k == '−d ' :
21 d a t a f i l e d i r=v
22

23

24 sh ip s = {}
25

26 # Makes sure the temporary d i r e c t o r y i s empty
27 i f os . path . i s d i r (d a t a f i l e d i r) :
28 for f in os . l i s t d i r (d a t a f i l e d i r) :
29 os . un l ink ("%s/%s"%(d a t a f i l e d i r , f))
30 else :
31 os . mkdir (d a t a f i l e d i r)
32

33 while 1 :
34

35 l i n e = sys . s td in . r e ad l i n e () # Read from s t d in
36 i f not l i n e : #EOF
37 break

38

39 mmsi=l i n e . s p l i t (' , ') [2] # f ind s mmsi
40

41 i f not sh ip s . has_key (mmsi) :
42

43 # s to r e s f i l e o b j e c t s in d i c t i ona ry
44 sh ip s [mmsi] = open ("%s/%s" % (d a t a f i l e d i r , mmsi) , ' a ')
45

46 sh ip s [mmsi] . wr i t e (l i n e)

B Track Describer

The script is written as a part of this project to produce the (preliminary)
features describing a ship based on its AIS brodcasts.

Listing 2: trackdescriber.py
1 #!/ usr / bin /python
2

3 """Reads AIS messages from STDIN.
4 Input format : CSV (as from ' ./ d e v t oo l s . py −c | ./ t r a c k s p l i t t e r . py ')
5

6 Output : Features pr in t ed on STDOUT
7

8 """
9

10 import sys , os
11

12 class dataFie ld :
13 """ Class r ep re s en t ing one o f the f i e l d s o f an AIS message . """
14

15 def __init__(s e l f) :
16 s e l f . sumSqr = 0 .0
17 s e l f . sum = 0.0
18 s e l f . n = 0
19

20 def addData (s e l f , newData) :
21 s e l f . sum += newData

9

22 s e l f . sumSqr += newData∗∗2
23 s e l f . n +=1
24

25 def mean(s e l f) :
26 return s e l f . sum / s e l f . n
27

28 def var (s e l f) :
29 return (s e l f . sumSqr − s e l f . sum∗(s e l f . sum/n)) / (s e l f . n −1

)
30

31 def __str__(s e l f) :
32 return "%f \ t%f " % (s e l f . mean () , s e l f . var ())
33

34 def readData () :
35

36 mmsi = ' ' # Maritime Mobile Serv i ce I d en t i t y
37 # navg i t a t i on s t a t u s
38 ro t = 0 # Rate o f turna
39 sog = 0 # Speed over ground
40 # pos i t i on accuracy
41 # long i t ude
42 # l a t i t u d e
43 cog = 0 # Course over ground
44 head = 0 # True heading
45 # time stamp
46 # manouver i nd i c a t o r
47 # RAIM f l a g
48 # Radio s t a t u s
49

50 sType = in t (' 100 ') # Ship type (100 i s out o f range)
51 n = 0 # Number o f samples
52

53 f i e ldnames = [' ro t ' , ' sog ' , ' cog ' , ' head ']
54 f l d s = {}
55 for f in f i e ldnames :
56 f l d s [f] = dataFie ld () ;
57

58

59 while 1 :
60

61 l i n e = sys . s td in . r e ad l i n e () # Read from s t d in .
62 i f not l i n e : # EOF
63 break

64

65 f i e l d s = l i n e . s p l i t (' , ')
66

67 messageType = in t (f i e l d s [0])
68

69 i f messageType == 5 : #
! !

70 sType = in t (f i e l d s [7])
71 continue

72

73 i f messageType != 1 :
74 continue

75

76 n += 1
77 f l d s [' r o t '] . addData (i n t (f i e l d s [4]))
78 f l d s [' sog '] . addData (i n t (f i e l d s [5]))
79 f l d s [' cog '] . addData (i n t (f i e l d s [9]))
80 f l d s [' head '] . addData (i n t (f i e l d s [1 0]))
81

10

82 mmsi = f i e l d s [2]
83 return (f l d s , sType , n , mmsi)
84

85 i f __name__ == "__main__" :
86

87 (f l d s , sType , n , mmsi) = readData ()
88

89 i f (n>1) :
90 print "%s\ t%s \ t%s \ t%s \ t%d" % (f l d s [' r o t '] , f l d s [' sog '] ,

f l d s [' cog '] , f l d s [' head '] , sType)
91 #pr in t "%s (%d) :\ t%s\ t%s\ t%s\ t%s\ t%d" % (mmsi , n , f l d s [' ro t

'] , f l d s [' sog '] , f l d s [' cog '] , f l d s [' head '] , sType)

C TrackClassi�er

The script is written as a part of this project to start the development of a script
that constitutes the module responisble for classifying the ships based on the
feature vectors comming from TrackDescriber. As of now, it only do some test
on the preliminary features' discriminatory capabilities. It also uses the AIS
ship type as class. As explained in section 4.

Listing 3: trackClassi�er.py
1 #!/ usr / bin /python
2 import orngOut l i e r
3 import orngTree
4 import orange , orngFSS
5 import orngDisc , orngTest , orngStat
6 import orngClus t e r ing
7 import os
8

9 def accuracy (test_data , c l a s s i f i e r s) :
10 c o r r e c t = [0 . 0] ∗ l en (c l a s s i f i e r s)
11 for ex in test_data :
12 for i in range (l en (c l a s s i f i e r s)) :
13 i f c l a s s i f i e r s [i] (ex) == ex . g e t c l a s s () :
14 c o r r e c t [i] += 1
15 for i in range (l en (c o r r e c t)) :
16 c o r r e c t [i] = c o r r e c t [i] / l en (test_data)
17 return c o r r e c t
18

19

20 def c ro s s_va l i da t i on (data , l e a rn e r s , k=10) :
21 acc = [0 . 0] ∗ l en (l e a r n e r s)
22 s e l e c t i o n = orange . MakeRandomIndicesCV(data , f o l d s=k)
23 for t e s t_ fo ld in range (k) :
24 train_data = data . s e l e c t (s e l e c t i o n , te s t_fo ld , negate=1)
25 test_data = data . s e l e c t (s e l e c t i o n , t e s t_ fo ld)
26 c l a s s i f i e r s = []
27 for l in l e a r n e r s :
28 c l a s s i f i e r s . append (l (train_data))
29 acc1 = accuracy (test_data , c l a s s i f i e r s)
30 for j in range (l en (l e a r n e r s)) :
31 acc [j] += acc1 [j]
32 for j in range (l en (l e a r n e r s)) :
33 acc [j] = acc [j] / k
34 return acc
35

36

37 def leave_one_out (data , l e a r n e r s) :

11

38

39 acc = [0 . 0] ∗ l en (l e a r n e r s)
40 s e l e c t i o n = [1] ∗ l en (data)
41 l a s t = 0
42 for i in range (l en (data)) :
43 s e l e c t i o n [l a s t] = 1
44 s e l e c t i o n [i] = 0
45 train_data = data . s e l e c t (s e l e c t i o n , 1)
46 for j in range (l en (l e a r n e r s)) :
47 c l a s s i f i e r = l e a r n e r s [j] (train_data)
48 i f c l a s s i f i e r (data [i]) == data [i] . g e t c l a s s () :
49 acc [j] += 1
50 l a s t = i
51

52 for j in range (l en (l e a r n e r s)) :
53 acc [j] = acc [j] / l en (data)
54 return acc
55

56

57 def r epor t_re l evance (data) :
58 m = orngFSS . attMeasure (data)
59 for i in m:
60 print "%5.3 f %s " % (i [1] , i [0])
61

62

63 def setMargins () :
64 global data
65 marg = 0.01
66 f i l t e r = orngFSS . F i l t e r R e l i e f (margin=marg)
67 ndata = f i l t e r (data)
68 data = ndata
69 print "\ nAfter f e a t u r e subset s e l e c t i o n with margin %5.3 f (%d

a t t r i b u t e s) : " % \
70 (marg , l en (data . domain . a t t r i b u t e s))
71

72

73 def removeOut l i e r s () :
74

75 global data
76 ou t l i e rDe t = orngOut l i e r . Out l i e rDete c t i on ()
77 ndata=orange . ExampleTable (data . domain)
78

79 ou t l i e rDe t . setExamples (data)
80 z=ou t l i e rDe t . zValues ()
81 for i in range (l en (data)) :
82 i f abs (z [1]) <1.5:
83 ndata . append (data [i])
84

85 print " Out l i e r s are now removed"
86 data=ndata
87

88

89 def kmeans () :
90 global data
91 for k in range (2 ,18) :
92

93 km = orngClus t e r ing .KMeans(data , k , i n i t i a l i z a t i o n=
orngClus t e r ing . kmeans_init_divers i ty)

94 s c o r e = orngClus t e r ing . s c o r e_s i l h oue t t e (km)
95 print km. c l u s t e r s , k , s c o r e
96

97

12

98 i f __name__ == "__main__" :
99

100 data = orange . ExampleTable ("data . tab")
101

102 # repor t on number o f c l a s s e s and a t t r i b u t e s
103

104 print " C la s s e s : " , l en (data . domain . c l a s sVar . va lue s)
105 print "Att r ibut e s : " , l en (data . domain . a t t r i b u t e s)
106

107 setMargins ()
108 removeOut l i e rs ()
109

110 print "Before f e a tu r e subset s e l e c t i o n (%d a t t r i b u t e s) : " % len (
data . domain . a t t r i b u t e s)

111

112 r epor t_re l evance (data)
113

114 # commented out −− r epor t ing r e s u l t i s not implemented , g i v i n g
verbose output

115 # kmeans ()
116

117

118 bayes = orange . BayesLearner ()
119 t r e e = orngTree . TreeLearner (mForPruning=2)
120

121 bayes . name = ' bayes '
122 t r e e . name = ' t r e e '
123 l e a r n e r s = [bayes , t r e e]
124

125

126 acc = c ro s s_va l i da t i on (data , l e a rn e r s , k=10)
127

128 print " C l a s s i f i c a t i o n a c cu r a c i e s : "
129 for i in range (l en (l e a r n e r s)) :
130 print l e a r n e r s [i] . name , acc [i]
131

132

133 acc = leave_one_out (data , l e a r n e r s)
134

135 print " C l a s s i f i c a t i o n a c cu r a c i e s (l eave one out) : "
136 for i in range (l en (l e a r n e r s)) :
137 print l e a r n e r s [i] . name , acc [i]

References

[1] Orange. http://orange.biolab.si/.

[2] A. Harati-Mokhtari, A. Wall, P. Brooks, and J. Wang. Automatic Identi�-
cation System (AIS): A Human Factors Approach. In The Nautical Institute
AIS Forum, pages 1�11. Citeseer, 2007.

[3] hobbit@avian.org hobbit@avian.org. netcat.

[4] Norvald Kjerstad. Elektroniske og akustiske navigasjonssystemer: for mar-
itime studier. Number 3. utg. Tapir akademisk forl., Trondheim, 2008.

[5] Eric S. Raymond. Aivdm/aivdo protocol decoding v1.25, June 2010.
http://gpsd.berlios.de/AIVDM.html.

13

[6] Eric S. Raymond et al. gpsd � a gps service daemon.

14

	Abstract
	Introduction
	What is AIS?
	Problem definition
	Assumptions and limitations

	Overview of the system.
	Kystverket
	Project Server
	Instrumentation laboratory

	Expected Quality of the Data
	Software
	netcat
	devtools_ais
	TrackSplitter
	TrackDescriber
	TrackClassifier

	Generation of the dataset
	Result
	Future work
	Features
	Classes
	Data
	Implementation

	Conclusion
	Tracksplitter
	Track Describer
	TrackClassifier

