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1  | INTRODUC TION

Reaction norms are extensively used in evolutionary modeling 
of population systems where the individuals have the ability of 
phenotypic plasticity, that is, where organisms can change their 

phenotypes in response to changes in the environment (Chevin & 
Lande, 2015; Ergon & Ergon, 2017; Gavrilets & Scheiner, 1993a,b; 
Gomulkiewicz & Kirkpatrick, 1992; Lande, 2009, 2014; Schlichting & 
Pigliucci, 1998). Such models are special cases of state-space mod-
els, with basically three equations. First, an individual reaction norm 
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Abstract
There is a potential problem in present quantitative genetics evolutionary modeling 
based on reaction norms. Such models are state-space models, where the multivari-
ate breeder’s equation in some form is used as the state equation that propagates the 
population state forward in time. These models use the implicit assumption of a con-
stant reference environment, in many cases set to zero. This zero-point is often the 
environment a population is adapted to, that is, where the expected geometric mean 
fitness is maximized. Such environmental reference values follow from the state of 
the population system, and they are thus population properties. The environment 
the population is adapted to, is, in other words, an internal population property, inde-
pendent of the external environment. It is only when the external environment coin-
cides with the internal reference environment, or vice versa, that the population is 
adapted to the current environment. This is formally a result of state-space modeling 
theory, which is an important theoretical basis for evolutionary modeling. The poten-
tial zero-point problem is present in all types of reaction norm models, parametrized 
as well as function-valued, and the problem does not disappear when the reference 
environment is set to zero. As the environmental reference values are population 
characteristics, they ought to be modeled as such. Whether such characteristics are 
evolvable is an open question, but considering the complexity of evolutionary pro-
cesses, such evolvability cannot be excluded without good arguments. As a straight-
forward solution, I propose to model the reference values as evolvable mean traits in 
their own right, in addition to other reaction norm traits. However, solutions based 
on an evolvable G matrix are also possible.
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model describes how a multivariate individual phenotype yi,t is ex-
pressed as a linear or nonlinear function of quantitative traits z0,i,t 
and a continuously varying multivariate developmental environment 
(environmental cue) ut,

Here, z0,i,t may be the individual parameter vector as function of 
time t (generations) in a parametrized model of the reaction norm, 
or alternatively the individual phenotypic values at discrete index 
environments. Interpolation between index environments results in 
a function-valued or infinite-dimensional individual reaction norm 
model yi,t=γ(ut−uref) (Kingsolver, Gomulkiewicz, & Carter, 2001; 
Kirkpatrick & Heckman, 1989; Kirkpatrick, Lofsvold, & Bulmer, 
1990). The reference environment is often set to uref = 0 (Gavrilets 
& Scheiner, 1993a,b; Lande, 2009), but that disguises the problem at 
hand. Second, the individual fitness function is

where θt is the vector of phenotypic expression that maximizes 
fitness in the given generation. Note that in the univariate and 
linear case, the covariance between ut and θt determines the mean 
reaction norm slope in a stationary stochastic environment (Ergon 
& Ergon, 2017; McNamara, Barta, Klaassen, & Bauer, 2011). Third, 
the state equation that propagates the mean trait values may 
under given assumptions be the multivariate breeder’s equation 
(Lande, 1979)

Equation (3) is based on the assumption that the phenotypic 
traits can be split into two mutually independent and multinormally 
distributed parts, z0,i,t = x0,i,t + e0,i,t, with the covariance matrices 
G=E

[(
x0,i,t− x̄0,t

) (
x0,i,t− x̄0,t

)T] and E=E
[(
e0,i,t− ē0,t

) (
e0,i,t− ē0,t

)T], 
respectively. As a consequence also z0,i,t is multinormally distributed, 
with the covariance matrix P=E

[(
z0,i,t− z̄0,t

) (
z0,i,t− z̄0,t

)T]. I will here 
assume P and G to be constant, which is common in theoretical work 
(e.g., Lande, 2009), although it is unrealistic over longer time peri-
ods (Steppan, Phillips, & Houle, 2002). I will assume populations with 
non-overlapping generations, where all individuals live in the same 
time-varying environment, and make standard assumptions neces-
sary for the multivariate breeder’s equation (3) to be valid (Lande, 
1979). For analytical purposes, expressions for mean values ȳt and 
̄Wt can be found from equations (1) and (2), but they are not needed 
for simulations.

The fundamental insight is that the reference environment in 
reaction norm models is an inherent part of the population state, 
independent of the actual environment where the individuals de-
velop. The state of the population thus determines which envi-
ronment it is adapted to, that is, where the expected geometric 
mean fitness is maximized (the location of the adaptive peak or 
the growth rate peak along the environmental axes). The environ-
ment the population is adapted to is, in other words, an internal 
population property, independent of the external environment. It 
is, however, only when the external environment coincides with 

the internal reference environment, or vice versa, that the pop-
ulation is adapted to the current environment. This is formally a 
result of state-space modeling theory, which is an important the-
oretical basis for quantitative genetics evolutionary modeling. As 
a consequence, the reference environments should be modeled as 
part of the evolutionary models (1) to (3). How this should be done 
is an open question, where the best answer may depend on the 
problem under study. One alternative is to let uref be a function 
of an evolvable G matrix (e.g., Arnold, Bürger, Hohenlohe, Ajie, & 
Jones, 2008). That would give a complex solution, especially in the 
multivariate and nonlinear case, and this alternative is not further 
discussed (except in a simple numerical example in Section 4). As 
a straightforward solution, I propose that the reference environ-
ment vector may be modeled as a vector z̄c,t of mean traits in their 
own right, just as other reaction norm traits. Equation (3) must ac-
cordingly be augmented with the z̄c,t state variables. The details 
of this for parametrized models are developed in Section 2, while 
augmented function-valued models are discussed in Appendix 1. 
Whether the reference traits in z̄c,t are evolvable is also an open 
question, but considering the complexity of evolutionary pro-
cesses, such evolvability cannot be excluded without good argu-
ments. Also note that evolvable reference traits may be combined 
with an evolvable G matrix.

The idea of an evolvable reference trait was introduced in Ergon 
and Ergon (2017), but then based on biological arguments, as a result 
of the novel idea of a perception trait as a means of relaxing con-
straints on the evolution of reaction norms. A main purpose of the 
present article is to show that the plasticity reference environment 
not only may be modeled but that it in principle must be modeled, in 
one way or another, as part of the quantitative genetics state-space 
model (although this is not necessary if the reference environment 
is not evolvable).

The reference environment vector z̄c,t is closely related to the en-
vironment the population is adapted to, which we may denote u0. As 
discussed in detail for the special case in Ergon and Ergon (2017), an 
unsymmetrical distribution of the phenotype y results in a difference 
between z̄c,t and u0, but at equilibrium in a stationary stochastic envi-
ronment the expected deviation is independent of the mean values 
μU and μΘ of ut and θt, respectively.

Under the assumption that some elements in the environmental 
reference trait vector are genetically variable, these elements must 
be included in the state equation (3), or its function-valued counter-
part. In Section 2, I show how this can be done for multivariate and 
nonlinear parametrized reaction norms. If all elements in the refer-
ence environment have zero genetic variance in the population, they 
can without consequence be set to zero, and this is thus an implicit 
assumption in traditional reaction norm models.

As discussed in Ergon and Ergon (2017), an important result of 
a fully evolvable plasticity reference environment is the property of 
complete genetic assimilation, by which “selection can act in such 
a manner as to turn an environmentally stimulated phenotype (i.e., 
plasticity) into a fixed response to prevalent environmental condi-
tions (assimilation)” (Pigliucci & Murren, 2003). I here use the term 

(1)yi,t=g(z0,i,t,ut−uref).

(2)Wi,t=h(yi,t−�t),

(3)z̄0,t+1= z̄0,t+
1
̄Wt

GP
−1
cov(Wi,t,z0,i,t).
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“complete genetic assimilation” as in Ergon and Ergon (2017), to 
describe the evolutionary scenarios where, after an abrupt environ-
mental change, there is an initial increase in phenotypic plasticity, 
after which the mean plasticity is reduced and the environment 
range, or value, to which the population is adapted moves toward 
the current mean environment. This entails that all elements in the 
reference environment vector have genetic variability, such that 
they are evolvable.

A major difficulty of the approach with evolvable reference traits 
is to find empirical measures of these latent parameters. In the linear 
and univariate example in Ergon and Ergon (2017), for example, indi-
vidual reference traits zc (horizontal reaction norm variation) cannot 
be distinguished from za (vertical reaction norm variation) by means 
of a static breeding design (Hill, 2010; Thompson, Brotherstone, & 
White, 2005). Different values of the variance Gcc of zc will, how-
ever, give different dynamical responses to environmental varia-
tions, and assuming that the variance Gaa of za is known this can be 
used to identify Gcc. It is also possible to identify several parameters 
(Appendix 2).

In Section 3, I simulate a set of linear reaction norms, to clarify 
why the environment u0 where the phenotypic variance has a min-
imum must be seen as a population characteristic. I also include a 
simulation example with multivariate and nonlinear reaction norms, 
where the environment changes in a sudden step, and where the 
property of complete genetic assimilation is demonstrated. In a third 
simulation example, I show the effect of evolvable environmental 
reference values on the results in Chevin and Lande (2015), regard-
ing the plastic response in a population system with a single phe-
notype, and two correlated environmental cues. Finally, I include a 
discussion in Section 4.

In Appendix 1, I show that the plasticity reference environment 
needs to be modeled also in function-valued models, and how that 
can be done for univariate and nonlinear reaction norms based on 
environmental index values. I also describe two additional problems 
in such cases.

In Appendix 2, I finally present a preliminary example showing 
how the variances of and covariances between quantitative refer-
ence traits may be identified from dynamical experiments.

An example Matlab code for the extended Chevin-Lande simula-
tion is provided in Data S1.

2  | METHODS

2.1 | Background state-space theory

As a background and reference for the theoretical development, I 
include a summary of the underlying state-space theory for discrete-
time systems. Caswell (2001, Ch. 3) refers to Zadeh’s formal theory 
of state (Zadeh & Desoer, 1963), but state-space modeling of dy-
namical systems is older than that. Of special historical importance 
is the seminal paper of Kalman (1960), concerning the discrete-data 
linear filtering problem (Kalman filtering), although linear state-
space models are special cases.

The starting point for a general discrete-time state-space model 
is the idea of an abstract discrete-time system that interacts with its 
environment through a vector φt of input variables and a vector yt 
of response variables. A vector xt of variables that takes its values in 
some set X (a state-space) is a state vector if it satisfies the following 
two requirements:

1.	 There exists a function g (·) that uniquely determines the re-
sponse at any time t as a function of the input and the state 
at t,

2.	 There exists a function f (·) that uniquely determines the state at any 
time t as a function of the state at any earlier time t0 and the input 
sequence from t0 to t − 1, for any t0 and sequence φ0, φ1,…, φt−1, that 
is, xt = f (x0, φ0, φ1,…, φt−1). From this follows that x1 = f(x0, φ0), and 
generally that xt at any time t can be propagated one step forward 
in time according to (Åström & Murray, 2008)

The function g (·) is known as the output or observation function, 
and the function f (·) as the state function, while xt is the state. At 
t = t0 the state variables will have or be given some initial values, 
but from then on all information from the past is carried by the state 
variables. It should be noted that any current state may be the result 
of a large number of different initial states and input sequences, es-
pecially if t0 is far back in time, and the initial state cannot therefore 
be reconstructed from the current state without detailed knowledge 
of the entire input sequence. Also note that the excitation φt may 
be a combination of deterministic and stochastic signals, and that 
the functions g (·) and f (·) may include different parts of a common 
input vector φt.

When g (·) and f (·) are linear, and when the stochastic part of φt 
is white (no autocorrelation) and normally distributed, the optimal 
mean value x̄t can be found from yt using the Kalman filter, such that 
the covariance E

[(
xt− x̄t

) (
xt− x̄t

)T] is minimized (Lewis, Xie, & Popa, 
2008; Newman et al., 2014). In the general case, estimates of the dis-
tribution of xt can be found from yt using the Chapman-Kolmogorov 
equation and various techniques (Arulampalam, Maskell, Gordon, & 
Clapp, 2002; Newman et al., 2014).

2.2 | Evolutionary state-space models

Assuming sufficient genetic variation, the mean phenotypic values in 
a population will evolve when the environment varies from genera-
tion to generation. As summarized in the Introduction, mathematical 
modeling of this evolution for plastic organisms involves a state-
space model, which assuming non-overlapping generations require 
three equations. First, equation (1) describes how a multivariate in-
dividual phenotype yi,t is expressed as a linear or nonlinear function 
of quantitative traits z0,i,t and a continuously varying developmental 
environment (cue vector) ut. Second, equation (2) describes how the 
individual fitness depends on the difference between the pheno-
type yi,t and the vector θt of phenotypic expressions that maximizes 

(4)yt=g(xt,φt).

(5)xt+1= f
(
xt,�t

)
.
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fitness in the given generation. Third, the state equation may under 
given assumptions be the multivariate breeder’s equation (3) (Lande, 
1979).

When equation (1) is compared with the general state-space 
output function (4), it is apparent that the environmental reference 
vector uref must be part of either the current state or the current 
input. As equation (4) describes how the abstract discrete-time 
system interacts with the current environment through the vector 
φt of input variables, and as a reference environment possibly far 
away from the current environment cannot be part of the current 
input, it must necessarily be an inherent part of the current state of 
the population (as illustrated in Figure 1 in Section 3). The current 
individual state is thus 

[
zT
0,t

uT
ref

]T
, which leaves ut as the current 

input in equation (4). Note, however, that also θt in the fitness 
function (2) is an input variable, such that the total current input 
is �t=

[
uT
t

�T
t

]T.
In traditional reaction norm models, the reference environment is 

assumed to be the same for all individuals in the population, and the 
current mean state is then 

[
z̄T
0,t

uT
ref

]T
, that is, the reference environ-

ment is in principle a population state variable, although it is implicitly 
assumed be constant. The environment the population is adapted to, 
is, in other words, an internal population property, independent of 
the external environment. It is, however, only when the external en-
vironment coincides with the internal reference environment, or vice 
versa, that the population is adapted to the current environment. 
Again, note that uref cannot be a part of the current input, which ac-
cording to equation (4) interacts with the system. The state variable 
uref thus determines which environment the population is adapted to, 
whether it coincides with the current environment or not.

Any population state variable must be modeled as a population 
mean value, a variance or a higher order statistical moment, or func-
tions of the statistical moments. As we must assume that the popula-
tion may be adapted to different stationary stochastic environments, 
independent of constant G and P matrices, and as the elements in uref 
must have the same dimensions as the elements in ut (e.g., tempera-
ture and salinity), the remaining choice is a mean trait vector, which we 
may denote z̄c,t. Note that uref should be modeled in this way also when 
it is set to zero, and that we in general must assume that z̄c,t may be 
evolvable. As described in Section 4, this way of modeling a possibly 
varying input is natural also from an engineering control point of view. 
As mentioned in Section 1, we could alternatively let uref be a function 
of an evolvable G matrix (e.g., Arnold et al., 2008), but that possibility 
is not discussed further in this article (except in a simple numerical 
example in the Section 4). As also mentioned in the Introduction, an 
evolvable G matrix may come in addition to an evolvable reference 
trait vector.

Setting uref= z̄c,t raises the question of possible biological mech-
anisms for individual traits zc,i,t. Ergon and Ergon (2017) proposed that 
individual reaction norms may be shifted along the cue axis accord-
ing to how individuals perceive the environment, which results in in-
dividual perception traits. In the general multivariate and nonlinear 
case, such perception effects will lead to individual trait vectors zc,i,t, 
that thus should replace uref in equation (1). Assuming that zc,i,t, just as 

z0,i,t, can be split into two independent and multinormally distributed 
parts, zc,i,t = xc,i,t + ec,i,t, and that the additive genetic covariance matrix 
Gcc=E

[ (
xc,i,t− x̄c,t

)(
xc,i,t− x̄c,t

)T ] is positive definite, the mean traits 
in z̄c,t will be evolvable. This results in a dynamical reference environ-
ment, which in a stationary stochastic environment will evolve into an 
equilibrium.

With uref = zc,i,t, the model (1, 2, 3) will according to the multivar-
iate breeder’s equation result in the augmented state-space model

 

where

Gaug=

[
G E

[(
x0,i,t− x̄0,t

) (
xc,i,t− x̄c,t

)T]

E
[(
xc,i,t− x̄c,t

) (
x0,i,t− x̄0,t

)T]
Gcc

]

and

Paug=

[
P E

[(
z0,i,t− z̄0,t

) (
zc,i,t− z̄c,t

)T]

E
[(
zc,i,t− z̄c,t

) (
z0,i,t− z̄0,t

)T]
E
[(
zc,i,t− z̄c,i,t

) (
zc,t− z̄c,t

)T]
]
,

while βt is the selection gradient. Here, Gcc = 0 results in xc,i,t= x̄c,t

, and thus a constant mean state variable z̄c,t+1= z̄c,t. In that special 
case, we may without further consequences set z̄c,t= zc,i,t=uref=0. In 
case only some of the traits in zc,i,t have genetic variability, only such 
traits should be included in equation (7), while the others may be set 
to zero. In equation (7), Wi,t and ̄Wt are still computed from equa-
tion (2). Evolution in a stationary stochastic environment will lead to 
an equilibrium, where E

[
cov(Wi,t,z0,i,t

]
=0 and E

[
cov(Wi,t,zc,i,t

]
=0, that 

is, where the expected selection gradient is E
[
�t
]
=0.

2.3 | Parametric reaction norm modeling

With z0,i,t split into elevation traits za,i,t and slope and shape traits 
zb,i,t, the reaction norm function in equation (6) becomes

yi,t=g
(
za,i,t,zb,i,t,ut−zc,i,t

)
.

Following Gavrilets and Scheiner (1993a), this function can 
be approximated by a power series in terms of the components 
of q environmental cues, with p different products of u1,t − zc,1,i,t, 
u2,t − zc,2,i,t, …, uq,t − zc,q,i,t, such as u1,t − zc,1,i,t, (u1,t −zc,1,i,t)

2, (u1,t − zc,1,i,t) 
(u2,t − zc,2,i,t) etc. This yields the individual reaction norm equation

where ũi, t is a p × 1 vector of all the different cue products involved, 
as, for example, u1,t − zc,1,i,t, (u1,t − zc,1,i,t)

2, (u1,t − zc,1,i,t) (u2,t − zc,2,i,t) etc. 
With m phenotypic variables, yi,t and za,i,t are m × 1 vectors, and Zb,i,t 
an m × p matrix of individual quantitative traits (see multivariate and 
nonlinear simulation example in Section 3). The elements in Zb,i,t can 
be ordered in an individual vector zb,i,t in any chosen way. We may, 
for example, have zb,i,t = vec(Zb,i,t), where vec(Zb,i,t) is a vector form of 
Zb,i,t such that the columns are linked into a single column vector of 

(6)yi,t=g
(
z0,i,t,ut−zc,i,t

)

(7)

[
z̄0,t+1

z̄c,t+1

]
=

[
z̄0,t

z̄c,t

]
+

1
̄Wt

GaugP
−1

aug

[
cov

(
Wi,t,z0,i,t

)

cov
(
Wi,t,zc,i,t

)
]

=

[
z̄0,t

z̄c,t

]
+Gaug�t,

(9)yi,t= za,i,t+Zb,i,tũi,t,



     |  5ERGON

length m × p. Note that all of za,i,t, zb,i,t and zc,i,t may have independent 
additive genetic and non-additive parts. When equation (6) is replaced 
by equation (9), equation (7) must be replaced by

The total number of state variables is thus m + m × p + q, where q 
is the number of environmental cues.

Note that the system (9, 10) has the external references μΘ, 
μU, and cov(U,Θ) through the fitness function (2). It follows from 
Ergon and Ergon (2017) that a symmetric phenotypic distribution 
p (y) at equilibrium in a stationary stochastic environment results in 
E
[
z̄a,t

]
=�� and E

[
z̄c,t

]
=�U, while an unsymmetrical p(y) leads to de-

viations from μΘ and μU. These deviations will, however, be indepen-
dent of the actual values of μU and μΘ, such that a positive definite 
matrix Gcc gives complete genetic assimilation in any stationary sto-
chastic environment. It also follows from Ergon and Ergon (2017) and 
McNamara et al. (2011), that the mean slope values around the ori-
gin in a stationary stochastic environment is a function of cov(U,Θ).

3  | RESULTS

3.1 | Adaptive peak as population characteristic

Theoretical and simulation results for a simple linear example system 
with an evolvable plasticity reference environment are discussed in 
detail in Ergon and Ergon (2017). Here, I take a closer look at the lin-
ear reaction norms in that example, to show why the environmental 
cue u0 where the phenotypic variance is minimized, that is, the loca-
tion of the adaptive peak, is a population characteristic. In the exam-
ple system simulated in Ergon and Ergon (2017), the linear three-trait 
reaction norm essentially is (letting only the elevation trait za = a + e 
have a non-additive component, while zb = b and zc = c)

which with ̄c=0 and Gcc = 0 gives the two-trait reaction norm in Lande 
(2009). As shown in Ergon and Ergon (2017), the environment where 
the phenotypic variance has a minimum is u0= c̄+

(
b̄Gbc−Gab

)
∕Gbb,  

that is, u0= c̄ for Gbc = Gab = 0.This implies that u0 is a population 
property, which as shown in Figure 1 may be located far away from 
the current external environment.

(10)

⎡
⎢⎢⎢⎣

z̄a,t+1

z̄b,t+1

z̄c,t+1

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

z̄a,t

z̄b,t

z̄c,t

⎤
⎥⎥⎥⎦
+

1
̄Wt

GaugP
−1

aug

⎡
⎢⎢⎢⎣

cov
�
Wi,t,za,i,t

�

cov
�
Wi,t,zb,i,t

�

cov
�
Wi,t,zc,i,t

�

⎤
⎥⎥⎥⎦
.

(11)y=a+b (u−c)+e,

F IGURE  1 Two populations of reaction norms y = a + b (u − c) + e, with ā=0, b̄=1, Gaa = 0.25, Gbb = 0.2, Gab=Gac=Gbc=0, and σ2
e
=0.5.  

The upper panel has u0= c= c̄=uref=0 and Gcc = 0, which gives (with other parameter values) the two-trait model of Lande (2009). The 
lower panel has u0= c̄=2 and Gcc = 0.25, which gives (with other parameter values) the three-trait model of Ergon and Ergon (2017). Solid 
lines show the reaction norms in a limited range of current environmental values with mean μU = 6, that is, far away from the reference 
environment u0 = uref = 0 (upper panel) and u0= c̄=2 (lower panel). Dashed lines show extrapolations of the reaction norms, to emphasize 
that the cue value u0 where the phenotypic variance is minimized is a population characteristic, also if u varies in a range far from u0. If, in 
other words, the individual reaction norms are known only in a limited range of environments with a given mean value far from u0, the value 
of u0 will still be known. The lower panel indicates a higher value of the minimum phenotypic variance, owing to the Gcc > 0 value, that is, to 
the variance of the individual reaction norm positions along the environmental cue axis. Note that if μU would be hold constant forward in 
time, also u0 = 0 in the upper panel would stay constant, as in Lande (2009), while u0= c̄ in the lower panel would evolve toward μU = 6, as in 
Ergon and Ergon (2017)

(8)
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3.2 | A multivariate and nonlinear case

As also discussed in Ergon and Ergon (2017), as well as in the 
Introduction, an important consequence of an evolvable reference 
environment is complete genetic assimilation in any stationary envi-
ronment. Here, I simulate a multivariate and nonlinear system, where 
complete genetic assimilation as defined in the Introduction takes 
place. Figure 2 shows step response phase portraits, that is, ā1= f

(
c̄1
)
 

and ā2= f
(
c̄2
)
, for a system with the individual reaction norm model

with correlated cues u1 and u2, and with independent and zero mean 
white noise components e1 and e2. The fitness function was

with correlated values of θ1 and θ2. The state equation (10) was used,  
with za,i,t=

[
a1,i,t+e1,i,t a2,i,t+e2,i,t

]T, zb,i,t=
[
b11,i,t b12,i,t b22,i,t b23,i,t

]T 
and zc,i,t=

[
c1,i,t c2,i,t

]T. Note that the plots show that complete ge-
netic assimilation takes place.

Figure 3 shows the corresponding mean plasticity slope plots. 
Note that only b̄11 is different from zero in a stationary stochastic 
environment, which may have implications for the possibilities to find 
parameter values from collected data (see Section 4 and Appendix 2).

3.3 | Extended Chevin-Lande example

More generally, evolvable reference environments will have pro-
found effects on all types of evolutionary modeling involving reac-
tion norms. Here, I show how it will affect the analysis of Chevin and 
Lande (2015), regarding how reaction norm slope values respond to 
correlated multiple environmental variables. Chevin and Lande studied 
the plastic response in a population system with a single phenotype 
and two environmental cues (environments of development) u1,t=ε1,d,t 
and u2,t = ɛ2,d,t, and the phenotypic expression that maximizes fitness 
θt=ε1,s,t+ε2,s,t, where ɛ1,s,t and ɛ2,s,t are the environments of selection, 
and where μθ =B

(
μU1

+μU2

)
. They used the traditional approach with 

reference environments equal to zero, that is, with an individual reac-
tion norm model

where e is an independent residual component of variation. This is an 
extension of the single input example in Lande (2009). The variance 
of e was not stated, as it is not explicitly needed in the Chevin-Lande 
simulation method. With negligible plasticity cost, the individual fit-
ness function is given by

In a simulation, Chevin and Lande showed how the scaled mean 
reaction norm slopes b̄1∕B and b̄2∕B settles into different final values 

(12)

�
y1

y2

�
=

�
a1

a2

�
+

�
b11 b12 0

0 b22 b23

� ⎡⎢⎢⎢⎣

u1−c1�
u1−c1

�2
�
u1−c1

� �
u2−c2

�

⎤
⎥⎥⎥⎦
+

�
e1

e2

�
,

(13)W=Wmax exp
(
−
(
y1−θ1+y2−θ2

)2
∕2ω2

)
,

(14)y=a+b1u1+b2u2+e,

(15)W=Wmax exp
(
−(y−θ)2∕2ω2

)
.

F IGURE  2 Step response phase portraits, that is, ā1= f(c̄1) and ā2= f(c̄2), for a system with the individual reaction norm model (12) and fitness 
functon (13), with steps in μU1

 and μU2
 from 0 to 6, and in μΘ1

 and μΘ2
 from 0 to 12, applied at t = 5,000 generations. The simulation ended at t = 10,000 

generations. The G matrix was diagonal with Ga1a1
=Ga2a2

=Gc1c1
=Gc2c2

=0.5 and Gb11b11
=Gb12b12

=Gb22b22
=Gb23b23

=0.045. The other parameters were  
σ2
e1
=σ2

e2
=0.5, σ2

U1

=σ2
U2

=0.4, cov
(
u1,u2

)
=0.2, σ2

Θ1
=σ2

Θ2
=1.6, cov

(
θ1,θ2

)
=0.05, cov

(
u1,θ1

)
=cov

(
u2,θ1

)
=cov

(
u1,θ2

)
=cov

(
u2,θ2

)
=0.2, and 

ω2 = 10
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from equal initial values b̄1∕B= b̄2∕B=1. The reason for the differ-
ent final slope values is that the two cues are correlated, and also 
correlated with the phenotypic expression θ that maximizes fitness, 
and the main point in the paper was thus that interpretation of the 
reaction norm slopes must take these correlations into account.

I repeated the Chevin and Lande simulations using the individual 
reaction norm model

and the state equation (10). I used the same fitness function and 
the same small plasticity cost values as in Figure 1a in Chevin and 

Lande (2015) (who needed some plasticity cost to compute Φ in their 
equation (A4)). The difference from results with zero cost values was 
indeed negligible. I used the same Gaa and Gbb values as in Chevin 
and Lande (2015), and let the c traits be independent of the a and b 
traits. The Gcc matrix was diagonal. I used σ2

e
=0.5 in all simulations 

(as in Lande, 2009). See Data S1 for Matlab code.
The simulation results in Figure 4 show that interpretation of the 

reaction norm slopes also must take the variances (and covariance) 
of the traits c1 and c2 into account. For Gc1c1

=Gc2c2
=0, the results for 

b̄1,t∕B and b̄2∕B are the same as in a simulation using the method in 
Chevin and Lande (2015) (Figure 1a). With increased values of Gc1c1

 

(16)y=a+b1(u1−c1)+b2
(
u2−c2

)
+e,

F IGURE  3 Mean plasticity slopes 
as function of time (generations) 
corresponding to the step response phase 
plots in Figure 2. Upper panel shows b̄11 
(blue) and b̄12 (magenta), and lower panel 
shows b̄22 (blue) and b̄23 (magenta). All 
initial parameter values were set to zero

F IGURE  4 Evolution of scaled mean 
reaction norm slopes for the system in 
Equations (15), (16) and (10) in constant 
mean environments, from initial values 
equal to one to final stationary values 
b̄1,∞∕B and b̄2,∞∕B (blue). The G matrix 
was block-diagonal with Gaa = 0.5, 
Gb1b1

=Gb2b2
=0.04, Gb1b2

=0.01 and 
Gc1c2

=0, while Gc1c1
 and Gc2c2

 varied. 
The residual variance was σ2

e
=0.5 in all 

simulations. Left panels show results for 
Gc1c1

=Gc2c2
=0, that is, for the case in 

Chevin and Lande (2015) (Figure 1a). The 
central and right panels show results for 
Gc1c1

=Gc2c2
=0.5 and Gc1c1

=Gc2c2
=5, 

respectively. For comparison, results 
using the Chevin-Lande algorithm with 
Gc1c1

=Gc2c2
=0 are included in the left 

panels (magenta, not easy to see as it is 
overlapped by blue curve)
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and Gc2c2
, the final absolute values of b̄1,t∕B and b̄2,t∕B were reduced. 

Very large values of Gc1c1
 and Gc2c2

 gave b̄1,t∕B→0 and b̄2,t∕B→0 for 
t → ∞.

4  | DISCUSSION

The main point in this article is that the plasticity reference envi-
ronment uref is a population characteristic, that ought to be mod-
eled as such, and this is the case also if it is set to zero. Under the 
assumption of constant additive genetic and phenotypic covariance 
matrices, the remaining choice is to model uref as a vector z̄c of mean 
traits. The corresponding additive genetic covariance matrix Gcc may 
be zero, and we may then set uref = 0. However, if Gcc ≠ 0, at least 
some of the “reference traits” will evolve in a changing environment, 
and they must then be included in the augmented state equation (7).

One may ask why not the covariance matrices G and P also should 
be modeled and included as state variables in the augmented state 
equation (7), and the answer is yes, in principle they should. In such 
cases, evolvability of these matrices cannot be based on individual 
selection, but on, for example, mutations. Here, however, I assume 
that G and P are constant and not evolvable, such that augmentation 
with these matrices is not necessary. See Arnold et al. (2008) for a 
review of empirical, analytical, and simulation studies of the G ma-
trix, with a focus on its stability and evolution.

The biological mechanism behind evolvable “reference traits” may 
be that individuals perceive the environment differently, as discussed in 
Ergon and Ergon (2017), and we could accordingly introduce individual 
“perception traits” zc. As shown, such perception traits may be used also 
in multivariate and nonlinear cases, leading to parametrized models ac-
cording equations (2), (9), and (10). As shown in Appendix 1, perception 
traits may be used also in models based on index environment pheno-
types, which through interpolation leads to function-valued models. In 
such models, however, Gcc > 0 leads to non-normal distributions, which 
is in conflict with the assumptions behind the multivariate breeder’s 
equations (7) and (10). Another added difficulty is that the individual 
state variable zc,i,t does not fit into a function found through interpola-
tion between phenotypic index traits z1,i,t to zr,i,t. A similar problem in a 
life-history trait setting is discussed in Irwin and Carter (2013).

The state-space model (9,10) could have been formulated just 
as a generalization of the model in Ergon and Ergon (2017), based 
on biological arguments for perception traits. In addition to that, 
however, my intention has here been to show that, independent of 
these arguments, modeling of the reference environment is in prin-
ciple necessary from a basic state-space modeling point of view.

The most important result from a practical point of view is that 
population systems with a positive definite covariance matrix Gcc 
obtain complete genetic assimilation in any stationary stochastic 
environment, as discussed in the Introduction. This means that the 
reaction norms at equilibrium after a change from one mean envi-
ronment to another will be shifted to the new environment without 
any change in slope and shape. The adaptive peak, as determined 
by the state of the population, thus moves such that the population 

becomes adapted to the new environment. This movement is illus-
trated in a phase plane plot in Ergon and Ergon (2017), as well as in 
Figure 2. Long after the change in mean environment, the complete 
genetic assimilation will return the mean fitness to its original value, 
which is an essential difference from the partial genetic assimilation 
obtained in Lande (2009). More generally, the mean phase space po-
sition values z̄a and z̄c in equation (10) will evolve to new equilibrium 
values, while the mean slope and shape values z̄b after a transient 
period will return to the original values. As a result, the dynamical 
responses to variations around the mean of a stationary stochastic 
environment, that is, around an adaptive peak, will be independent 
of the environmental location of the adaptive peak. This is demon-
strated in Figures 2 and 3 in Section 3. In practice, however, com-
plete genetic assimilation to any environment must be limited by 
biological constraints, plasticity costs etc.

As an alternative to the modeling of the reference environment 
as a vector z̄c of mean traits, uref could be modeled by means of el-
ements in an evolvable G matrix. For the simple system in Lande 
(2009), which was the starting point for Ergon and Ergon (2017), 
the reference environment is uref = −Gab/Gbb, where Lande made the 
choice Gab = 0. When the mean environmental cue in that example 
was shifted from 0 to 10, while the peak of the fitness function was 
shifted from 0 to 20, the value of uref would evolve from 0 to 10 if 
Gab/Gbb evolved from 0 to 10. As �Gab�≤

√
GaaGbb, this would without 

change in the value Gaa = 0.5 require a change in Gbb from 0.045 to 
equal to or less than 0.005, while a constant value Gbb = 0.045 would 
imply Gaa ≥ 4.5. It would in any case mean a system quite different 
from the original one. The dynamical properties would therefore not 
be the same in the new stationary environment, and therefore, we 
would not have complete genetic assimilation in the strict sense de-
scribed above.

As mentioned in the Introduction, a main difficulty appears to 
be to find estimates of Gcc from data. With linear reaction norms, 
it is theoretically impossible to find Gcc from data collected at 
stationarity, but as discussed in Ergon and Ergon (2017), signs of 
Gcc ≠ 0 will show up in transient situations. For the simple example 
in Ergon and Ergon (2017), it is in fact possible to find Gcc from dy-
namical experiments, as used in engineering control system identi-
fication (Appendix 2). A more general application of such methods 
on evolutionary problems is an interesting area for future research.

It is also interesting to note that there may exist mean reaction 
norm slope and shape parameters that are different from zero only in 
dynamical situations, as demonstrated in Figure 3. Although the cor-
responding individual parameters will be different from zero also in a 
stationary stochastic environment, this may make it difficult to find 
the corresponding covariance parameters from data collected at sta-
tionarity. In such cases, these parameters may possibly be found using 
dynamical identification experiments as introduced in Appendix 2.

Under the assumption that all individuals develop in the same 
environment, genetic assimilation leads to good tracking properties, 
and thus good adaptation to slowly changing environments. This 
may reduce the need for nonlinear reaction norms, and also the de-
tails of this is an interesting area for future research.
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Finally note that modeling of a constant reference cue as an 
undriven discrete-time integrator as in equations (7) and (10), with 
Gcc = 0, has an interesting parallel in engineering control applica-
tions. Such modeling of a constant system input is there used to 
achieve model based integral control through state feedback, which 
assures that the stationary control error is zero also if the constant 
input is unknown (Friedland, 1986). It also makes it possible to follow 
an input ramp function without an ever increasing error. The similar 
effects of the state-space models (6, 7) and (9, 10), with Gcc ≠ 0, is the 
genetic assimilation in any stationary stochastic environment, as de-
scribed above, and good tracking properties when the environment 
changes slowly.
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APPENDIX 1
Modeling based on index environment phenotypes
In order to show that the plasticity reference environment needs to 
be modeled also in function-valued models, I here consider models 
based on index environment phenotypes. Such models lead to 
function-valued models through interpolation between the index 
environments (Kingsolver et al., 2001; Kirkpatrick & Heckman, 
1989). I also describe two additional problems in such cases. For 
clarity, I assume a univariate individual phenotype yi,t and a univari-
ate environmental cue ut.

In an index environment model, the phenotypic values yi,t in 
Equation (1) is defined as the individual phenotypic values at r dis-
crete index environments,

yi,t=

⎡⎢⎢⎢⎣

y1,i,t

⋮

yr,i,t

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

γ
�
u1,t−zc,i,t

�

⋮

γ
�
ur,t−zc,i,t

�

⎤⎥⎥⎥⎦
,

where γ is the in general nonlinear reaction norm function, and 
where zc,i,t is the individual reference trait (which is set to zero in 
traditional models). The individual phenotypic values are also used 
as individual traits, that is, z1,i,t = y1,i,t etc., and these traits have a 
phenotypic covariance matrix Pr=cov(yi,t,yi,t), and a corresponding 
additive genetic covariance matrix Gr. Setting zc,i,t = 0, the multivari-
ate breeder’s Equation (3) would thus lead to

When zc,i,t ≠ 0, this state equation must be augmented into

where Grc and Prc are the covariance matrices of the vector yi,t aug-
mented with zc,i,t. This raises two problems. First, with zc,i,t ≠ 0 the 
traits z1,i,t=y1,i,t etc. will not be normally distributed, even if the reac-
tion norm has underlying normally distributed parameters, which is 
in conflict with the assumptions behind the multivariate breeder’s 
equation (Lande, 1979). Equation (A3) will therefore be more of an 
approximation than it otherwise would be. Second, the state varia-
ble zc,i,t does not fit into a function found through interpolation 

between z1,i,t to zr,i,t. A similar problem in a life-history trait setting is 
discussed in Irwin and Carter (2013). A possible solution is to assume 
that zc,i,t is independent of z1,i,t to zr,i,t, and model the evolution of z̄c,t 
independently, that is, to use Equation (A2) combined with

APPENDIX 2
Preliminary example of evolutionary system identification
System identification is a mature discipline in the engineering con-
trol community, with prediction error methods developed during the 
1980’s (Ljung 1999), and subspace methods from the 1990’s and 
later (Qin 2006). For evolutionary system identification, predictor 
error methods of the output error (OE) type is a straightforward 
choice.

Here is an example of the OE prediction error method applied on an 
evolutionary system identification problem. Assume a system essen-
tially as in Ergon and Ergon (2017), with the individual reaction norm

the individual fitness function

and the multivariate breeder’s equation

where za = a + e, zb = b and zc = c. Here, u is the environmental cue, 
while θ is the phenotypic value that maximizes fitness. Assume 
ω = 10, and

and

Also assume θt = μΘ + vθ,t as shown in Figure A1, upper panel, 
where μθ is piecewise constant, while vθ,t is white noise with variance 
σ2
vθ,t

=1.6. Assume ut = μu + vu,t, where also vu,t is white noise with 
variance σ2

vu,t
=0.4, and where μU = 0.5μΘ, and let θt and ut be corre-

lated, with cov
(
θt,ut

)
=0.2. Inputs like μΘ and μU in Figure A1 can for-

mally be generated as pseudo-random binary signals (PRBS), which 
are often used for identification of engineering control systems 
(Ljung 1999).
Apply the input sequences θt and uton the evolutionary system 

(A5) to (A7), and collect the mean phenotype ȳt for t=1 to T.
Now assume that Gcc is the only unknown parameter in the sys-

tem (A5) to (A7). In order to find Gcc, apply the input sequences θt 

(A2)
⎡
⎢⎢⎢⎣

z̄1,t+1

⋮

z̄r,t+1

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

z̄1,t

⋮

z̄r,t

⎤
⎥⎥⎥⎦
+

1
̄Wt

GrP
−1

r

⎡
⎢⎢⎢⎣

cov
�
Wi,t,y1,i,t

�

⋮

cov
�
Wi,t,yr,i,t

�

⎤
⎥⎥⎥⎦

(A3)
⎡
⎢⎢⎢⎣

z̄1,t+1

⋮
z̄r,t+1

z̄c,t+1

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

z̄1,t

⋮
z̄r,t

z̄c,t

⎤
⎥⎥⎥⎦
+

1
̄Wt

GrcP
−1

rc

⎡
⎢⎢⎢⎣

cov
�
Wi,t,y1,i,t

�

⋮
cov

�
Wi,t,yr,i,t

�

cov
�
Wi,t,zc,i,t

�

⎤
⎥⎥⎥⎦
,

(A4)z̄c,t+1= z̄c,t+
1
̄Wt

GccP
−1
cc
cov

(
Wi,t,zc,i,t

)
.

(A5)y=a+b (u−c)+e,

(A6)W=exp

(
−
(y−θ)2

2ω2

)
,

(A7)

⎡
⎢⎢⎢⎣

z̄a,t+1

z̄b,t+1

z̄c,t+1

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

z̄a,t

z̄b,t

z̄c,t

⎤
⎥⎥⎥⎦
+

1

̄Wt

GP
−1

⎡
⎢⎢⎢⎣

cov(Wi,t,za,i,t)

cov(Wi,t,zb,i,t)

cov
�
Wi,t,zc,i,t

�

⎤
⎥⎥⎥⎦
,

G =

⎡
⎢⎢⎢⎣

Gaa 0 0

0 Gbb 0

0 0 Gcc

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

0.5 0 0

0 0.045 0

0 0 0.5

⎤
⎥⎥⎥⎦
,

P=

⎡
⎢⎢⎢⎣

Paa 0 0

0 Pbb 0

0 0 Pcc

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

1 0 0

0 0.045 0

0 0 0.5

⎤
⎥⎥⎥⎦
.

(A1)
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and uton a system model with different values of Gcc, and collect the 
resulting outputs ̂̄yt. Also compute the prediction error 𝜀t= ȳ− ̂̄yt for 
each value of Gcc. Results for three values of Gcc are shown in 
Figure A1, lower panel.

We may search for the value of Gcc that minimizes the quadratic 
criterion function J= 1

T

∑T

t=1
�
2

t
. Results for 100 values of Gcc from 

0.402 to 0.600 with population size N = 10,000 are shown in 
Figure A2. Smaller population sizes increase the noise in this plot 
significantly.

For identification of several unknown parameters, a better search 
method is needed. This requires experimental data that are informa-
tive enough, but it also requires a theoretical identifiability analysis 
(it may not be theoretically possible to identify all parameters). Also 
note that we must assume a model, i.e., a linear or nonlinear reaction 
norm, a fitness function, and a covariance structure.

The applicability of dynamical system identification methods in an 
evolutionary setting remains to be investigated.

F IGURE  A1 The input function 
θt = μΘ + vθ,t (upper panel), and the model 
output for Gcc = 0 (magenta), Gcc = 0.5 
(green) and Gcc = 1 (blue). The green curve 
is also the output from the assumed 
evolutionary system (A5) to (A7) itself

F IGURE  A 2  Identification of Gcc = 0.5 based on model with 
population size N = 10000


