Comparison of Simulation Tools for Dynamic Models

Sveinung M. Sund!, Marianne Plouvier?, and Bernt Lie'

1University of South-Eastern Norway, Bernt.Lie @usn.no, 2IMT Mines Albi, France

Abstract

Macroscopic models are used extensively in process en-
gineering, and can often be posed as DAE (Differential
Algebraic Equation) models. Three generic tools for solv-
ing such DAEs are compared: OpenModelica, Julia, and
MATLAB. To make the comparison concrete, a simple
non-linear process model from the literature was extended
by removing simplifying assumptions; the more complex
model was posed as DAEs. Some implementation details
of DAE models in OpenModelica, Julia, and MATLAB
are given. Selected simulation results are given, with re-
sulting execution time. The three tools gave identical sim-
ulation results. The tools are then compared wrt. cost,
ease of use, documentation, numeric quality, Eco-system
, and possibility for reuse of models/library. Overall, Julia
appears may appear as the best choice. However, Model-
ica is found to be easier to use, so an ideal solution would
probably be some tight integration of Modelica with Julia.
Keywords: process modeling, dynamics, DAEs, simula-
tion tool.

1 Introduction

1.1 Background

Macroscopic models are used extensively in process engi-
neering, and can in general be posed as a set of differen-
tial equations stemming from conservation/balance laws
with the addition of algebraic relations describing thermo-
dynamics, transport laws, reaction engineering, etc. The
result is a set of Differential Algebraic Equations (DAE)
with a relatively simple structure. Such DAE models can
be transformed/reduced to Ordinary Differential Equa-
tions (ODEs) with some effort. The resulting ODEs are
often simpler than the DAEs, thus more efficient solvers
may be available. At the same time, reducing DAEs to
ODE:s also eliminates many variable which may be of in-
terest to study.

In education, as well as in engineering practice, it is im-
portant to choose simulation tools for doing experiments
on such models. Important aspects are, e.g.: cost, ease
of use, how well the tool is documented, numeric qual-
ity, Eco-system (packages/functions for plotting, analysis,
random numbers, control packages, access to time series
database, etc.), possibility of reuse of the model (model
library, extract information for control design, etc.).

Dynamic models are used for design and operation of
systems, and it is therefore of interest to fit such mod-

https://doi.org/10.3384/ecp18153177

els to experimental data, to reuse such models for pro-
cess design, stability analysis, control design, estimator
design, etc. The various simulation tools have different
support for and capabilities wrt. analysis and synthesis.
An important question is then: is it wise to aim at a one-
language/tool solution, or is it better to use different tools
for simulation and design/synthesis as long as the lan-
guages can interact?

1.2 Previous Work

Specialized process engineering tools are well developed,
e.g., from AspenTech', Process Systems Enterprise?, etc.
More generic tools are also popular, such as Modelica
based tools (OpenModelica3, JModelica.org4, Dymola5,
etc.), other high level tools (DAE Tools®, APMonitor’),
script based tools (MATLAB®, Python®, Julia'”, etc.), and
computer algebra systems (Mathematica!!, Maple!?, etc.).
The possibility to integrate OpenModelica with Python to
enable more extended analysis was studied in (Lie et al.,
2016).

A simple model of a nonlinear, open loop unstable re-
actor is given in (Seborg et al., 2011), and is used in var-
ious control studies (Henson and Seborg, 1997). In a stu-
dent project/exam paper at University College of South-
east NorwayB, this model has been extended into a DAE
model by removing some of the simplifying assumptions.
Both of these models are suitable for testing basic capabil-
ities of simulation tools for handling small-scale models.

1.3 Organization of Paper

In this paper, we compare the suitability of selected tools
(OpenModelica, Julia, MATLAB) for solving macro-
scopic DAE models in process engineering. The paper

177

1
2

www.aspentech.com
www.psenterprise.com/products/gproms
‘https://openmodelica.org/
‘www. jmodelica.org
Swww.3ds.com/products-services/catia/
products/dymola
Shttp://daetools.com
"http://apmonitor.com
$https://mathworks.com
“www.anaconda.com
Ohttps://julialang.org
Uyww.wolfram.com
2www.maplesoft .com
3Course FM1015 Modelling of Dynamic Systems, www . usn . no
/academics/study—-and-subjectplans/#/
subjects/FM1015_2018H_1

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

is organized as follows. In Section 2, an overview of a
suitable DAE model structure is given, with details of the
case study model. In Section 3, some general character-
istics and specific implementation details of the models
in the chosen languages are given. In Section 4, selected
simulation results are given, together with some resulting
execution times. In Section 5, the findings are discussed,
before some conclusions are drawn in Section 6. An ap-
pendix gives some model details.

2 Model Overview
2.1

Mechanistic models at the macroscopic level can typically
be described using balance laws of form

Mechanistic Model Structure

dx

E :f<-x,Z,M;9)

(D
where differential variable x is the “balanced” property
(amount, momentum, energy), while z is some auxil-
iary algebraic variable, u is some input variable and 0
is some model constant/parameter. Such models need to
be complemented with transport/thermodynamic/reaction
laws (constitutive laws) of form

0=g(x,z,u;0). 2)
Together, Egs. 1 and 2 form a set of differential-algebraic
equations, DAE. The set of differential variables and alge-
braic variables is referred to as the model descriptor, (x,z).
Such DAE models are conceptually simple to formulate,
but may contain relatively many descriptor variables and
many parameters 6.

DAE models can be manipulated into sets of ordinary
differential equations, ODE, of form

ar _

dt)

F(5,u:0)
where ¥ is a state of the system. For DAE models of index
1, dimx > dimX, while for DAE models of index larger
than 1, it is possible that dimx < dimX. Normally dim 6 >
dim 6.

Tools for analyzing ODE models (solvers, stability con-
cepts, etc.) are better developed than tools for DAE mod-
els. ODE models are smaller and faster to solve, but man-
ual model simplification may introduce (model) errors.
DAE models, on the other hand, hold more information
(the algebraic variables), and are simpler to formulate, so
there are important advantages in keeping models in DAE
form.

It is of interest to compare how easy it is to formulate
DAE models and solve them in popular modeling/simu-
lation tools. For such a comparison, it is convenient to
introduce a case study.

https://doi.org/10.3384/ecp18153177

178

aA - B

nang, T

e
Vip

Figure 1. Cooled liquid reactor with reaction aA — B.

2.2 Process Overview

We consider a liquid reactor of constant volume V, with
influent volumetric flow rate V;, influent concentration CA,
of reactant A carried via an inert solvent S,!* and influent
temperature 7j, Fig. 1.

It is of interest to convert species A into species B
through an exothermic reaction

aA — B; “)
the products are carried out of the reactor via solvent S. To
keep control of reactor temperature 7', heat rate Q is added
by flowing a liquid at temperature 7; through the tube side
of a coil/heat exchanger. With a high flow rate of the cool-
ing liquid, T is constant through the heat exchanger, and
the heat rate can be described as
Q=UA(T.—T). 5)
where % A is a parameter. If T, < T, Q < 0 and the reactor
is cooled.
The rate of reaction r is given as
r=kci

(6)

where a is the reaction order and k is given by the Arrhe-

nius expression
E/R
k=k — .
0exXp < T)

The operation of the reactor is influenced by inputs V;,
ca,i» I; and T¢, and it is of interest to study how these in-
fluence the outputs ca, cg and 7.

Although the case study has inputs u = (Vi,cA,i, T;, TC)
and outputs y = (ca,cp,T), in a control problem one may
choose to control the temperature y = 7' by manipulat-
ing the input u = T;. In that case, the additional inputs
(Vi,cAJ, Ti) may be considered disturbances.

For practical purposes, the cooling liquid temperature
T. € [4,90] °C or so.!> In reality, T; is not directly con-
trollable. Instead, an influent “cooling” temperature 7 ;
could be varied while temperature 7; in the heat exchanger
is varied via manipulating the cooling liquid flow rate.

(N

4Inert implies non-reacting.
I51f vaporized, higher temperatures may be achieved.

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

2.3 Balance Equations

For the given process, the following balance equations are
relevant,

LIS i — . ®)
DA i —rine ting ©)
dstB =7nBi—NBe+NBg (10)
& =t 40 (11

where x indicates flow of variable x (in general, x # %), m
is mass, n is amount in mole, U is internal energy, and H
is enthalpy; from thermodynamics, U £ H — pV and U £
H — pV. The differential variable is x = (ms,na,np,U).

Indices i, e, and g indicate influent, effluent, and gener-
ation, respectively.

2.4 Model Complexity

Here, we will operate with two levels of model complex-
ity.

1. Atfirst, we will simply assume an ideal solution. The
resulting model will occasionally be referred to with
index is. For this model, the reactor composition in-
fluences both reactor density and energy properties.

2. In a simpler model, we will both assume constant
overall density due to domination of solvent S, and
that the composition does not influence the energy
properties. If we also assume a first order reaction
(a = 1), these are the assumptions behind the original
model as presented in Example 2.5 of (Seborg et al.,
2011). The original model is in state space form,
with ca and T as states. This model will occasionally
be referred to with index org.

2.5 Ideal Solution Model

We assume a perfectly mixed tank volume V. We will

VB:i = 0 (no feed of species B). Equations 12, 13, and 17
are based on the assumption of ideal solution, and are not
generally valid. Equations 14-16, on the other hand, are
valid by definition.

In addition to the ideal solution assumption, we need
a model of liquid specific enthalpy. For an ideal (in-
compressible) liquid with temperature independent spe-
cific heat capacity:

A3 = A3 +¢, s (T —T°) (18)
and similar for species A and B.!® Here, (Flg’,To) are
specific enthalpy at standard state and a chosen reference
temperature 7°. Assuming ideal solution implies that

M M
naMa np B> (19)

mg=ps V-
ST (Py P

which gives an algebraic constraint between balanced
variables mg,na,np, hence only two of the three amount
balances in Section 2.3 are independent — and we really
only have 3 states in the system. Similarly (no influent of
species B),

ths ;i = P (1 - CA;{”’*) Vi (20)

A

In total, the ideal solution DAE model has 18 constants/-
parameters 0, 4 differential variables x, 41 algebraic vari-
ables z, and 4 input variables u. The number of state vari-
ables is 3; these are necessary to specify the system at
initial time. Model parameters are given in Table 3, while
operating conditions are given in Appendix A, Table 4.

2.6 Original ODE Model

The ideal solution DAE may be reduced to ODE form.
Converting the species balances to differential equations
for the concentrations, the result is rather complicated, and
can be expressed in implicit form as

eaiVi—ary cars i/ (pSV)

also assume an ideal solution. Let superscript e indicate Iy d [ca v 1—%—% .
a quantity representing a hypothetically pure substance. “dar\ e) _ enrisi/(p§V) @D
Assuming an ideal solution implies: 1— % _ %
A B
where M is the “mass matrix”
V=Vs+Va+Vg (12)
_ e . o caMa/pX caMp/pg
H=Hs+Hj +Hg (13) 1+1_”AA:IA_C/?3A.’IB 1—‘A".4A—C?3".43
_ Pa P, Pa P,
where M= cBMA/pY 1+ CeMs/p8 , (22)
m; P T_aVa_ a7y
. J P P [J 2
V] = F (14) A B A B
! and the reaction rate is as in Eqs. 6-7. The internal energy
mj = n;M; (15) " pajance can be simplified to
. e __ . f7®
—_— 1 . FR— p— 7 0
Similarly, for the influent flow, we find CPE - VCPJ (li—T)+ (AH) V+0 (23)
Vi= VS., i+ V&i; (17) 16For species A and B, molar enthalpy is used.
https://doi.org/10.3384/ecp18153177 179 Proceedings of The 59th Conference on Simulation

and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

where

(24)
(25)

Cp=caVE, o +cBVE), g +msC) g

Cpi=Vpsips+Vcailpa
with mg as in Eq. 19, while the reaction enthalpy A.H is

AH = Hg —aH + (S g —acy o) (T—T°) (26)
and added heat rate is as in Eq. 5.

If we assume that the solvent totally dominates the mix-
ture, the ideal solution model simplifies further to an ODE
with identical structure as that of Example 2.5 in (Se-
borg et al., 2011). If, furthermore, the reaction order is
set to a = 1 and specific heat capacities are chosen as
¢, = C), o, then the model becomes identical to that of
(Seborg etal., 2011). The original, constant density model
is presented in (Khalili and Lie, 2018).

3 Implementation Details

3.1 Basic Language Characteristics

This paper considers modeling languages Modelica, Julia,
and MATLAB. For Modelica, tool OpenModelica is used.

Modelica is equation based and object oriented. Equal-
ity symbol = represents true mathematical equality, thus
equations can appear in arbitrary order, and equations can
be implicit. Constants and (default) parameters are named
and given value within the model class, and input variables
are supported. Modelica is object oriented, thus state-
ment Real T = 273.15 instantiates and gives value to
a quantity named T in class Real. Similarly, if we create a
model class CSTR, statement CSTR mCSTR (R=8.31) in-
stantiates a model object mCSTR from class CSTR and sets
class parameter R = 8.31.

When running Modelica models, they are first trans-
lated to assignments. This implies that a symbolic reorder-
ing and simplification of the model equations take place,
before C code is generated and compiled to an executable
file. If debugging is needed, this complicates matters be-
cause the actually executed order of the equations may dif-
fer from the order in the Modelica code.

Both Julia and MATLAB are assignment based. Thus,
symbol = represents assignment. In assignments, the or-
der of the statements is important. Typically, the current
value of the model descriptor is passed as an input argu-
ment, possibly together with parameter values, and cur-
rent time. There is no direct support for system inputs.
The current descriptor and the parameter are passed with
the abstract names (e.g., x and par), and may be given
a physically recognizable name within the function body.
Examples: if the first element in the descriptor is the mass
of solvent mg, we could name it as m_S = x(1). Simi-
larly, if the first element of the parameter is Z A, we could
name it as UA = par (1). This would be needed in order
to use recognizable label names in the model formulation

https://doi.org/10.3384/ecp18153177

180

— for ease of understanding the code. Also, initial val-
ues of the full descriptor and parameter needs to be given
outside of the model function.

Being assignment based, debugging is relatively easy
because the statements are executed in the order they ap-
pear in the model.

3.2 Modelica Formulation

In Modelica (Fritzson, 2015), models are classes; the Ideal
Solution model is named ModSeborgCSTRis and is en-
closed between statements

model ModSeborgCSTRis
end ModSeborgCSTRis;

The model body is composed of sections, given by a sec-
tion statement which ends with line feed. Within sections,
statements can be multi-line, and are ended by a semi-
colon ;. The model quantities are usually defined in the
first section. As an example, parameter pg, variable mg
with consistent initial value ms0, and input variable 7; are
defined by

parameter Real rhoS_o =
Real mS (start = mS0);
input Real Tc;

le3;

After the declaration of quantities, an equation section
is declared by section statement equation. As an exam-
ple, equations d";—tA =npi—haethagandV =Vs+Va+
VB can be stated as

der (nA) = ndAi - ndAe + ndAg;
V = VS + VA + VB;

For balanced models, all model constants/parameters
should be specified within the model class, and the model
should hold the same number of equations as variables —
with the exception of input variables which are defined
outside of the model class.

Models without input variables can be instantiated di-
rectly from the model class, and simulated. On the other
hand, models with input variables must be instantiated in
another model class, and be given an input value in this
other model class. Several models can be wrapped within
a package and put in a file with the same name as the pack-
age. Here, we use package name SeborgCSTR, and the
package is enclosed between statements

package SeborgCSTR
end SeborgCSTR;

To define the inputs to model ModSeborgCSTRis, we
thus create a second model SimSeborgCSTR which is en-
closed statements as required for model classes. Within
this second model, we instantiate object srIs in the dec-
laration section by statement ModSeborgCSTRis srIS;
— the class name followed by the object name, similar
to the statement Real mS (start = mS0);. Itis possi-
ble to let the instantiated object srIs over-rule a param-
eter specified in class ModSeborgCSTRis just as object

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

mS has over-ruled a (default) parameter in class Real. Fi-
nally, in the equation section of class SimSeborgCSTR,
we can give an input value to the instantiated object srIs
with a statement such as srIS.Tc = 300;.

To run the Modelica model, we can import the package
nto OpenModelica”, select the main class that we want to
solve (simSeborgCSTR), check the model for errors, and
set up simulation details (solver, simulation length, toler-
ance, etc.), and simulate the system. OpenModelica has
simple facilities for plotting results and saving the plots to
file.

3.3 Julia Formulation

To solve differential equations in Julia'®, it is necessary to
add package DifferentialEquations (Rackauckas and Nie,
2017) from GitHub, which is straightforward. To activate
this package within a Julia session, issue statement

julia> using DifferentialEquations

With this package, DAEs are posed as a DAEProblem.
As an example, specifying the Ideal Solution model in
function seborg_is with descriptor %19 and initial value
guesses for %‘ o and x|, given by dxdt0 and x0, simu-
lation time span tspan, and parameter vector 6 given in
par_is, the DAE problem named probis is set up by
command:
julia> probis = DAEProblem(seborg_is,dxdt0, x0

,tspan,par_is,differential_vars=diff_vars

)

where keyword argument differential_vars is given
value diff_vars; diff_vars is a Boolean vector (1D
array) with true value for elements corresponding to dif-
ferential variables in x, and false value for elements corre-
sponding to algebraic variables.

The DAE problem is then solved by issuing command

julia> solis = solve(probis, IDA())

where IDA is the name of the chosen solver code (Hind-
marsh et al., 2005). The solution is stored in type (object)
solis.

The model has been implemented in function
seborg_is, which is defined with arguments
seborg_is (err,dxdt, x,par,t). Here, variable
err contains the errors in the equations: if e is this
error, then the DAE formulation is rephrased into
eq = —% + f(x,z,u;0) and e, = g (x,z,u; 0), respectively
for the differential and algebraic equations; the solver
then attempts to make the error err (= eq, €,) as close to
zero as possible. In order to operate with variables within
the Julia function which are physically descriptive, it is
necessary to rename the abstract names like dxdt, x, and
par into dmSdt = dxdt[1], etc. The model is then
specified via statements for err, e.g.,

"https://openmodelica.org/

Bhttps://julialang.org/

9Julia doesn’t distinguish between differential and algebraic vari-
ables.

https://doi.org/10.3384/ecp18153177

err[l] = -V + VS + VA + VB

err[42] = -dmSdt + mdSi - mdSe
etc. Input variables must be specified within the model
function.

The Julia solver is more restrictive wrt. initial condi-
tions than OpenModelica: for Julia, decent guesses for
both dxdt 0 and x0 must be supplied in order for the so-
Iution to be found, while for OpenModelica, initial condi-
tions for the state suffice.

3.4 MATLAB Formulation

The MATLAB?® formulation is written in a script named
seborg_is. There are several ways to formulate DAE
models in MATLAB, e.g., via the Mass Matrix. Here, we
have instead used the Symbolic Math Toolbox to convert
the system to a form suitable for numeric solvers.?!
Quantities are declared using the syms function, with a
distinction between variables and constants. As an exam-
ple, the dependent variable na is written as na (t) and the
parameter V as v. Further, the Symbolic Math Toolbox
functionality allows for the algebraic relations to be speci-
fied as mathematical equalities. As an example, equations

dgrllTA =7iaj —NAae+7iag and ny = cAV can be written as

eqnl = diff(nA(t),1) == ndAi - ndRAe(t) + ndAg
(t);
eqgqnb5 = nA(t) == cA(t)xV;

These equations are stored in a row vector and the vari-
ables in a column vector.

In the case of ideal solution, it is necessary
to reduce the differential index by invoking the
reduceDifferentialOrder function. This function
takes the equations and variables as input and creates new
equations and variables to replace derivatives.

Next, input variables and parameters must be assigned
a value and formulated as function handles suitable for
MATLAB solvers. MATLAB is very sensitive regarding
the order of assignment of variables and initial values.

It is also necessary to set initial values for every
variable, including the differential variables created by
reduceDifferentialOrder, which can be compli-
cated to initialize. The decic function can be called to
find consistent initial values that satisfy the equations from
initial guesses. This function is sensitive to the input toler-
ances, and may produce false solutions if they are set too
low.

Finally, the system is solved by integrating over a spec-
ified time span with the implicit solver ode151.

181

2https://mathworks.com/
2Ihttps://se.mathworks.com/help/symbolic/
solve-differential-algebraic-equations.html

?s_tid=gn_loc_drop

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

Original vs. Ideal solution Reactor

t [min]

Figure 2. Temporal evolution of concentration cy and tempera-
ture T for original model (solid) and ideal solution model (dot-
ted).

Table 1. Average Scaled Execution Times over 1000 runs; basis
is 5.3ms for solving Ideal Solution (IS) model in Julia.

OM* Julia MATLAB
ORG | 115 036 0.3(6.0)
IS 12.4 1 11.1

4 Simulation Results

4.1 Simulation Results

The simulation results are the same, whether OpenModel-
ica, Julia, or MATLAB are used. Figure 2 illustrates the
temporal evolution for the original model and the ideal so-
lution model, as computed and plotted by Julia running
in IJulia notebook?? when the cooling temperature jumps
from 7. = 300K to 7, = 305K at initial time.

4.2 Execution Time

It is very difficult to compare various languages wrt. the
execution time for solving models. Important considera-
tions are:

e Are the same algorithms used?
e [s the same solution tolerance used?
e [s the execution time problem dependent?

e Do all languages have the same initial information,
e.g., the same initial guess if iterations are needed?

e Do all languages have the same overhead in finding
the solution?

Table 1 reports some execution times for OpenModelica
as run from Python, for Julia, and for MATLAB — for
the original model of (Seborg et al., 2011) and the DAE
formulation of the ideal solution model. The results are
indicative for assessing the languages, at best.

A few comments on the results in Table 1.

1. In all cases, different (but comparable?) solvers
are used (OpenModelica: DASSL for ORG/IS; Ju-
lia: default for ORG, IDA for DAE; MATLAB:

22= Jupyter notebook

https://doi.org/10.3384/ecp18153177

182

Table 2. Comparison of Simulation Tools for solving DAE mod-
els. OM = (Open)Modelica, grading A-F where A is best.

OM Julia MATLAB
Cost A A E
Ease of use B C D
Documentation C D A
Numeric quality | A A A
Debugging B C A
Eco-system D B A
Library facility A C D

ode45(odel5s) for ORG, odel5i for IS). For DAE
problems, the tolerances have been tuned to find a
solution for Julia and MATLAB.

2. For the DAE model, OpenModelica and Julia need
to iterate to find initial value for the entire descriptor,
while this has been precomputed for MATLAB.

3. For the ODE model, MATLAB solves the problem
quickly when using the ode45 solver, but 20 times
slower when using the odel5s solver. This must
be due to considerable overhead when using a stiff
solver on a non-stiff problem.

4. OpenModelica code has been optimized, translated
to C and compiled into an executable file. Thus,
OpenModelica code should execute fast. The reason
why OpenModelica is relatively slow must therefore
lie in some inefficiency in the Python API.

5 Discussion

Table 2 gives a subjective comparison of computer lan-
guages/tools MATLAB, Julia, and OpenModelica.

With excellent support for libraries, similarity be-
tween theoretic model and implementation, support for
input variables, and inclusion of named quantities within
classes, Modelica is made for DAEs and is easy to use. It
suffices to specify initial states; this adds to the ease of use.
Julia package DifferentialEquations. j1 gives good
support for DAEs. MATLAB has good built-in support for
ODEs; for solving DAEs, some complexity is involved
in combining additional toolboxes such as the Symbolic
Toolbox. Julia and MATLAB require good initial guesses
for the entire descriptor and its derivative, which adds to
their complexity.

MATLAB documentation is excellent, Modelica has a
handful of introductory books, while the Julia language is
still in a flux prior to v. 1.0%> with partially outdated and
simple books. All three languages have excellent solvers,
still Julia has by far the largest set of available solvers.

MATLAB has a useful visual debugger with break-
points. Being a young language, Julia currently has some-
what poor support for debugging. Because both languages

2 Julia v.1.0 is scheduled for August 6, 2018.

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

are assignment based, debugging is relatively easy. Mod-
elica is equation based, thus equations are reordered and
modified during translation to executable code without
user intervention. It is therefore difficult for the user to
keep track of which assignment comes first — and there-
fore which equation causes the problem. Modelica does
have decent syntax checking and the user can keep track of
undeclared/unused quantities, and whether the number of
equations matches the number of unknowns. Also, there is
a debugger which keeps track of the re-ordering of equa-
tions, but some expertise is needed to use this debugger
efficiently.

MATLAB comes with good plotting capabilities, ran-
dom number generators, etc., and has a rich Eco-system.
Julia has a large set of available packages of very good
quality, including support for Automatic Differentiation,
which conceptually can be used for automatic lineariza-
tion of models. Modelica has a more limited Eco-system,
and lacks good support for random number generation,
good plotting capabilities, etc. However, OpenModelica
has support for automatic linearization, optimal control,
etc., which can be integrated with Python via a Python
APL

Although MATLAB and Julia have tools for solving
DAEs, they lack good support for libraries and flow-
sheeting. Modelica, on the other hand, excel in these ar-
eas.

6 Conclusions

When it comes to ease of use, direct translation from
mathematical model to computer code, and support for li-
braries, Modelica is the clear winner. Coding DAE mod-
els is simple in Julia, too, but the notation is more abstract,
and more importantly: a decent initial value for the entire
descriptor is required. MATLAB is somewhat more com-
plex in use than Julia again, and is also demanding wrt.
initial value for the descriptor.

Regarding documentation and debugging, MATLAB is
the clear winner. Julia is a very new language; v. 1.0 is still
in the pipeline, and it is natural that the documentation is
lacking. However, it is expected that documentation for
Julia, as well as debugging facilities, will improve rapidly.
Modelica has good documentation and decent debugging
facilities.

The MATLAB Eco-system is extensive; Julia’s is
smaller, but surpasses that of MATLAB in some areas.
The Modelica/OpenModelica Eco-system is more limited,
with only rudimentary tools for plotting and analysis.

Regarding numeric quality, the languages are compara-
ble although Julia is richest wrt. solvers. For execution
speed, OpenModelica (compiled C code) and Julia (low
level JIT compiler) should have an edge over MATLAB.
Limited results indicate that, indeed, Julia is very fast.
However, OpenModelica is comparable to MATLAB. The
reason for this may lie in overhead in the Python APIL.

The ideal tool would be a one-language solution; this

https://doi.org/10.3384/ecp18153177

183

would enable application of the entire Eco-system on the
model, e.g., automatic differentiation, mixing model and
optimization, structural analysis of the model, etc. At the
moment, Julia is perhaps the best/most promising one-
language tool.

However, recent work enables operation of OpenMod-
elica within Python; support for integration of Open-
Modelica in both Julia and MATLAB are in the works.
Although these are two-language solutions, the combi-
nations reduce OpenModelica’s disadvantage wrt. Eco-
system. It would be better with an even tighter integra-
tion to eliminate interface overhead; this could, e.g., be
achieved by compilation of Modelica into a script lan-
guage instead of into C.

A Parameters and Operating Condi-
tions

For the DAE model, choose the following parameters
for the model, Table 3. The operating conditions (initial
states, inputs) are defined in Table 4.

References

Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach.
Wiley-IEEE Press, Piscataway, NJ, second edition, 2015.
ISBN 978-1-118-85912-4.

Michael A. Henson and Dale E. Seborg. Nonlinear Process Con-
trol. Prentice Hall, Upper Saddle River, New Jersey, 1997.

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Ser-
ban, D. E. Shumaker, and C. S. Woodward. Sundials:
Suite of nonlinear and differential/algebraic equation solvers.
ACM Transactions on Mathematical Software, 31(3):363—
396, 2005. Also available as LLNL technical report UCRL-
JP-200037.

Mohammad Khalili and Bernt Lie. Comparison of linear con-
trollers for nonlinear, open-loop unstable reactor. In Proceed-
ings, SIMS 2018, Oslo Metropolitan University, September
2018. SIMS, Linkoping University Press.

Bernt Lie, Sudeep Bajracharya, Alachew Mengist, Lena Buf-
foni, Arun Kumar, Martin Sjolund, Adeel Asghar, Adrian
Pop, and Peter Fritzson. API for Accessing OpenModelica
Models from Python. In Proceedings of EuroSim 2016, Oulu,
Finland, 2016, September 2016.

Christopher Rackauckas and Qing Nie. Differentialequations.jl
— aperformant and feature-rich ecosystem for solving differ-
ential equations in julia. Journal of Open Research Software,
5(15), 2017. DOI: http://doi.org/10.5334/jors.151.

Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, and
III Doyle, Frank J. Process Dynamics and Control. John Wi-
ley & Sons, Hoboken, NJ, third edition edition, 2011. ISBN
978-0-470-12867-1. ISBN 978-0-470-12867-1.

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

Table 3. Parameters for ideal solution liquid reactor.

Quantity Symbol Value

Density of pure species S Ps 1000g/L
Density of pure species A PA 1500g/L
Density of pure species B Pp 2500g/L

Molar mass of species A Ma 50g/mol

Molar mass of species B Mg a-Mp

Reactor volume % 100L
Stoichiometric constant a 1

Activation energy per gas constant E/R 8750K

Reaction constant ko exp (%) ~7.2-10"min~!
Standard state temperature T° 293.15K
Standard state pressure p° 1.01 x 10°Pa
Specific enthalpy of species S at (T,p°) Hg 0J/g

Molar enthalpy of species A at (T,p°) HY 5 x 10*J/mol
Molar enthalpy of species B at (T,p°) Hg 0J/mol

Specific heat capacity of species S &s 0.239J/(gK)
Molar heat capacity of species A oA 5 ﬁ

Molar heat capacity of species B B 5 ﬁ

Heat transfer parameter UA 5x 10*J/(minK)

Table 4. Operating conditions for ideal solution liquid reactor. Superscript * for inputs indicates nominal inputs.

https://doi.org/10.3384/ecp18153177

Quantity Symbol Value
Initial value, concentration of A cal,—p 0.5mol/L
Initial mole number of species B ngl,_o Omol
Initial temperature T|,_ 350K
Initial mole number, A nalg = cal;—o-V in mol
Initial mass, species A mal,_y nal_o-Maing
Initial mass, species B mgl,_y nBl,_o-Mping
Initial volume, pure species A Val—o % in L
Initial volume, pure species B VBl,—o m‘?)iézo inL
Initial volume, pure species S Vsli—o V—Val_o— VBl,_oinL
Initial mass, species S msl,_g Vsl,_o-pSing
Initial specific enthalpy of species S I-:IS' }[:0 P:Ié’ +¢55(Tl—g—T°)inJ/g
Initial molar enthalpy of species A HY|,_, HR+EA(T|,—g—T°)inJ/mol
Initial molar enthalpy of species B ay|_, H3+ 527713 (T),—o—T°) inJ/mol
Initial enthalpy of species S He| _, msl— Hg)_,inl
Initial enthalpy of species A H|, oy nal—oHX |, _oinl
Initial enthalpy of species B Hg|,_, nBl_oHg | i_oinJ
Initial total enthalpy of ideal mixture H|,_,, HR|,_o+ Hgl,_o+ Hs|,_,inJ
Initial internal energy Ul,_ H|,_o—p°Vx103inJ
Influent volumetric flow rate %4 100L/min
Influent concentration of species A Cai 1 mol/L
Influent temperature I 350K
Cooling liquid temperature T 300K
184

Proceedings of The 59th Conference on Simulation
and Modelling (SIMS 59), 26-28 September 2018,
Oslo Metropolitan University, Norway

	Introduction
	Background
	Previous Work
	Organization of Paper

	Model Overview
	Mechanistic Model Structure
	Process Overview
	Balance Equations
	Model Complexity
	Ideal Solution Model
	Original ODE Model

	Implementation Details
	Basic Language Characteristics
	Modelica Formulation
	Julia Formulation
	MATLAB Formulation

	Simulation Results
	Simulation Results
	Execution Time

	Discussion
	Conclusions
	Parameters and Operating Conditions

