modelica.university: A Platform for Interactive Modelica
Content

Michael M. Tiller!

Dietmar Winkler?

'Xogeny, USA, michael.tiller@xogeny.com
ZUniversity College of Southeast Norway, dietmar.winkler@usn.no

Abstract

The World Wide Web was conceived of as a medium for
the expression and exploration of scientific and engineer-
ing ideas. However, much of the innovation in web tech-
nologies is now focused on consumer facing applications.
Although science and engineering content is available on
the web (Wolfram Alpha, 2017), there are not that many
tools that allow engineers and scientists to create and build
scientific and engineering applications.

Fundamentally, HTML and HTTP are certainly suffi-
cient for the creation of scientific and engineering content
just as they are for the creation of online magazines and
websites. But while a number of "content management
systems" have been created to facilitate the publication of
prose, there are very few such tools that cater to making it
easy to create scientific and engineering content.

In this paper, we will present a platform which can be
thought of as a content management system for scientific
and engineering content. We will start by describing what
we believe to be the fundamental requirements for such a
system. From there, we will discuss two different appli-
cations built on this platform. The first is an interactive
tutorial for teaching the basics of the Modelica languages
and the other is an example application that involves cre-
ating interactive content for use in an engineering course
on hydro-electric power generation. This content will be
published on the modelica.university domain and
we are already collaborating with others to contribute ad-
ditional content to the site.

Keywords: Modelica, web, cloud, education, content man-
agement

1 Introduction

1.1 Background

The initial goal of this project was to recreate a previous
application entitled “Tour of Modelica” using a newer plat-
form for deploying web-based engineering tools and con-
tent. The previous version of the application was written
to provide a “tool free” experience for learning the basics
of Modelica. Similar efforts involving the OpenModelica
tool OMNotebook have also been undertaken (Palanisamy
et al., 2016).

Because the tutorial was web-based, it could be used
as part of an interactive, introductory tutorial at events

like the North American Modelica Users’ Group meet-
ings without requiring participants to install tools. Further-
more, the only prerequisite was a browser. So, the tutorial
was not just tool neutral, but OS neutral as well. During
live events, the tutorial material was used by participants
running Windows, MacOS and even iOS.

However, the tutorial was based on older infrastructure
and the decision was made to upgrade the tutorial. At the
same time, it was also decided to make the underlying plat-
form available for others to create web-based educational
content based on Modelica. The domain name model-
ica.university was registered for this new site.

1.2 Requirements

The underlying platform was created to support the cre-
ation of web-based engineering analysis tools. Many
lessons from the creation of proprietary tools were fac-
tored into the design of the infrastructure that supports the
deployment of these applications. In this section, some
high level requirements for the platform (based largely on
the experience of developing earlier tools) will be enumer-
ated.

1.2.1 Hypermedia

The success of the web is, in part, due to the ability of
hypertext to link together content from different sources.
For most users and developers of web content, this is most
typically associated with HTML (W3C, 2016).

However, it should be noted that the concept of hyper-
text has since been generalized to the more general term
“hypermedia”. The concept of hypermedia extends the
idea of describing links and relationships not just between
text and content within that text, but to data in general. In
hypermedia, a URL is used to refer to a “resource”. Those
resources represent data of some kind and may have poten-
tially multiple different potential representations (e.g., an
image resource could be represented as either a JPG or a
GIF image). This modern conception of hypermedia and
the use of hypermedia as an architectural style for building
network based applications was formalized in (Fielding,
2000).

But in order to support this, formats besides HTML
are required. This is because HTML is focused on be-
ing a declarative way to represent documents (hence the
presence of elements like (image), <h1> (header)

DOI
10.3384/ecpl7132725

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

725

modelica.university: A Platform for Interactive Modelica Content

and <p> (paragraph). But in order to generalize the
approach to data, a whole range of new formats like
HAL (Kelly, 2016), Collection+JSON (Amundsen, 2013)
and Siren (Swiber, 2016) were developed.

The most essential aspect of these formats is that they
allow generalized data (in most cases serialized as either
XML (Maler et al., 2008) or, more commonly, JSON
(ECMA International, 2011)) to express hypermedia con-
cepts like relationships to other resources and/or actions
that can be performed on these hypermedia resources.

At the dawn of the World Wide Web, hypermedia was
recognized as an essential component for the expression
and exploration of scientific and engineering ideas. Our
experience shows that the power of applying hypermedia
concepts to science and engineering is still not fully real-
ized and our goal was to not only include it as a require-
ment for managing scientific and engineering content, but
to exploit it even further than most existing platforms.

1.2.2 API

Nearly all web applications require some kind of API to in-
teract with. Generally speaking, the two main functions of
an API are to provide information and the carry out tasks.
The term “Command Query Responsibility Segregation”
(CQRS) refers to an architectural style where these two re-
sponsibilities are clearly and cleanly delineated (Fowler,
2011).

As such, it is no surprise that our API requires both
of these functions. An API is generally just the “mid-
dle man” between the client (e.g., the web application)
and one or more sources of information leveraged by the
server (e.g., databases, file systems). The guery function-
ality allows the web application to request information
from those sources via the API. The command function-
ality allows the web application to request tasks to be per-
formed by the server. The main difference between the
command and query functionality is that queries are, gen-
erally speaking, idempotent, i.e., they don not change the
state of the server while the command functionality typi-
cally exists solely for the purpose of mutating the server
side state. Furthermore, querying functionality generally
relies on caching as an optimization to speed up the fetch-
ing of information and to ensure its “freshness” while com-
mands frequently invalidate caches as a result of mutation.

For our purposes, we need querying functionality to
provide us with text, images, models, simulation results,
etc.. We need the command functionality mainly to re-
quest computational tasks like simulations and optimiza-
tions to be performed.

1.2.3 Content Creation

A significant impediment to web and cloud adoption in
the world of science and engineering is the fact that there
is not much overlap in technical skills between engineers
and web developers. As such, engineers need to rely on
web developers to help them with creation of web based
tools. Of course, HTML is relatively easy. But to move be-

yond simple static markup requires a wider range of skills.
Unfortunately, people with those skills tend to be drawn
to more “consumer oriented” projects with the potential
to reach very large markets (social networking, advertis-
ing, search engines, games, efc.). As a result, the rate of
innovation and adoption in the engineering sector has tra-
ditionally been and continues to be slow.

In order to break this cycle, it is essential to develop
technologies that make it easy to turn people with special-
ized scientific or engineering skills into content creators.
Of course, this is nothing new. But, again, many of the de-
velopment resources are focused on empowering broader
sections of society and less on science and engineering.

In reducing the learning curve for non-experts, there are
two important aspects to consider. The first is easing the
creation of content. This means being able to easily make
scientific and engineering content accessible through the
APIs, e.g., connecting the API to existing data sources or
computational capabilities. The other aspect is the visual-
ization of the underlying content in the web browser. For
the purposes of this project, we require that both of these
are facilitated to some extent.

1.2.4 Third Party Tools

While modelica.university is being hosted pub-
licly, the infrastructure it is build on was developed to sup-
port proprietary tools and applications. Many of those ap-
plications are intended to be hosted on private networks. It
is quite common that customers insist that all data remain
on private networks. In those cases, it is impossible to rely
on third party services hosted on the public Internet (e.g.,
Amazon EC2, Google Cloud Platform, Digital Ocean).

So none of the software libraries used by the model-
ica.university infrastructure rely on services that
are hosted exclusively on the public Internet. However
the requirement to avoid public services was relaxed for
this project to make deployment easier and more cost ef-
fective.

1.2.5 Job Processing

In our earlier discussion on APIs, we mentioned the need
to perform “computational tasks”. But for scalability rea-
sons, it is frequently important to delegate these compu-
tational tasks away from the API server. Without such
delegation, the response of the API server itself could be
slowed down considerably by CPU intensive tasks running
on the same machine. Furthermore, numerical tools are
often written in languages like FORTRAN, C++, Python,
Julia, efc., while web servers, databases and other back-
end services are written in languages like Javascript, Java
and so on. To address both the scalability and interoper-
ability, it is often convenient to introduce message queues
or worker queues. These provide a way to link together
various services in a scalable way while avoiding the ten-
dency toward monolithic architectures. The term “mi-
croservices” (Susan Fowler, 2016) refers to an architec-
tural style which is very much aligned to these require-

726

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecpl7132725

Session 10B: Modelica Language & Tools

ments.

2 Content Management Platform

Now that we have elaborated some of the requirements
for the application, we will quickly review how we have
addressed those requirements in our implementation.

2.1 Backend

The term “backend” refers to aspects of the application
not handled in the web browser. This includes the web
server that serves the application, databases, authentica-
tion, “memcache”, etc..

211 API

We start our discussion of the backend with the API it-
self. For modelica.university, we leverage the
Heisman API framework. Heisman is a proprietary frame-
work developed by Xogeny for creating hypermedia APIs.
The main feature of this framework is the ability to define
so-called “resources” using an intrinsically hypermedia-
oriented structure. Once defined, an HTTP based API can
automatically be synthesized for those resources. The em-
phasis on hypermedia semantics means that resources are
able to easily express not just data about themselves but
also relations to other resources as well as actions that can
be performed by resources.

The fact that an HTTP based API can be automatically
synthesized is important because it avoids having to write
a great deal of boilerplate code to handle pedantic HTTP
specific details like status codes, caching, etags, accept
header processing and so on.

We have taken an “API first” approach to application
development. As we will discuss shortly, once the re-
sources are defined and the API is automatically generated,
a generic API browsing application is already available for
the APL

2.1.2 Resources

The resource oriented approach to application develop-
ment means that resources need to be defined with hyper-
media semantics in mind. Our definition of resources is
largely inspired by the Siren hypermedia format. Specif-
ically, a resource is described by three distinct types of
information.

The first type of information a resource can provide is
the “properties” of the resource. This is the true data asso-
ciated with the resource. For example, if the resource rep-
resents results from a time-domain simulation, the “prop-
erties” might be the values of the independent and depen-
dent variables.

The second type of information a resource can pro-
vide about itself is metadata. The metadata for a re-
source includes a textual description of the resource
as well as zero or more textual “classes” that identify
(in some domain specific way) what the resource repre-
sents. For example, if the resource represented simula-
tion results, the set of textual classes might include the

string “simulation_result”. It may also include
the name of a more specialized class, e.g., a resource
might include “drive_cycle_result” and “sim-—
ulation_result” where the former is a specialized
form of the latter.

The final, and arguably most important, type of infor-
mation associated with a resource is “links”, which convey
how one resource relates to other resources. The ability to
“link” to other resources is the essence of hypermedia. The
link between resources is always associated with one or
more “relations”. Relations, like classes, are typically do-
main specific names although the Internet Assigned Num-
bers Authority (IANA) has defined a collection of stan-
dard link relations (Internet Assigned Number Authority,
2017). For example, the item relation is used to define
the relationship between a (collection) resource and any
other resource “contained” in it. Similarly, the collec-
tion relation may appear on each item resource to link
back to the enclosing container resource.

2.1.3 Domain Specific Resources

The term “resource” is an abstraction used to refer to any
kind of data that might be accessed over a network. To
help understand what a resource is and how they relate to
our application, we will provide several concrete examples
for discussion in this section.

Static Content A very common type of resource is a
file. In fact, web servers like the Apache or NGINX web
servers treat files precisely as hypermedia resources by
providing a way to refer to those files as network address-
able streams of bytes. Heisman also provides a means to
serve files as network addressable resources. However, in
our application the contents of the file are only part of the
resource. We also allow the metadata and link information
to be associated with a file. Just by associating such infor-
mation with the files, it becomes possible to quickly and
easily define a rich range of structural information about
the resources associated with an application. This hyper-
media oriented information can be supplied within the file
itself (by serializing it as a Siren instance) or programmati-
cally via special handler routines registered with the server
that add hypermedia annotations to those files.

This ability to annotate files with hypermedia informa-
tion means that much of the content being managed by the
content management system can be represented by files
that are statically served directly from a file system. This
capability is important because it helps us address the re-
quirement that creation of content should be easy and intu-
itive for people who are not programmers or web develop-
ers. Using this functionality, much of the application can
be built simply by dragging and dropping files into direc-
tories. We will demonstrate this further in the context of
both applications discussed later. It is worth noting that
content served from the filesystem is also much easier to
version control vs. content stored in a database.

DOI
10.3384/ecpl7132725

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

727

modelica.university: A Platform for Interactive Modelica Content

Dynamic Content In addition to static content, most ap-
plications depend on the ability to create and manipulate
data dynamically in response to user actions. For exam-
ple, each time a simulation is performed we might wish
to store those simulation results away for retrieval later.
In some cases, we might want a resource to represent a
very specific type of data (e.g., simulations performed by
a given user) with specific fields (e.g., model simulated,
user who requested the simulation, time request was made,
time required to complete the simulation). In other cases,
we might require a way to create, manipulate and query
arbitrary (schema free) data. While the former often re-
quires specialized resources to be created, Heisman pro-
vides a standard collection resource to handle the latter.

Job Brokers The final resource type used in these ap-
plications is essential for handling requests for computa-
tional work. In both applications, the computational work
required is running simulations. Because nearly every
scientific or engineering application will require one or
more types of computationally intensive analyses, Heis-
man includes already implemented resources called “job
brokers”. These job brokers provide an API for request-
ing work to be done, tracking the status of that work and
reporting back the successful result or an error message.
The code is independent of the task to be performed. This
means that a job broker can be easily created and asso-
ciated with one or more specific computational tasks re-
quired by the application.

The hypermedia semantics allow us to cross reference
job requests with job results. In other words, for a given
simulation result we can follow the links associated with
that result to find the original request and vice-versa. Such
cross referencing of resources can be used for traceability
and to determine provenance of data.

2.2 Communication

The capabilities described so far rely on several differ-
ent communication mechanisms. In this section we will
quickly summarize each of these.

The web application running in the browser relies on
hypertext transfer protocol (HTTP) (Fielding et al., 1999)
for invoking queries and commands. These HTTP re-
quests are received and acted upon by code on the server
that maps these requests to the underlying resources refer-
enced in the requests.

The “job broker” resource uses a tool called Redis (San-
filippo and Noordhuis, 2017) to implement message and
worker queues. It is via Redis that messages are sent be-
tween the API server and the workers that perform any
CPU intensive computations.

2.3 Deployment

Desktop tools are typically compiled into binaries and dis-
tributed via “installers”. In contrast, web applications are
deployed (often, continuously) to servers where they can
then be accessed via a web browser. This simplifies the
install process for the user (since they only have to enter a

URL in a web browser), but the process of deploying soft-
ware to these servers safely and efficiently adds a whole
new dimension to the software development process!

An important technology for the deployment of net-
work services is called “Docker”. Technically, Docker is
a tool designed to make it easy to access the special Linux
process groups called “containers”. But this explanation
does not adequately explain Docker’s role or capabilities.

Conceptually, Docker is a technology for creating ex-
tremely resource efficient virtual (Linux) machines. The
efficiency comes from Docker’s use of kernel level fea-
tures in Linux that isolate groups of processes while al-
lowing them to share large amounts of read only data in
memory and/or on the file system.

The backend server for modelica.university is
a Node (Node.js Foundation, 2017) application written in
TypeScript (Microsoft, 2017). To generate a Docker im-
age, the dockergen Node package (Tiller, 2017) is used.
The dockergen script creates a Dockerfile which
specifies how the application should be packaged for de-
ployment to a Docker host. Once a Docker image is built,
it can be run as a container on a Docker host. Since this is
a public application, we can take advantage of commercial
Docker hosting services.

The actual application is made up of several distinct
Docker images executed using the “compose” functional-
ity of Docker. In addition to the API server image, the
backend consists of several other images. One image
runs the Redis server. Another image runs a NGINX web
server to act as a reverse proxy. A third image runs the
API server. The final image executes the workers for the
computational tasks processed via the worker queue. With
Docker, it is quite simple to activate multiple containers
running the worker image. This allows us to easily scale
up the number of workers during periods of high load. An-
other advantage of Docker that all the machines in a clus-
ter are securely firewalled within the same network. Only
ports that have been explicitly opened to machines within
the cluster are accessible outside the cluster.

3 Application 1: Tour of Modelica
3.1 Objective

Now that we have discussed how the underlying infras-
tructure is implemented, let us get into the details of the
first application. As mentioned previously, the “Tour of
Modelica” application is a reimplementation of an earlier
web application. The application is structured in the form
of chapters and lessons. In each lesson, the user is pre-
sented with some introductory material about a specific
aspect of the Modelica language and starting from some
sample code is asked to carry out several modeling tasks.
After completing the exercises, the user moves on to the
next lesson and/or chapter.

1So much so, that the term “DevOps” was coined to refer to the
combined set of development and operational skill required to deploy
web applications.

728

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecpl7132725

Session 10B: Modelica Language & Tools

To complete each task, the user must be able to edit,
compile and simulate Modelica code. The code editing is
done in the browser, but the compilation and simulation
is requested via the API and performed by a worker that
uses OpenModelica (Open Source Modelica Consortium,
2016) to compile and simulate each model.

3.2 Content

The content for the application consists primarily of
lessons, chapters, lesson text and sample models. All of
these can be represented as static resources using the func-
tionality previously discussed in 2.1.3.

content/

| chapterl/

| chapterl.json

| lessonl/
lessonl. json
lessonl.html
lessonl.mo

| lesson2/

...

‘— .

| chapter2/

| training. json

Figure 1. Fragment of the files system.

A fragment of the file system content is shown in Fig-
ure 1. All content is rooted in a directory named con-
tent. The files are organized by chapters and lessons
although this is strictly a convention. Files ending in the
. Json suffix are interpreted as hypermedia resource de-
scriptions. These JSON files contain the metadata, prop-
erties and links discussed previously. Let us look at the
lessonl. json file to as an example of how one such
resource might be described:

{

"title": "Simplest Model",
"properties": {}
"class": ["lesson", "start"],
"links": [
{ "rel": ["text"],
"href": "./lessonl.html" 1},
{ "rel": ["source"],
"href": "./lessonl.mo" },
{ "rel": ["task"],
"href": "resource://simulate" },
{ "rel": ["chapter"],
"href": "../chapterl.json" },
{ "rel": ["training"],
"href": "../../training. json" }
1,
"query": {
"rel": {
"training/+": { "embed": true },
"chapter/*": { "embed": false },

"source/data": { "embed": false },
"text/data": { "embed": false },
"task": { "embed": true }

}
}l
}

From this description, we can see that this resource is ti-
tled “Simplest Model” and has no properties. Because this
resource is a lesson, we include the 1lesson class in its
description. It also has the st art class which we can use
in our application to locate the first lesson. The 1inks
section provides (respectively) links to the HTML markup
for the lesson text, the initial model source, the job broker
that will run the simulation, the chapter that this lesson be-
longs to and the training. json file which describes
all the chapters that are part of the “Tour of Modelica” ap-
plication. The query section describes what information
about the resource should be returned from each HTTP
request®. By default, all resources have a “default query’
that describes what information about that resource is to
be returned for each HTTP request. The query section
here is defining the default query. Note that clients (e.g.,
our web application) are free to specify their own query
with each request. In this way they can request more or
less information to be provided, depending on their needs.

This is a lot of information. Furthermore, nearly all of
it is essentially repeated from one lesson to the next where
only a few details are changed. Fortunately, Heisman pro-
vides a way for us to programmatically augment the con-
tents of resources represented by files on the file system.
In this way, we are able to write code to automatically fill
in all the information based conventions like the directory
structure or the lesson name. In fact, the only thing we
cannot figure out automatically is the title. As a result, the
task of creating a new lesson resource becomes as easy as
creating a file that contains:

{

bl

"title": "Simplest Model"

}

A similar process is used to augment information about
other types of content on the file system (e.g., chapters).
This relatively small amount of upfront work to define
specialized handlers greatly simplifies the process of con-
tent creation and making the process accessible to non-
programmers. In addition, allowing data to describe its
relationship to other data means that that information and
logic does not need to be coded into the client. This makes
development of the client easier and more general.

3.3 Visualization

3.3.1 Generic Browser

There are many aspects about the operation of a web
browser that most users are not aware of. One of those

2In our API, the primary response content type is Siren. Because
Siren allows related resources to be embedded in a response or simply
linked to, our query format must specify which approach to use for each
matching resource. Hence the embed field.

DOI
10.3384/ecpl7132725

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

729

modelica.university: A Platform for Interactive Modelica Content

aspects is the Accept header. This is a header included
with an HTTP request that lets the server know what types
of content it expects back. The default Accept header
for Google Chrome looks like this:

Accept: text/html,application/xhtml+xml,
application/xml;g=0.9, image/webp, */*;g=0.8

This is essentially a list of content types the browser
understands. But it also defines the clients order of prefer-
ence for the different content types. The Accept header
is useful to the server because it is possible that a given
resource could be represented in multiple formats and the
Accept header provides a clue as to which format is pre-
ferred.

The Accept header is important in API development
because it can be used to determine whether the request
that the API is handling is coming from a browser or from
Javascript code. If our server sees that the request is for
HTML, it will respond to the request by serving up a page
that loads an embedded browser application. That web
application is actually a generic graphical user interface
for Siren APIs that comes bundled with the server. We will
talk about the user interface application in greater detail
shortly.

This is part of the “API first” philosophy discussed ear-
lier. As a result of following this philosophy, every API
developed in this way automatically comes with a graph-
ical user interface. Furthermore, remember that Heisman
automatically synthesizes an HTTP API based on the re-
sources that are registered with it. What this means, in
practice, is that once you describe your resources, you im-
mediately and automatically get both an HITP API and a
web application.

3.3.2 Custom Visuals

As mentioned previously, Simran is the web application
that is launched when browsing the API. Simran is a pro-
prietary technology used by Xogeny to create web based
UTs for scientific and engineering applications.

Simran is really a browser running in a (web) browser.
Generally speaking, web browsers like Chrome or Firefox
are used for browsing HTML or other widely used content
types. If you are a scientist or engineer, the problem is that
web browsers do not understand more technical formats
(e.g., Modelica models, .mat files, FMUs).

The API browsing application compensates for this by
providing a web application that is extensible. Because
the browser application is built around the notion of hyper-
media (primarily in the form of Siren representations) and
not hypertext (i.e., HTML), we can represent many differ-
ent content types and the relationships between them. In
a sense, this is a lower level alternative to HTML.

That, by itself, may not sound that useful. But it be-
comes more useful because of the plugin system. Via the
plugin API, it is possible to extend the browsing applica-
tion with any number of specialized visual components.
While the base browser application is a generic browser

that renders all Siren resources essentially the same, when
enhanced via plugins the browser application is able to
provide custom rendering for different content types based
on the metadata, properties or relations of the resource.

For example, using just the base browser, our “Tour of
Modelica” application is shown in Figure 2.

There we can see the first lesson and its related re-
sources rendered using metadata. Furthermore, we can
click on links to follow the various resources. But each
resource will be visualized in the same generic way. How-
ever, after we provide a plugin with custom visuals for
lessons and chapters, putting the same URL in our web
browser will yield a rendering of the lesson like the one
shown in Figure 3.

The plugin system is based on React (Facebook, 2017).
Normally, each React component independently specifies
what “properties” it understands when instantiating a com-
ponent. We turn this around a bit and standardizes these
properties to conform to a canonical representation of a
hypermedia resource. As a result, all React components
are “‘equivalent” in the sense that they are instantiated with
the same set of properties but with different values. But,
through the plugin system we have the freedom to cus-
tomize which component to use for each hypermedia re-
source. In this way, we are essentially creating a browser
that can easily be extended to understand any kind of sci-
entific or engineering content instead of being limited to
just those standardized in the HTML specification by the
W3C.

In the case of the “Tour of Modelica” site, the plugin de-
fines custom renderers for lessons, chapters and the train-
ing overview. In addition, it leverages some standard and
easily reusable visuals provided by the built in browser for
applications and application suites.

For each application, the application developer can de-
cide what types of content the browser should be capable
of understanding and then simply add those visuals to their
plugin. This modular approach to visualization makes it
very easy to create a custom user interface for a particu-
lar domain and/or reuse components developed for other
applications.

The authors would like to acknowledge the contribution
of the moijs project for providing syntax highlighting
and checking for the embedded Modelica editor as well as
the CodeMirror project (Haverbeke, 2017) for the editor
widget itself.

3.3.3 Mobile

Consumers of web applications and web content are in-
creasingly consuming this content from mobile devices.
Support for phones and tablets mainly involves making
sure that layout of content makes sense for small form fac-
tor screens. In some cases, some content may be hidden
on small displays. With modelica.university we
have made every effort to support mobile devices.

730

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecpl7132725

Session 10B: Modelica Language & Tools

& C' | ® localhost:3000/res/tour/training.json

Tour of Modelica

URL
/res/tour/training.json
Classes

[training root]

Properties
{
"filename": "training.json",
"content_type": "application/json"
}
Links
Relations

Title Classes

data Data URL contents of training.json

self Tour of Modelica

canonical Tour of Modelica

EmbeddedResources

» First-Order ODEs

» Initialization

» Reuse

» Discrete Behavior

» Physical System Exercises

» Components

» Directory storage for /Users/mtiller/Source/Simran/Apps/Tour/content

¥ O ;

Figure 2. Generic rendering of Tour resources

4 Application 2: Hydro-Electric

Power System
4.1 Objective

The second application example is a student exercise that
is part of the Master’s course “Object-oriented Modelling
of Hydro Power Systems” at University College of South-
east Norway. The course starts with an introduction to the
fundamentals of Modelica. Later on it moves on to model
specific parts of a hydro-electric power system.

Typical modeling problems are:

e Waterway configuration
e Water hammer investigations

e Droop control behavior of the turbine governor

Being able to solve such problems interactively using
only the browser as a tool without having to immediately
understand Modelica code improves the physical under-
standing of the system. Once the physical understanding
is there, creating more complex models and scenarios is
easier for the students to achieve.

4.2 Content

The contents of this application are the different main
problems and each with multiple configurations. For ex-
ample, for the Waterway application different examples
with a number of interconnecting pipes are given where
the levels of the pipe ends need to be verified and checked

that they make sense. This is sometimes not as easy as
it sounds since pipes might connect to reservoir models
which have a different height reference. So the student is
given a set of parameters for the different pipe segments of
other components of the water way and has to determine
if the setup “makes physical sense”.

For the Water hammer problem, one can investigate the
influence of closing time of a valve depending on the pipe
diameters and flow rates. The content would also provide
certain restrictions like allowable maximum pressure in
the pipes.

The Droop control (Wikipedia, 2017) problem contains
data that describes the droop settings of one or more tur-
bine controllers and lets one investigate the respective fre-
quency dependent power productions.

The typical data structure of the content is shown in
Figure 4.

4.3 Visualization

The real benefit for the second application will be the vi-
sualizations of the problems and especially solutions.

The Waterway problem is much more intuitively solv-
able when the students is presented with a sketch of the
physical setup of the different pipe levels and other wa-
terway components. Here the student can at once see a
possible flow in the parameter set.

For the Water hammer problem a different method of
visualization can be used. For example interactively show-
ing unsuitable closing times by emphasising the pressure
plots of setups that violate the restrictions. As the student
changes parameters live (e.g.,via a slider), they get the plot

DOI
10.3384/ecpl7132725

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

731

modelica.university: A Platform for Interactive Modelica Content

& C' @ localhost:3000/res/tour/training.json

Tour of Modelica

o Chapter 1

First-Order ODEs

First-Order ODEs
Simplest Model

Lessons

a Simplest Model

We can model this equation in Modelica using the following code:

model FirstOrder
Real x;
equation
der(x) = 1-x;
5 end FirstOrder;

To get started, let's consider an extremely simple model. In this case, the model includes just one differential equation.

i=(1-%

For an equation like this, we would expect the solution to asymptotically approach 1.0. Pressing the "Simulate" button, we see exactly what we would expect.

Exercises
Implement the equation x = 3 — x and simulate.
Implement the equation x = 5(1 — x) and simulate.

Figure 3. Custom rendering of Tour resources

results presented live based on a real simulation done in
the background. The executed models can be supplied as
Modelica source files or FMUs.

The Droop control problem can be visualized by provid-
ing interactive droop setting behaviours including limits
and again reacting on parameters that can be interactively
set.

Figure 5 shows a typical plot of the power sharing be-
havior of three generators with different droop settings.

5 Related Efforts

The pace of innovation in the web development landscape
is breathtaking. It is nearly impossible to keep track of all
the new technologies that emerge almost on a daily basis.
The authors drew inspiration from many amazing projects,
including:

e Jupyter A tool for interactive data science and
scientific computing across all programming lan-
guages (Project Jupyter, 2017)

e Nextjournal - An interactive writing and program-
ming environment for every stage of research from
experimentation to publication (Nextjournal, 2017)

e "What Can a Technologist Do About Climate
Change? (A Personal View)' - Bret Victor’s
sprawling essay on technologies that can help ad-
dress climate change (Victor, 2015).

e Modelica in Action - An interactive notebook for
compiling and simulating Modelica (Bonvini, 2017).

e Modelica by Example - An interactive book about
Modelica (Tiller, 2016).

6 Conclusions

By leveraging the power of hypermedia and a wide array
of open source technologies, we were able to build the
modelica.university site and our two sample ap-
plications. We gained several insights as a result of this
work.

6.1 Middleware

Creating a site like this involves creation of the underlying
content, implementation of the necessary analysis capabil-
ities, an HTTP API and a domain specific web application
to support user interaction. But most of the domain spe-
cific work here is at the edges, i.e., content creation and
visualization. Through their API synthesis and browser
architectures, the Heisman and Simran packages allow de-
velopment resources to remain focused on those domain
specific edges. This adds efficiency to the development
process while providing a tremendous amount of reusabil-
ity. Together, these two packages form the foundation of
Xogeny’s Aperion platform.

6.2 Current Status

At this point, modelica.university implements the
two applications described in this paper. Our experiences

732

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecpl7132725

Session 10B: Modelica Language & Tools

content/

| waterway/

| waterway.json

| setupl/
setupl. json
setupl.html
setupl.mo

| setup2/

— e e e

| waterhammer/

| waterhammer. json
| long-ww/
long-ww. json
long—-ww.html

long-ww. fmu

. e e e

| droopcontrol

| hydro-power. json

Figure 4. Fragment of the files system.

with these applications further reinforces the importance
of the requirements outlined at this start of this paper. We
are confident that with each additional application, the
platform will gain more and more capability as a browser
for scientific and engineering content.

6.3 Future Plans

In terms of content, we hope that others will contribute
more content in diverse subject areas to help us further
validate our approach, refine our requirements and, ulti-
mately, provide meaningful educational content for sci-
ence and engineering students.

As for the platform, we feel its further development
will be largely driven by use cases involving model-

120 Power Sharing Versus Total Load

100

Generator A i
Generator B
Generator C 1
upper power limit | |
lower power limit

200

Generator Power [MW]

50 100

150
Total Load [MW]

250 300

Figure 5. Example of a droop control visualization

ica.university and other proprietary projects. Now
that the basic pieces of the architecture are implemented,
there are countless optimizations we would like to make
to improve responsiveness. There are also many types of
content we would like to provide custom visualizations for
(e.g., time series data, version trees, diagram authoring).

References

Michael Amundsen. Collection+JSON - Hypermedia Type,
2013. URL http://amundsen.com/media-types/
collection/.

Marco Bonvini. Modelica in action: compile and simulate
models, 2017. URL http://marcobonvini.com/
modelica/2017/01/02/modelica-in-action.
html.

ECMA International. Standard ECMA-262 - ECMAScript
Language Specification. 5.1 edition, June 2011.
URL http://www.ecma-international.org/
publications/standards/Ecma-262.htm.

Facebook. React - v15.4.2,2017. URL https://facebook.
github.io/react/.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol
— HTTP/1.1, 1999. URL https://tools.ietf.org/
html/rfc2616.

Roy Thomas Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, 2000.
AAI9980887.

Martin Fowler. CQRS, 2011. URL https:
//martinfowler.com/bliki/CQRS.html.

Marijn Haverbeke. = CodeMirror, 2017.
codemirror.net/.

URL https://

Internet Assigned Number Authority. About Us, 2017. URL
http://www.lana.org/about.

Michael Kelly. JSON Hypertext Application Language,
2016. URL https://tools.ietf.org/html/
draft-kelly-json-hal-08.

Eve Maler, Tim Bray, Jean Paoli, Fran¢ois Yergeau, and Michael
Sperberg-McQueen. Extensible markup language (XML) 1.0
(fifth edition). W3C recommendation, W3C, November 2008.
http://www.w3.0rg/TR/2008/REC-xml-20081126/.

Microsoft. TypeScript - Javascript that scales, 2017. URL
https://www.typescriptlang.org/.

Nextjournal. Nextjournal, 2017.

nextjournal.com/.

URL https://
Node.js Foundation. About Node.js, 2017. URL https://
nodejs.org/en/about/.

Open Source Modelica Consortium. Openmodelica, December
2016. URL https://openmodelica.org/.

DOI
10.3384/ecpl7132725

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

733

modelica.university: A Platform for Interactive Modelica Content

A. Palanisamy, M. Sjolund, and P. Fritzson. Generat-
ing OpenModelica Web Books Including Mathematical
Typesetting from OMNotebooks, 2016. URL http:
//www.modprod.liu.se/filarkiv/1.672879/
OpenModelicaz20l6-talkl5-Arunkumar—-GeneratingOpenModelicaWebbook.
pdf.

Project Jupyter. Project Jupyter, 2017. URL http://
jupyter.org/.

Salvatore Sanfilippo and Pieter Noordhuis. Redis, 2017. URL
https://redis.io/.

Susan Fowler. Production-Ready Microservices: Building
Standardized Systems Across an Engineering Organization.
December 2016. URL http://shop.oreilly.com/
product/0636920053675.do.

Kevin Swiber. Siren: a hypermedia specification for repre-
senting entities, 2016. URL https://github.com/
kevinswiber/siren.

Michael M. Tiller. Modelica by Example, 2016. URL http:
//book.xogeny.com/.

Michael M. Tiller. Generate a Dockerfile for any NodelS
application, 2017. URL https://www.npmjs.com/
package/dockergen.

Bret Victor. What Can a Technologist Do About Climate
Change? (A Personal View), 2015. URL http://
worrydream.com/ClimateChange/.

W3C. HTML 5.1, 2016. URL https://www.w3.0rg/TR/
html/.

Wikipedia. Droop speed control, 2017. URL https://en.
wikipedia.org/wiki/Droop_speed_control.

Wolfram Alpha. Wolfram Alpha, 2017. URL https://www.
wolframalpha.com/web—apps/.

734 Proceedings of the 12" International Modelica Conference DOI
May 15-17, 2017, Prague, Czech Republic 10.3384/ecpl7132725

