

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2018

Industrial IT and Automation

Developing an activity simulator of a
person living in a smart house

Stian Høibjerg Glittum

www.usn.no

The University College of Southeast Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2018

Title: Developing an activity simulator of a person living in a smart house

Number of pages: 84

Keywords: Smart House, Activity Simulator

Student: Stian Høibjerg Glittum

Supervisor: Nils-Olav Skeie and Veralia Gabriela Sánchez

External partner: SMART research group at USN

Availability: Open

Summary:

People tend to follow specific patterns in their daily lives. In a smart house context, this

can be useful information to determine normal and abnormal behavior of smart house

inhabitants. By using patterns based on the daily activities of a person living in a smart

house, a system can be developed to alert family or caregivers of abnormal behavior.

The goal of this project has been to develop an activity simulator which gives a graphical

representation of a person living in a smart house. The graphical representation is based

on a set of sensor and activity data stored in a database. The system was developed using

software development methods to analyze, design, implement and test the system. The

resulting system is able to read an activity dataset, where each activity has a start time and

an end time and animate the movement of the person depending on the activity being

performed at that time. The system also supports insertion of new activities while the

simulation is running as well as replaying previous performed activities. An import and

export module were added to import new datasets to the database and export simulation

data to a file.

 Preface

3

Preface
This project has been done by a fourth semester master student from the Industrial IT and

Automation program at The University College of Southeast Norway (USN). The report is

mainly aimed at members of the SMART research group at USN, but also towards those with

an interest in software development and/or smart house technology. The signed topic

description, which defines the scope of the project, can be found in Appendix A while the work

schedule can be found in Appendix B.

Software tools used in this project include Microsoft Office 365, Microsoft Visio, Microsoft

Visual Studio, Microsoft SQL Management Studio, Microsoft Project, StarUML and EndNote.

It is advantageous that the reader has some knowledge about C# programming and database

design to get full understanding of this report.

I would like to thank Nils-Olav Skeie and Veralia Gabriela Sánchez for invaluable help and

input during the work of this project. I would also like to thank Francisco Javier Ordóñez of

the Carlos III University of Madrid for the sensor and activity dataset used during this project.

Porsgrunn, 15.05.18

Stian Høibjerg Glittum

 Contents

4

Contents

Preface ... 3

Contents ... 4

Nomenclature ... 6

1 Introduction ... 7

2 Existing Systems ... 8

2.1 HOME I/O ... 8
2.1.1 Movement ... 8
2.1.2 Time Panel and Time Slider ... 8
2.1.3 Weather Panel.. 8
2.1.4 Devices ... 9
2.1.5 CONNECT I/O ... 9
2.1.6 Smart Home Console .. 10
2.1.7 Power Panel ... 11

2.2 Smart House Online Simulation .. 11
2.2.1 House Layout... 12
2.2.2 Devices ... 12
2.2.3 Phone ... 13
2.2.4 Voice Control Module ... 14
2.2.5 User Profiles .. 14

2.3 Comparison to the Activity Simulator .. 14
2.3.1 HOME I/O .. 14
2.3.2 Smart House Online Simulation .. 15

3 System Overview .. 16

3.1 Sensor- and Activity Data .. 17
3.2 Development ... 17

3.2.1 Unified Process ... 17
3.2.2 Object-Oriented Analysis and Design ... 18

4 Development .. 19

4.1 Iteration 1: Collecting of requirements ... 19
4.1.1 Requirements .. 19
4.1.2 Use Case Diagram ... 19
4.1.3 UI Prototype ... 20
4.1.4 Database Logical Structure .. 20

4.2 Iteration 2: Import/Export ... 20
4.2.1 Analysis .. 20
4.2.2 Design .. 20

4.3 Iteration 3: Simulate activity data .. 21
4.3.1 Analysis .. 21
4.3.2 Design .. 21

4.4 Iteration 4: Add sequence of activities ... 21
4.4.1 Analysis .. 21
4.4.2 Design .. 22

4.5 Iteration 5: Replay previous set of activities ... 22
4.5.1 Analysis .. 22
4.5.2 Design .. 22

 Contents

5

4.6 Iteration 6: Configure properties and parameters ... 22
4.6.1 Analysis .. 22
4.6.2 Design .. 22

4.7 Class Diagram ... 23
4.7.1 Iteration 1: Collecting of requirements ... 23
4.7.2 Iteration 2: Import/Export ... 24
4.7.3 Iteration 3: Simulate Activity Data ... 24
4.7.4 Iteration 4: Add sequence of activities ... 24
4.7.5 Iteration 5: Replay previous set of activities .. 24
4.7.6 Iteration 6: Configure properties and parameters ... 24

5 Implementation .. 25

5.1 User Interface .. 25
5.1.1 Drawing Area ... 25

5.2 Model-view-viewmodel ... 25
5.3 Data Context and Data Bindings ... 26
5.4 Database Server .. 28
5.5 Database Connection ... 29
5.6 Import/Export .. 29
5.7 Simulate Activity Data .. 31
5.8 Add Sequence of Activities ... 35
5.9 Replay Previous Set of Activities .. 36
5.10 Configure Properties and Parameters ... 37

5.10.1 Extending with additional parameters .. 38

6 Testing ... 40

6.1 Import/Export .. 40
6.2 Simulate Activity Data .. 40
6.3 Add Sequence of Activities ... 40
6.4 Replay Previous Set of Activities .. 41
6.5 Configure Properties and Parameters .. 41

7 Discussion .. 42

7.1 Including Additional Persons in the Simulator .. 42

8 Suggestions for further work ... 43

8.1 Improve Animation ... 43
8.2 Save and Load House Drawings ... 43
8.3 Improve Sequence Addition .. 43
8.4 Improve Import and Export .. 43

9 Conclusion .. 44

References .. 45

Appendices ... 47

 Nomenclature

6

Nomenclature
.NET - Software framework created by Microsoft

3D - Three-Dimensional

ADL - Activities of Daily Living

CSV - Comma-Separated Values

FDUCD - Fully Dressed Use Case Document

HAR - Human Activity Recognition

IDE - Integrated Development Environment

MVVM - Model-View-ViewModel

OOAD - Object-Oriented Analysis and Design

PLC - Programmable Logic Controller

SQL - Structured Query Language

UI - User Interface

UP - Unified Process

USN - University of Southeast Norway

WPF - Windows Presentation Foundation

XAML - Extensible Application Markup Language

 1 Introduction

7

1 Introduction
The SMART research group at USN is currently working on a system to determine normal

and abnormal behavior of a person living in a smart house. By monitoring the daily activities

of a person over some time, the system can figure out the daily patterns of the person and

determine if a given pattern is normal or abnormal. If a pattern is abnormal, the system can

send an alert to the family or care workers. In order to give a graphical representation of a

person living in a smart house, and potentially create a model to determine pattern statuses, a

graphical simulator will be developed which is described in this report.

In order to map out possible existing simulator systems similar to the one developed in this

project, a literature survey will be carried out before development of the simulator system.

The literature study can be found in Chapter 2 of this report.

The system to be developed during this project will simulate the activities of a person living

in a smart house over several days and the simulation will be based upon external activity

datasets saved in a database. The system will also let the user be able to add new sequences

of activities at given times which may result in normal or abnormal behavior. The

development of the simulator will be done using OOAD for analysis and design of the

system.

Chapter 2 describes the literature study done on existing simulator systems.

Chapter 3 gives an overview of the developed system as well as methods used.

Chapter 4 describes the development process which includes analysis and design of the

system.

Chapter 5 describes the implementation of the software.

Chapter 6 contains an overview of the testing of the software.

Chapter 7 gives a discussion of the results of this project.

Chapter 8 gives suggestions for further work upon the system.

Chapter 9 gives the conclusion for the project.

 2 Existing Systems

8

2 Existing Systems
There exist some available systems online that simulate the workings of a smart house. Two

of these systems are HOME I/O [1] developed by Real Games and Smart House Online

Simulation [2] by Astea Solutions.

2.1 HOME I/O

HOME I/O is a 3D smart home automation simulator developed by Real Games. The main

goal of the project is to use an interactive house with smart technology to introduce home

automation concepts to the user [3]. In the program, the user is able to monitor and control

different parts of the house and use these features to create smart home scenarios. The user

controls a person in a first-person perspective around a three-dimensional environment.

2.1.1 Movement

The user is controlling a person in first-person perspective through the interior and exterior of

a smart house using either a computer keyboard or a gamepad [4].

2.1.2 Time Panel and Time Slider

The time panel provides information about the simulation running time which includes the

current simulation date and a toggle option for day light saving time [5]. The time slider

represents one day from 0 to 24 hours and the user can interact with this slider to accelerate

the simulation time [5]. Figure 2.1 shows a screenshot taken from the site [5] with the time

panel to the left and time slider to the right.

Figure 2.1: Time panel and time slider with simulator running

2.1.3 Weather Panel

The user is able to monitor and control the weather in the simulation. The monitorable values

are air temperature, relative humidity and wind speed [5]. The controllable values are

minimum temperature of the day, maximum temperature of the day, humidity, wind speed

and cloudiness [5]. Figure 2.2 shows a screenshot taken from the site [5] with the panel

containing the values in the simulation.

 2 Existing Systems

9

Figure 2.2: Weather Panel in the simulation

2.1.4 Devices

Different devices are located all around the house which includes lights and light switches,

roller shades with switches, heaters and thermostats along with different kinds of detectors

[3].

The devices may be used in three different modes which includes wired mode, wireless mode

and external mode [6]. In wired mode, the device is not automated and uses a standard

electrical installation. If the device is in wireless mode, the device may be controlled with the

home automation console or a central wireless controller which may be used to automate the

house using programming. The third mode, external mode, allows the I/O points of the

devices to be accessed with CONNECT I/O, a tool also developed by Real Games, or through

the HOME I/O SDK [7].

2.1.5 CONNECT I/O

CONNECT I/O [8] is a tool developed by Real Games that allows HOME I/O to be

integrated with automation technologies. The interface consists of a diagram with nodes that

can be linked together. Figure 2.3 shows a screenshot taken from the website [8] of the

CONNECT I/O interface where nodes are linked together.

The tool can be used to connect external automation technologies to HOME I/O like PLC or

microcontrollers which means that the tool can serve as a gateway between external

technologies and the simulation [8]. CONNECT I/O can also be used to design a controller

with the function blocks [8].

 2 Existing Systems

10

Figure 2.3: CONNECT I/O interface

2.1.6 Smart Home Console

The Smart Home Console [9] is an in-simulation tool that allows the user to create simple

scenarios with the help of common home automation devices. The scenarios and devices are

grouped by categories which include lighting, motorized, heating, intrusion security and

domestic safety [9]. A scenario may be defined, for instance, to have the lights in a room turn

on or off whenever a person enters or leaves a room. Figure 2.4 shows a screenshot taken

from the website [9] of the Smart Home Console while running the simulation.

 2 Existing Systems

11

Figure 2.4: Smart Home Console while running the simulation

2.1.7 Power Panel

The power panel [5] signifies how much power is being consumed by the different devices in

the smart house. It shows the instant energy consumption as well as energy/consumption of

the current day, previous day, previous week and previous month. Figure 2.5 shows a

screenshot taken from the website [5] of the power panel within the simulator.

Figure 2.5: Power Panel within the simulation

2.2 Smart House Online Simulation

The Smart House Online Simulation is a simulation developed by Astea Solutions as part of

their Cloud4all project. Its goal is to research the capability of “auto-personalization from

profile” in the home environment [10]. This means that the smart house can be customized

depending on the profile logged in to the system.

 2 Existing Systems

12

2.2.1 House Layout

The house can be seen from a bird’s eye view perspective with five different rooms, whereas

three of them are interactable: laundry room, living room and kitchen. Clicking on one of the

rooms, zooms in on the room and allows the user to interact with devices in that room. Figure

2.6 shows a screenshot from the website [2] of the house layout.

Figure 2.6: Smart house layout

2.2.2 Devices

If a certain room is selected, the simulator will zoom into that room and give the user options

to interact with the devices in that room. When the user clicks on a device, a new interface

appears depending on the device selected.

In the kitchen, the oven is a device that can be interacted with. The interface [2] that appears

when the oven is clicked on be seen in Figure 2.7. From the figure, it can be seen that the user

has the option to set a temperature for a specific amount of time along with other heating

options.

 2 Existing Systems

13

Figure 2.7: Interface for the oven

2.2.3 Phone

The simulator features an in-simulator tool called the phone which allows the user to control

the different devices in the house from this tool. Figure 2.8 shows the interface from the

website [2] for the phone with the different devices in the house.

Figure 2.8: Phone interface

 2 Existing Systems

14

2.2.4 Voice Control Module

The simulator includes a voice control module which allows the user to go to a room or select

a device with voice commands. To go to a room, the user can say “go to” followed by the

room [2]. To select a device, the user can say “use” followed by the device [2].

2.2.5 User Profiles

A user login system is included in the simulator. This allows for users with specific

disabilities to have the different interfaces tailored for them. The simulator includes a set of

sample users [2] to select from as can be seen in Figure 2.9. Each of the sample users have

some kind of disability and may speak different languages. The program can change the

language of the interfaces and make other adjustments to make it easier for the person to live

in the house.

Figure 2.9: User login interface

2.3 Comparison to the Activity Simulator

The two systems described in this chapter have some similarities with the activity simulator

system developed in this project. However, they are developed for different reasons. HOME

I/O was designed to give the user the possibility to learn about home automation principles,

while Smart House Online Simulation was developed to investigate the possibility of “auto-

personalization from profile”.

2.3.1 HOME I/O

Listed below are the functional requirements for the activity simulator developed in this

master’s project with comments on how HOME I/O compares to these requirements.

• Import/Export – As HOME I/O does not use activity data for the simulation, there is

nothing to import or export.

 2 Existing Systems

15

• Simulate Activity Data – HOME I/O does not simulate activity data but is still a

simulation of a smart house. As opposed to the Activity Simulator, where a person is

simulated to perform activities depending on the dataset, the user gets to control the

person directly to perform activities at any given time. Like the Activity Simulator,

the time moves forward in real time.

• Add sequence of activities – As the simulation is not based on any dataset, there is no

place for any activities to be inserted. The user can instead choose where they want to

go and what to do at all times.

• Replay previous set of activities – There is currently no way to replay the simulation,

as the time only moves forward.

• Configure properties and parameters – There are several properties and parameters

that can be configured within the simulation. Some of these include weather and

devices. The user can make scenarios where devices are controlled by a certain action,

for instance, turning on the lights when a person enters the room.

2.3.2 Smart House Online Simulation

Listed below are the functional requirements for the activity simulator developed in this

master’s project with comments on how Smart House Online Simulation compares to these

requirements.

• Import/Export – The simulation does not depend on datasets, so there is nothing to

import or export.

• Simulate Activity Data – The simulation comes in the form of the user interacting

with rooms and devices. Time is not included in this simulation.

• Add sequence of activities – No dataset to insert activities. Devices are interacted with

directly by the user, for instance, turning on the TV.

• Replay previous set of activities – As time is not a concept in this simulation, there is

nothing to replay.

• Configure properties and parameters – The user is able to configure several properties

of the different devices and the user experience may be different depending on the

user logged in.

 3 System Overview

16

3 System Overview
The following chapter gives an overview of the system developed as well as the methods

used throughout the development cycle.

The system consists of a C# application developed in Microsoft Visual Studio as well as a

database implemented in Microsoft SQL Server. The purpose of the system is to simulate the

activity of a person living in a smart house as part of research on human pattern recognition.

The activity data is downloaded externally from a data storage online [11] and is based on

sensor data of a person living in a smart house with the help of Human Activity Recognition

(HAR). The simulator gets activity data from the database and gives a graphical, real-time

representation of the data. The data used is converted to csv format with semicolons as the

separator and this is also the format used for export. Figure 3.1 shows an overview of the

system created in this project. The simulator system can possibly, in the future, be used to

create a model to recognize if a person’s behavior is normal or not and give a notification if

the person behaves abnormally.

Activity DatabaseActivity Simulator

Sensor- and Activity
Data

Get Activity Data, Get Config

Import Activity Data, Save Config

ExportImport

Figure 3.1: Overview of the system. The simulator imports the dataset from a file and saves it

in the database. The simulator can then get the data from the database in order to simulate it.

 3 System Overview

17

3.1 Sensor- and Activity Data

The sensors- and activity data [11], which the simulation is based upon, is recorded by

Fransisco Javier Ordóñez from the Charles III University of Madrid. The dataset consists of

two text files, where one is recorded sensor data and the other is activity data. The activity

data is acquired by using Human Activity Recognition (HAR) on the sensor data to get

Activities of Daily Living (ADLs).

3.2 Development

The system is developed using a modified version of the Unified Process framework, and

through the use of Object-Oriented Analysis and Design.

3.2.1 Unified Process

Unified Process is a use-case-driven and iterative development process framework commonly

used in development of software systems [12]. UP has four main phases, which includes

Inception, Elaboration, Construction and Transition.

• Inception is the startup phase and includes business modeling and project

management decisions [12].

• Elaboration focuses on collecting the requirements, creating use case diagram and

designing the core architecture of the system [12].

• Construction is the main phase where singular use cases are selected, analyzed,

designed, implemented and tested [12].

• The last phase, Transition, focuses on releasing a working version of the system [12].

The system made in this project is developed using a modified version of UP and the main

phases of UP are followed loosely.

• The Inception phase, or the startup of the project, included acquiring the task

description from the supervisor and creating a work schedule in order to plan the

project progress.

• The Elaboration phase describes Iteration 1 in the development process which

includes the collecting of the requirements and designing the use case diagram.

• The Construction phase describes Iteration 2-6 where a singular use case is selected

for each iteration and is analyzed, designed, implemented and tested.

• The Transition phase describes the delivery of the system to the supervisors as well as

the documentation which comes in the form of this report and its appendices.

 3 System Overview

18

3.2.2 Object-Oriented Analysis and Design

Software development and programming languages today are often based on classes and

objects. OOAD is the process of transforming any collected requirements into objects

through the use of analysis and design [12].

For the system described in this report, OOAD is used by first collecting the requirements

from the task description. The requirements are then analyzed to investigate and understand

the problems through the use of use cases, domain model etc. The design phase builds on the

analysis by defining objects, and how they interact, as well as the classes. This is done by

making interaction diagrams and the overall class diagram.

 4 Development

19

4 Development
The following chapter describes the development process which includes analysis and design

using principles from OOAD. The first iteration describes the collecting of the requirements

and creation of the use cases. It also describes creation of the UI prototype and the logical

architecture of the database. Iterations 2 – 6 each selects a use case for analysis and design

where a FDUCD is created during the analysis phase and an interaction diagram is created

during the design phase. Finally, a class diagram is created from the interaction diagrams.

The FDUCDs are created using Microsoft Word using a template from lecture notes [12]

while the interaction diagrams and class diagram are created using StarUML [13].

4.1 Iteration 1: Collecting of requirements

Iteration 1 starts with the collection of the requirements from the task description and making

a Use Case diagram based on these requirements. Furthermore, a UI prototype and logical

architecture of the database is made.

4.1.1 Requirements

Functional:

Import/Export; The application should be able to import data to the database and also export

simulation data to a file.

Simulate activity data; The application should transform the activity data from the database

into a graphical representation of the activities in real-time.

Add sequence of activities; A module to add new sequences of activities should be available

in the application.

Replay previous set of activities; The user should be able to create replays of previous

activities and play the replays in the application.

Configure properties and parameters; There should be a configuration section in the

application to change properties and parameters.

Usability:

Windows-based graphical interface with view of the building and person moving inside.

Performance:

Real-time graphical representation.

4.1.2 Use Case Diagram

From the functional requirements of the requirements document found in 4.1.1, the Use Case

Diagram is created. The diagram can be found in Figure 4.1.

 4 Development

20

Figure 4.1: Use Case Diagram created from the functional requirements.

4.1.3 UI Prototype

The UI prototype is designed in Microsoft Visual Studio 2017 with Windows Presentation

Foundation. The design is done partly by dragging and dropping items from the WPF toolbox

and writing the XAML code. The UI is further worked upon later in the development cycle.

4.1.4 Database Logical Structure

The logical structure of the database is designed using Microsoft Visio with Crow’s Foot

Database Notation. Appendix C includes the logical structure for the database.

4.2 Iteration 2: Import/Export

Iteration 2 selects the “Import/Export” use case for analysis and design.

4.2.1 Analysis

“Import/Export” describes two separate functions that are combined into one use case. Import

describes the function of importing a text file into the database to have a new set of activity

data available. Export describes the function of exporting simulation data to a text file.

Appendix D contains the FDUCD for Import/Export which describes the use case in more

detail.

4.2.2 Design

The use case starts with the UI calling on the “Import” method in the “ActivityViewModel”.

The view model then calls on the “ImportFromCSV” method in the “ImportExport” class.

The “SelectFilePath” and “ReadCSV” methods are then run to get the data from the file.

“ImportExport” calls on the “SaveActivityData” method, contained in the “DatabaseHandler”

class, with the csv data as the parameter. If the connection to the database fails,

“DatabaseHandler” calls on the static method “ShowError”.

 4 Development

21

The export function starts by calling on the “ExportToCSV” method in the

“ActivityViewModel” at the press of the “Export” button.

The view model calls on the “ExportToCSV” method in the “Simulation” class which again

calls on the “ExportToCSV” method in the “ImportExport” class with the simulator dataset

as the parameter. If the simulator isn’t running, it instead calls on the “GetActivityData”

method in the “DatabaseHandler”.

A detailed interaction diagram for the use case can be found in Appendix D.

4.3 Iteration 3: Simulate activity data

Iteration 3 selects the “Simulate Activity Data” use case for analysis and design.

4.3.1 Analysis

Simulate activity data describes the function of reading activity data from the database and

simulating it in a graphical user interface. The simulator should run in real-time, update text

boxes with the simulation information and animate the movement of a person depending on

the current activity. Appendix E contains the FDUCD for Simulate activity data which

describes the use case in more detail.

4.3.2 Design

The use case starts by having the UI call on the “StartSimulation” method in the

“ActivityViewModel” at the click of the “Start Simulation” button. This method then calls on

the “StartSimulation” method in the “Simulation” class. The “Simulation” class calls on the

“GetActivityData” and “GetConfigPostions” method from the “DatabaseHandler” and stores

the data in lists. If there are problems connecting to the database, the “DatabaseHandler” will

call on the static method “ShowError”. Once the lists have been filled, the

“SetInitialPosition” method is called to place the person at the initial position and the

simulation loop starts. During the simulation loop, “Simulation” calls on the

“UpdateSimulationStatus” method and calls on the “MovePerson” method in the “Person”

class to get the next coordinates for the person and finally calls on the “AnimateMovement”

method.

A detailed interaction diagram for the use case can be found in Appendix F.

4.4 Iteration 4: Add sequence of activities

Iteration 4 selects the “Add Sequence of Activities” use case for analysis and design.

4.4.1 Analysis

“Add sequence of activities” describes the function of adding new activities to the simulation

while the simulator is running. The program should be able to read sequence parameters from

text boxes and insert them into the activity list which the simulator reads from. Appendix G

contains the FDUCD for “Add sequence of activities” and describes the use case in more

detail.

 4 Development

22

4.4.2 Design

The use case starts with the UI calling on the “AddSequence” method in the

“ActivityViewMode” class with the new sequence data as the parameters when the “Confirm

Selection” button is pressed. The view model then calls on the “UpdateActivityList” method

within the “Simulation” class to check the validity of the new sequence data. The method

calls on the “AddSequenceToList” method within the “SequenceHandler” class if the data is

valid and returns a new activity list to the “Simulation” class.

A detailed sequence diagram for the use case can be found in Appendix H.

4.5 Iteration 5: Replay previous set of activities

Iteration 5 selects the “Replay previous set of activities” use case for analysis and design.

4.5.1 Analysis

“Replay previous set of activities” describes the function of rewinding to a previous time in

the simulation window. This function requires that the simulation is already running.

Appendix I contains the FDUCD for “Replay previous set of activities” and describes the use

case in more detail.

4.5.2 Design

The use case starts with the UI calling the “StartReplay” method in the “ActivityViewModel”

class with “replayTime” as the parameter. This method then calls the “Replay” method in the

“Simulation” class. If the replay time is outside of the simulation boundaries, the static

method “ShowError” is called. If not, “SetInitialPosition” and “UpdateSimulationStatus” is

called.

A detailed sequence diagram for the use case can be found in Appendix J.

4.6 Iteration 6: Configure properties and parameters

Iteration 6 selects the “Configure properties and parameters” use case for analysis and design.

4.6.1 Analysis

“Configure properties and parameters” describes the function of the user being able to change

certain properties and parameters within the application and saving these changes to the

database. Appendix K contains the FDUCD for “Configure properties and parameters” and

describes the use case in more detail.

4.6.2 Design

The use case starts with the UI calling on the “SaveConfig” method in the

“ActivityViewModel” class with the new config parameters as the method parameter. If not

all the config textboxes have been filled, the view model will call on the “ShowError”

method. If all the textboxes are filled, the view model will instead call on the

 4 Development

23

“SaveConfigChanges” method in the “ConfigHandler” class. Finally, the

“SaveConfigToDatabase” method is called from the “DatabaseHandler” class to save the

config data. If there are problems connecting to the database, the “ShowError” method is

called.

A detailed sequence diagram for the use case can be found in Appendix L.

4.7 Class Diagram

From the sequence diagrams a class diagram is created. Figure 4.2 shows the class diagram

for the application. The subchapters below describe which classes are created for each

iteration.

Figure 4.2: Class diagram for the Activity Simulator

4.7.1 Iteration 1: Collecting of requirements

As iteration 1 focuses on the UI prototype and the database structure, the classes created in

this iteration are the UI, “ActivityViewModel” and “DatabaseHandler”.

 4 Development

24

4.7.2 Iteration 2: Import/Export

Iteration 2 involves the “Import/Export” use case. The “ImportExport” class is created during

this iteration which is also used as the controller class.

4.7.3 Iteration 3: Simulate Activity Data

Iteration 3 involves the “Simulate Activity Data” use case. The classes made during this

iteration are “Simulation” and “Person”. “Simulation” is used as the controller class.

4.7.4 Iteration 4: Add sequence of activities

Iteration 4 involves the “Add sequence of activities” use case. The class made during this

iteration is “SequenceHandler” and the “Simulation” class is used as the controller class for

this use case.

4.7.5 Iteration 5: Replay previous set of activities

Iteration 5 involves the “Replay previous set of activities” use case. No classes are made

during this iteration, but rather a method within the “Simulation” class. The “Simulation”

class is used as the controller class for this use case.

4.7.6 Iteration 6: Configure properties and parameters

Iteration 6 involves the “Configure properties and parameters” use case. The class made

during this iteration is “ConfigHandler” which is also used as the controller class.

 5 Implementation

25

5 Implementation
Once a use case has gone through the design phase, they are ready to be implemented into the

actual software. The classes and objects mapped out in the design phase is used as a starting

point for the implementation phase. The source code for the C# application and for the

database is sent to the supervisors separately as agreed upon between both parties.

5.1 User Interface

The user interface for the application is mainly designed using XAML [14] which is a

markup language developed by Microsoft for use with the .NET programming model. The

main page for the user interface can be found in Figure 5.1. The UI is implemented with a

fixed size of 1400x720 pixels.

Figure 5.1: Main page for the user interface

5.1.1 Drawing Area

The drawing area of the UI is a Canvas element. A canvas is an UI element where child

elements can be placed and positioned using absolute positioning [15]. This means that all

canvas child elements each have their own vertical and horizontal coordinates that can be

altered.

5.2 Model-view-viewmodel

The application is implemented based on the MVVM pattern [16] which purpose is to create

a separation between the user interface and the rest of the application. Figure 5.2 shows the

usage of the MVVM pattern on the class architecture. The classes are layered into view,

 5 Implementation

26

model and view model. The view is the user interface, the model is the business layer, while

the view model is responsible for connecting these layers together.

Figure 5.2: Class architecture based on the MVVM pattern

5.3 Data Context and Data Bindings

The view and the model communicate mainly through the use of data bindings. In WPF, data

bindings is the process that allows the user interface to communicate with the underlying

business layer [17]. If the bindings are set up correctly and the source properties within the

business layer gives the UI the proper notifications, the UI can reflect changes that happens in

the business layer. Reversely, changes done in the UI can be reflected in the business layer.

In order to set up the UI for connections via the data bindings, the data context [18] of the UI

must be set to be the view model. The data context serves as the source for the bindings.

Figure 5.3 shows a code snippet from the application where the view’s data context is set to

be the view model.

 5 Implementation

27

Figure 5.3: Code snippet from the “MainWindow” class. The data context of the class is

defined to be the “ActivityViewModel” class.

The classes with source properties to be monitored or controlled by the UI is instantiated in

the view model. Figure 5.4 shows the code snippet in the view model where this is done.

Figure 5.4: The classes that the view should communicate with are instantiated and are

accessed by the use of properties

Public properties contained in the “Simulation”, “ConfigHandler” and “ImportExport”

classes can now be directly accessed from the user interface via the XAML code. Figure 5.5

shows the usage of data bindings on the “Current Activity” text box in the XAML code. For

this particular data binding, the mode is set to “OneWay”, which means that the textbox value

is updated whenever the model property changes. The mode can also be set to

“OneWayToSource”, where the model property is updated whenever the textbox value

changes, or “TwoWay”, which combines the two former modes.

Figure 5.5: Data binding for the current activity text box in the user interface

 5 Implementation

28

When using either “OneWay” or “TwoWay” data bindings, the source properties need to

raise some sort of event when the property values change to update the text boxes in the UI.

This is resolved by using the “INotifyPropertyChanged” interface [19]. The method to raise

the event is contained in a class called “ObservableObject” which inherits the

“INotifyPropertyChanged” interface. Figure 5.6 shows the code contained within the

“ObservableObject” class.

Figure 5.6: Code contained in the “ObservableObject” class

Classes which contains properties that uses the method contained in the “ObservableObject”

class, inherits the class. Figure 5.7 shows the “Activity” property in the “Simulation” class.

Whenever the property is set, the “OnPropertyChanged” method within “ObservableObject”

is invoked and returns and indication of whether the property has changed or not. If the

property has changed, the “Current Activity” textbox is updated.

Figure 5.7: Public property “Activity” contained in the Simulation class

5.4 Database Server

The database is implemented to a Microsoft SQL Server with the help of Microsoft SQL

Server Management Studio according to the logical architecture found in Appendix C.

 5 Implementation

29

5.5 Database Connection

The “DatabaseHandler” is the class responsible for connections to the database. The methods

in the class uses a connection string to establish a connection to the server. Figure 5.8 shows

the method [20] for getting the activity data from the database. The method opens a

connection to the database using the connection string and reads from the database according

to the SQL statement string.

Figure 5.8: Method in the "DatabaseHandler" class that gets the activity data from the

database and stores it in a list

5.6 Import/Export

The import and export section of the UI is located in a group box. It consists of an import

button, an export button and a textbox to enter the file name of the exported file. Figure 5.9

shows the “Import and Export” section of the user interface.

Figure 5.9: Import/Export section of the user interface

 5 Implementation

30

Once the user presses the import button, the “ImportFromCSV” method is called. This

method also calls on the “SelectFilePath” method which lets the user select a csv file to

import. The csv file must be of the same format as the csv file being exported by the export

method, i.e. only semicolons as the separator. Once a file has been selected, the method saves

the data to a list before it calls on a method in the “DatabaseHandler” to save the data.

Figure 5.10: “ImportFromCSV” method contained within the “ImportExport” class.

The user can export the activity data to a csv file by first entering in a name for the target file

and pressing the export button. The “ExportToCSV” method in the “ImportExport” class is

then called with the activity list used in the simulation as a parameter. If the list is empty, i.e.

if the simulator has not started, the method will instead call on the “GetActivityData” method

from the “DatabaseHandler” to get the unaltered activity data. The “SelectFolderPath”

method is called to allow the user to specify the folder in which the file is saved, and the data

is converted to a string format with semicolons as the separator. Finally, the string is written

 5 Implementation

31

onto a csv file. Figure 5.11 shows a code snippet of the “ExportToCSV” method used to

export activity data to csv format.

Figure 5.11: “ExportToCSV” method contained in the “ImportExport” class

5.7 Simulate Activity Data

The program starts the simulation whenever the user presses the “Start Simulation” button.

Figure 5.12 shows a screenshot of the “Simulation Control” in the user interface where the

user can select a dataset to simulate, start the simulation, pause or resume the simulation,

increase the simulation speed, skip to the next activity in the simulation or rewind the

simulation by time or activity.

 5 Implementation

32

Figure 5.12: Simulation control section of the UI

The user has access to the current simulation time, current room and current activity of the

person from the simulation status section shown in Figure 5.13.

Figure 5.13: Simulation status section of the UI

A new thread is then created and started to make sure that the user can still interact with other

parts of the program. Figure 5.14 shows the creation and start of the simulation thread. The

thread starts the “StartSimulation” method which includes a simulation loop.

 5 Implementation

33

Figure 5.14: Starting of the simulation thread in the Simulation class

The “StartSimulation” method calls on the “GetActivityData” method in the database handler

and saves the data in a list. It then enters the relevant data into public properties every loop

iteration to make sure they appear in the user interface. The loop iterates every second with

the help of a “Thread.Sleep” statement.

Whenever the activity changes in the simulation, the animation thread is called. Figure 5.15

shows the “AnimateMovement” method which the animation thread calls upon.

 5 Implementation

34

Figure 5.15: “AnimateMovement” method in the Simulation class. The method gets a list of

coordinates which is either specified as x or y. It then checks whether the current position of

the person is correct according to the activity coordinates gotten from the database. If it is

not, the method adds or subtracts the current position value until the person is at the correct

position.

The animation works by data binding the vertical value and the horizontal value of a circle in

the user interface and updating the values every three milliseconds to make it appear that it is

moving. The x and y coordinates for the next activity is returned by the “MovePerson”

method in the Person class. The “MovePerson” method takes the next activity as one of the

parameters and crosschecks the activity with the activities in the “ActivityPosition” table in

the database and gets the target coordinates. Figure 5.16 shows a screenshot of the

“MovePerson” method.

 5 Implementation

35

Figure 5.16: “MovePerson” method in the Person class

5.8 Add Sequence of Activities

The user is able to manually add a new sequence into the simulation list while the simulator

is running. This sequence includes start time, end time, room and activity. Figure 5.17 shows

the sequence addition section of the user interface. When the “Confirm Selection” button is

pressed, the new sequence is added to the simulator.

 5 Implementation

36

Figure 5.17: Sequence Addition section of the UI

Once the “Confirm Selection” button is pressed, the program calls on the

“AddSequenceToList” method in the “SequenceHandler” class with the new sequence data

and the existing simulator list as parameters. Figure 5.18 shows the “UpdateActivityList”

method contained in the “Simulation” class. This method checks if the new sequence data is

valid and returns an error if it isn’t. If the data is valid, the method calls on the

“AddSequenceToList” method with the simulation list, list index and the sequence data as the

parameters. The method then inserts a new object into the list at the next index and returns a

new simulation list.

Figure 5.18: “UpdateActivityList” method in the Simulation class

5.9 Replay Previous Set of Activities

The application supports the function of replaying back to a previous time. This can either be

done by entering number into the replay time textbox and pressing replay, which rewinds the

simulation the specified number of minutes, or pressing the previous activity button. Figure

5.19 shows a screenshot of the replay section of the user interface.

Figure 5.19: Replay section of the UI

 5 Implementation

37

Once the user enters a value in the replay time textbox and presses the replay time, the

application calls on the “Replay” method in the “Simulation” class. This method rewinds the

current simulation time the number of minutes specified and updates the current room and

current activity if they were different at that time. If the resulting simulation time is outside of

the simulation boundaries, an error message will appear. Figure 5.20 shows a screenshot of

the “Replay” method contained in the simulation class.

Figure 5.20: Replay method in the Simulation class

5.10 Configure Properties and Parameters

There are some properties and parameters that needs to be configured in order for the

simulation to run successfully. For this application, this includes the positions in which the

activities take place. These positions are saved into the database for the application to get

when the simulation starts. Figure 5.21 shows the section in the UI for configuring the

activity positions. The parameters are saved to the database when the “Save Configuration”

button is pressed.

 5 Implementation

38

Figure 5.21: Section for configuring the activity positions

The textboxes are connected to the “ConfigHandler” class via data bindings which means that

public properties in the class changes values whenever the textbox values change. Once the

“Save Configuration” button is pressed, the “SaveConfigChanges” method is called upon.

This method saves the data into a list before exporting the list to the database. Figure 5.22

shows part of the method where the parameters are separated into x and y values, added to a

list and finally saved to the database. The database table which the positional parameters are

saved to can be seen in Figure 5.23.

As the activity positions can be changed at any time, objects may be moved within the UI

drawing area or a new house design may be drawn altogether so long as the activity positions

are saved at the start of the program.

5.10.1 Extending with additional parameters

Right now, the positional data of the activities is the only parameters that can be configured.

In order to add additional parameters to be configured, new source properties in the

“ConfigHandler” must be created and data bindings must be added to the inputs in the UI.

The new parameters must then be saved to lists of their own and call on a method in the

“DatabaseHandler” to save them to the database. New tables in the database may need to be

created depending on the type of properties to be saved.

 5 Implementation

39

Figure 5.22: Code snippet of the SaveConfigChanges method in the ConfigHandler class

Figure 5.23: Table containing the positional data of the activities

 6 Testing

40

6 Testing
This chapter describes the testing of the system and the methods that are used. The testing is

based on the requirements, use case diagram and the individual FDUCDs.

The testing done can be categorized into undocumented and documented. The undocumented

testing is done every time a new feature is added into the system. The feature is then tested

right away without documentation. The documented testing is done by the help of test cases

where two test cases is created for each of the use cases, one for the main success scenario

and one for the extensions. The template used for these test cases was found online on

softwaretestinghelp.com [21].

6.1 Import/Export

Testing of the Import/Export features included pressing the “Import” button, waiting for the

file dialog box to open and selecting a csv file. The database was then checked to see if the

new dataset had been saved. The export function was tested by entering a new file name into

the textbox and pressing the “Export” button, waiting for the file dialog box to open and

selecting a folder. The new csv file was then inspected to see if the dataset had been

successfully exported.

The extensions were tested by shutting down the database server, pressing the “Import”

button and checking if an error message appeared.

The detailed test cases for the “Import/Export” use case can be found in Appendix N and

Appendix O.

6.2 Simulate Activity Data

The testing of the main success scenario for the “Simulate Activity Data” use case included

pressing the “Start Simulation” button to see if the simulation status parameters started

updating and to see if the person appeared at the initial activity position. The program then

ran until a new activity occurred to see if the simulation status updated once more and to see

if the person moved to the new activity location.

Additional features tested included pausing the simulator, resuming the simulator, fast-

forwarding the simulation speed, pressing the “Next Activity” button and toggling “Fast

Mode”.

Extensions for the use case was tested by shutting down the database and starting the

simulation to see if an error message appeared.

Detailed test cases for the use case can be found in Appendix P and Appendix Q.

6.3 Add Sequence of Activities

The main success scenario of the use case is tested by entering in new valid sequence

parameters into the textboxes and combo boxes and pressing “Confirm Selection”.

 6 Testing

41

The sequence time is specified to be close to the current simulation time in order to easily

check that the activity has been added to the simulation.

The randomize function is also tested by pressing the “Randomize” button and checking if

the sequence parameters in the text boxes and combo boxes gives random and valid values.

The extensions are tested by entering invalid sequence parameters. This included entering a

start time earlier than the current time, entering an end time earlier than the start time or

leaving the room and/or activity combo boxes empty.

Detailed test cases for the use case can be found in Appendix R and Appendix S.

6.4 Replay Previous Set of Activities

The main success scenario for the use case is tested by specifying a replay time in the text

box and pressing the “Replay” button. The simulation should then rewind to a previous

simulation time specified by the value in the “Replay Time” text box.

The previous activity feature is also tested by pressing the “Previous Activity” button and

making sure that the simulator rewinds to a time where the activity was different.

The extensions are tested by entering a replay time where the simulator would rewind to time

outside of the simulation boundaries and checking if an error message appears.

Detailed test cases for the use case can be found in Appendix T and Appendix U.

6.5 Configure Properties and Parameters

The main success scenario for the use case is tested by toggling the “Activate Editing”

checkbox in the configuration section and filling each of the activity location text boxes with

coordinates. The “Save Configuration” text box is then pressed, and the database is checked

to see if the values has been saved.

The extensions are tested by keeping any of the text boxes empty, pressing the “Save

Configuration” textbox and checking if an error message appears. Error handling concerning

database connection is also tested by shutting down the database and waiting for an error

message.

Detailed test cases for the use case can be found in Appendix V and Appendix W.

 7 Discussion

42

7 Discussion
By performing a literature survey on existing systems similar to the one created in this

project, it seems clear that there does not exist any systems today that fulfill the requirements

of the system developed in this report.

The datasets used for the simulation comes in the form of two text files. The first being

sensor data and the other being activity data. There are, however, a higher number of

recorded data in the sensor data file than in the activity data file. This results in a combined

dataset where some of the activity values are empty.

The simulator animation currently only supports doors where the person moves through it

horizontally. These doors also have to be aligned with each other, i.e. they need to have the

same vertical coordinate value. This means that if the doors are not aligned or the person

have to move vertically through a door, the person may potentially walk through the walls to

reach the target.

7.1 Including Additional Persons in the Simulator

Right now, the simulator only simulates the activities of one person. This person’s

movements and behavior is based on a dataset containing sensor- and activity data which

means that any additional persons added to the simulator needs to be based on separate

datasets.

The application would need to be extended where the simulation status is shown for each

person. The rooms and activities would need to be updated continuously for all the persons.

For the animation, new animation threads would need to be created equal to the number of

new persons added.

The sequence addition can be extended by selecting the person whose data list should be

altered.

Other considerations would be to ensure that certain activities are not performed

simultaneously by several persons. Showering and toileting, for example, can only be

performed by person at a time, unless new toilets and showers are added to the house.

 8 Suggestions for further work

43

8 Suggestions for further work
This chapter suggests further work to be done on the system.

8.1 Improve Animation

Right now, the animation is somewhat limited in that only aligned doors where the person

moves through them horizontally is compatible with the animation algorithm. If the

animation is improved to where the door locations doesn’t matter, this would allow for much

more complex house layouts.

Another improvement would be to add collision to make sure the person is unable to walk

through any obstructions.

8.2 Save and Load House Drawings

Right now, a developer can edit the existing house drawing in the Visual Studio IDE but is

not able save or load a drawing from the application. By providing the function of saving or

loading the XAML code for the drawing, a user can choose which house to simulate from.

8.3 Improve Sequence Addition

The sequence addition feature may be improved by allowing the addition of sequences by

clicking on the drawing area. When the user clicks on the drawing area, the program could

“guess” the closest activity to the cursor and give a confirmation prompt to the selection.

8.4 Improve Import and Export

Supporting files other than csv for importing and exporting could be an improvement to the

application.

 9 Conclusion

44

9 Conclusion
A literature survey was carried out to research similar systems to the one developed in this

project. These were HOME I/O by Real Games and Smart House Online Simulation and both

systems were compared to the Activity Simulator developed in this project.

The development process followed a modified version of the UP framework and used OOAD

for analysis and design of the system. Development was carried out in iterations where

Iteration 1 focused on collecting the requirements for the system, creating a use case diagram,

creating a prototype of the UI and designing the logical architecture for the database while

Iteration 2 – 6 focused on individual use cases. Each use case was analyzed and designed by

creating a FDUCD for each of the use cases during the analysis phase and creating an

interaction diagram for each of them during the design phase. An overall class diagram was

created from the interaction diagrams.

Implementation for the simulator application was done in Microsoft Visual Studio with WPF

and C# as the programming language while implementation for the database was done in

Microsoft SQL Server Management Studio. The software was successfully able to get data

from the database and simulate it within the simulator application. It was also able to import

dataset to the database from a csv file and export simulation data to a csv file, add new

sequences of activities within the simulation, replay simulation and configure properties and

parameters to save in the database.

Testing was performed on each of the use cases, both documented and undocumented. The

undocumented testing was performed each time a new feature was added to the system, while

the documented testing took place after all the use cases had been implemented into the

system. The documented testing focused on the requirements, use cases and FDUCDs for

each of the use cases.

 References

45

References
[1] Real Games. (2018, 18.04.18). HOME I/O - 3D Smart Home Automation Simulator.

Available: https://realgames.co/home-io/

[2] Astea Solutions. (n.d., 18.04.18). Cloud4all Smart House Online Simulation.

Available: https://smarthouse.remex.hdm-stuttgart.de/#/index

[3] Real Games. (2017, 18.04.18). HOME I/O Documentation. Available:

https://realgames.co/docs/homeio/en/

[4] Real Games. (2017, 18.04.18). Controls - HOME I/O. Available:

https://realgames.co/docs/homeio/en/controls/

[5] Real Games. (2017, 18.04.18). Head-Up Display - HOME I/O. Available:

https://realgames.co/docs/homeio/en/headup-display/

[6] Real Games. (2017, 18.04.18). Device Modes - HOME I/O. Available:

https://realgames.co/docs/homeio/en/device-modes/

[7] Real Games. (2017, 18.04.18). HOME I/O SDK. Available:

https://realgames.co/docs/homeio/en/sdk-getting-started/

[8] Real Games. (2017, 18.04.18). CONNECT I/O. Available:

https://realgames.co/docs/connectio/

[9] Real Games. (2017, 18.04.18). Console - HOME I/O. Available:

https://realgames.co/docs/homeio/en/console/

[10] Astea Solutions. (2014, 18.04.18). Smart House Online Simulation - YouTube.

Available: https://www.youtube.com/watch?v=m64spcp0QoM

[11] F. J. Ordóñez, P. de Toledo, and A. Sanchis. (2013, 15.01.18). Activity Recognition

Using Hybrid Generative/Discriminative Models on Home Environments Using

Binary Sensors. Available:

https://archive.ics.uci.edu/ml/datasets/Activities+of+Daily+Living+(ADLs)+Recognit

ion+Using+Binary+Sensors

[12] N. O. Skeie, "Object-oriented Analysis, Design, and Programming using UML and

C#," Lecture Notes, 2017.

[13] MKLab Co., Ltd. (2018, 10.01.18). StarUML. Available: http://staruml.io/

[14] Microsoft Corporation. (2017, 15.01.18). XAML Overview (WPF). Available:

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/xaml-overview-

wpf

[15] Microsoft Corporation. (2018, 12.02.18). Canvas Class. Available:

https://msdn.microsoft.com/en-

us/library/system.windows.controls.canvas(v=vs.110).aspx

[16] Microsoft Corporation. (2018, 15.01.18). Implementing the Model-View-ViewModel

Pattern. Available: https://msdn.microsoft.com/en-us/library/ff798384.aspx

[17] Microsoft Corporation. (2017, 02.02.18). Data Binding Overview. Available:

https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/data-binding-overview

https://realgames.co/home-io/
https://smarthouse.remex.hdm-stuttgart.de/#/index
https://realgames.co/docs/homeio/en/
https://realgames.co/docs/homeio/en/controls/
https://realgames.co/docs/homeio/en/headup-display/
https://realgames.co/docs/homeio/en/device-modes/
https://realgames.co/docs/homeio/en/sdk-getting-started/
https://realgames.co/docs/connectio/
https://realgames.co/docs/homeio/en/console/
https://www.youtube.com/watch?v=m64spcp0QoM
https://archive.ics.uci.edu/ml/datasets/Activities+of+Daily+Living+(ADLs)+Recognition+Using+Binary+Sensors
https://archive.ics.uci.edu/ml/datasets/Activities+of+Daily+Living+(ADLs)+Recognition+Using+Binary+Sensors
http://staruml.io/
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/xaml-overview-wpf
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/xaml-overview-wpf
https://msdn.microsoft.com/en-us/library/system.windows.controls.canvas(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.canvas(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff798384.aspx
https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/data-binding-overview

 References

46

[18] Microsoft Corporation. (2018, 02.02.18). FrameworkElement.DataContext Property.

Available: https://msdn.microsoft.com/en-

us/library/system.windows.frameworkelement.datacontext(v=vs.110).aspx

[19] Microsoft Corporation. (2018, 02.02.18). INotifyPropertyChanged Interface.

Available: https://msdn.microsoft.com/en-

us/library/system.componentmodel.inotifypropertychanged(v=vs.110).aspx

[20] H. P. Halvorsen. (n.d., 15.01.18). Datalogging and Monitoring, A Practical Example

using SQL Server, LabVIEW and Visual Studio/C#. Available:

https://www.halvorsen.blog/documents/technology/resources/resources/Datalogging/

Datalogging%20and%20Monitoring.pdf

[21] Software Testing Help. (2017, 11.04.18). Sample Test Case Template with Examples.

Available: https://www.softwaretestinghelp.com/test-case-template-examples/

https://msdn.microsoft.com/en-us/library/system.windows.frameworkelement.datacontext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.frameworkelement.datacontext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged(v=vs.110).aspx
https://www.halvorsen.blog/documents/technology/resources/resources/Datalogging/Datalogging%20and%20Monitoring.pdf
https://www.halvorsen.blog/documents/technology/resources/resources/Datalogging/Datalogging%20and%20Monitoring.pdf
https://www.softwaretestinghelp.com/test-case-template-examples/

 Appendices

47

Appendices

Appendix A: Topic Description

 Appendices

48

 Appendices

49

Appendix B: Work Schedule

 Appendices

50

 Appendices

51

 Appendices

52

Appendix C: Database Logical Structure

 Appendices

53

Appendix D: Import/Export FDUCD

Use Case Section Comment

Use Case Name Import/Export

Scope Activity Simulator

Level User goal

Primary actor User

Stakeholders and Interests

Preconditions

Success guarantee Importing dataset from file and exporting

dataset to file

Main success scenario 1: Import-button is pressed

2: Open file explorer

3: Store user specified csv-file in list

4: Store list in database

5: Export button is pressed

6: Get activity list from simulator

7: Write list to csv-file

Extensions 4a: Problem connecting to database. Show

error message.

6a: Simulator not running. Import from

database istead.

Special requirements Connection to Operational Database

Technology list

Frequency of occurence Import/Export buttons are pressed

Miscellaneous

 Appendices

54

Appendix E: Import/Export Interaction Diagram

 Appendices

55

Appendix F: Simulate Activity Data FDUCD

Use Case Section Comment

Use Case Name Simulate activity data

Scope Activity Simulator

Level User goal

Primary actor User

Stakeholders and Interests

Preconditions

Success guarantee Simulating activity dataset

Main success scenario 1: Get data from database and fill list

2: Place person at initial position

3: Update status textboxes

4: Move person to new location when

activity changes

5: Go to 3

Extensions 1a: Problem importing from database. Show

error message.

Special requirements Operational database

Technology list

Frequency of occurence When the “Start Simulation”-button is

pressed

Miscellaneous

 Appendices

56

Appendix G: Simulate activity data Interaction

Diagram

 Appendices

57

Appendix H: Add sequence of activities FDUCD

Use Case Section Comment

Use Case Name Add sequence of activities

Scope Activity Simulator

Level User goal

Primary actor User

Stakeholders and Interests

Preconditions

Success guarantee Adding activity to the simulator list

Main success scenario 1: Read values from sequence text boxes

2: Add values to activity list

3: Update list used by the simulator

Extensions 1a: Start date and time is earlier than current

time. Show error message.

1b: End date and time is earlier than start

date and time. Show error message.

1c: Room or activity is not specified. Show

error message.

Special requirements Simulator running

Technology list

Frequency of occurence Every time the “Confirm Selection”-button

is pressed

Miscellaneous

 Appendices

58

Appendix I: Add sequence of activities Interaction

Diagram

 Appendices

59

Appendix J: Replay previous set of activities

FDUCD

Use Case Section Comment

Use Case Name Replay previous set of activities

Scope Activity Simulator

Level User goal

Primary actor User

Stakeholders and Interests

Preconditions

Success guarantee Rewinding the Simulation

Main success scenario 1: Read replay time textbox

2: Read activity list with current index

3: Subtract replay time from current time

4: Update simulation status

Extensions 1a: Replay time outside of simulation

boundaries. Show error message.

Special requirements Simulator running

Technology list

Frequency of occurence Every time replay button is pressed

Miscellaneous

 Appendices

60

Appendix K: Replay previous set of activities

Interaction Diagram

 Appendices

61

Appendix L: Configure properties and parameters

FDUCD

Use Case Section Comment

Use Case Name Configure properties and parameters

Scope Activity Simulator

Level User goal

Primary actor User

Stakeholders and Interests

Preconditions

Success guarantee Saving properties and parameters to the

database

Main success scenario 1: Read configuration parameters from

textboxes

2: Save parameters to list

3: Save list to database

Extensions 1a: Not all textboxes contain a value. Show

error message

3a: Problem saving list to database. Show

error message

Special requirements Connection to Operational database

Technology list

Frequency of occurence Every time Save Config button is pressed

Miscellaneous

 Appendices

62

Appendix M: Configure properties and parameters

Interaction Diagram

 Appendices

63

Appendix N: Import/Export Test Case – Main
Project Name:
 Developing an activity simulator
 of a person living in a smart house

Test Case

Test Case ID: 1 Test Designed by: Stian Glittum

Module Name: Import/Export Main Success Scenario Test Designed date: 11.04.18

Test Title: Importing data to the database and

 exporting data to a csv file Test Executed by: Stian Glittum

Description: Test the import and export functions Test Execution date: 11.04.18

Pre-conditions: Connection with Operational Database

Dependencies:

 Appendices

64

Step Test Steps Test Data Expected Result Actual Result Status (Pass/Fail) Notes

1

Pressing of “Import”

button

Opening of file dialog

box

File dialog box opens

Pass

2

Selection of a valid csv

file NewDataset.csv

New activity dataset in

the database

 A new dataset appears

in the database

Pass

3

 Pressing of “Export”

button

Opening of file dialog

box

File dialog box opens Pass

4 Selection of folder

New csv file appearing

in the selected folder

A new csv file appears

in the selected folder

Pass

Post-conditions:

 A new activity dataset appears in the database when importing. A new csv file appears when exporting.

 Appendices

65

Appendix O: Import/Export Test Case – Extensions
Project Name:
 Developing an activity simulator
 of a person living in a smart house

Test Case

Test Case ID: 2 Test Designed by: Stian Glittum

Module Name: Import/Export Extensions Test Designed date: 11.04.18

Test Title: Importing data to the database and

 exporting data to a csv file: Extensions Test Executed by: Stian Glittum

Description: Test the import and export extensions Test Execution date: 11.04.18

Pre-conditions: Connection with Operational Database

Dependencies:

 Appendices

66

Step Test Steps Test Data Expected Result Actual Result Status (Pass/Fail) Notes

1

Turning off database

and importing a file NewDataset.csv

Appearance of an error

message

An error message

appears, indicating no

connection to the

database

Pass

2

Pressing “Export”

before turning on the

simulator

Export of data directly

from the database

 The csv file created

contains data directly

from the database

Pass

Post-conditions:

 Appearance of an error message, signifying that the importing failed. New csv file with data from the database.

 Appendices

67

Appendix P: Simulate Activity Data Test Case – Main
Project Name:
 Developing an activity simulator
 of a person living in a smart house

Test Case

Test Case ID: 3 Test Designed by: Stian Glittum

Module Name: Simulate Activity Data Test Designed date: 12.04.18

Test Title: Simulate activity data from a database Test Executed by: Stian Glittum

Description: Test the simulation functions Test Execution date: 12.04.18

Pre-conditions: Connection with Operational Database

Dependencies:

 Appendices

68

Step Test Steps Test Data Expected Result Actual Result Status (Pass/Fail) Notes

1

Pressing of “Start

Simulation” button Activity Dataset

Simulation status

parameters updates,

person appears at

activity location

Simulation status

parameters updates,

person appears at

activity location

Pass

2

Waiting until activity

changes Activity Dataset

Simulation status

parameters updates,

person moves to next

activity location

Simulation status

parameters updates,

person moves to next

activity location

Pass

3

Pressing of pause

button Activity Dataset

Simulation pauses Simulation pauses Pass

4

 Pressing of resume

button Activity Dataset

Simulation resumes Simulation resumes Pass

5

Sliding of fast-forward

slider Activity Dataset

Simulation speed

increases

Simulation speed

increases

Pass

6

Pressing of “Next

Activity” button

 Activity Dataset

Simulator jumps to the

next activity, moving the

person

Simulator jumps to the

next activity, moving

the person

Pass

7 Toggling “Fast Mode” Activity Dataset

Simulator jumps to next

activity every five

seconds

Simulator jumps to

next activity every five

seconds

Pass

 Appendices

69

Post-conditions:

Continuously simulating the activities of a person, all functions related to the simulator reacts appropriately when interacted with.

 Appendices

70

Appendix Q: Simulate Activity Data Test Case – Extensions
Project Name:
 Developing an activity simulator
 of a person living in a smart house

Test Case

Test Case ID: 4 Test Designed by: Stian Glittum

Module Name: Simulate Activity Data Extensions Test Designed date: 12.04.18

Test Title: Simulate activity data from a database: Extensions Test Executed by: Stian Glittum

Description: Test the simulation extensions Test Execution date: 12.04.18

Pre-conditions: Connection with Operational Database

Dependencies:

 Appendices

71

Step Test Steps Test Data Expected Result Actual Result Status (Pass/Fail) Notes

1

Turning off database

and starting simulator Activity Data

Appearance of an error

message

An error message

appears, indicating no

connection to the

database

Pass

Post-conditions:

Appearance of an error message, signifying that the simulator failed to get the activity data.

 Appendices

72

Appendix R: Add Sequence of Activities Test Case – Main
Project Name:
 Developing an activity simulator
 of a person living in a smart house

Test Case

Test Case ID: 5 Test Designed by: Stian Glittum

Module Name: Add Sequence of Activities Test Designed date: 13.04.18

Test Title: Adding activity sequences to simulator list Test Executed by: Stian Glittum

Description: Test the sequence functions Test Execution date: 13.04.18

Pre-conditions: Simulation running

Dependencies:

 Appendices

73

Step Test Steps Test Data Expected Result Actual Result Status (Pass/Fail) Notes

1

Entering sequence

parameters and

pressing “Confirm

Selection” Activity Dataset

New sequence adds to

the simulator list

New sequence added

to the simulator list,

“Next activity” and

“Next Start Time”

textboxes indicates the

success

Pass

2

Pressing “Randomize”

button Activity Dataset

Generates a set of

random valid sequence

parameters

Random values appear

in the text boxes

Pass

Post-conditions:

 New simulator list includes the newly added sequence.

 Appendices

74

Appendix S: Add Sequence of Activities Test Case – Extensions
Project Name:
 Developing an activity simulator
 of a person living in a smart house

Test Case

Test Case ID: 6 Test Designed by: Stian Glittum

Module Name: Add Sequence of Activities Extensions Test Designed date: 13.04.18

Test Title: Adding activity sequences to simulator list: Extensions Test Executed by: Stian Glittum

Description: Test the sequence function extensions Test Execution date: 13.04.18

Pre-conditions: Simulation running

Dependencies:

 Appendices

75

Step Test Steps Test Data Expected Result Actual Result Status (Pass/Fail) Notes

1

Setting new start time

as earlier than current

simulation time Activity Dataset

Error message

Error message

specifying the new

start time must be later

than the current time

Pass

2

Setting new end time

as earlier than new start

time Activity Dataset

Error message

Error message

specifying the new end

time must be later than

the new start time

Pass

3

Leaving new room and

new activity empty Activity Dataset

Error message

Error message

specifying that new

room and new activity

must have values

Pass

Post-conditions:

No new sequence is added.

 Appendices

76

Appendix T: Replay Previous Set of Activities Test Case – Main
Project Name:
 Developing an activity simulator
 of a person living in a smart house

Test Case

Test Case ID: 7 Test Designed by: Stian Glittum

Module Name: Replay Previous set of Activities Test Designed date: 14.04.18

Test Title: Replaying to a previous simulation time Test Executed by: Stian Glittum

Description: Test the replay function Test Execution date: 14.04.18

Pre-conditions: Simulation running

Dependencies:

 Appendices

77

Step Test Steps Test Data Expected Result Actual Result Status (Pass/Fail) Notes

1

Pressing “Replay”

button after specifying

replay time Activity Dataset

Simulation rewinding to

a previous time specified

by the replay time

Simulation rewinds to

a previous time.

Activity and person

position changes as the

previous simulation

time also includes a

different activity

Pass

2

Pressing “Previous

Activity” button Activity Dataset

Rewinding the

simulation to a time

where the activity is

different

Simulation rewinds to

a time where the

activity is different

Pass

Post-conditions:

Simulation time is rewinded. Simulation status textboxes updates. New person position if different activity.

 Appendices

78

Appendix U: Replay Previous Set of Activities Test Case – Extensions
Project Name:
 Developing an activity simulator
 of a person living in a smart house

Test Case

Test Case ID: 8 Test Designed by: Stian Glittum

Module Name: Replay Previous set of Activities Extensions Test Designed date: 14.04.18

Test Title: Replaying to a previous simulation time: Extensions Test Executed by: Stian Glittum

Description: Test the replay extensions Test Execution date: 14.04.18

Pre-conditions: Simulation running

Dependencies:

 Appendices

79

Step Test Steps Test Data Expected Result Actual Result Status (Pass/Fail) Notes

1

Specifying a replay

time that rewinds the

simulation time to be

outside the boundaries Activity Dataset

Error message

Error message that

indicates the target

simulation time is

outside of simulation

boundaries appears

Pass

Post-conditions:

Simulation time is not rewinded.

 Appendices

80

Appendix V: Configure Properties and Parameters Test Case – Main
Project Name:
 Developing an activity simulator
 of a person living in a smart house

Test Case

Test Case ID: 9 Test Designed by: Stian Glittum

Module Name: Configure Properties and Parameters Test Designed date: 15.04.18

Test Title: Saving configurations to database Test Executed by: Stian Glittum

Description: Testing the possibility of saving configurations to

database Test Execution date: 15.04.18

Pre-conditions: Connection to database

Dependencies:

 Appendices

81

Step Test Steps Test Data Expected Result Actual Result Status (Pass/Fail) Notes

1

Toggling “Activate

Editing” checkbox,

focusing a textbox and

clicking on the drawing

area

Coordinates of mouse to

appear in the text boxes

at click

Coordinates appear in

the text boxes at the

click of the mouse

Pass

2

Pressing “Save

Configuration” once all

coordinates textboxes

are filled

Database tables to be

updated with the new

coordinates

New coordinates are

saved in the database

Pass

Post-conditions:

Coordinates are saved to the database.

 Appendices

82

Appendix W: Configure Properties and Parameters Test Case – Extensions
Project Name:
 Developing an activity simulator
 of a person living in a smart house

Test Case

Test Case ID: 10 Test Designed by: Stian Glittum

Module Name: Configure Properties and Parameters Extensions Test Designed date: 15.04.18

Test Title: Saving configurations to database: Extensions Test Executed by: Stian Glittum

Description: Test the configuration extensions Test Execution date: 15.04.18

Pre-conditions: Connection to database

Dependencies:

 Appendices

83

Step Test Steps Test Data Expected Result Actual Result Status (Pass/Fail) Notes

1

Leaving one or more of

the coordinate

textboxes empty

Appearance of error

message

An error message

appears indicating that

all the textboxes must

have values

Pass

2

Turning off database

and pressing “Save

Configuration”

Appearance of error

message

An error message

appears, indicating no

connection to the

database

Pass

Post-conditions:

No new coordinates are saved to the database.

 Appendices

84

