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Summary:  

USN has built multiple two degrees of freedom helicopters models that are to be used in various 

courses at USN to expand the knowledge of modeling and control. The helicopter model is a highly 

unstable system, making it a challenging control object to be used in the various courses at USN. 

A mathematical model is to be developed for simulation and controller development. Parameters for 

the model shall be found by conduction experiments on the real system. PID and MPC controllers 

are to be designed based on the mathematical model. 

The mathematical model developed using the parameters found by conducting experiments on the 

real system fits the real system well, and was successfully used to develop PID controllers for the 

system. The developed PID controller was able to control the real helicopter model to setpoint within 

reasonable time and kept the pitch angle at setpoint with intermittent movement about 3° off setpoint 

because of random disturbances. 

The model was linearized and a Kalman filter was tuned for the MPC controller, but, due to 

unforeseen problems with Simulink and lack of time, no MPC controller was developed. 
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Preface 
This report is a Master Thesis written by a student of Industrial IT and Automation at 

University College of South East-Norway (USN). It is written in the 4th semester and presents 

the work done in modeling and control of a two degrees of freedom helicopter model during 

the spring of 2017. 

Some knowledge of modeling and control theory is necessary to fully understand the report. 

I would like to thank my advisor Roshan Sharma for valuable advice and guidance 

throughout the project and Fredrik Hansen for help with the physical model. 

The following software was utilized throughout the project: 

• MATLAB R2016b 

• MS. Office 

 

Porsgrunn, 07.08.2017 

 

Sondre Nilsen 
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1 Introduction 
This chapter presents the background for the Master’s thesis. 

1.1 Background 

Two degrees of freedom helicopters is a popular modeling and control platform due to its 

highly non-linear nature and is much used in research and teaching environments. The 

University College of Southeast Norway(USN) have built multiple two degrees of freedom 

helicopter models to be used in the Master's program in Industrial IT and Automation. The goal 

is to use the model and the controllers in various courses the at USN. 

The modeling and control tools used can be applied to many similar control areas in aerospace 

with position control of helicopters and airplanes to marine industries such as dynamic position 

control for ships. 

The helicopter model built by USN is seen in Figure 1-1 and is 36 cm from the bottom to the 

top where the arm is connected. The arm measures 56 cm from the end of one rotor to the end 

of the other rotor. The box seen on the left contains the power supply, the DAQ, controller used 

for converting the incremental position sensor signal to a position signal and the speed 

controllers for the rotors. 

 

Figure 1-1: Picture of the two degrees of freedom helicopter model built at USN. 
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1.2 Task Description 

The report covers the development of a mathematical model based on the physical model built 

by USN. Experiments are to be conducted to calculate the parameters in the model such that 

the model can be implemented in Simulink. PID and MPC controllers shall be developed for 

testing on the model and the real system.  
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2 System Description 
This chapter describes the system and the system dynamics. 

2.1 Physical System 

The helicopter model is a Twin Rotor Multiple-inputs Multiple-outputs System. A 

representation of the physical model to be used is shown in Figure 2-1. Seen in Figure 2-1 is the 

yaw rotor to the left, the pitch rotor to the right. The rotors are of equal size. The model has 

two degrees of freedom, pitch shown in green and yaw shown in red. Also shown is the black 

incremental position sensor for the pitch position.  

 

Figure 2-1: The helicopter model with two degrees of freedom. Green pitch movement and red yaw 

movement. 

The incremental sensor for the yaw position is positioned at the bottom of the vertical pipe 

between the bottom two plates. The movement in yaw is restricted to the ranges -90° to 90°, 

giving it a span of 180°. The position sensor gives the position in volts in the range 0 to 5 V. 

The movement in pitch is restricted to the ranges from -48° to  40° and the position sensor 

gives the position in volts from 0 to 4 V. 

The pitch rotor is tilted approximately 35° to achieve the yaw force found in real helicopters.  

2.2 Forces Acting on the System 

There are several forces acting on the system. The two propellers, gravity and friction forces. 

In Figure 2-2, the red arrows point in the direction of the forces of the pitch rotor and the blue 

arrow in the direction of the force of the yaw rotor. The green arrow is the resulting force of 
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gravity on the arm of the helicopter model. Not shown are the friction forces that acts against 

the direction of the movement in the joints. 

 

 

Figure 2-2: Forces acting on the system. Green illustrates the force by gravity, blue the force produced 

by the yaw rotor and red the force by the pitch rotor. 

The rotors are controlled by a voltage signal from 0 to 5 V.  

2.3 System Dynamics 

The torques produced by the forces acting on the system depend on several factors. The torque 

produced by gravity depends on the distance between the rotational axis and the center of 

gravity of the arm, the pitch angle and the weight of the arm with the rotors. The torque 

produced by the force of the pitch and yaw rotors depends on the distances from the axes to the 

rotors. 

The system has moments of inertia around the horizontal and vertical axes. The moments of 

inertia and the combined resulting torques by the forces in the system, gives the angular 

acceleration of the system.  

The system is highly unstable in pitch angle and with significant oscillations when the control 

inputs kept constant, as seen in Figure 2-3. 
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Figure 2-3: With both control inputs for the rotors kept constant, the arm of the helicopter oscillates at 

random with 10° from the highest to the lowest point.  

 



 3 Previous Research on Two Degrees of Freedom Helicopter models 

10 

3 Previous Research on Two Degrees 
of Freedom Helicopter models 

Multiple studies have been conducted on mathematical modeling and control of two degrees 

of freedom helicopters. This chapter briefly presents two relevant studies used for inspiration.  

3.1 Euler–Lagrange Equation Model, PID and MPC 
Controllers 

Gutierrez, J. A, Duarte, E and Arcos, J describes in the conference paper: CONTROL SYSTEM 

FOR A TWO DEGREES OF FREEDOM HELICOPTER[1] how the Euler-Lagrange equation 

is used to develop a non-linear model of the system. The non-linear model is linearized to a 

state space model with 4 states to be used in a MPC controller called a servotracking controller 

with state observer in the paper. The article presents results comparing the servotracking 

controller with state observer to PID controllers and the servotracking controller performs 

quicker control than the PID controllers.  

In the article: Model predictive control of 2DOF helicopter[2], by A.P.S. Ramalakshmi, P.S. 

Manoharan, K. Harshath, and M. Varatharajan a model developed on the Euler-Lagrange 

equation is used to describe the system. The model is implemented in a MATLAB simulation 

model and the model controlled by a controller designed using the MATLAB MPC toolbox. 

The MPC controller is compared to a PID controller used and the conclusion is that the MPC 

controller performs better control than the PID controller. 
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4 Dynamic Model of two Degrees of 
Freedom Helicopter Model 

4.1 Euler-Lagrange Model Formulation 

A dynamic model of the system is developed using the Euler-Lagrange equation, where the 

Lagrangian 𝐿 is defined as the Kinetic energy 𝑇 minus the Potential energy 𝑉 of the system as 

show in equation (4.1). 

 𝐿 = 𝑇 − 𝑉 (4.1) 

The Lagrangian equation defined in  

 𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞𝑗̇
) −

𝜕𝐿

𝜕𝑞𝑗
= 𝑄𝑗 (4.2) 

Where: 

• 𝑞𝑗 = Generalized coordinates 

• 𝑄𝑗 = Generalized forces 

The model has two degrees of freedom and has therefore two generalized coordinates. The 

coordinates are the pitch 𝜃 and yaw 𝜙 angles in radians. 

 

Inserting equation (4.1) into (4.2) expands the equation to equation (4.3). 

 𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞𝑗̇
) −

𝑑

𝑑𝑡
(

𝜕𝑉

𝜕𝑞𝑗̇
) −

𝜕𝑇

𝜕𝑞𝑗
+

𝜕𝑉

𝜕𝑞𝑗
= 𝑄𝑗 (4.3) 

Defining the potential energy of the system 𝑉 in equation (4.4). 

 𝑉 = 𝑚𝑔ℎ = 𝑚𝑔𝑑𝑐𝑚(1 + sin(𝜃)) (4.4) 

Where: 

• 𝑑𝑐𝑚 = Distance from rotational axis pitch to center of mass of the arm 

• 𝑔 = Gravity constant 

• 𝑚 = Mass of arm 

• 𝜃 = Pitch position 

Defining the kinetic energy of the system 𝑇 in equation (4.5). 

 
𝑇𝑗 =

1

2
𝐼𝑖𝜔𝑗

2 =
1

2
𝐼𝜃𝜃̇2 +

1

2
𝐼𝜙𝜙̇2 (4.5) 

Where: 
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• 𝐼𝑖 = Moment of inertia around rotational axis 𝑖, simplified as 𝜃 and 𝜙, the generalized 

coordinates  

• 𝜔 = Angular velocity 

• 𝜙 = Yaw position 

 

The moment of inertia 𝐼𝜙 is a function of 𝜃. The distance to the various parts of the arm from 

the rotational axis varies with the angle 𝜃. However, the model for 𝐼𝜙 is simplified and is 

assumed to be constant, and the same as 𝐼𝜃 as seen in equation (4.6). 

 𝐼𝜙(𝜃) ≈ 𝐼𝜙 ≈ 𝐼𝜃 (4.6) 

Expanding the different terms in equation (4.3) with respect to equation (4.4), (4.5)and (4.6). 

 𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝜃̇
)  =

𝑑

𝑑𝑡
(

𝜕

𝜕𝜃̇
 (

1

2
𝐼𝜃𝜃̇2 +

1

2
𝐼𝜙𝜙̇2)) =

𝑑

𝑑𝑡
𝐼𝜃𝜃̇ = 𝐼𝜃𝜃̈   (4.7) 

 𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝜙̇
)  =

𝑑

𝑑𝑡
(

𝜕

𝜕𝜙̇
 (

1

2
𝐼𝜃𝜃̇2 +

1

2
𝐼𝜙𝜙̇2)) =

𝑑

𝑑𝑡
𝐼𝜙𝜙̇ = 𝐼𝜙𝜙̈   (4.8) 

 𝑑

𝑑𝑡
(
𝜕𝑉

𝜕𝑞𝑗̇
) = 0 (4.9) 

 𝜕𝑇

𝜕𝑞𝑗
= 0 (4.10) 

 𝜕𝑉

𝜕𝜃
=

𝜕

𝜕𝜃
𝑚𝑔𝑑𝑐𝑚(1 + sin(𝜃)) = 𝑚𝑔𝑑𝑐𝑚cos (𝜃) (4.11) 

 𝜕𝑉

𝜕𝜙
= 0 (4.12) 

The right side of the Lagrangian equation (4.2) is the known forces acting on the system. In 

this system, the forces acting produces torque (4.13).  

 𝑄𝑗 = 𝜏𝑗  (4.13) 

The torque acting on the system is the torque given by the rotors and the friction in the joints. 

The torque from the rotors is dependent on the distance from the rotational axis to the rotors 

and the angles as shown in equation (4.14) and (4.15). 

 𝜏𝜃 = 𝐾𝑢1(𝑡)𝑑𝑝𝑟 cos(𝑝𝑟𝑡𝑖𝑙𝑡) − 𝜃 ̇ 𝛽𝜃 (4.14) 

 𝜏𝜙 = (−𝐾𝑢2(𝑡)𝑑𝑦𝑟 +  𝐾𝑢1(𝑡)𝑑𝑝𝑟 sin(𝑝𝑟𝑡𝑖𝑙𝑡)) cos(𝜃) − 𝜙 ̇ 𝛽𝜙  (4.15) 
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Where: 

• 𝐾= Gain in rotor in newton per volt 

• 𝑢1(𝑡) = Volt applied to rotor 1, pitch rotor 

• 𝑢2(𝑡) = Volt applied to rotor 2, yaw rotor 

• 𝑑𝑝𝑟 = Distance from rotational axis to pitch rotor 

• 𝑑𝑦𝑟 = Distance from rotational axis to yaw rotor 

• 𝑝𝑟𝑡𝑖𝑙𝑡 = Tilt of pitch rotor 

• 𝛽𝜃 = Friction factor for 𝜃 ̇  

• 𝛽𝜙 = Friction factor for 𝜙 ̇  

The equations (4.7) to (4.15) are restructured to the two resulting differential equations seen in 

(4.16) and (4.17). 

 
𝜃̈ =

𝐾𝑢1(𝑡)𝑑𝑝𝑟 cos(𝑝𝑟𝑡𝑖𝑙𝑡) − 𝑚𝑔𝑑𝑐𝑚cos (𝜃) − 𝜃 ̇ 𝛽𝜃

𝐼𝜃
 (4.16) 

 
𝜙̈ =

(−𝐾𝑢2(𝑡)𝑑𝑦𝑟 +  𝐾𝑢1(𝑡)𝑑𝑝𝑟 sin(𝑝𝑟𝑡𝑖𝑙𝑡)) cos(𝜃) − 𝜙 ̇ 𝛽𝜙 

𝐼𝜙
 (4.17) 
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5 Calculating Model Parameters 
using the Real System 

This chapter deals with the experiments and calculations needed for calculating the different 

parameters in the mathematical model as well as model verification. 

5.1 Calculating Mass of the Arm 

The mass of the arm is calculated by measuring the relative weight of the arm 𝑚̃ at the center 

of the pitch rotor and multiplied with the distance from center of arm to rotational axis, 𝑑𝑝𝑟, 

divided by distance to center of mass from rotational axis, 𝑑𝑐𝑚, as seen in equation (5.1). 

 
𝑚 = 𝑚̃ 

𝑑𝑝𝑟 

𝑑𝑐𝑚
  (5.1) 

The measurement was done with a kitchen weight and the measuring setup is shown in Figure 

5-1. 

 

Figure 5-1: Measuring setup for mass calculation. 

The mass was first calculated with a 𝑑𝑐𝑚 at 40 mm and the moment of inertia was calculated 

using this result. At a later stage, the distance to center of mass, 𝑑𝑐𝑚, was changed to 15 mm 

so that the lower end of the rotors capacity was utilized because of the loud noise from the 

rotors. 
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5.1.1 Mass Calculation with Center of Mass at 40 mm 

The relative mass 𝑚̃ measured at the center of the pitch motor was 77 g, 𝑑𝑐𝑚 = 41.5 and 𝑑𝑝𝑟 = 

251 mm. The mass of the arm is calculated to be 466 g.  𝑑𝑦𝑟 is measured to be 168 mm. 

5.1.2 Mass Calculation with Center of Mass at 15 mm 

The relative mass 𝑚̃ measured at the center of the pitch motor was 30 g, 𝑑𝑐𝑚 = 15 and 𝑑𝑝𝑟 = 

226 mm. The mass of the arm is calculated to be 452 g.  𝑑𝑦𝑟 is measured to be 196 mm. 

5.1.3 Reasons for Difference in Mass Calculation  

One of the reason for the change in the calculated mass of the arm is that the arm hangs below 

the axis of rotation. The distance measured is to the two ends and the middle is calculated. The 

center of mass is probably above the center of the pipe of the arm and most certainly below the 

rotational axis as showed by the arrows in Figure 5-2.  

 

 

Figure 5-2: The arm of the helicopter model is hanging below the rotational axis and the exact point 

and distance to the of center of mass is difficult to pinpoint. 

One of the results of this is that the part of the model that deals with the acceleration by gravity 

is less accurate the shorter the distance to the center of gravity is. 

The term is kept as it is, but one could make a more accurate measurement of the distance to 

the center of gravity 𝑑𝑐𝑚̃ and calculate the offset angle 𝑥 between the angle of the arm and the 

angle to center of mass, as seen in (5.2). 

 𝑚𝑔𝑑𝑐𝑚̃cos (𝜃 − 𝑥) (5.2) 

5.2 Data Acquisition using Simulink 

The real model is connected to the computer using a National Instrument USB DAQ using 

Simulink. Figure 5-3 shows the setup in Simulink and how the data is sent to the MATLAB 

Workspace for further data processing.  
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Figure 5-3: Simulink setup for Data Acquisition from real helicopter model. 

The DAQ reads voltage signals and converted to radians using equations (5.3) and (5.4). The 

equations are created simply by taking the voltage at the zero angle and the angle and voltage 

at the lowest angles the helicopter model can have.  

 𝜃 = (𝑉𝜃 − 2.395) 0.354 (5.3) 

 𝜙 = (𝑉𝜙 − 2.479) 0.639 (5.4) 

Where: 

• 𝑉𝜃= Voltage read by DAQ for angle 𝜃  

• 𝑉𝜙= Voltage read by DAQ for angle 𝜙  

5.3 Calculating Moment of Inertia 

The moment of inertia for pitch rotation is calculated by brute force optimization, meaning 

testing all values at given intervals in a span to find the one that fits best. Below is showed the 

MATLAB code used in the brute force optimization. 

%Initialization 

bestI=0; 

I_range=0.005:0.0001:0.03; 

error=100000; 

minerror=100000; 

 

for i1=1:length(I_range) 

    error=sum(abs((m*g*d1*cos(t1theta(51:186,2))/I_range(i1))-t1theta_dd(50:185,2))); 

    if error<minerror 

        minerror=error; 

        bestI=I_range(i1); 

    end 

     

end 
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This is done using measured data and model generated data. Equation (4.16) is used where 

control input 1 𝑢1(𝑡) is 0 and the friction factor 𝛽𝜃 is assumed to be so small it can be ignored. 

The resulting equation is shown in (5.5).  

 
𝜃̈ =

𝑚𝑔𝑑𝑐𝑚cos (𝜃)

𝐼𝜃
 (5.5) 

The arm of the helicopter model is given a push up and caught by hand on the way down. The 

position data contains noise and the noise is amplified when the derivative is calculated as seen 

in Figure 5-4.  

 

Figure 5-4: Position and velocity of the arm of the helicopter model. 

The data is therefore filtered with a weighted mean filter at each stage as the noise is amplified 

each time the derivative is calculated. 

With the filtered acceleration calculated, the unknown moment of inertia in the simplified 

model in (5.5) is calculated. This is done by finding the value that minimizing the difference 𝑒 

between the calculated acceleration 𝜃̃̈𝑡 from the push test and the acceleration given by the 

model 𝜃̈𝑡  between the time the arm leaves the hand, 𝑎, and is caught again, 𝑏, as seen in(5.6).  
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𝑒 = ∑|𝜃̈𝑡 − 𝜃̃̈𝑡|

𝑏

𝑡=𝑎

 (5.6) 

The moment of inertia is calculated for both 𝑑𝑐𝑚 40 and 15 mm. The moment of inertia 𝐼𝜃 was 

found to be 0.0170 kgm² with 𝑑𝑐𝑚 at 40 mm and 0.0159 kgm² with 𝑑𝑐𝑚 at 15 mm. Figure 5-5 

and Figure 5-6 shows the acceleration calculated in the tests with the acceleration predicted by 

the model in the experiments conducted for finding the moment of inertia to be used in the 

model. 

 

Figure 5-5: Calculated acceleration from toss test and acceleration from model with Iθ= 0.0170 kgm² 

with distance to center of mas at 40 mm. 
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Figure 5-6: Calculated acceleration from toss test and acceleration from model with Iθ= 0.0159 kgm² 

with distance to center of mass at 15 mm. 

 

 

5.4 Calculating of Rotor Gain 

The rotor gain is calculated by measuring the force the rotors provide at 0.5 V intervals from 0 

to 5 V. The pitch rotor is turned so it faces straight down and the arm of the helicopter is 

horizontal so that all of the force of the rotor is straight down. The same kitchen weight used 

earlier and shown in Figure 5-1 is used and the setup is the same, but with the rotor facing 

down. The kitchen weight gives the measurement in grams, so the measurements is multiplied 

by the gravity constant divided by 1000. The results are shown in Figure 5-7. 

            

        

  

  

  

  

  

  

 

 
 
 
 
  
  
  
 
 
  
  
 
  

 
 

           
  

     

                       

                       



 5 Calculating Model Parameters using the Real System 

20 

 

Figure 5-7: Control input to force testing of rotor. The linear approximation has a slope of 0.288 N/V, 

a zero offset of -0.104 N and crosses the zero line at 0.361 V. 

The linear approximation is calculated with the values from 0.5 V to 3.5 V as the force given 

by the rotor saturates above 3.5 V and the rotor does not rotate with a control input below ca. 

0.4 V. The linear approximation has a slope, rotor gain and 𝐾 in equation (4.16) and (4.17), of 

0.288 N/V, a zero offset of -0.104 N and crosses the zero line at 0.361 V.  

Because of the dead-zone at the lower end of the control signal, the control input 𝑢(𝑡) in the 

mathematical model is adjusted with equation (5.7). 

 𝑢(𝑡) = 𝑢(𝑡) − 0.361 (5.7) 

5.5 Calculating Friction Factor 𝛽𝜙  

When the arm of the helicopter model is horizontal, 𝜃 = 0, the difference in the moment of 

inertia around the two axis is closest to zero. The arm with the rotors  makes up all of the 

moment of inertia in 𝜃 axis rotation and almost all the moment of inertia in 𝜙 axis rotation. 

The friction factor is calculated with the same method as the moment of inertia in chapter 5.2. 

In (5.8), difference 𝑒 is minimized by finding the value for the friction factor 𝛽𝜙 that gives the 

least difference between the calculated acceleration from the experiment 𝜙̃̈𝑡 and the 

acceleration given by the simplified model 𝜙̈𝑡 seen in (5.9).  

 

𝑒 = ∑|𝜙̈𝑡 − 𝜙̃̈𝑡|

𝑏

𝑡=𝑎

 (5.8) 

The model (5.9) is simplified by setting all the control inputs to zero. 
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𝜙̈ =

𝜙 ̇ 𝛽𝜙 

𝐼𝜙
 (5.9) 

The friction factor, 𝛽𝜙, is calculated between 𝑎 = 0.7 and 𝑏 = 2.6 s in the plot showed in Figure 

5-8 and was calculated to be 0.02.  

 

 

Figure 5-8: Acceleration caused by friction. The arm is kept horizontal and given a push and let go 

until it stops from friction. In one direction from 0.5 to 3 seconds and back again from 7 to 9 seconds. 

Looking at the calculated acceleration in Figure 5-8 it appears that a friction model based only 

on the direction of movement would fit the data well. To test this a modified model of the 

acceleration by friction was tested and seen in equation (5.10). 

 
𝜙̈ =

𝑠𝑖𝑔𝑛(𝜙̇)𝛽𝜙2 

𝐼𝜙
 (5.10) 

The friction factor 𝛽𝜙2 is calculated with the same method and same data as earlier and found 

to be 1.1520 and the resulting plot is shown in Figure 5-9. 
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Figure 5-9: Acceleration by friction with friction model found in equation (5.10). 

Although the friction model where the friction is only dependent on the direction of the 

velocity, (5.10), fits well, and one might argue better in at least one direction than the velocity 

dependent model, the velocity dependent model in (5.9) is chosen as this can be linearized. A 

combination was also thought to work well but was discarded for the same reason. 

5.5.1 Finding Friction Factor 𝛽𝜃  

The friction factor 𝛽𝜃 was not calculated but found during later experiments, through trial and 

error, to be half of 𝛽𝜙 giving 𝛽𝜃 a value of 0.01. 

5.6 Building the Model in Simulink 

The Simulink model is built using built-in blocks and the complete model with the inputs and 

outputs to the real helicopter model is shown in Figure 5-10. 

 

Figure 5-10: Complete mathematical model with DAQ inputs and outputs to real helicopter model. 
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Not shown in Figure 5-10 are slider controls, connected to block u1 and u2, to set the control 

inputs.  

To fit the mathematical model to the real helicopter model, the rotor dead-zone, calculated to 

be 0.36 and seen in equation (5.7) is reduced through trial and error to 0.1. It is named 

Constant5 in the Simulink implementation shown in Figure 5-10. 

As discussed in chapter 5.1.3, another approach to adjust the fit of the mathematical model to 

the real model is finding the offset angle between the angle of the arm and the angle to center 

of mass. This option was not utilized but the option was implemented in the Simulink model 

and a cutout of the model is shown in Figure 5-11 with the option in the red rectangle. 

 

Figure 5-11: Offset angle between the angle of the arm and angle to center of mass was implemented 

but not utilized. 

During testing of the mathematical model against the real helicopter model, the arm of the 

helicopter was lifted during quick yaw action. This was attributed to the centripetal force and 

a new term entered the model. Equation (4.16) was updated to (5.11) and a cutout of the 

Simulink model is shown in Figure 5-12 with the new term in the red rectangle. 

 
𝜃̈ =

𝐾𝑢1(𝑡)𝑑𝑝𝑟 cos(𝑝𝑟𝑡𝑖𝑙𝑡) − 𝑚𝑔𝑑𝑐𝑚cos (𝜃) − 𝜃 ̇ 𝛽𝜃 − 𝛼|𝜙̇|sin (𝜃)

𝐼𝜃
 (5.11) 

 

Figure 5-12: New term to the model to handle the result of the centripetal force. 

The new term introduces a new constant, 𝛼, and this was determined to be 0.01 through trial 

and error. 

Though the new term is relevant in fast yaw action, that is not something that is happening 

most of the time; and the term can be neglected for low speed applications. The absolute value 

of the speed was also used but later research show that the squared speed is commonly used. 
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5.7 Model Tuning 

With all the parameters found, the mathematical model was fitted to the real model by adjusting 

through trial and error the dead-zone in the rotors from the found 0.361 to 0.1. The result is 

shown in Figure 5-13. As this simple adjustment worked so well, no other parameters were 

changed. Choosing this adjustment means that the model works best in the lower part of the 

available pitch range. 

The figure shows the position in both radians and degrees for easier visualization, as most 

people are most used to degrees as the unit for the angle. 

 

 

 

Figure 5-13: Mathematical model tested against real helicopter model. 

The reason for the apparent time delay at the start and in the second plot is because here the 

change in the control signal is so large that the rotors needs time to speed up. Later in the plot 

the time delay is negligible when the change in the control signal is much smaller. 

Movement in position 𝜙 from one side to the other shows that the model fits better for one 

direction than the other. The movement from 90° to - 90°, about 24 seconds in to the test, show 

a very good fit for the model, but movement in the other direction does not fit as well. 
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For movement in position 𝜃, the model does a small overshoot but has a good fit for the steady 

state value.  

Because the arm of the helicopter is forced against the end-guards during almost the entire time 

in the plot showed above, it appears that the friction for pitch movement is wrong, but part of 

this is a result of the arm pushed at the end-guards and is much higher than for movement free 

of the end-guards.  

5.8 Complete Model with all Parameters Quantified 

This chapter is included for easy access to the complete model (5.12) and (5.13), with all 

parameters quantified as used in the Simulink model showed in chapter 5.6. 

 
𝜃̈ =

𝐾𝑢1(𝑡)𝑑𝑝𝑟 cos(𝑝𝑟𝑡𝑖𝑙𝑡) − 𝑚𝑔𝑑𝑐𝑚cos (𝜃) − 𝜃 ̇ 𝛽𝜃 − 𝛼|𝜙̇|sin (𝜃)

𝐼𝜃
 (5.12) 

 
𝜙̈ =

(−𝐾𝑢2(𝑡)𝑑𝑦𝑟 +  𝐾𝑢1(𝑡)𝑑𝑝𝑟 sin(𝑝𝑟𝑡𝑖𝑙𝑡)) cos(𝜃) − 𝜙 ̇ 𝛽𝜙 

𝐼𝜙
 (5.13) 

Where: 

• 𝜃 - Pitch position 

• 𝜙 - Yaw position 

• 𝐾= 0.288 - Gain in rotor in newton per volt 

• 𝑢1(𝑡) = 𝑢1(𝑡) − 0.1 - Volt applied to rotor 1, pitch rotor  

• 𝑢2(𝑡) = 𝑢2(𝑡) − 0.1 - Volt applied to rotor 2, yaw rotor 

• 𝑑𝑐𝑚 = 15 mm - Distance from rotational axis center of mass 

• 𝑑𝑝𝑟 = 226 mm - Distance from rotational axis to pitch rotor 

• 𝑑𝑦𝑟 = 196 mm - Distance from rotational axis to yaw rotor 

• 𝑝𝑟𝑡𝑖𝑙𝑡 = 35° - Tilt of pitch rotor 

• 𝛽𝜃 = 0.01 - Friction factor for 𝜃 ̇  

• 𝛽𝜙 = 0.02 - Friction factor for 𝜙 ̇  

• 𝑔 = 9.81 - Gravity constant 

• 𝑚 = 0.452 kg - Mass of arm 

• 𝛼 = 0.01 - Constant factor for action by centripetal force   
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6 PID Control 
This chapter deals with building the PID controllers in Simulink and finding PID parameters. 

6.1 PID Controller on Velocity Form 

Starting with the PID equation on the positional form as seen in (6.1), the derivative is taken 

and one get the PID algorithm on velocity form seen in equation (6.2). 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +
𝐾𝑝

𝑇𝑖
∫𝑒(𝜏) 𝑑𝜏

𝑡

−∞

+ 𝐾𝑝𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (6.1) 

 𝑑

𝑑𝑡
𝑢(𝑡) = 𝐾𝑝

𝑑𝑒(𝑡)

𝑑𝑡
+

𝐾𝑝

𝑇𝑖
𝑒(𝑡) + 𝐾𝑝𝑇𝑑

𝑑2𝑒(𝑡)

𝑑𝑡2
 (6.2) 

As the velocity form gives the change of the control input it is very simple to set limits on the 

rate of change in the control signal and this is used in this application. This is done to reduce 

the impact the noise can have on the control. 

The algorithm is implemented in Simulink as seen in Figure 6-1, where “Saturation2” block is 

the one limiting the change in the control signal 𝑢1. The change integrated and one gets the 

control signal. 

 

Figure 6-1: Simulink implementation of the PID controllers on velocity from. 
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6.2 PID Parameters 

There are multiple methods for finding good PID parameters with Skogestad model based and 

Ziegler–Nichols closed loop methods as the most commonly known. Having a non-linear 

model in Simulink of the process, good PID parameters can be found using optimization. 

Although not commonly used, this has been done with great success on various processes 

during the master program. 

Brute force optimization was used in the beginning, as this method ensures that one finds the 

global minimum if it is within the range of the values one is testing. Not knowing in what the 

range the good values for the PID parameters are meant that a sizable range with high precision 

was necessary to go through. Testing every parameter combination for the PID parameters from 

0 to 3 at 0.01 precision meant that 300³ = 2 7000 000 tests were needed to be made for each 

PID. This was not feasible, with each test taking a little over one second. 

Therefore, a numerical nonlinear solver called fmincon() was used in MATLAB. This function 

does not guarantee that a global minimum has been found. The function to minimize is shown 

in equation (6.3). 

 

𝑒 = ∑√|𝜃𝑟 − 𝜃|

𝑒𝑛𝑑

𝑡=0

+ √|𝜙𝑟 − 𝜙| (6.3) 

The root of the absolute difference between the reference and the simulated value was chosen 

as the function, because previous experience has showed that a lower exponential gives a less 

aggressive control action.  

The testing is done on the combined mathematical model, seen in Figure 5-10, and PID 

implementation, seen in Figure 6-1, in Simulink where noise has been added to the position 

signal with a lowpass filter with time-constant of 0.2 s. 

The friction factor 𝛽𝜃 is adjusted to a lower value to make the control more difficult for the 

PID controller to reflect the random oscillations found in the real system. Different variances 

in the added noise was also tested to get multiple PID parameters to test on the real system. 

After fmincon() has found the optimal values for the PID controllers, the test are done once 

more and the result of the simulation is plotted for a visual check of the result of the optimal 

PID parameters. One of these plots is shown in Figure 6-2, where the PID parameter values for 

a timestep at 0.02 s was found. 
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Figure 6-2: Plot of the PID with optimal parameters used on the nonlinear model. 

First PID parameters was found for a timestep of 0.1 seconds, these was tested and the best 

result is shown in Figure 6-3. The PID parameters used here are 𝐾𝑝𝜃= 0.623,  𝑇𝑖𝜃= 0.735, 𝑇𝑑𝜃= 

0.499,  𝐾𝑝𝜙= -2.997,  𝑇𝑖𝜙= 1.772 and 𝑇𝑑𝜙= 0.125. 
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Figure 6-3: PID control of real model using optimal PID parameter found for timestep of 0.1 seconds. 

The control is not very good with 𝜃 oscillating rapidly with an maximum amplitude of 10° , 𝜙 

never gets to the setpoint but overshoots in both directions. Because of this, it was decided to 

reduce the timestep to 0.01 seconds. New PID parameters were found, but the real-time pacer 

that keeps the calculations in real time, showed that the Simulink could not get all the 

calculations, setting and reading values from the DAQ done on time all the time. Figure 6-4 

shows the elapsed time in Simulink minus time elapsed in the real world is not kept close to 

constant all the time. 
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Figure 6-4: Plot of the time in elapsed Simulink minus elapsed time in the real world. 

The timestep was increased to 0.02 and the Simulink solver was set to ode1(Euler). Simulink 

was able to keep up with real time and new parameters for the PID was found. The results of 

the parameters that was found to best control the helicopter model is shown in Figure 6-5. The 

PID parameters used here is 𝐾𝑝𝜃= 0.190,  𝑇𝑖𝜃= 0.477, 𝑇𝑑𝜃= 1.851,  𝐾𝑝𝜙= -1.440,  𝑇𝑖𝜙= 2.58and 

𝑇𝑑𝜙= 0.231. 
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Figure 6-5: PID control of real model using optimal PID parameter found for timestep of 0.02 

seconds. 

This control can be said to be much better, 𝜙 gets close to the setpoint relative quick and each 

time it moves it gets closer to the setpoint. 𝜃 is not kept at the set point but moves at random 

about 3° above and below the setpoint. The control signal line looks to be very thick, but this 

is just the noise in the measured signal bleeding through to the control signal. 

One factor neglected throughout the study, the static friction in yaw joint, is very easy to see 

by looking at these plots. The PID controller overcomes the friction slowly and gets the yaw 

angle to setpoint. 
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7 MPC Control 
This chapter covers the steps needed in development of a MPC controller for the  

7.1 Linear Model 

In order to perform linear MPC control a linear model of the system is needed. The linear model 

is also needed for the Kalman filter that is to be used for state estimation. To achieve this a 

Jacobian linearization is performed around a steady state working point. The working point 

selected is:  

• 𝜃0 = −0.27 = −15.5° 

• 𝜃0̇ = 0 

• 𝜙0 = 0 

• 𝜙0̇ = 0 

• 𝑢1
0= 1.28 

• 𝑢2
0= 0.90 

7.1.1 Linearization 

This chapter covers a simplified description of how the Jacobian linearization is performed. 

The model developed is  non-linear, and can be expressed on the form seen in (7.1) and (7.2). 

 𝑥̇ = 𝑓(𝑥, 𝑢) (7.1) 

 𝑦 = 𝑔(𝑥, 𝑢) (7.2) 

A Taylor series expansion is performed where all higher than 1st order terms are ignored on the 

right hand side of equations (7.1) and (7.2) around the selected working point and we get 

equations (7.3) and (7.4). 

 
𝑓(𝑥, 𝑢) ≈ 𝑓(𝑥0, 𝑢0) +

𝑑𝑓

𝑑𝑥𝑇
|
𝑥0𝑢0

(𝑥 − 𝑥0) +
𝑑𝑓

𝑑𝑢𝑇
|
𝑥0𝑢0

(𝑢 − 𝑢0) (7.3) 

 
𝑔(𝑥, 𝑢) ≈ 𝑔(𝑥0, 𝑢0) +

𝑑𝑔

𝑑𝑥𝑇
|
𝑥0𝑢0

(𝑥 − 𝑥0) +
𝑑𝑔

𝑑𝑢𝑇
|
𝑥0𝑢0

(𝑢 − 𝑢0) (7.4) 

The deviation variables defined as 

 ∆𝑥 = 𝑥 − 𝑥0 (7.5) 

 ∆𝑢 = 𝑢 − 𝑢0 (7.6) 

As we have a steady state point where the linearization is performed around the constant term 

in (7.3) is zero, as seen in (7.7).  
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 𝑓(𝑥0, 𝑢0) = 0 (7.7) 

Matrix A, B, C and D is defined as 

 
𝐴 =

𝑑𝑓

𝑑𝑥𝑇
|
𝑥0𝑢0

,     𝐵 =
𝑑𝑓

𝑑𝑢𝑇
|
𝑥0𝑢0

 

𝐶 =
𝑑𝑔

𝑑𝑥𝑇
|
𝑥0𝑢0

,    𝐷 =
𝑑𝑔

𝑑𝑢𝑇
|
𝑥0𝑢0

 

(7.8) 

And so we have a linearized state model as seen in (7.9). 

 ∆𝑥̇ = 𝐴∆𝑥 + 𝐵∆𝑢 

∆𝑦 = 𝐶∆𝑥 + 𝐷∆𝑢 

(7.9) 

The constant term in (7.4) is 𝑦0 as seen in (7.10) and the deviation variable ∆𝑦 is defined in 

(7.11). 

 𝑔(𝑥0, 𝑢0) = 𝑦0 (7.10) 

 ∆𝑦 = 𝑦 − 𝑦0 (7.11) 

Last the deviation variables is redefining as seen in (7.12) and (7.13). 

 𝑥 = 𝑥 − 𝑥0 (7.12) 

 𝑢 = 𝑢 − 𝑢0 (7.13) 

7.1.2 Linearized Model 

First the states and outputs is defined: 

• 𝑥1 = 𝜃 

• 𝑥2 = 𝜃̇ 

• 𝑥3 = 𝜙 

• 𝑥4 = 𝜙̇ 

• 𝑦1 = 𝑥1 

• 𝑦2 = 𝑥3 

There are four states and we have four equations for the change in the states seen in (7.14) to 

(7.17). 

 𝑥1̇ = 𝑥2 (7.14) 
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𝑥2̇ =

𝐾𝑢1(𝑡)𝑑𝑝𝑟 cos(𝑝𝑟𝑡𝑖𝑙𝑡) − 𝑚𝑔𝑑𝑐𝑚cos (𝜃) − 𝜃 ̇ 𝛽𝜃 − 𝛼|𝜙̇|sin (𝜃)

𝐼𝜃
 (7.15) 

 𝑥3̇ = 𝑥4 (7.16) 

 
𝑥4̇ =

(−𝐾𝑢2(𝑡)𝑑𝑦𝑟 +  𝐾𝑢1(𝑡)𝑑𝑝𝑟 sin(𝑝𝑟𝑡𝑖𝑙𝑡)) cos(𝜃) − 𝜙 ̇ 𝛽𝜙 

𝐼𝜙
 (7.17) 

Using (7.8) on these equations we get the following linearized model matrices:  

𝐴 =

[
 
 
 
 
 
 

0
𝑚𝑔𝑑𝑐𝑚 sin(𝜃0)

𝐼𝜃

1

−
𝛽𝜃 

𝐼𝜃

0
0

0
0

0 0 0 1

0 0 0 −
𝛽𝜙 

𝐼𝜙 ]
 
 
 
 
 
 

 

𝐵 =

[
 
 
 
 
 
 

0 0
𝐾𝑑𝑝𝑟 cos(𝑝𝑟𝑡𝑖𝑙𝑡)

𝐼𝜃
0

0
𝐾𝑑𝑝𝑟 sin(𝑝𝑟𝑡𝑖𝑙𝑡) cos(𝜃0) 

𝐼𝜙

0
−𝐾𝑑𝑦𝑟 cos(𝜃0)  

𝐼𝜙 ]
 
 
 
 
 
 

 

𝐶 = [
1 0 0 0
0 0 1 0

] 

𝐷 = 0 

There are terms that have been discarded where the partial derivative did not evaluate to zero 

because of difference between the real system and the mathematical model.  

7.2 Kalman Filter 

The MPC controller needs to know all the states in the system so a state estimator is needed, 

the Kalman filter fulfill this role. Figure 7-1 shows how the Kalman filter is in parallel with 

the process estimating the states 

 

Figure 7-1: The Kalman is in parallel with the process and estimates the states. 
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The Kalman filter is tuned with the covariance matrices V and W and needs the matrices A, 

B, C and D in discretized form. The state space matrices found is discretized with the 

MATLAB function c2d(). 

Tuning a Kalman filter is not trivial and after the trial and error method failed, the Kalman 

filter was tuned by optimization. Simulated data was recorded and the MATLAB function 

fmincon() was used. (7.18) shows the function that was minimized, the absolute of the 

simulated values minus the value given by the Kalman filter.  

 

𝑒 = ∑|𝑥1𝑠 − 𝑥1𝐾|

𝑒𝑛𝑑

𝑡=0

+ |𝑥2𝑠 − 𝑥2𝐾|∙ 10 + |𝑥3𝑠 − 𝑥3𝐾| + |𝑥4𝑠 − 𝑥41𝐾| (7.18) 

The optimizer found the covariance matrices be: 

𝑉 = [
0.000874 0

0 −0.0139
] 

𝑊 = [

−0.000393
0

0
0.00576

0
0

0
0

0 0 0.00175 0
0 0 0 −0.009910

] 

A new simulation was conducted and the with the Kalman filter and the Kalman filter 

estimates the unknown states very well but has some constant offset in the position states. 

This clearly seen in Figure 7-2. 

 

Figure 7-2: Testing the Kalman filter on new simulated data with constant offset error in position. 
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The offset is removed by simply taking the average difference and removing it at the end of 

the Kalman function. With the offset removed, it is clear that the Kalman filter filters the 

position data well, as can be seen in Figure 7-3. 

 

Figure 7-3: Testing the Kalman filter again after constant offset is removed. 

 

 

The Kalman filter is implemented in Simulink in a MATLAB Function as seen in Figure 7-4 

and the code inside the function below. W, V, C, B, A and Id is retrieved from MATLAB 

workspace. 

 

Figure 7-4: The Kalman filter implementation in Simulink. 

function x_f = Kalman_heli(y, u, W, V, C, B, A,Id) 

  

    y=y-[-0.27;0];%delta y  

    u=u-[1.28;0.9];%delta u 

    global Pp;%Needs to be initialized as a simulink.signal 

    global x_hatp;%Needs to be initialized as a simulink.signal 

  

    Pm=A*Pp*A'+W; 
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    Kk=Pm*C'*inv(C*Pm*C'+V); 

    x_hatm=A*x_hatp+B*u; 

    y_hatm=C*x_hatm; 

    x_hatp=x_hatm+Kk*(y-y_hatm); 

    Pp=(Id-Kk*C)*Pm*(Id-Kk*C)'+Kk*V*Kk'; 

  

x_f=x_hatp-[0.27-0.0124; 0; +0.0241; 0];%Back to unlinearized values + some minor offset 

adjustments 

 

7.3 LQ Optimal Control  

The development of a MPC controller was started, but unforeseen problems with Simulink as 

well as lack of time results in the unfortunate consequence that no MPC controller has been 

developed for the helicopter model. The solver, quadprog(), used in the MPC controller, is 

not supported for standalone code generation and the MATLAB function with the MPC 

controller will therefore not compile in Simulink. 
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8 Conclusion 
A mathematical model was developed using Euler-Lagrange model formulation. By conducting 

experiments on the real system, most of the parameters in the model were calculated, and the rest was 

estimated by trial and error. The resulting model described the physical system very well, apart from 

the static friction which was neglected. 

The model was used to develop PID controllers for the system. The PID controllers performed as well 

as could be expected, considering the highly unstable system and the high static friction in the yaw 

joint. The PID controller got the yaw angle close to the setpoint quickly, but use some time to get on 

the setpoint because of the static friction. The PID controller was able to keep the pitch angle close to 

setpoint with intermittent movement about 3° off setpoint because of random disturbances. 

The model was linearized and a Kalman filter was developed for the MPC controller. The Kalman filter 

was able to estimate the unknown stated very well and performed good filtering of the measured states. 

Due to unforeseen problems with Simulink as well as lack of time results in the unfortunate consequence 

that no MPC controller has been developed for the helicopter model.
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Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn 
 

FMH606 Master's Thesis 
 
Title:  Modelling and control of two degrees of freedom helicopter model 
 
HSN supervisor:  Roshan Sharma, Assoc. Prof., University College of Southeast Norway 
 
External partner:  - 
 
Task background:   
 
At HSN, a two degree of freedom helicopter (2 DOF) model has been built from the scratch 
(see Figure 1). This will serve as a laboratory component in various courses at HSN in the 
future if successful. 
 
A two degree of freedom helicopter model is a MIMO system with two control inputs and 
two control outputs. The two outputs are the pitch angle (nose up-down angle) and the yaw 
angle (clockwise/anti-clockwise rotational movement). Both outputs are directly measured 
using suitable angle sensors. The control inputs are the voltages to the lift/pitch motor and 
the vertical stabilizer/yaw motor. 
The helicopter model mimics a real world helicopter in terms of flight dynamics. There is a 
strong coupling between the two control inputs and the two outputs, which makes this lab 
model a very good candidate for model based control. 
 

 
Figure 1: 2 DOF helicopter model at HSN 

 
Position control of unstable system finds its application from aerospace industry (position 
control of aeroplanes, helicopter etc.) to marine industry (position control of ship, 
submarine etc.). The controllers can be classical PID controller to advanced model based 
control. For model based control, a simplified model that represents the dynamics of the 
system is being studied at HSN. The model will further be used to develop model based 
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control like MPC, LQ control etc. The student working with this thesis will have a good 
opportunity to contribute in model development and in advanced controller design. If 
successful, the students’ work (model + controller) will be acknowledged and used as 
laboratory work in the future. 
The work is suitable to students from IIA (SCE, systems and control engineering) only. 
 
Task description:   
 
Development of a mathematical model of a 2 DOF helicopter model and design of 
controllers to control the position of the helicopter are the main tasks. 
 

1. Give an overview of the helicopter dynamics and explain how it works. 
2. Perform a thorough literature survey about different kinds of models that have been 

used for modelling flight dynamics of 2 DOF helicopter models.  
3. Develop a dynamic model of the 2 DOF helicopter model suitable for control 

purpose. 
4. Perform experiments on the real 2 DOF helicopter model and use the experimental 

data for model validation and parameter estimation. 
5. Develop a PID controller to control the position of the helicopter model. Test the 

controller with the real system. 
6. Use the model of the system to develop a model based controller (for e.g. MPC or LQ 

controller) to control the position of the helicopter. If time permits, test the 
controller with the real system and compare its performance with the PID controller. 

7. Report the work in the Master’s Thesis. Present the thesis work. 
 
Student category:  Only for IIA / SCE students. 
 
Practical arrangements: Experiments in the 2 DOF helicopter model at HSN. 
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