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Abstract
The two degrees of freedom (2-DOF) helicopter is an
openloop unstable multi-variable process. Various control
strategies can be applied to stabilize the system for track-
ing and regulation problems but not all control methods
show equal capabilities for stabilizing the system. This
paper compares the implementation of a classical PID
controller, a linear quadratic regulator with integral ac-
tion (LQR+I) and a model predictive controller (MPC) for
stabilizing the system. It has been hypothesized that for
such an unstable MIMO (multi input multi output) pro-
cess showing cross coupling behavior, the model based
controllers produces smoother control inputs than the clas-
sical controller. The paper also discusses the necessity of
including the derivative part of the PID controller for sta-
bilization and its influence to the measurement noises. A
Kalman filter used for estimating unmeasured states may
produce bias due to model mismatch. The implementa-
tion and comparison is based on a 2-DOF experimental
helicopter prototype.
Keywords: 2-DOF helicopter, MPC, LQR, PID, Kalman
filter, qpOASES

1 Introduction
In many publications where various control strategies are
implemented and compared, there is a lack of verifica-
tion of the implementation and experimentation with a real
process. Most of the studies are simply based on simula-
tion results and there are no experimental data to back-up
their results. In this paper, we have tried to bridge the gap
between simulation results and the real world implemen-
tation.

This paper is based on a 2-DOF helicopter unit. Various
studies about this process can be found in literature with
respect to tracking and regulation problem, see (Su et al.,
2002; Lopez-Martinez et al., 2004; Yu, 2007; M. et al.,
2010; Barbosa et al., 2016; Neto et al., 2016). The results
of these studies look very promising, however, many of
these studies are solely based on simulation results. At
the university college of Southeast Norway (USN), a pro-
totype of a two degrees of freedom helicopter model has
been built from the scratch. All the control and estimation
strategies discussed in this paper are actually implemented
to the real unit.

Figure 1 shows the schematic of a 2 DOF helicopter unit
at USN with the side view and the top view. It consists of

two propellers (pitch and yaw) driven by motors.
The unit has two inputs: (a) voltage to the front or pitch

motor/propeller system, and (b) voltage to the back or yaw
motor/propeller system. When voltage is applied to the
pitch motor, the pitch propeller rotates and it generates
thrust, and the helicopter lifts up. Thus voltage to the pitch
motor/propeller control the elevation (or pitch) of the heli-
copter nose about the pitch axis. When voltage is applied
to the yaw motor, the yaw propeller rotates and it gener-
ates torque in anti-clockwise direction, and the helicopter
rotates about the yaw axis. The angle between the pitch
axis and the helicopter body axis is called the pitch angle.
The angle between the yaw axis and the helicopter body
axis is called the yaw angle. The pitch and the yaw angles
are measured by using the angle sensors as shown in Fig-
ure 1. Thus, these are the two outputs of the system which
are measurable.

When designing a controller for this process, the goal
is to stabilize the system and keep track of the pitch angle
and the yaw angle. Initially this task seems straight for-
ward and simple. In reality, it is not so due to the presence
of the cross coupling nature and the dead band feature in
the process making the control task very challenging.

In this paper, three different control strategies are im-
plemented for stabilizing the system. The response shown
by the real unit for these control strategies are compared
and discussed in detail. The paper is organized as follows:
In section 2, a brief description of the mathematical model
of the process is given. Section 3 describes the implemen-
tation of the three control strategies. Experimental results
are presented in section 4. A detailed discussion on the
experimental results and their comparison is provided in
section 5. Finally, conclusion are drawn in section 6.

2 Model of the 2-DOF helicopter unit
Let us define that Vmp := voltage applied to the pitch mo-
tor, Vmy := voltage applied to the yaw motor, θ := pitch
angle and ψ := yaw angle.

The process is a cross-coupled MIMO system. When
sufficient voltage is applied to the front motor, the heli-
copter not only pitches up but it also starts to rotate at the
same time i.e. the input Vmp affects both outputs θ and ψ .
Similarly, when sufficient voltage is applied to the back
motor, the helicopter rotates in the anti-clockwise direc-
tion and at the same time, it also changes its pitch a little
i.e. the input Vmy affects both outputs θ and ψ . The ef-
fect of Vmp on ψ is very strong denoted by strong cross-
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Figure 1. 2-DOF helicopter unit at USN (side view and top view)

coupling in Figure 1, while the effect of Vmy on θ is weak
denoted by weak cross-coupling.

The system can be described with four states: θ , ψ ,
pitch angular velocity (ωθ ) and yaw angular velocity
(ωψ ). The dynamics of the 2-DOF helicopter unit is mod-
elled using Newton′s laws of motion and Euler-Lagrange
equations of energy. The model is described by a set of
four ordinary differential equations (ODEs) developed by
Quansar Inc. (Qunasar Inc., 2011).

dθ

dt
= ωθ , (1)

dψ

dt
= ωψ , (2)

dωθ

dt
=

KppVmp

Jeq,p +mhelil2
cm
−

KpyVmy

Jeq,p +mhelil2
cm

−
mheliω

2
ψ sin(θ)l2

cmcos(θ)+mheligcos(θ)lcm

Jeq,p +mhelil2
cm

−
Bpωθ

Jeq,p +mhelil2
cm

,

(3)

dωψ

dt
=

KypVmp

Jeq,y +mhelicos2(θ)l2
cm
−

KyyVmy

Jeq,y +mhelicos2(θ)l2
cm

−
2mheliωψ sin(θ)l2

cmcos(θ)ωθ

Jeq,y +mhelicos2(θ)l2
cm

−
Byωψ

Jeq,y +mhelicos2(θ)l2
cm

.

(4)

The parameters of the system with the description is listed
in Table 1.

2.1 Dead band
The real process features dead band dynamics. There ex-
ists a minimum positive voltage on the pitch motor that is
required to just lift up the helicopter, here defined as V dead

mp .
Application of pitch voltage lower than V dead

mp produces no
effect on the unit. Similarly, there exists a range of positive
voltages to the yaw motor for which the system does not
react at all (including the case when Vmp > V dead

mp ). This
voltage range, here defined as V dead

my is the minimum volt-
age on the yaw motor required to just rotate the helicopter.
In the helicopter units at USN, V dead

my is not a constant pa-
rameter but varies slightly with how much Vmp is being
applied to the system. However, V dead

my which is found ex-
perimentally is assumed to be constant in this paper.

To incorporate the effect of dead band, the process
model should be adjusted. If the yaw voltage is less
than V dead

my , then Vmy = 0 in Equations 3 and 4, i.e. for
0≤Vmy ≤V dead

my , Vmy = 0. Further more, if the pitch volt-
age is less than V dead

mp , then it has no effect on the yaw
angle ψ . Thus, the first term of Equation 4 is set to zero,
i.e. for 0≤Vmp ≤V dead

mp ,

dωψ

dt
=−

KyyVmy

Jeq,y +mhelicos2(θ)l2
cm

−
2mheliωψ sin(θ)l2

cmcos(θ)ωθ

Jeq,y +mhelicos2(θ)l2
cm

−
Byωψ

Jeq,y +mhelicos2(θ)l2
cm

.

(5)

2.2 Linear Model
To implement a linear MPC and LQR, a linearized ver-
sion of the nonlinear model was developed. Lineariza-
tion was carried out as the truncated Taylor series expan-
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Table 1. Parameters of the system.

Parameter Description Value

lcm Distance between the pivot point and the center of mass of helicopter 0.015 [m]
mheli Total moving mass of the helicopter 0.479 [kg]
Jeq,p Moment of inertia about the pitch axis 0.0172 [kg−m2]
Jeq,y Moment of inertia about the yaw axis 0.0210 [kg−m2]
g Acceleration due to gravity on planet earth 9.81 [m− s2]
Kpp Torque constant on pitch axis from pitch motor/propeller 0.0556 [Nm/V ]
Kyy Torque constant on yaw axis from yaw motor/propeller 0.21084 [Nm/V ]
Kpy Torque constant on pitch axis from yaw motor/propeller 0.005 [Nm/V ]
Kyp Torque constant on yaw axis from pitch motor/propeller 0.15 [Nm/V ]
Bp Damping friction factor about pitch axis 0.01 [N/V ]
By Damping friction factor about yaw axis 0.08 [N/V ]

sion and the details have not been shown in this paper.
Let x = [θ ,ψ,ωθ ,ωψ ]

T represent the states of the system,
u = [Vmp,Vmy]

T are the control inputs to the system and
y = [θ ,ψ]T are the measured outputs from the system. If
xop,uop and yop denotes the operating points for the states,
control inputs and outputs, and dt = 0.1 is the sampling
time, then the linearized model in the deviation form in
discrete time domain is written as,

δxk+1 = Aδxk +Bδuk (6)
δyk =Cδxk (7)

Here, A,B,C and D are the system matrices such that
A ∈ Rnx×nx B ∈ Rnx×nu and C ∈ Rny×nx with nx = 4 is the
number of states, nu = 2 is the number of control inputs
and ny = 2 is the number of outputs. δxk = xk− xop is the
deviation of the states from the operating point. Similarly,
δuk = uk−uop and δyk = yk− yop.

3 Control of the process
The primary use of controllers for this process is to sta-
bilize the helicopter such that the pitch angle (θ ) and the
yaw angle (ψ) are kept at their given setpoints. The volt-
ages to the pitch and yaw motors are the control inputs.
Although in real life, a helicopter remains horizontal dur-
ing normal flight i.e with a setpoint of θSP = 00, for this
helicopter unit at USN, the performance of the controller
will be studied for different setpoint changes for both an-
gles. Three control structures are utilized to control the
process. Each of them will be discussed briefly in this
section.

3.1 PID controller
The classical PID control algorithm is described by,

u(t) = Kp

(
e(t)+

1
Ti

∫ t

0
e(τ)dτ +Td

de(t)
dt

)
(8)

where e is the control error given by e = yre f −y with yre f
being the reference variable or the setpoint. Kp is the pro-

portional gain, Ti is the integral time and Td is the deriva-
tive time; the three parameters of the control algorithm.
The PID controller was implemented in Simulink along
with the anti-windup feature.

Two independent PID controllers were used: one to
control the pitch angle by manipulating the pitch voltage,
and the other to control the yaw angle by manipulating the
yaw voltage. The parameters of the PID controllers were
obtained by using the auto tuning feature (which utilizes
the model of the process) available in the simulink PID
block. The values of the PID parameters obtained from
the auto tuning was manually refined slightly. For this
particular process, it is worth mentioning that manual tun-
ing of the PID parameters is not trivial and can be difficult
even with an expert knowledge on both the process and
the controller.

3.2 LQR with integral action
The linear quadratic regulator is a well established model
based control algorithm. The theory behind LQR is not
the aim of the paper and hence is not included here. Inter-
ested readers can refer to Bertsekas (2017) for theoretical
details. Due to the presence of dead band and large uncer-
tainty in the model parameters, it is necessary to add inte-
grators to the two controlled outputs (the pitch angle and
the yaw angle) for obtaining the integral action for zero
steady state offset. The four states of the system denoted
by x are,

x =
[
θ ,ψ,ωθ ,ωψ ]

T (9)

For the unmeasured states(ωθ and ωψ ), a standard Kalman
filter is used to estimate them. Let x̃ denote the estimated
states. With an infinite horizon cost function defined as

min J =
∫

∞

0

(
x̃T Qx̃+uT Ru

)
dt, (10)

the feedback control law is given by,

u =−K
(
x̃− x̃SP

)
+uop (11)

Here, K is the state feedback gain and is calculated using
MATLAB function lqr. Q and R are the weighting matri-
ces for the outputs and the inputs respectively. The control
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signal produced by the output integrators are added to u to
generate the control signal applied to the actual process,

uapp = u+Ki

∫ (
y− ySP

)
dt (12)

Here, y are the controlled outputs (pitch and yaw angles)
with their setpoints ySP and Ki are the output integrators
gain vector. The estimates of the states are obtained as,

δ x̃k+1 = Aδ x̃k +Bδuk +L(δyk−δ ỹk) (13)

x̃k = δ x̃k + xop (14)

Here, L is the Kalman filter gain and is calculated using
the MATLAB function kalman for appropriately chosen
covariance matrices for states and measurements.

3.3 MPC with integral action
MPC is an advanced model based control where process
constraints can be systematically included in the optimal
control problem formulation. Details about the theory of
MPC is discarded in this paper as it is not the main aim.
Interested readers can refer to Rawlings and Mayne (2009)
for theoretical details. To achieve offset-free performance
and disturbance rejection, the system state is augmented
with integrating constant nonzero disturbance model as,[

δxk+1
dk+1

]
︸ ︷︷ ︸

δ x̃k+1

=

[
A Bd
0 I

]
︸ ︷︷ ︸

Ã

[
δxk
dk

]
︸ ︷︷ ︸

δ x̃k

+

[
B
0

]
︸︷︷︸

B̃

δuk (15)

δyk =
[
C Cd

]︸ ︷︷ ︸
C̃

[
δxk
dk

]
︸ ︷︷ ︸

x̃k

(16)

where, dk ∈ Rnd with nd = ny being the number of un-
measured disturbance variables and equal to the number of
measurements. The matrices Bd ∈Rnx×nd and Cd ∈Rny×nd

are chosen appropriately such that the following condi-
tion holds true for detectability (Pannocchia and Rawl-
ings, 2003).

rank
[

I−A −Bd
C Cd

]
= nx +ny (17)

With a prediction horizon of N, the MPC problem is for-
mulated as a tracking problem with the disturbance aug-
mented model as,

min J =
1
2

N

∑
k=1

δeT
k Qδek +δuT

k−1Pδuk−1

subject to,

δ x̃k+1 = Ãδ x̃k + B̃δuk, with δ x̃0 known

δyk = C̃δ x̃k

δek = δ rk−δyk

uL ≤ uk ≤ uH

(18)

Here, δ rk is the reference, Q ∈ Rny×ny and P ∈ Rnu×nu

are the weighting matrices, uL = 0[V ] and uH = 3[V ] are
the lower and the upper values of the voltage applied to
the motors and δ x̃0 is the known initial values of the aug-
mented state. Let the choice of the vector of unknowns be
zT =

[
δuT ,δxT ,δeT ,δyT ] with nz number of variables.

The MPC problem of Equation 18 is formulated as a stan-
dard quadratic programming (QP) problem as,

min
z

1
2

zT Hz+ cT z

subject to,
bε,L ≤ Aε z = bε,H

zL ≤ z≤ zH

(19)

Without going into details of the problem formulation,
only the final matrices and vectors are listed here.

H =


IN⊗P 0 0 0

0 IN⊗0nx 0 0
0 0 IN⊗Q 0
0 0 0 IN⊗0ny

 (20)

c = 0nz×1 (21)

Aε =

−IN⊗ B̃ INnx − (IN,−1⊗ Ã) 0Nnx×Nny 0Nnx×Nny

0Nny×Nnu −IN⊗C̃ 0Nny×Nny INny

0Nny×Nnu 0Nny×Nnx INny INny


(22)

Here,⊗ denotes the Kronecker product. For this particular
problem there are no inequality constraints other than the
bounds on the decision variables. So we have,

bε,L = bε,H =



Ãδ x̃0
0(N−1)nx×1

0Nny×1
δ r1

...
δ rN


(23)

The optimal control problem given by Equation 19
is implemented in Simulink and an opensource solver
qpOASES (Ferreau et al., 2014; Potschka and Kirches,
2007–2017) is used to solved the QP problems. Out of
Nnu number of optimal values of the control inputs, only
the first nu control signals are applied to the process and
the process is repeated at each sampling time (receeding
horizon strategy).

The unmeasured states ωθ and ωψ and the unknown
disturbances dk are estimated using a standard Kalman fil-
ter algorithm. The details about Kalman filter algorithm
can be found at Simon (2006).
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Figure 2. Step changes in θ with PID

4 Experimental results

4.1 Tracking: step changes

In this section, the performance of the three control strate-
gies for tracking the setpoint is compared. For easy com-
parison, the setpoints for the pitch angles and the yaw an-
gles are changed separately for all three controllers. Fig-
ures 2, 3 and 4 show the results from the PID, LQR+I
and MPC controllers respectively for tracking the pitch
angle of the 2-DOF experimental helicopter unit with step
changes.

Similarly, Figures 5, 6 and 7 show the results from the
PID, LQR+I and MPC controllers respectively for track-
ing the yaw angle of the experimental helicopter unit with
step changes.

4.2 Tracking: Ramping setpoint

In reality, the helicopters do not change angles (both pitch
and yaw angles) in sharp steps. To turn the helicopter, the
yaw angle setpoints should be instead ramped up and/or
down. Similarly, to change the altitude of flight, the pitch
angle setpoints should be ramped up and/or down. To
illustrate the capability of controlling the helicopter unit
when the setpoints are ramped up and down, the model
predictive controller is used with ramped setpoint changes.
For the sake of brevity and to save space, the other two
controllers are not discussed. Figure 8 shows the results
of ramping both the pitch angle and the yaw angle with
MPC.
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Figure 4. Step changes in θ with MPC
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Figure 7. Step changes in ψ with MPC
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Figure 8. Ramp response with MPC
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Figure 9. Disturbance rejection with PID

4.3 Disturbance rejection
In real case scenarios, several disturbances can influence
the flight path of a helicopter. A strong gust of wind, sud-
den drop in air pressure and density can all affect the pitch
and the yaw angle of the helicopter. Such disturbances
should be compensated by the controllers in order to sta-
bilize the system. For the helicopter prototype at USN, to
supply an external disturbance, the body of the helicopter
was moved by applying force manually by hand. In other
words, to mimic the presence of disturbance, external per-
turbation on the pitch and yaw angles were provided man-
ually by the user. Figures 9, 10 and 11 show the perfor-
mance of PID, LQR+I and MPC controller respectively
under the presence of disturbances.

5 Discussion
5.1 Tracking performance
All the three control strategies could satisfactorily stabi-
lize the system for different setpoint changes of both the
pitch and the yaw angles. With the PID controller, the
derivative term (D) is utmost important and should be used
for stabilizing the system. A pure proportional and inte-
gral (PI) controller was not able to stabilize the system.
However, the inclusion of D term was strongly influenced
by the measurement noises and the resulting control in-
puts became noisy. There was chattering of the voltages
applied to the motors. In the experimental helicopter unit,
the chattering of the voltages resulted in unpleasant vibra-
tional sounds from the propellers and mechanical vibra-
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Figure 10. Disturbance rejection with LQR
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Figure 11. Disturbance rejection with MPC
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tions of the whole rotor propeller system. On the other
hand, the model based controllers (LQR+I and MPC) pro-
duced relatively cleaner control inputs without any chat-
tering. In addition, proper tuning of the PID controllers
was not straight forward owing to the cross coupling na-
ture of the process. It is highly recommended that the
model of the process should be used for tuning of the PID
controllers. In contrast, it was relatively easier to tune the
model based controllers.

When the setpoints on the pitch angles (yaw angles)
were changed, all the three controllers could achieve the
new setpoints while at the same time keeping hold or with-
out losing control of the yaw angles (pitch angles), despite
the presence of a strong cross coupling effect between the
inputs and the outputs.

As has also been described before, in real life the pitch
angle and the yaw angles are not changed in steps but are
instead ramped. The model predictive controller showed
a good response to the ramped setpoints. One benefit of
ramping the helicopter angles is that the control inputs
(voltages to the motors) are not suddenly changed by a
large amount but instead they are changed gradually. This
in practice may/will generate smoother response.

5.2 Disturbance rejection performance
Disturbances were applied manually by the user. Big dis-
turbances (more than ±500 deviations) were applied to
both the pitch and the yaw angles. All three controllers
showed relatively equal and satisfactory performance in
compensating the disturbances.

5.3 Comments on state estimation
The presence of dead band and the mismatch between the
mathematical model and the real process makes it inter-
esting for state estimation. A standard Kalman filter was
applied to estimate the unmeasured states and the distur-
bances for the model based controllers (LQR+I) and MPC.
In Figures 3, 6 and 10 (for the LQR+I controller), it can
be seen that there is a small offset between the estimated
angles (θ : est and ψ : est) and the angles measured by
the sensors (θ : real and ψ : real). However, in Figures
4, 7 and 11 (for the MPC controller), it can be seen that
there is no offset between the estimated angles (θ : est and
ψ : est) and the angles measured by the sensors (θ : real
and ψ : real).

With the MPC, the system states are augmented by a
disturbance model (see Equation 15) and the disturbances
are estimated using a Kalman filter. The estimated dis-
turbances accounts for the dead band and the model mis-
match and hence compensates for any offsets, thus pro-
ducing zero offset between the estimated and the mea-
sured values. On the other hand, with the LQR+I con-
troller, the system states are not augmented with any kind
of disturbance model. The presence of dead band and
model mismatch are hence not compensated, thus produc-
ing small offset between the estimated and the measured
values. This clearly indicates the fact that due to model

mismatch, such offset can be expected as an output from
a Kalman filter algorithm. The important thing is to judge
whether such offsets are important for the control/estima-
tion purpose at hand. If they are not important, and the
closed loop response is stable and correct, such offsets
may simply be discarded.

6 Conclusion
This paper has shown experimental results obtained from
applying different control structures to a real process. The
control structures used in this paper are standard algo-
rithms. They are relatively easier to understand and to
implement. To solve the QP optimal control problems,
open source solver which supports code generation is cho-
sen. This allows us to implement the model based control
structures to a real process using Simulink. The built-in
QP solvers in MATLAB/Simulink does not support code
generation and hence cannot be used for real time con-
trol of processes with fast dynamics such as the helicopter
unit.

For this particular process at USN, the classical PID
controllers show relatively as good performance as the ad-
vanced model based control structures. However, the con-
trol inputs generated by PIDs are noisy. Chattered input
signals applied to the motor cause vibrations and can in-
duce mechanical damage to the unit with time. In addi-
tion, model based control such as the MPC has the added
advantage of including process constraints directly into
the optimization problem. With the PID and LQR+I, con-
straints on the inputs were implemented as ad-hoc if-else
conditions. Finally, the paper also justifies that such ex-
perimental units can be built from the scratch and can be
used for pedagogic purpose with both the classical and the
advanced control algorithms.
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