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Summary:  

Using Electrical Capacitance Tomography (ECT) cross sectional images of material distributions 
within a pipe were reconstructed. Stacking them together, the dynamics of multiphase flows were 
captured as temporal elongated images. Using machine learning algorithms for image recognition, 
methods to create data driven models for identification of five multiphase flow regimes are 
presented.  

Deep learning algorithms were developed as MATLAB implementations using Convolutional 
Neural Networks (CNN). As such networks can be constructed with a diverse number of layers 
and features, Genetic Algorithms were used to find an architecture that fits the problem at hand. 
Datasets of stacked images were manipulated by adjusting parameters to emphasize relevant 
information from the raw data. Comparing models with respect to accuracy reveals that color 
gradients, exposing details in both phases, improve the performance. Unexpectedly, employing 
pixels from the ECT image center to the temporal images, had a positive impact on the overall 
classification accuracy. The highest overall classification accuracy demonstrated was 93.19%. 
Also, decreasing the sample rate from 500 to 25 fps resulted in a minor reduction of performance, 
giving a classification accuracy of 91.85%. 

Using an ECT-system reconstructing images of  pixels representing a cross sectional area 
of a pipe with a diameter of 0.56 mm was found to introduce the most significant limitation to 
detect small air bubbles and oscillations. As a consequence, causing classification errors mainly 
in the plug/slug and stratified/wavy transitional areas.  
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1 Introduction 
As processors advance and computational power becomes more and more available, Deep 
Learning (DL) algorithms take ground and are used in an increasing number of application 
areas. Also, the process industry has started to apply new techniques like Machine Learning 
(ML) in solving problems arising in its data driven sectors. Whereas multiphase flows already 
have been characterized using more traditional methods, this thesis focuses on utilizing new 
methods by introducing Convolutional Neural Networks (CNN) in the identification of flow 
regimes.  

Electrical Capacitance Tomography (ECT) is a noninvasive and nonintrusive measuring 
method that gathers information about cross sectional material distribution in pipes without 
disturbing its state. Previous research has shown that identification of flow regimes to certain 
degrees can be obtained by using the raw capacitance data. However, this time image 
reconstruction algorithms will be incorporated to generate images that can be recognized and 
classified by DL algorithms. The aim of this study is to find out how different aspects of 
learning algorithms influence model accuracy and how the model can be enhanced using these 
methods. Constraints and limitations introduced by the measuring technique will hereby also 
be taken into consideration.  

A plethora of sensors and a multiphase rig with a section, that can be tilted, were earlier 
provided by STATOIL in conjunction with various research projects, at times supported by 
Research Council of Norway. STATOIL provided some of the tomographic units. This 
collaboration between USN and STATOIL has been ongoing for more than two decades. 

 

Chapter 2 presents the background and fundamentals for this thesis. It gives a description of 
five flow regimes obtained in multiphase flow of water and air, and introduces ECT. It also 
presents a historical and technical overview of ML in general, while focusing on DL algorithms 
with CNNs. Finally, a short introduction to genetic algorithms for parameter optimization is 
given.  

Chapter 3 gives information about the experimental set-up and the obtained datasets. It 
describes the features and dimensions of the multiphase rig, and the technical specifications of 
the ECT-system, used in this research. Also, the methodical approach for carrying out 
experiments and taking measurements is explained here.  

Chapter 4 reviews how the experimental data were prepared for later use in ML algorithms by 
utilizing methods for image reconstruction. To gather dynamic information in the data, a buffer 
is introduced by stacking a given number of image frames together. Additionally, the 
importance of decisions on flow regime labeling is included. 

Chapter 5 presents all the results obtained in terms of accuracy with respect to adjustments of 
relevant parameters and characteristics. Here, genetic algorithms are used to find a good model 
architecture for the problem at hand. The image data are also manipulated by adjusting their 
colors and the way they are stacked.  

Chapter 6 discusses the results obtained and challenges that appeared during the progression 
of this study. Also, some issues that could be addressed in future research in the usage of ECT 
in process industries is presented. 

Chapter 7 rounds up the report with a conclusion on the results and the achieved goals.  
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2 Background and Fundamentals 
The problem scope of this study is illustrated in Figure 2.1. The aim is to develop a ML 
system that identifies multiphase flow regimes using ECT. Having a fundament to build on, 
each of these subjects are explained in the following subchapters.  

 

Figure 2.1: Overview of the problem scope with a specific application in multiphase flow. 

2.1 Flow regimes in Multiphase Flows 
When liquid and gas flow together in a pipe, different geometrical configurations arise. These 
patterns are called flow regimes, and depend on several various flow conditions. Although 
the varying flow rates for either of the phases are important for the consequential flow 
behavior, also several static parameters are crucial. These are material properties, like 

a certain amount of time and straight traveling distance to fully develop.  

The five flow regimes addressed in this study are called stratified, plug, slug, wavy and 
annular (see Figure 2.2). Figure 2.3 shows an overview of these flow regimes with respect to 
gas- and liquid flow rates. Stratified simply means that the gas and liquid are completely 
separated. However, in this study, the meaning of this term is limited to include only smooth 
separation surfaces. Stratified flow occurs when both phases flow with slow velocities. When 
the liquid flow rate is increased, small oscillations are starting to appear on the separation 
surface, and the flow is called wavy. Usually the waves become longer and more significant 
with respect to increasing gas flow rates. Notice that other studies may refer to these two 
regimes as stratified smooth and stratified wavy because the phases are totally separated in 
both cases. As the liquid flow rate is increased even further, the phases start to fuse together 
in a chaotic mixture of liquid, gas and steam. This phenomenon is characterized as annular 
flow. As with the velocities, the pressure is high but stable, and liquid coats the walls of the 
pipe. This is, however, not the case for the two remaining flow regimes. In general, with 
higher gas flow rates, the flow is no longer continuous but becomes uneven and intermittent. 
Liquid velocities start fluctuating, and sudden pressure drops occur in between the presence 
of large liquid bodies completely filling the pipe. For low liquid flow rates, the large liquid 
bodies are called plugs. For higher liquid flow rates, the liquid bodies contain many small gas 
bubbles and are called slugs. As plugs often are longer than slugs, notice that other studies 
may rather refer to the gas chambers between the liquid bodies, hence using the term 
elongated bubble instead of plug.  
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Figure 2.2: Sketches of the five flow regimes addressed in this study; (a) plug, (b) slug, (c) 
annular, (d) stratified and (e) wavy.  

 

Figure 2.3: Flow regime map used at the multiphase rig at USN, Porsgrunn. The map is 
derived from Mandhane et al. (1974) [1], and later modified by [2] and [3]. Instead of using 
superficial velocity (m/s), the axes are adapted to mass flow rates (kg/min) according to the 

rigs specifications.   

2.2 Noninvasive Identification of Materials 
As materials respond different to external impacts, they can be distinguished by measuring 
their varying properties. Such characteristics can be categorized with respect to i.a. their 
acoustical, electrical, magnetic or thermal behavior. However, to measure material 
characteristics without affecting their current process state, noninvasive sensing techniques 
are introduced. The point of these techniques is to gather information about the materials in 
their present condition without having to apply interruptive interventions disturbing their 
state of behavior. The following examples briefly present a few approaches to noninvasive 
identification of material characteristics.  

(d) (e) 

(a) (c) (b) 

plug slug annular 

stratified wavy 



  2 Background and Fundamentals 

16 

Taking advantage of acoustic properties, ultrasonic methods can be utilized. Ultrasonic 
sensors measure the time a sound wave uses to travel through a given material. These sensors 
consist basically of a transmitter and a receiver, and can also be used to measure velocities by 
mounting them in a way that allows the sound to travel co-current or countercurrent in 
reference to material flows.  

Gamma Ray Meters (GRM) can be used to measure i.a. densities, levels and material 
segmentations within vessels and pipes [4]. Exposing materials for a radioactive source, the 
Gamma Ray Absorption (GRA) principle reveals information about electromagnetic 
properties.  

As materials have different permittivities, characteristics can be revealed by applying 
electrical potentials. ECT and Electrical Resistance Tomography (ERT) are specific examples 
of techniques that use impedance to characterize materials (see section 2.3).  

By having a combination of sensor modalities capable of interacting with the medium, its 
material properties can be estimated using sensor data fusion, a technique better known as 
soft sensing. 

2.3 Introduction to Electrical Capacitance Tomography 
Tomographic sensing has demonstrated to be an efficient method to unveil details about 
systems without affecting their state or behavior. Whereas tomographic development started 
with medical applications in the 1950s, it first started to advance in industrial processes 
during the 1980s [5]. The following decade tomographic methods developed, and in 1991, 
Schlumberger Gould Research (SGR) introduced a real-time ECT-system using 12 electrodes 
and a maximum sample rate  of 100 fps [6]. As most multiphase flow meters in the gas-oil-
water industry still used to rely on using radioactive gamma rays, researchers from the 
University of Manchester and SGR came together in 2011 and developed a prototype of a 
multimodal flow meter, including ECT sensors [7]. It was shown that ECT systems have the 
capability to measure flow regime relevant parameters like the water-in-liquid ratio and the 
thickness of liquid layers in annular flow. The recent years a growing interest for using the 
flow regime knowledge from ECT-systems to validate and fine tune models within the field 
of Computational Fluid Dynamics (CFD) is seen [8]. 

However, process tomograp  to visualize process states 
within pipes and vessels. As will be explained, cross sectional visualizations of actual 
material distributions inside process apparatus requires reconstruction algorithms. Because 
this may be computationally demanding, it sometimes is more convenient to directly analyze 
raw measurements and utilize data fusing methods to extract relevant parameters that 
describe process states. Using such inferential methods for identification of specific flow 
regimes, has the recent years been a hot research topic. In collaboration with USN and the 
Centre of Atomic Energy (CEA) in France, it has been shown that eigenvalues and the Fast 
Fourier Transform (FFT) can be used to fuse raw capacitance data and extract different 
parameters that describe multiphase flow regimes [3] [9]. Concepts of ML, incorporating 
neural networks, have also been used with ECT for interface level measurements in pipes 
[10].  

As a next step, this study focuses on taking advantage of how modern technology facilitates 
the availability of inexpensive processing power and advanced methods within image 
recognition. Instead of using the raw capacitance data, reconstructed ECT images can be used 
in combination with ML algorithms to develop image recognition models for flow regime 
identification. 
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2.3.1 Technical Details 

ECT is one of several tomographic methods comprised by the term Electrical Impedance 
Tomography (EIT). Basic electro-physics teaches that impedance is defined as the measure of 
the opposition a circuit presents to an applied electrical potential [11]. In simple terms this 
means that the impedance increases when it is harder for the electrical current to flow through 
the circuit. Impedance is a super-term, incorporating resistance, capacitance and inductance. 
Capacitance is therefore also a measure of the opposition in an electrical circuit, and its unit 
is Farad (F). More precisely the capacitance  is expressed according to eq. (2.1), where  is 
the charge in Coulombs and  is the voltage.  

 (2.1) 

When considering a capacitor with parallel plates, the permittivity  of the materials between 
the plates, affects the consequential capacitance (see eq. (2.2)). 

 (2.2) 

Where  is the area of the plates and  is the distance between them (see Figure 2.4).  

 

Figure 2.4: Capacitator with parallel plates. The capacitance  is depending on the plate area 
, their distance  and  of the materials in between. 

ECT is based on the fact that different materials have different permittivities, hence letting 
them be differentiable. An ECT-system includes a sensor, a data acquisition system and a 
computer running an image reconstruction program (see Figure 2.5).   

 

Figure 2.5: Sketch of an ECT-system consisting of a sensor, a data acquisition system and 
computer software reconstructing the images. ECT differentiates materials based on that their 

different permittivities and measures their distribution with surrounding electrodes sensing 
the consequential capacitances.  
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The sensor comprises a set of electrodes mounted on the outside of the tube. Typically, the 
number of electrodes  can be 8, 12 or 24. Obviously, the more electrodes, the higher 
spatial resolution  can be achieved in the images. In general, the number of independent 
electrode pairs  can be expressed as a function of  (see eq. (2.3)). 

 (2.3) 

The data acquisition system measures the capacitances between all the independent electrode 
pairs and passes it to the computer. Each independent electrode pair can thus be regarded as a 
capacitor. However, because most of the plates are non-parallel to each other, a measure of 
their angles will have to be accounted for in eq. (2.2). During one time frame, an electrical 
potential is applied to one electrode at a time while the remaining electrodes sense the 
consequential capacitances. The computer controls the whole system and runs an algorithm 
reconstructing images using the raw capacitances and a sensitivity map.  

Hence, ECT is a noninvasive and nonintrusive method that recreates a cross sectional image 
of the material distributions inside pipes and other process apparatus.  

2.4 Artificial Intelligence, Machine Learning and Deep 
Learning 

One of the greatest pioneers in computer science, Alan Turing, did according to [12] in 1947 
make suggestions about ML to be an essential part of future development. A few years later 
the field of Artificial Intelligence (AI) research was founded in 1956 [13]. However, in 1959 
the used in Arthur Samuel  when applying 
it on the game of checkers [14] and defined as a field of study that gives computers the 
ability to learn without being explicitly programmed  [15]. As mentioned in [16], Tom 
Mitchell explained it more precisely in 1998 when he wrote:  

A computer program is said to learn from experience E with respect to some class of tasks T 
and performance measure P, if its performance at tasks in T, as measured by P, improves 
with experience E.  [17] 

Thus, the performance  will be the objective function of an optimization problem where the 
optimizable parameters will decide the structure of the system that solves task .  

 

Figure 2.6:  definition of ML. 

The use of ML developed and it was applied on larger scale problems, especially for image 
recognition. Whereas Ivakhnenko and Lapa already created deep networks in 1965 [18], the 

ially first used by Rina Dechter in 1986 [19]. In the 1990s a 
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CNN for character recognition, called LeNet [20], was developed. Throughout the following 
years DL with CNNs became more and more efficient and available as data and computing 
power became better and cheaper. When Alex Krizhevsky, Ilya Sutskever and Geoffrey 
Hinton were announced as the winning team of the ImageNet1 Large Scale Visual 
Recognition Challenge in 2012, things really started to speed up [21]. Their deep CNN, 
called AlexNet [22], had a relatively simple architecture compared to other modern networks, 
and was written on the NVIDIA CUDA platform [23] for efficient GPU training. It had an 
impressive test error that was 10.8% better than the second-best opponent [24].  

DL methods are compared by testing and benchmarking on common datasets. This stands in 
contrast to traditional models usually compared by mathematical deduction and proofing 
based on physical laws. DL networks are, in other words, so complex that they cannot be 
analyzed in the same way.  

Looking back, the terms AI, ML and DL are closely related. DL is a set of techniques [25] 
that can be regarded as an implementation of ML, which is a way to obtain AI [26] (see 
Figure 2.7). Whereas AI is the fundamental concept of having computers imitate human 
behavior and decision-making, ML is an approach utilizing neural networks and experience-
based algorithms to achieve this objective. Following up, DL is made possible through 
accelerating availability of processing power and big amounts of data. Utilizing GPU-
programming with deeper and more complex neural networks, data are mined and used in 
new ways to solve problems across an increasing number of application areas.  

 

Figure 2.7: Relationship between the terms AI, ML and DL. The illustration is inspired by 
[26]. 

2.5 Technical Overview of Machine Learning 
ML algorithms can typically be divided into three categories: supervised, unsupervised and 
reinforcement learning (see Figure 2.8). In supervised learning, the program is trained by 
being introduced to different scenarios and each time being told how to react. The model is 
told when it makes faults and can correct its behavior for the future. Therefore, when the 
program is introduced to new situations, it knows how to react based on past training. In 
unsupervised learning, however, it is never told how to respond on input. This kind of 
training would typically demand a larger amount of training data. The method is based on 

                                                 

1 A dataset containing over 10 000 000 labeled images from over 10 000 different categories. 
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pattern recognition and tries to find a hidden structure in the data. Reinforcement learning is 
usually applied online. In this case, the model learns from its own actions and relies on 
sensing the consecutive reactions. The method is often used in robotic control problems.  

 

Figure 2.8: Different categories of ML: supervised, unsupervised and reinforcement learning.  

ML methods can also be categorized with respect to the different problems they intend to 
solve, which may be regression, classification, clustering and prediction (see Figure 2.9). 
Regression, also called curve fitting, is about adapting a function to a dataset. Classification 
is a type of pattern recognition, and the algorithm is intended to map the data to a set of target 
categories, called labels. Whereas this is a typical supervised method where correct labels are 
obtained from a training set, clustering problems are rather connected to unsupervised 
learning algorithms. Clustering, also known as segmentation, groups all data points by 
similarities. Prediction problems are related to time series data and their solutions try to 
forecast future data points based on past experience.  

 

Figure 2.9: ML problems graphically illustrated; (a) regression, (b) classification, (c) 
clustering and (d) prediction, where p1 and p2 are two measured parameters.  

 

 

(b) (d) 

(c) (a) 
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2.5.1 Artificial Neural Networks  a Machine Learning Algorithm 

Even though studies of the human brain are hundreds of years old, most of its complicated 
functionalities remain a mystery to modern technology. However, it is known that the brain 
contains approximately 100 billion so-called neurons that are interconnected in large 
structures. As each neuron can be connected with up to 200 000 other neurons, the brain is 
able to store information as patterns [27]. As seen in Figure 2.10, one such neuron has a 
relatively simple structure. It takes inputs from other neurons, processes it in some way and 
passes it further to the next neurons.  

 

Figure 2.10: Illustration of the biological neuron. Information taken from [27]. 

In 1943 a neurophysiologist and a mathematician presented the first model of an artificial 
neural network [28]. After years of initial incubation, a new interest for neural network 
research approached in the 1980s [29]. Taking inspiration from the human brain, later an 
artificial neuron was modelled as shown in Figure 2.11. The neuron sums up the inputs , 
each with a weight , adds a bias  and passes it through some activation function. The latter 
may i.a. be a linear function, step function, ramp function or a tan-sigmoidal function. To 
take advantage of the dynamic potential of neural networks, it is essential to include non-
linear activation functions.  

 

Figure 2.11: Model of an artificial neuron. 

By connecting these neurons in networks, they are organized in layers (see Figure 2.12). A 
network consists of an input layer, an output layer and hidden layers in between. Both 
number of neurons in each hidden layer, and total number of hidden layers can vary. In 
general, most networks contain a diversity of different activation function across the different 
hidden layers. These architectural parameters determine the model complexity and are user-
specified. Mostly, fewer hidden layers make more general models and more hidden layers 

Dendrites: inputs 

Soma: processing of inputs 

Axons: inputs turned to output 

Synapses: electrochemical contact with other neurons 

 

  Output 

Activation function 
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may lead to overfitted models. However, these parameters cannot be algebraically optimized. 
They are simply chosen by test and trial.  

 

Figure 2.12: A simple Neural Network organized in layers. Each circle represents an artificial 
neuron.  

Whereas each single neuron has a very simple structure and cannot do much by itself, a 
complete network of such neurons has powerful potentials. When the network is presented to 
training data, it uses an optimization algorithm to adjust the weights and biases of the 
different neurons so it learns to react on input the way it is intended to.  

Neural networks can be categorized in various architectures. Feed-forward networks, 
recurrent networks, symmetrically connected networks and CNNs are among the most known 
variants [30]. The simplest form, feed-forward network, passes information in one direction 
only. Recurrent networks introduce loops that allow information flow in both directions. 
Likewise, symmetrical connected networks guide data in both directions. However, in this 
case weights are the same in both directions, making them easier to analyze. Symmetrical 
connected networks with and without hidden layers are respectively called Boltzmann 
Machines and Hopfield Nets.  

2.5.2 Deep Learning with Convolutional Neural Networks 

Because traditional Artificial Neural Networks like feed-forward networks handle their inputs 
as individual variables, they perform poorly when being used with image data. Computers see 
images as matrices where each pixel has a value between 0 and 255. The pixel value  
represents black and  represents white. Color images consist of three stacked 
matrices, one for each of the RGB (Red Green Blue) channels.  

By feeding an image, the network would first have to flatten it to a one-dimensional vector, 
letting each pixel in the image represent individual parameters. However, when considering 
images, their individual pixels make no sense if not seen in a context of surrounding pixels. 
Images are observed by their lines, edges and shapes. To extract this information, it is 
possible to utilize an operation called convolution. A combination of convolution and a feed-
forward network introduces another architecture comprised by the term CNN. 

Convolution is an integral operation that calculates to what extend two functions match as 
they are shifted over one another. Considering matrices, convolution is a simple 
multiplication-like operation where one matrix is shifted across another matrix. Notice that 
this is called two-dimensional convolution. In CNN terms, a filter is shifted across an image. 
Thus, the filter is simply a small matrix that sequentially is moved across each pixel of the 
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image. The output matrix expresses to what extent the filter shape fits to shapes anywhere in 
the image. Notice also that filters may be called kernels in other literature.  

Figure 2.13 shows an example of how two-dimensional convolution works. In this case, the 
original image is convolved by a filter that shifts the output image one pixel up. By definition 
the filter is always flipped before being applied. The output matrix of a convolved image is 
called a feature map. The pixel marked with a red square is called the initial pixel. The green 
square is the area which is covered by the filter as it shifts over this pixel. At this moment the 
overlapping pixels are separately multiplied and then summed together. Finally, the resulting 
value is written to the associated initial pixel in the output image. Furthermore, this is done 
for all pixels in the image. If the sum of the values in the filter is not exactly one, it should be 
normalized to prevent the output to exceed the range 0-255. Normalization is done by 
dividing all values in the filter by their total sum. A line of zeros along the outer edge of the 
matrix can be added so the output matrix yields the same size as the original matrix. If the so-
called zero padding is not added, the output will be downsized. The larger the filter, the more 
the output would be scaled down.  

Different filters obviously give different feature maps, as shown in Figure 2.14
based on the fact that common shapes in images of the same classes give similar feature maps 
when convolved with the same filters. Hence, it is essential to use appropriate filters for 
detection of the deciding features to distinguish images from different classes. However, the 
filter weights are automatically tuned during the CNN training.  

 

Figure 2.13: An illustrative example of how 2D convolution works. The image to the left is 
convolved by a simple shifting filter, making the output image shift one pixel up. 
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Figure 2.14: Two examples of convolutions with different filters. Using (a) an edge 
detection- and (b) a blur filter. 

wo main parts; feature learning and classification (see Figure 2.15). The 
first part may consist of a various number of convolutional layers, each layer having a 
different number of filters . The first convolutional layer extracts the most basic features, 
like lines and curves. Adding on layers, there are consecutive extracted higher-level features, 
ending up in full shapes and objects. Additionally, two consecutive operations usually follow 
each convolution filter application; ReLU and pooling. ReLU stands for Rectified Linear 
Units and is a simple linear activation function that sets all negative values to zero.  

Pooling is a procedure to downsize the feature maps to ease the computational demand. Three 
types exist; max-pooling, min-pooling and average-pooling. Similarly to convolution, a little 
window is shifted across the matrix. For max-pooling, the highest value in the window is 
passed to the respective initial pixels in the output matrix. For min-pooling, the lowest value 
is passed on. And for average-pooling, the average value of all pixels within the window is 
used. The number of pixels the window shifts each step is called the stride. Higher strides 
make accordingly smaller output matrices.  

When the features are extracted, the matrices are flattened and used as in a traditional feed-
forward neural network. This part may also consist of several hidden layers with a various 
number of neurons and different activation functions. However, the last layer usually is 
equipped with the softmax function and must have the same number of neurons as there are 
classes. Finally, each of these output neurons express a class probability between 0 and 1.  

(a) 

(b) 
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Figure 2.15: A schematic overview of a general CNN. The first part extracts the image 
features by performing two-dimensional convolution in several layers. In the second part, the 
feature-matrices are flattened to one-dimensional vectors and passed through a feed-forward 

structure. The last layer outputs class probabilities between 0 and 1. 

Each layer of filters is specified with a certain square filter size  expressing its height and 
width in pixels. Whereas , , the number of neurons and hidden layers are user specified 
parameters that make the CNN architecture, the actual filter values, weights and biases are 
tuned during a training process called backpropagation [31]. As a network is initialized, these 
parameters are randomly set, thus, it has no knowledge about what shapes it is supposed to 
look for. Therefore, when presented for images, it gives no meaningful class probabilities in 
the output layer. Using a supervised ML approach, the network is trained with labelled 
images. Comparing the output probabilities with the correct label, the current error can be 
calculated. The eventual goal of the training procedure will be to minimize this error as much 
as possible. The error  is expressed by the loss function in eq. (2.4). 

 (2.4) 

Backpropagation is an iterative procedure comprising four parts; the forward pass, the loss 
function, the backward pass and the parameter update. The two first parts are already covered 
by passing a batch of images forward through the network and calculating the error. 
Accordingly, the backward pass determines which of the parameters must be updated to 
minimize the error. This is done by calculating their respective derivatives. Finally, the 
parameters are updated in the opposite direction of their gradient (see eq. (2.5)).  

 (2.5) 

Where  was the initial parameter,  is the learning rate and  is the derivative of the loss 

function with respect to the parameter. The initial learning rate is a user-specified training 
parameter and determines how much the parameters are updated after every iteration. A high 
learning rate may minimize the error faster, but can also result in too large steps, 
consequently missing the optimum. Because image training datasets require a lot of memory, 
they rarely can be passed through all at once. The dataset is thus divided into several batches. 
By definition, when all batches have passed this procedure once, one epoch is reached. Thus, 
if the dataset would consist of 5000 images, and the batch size is set to 1000, it would take 5 
iterations to complete 1 epoch. The training duration is typically constrained by a maximum 
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epoch count, a minimum gradient size or an error threshold. These training parameters are 
also user-specified and stop the training process when either is reached.  

For optimization of the training process, different kinds of backpropagation solvers are 
available. Their main difference is the way they treat the learning rate. The three optimizers 
available for use in MATLAB are SGDM, RMSProp and Adam. SGDM (Stochastic Gradient 
Descent with Momentum) introduces a momentum, taking knowledge from past steps to 
determine how to proceed. RMSProp (Root Mean Square Propagation) is a method suggested 
by Geoffrey Hinton [32] adapting the learning rate according to a moving average over the 
history of squared gradients. Likewise, the Adam (Adaptive Moment Estimation) optimizer, 
keeps track of past squared gradients, but also stores an exponentially decaying average of 
past gradients [33]. Thus, using both first and second order momentum.  

2.6 Short Introduction to Genetic Algorithm 
Answering questions on how to set the architectural parameters of DL networks, a parameter 
optimization method such as Genetic Algorithms (GA) could be applied. GA is like neural 
networks, also inspired by nature. This is a global optimization method, utilizing nature-like 
pairing and mutation to breed out the best possible values for a given set of parameters. Just 
as other optimization methods, it also needs an objective and fitness function but it usually 
solves problems faster and more efficient [34].  

GA starts by defining a population according to an assigned population size (see Figure 2.16). 
Each of the individuals can be considered as chromosomes, consisting of single genes. A 
chromosome is simply an array containing the parameters (genes) to optimize and is normally 
randomly set during the initialization. All individuals in the population are tested by the 
fitness function and the best ones are paired together. The  in the next generation 
will thus contain a mixture of the best genes from their parents. Additionally, mutations are 
implemented occasionally to create diversity and make sure that the global optimum is not 
overlooked by preventing all individuals to fall into local optimums. A mutation can be done 
by randomly mixing up the order of the genes within a chromosome.  

 

Figure 2.16: Illustrative examples of (a) one chromosome, (b) a population of chromosomes, 
(c) pairing and (d) mutation.  

(a) 

(b) 

(c) 

(d) 
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3 Experimental Set-Up 
The work presented in this report is based on physical experiments performed on a 
multiphase rig where the gas and liquid flow rates can be controlled separately. This chapter 
presents the experimental set-up and the methods used when taking measurements with a 
tomography sensor.  

3.1 The Multiphase Rig with the ECT-system 
All the experimental data utilized in this project were collected on the multiphase rig in the 
process hall at the USN, campus Porsgrunn. Figure 3.1 shows a piping and instrumentation 
diagram (P&ID) of the multiphase rig, where the red, blue and green pipes respectively carry 
oil, water and air. Flows are blended in the mixing point upstream to the test section, and 
divided downstream by separator tanks. In this way, the gas and liquid flow rates can be 
individually adjusted to obtain different flow conditions across the test section. Note that this 
study only utilize data from experiments performed with air and water flow. The oil section 
was thus not used.  

 

Figure 3.1: P&ID with sensors and actuators of the multiphase rig in the process hall at USN, 
Porsgrunn (Figure from [35]). The test section with the transparent section for laser and 
camera based measurements, including the tomography sensor, can be tilted ±10º  to the 

horizontal.  

A multimodal sensor suite is connected to the multiphase rig, comprising a GRM, several 
different pressure transmitters and Coriolis meters measuring flow, viscosity, temperature and 
density. These measurands were available in the first dataset used in this study, however this 
study only focuses on data from the tomography sensor.  

The test section is made of a 15-meter-long straight steel pipe with an inner diameter of 56 
mm, allowing the flow to be fully developed when reaching the test section. Whereas this 
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part of the rig (see Figure 3.2) can be adjusted with an angle of ±10º, it was only used in the 
horizontal position throughout this study.  

 

Figure 3.2: The test section with sensor placements and assigned lengths. Taken from [35]. 

The tomography sensor is part of an ECT system constructing cross sectional images of the 
The ECT-system used in this project is called TFLR5000 (see Table 3.1). 

Whereas it is connected to a 12-electrode dual plane sensor, only one plane was used because 
the system only takes a maximum of 8 measurement channels if used in dual plane mode.  

Table 3.1: Data-flow and measurement related specifications of the TFLR5000 ECT-system 
[36]. The system is delivered by Process Tomography Limited (PTL), UK. 

 

 

 

Figure 3.3 shows a sketch of the cross section of the pipe where the tomography sensor is 
mounted. Based on the fact that different materials have different permittivities, the 
capacitances between all electrode pairs vary with respect to the material distribution in the 
pipe. During one time frame, an electrical potential is applied to each of the 12 electrodes at a 
time, while the remaining 11 electrodes sense the resulting capacitances across the cross 
section. Because we get  independent measurements, the raw 
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capacitances for one time frame are expressed as an upper triangular matrix containing 66 
values, (see matrix in eq. (3.1)). 

 

Figure 3.3: Cross-section of the tomography sensor consisting of 12 electrodes measuring the 
capacitances across the 66 different combinations. 

 

 (3.1) 

Note that . 

3.2 Experiments Performed on the Rig 
The 27th July  9th August 2017, for use in a previous project [3], a total of 144 measurements 
were recorded on the multiphase rig at USN. 84 experiments where distributed across the 
operational range of the rig. 58 experiments focused on the range close to the transitional 
areas between some of the flow regimes. In this thesis these datasets are considered as the 
training and transitional dataset respectively (see Figure 3.4). For normalization, two 
additional measurements were performed, one with the pipe full of air and one with the pipe 
full of water. The notes taken while carrying out the experiments are found in Appendix B. 
During each experiment, the observed flow regime was noted.  

Because the flow regimes were noted based on visual observation and the transitional regions 
are hard to define, they vary somewhat for each dataset. This applies especially for the 
stratified/wavy transitional area because the smallest oscillations are hard to detect. Looking 
back on the high-speed videos and the ECT-images, the smaller waves are even harder to see. 
However, this is discussed in more details in section 4.4. Because smaller oscillations were 
considered as wavy at the time when the transitional dataset was recorded, this transitional 
line is more to the left when comparing with the training dataset.  
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Figure 3.4: (a) Distributed training- and (b) transitional datasets, showing the observed flow 
regimes associated to the different combinations of air and water flow. Note the color coding 

referring to diverse flow regimes and transitions. Also used in [3]. 

Each experiment contains 30 seconds of data from the ECT-system, 10 seconds from a high-
speed camera and 60 seconds from the multimodal sensor-suite connected to the multiphase 
rig. Figure 3.5 gives an overview of sample rates fs and durations of the measurements. 

 

Figure 3.5: Data contained in each experiment of the training and transitional dataset, from 
summer 2017. Also used in [3]. 

The 6th  12th March 2018 all the 84 distributed experiments were retaken to obtain a separate 
dataset for model validation. This time only the ECT-data were recorded. 12 additional 
experiments in the transition between stratified- and wavy flow were also performed as this is 
a transitional range difficult to classify. At the time the validation dataset was recorded, even 

(a) 

(b) 



  3 Experimental Set-Up 

31 

more experiments above the stratified area were considered as wavy. On the other hand, the 
labeling of the three datasets agree better with respect to the other flow regimes.  

Obviously, the labeling must be unified when used for training and validation applied on ML 
algorithms.   

 

Figure 3.6: Distributed validation dataset, including more experiments around the 
stratified/wavy transitional area. 

To visualize how the five flow regimes can be observed through the transparent Plexiglas 
section, an overview in Figure 3.7 is included.  

 

Figure 3.7: Images of the typical look for each of the flow regimes: (a) stratified, (b) low 
frequency wavy, (c) high frequency wavy, (d) annular, (e) end, middle and start of a plug, (f) 

end, middle and start of a slug. The images are taken from the high-speed videos recorded 
with the distributed training dataset, and were also presented in [3]. These images where 

obtained from the transparent section shown in Figure 3.2, near the ECT-system. 

(a) (b) 

(c) (d) 

(f) 

(e) 
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4 Preparation of Experimental Data  
As a basis and preparation for consecutive analysis and ML, raw capacitance data from the 
ECT-system are run through an image reconstruction algorithm and stacked according to a 
selected buffer (see Figure 4.1). Also, the recorded datasets are labelled according to 
limitations introduced by low  of the ECT images. 

 

Figure 4.1: A detailed overview of the steps addressed in this chapter. Raw capacitance data 
from the ECT-system is run through several preparations before ending up in temporal 

images fed to a CNN.  

4.1 Image Reconstruction 
The MatECT library, provided by the supplier of the ECT-system used in this research, was 
used as a basis for implementing a MATLAB script for automated image reconstruction of all 
the experimental data. MatECT is a package of m-files that easily can be modified by the user 
before running them with MATLAB version 5.3 or later.  

One of the functions in this package, namely recon.m, creates a GUI where the user can 
reconstruct images with the linear back-projecting algorithm (LBP) [37] from one set of 
capacitance measurements at a time. Using this function as a basis, a script that automatically 
reconstructs and saves image-datafiles for a large number of different capacitance 
measurements was created (see recon_multi.m in Appendix D). The algorithm uses the raw 
capacitance data and a sensor sensitivity matrix to evaluate the final image data (see Figure 
4.2). The sensitivity matrix is a sensor-specific map, calibrated for each of the electrode pairs 
of the given sensor.  

 

Figure 4.2: Overview of the reconstruction of images. Using raw capacitance measurements 
from all 66 electrode combinations and a sensitivity matrix specific to the sensor, an image 

describing the cross-sectional distribution of materials is reconstructed.  
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4.2 Decisions on Buffering 
In general, it makes no sense to classify each time frame individually. This would mean that 
each time frame potentially could have different flow regimes. In reality it normally takes 
time for a flow regime to develop and to be identified. E.g. because slugs only appear with 
certain intervals, the time frames in between the appearing slugs may seem to represent a 
continuous flow. However, considering this example the complete series of time frames 
(including the intervals between the slugs) will in this study be defined as slug flow. Leading 
to the following question; how large can the gap between each appearing slug be before it 
makes no sense to define it as slug flow anymore? Should the intervals be 3 seconds, 30 
seconds, 1 minute or even more? There is no straight-forward answer to this question as the 
matter mostly is based on definitions and requirements with respect to the given application. 
However, the way this question is handled depends on the time period regarded to identify 
the flow regime (in this study referred to as a buffer).  

As the ECT-system has a fs of 500 fps, a new image is taken every 2nd millisecond. Thus, if 
the buffer e.g. would be set to 3 seconds, this would represent a buffer length  of 1500 
frames. This length of time is assumed to give a decent fit to the distribution of most slugs 
and plugs, and is therefore used as the default buffer for this research.  

4.3 Stacking the Image Data Across Time 
Flow phenomena can be expressed as elongated two-dimensional images by stacking 
multiple time instances together. However, a requirement is that only a one-dimensional pixel 
strip from each time instance is used (see Figure 4.3). The method generates time stretched 
images that can be fed to a CNN directly. The constructed images have a height of 32 pixels 
and a width that complies with . Some of the great advantages with this method are: 

 The time dimension is eliminated in the CNN implementation. Accordingly, the 
network does not require any form of memory as offered by e.g. LSTM networks.  

 The buffer is fully controllable, making it easy to define the length of the intervals 
between plugs and slugs before the flow is classified as continuous.  

 

Figure 4.3: An illustration of how the two-dimensional stacked images are created. The x-
axis is a temporal dimension, while the y-axis is a spatial dimension.  

The disadvantage by using this method is that only one pixelstrip is used from the original 
images. Obviously, a lot of the data remain unused, and potential model information may be 
lost. On the other hand, if sufficient classification accuracy is obtained, less data processing 
will be required and response times may be faster. It would make sense to stack the complete 
images, constructing a three-dimensional matrix. The problem with this approach is the 
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complexity of implementing a three-dimensional CNN, as it is not by default supported in 
MATLAB (see section 6.7.2).  

In general, the main limitation with respect to accuracy may be the resolution given by the 
ECT-system. Working with only 32 pixels across a pipe diameter of 56 mm, gives a  of 

. Thus, motions of phenomena below 1.75 mm are lost already at this point. Model 

accuracy may, however, vary with respect to how the pixel strip from each time instance is 
extracted. It could be composed of a column from the middle of the image. But because the 
central pixels are further away from the electrodes at the tube s circumference, they may 
contain more noise and less accuracy. Therefore, it may be convenient to construct the strip 
of pixels closer along the edges. Alternatively, it could be expressed by a vertical average. 
How these choices affect the classification accuracy is demonstrated in section 5.3. 

It can be shown that weaknesses introduced by the rather low-resolution images are to detect: 

 The smallest waves along the stratified/wavy transitional area (see section 4.4). 
 The little air bubbles in the slugs (see Figure 4.4). Some of the larger air gaps are, 

however, seen.  

 

Figure 4.4: Many of the details recorded by the high-speed camera, are not seen by the low-
resolution images of the ECT-system. (a) Whereas all the little air bubbles pass unnoticed, (b) 

some of the larger air gaps are detected. Notice that these comparisons only show similar 
phenomena, not necessarily the same slug.  

The final images can also be manipulated with respect to color maps and color sensitivities. 
All the stacked images in this section are created using the color map shown in Figure 4.5. It 
is meaningful to create RGB-images and use color maps that clearly show the separation 
surface of the phases. The color grades can also be chosen so that interesting details are 
emphasized and noise is suppressed. Section 5.2 demonstrates that these choices make a 
difference when aiming to improve the DL performance. Typical stacked images for all the 
five flow regimes are plotted in Figure 4.6, which clearly illustrates the different phenomenon 
as obtained by non-invasive sensing modality using ECT. 

 

Figure 4.5: Color map that enhances the separation surface between the phases with a green 
line. 

(b) (a) 
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Figure 4.6: Typical appearance of stacked images from a central pixel strip with a buffer of 3 
seconds, for (a) stratified, (b) plug, (c) slug, (d) wavy and (e) annular flow. Notice that the 

images are enlarged in the vertical axis for better visualization.   

The stacked images are recorded with specific intervals, called a stride2. Like with , the 
stride length  depends on the given  (see eq. (4.1) and (4.2)).  

 (4.1) 

 (4.2) 

Having a stride of  seconds and  fps, gives  equal to 100 frames.  defines 
numbers of time instances between the start of every new stacked image (see Figure 4.7). 
Defining a stride shorter than the buffer images will overlap. The smaller the stride, the more 
images are generated from each experiment, creating a larger dataset from the available ECT-
images. E.g. having a total number of frames in each experiment , using 

 and , will make a total number of stacked images  (see eq. (4.3)). 

 (4.3) 

Accordingly, having performed  experiments, the complete dataset will contain 
 stacked images. Thus, increasing  to  would decrease the dataset 

to 1176 images. In this research the stride is used as a parameter to control the size of the 
generated datasets.  

Implemented in an online application, the stride would determine the refreshing rate of the 
output classification.  

                                                 
2 Not to be mixed with stride defining steps in two-dimensional convolution, introduced in section 2.5.2. 

(c) 

(d) 

(e) 

(b) 

(a) 
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Figure 4.7: Four consecutive stacked images with a buffer of 3 seconds and a stride of 0.2 
seconds. Because the stride is smaller than the buffer, the images overlap.  

4.4 Decisions on Flow Regime Labeling 
Many of the smallest movements seen while performing experiments on the multiphase rig, 
are not possible to see in the ECT-images because of their low . Considering the 
stratified/wavy transitional area, the labeling made while performing the experiments do 
therefore not agree with what is seen in the recorded data. The CNN becomes confused when 
being trained on many experiments that in the ECT-images appear stratified, but are labelled 
wavy. To expect reasonable model performance, it is required that these experiments are 
relabeled. 

 

Figure 4.8: Examples from some of the stacked images on the border between stratified and 
wavy flow. Some of the experiments classified as wavy by the original labeling (to the right 
of the dotted line) have no visible oscillations in the ECT images. Therefore, a new labeling 

is introduced (see the solid line). The experiment no. (#) correspond with Figure 4.9. 

Demonstrating that this introduces a problem to the classification  were created, 
being trained respectively on the original labeling and a new labeling based on what is seen in 

no.2 

no.3 

no.4 

no.1 
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the ECT-images. The new labeling also utilizes experience from the validation dataset (see 
Figure 3.6) and classifies more of the experiments between the stratified- and intermittent 
flow as wavy. The new ECT-based labeling can be seen in Figure 4.9. Except the different 
labeling on the datasets (see Table 4.1).  

Table 4.1: Settings for the stacked images and CNN's trained in this section 

 

 

Figure 4.9: New labeling based on observations in the low resolution ECT-images. 

Figure 4.10 (a) shows that the CNN trained on the original labeling struggles to distinguish 
some of the stratified and wavy experiments. It is assumed that it wrongly classifies some of 
the wavy labeled experiments as stratified because no oscillations are visible. Worse is, that 
the model learns that experiments without visible oscillations may be wavy, and in this case 
consequently classifies experiment no. 75, 76, 77 and 79 wrong. The intuition of this may be 
that these experiments, similar to the wavy flow, have lower water levels. Thus, the model 
may have learned to base its classification more on the water level than on the actual 
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oscillations at the surface. Applying the new labeling shows that errors are rather seen along 
the transitional zones (see Figure 4.10 (b)).  

 

Figure 4.10: Worst and best model performance with (a) original labeling (from Figure 3.4 
(a)) and (b) new labeling based on ECT-images (from Figure 4.9). The accuracy is not 

increased by much, but the confusing false classifications within the stratified area are gone. 

 

(b) 

(a) 
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5 Implementations and Results 
This chapter presents and compares the results obtained with respect to varying approaches of 
using two-dimensional stacked image data fed to a CNN. The labeling discussed in section 
4.4 is used as a base for all the approaches in this chapter. Genetic algorithms are used to 
create a decent CNN architecture for flow regime identification on stacked image data. 
Accordingly, the colors are adjusted to enhance features and supress noise. Also, the image 
data are modified by adapting the pixelstrip from each individual image passed to the stacked 
image. Finally, fs is reduced to observe how this affects the model performance. The results 
for each variation are given in terms of model accuracy.  

As  for the experiments carried out on the multiphase rig,  stacked images from 
each experiment are generated. Accordingly, each stacked image is classified and contributes 
to the overall model accuracy. However, illustratively only the worst and best classification 
results for each case are presented. 

A detailed overview and explanation of the software developed and created in MATLAB is 
given in Appendix D, enabling the reader to recreate the scenarios and results discussed in 
this report. Furthermore, all the software is included in Appendix D, E and F.  

5.1 Optimizing Convolutional Neural Network 
Architecture with Genetic Algorithms 

The complexity s it no easy task to intuitively decide their optimal 
architecture for a given problem. Also, as mentioned in [38] and [39], with the current limited 
understanding of DL models a lot of trial-and-error during the development of their 
architectures is required. Whereas the referred papers present other approaches to solve the 
challenge, this study utilizes Genetic Algorithms (GA). Using this method, the trial and error 
procedure is automated, and the best performing models are developed further.  

Inspired by and using some of the codes published in a video by Divyendu Narayan [40] a set 
of functions that perform GA utilizing the ga-function [41] from the Global Optimization 
Toolbox in MATLAB was assembled and implemented (see Appendix F). Figure 5.1 shows 
an overview of the steps in the algorithm.  



  5 Implementations and Results 

40 

 

Figure 5.1: Overview of the steps performed when optimizing CNN architecture with genetic 
algorithms. 

The GA implementation of this study is constrained to keeping the number of convolution 
layers constant, and optimizing the architecture by manipulating  and . Also, the pooling 
and fully connected layers are kept constant. In MATLAB, the layers of a CNN are defined 
as shown in Figure 5.2. As an initial assumption, it is expected that two convolution layers 
and 100 neurons in the fully connected layer are sufficient for the given task. Similarly, it is 
assumed that max-pooling with a window size of  and a stride of  is appropriate. A 
CNN defined as shown in Figure 5.2 can be visualized according to Figure 5.3.  
corresponds to the consequential number of feature maps, and  determines their 
dimensions. Also, notice that the RGB-channels of color images increase the number of 
feature maps by a factor of three.  

  

Figure 5.2: Example of how the layers of a CNN can be defined in MATLAB. 
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Figure 5.3: Visualization of a CNN defined as in Figure 5.2. 

With 2 convolution layers 4 parameters have to be optimized (  Figure 
5.2). Therefore, each individual CNN can be expressed as a chromosome with 4 genes (see 
Figure 5.4). The algorithm starts by creating an initial population of 40 s, all having a 
randomized version of this chromosome. The parameters are, however, constrained according 
to eq. (5.1). 

 

 
(5.1) 

The stacked images used for training and testing during the genetic algorithm are created 
according to the settings in Table 5.1. The table also shows the training parameters used for 
training of all individuals.  

As the generations pass, only the best performing chromosomes are crossed and reproduce. 
For diversity, some chromosomes are also randomly mutated. When completing 20 
generations, the algorithm was terminated and the data 
performances are compared by their respective scores, which is a number determined by the 
fitness function of the algorithm according to eq. (5.2). Thus, the higher the accuracy, the 
lower the score.  

 

Figure 5.4: Example of a CNN with two convolution layers expressed as a chromosome with 
four genes. Each of the four genes represent different architectural parameters. 

 

 (5.2) 
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Table 5.1: Settings for stacked images and training parameters used in the genetic 
algorithm. 

 

 

Figure 5.5: Historical data of a population with 40 individuals over the course of 20 
generations, taking approximately 11 hours to compute. (a) The best and mean score plotted 

for each generation. (b) Each individual of all generations with their corresponding 
architecture and score. The blue dots represent  and the red dots represent . 

As seen in Figure 5.5, the first generations have individuals with randomly distributed 
characteristics across the complete range constrained by eq. (5.1). However, slowly the 
parameters start alliging as generations pass by and some parameter combinations give better 
scores than others. Because this is a very time consuming process, enough generations to get 
an overall clear improvement in the score could not be computed. On the other hand, Figure 
5.5 (a) shows that the best performing individual in the 8th generation has a score clearly 
better than the rest. This is confirmed by sorting all individuals with respect to their scores 
(see Figure 5.6). Thus, instead of selecting the best performing individual from the last 

(a) 

(b) 

overall best score 

Generations 
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generation, the overall best performing individual was used in subsequent training sessions. 
Table 5.2 shows the architectures of the five best performing individuals.  

 

Figure 5.6: When sorting all individuals with respect to their performance, they form a 
smooth trend, ending up in the best score.   

Table 5.2: Architecture of the overall best performing individuals, with their respective 
generation-count and score.  

 

5.2 Color Adjustments 
Instead of having the typical range , the raw image data from the reconstruction 
algorithm have  in the approximate range . According to the color map used in 
ECT32v3,  is water,  is air, and the transitional surface is in between (see 
Figure 5.7 (a)). When converting the raw image data to color images,  is mapped to the 
range , and the selected color map defines the intensity distribution across the three 
RGB-channels, expressing each  with varying colors. Defining a color map similar to the 
one used in ECT32v3, the surface area can be beautifully enhanced with a green line (see 
Figure 5.7 (b)). However, instead of narrowing the dynamic area to , the limits can be 
extended to include more information about each of the phases.  

As shown in Figure 5.8, the maximum- and minimum  in the raw image data vary with 
respect to each experiment conducted on the multiphase rig. Whereas the maximum values 
remain almost constant for all experiments, the minimum  increase to above  for 
continuous flow. As the stratified/wavy transitions are the most difficult to identify, the limits 
are set to , creating an opportunity for information enhancement in this area. Thus, 
when applying a color map, it automatically is mapped across this range, allowing  
and  to be expressed with the first and last color in the map respectively.  
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Figure 5.7: (a) Screenshot from the ECT32v2 software, displaying the color map used. Some 
values for  are also pointed out. (b) Converting the raw image data to an RGB image using 

a similar color map. 

 

Figure 5.8: Distribution of max and min  for the training- and validation dataset with 
respect to each experiment performed on the multiphase rig. Whereas the maximum  do not 

change much, the minimum  increase when the flow rates of water and air in the pipe 
decrease.  

Three different color maps are compared in the following subchapters. Whereas the color 
maps for the stacked images are switched, all the other parameters are maintained constant. 
To generate a larger dataset,  is decreased to 100. Also, the maximum number of epochs is 
increased to 10. Doing so, the elapsed time to complete one training process is approximately 
18 minutes. The most important parameters covering all the training sessions in this chapter 
are given in Table 5.3. 

 

 

 

 

(b) 

(a) 
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Table 5.3: Parameters set for stacked images, architecture and training. These settings are 
maintained constant while switching color maps. 

5.2.1 Color Map 1: Only Focusing on the Surface 

The first color map is the same as used in all the previous training sessions. It appears similar 
to the one used in ECT32v3, and draws only a green line at the transition between the two 
phases. Examples of image data with the applied color map is shown in Figure 5.9.  

 

Figure 5.9: Color map 1 applied on (a) one time instance and (b) the stacked image data, 
including examples from each of the flow regimes. The green line emphasizes the surface 
between the two phases, while the blue and red areas represent air and water respectively.  

Feeding these images to the DL algorithm, the training process took about 15 minutes, and 
looks promising (see Figure 5.10 (a)). Already within the first epoch, the training 
classification accuracy lies around 90%, and continues to increase until it approaches 100% 
in the two last epochs. However, these numbers only express how well the model performs 
on the training dataset.  

Introducing the separate testing dataset, the overall classification accuracy is 93.12%. Figure 
5.10 (b) shows a plot of the worst and best classification results from the 135 stacked images 
generated from each experiment. Although the overall results are satisfying, the model 
strangely classifies some experiments in the middle of the stratified area as wavy. This is 
assumed to be a consequence of the fact that still many of the stacked images with small 
waves look very similar to the stratified images. Also, the model has some problems 
distinguishing between slugs and plugs.  
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Figure 5.10: (a) Training process for the first color map with respect to accuracy per iteration. 
(b) Worst and best classification using the first color map, respectively having an accuracy of 
88.1% and 95.24%. The overall accuracy was 93.12%. Errors deep within the area of a flow 

regime are regarded as more critical than errors along the transitions. 

5.2.2 Color Map 2: Surface and Smooth Gradients 

Applying a light gradient in both ends of the color map, more details in each of the phases are 
extracted from the raw image (see Figure 5.11). Notice also that the stratified and wavy 
images have darker blue shades, implying that they are expressed with lower  than the rest. 
This is in accordance with observations in Figure 5.8. Having these clear color differences, 
should make it easier for the DL model to distinguish continuous flow regimes from 
intermittent flow regimes.  
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Figure 5.11: Color map 2 applied on (a) one time instance and (b) the stacked image data. 
Adding a light gradient in both ends of the color map, details from both phases is extracted.  

The training process took about 27 minutes, being almost doubled from last training sessions 
with focus on the surface only. Also, the accuracy with respect to the training dataset 
approached 100% sooner and looked smoother (see Figure 5.12 (a)).  

 

Figure 5.12: (a) Training process for the second color map with respect to accuracy per 
iteration. (b) Worst and best classification results using the second color map. The worst 
classification has an accuracy of 89.29% and the best classification has, similarly to the 

training sessions with focus on surface only, an accuracy of 95.24%. The overall accuracy 
was 93.19%. Whereas the accuracy has not increased a lot, the wrong classifications mostly 

lie along the transitions, which makes more sense. 

(b) (a) 

stratified 

plug 

slug 

wavy 

annular 

(a) 

T
ra

in
in

g 
ac

cu
ra

cy
 (

%
) 

Iteration 

(b) 



  5 Implementations and Results 

48 

Testing the model, it performed with an overall classification accuracy of 93.19%. This is 
slightly higher than what was obtained in the last training session. However, looking at the 
results, it is observed that the wrong classifications mainly lie along the transitions (see 
Figure 5.12 (b)). Especially the strange errors in the middle of the stratified area are not 
present anymore. However, the model still has problems distinguishing plugs from slugs.  

5.2.3 Color Map 3: Surface and Sharp Gradients 

As the light color grades in the last training session had a slightly positive impact on the 
overall accuracy, it is convenient to try and pull the outer colors closer together, creating 
more drastic color transitions (see Figure 5.13).  

 

Figure 5.13: Color map 3 applied on the image data. The outer colors are pulled together, 
created tighter color transitions in both gradients.  

The training process shows that the accuracy reaches 100% after even fewer epochs than in 
the last training session (see Figure 5.14 (a)). The total elapsed training time in this case was 
only 17 minutes. 

Testing the model shows that its overall accuracy is only 90.60%, which is clearly poorer 
than in the previous sessions. However, looking at the plotted results, it is observed that the 
images the model fails to classify correctly are mostly from the same experiments (see Figure 
5.14 (b)). Also, taking into consideration the training process, it seems that the model is 
overfitted. Reducing the number of epochs to 7 and retraining the model, did indeed increase 
its overall model accuracy to 91.24%. 
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Figure 5.14: (a) Training process when using color map 3. It stays close to 100% training 
accuracy already in the 6th epoch. (b) Worst and best performance using color map 3, having 

a validation accuracy of 85.71% and 92.86% respectively. 

5.3 Adapting the Pixelstrip 
The selection of pixelstrip from each time instance determines dynamic information available 
in the resulting stacked images. Being able to classify the smallest oscillations in wavy flow, 
it is desirable to extract as much movement from the data as possible. In previous sessions, 
only a simple vertical column of pixels in the middle of the images has been used (see Figure 
5.15).  

 

Figure 5.15: Central pixelstrip, used in all previous stacked images. The black dots represent 
the pixels that are extracted to the stacked image.  

However, because the central part of the pipe is further away from the electrodes along its 
circumference, less dynamics are recorded in this area. In fact, oscillations on the water 
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surface are more visible along the edges of the images (see Figure 5.16). This might, 
however, also be the consequence of a physical phenomenon. The best model accuracy with a 
central pixelstrip was in section 5.2 found to be 93.19%. In the following sections it is tested 
if accuracy can be improved by adapting the pixelstrip.  

Based on the results in section 5.2, color map 2 is used in the subsequent training sessions 
(see Table 5.4).  

 

Figure 5.16: Four consecutive images from experiment no. 39, showing that oscillations on 
the water surface are more visible at the edges of the images, in this case, especially on the 

right-hand side.  

Table 5.4: Parameters set for stacked images, architecture and training. These settings are 
maintained constant while switching pixelstrip.  

5.3.1 Off-central Pixels 

To collect more dynamic information in the stacked images, it may be convenient to 
construct the pixelstrip by off-central pixels, where movement on the surface is more visible 
(see Figure 5.17 (a)). Reviewing Figure 5.16, it is observed that oscillations are more visible 
on the right-hand side of the image. The reason may be that there is a possibility that the ECT 
sensor is not mounted perfectly straight to the horizontal plane, but is tilted slightly in the 
clockwise direction.  
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Figure 5.17: (a) Off-central pixelstrip, aiming to extract more dynamic information from the 
raw images. Because oscillations are observed to be more visible on the right-hand side, the 
pixelstrip is positioned accordingly. (b) Examples from each of the flow regimes show that 

oscillations are more visible. Color map 2 used in calculations. 

Generating datasets with this pixelstrip, a new CNN was trained (see Figure 5.18 (a)). The 
training process took 18 minutes and seems promising, but also indicates that the model may 
be overfitted.  

 

 

Figure 5.18: (a) Training process on dataset generated using an off-central pixelstrip. 
Training accuracy stabilizes close to 100% after 6 epochs. (b) Worst and best model 

performance using the off-central pixelstrip and 7 epochs of training. Accuracy is clearly 
lower compared to the model using the central pixelstrip. Again, the model struggles mainly 

to distinguish stratified and wavy flow. 
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Testing the model, an accuracy of 87.97% is achieved. This is clearly less accurate than the 
model using the central pixelstrip. As the model seems to be overfitted, it was retrained with 
only 5 epochs, making the accuracy decrease to 86.37%. Supposing that the model now was 
underfitted, the number of epochs was set to 7. An improved accuracy of 88.93% was 
achieved. The worst and best classifications of the last model is plotted in see Figure 5.18 (b). 
Several errors are observed within the stratified area.  

5.3.2 Averaged Pixels 

Instead of selecting 32 individual pixels from each time instance, all the pixels from an image 
on the same horizontal level can be fused together using an average. Including only the pixels 
within the pipe s circumference, a vertical pixelstrip representing the average from each row 
is created (see Figure 5.19).  

 

Figure 5.19: (a) Extracting a pixelstrip using an average across each row. (b) Examples from 
each of the flow regimes using the averaged pixelstrip. Color map 2 used in calculations. 

Training the model with this dataset took 17 minutes, and the training accuracy indicates that 
model should not be overfitted (see Figure 5.20). 

 

Figure 5.20: Training process on the averaged pixelstrip dataset.  

Surprisingly, the model performs even poorer than in the last case, with an overall accuracy 
of 85.78 %. The plotted classifications show also this time that the model struggles to 
distinguish stratified and wavy flow (see Figure 5.21).  
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Figure 5.21: Worst and best model performance on the averaged pixelstrip dataset, having an 
accuracy of respectively 82.14% and 88.1%.  

5.3.3 Averaged Pixels Excluding Center 

Aiming to avoid noise, the central part of the image can be excluded from the averaged 
pixelstrip (see Figure 5.22 (a)). Since the dynamic movements seem to be enhanced in the 
outer part of the pipe, the resulting stacked images may emphasize dynamic information 
somewhat more than in the last case (see Figure 5.22 (b)).   

 

 

Figure 5.22: (a) Extracting a pixelstrip taking the average across each row, excluding the 
central part. (b) Examples from each flow regime show that oscillations are visible, but that 
the images are not so smooth, containing strange artifacts. Color map 2 used in calculations.  

After 17 minutes of training (see Figure 5.23 (a)) the classification plot revealed the 
remaining existence of errors deep within the stratified area (see Figure 5.23 (b)). Still having 
a lower classification accuracy than the initial case, it did increase a bit from the previous 
training session. 
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Figure 5.23: (a) Training process from using an averaged pixelstrip, excluding the central 
part. (b) Worst and best classification results using an averaged pixelstrip, excluding the 

central part. 

5.4 Decreasing the Sample Rate 
Because the measurements from the ECT-system were taken with  fps, all previous 
training sessions have utilized the full potential to avoid unnecessary constraints. As a final 
modification to the dataset,  is decreased five times to observe how the classification 
accuracy is affected.  

Figure 5.24 reveals that the accuracy is decreased slightly when reducing  to 250 fps. At 
125 fps a minimum is observed, and interestingly accuracy improves as  is further 
decreased to 25 fps. Notice that small variations in accuracy may also be due to randomness 
introduced by the training process (see section 6.1). 
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Figure 5.24: Plot of classification accuracy with respect to . The accuracy is observed to 
have a minimum at  fps, but increases when  is further decreased. Reducing  

from 500 to 25 fps, reduces the training time from approximately 17 to 3 minutes. 

 

Figure 5.25: Worst and best classification accuracy when using (a)  fps and (b) 
 fps, having an overall accuracy of 88.25% and 91.85% respectively. 
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6 Discussion 
Discussions of results and challenges that appeared during the course of this study are 
gathered in this chapter. To observe inconsistence of classification accuracy, a model is 
retrained without changing any of its parameters. Summarizing the results presented in 
chapter 5, the different color maps and pixelstrips are compared by their classification 
accuracy. Limitations introduced by the resolution of ECT images, affecting the decisions on 
data labeling, are discussed. The resolutions are also reviewed in terms of  and , 
considering the consequences of decreasing . Finally, the results of this thesis are briefly 
compared to earlier work and suggested tasks for further work are included.  

6.1 Awareness of Variations in Training Results 
Because of the complexity of DL networks, the exact accuracy of a model does vary when it 
is retrained without changing any of its parameters. As the weights of neural networks are 
randomly initialized, a certain randomness during the training process is expected. As it in 
one incident was observed that the model accuracy fell from 93.01% to 89.53% when 
retraining without changing any parameters, the same model was retrained five times to 
observe how the results could vary (see Table 6.1). This specific model was introduced in 
section 5.4, being applied on a dataset generated by color map 1, central pixelstrip and  
decreased to 250 fps.  

As this may question the results obtained in this thesis, it should be mentioned that the 
models presented in section 5.2 and 5.3 were retrained two or three times to somewhat get an 
idea of their average behavior before demonstrating the results.  

Table 6.1: The same model retrained five times without changing any of the parameters, 
showing that the accuracy varies with an estimated difference of approximately 3%. 

6.2 Decision of Color Map 
The three cases presented in section 5.2 show indeed that the decision on which color map to 
use, influences the consequential model performance (see Table 6.2). Clearly, when using 
color map 3 the model accuracy becomes not as high as in the other cases. Reducing the 
number of epochs increased the accuracy somewhat, but not enough to beat the alternatives.   

Although the overall accuracies of color map 1 and 2 are almost the same, the actual errors 
introduced in the second case are more reasonable and manageable than in the first case. 
False classifications deep within the boundaries of stratified flow are seen as more serious 
faults than errors along its transitional area.  

Based on the results obtained in this section, it is assumed that the information extracted from 
the raw images, by using smooth color gradients, can be useful when not taken too far.  
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Table 6.2: Summary of the best model performances with respect to each of the color maps 
considered in this chapter. Central pixelstrip used in the calculations.  

6.3 Decision of Pixelstrip 
Although most of the pixelstrip compositions presented in section 5.3 may appear 
meaningful, they do not supply good enough classification accuracy in the context they are 
used. Table 6.3 shows that the original central pixelstrip gives the best results obtained so far.  

The  range  was chosen with respect to all pixels in all images, but could instead be 
optimized with respect to the pixels in the subsequent pixelstrips only. This could possibly 
have a positive impact on the model performance for pixelstrips that do not contain values for 

 filling out the range. The success of the central pixelstrip may be due to the light blue 
shades in the image center.   

Table 6.3: Summary of the best classification accuracies provided by the four different 
pixelstrip models considered in section 5.3. Evidently the original central pixelstrip gives the 

best results. Color map 2 used in the calculations.  

6.4 Limitations Caused by ECT Image Resolutions 
Not having any clear-cut edge between the different flow regimes, makes it difficult to 
conveniently assign the labels. However, because there neither are no numerical rules or 
approaches for these decisions, they may vary with respect to the observer. The labeling may 
even change with experience. By knowing this, it makes sense to 
rather take into consideration the main purpose of ECT-based research and limitations of the 
system.  
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Flow regime identification is typically used in two different applications; slug protection and 
CFD modeling. In industrial plants, identification algorithms may be used in alarm systems to 
avoid injury on pipes and process apparatus. In this case, the operator only has to distinguish 
between slug and not-slug. In this context, having a low  causes no significant limitations. 
Whereas plugs and slugs are not perfectly distinguished, intermittent flow in general is 
clearly identified.  

CFD is a field of study for analysis and implementation of numerical models for problem 
solving within fluid mechanics. Flow regime identification can here be used to fine tune 
parameters of CFD-models describing materials flowing in a pipe. For this case, details of the 
transitions between the flow regimes are of great importance. High model accuracy is thus 
required. As mentioned in section 4.3, the low  of the ECT-system may therefore be a 
crucial limitation for such applications. Also, introducing a new labeling as in section 4.4, 
may not be desirable in this context.  

6.5 Spatial versus Temporal Resolution 
A high  may in certain applications be a necessity and is therefore under many 
circumstances highly requested [42]. However, a high temporal resolution  might not be to 
any help if  does not follow up. As the smallest air bubbles and oscillations are not visible 

in ECT images having , they will not be more visible if more of these images 

are taken every second.  

Referring to section 5.4, it is demonstrated that very little model accuracy is lost when 
reducing . As Figure 5.25 reveals, it is observed that the accuracy reaches a minimum at 

 fps, but interestingly improves when  is decreased below  fps. By lowering  
and thus decreasing , the stacked images become shorter in the y-axis and require less 
computational effort when being applied on DL algorithms. Whereas the networks require 
less time to be trained, there might also be a possibility that features in the images are easier 
extracted. As CNN filters have limited sizes, they may first recognize waves when they are 
within certain ranges. From the given results, it can be assumed that the network starts 
recognizing a different set of features in the images as  is reduced.  

6.6 Comparing Results with Earlier Work 
In 2017 students at USN utilized inferential methods to obtain flow regime identification 
from raw capacitance ECT measurements [3]. The first approach in this work demonstrated 
the use of eigenvalues and FFT as proposed by Dupré [9]. Obtaining an approximated model 
classification accuracy of 94%, it was slightly higher than the best results presented in this 
thesis, namely 93.19%. Notice, however, that the earlier results were obtained using only one 
dataset, being divided into two parts for training and testing respectively. As done in this 
thesis, using two separate datasets for training and testing, the model is more strictly 
evaluated with respect to generality. Directly using the raw capacitance measurements 
requires less computational power and is expected to deliver faster response time, considering 
the context of an online application. However, because the algorithms presented are specific 
to the given phenomenon and physical dimensions, extensive analysis may be necessary to 
adapt these models when being used with new multiphase rigs and ECT-systems. As ML is a 
data driven approach, it learns to adapt to new environments by experience. Because 
processing power becomes more and more available, environmental invariance may be 
regarded as its most significant advantage. 
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The second approach in [3] presents the use of LSTM networks for flow regime 
identification. Being a ML method, it shares similarities with CNNs. However, instead of 
using a buffer, it relies on an internal dynamic memory. Being a strength, it may also 
introduce a structure that is harder to analyze. Using temporal images offers control of the 
buffer length, which can be considered as an advantage.   

6.7 Suggestions for Further Work 
As time limits constrain the ideas that can be implemented, this section presents some 
suggestions for things that could be implemented in future work. Optical flow and 3D 
stacking are both operations that would be applied to the image data before feeding it to a 
CNN.  

6.7.1 Applying Optical Flow to the Image Data 

To extract information about motion in the image data and ease the ML, optical flow could be 
applied. More precisely, [43] defines optical flow as 

 (Horn-Schunk method). The technique 
calculates how objects move across the image by reading the pixel intensities. A requirement 
is that  is high enough to track the movements frame by frame. Figure 6.1 shows an 
example of the information generated by optical flow on raw image data from the ECT-
system. This information could in a similar way to [44], be used as input to a CNN to identify 
the different flow regimes.  

Since this method detects the differences between one and one frame at a time, it could add 
value to identification of continuous flows. As the transition from stratified to wavy flow 
presents an increase of movement on the water surface, optical flow would presumably be 
able to extract this information. However, intermittent flow would not be that straight 
forward with this method. As the slugs and plugs only appear with given intervals, the CNN 
would need to have memory abilities, like contained in LSTM-networks. On the other hand, 
it may also be possible to introduce a buffer to optical flow, increasing the number of frames 
between each calculation.  

 

Figure 6.1: The different features extracted with optical flow using the Horn-Schunk method 
plotted in MATLAB [45]. Based on how the pixel intensities of two consecutive images 
change, the method calculates object movements and describes it by generating a field of 

vectors.  
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6.7.2 Stacking the Image Data in Three-Dimensional Space 

To extract as much information as possible from the raw data, the whole images could be 
stacked across time. This would, though, introduce a third dimension for the stacked images, 
expressing the temporal information (see Figure 6.2). Dealing with three-dimensional images 
for DL in MATLAB complicates things a lot, as there apparently are no built-in 
functionalities for this. The solution is to use third party software and MATLAB-compatible 
libraries. One of the options is called MexConv3D [46], and is a mex implementation that 
runs with the MatConvNet [47] toolbox in MATLAB. Unfortunately, employing these 
implementations required deeper insight and more time than available in this project.  

 

 

Figure 6.2: Illustrative example of a three-dimensional stacked image. The measurements are 
taken from experiment no. 8 (training dataset), and visualize the appearance of a slug.  

6.7.3 Online Applications 

For future studies, it would also be of interest to create an online implementation of the 
identification system. This would be the next step of prototyping an operational system for 
e.g. alarming the presence of slugs.  

In practice, such an implementation would require online data reading from the ECT-system. 
Whether this is possible, was not investigated during this study. ECT32v3 utilizes a specific 
buffer file to accumulate a given number of past capacitance measurements. Developing 
software that reads the buffer.bcp file would be a convenient approach as it is updated for 
every time instance. Furthermore, the image reconstruction- and stacking algorithms would 
follow before feeding the stacked images to a trained CNN model. Whether the complete 
system is fast enough to have good enough response time would also be an essential question.  
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7 Conclusion 
It has been demonstrated that ML algorithms have potentials to identify multiphase flow 
regimes using ECT images. Dynamics and flow phenomena has successfully been expressed 
in elongated two-dimensional images by horizontally stacking vertical pixelstrips from 
individual time instances. Image recognition algorithms were introduced by implementing 

or automatic flow regime identification. 

Two datasets of ECT measurements comprising 84 experiments distributed across the 
. The datasets were separately recorded, 

allowing them to be used for training and testing, respectively. The experiments were labeled 
according to the observed flow regimes but had to be relabeled because small oscillations 
were overlooked in the low  images.  

GA proved to be a usable method to automatically evaluate a large number of CNN 
architectures and score them according to classification accuracy. Using GA, a total of 800 
architectures having two convolution layers with diverse  and  were trained and tested 
for a duration of 11 hours in total. The best architecture was found to have  and 

 in the first layer and  and  in the second layer.  

DL models were trained and tested on different variations of the original datasets by 
manipulating the appearance of the temporal stacked images. Experimentation with different 
color maps revealed that classification accuracy was highest when adjusting the colors with 
smooth gradients, exposing details in both phases. Comparing outcomes from five different 
pixelstrip compositions, including off-central and averaged pixels, unveiled that a plain vertical 
strip of pixels from the middle of the image facilitated the highest model accuracy. Whereas 
averaged pixelstrips gave the lowest classification accuracy (85.78%), the central pixelstrip in 
combination with a color map incorporating gradients gave the highest overall classification 
accuracy of 93.19%. Most of the errors in the best performing model were found along the 
stratified/wavy and plug/slug transitional area. The wavy/annular and continuous/intermittent 
transitions were, however, correctly classified. Referring to the poorer performing models, both 
using a color map without gradients and off-central or averaged pixelstrips caused the presence 
of classification errors deep within the boundaries of the stratified flow regime. 

The most significant limitation using image recognition for flow regime identification was 
considered to be the resolution of the ECT images. Using a 12-electrode ECT sensor on a pipe 

with diameter 56 mm, gave . Since the small air bubbles in slugs and 

oscillations along the stratified/wavy transition have dimensions below this range, these are not 
seen in the consequential reconstructed images. On the other hand, having  fps gave 
a  much higher than necessary. Decreasing  to  fps the classification accuracy had a 
minor reduction from 93.19% to 91.85%. In fact, the classification accuracy was observed to 
reach a minimum at  fps, but improved again as  was decreased further. Thus, using 
ML image recognition algorithms for multiphase flow regime identification it is concluded that 
a higher  is required, and thus  is a necessity.  

Comparing with inferential fusing methods presented in earlier work [3], the algorithms 
demonstrated in this thesis may require more processing power but introduce flexibility when 
considering modality and adaptiveness to other systems. These methods for data driven 
modeling open for new possibilities in any tomographic application. The power of ML relies 
on improvement by experience. 
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Description of Software Developed in MATLAB 
As this study was implemented in MATLAB, this chapter lists up all the developed m-files 
with their functionalities and dependencies. All the programs are attached in Appendix D, E 
and F, letting the reader recreate the results presented in this report. An overview over all the 
programs is given in Figure 1. 

 

Figure 1: Overview over the program implementation of the study.  

1. Scripts 
For the raw data collection from the ECT-system, the program ECT32v3 was used. The 
following programs are m-

the scripts one at a time.  

 recon_multi.m: Using the MatECT package, this script automates the image 
reconstruction of multiple raw capacitance (.bcp) files. The script consists of the 
sections given in Figure 2. 

 

Figure 2: The sections of the recon_multi.m script. 

 readData.m: This script reads all the individual image data files into MATLAB and 
organizes them in a struct. Figure 3 shows the sections contained in this script. 
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Figure 3: Sections of the readData.m script. 

 

For this study, two separate structs are created, respectively for the training- and 
testing dataset. The structs consist of six fields, namely: image, name, water, air, 
regime and numRegime, where each row represents one experiment (see Figure 4). 
Image holds the image data for all 14999 frames organized as three-dimensional 
matrices. The names are arranged to store the experiment number and belonging 
dataset. The setpoints for each experiment are given in the water and air field. Finally, 
the label names and numbers are saved respectively in the regime and numRegime 
fields.  

 

 

Figure 4: Part of a dataStruct created with the readData.m script. 

 stackData.m: This script implements the functionality described in section 4.31. Based 
on a given buffer size and stride, it stacks the individual image frames together across 
time. As seen in Figure 5, the algorithm is arranged as nested loops that go through all 
experiments and separately stack images by extracting pixelstrips from each 
individual frame.  

                                                 
1 Referring to the main report. 
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Figure 5: Overview over the steps of the algorithm in the stackData.m script. Its backbone are 
three nested loops that go through all frames in all experiments. 

 

 CNN_Network.m: Using the Neural Network toolbox of MATLAB, this script 
creates, trains and tests a CNN for classification of flow regimes (see Figure 6). To 
load all the images of the training- and testing dataset, the built-in imageDatastore 
function is used. This function creates an object that points to the respective image 
files on the local storage, without actually uploading them to MATLAB, avoiding 
memory problems. When the network is trained and tested, the results can be 
organized and plotted in the last sections. Because the buffer is way shorter than the 
total experiment, each experiment contains several stacked images. To visualize the 
model performance, the classification results for each stacked image are plotted one 
by one. Wrong classifications are marked by a circle, and the individual accuracies for 
each set of stacked images are given. Additionally, the worst and best results are 
plotted in the last section.  
This script utilizes the CUDA framework from NVIDIA to enable GPU-accelerated 
processing.  
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Figure 6: The sections contained in the CNN_network.m script. Being divided into three 
parts, training, testing and plotting.  

 ga_script.m: This is the script that performs genetic algorithms as described in section 
5.11. All its sections are listed up in Figure 7. Similar to the last script, it loads the 
datasets using the imageDatastore function. In the next step the numbers of 
convolutional layers, maximum number of filters and maximum size of filters are set. 
The functions create_initial_population.m, crossover_population.m and ga_fitness.m 
are included as function handles, to be used by the ga-function. In the third section, 
the options like population size and maximum number of generations are set. Also, 
the mutate_population.m and myOutputFunction.m function is included. Finally, the 
ga-function from the Global Optimization Toolbox is called. Because 
myOutputFunction.m is set to save historical data from all individuals, the next part 
can create plots which show information about all generations.  

                                                 
1 Referring to the main report. 
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Figure 7: The section of the ga_script.m. They are divided into two parts, GA and Plotting.  

2. Functions 
To make the scripts easier to read, some of the functionalities are put in separate functions.  

 setColormap.m: Based on its input, it creates the different colormaps described in 
section 5.21. This is done by interpolating between different RGB color-codes across 
the range . 

 createRGB.m: This function uses the current colormap to create a three-channel RGB 
image of a one-channel grayscale image. The maximum and minimum values are 
scaled to respectively 2 and -2 (see section 5.2 in the main report). 

 makePixelStrip.m: Based on its input, this function returns the row- and column 
indices for different pixelstrips. The strips are defined by distributing 32 ones in a 
32 32 matrix of zeros. Their position determines which pixels that are to be extracted 
in the pixelstrip.  

 plotResultData.m: Taking a struct with the classification results as input, this function 
plots the classified regimes on a flow regime map similar to Figure 2.3 in the main 
report. It gives different colors to each of the five classes and adds circles around 
wrong classifications. 

The functions developed for the genetic algorithm are all called and administrated by the ga-
function (see Figure 8). Their inputs and outputs are formatted according to what is required 
by the ga-function.  

                                                 
1 Referring to the main report. 
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Figure 8: Package of functions for genetic algorithms.  

 

 create_initial_population.m: Creates a random initial population of chromosomes 
according to the given population size.  

 genConvnetConfig.m: Based on the parameters from a given chromosome, this 
function creates a temporary script that defines the CNN architecture. The script looks 
the same as presented in Figure 5.21. 

 ga_fitness.m: The fitness function calls genConvnetConfig.m, and takes the 
temporary script to create a CNN. Using a training dataset and a set of training 
options it trains the network. Afterwards, the model is tested with a separate testing 
dataset to obtain its score.  

 crossover_population.m: Crosses two and two parents chosen by the ga-function to 
produce children for the next generation. The children are randomly given attributes 
from each of the parents.  

 mutate_population.m: This function mutates chosen chromosomes by randomly 
swapping the order of appearance for its parameters. Notice that the values for the 
number- and sizes of filters are kept separate, not mixed.  

 myOutputFunction.m: To keep historical data from the execution of the genetic 
algorithm, an output function must be defined. This function saves the parameters and 
score of all individuals during all generations in variables placed in the base 
workspace. 

3. Computer Specifications 
The same computer was used for all the tasks of this study. As deep learning algorithms 
require a lot of parallel processing power, using a good GPU is essential for accomplishing 
heavy computational tasks within reasonable times. To obtain both mobility and processing 

                                                 
1 Referring to the main report. 
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power, the laptop Lenovo Yoga 720 15" [1] was chosen. As the computer is the core of the 

benchmarked, the most important specifications are given in Table 1. 

Table 1: Specifications of the computer used in this study.  
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Appendix D 

MATLAB SCRIPTS 

1 recon_multi.m 

2 readData.m 

3 stackData.m 

4 CNN_Network.m 



1  



2  



3  





4  









Appendix E 

MATLAB FUNCTIONS 

1 setColormap.m 

2 createRGB.m 

3 makePixelStrip.m 

4 plotResultData.m 

 



1  



2  



3  







4  



Appendix F 

MATLAB GA  
SCRIPTS AND FUNCTIONS 

1 ga_script.m 

2 create_initial_population.m 

3 genConvnetConfig.m 

4 ga_fitness.m 

5 crossover_population.m 

6 mutate_population.m 

7 myOutputFcn.m 
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