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Abstract: In oil and gas and geothermal installations, open channels followed by sieves for removal
of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow
rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular)
and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open
channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above
the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series
of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow
rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and
support vector regression algorithms applied to the data from temporal and spatial ultrasonic level
measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient
reliability, repeatability and uncertainty, providing a novel soft sensing of an important process
variable. Simulations, cross-validations and experimental results show that feedforward neural
networks with the Bayesian regularization learning algorithm provide the best flow rate estimates.
Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open
channels are discussed.

Keywords: soft sensing in open channels; non-Newtonian flow; ultrasonic scanning of open channel
flow; neural networks; Bayesian regularization learning; fuzzy logic; support vector regression

1. Introduction

One of the important phases in extracting oil and gas is drilling from the surface down to the
reservoir. Due to high temperature and pressure conditions in the bottom-hole, there is a high risk
of failure while drilling. Drilling fluid circulation plays a vital role in safe and efficient drilling
operations. The drilling fluid can be water-based or oil-based depending on the type of reservoir.
While drilling, the drilling fluid is continuously pumped down into the wellbore through the drill
pipe. The circulating drilling fluid returns to the surface through the annulus, i.e., the space between
the drill pipe and the wellbore. The drilling fluid circulation continues until the desired depth is
reached. The primary functions of drilling fluid circulation are stabilizing the wellbore, the cleaning
borehole and transporting rock cuttings. These functions are dependent on the properties of drilling
fluid, among which density, viscosity and flow rate are the most important ones. The viscosity and
other rheological properties of circulating fluid regulate the hole cleaning and transportation of rock
cuttings [1].

In the context of this paper, variations of viscosity are not taken into account. The drilling fluid
density is responsible for wellbore stability. For any reservoir, there exists a certain pressure window
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where the drilling operation can be performed safely. The pressure window extends from formation
pressure (Pf ) to formation fracture pressure (Pf f ). The wellbore pressure must be maintained within
this pressure window (Pf f − Pf ) for safe drilling. In the case of reservoir failure, two main problems
might occur. If the wellbore or bottom-hole pressure (Pb) is greater than formation pressure (Pf ),
the high-pressure drilling fluid displaces the formation fluids and enters into the formation pores,
causing a fluid loss. If the drilling fluid pressure is greater than formation fracture pressure (Pf f ),
it fractures the formation, and the fluid loss further increases, which is a state of lost circulation while
drilling. Alternatively, if (Pb < Pf ), the high-pressure formation fluids and gasses displace the drilling
fluid, which is the state of kick while drilling. The kick should be detected as early as possible, as it
can initially lead to wellbore stability problems, and in the extreme case, it might result in the blowout
of the whole rig, e.g., the Deepwater Horizon explosion [2]. The bottom-hole pressure depends on the
hydrostatic pressure exerted by the circulating drilling fluid, choke pressure and frictional pressure.
The hydrostatic pressure is mainly responsible for bottom-hole pressure, which is dependent on the
density of drilling fluid or drilling fluid weight. In this way, by monitoring the density of circulating
drilling fluid, the wellbore pressure can be maintained within the acceptable pressure window [1].

Loss of the drilling fluid, kick, unexpected changes in surge pressure and any uncontrolled high
flow rates of drilling fluid should be indicated to the operator (human or autonomous) by a timely
and preventive alarm, so that the operator takes the necessary actions to limit material damages and
hazards to personnel. The early detection of these problems can lead to less fluid loss, less formation
damage, lower drilling costs and, above all, increased safety with minimized maintenance costs.
One of the simplest methods for early detection is the so-called delta flow method, which utilize the
difference between inflow and outflow measurements in a circulation loop. To implement the delta
flow method, two flow measurements for drilling fluid entering the well (inflow) and drilling fluid
returning from the well (outflow) are needed. When the inflow exceeds outflow, lost circulation in the
loop is a possibility. On the other hand, for inflow less than outflow, the possible occurrence of kick is
indicated. Other different methods for kick and lost circulation detection are discussed in [3–6].

Therefore, the aim is to accurately determine the delta flow in the circulation loop. There are
different types of flow measurement systems for delta flow measurement in the literature [7–11].
To point out some of them, the conventional pump strokes counter, rotatory pump speed counter
and Coriolis mass flowmeter can be used for inflow measurement and the standard paddle meter,
ultrasonic level meter, a prototype rolling float meter and open channel Venturi flow meter can be
used for outflow measurements. With some adjustments, the magnetic flow meter and Doppler
ultrasonic flow meter can be used for both inflow and outflow measurements, although due to high
attenuation of ultrasonic signals in drilling fluids, this might not be a suitable option. The Coriolis
mass flowmeter delivers one of the smallest uncertainties in flow metering. It has a very high accuracy
with both Newtonian and non-Newtonian fluids. However, bubbles and mechanical vibrations affect
the Coriolis measurement [12]. Therefore, it is not appropriate to use for outflow measurement,
where the returning fluid contains rock cuttings, formation gasses and formation liquids. In addition,
the Coriolis meter is an expensive option. Different flowmeters based on reliability and accuracy are
discussed in [11]. The analysis concludes that the magnetic flowmeter or Doppler ultrasonic flowmeter
can be used for inflow measurement, and prototype rolling float meters can be used for outflow
measurement. Speers and Gerhrig [8] have presented the usage of magnetic flowmeters for delta
flow measurement. However, magnetic flowmeters are limited to water-based or conductive drilling
fluids. Another problem with magnetic flowmeters is the the requirement of a U-tube designed pipe to
ensure a complete filled pipe. With this desgin, there will be a settlement of rock cuttings in the U-tube
when the flow velocity is low. In this paper, the usage of an open channel with Venturi constriction is
presented where the limitations using the magnetic flowmeter no longer exist [9,10].

In an open channel with Venturi constriction, the upstream pressure relative to the level in the
control section is used to estimate the flow rate of the fluid [13]. Fluids flow from the subcritical to
supercritical flow condition due to the Venturi effect [14]. The critical depth is determined within the
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control section, and the level of the fluid in the upstream is measured. Ultrasonic or radar sensors can
be used for level measurement, which can be used to estimate the flow of the fluid through the open
channel [15].

To study the possibility of using Venturi constriction in an open channel for flow measurement,
a flow loop is available at University College of Southeast Norway (USN), Campus Kjølnes, Norway.
As a part of this study, the Computational Fluid Dynamics (CFD) simulation study is investigated
in [16,17]. The possibility of using the Saint Venant equation for non-Newtonian fluid through the
open channel is presented in [18]. The usage of the Ensemble Kalman Filter (EnKF) for estimating
non-Newtonian fluid flow in an open channel is studied in [19]. This mathematical approach presented
in [18,19] is computationally demanding and is only applicable to a slow system with a large sampling
time. These considerations indicate that for real-time monitoring and controlling purposes, these
approaches are not suitable. In [20], static Artificial Neural Network (ANN) and Support Vector
Regression (SVR) techniques are implemented for flow measurement in an open channel. The
simulation-based study shows that both static ANN and SVR models have more than a 100-times
faster response time as compared to the mechanistic model presented in [18,19]. With an assumption of
delta flow measurement as a dynamic problem, dynamic ANN with different learning algorithms is
investigated in [21]. Further, the Bernoulli equation can be implemented for the flow rate estimation.
The fundamental Bernoulli equation for the flow of an incompressible fluid in an inclined channel takes
the following form:

P1

ρg
+

u2
1

2g
+ z1 =

P2

ρg
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u2
2

2g
+ z2 (1)

where P, u, z, ρ and g are fluid pressure, fluid velocity, elevation of the channel relative to the datum,
fluid density and acceleration due to gravity, respectively, with the subscripts indicating two distinct
positions in the inclined channel. The further simplification of Equation (1) along with continuity
equation, u1 × A1 = u2 × A2 gives Equation (2),
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where Qv, h1, h2, A1 and A2 are volumetric flow rate, upstream level measurement, level measurement
at the throat, area before the constriction and area at the constriction, respectively. The mass flow rate
(Qm) of the fluid can be calculated as Qm = Qv × ρ.

In theory, the simplified equation (Equation (2)) can be used to estimate the flow rate using
a set of spatial samplings of the open surface of the fluid in the Venturi channel, leading to a
set of level measurements. However, due to non-ideal conditions (for example: compressible
fluid, sediments leading to variations of the cross-sections, fluctuations of the open surface of the
non-Newtonian fluid, varying velocity profile in the cross-section of the channel, etc.) and uncertainties
in the geometrical parameters (for example: cross-sectional area of the fluid in the channel, channel
elevation, etc.), we are resorting to a soft sensor approach using non-invasive measurements in this
work. Hence, the present paper focuses on using different empirical methods such as fuzzy logic,
ANN and Support Vector Machine (SVM) with both simulation and experimental results.

The system description is presented in Section 3, and different proposed methods are described in
Section 4. Finally, the results from simulations and experimental studies are presented in Section 5 and
Section 6, respectively.

2. Requirements for a Drilling Fluid Flowmeter

In an earlier paper [9], addressing the need for reliable and accurate flow measurement of
non-Newtonian fluids, the following features are expected from a suitable flowmeter:

• Over the full range of flow, the reliability and accuracy of measurements are guaranteed.
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• In the common drilling operational environment, an accuracy of 1.5–3 L/s for flow rates up to
75 L/s.

• For any type of drilling fluids (water and oil based) in the viscosity range 1–200 cP and density
range of 1000–2160 kg/m3, the accuracy should be maintained.

The methods presented here may be used for non-intrusive measurements of drilling fluids in
many sectors satisfying all these requirements. Although some changes in these expected features may
be seen in the practices of different operators, these can be used as design guidelines.

3. System Description

Figure 1 shows a flow loop available at USN consisting of a mud tank and a blender for mixing.
Different model-drilling fluids are available for testing purposes. The centrifugal pump is used to
pump the model-drilling fluid from the mud tank through the pipelines to the open channel with
Venturi constriction as shown in Figure 1b. The pumped fluid flows through the open channel and
down to the mud tank forming a complete flow loop. The flow loop includes different types of
measurement systems like the pressure transmitter, temperature transmitter, Coriolis mass flowmeters,
Gamma sensor dedicated for density measurement, differential pressure sensor, an open channel with
Venturi constriction, an inclination sensor and different ultrasonic level sensors.

(a) (b)

Figure 1. (a) Test flow loop at University College of Southeast Norway, Kjølnes Campus, showing mud
tank, blender, pump and Coriolis flowmeters. (b) Open Venturi channel with ultrasonic level sensors.

In this study, an accurate Coriolis mass flowmeter is used as a reference meter for all comparisons
of results from empirical models. The open channel has a trapezoidal cross-section with Venturi
constriction. The upstream length is long enough to ensure fully developed flow before entering
the constriction. Further, the channel can be inclined to the horizontal at different angles to analyze
different flow conditions. Three different ultrasonic level sensors are installed over the open channel,
giving levels of fluid in the channel, which will be used for flow measurements, as discussed in the
following sections. Figure 2a shows the 3D view of open channel with Venturi constriction and three
ultrasonic level sensors. The schematic of the system is given in Figure 2b.
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(a) (b)

Figure 2. (a) An open channel with Venturi constriction and three ultrasonic level sensors (LT-1, LT-2,
and LT-3). (b) Extremely simplified P&IDfor the flow loop with the measurands used in the study. The
schematic shows the “hard sensors” in the system under study. The focus is on drilling fluid (also
called “mud”) mass balance based on flow measurements [21].

For the current study, a model-drilling fluid consisting of potassium carbonate (as the densifier)
and xanthan gum (as the viscosifier) is used. The fluid is viscoplastic in nature with a density of
1153 kg/m3, and its viscosity values are within 23–180 cP for corresponding shear rates within
500–1 s−1.

This water-based non-Newtonian fluid with the properties given above is used in assessing the
performance of a method of estimating its volumetric flow by sampling the levels of the open surface
of the fluid flowing in the Venturi channel with an array of non-invasive ultrasonic level sensors.
The performance of this soft sensing of the flow rate should satisfy the criteria outlined in Section 2.

The first step in conceiving of a suitable empirical model is the identification of suitable input
feature space for estimating the mass flow rate of a drilling fluid. The Partial Least Square (PLS) method
used in steady state conditions from earlier studies [20] shows that two upstream level measurements,
LT-1 and LT-2, and the level measurement at the throat, LT-3, are highly correlated with Coriolis mass
flow measurement, as shown in the loading weights plot in Figure 3. The list of different measurement
devices with the respective technical specifications considered for the identification of input and output
features for empirical models is presented in Table 1.

Figure 3. Loading weight plot using the Partial Least Square (PLS) method to identify the most
important variables correlated with mass flow measurements. The three level measurements show
obviously high PLS scoring [20].
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Table 1. Technical specifications of different measurement devices considered for initial identification
of input and output features for empirical models. Based on information from the vendors.

Measurement Devices Vendor Model Range Uncertainty

Coriolis meter (flow rate) Endress + Hauser Promass 63F 0–1000 (L/min) ±0.10%
Coriolis meter (density) Endress + Hauser Promass 63F 0.8–1.8 (g/cc) ±0.001
Temperature transmitter Endress + Hauser TI00110REN14 −50–200 (◦C) ±0.19
Ultrasonic level sensor Rosemount 3107 0.3–12 (m) ±0.25%

Pressure transmitter Aplisens PCE-28 Smart 0–7 (bar) ±0.10%
Differential pressure Aplisens APRE-2000 0–250 (mbar) ±0.10%

For developing models, about 1800 data samples are used for each of the three input variables
(ultrasonic levels) and the single output variable (Coriolis flow rate). The samples are obtained at
the data sampling rate of one sample per second using compactDAQ in the LabVIEW environment.
The ranges, units and input/output types of each variable considered for modeling are tabulated in
Table 2. The simultaneous inputs and output measurements are shown in Figure 4. In Figure 4a, the
level measurements LT-1 and LT-2 are measuring almost the same upstream levels. LT-1 measures
comparatively lower levels, which is due to the energy losses during the backward flow of the fluid
initiated by the hydraulic jump near the constriction. The level measurements are noisy due to the
presence of foams in the flowing fluid and due to random uncertainties in ultrasonic measurements.
The data samples are normalized in the range of 0–1. From the 1800 normalized data samples, 75%,
12.5% and 12.5% of the data are used for training, validation and testing purposes, respectively.

Table 2. Input and output variables used in flow rate models with the units, ranges and variable types.

Variables Range Units Type

LT-1 37.2–107.5 mm Input
LT-2 28.9–78.3 mm Input
LT-3 44.3–106.6 mm Input

Coriolis mass flow rate 250–500 kg/min Output
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Figure 4. Input and output variables used in flow rate models. (a) Three ultrasonic level measurements,
namely LT-1, LT-2, and LT-3, as inputs. (b) Flow measurement using the Coriolis mass flowmeter as the
reference output [21].
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Figure 5. A Sugeno-type Fuzzy Logic architecture with outputs from “hard” sensors LT-1, LT-2 and LT-3
as crisp inputs and drilling fluid outflow as the crisp soft sensor output. Adapted from [22] and modified.

4. Methods Used with Selected Algorithms

In this work, different Artificial Intelligence (AI) methods are used to estimate the flow rate of the
non-Newtonian fluid. Under this section, AI methods like Fuzzy Logic (FL), feedforward and feedback
ANN and Support Vector Regression (SVR) are briefly discussed.

4.1. Fuzzy Logic Approach

Fuzzy Logic (FL) is an approach where the computing is based on degrees of truth rather than
crisp true or false values. The FL tool can be considered as a function that receives inputs and gives an
output based on the defined rules and membership functions. Analysis of the literature [23–26] shows
that the fuzzy logic approach can be successfully applied for learning, predicting and controlling.
Figure 5 shows the architecture of the Sugeno-type fuzzy logic with ANFIS used in predicting mass
flow rates based on three ultrasonic level measurements. In this work, the Sugeno-type fuzzy logic
with the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used.

4.2. Feedforward Artificial Neural Network

ANN is a kind of non-linear mapping system suitable for pattern recognition, regression problems,
image compression, etc. [27–33]. In the network, the bias of the neuron and weights between the
neurons are the model parameters. These model parameters are tuned based on a certain cost function
using a suitable learning algorithm [27,28]. A feedforward ANN is a static ANN that uses current
inputs to estimate current outputs. The architecture of the feedforward ANN always moves in one
direction as shown in Figure 6.

Figure 6. A feedforward artificial neural network architecture with an input layer, hidden layer and an
output layer. Three ultrasonic level measurements, LT-1, LT-2 and LT-3, are inputs to the network and
drilling fluid outflow as the soft sensor output from the network [20].
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In this paper, feedforward ANN with three different learning algorithms, Levenberg–Marquardt
(LM) learning, Bayesian Regularization (BR) learning and Scaled Conjugate Gradient (SCG) learning,
are investigated. The cost function for LM learning and SCG learning algorithms is the mean squared
error defined by Equation (3), and the generalization is performed using the early stop technique.
Both of these algorithms are faster in learning. However, regarding memory, LM learning takes more
memory compared to SCG learning [34]; whereas, the BR learning algorithm involves the minimization
of mean squared error and weight parameters of a network. The cost function for BR learning is
defined by Equation (4), and the generalization is performed using regularization [34].

J(w, b) =
1

2n

n

∑
i=1

(‖pi − Ti‖)2 (3)

J(w, b, λ) =
1

2n

n

∑
i=1

{
(‖pi − Ti‖)2 + λW2

}
(4)

where J represents the cost function, which is a function of weights (w) and bias (b). Parameters n,
p and T represent the number of samples, model prediction and target value, respectively. W is the
weight parameter vector and λ the regularization parameter or weight decaying factor.

4.3. Feedback Artificial Neural Network

A feedback ANN is a dynamic ANN that uses previous inputs and outputs to estimate current
outputs. The architecture of a fully-connected feedback ANN consisting of feedback loops and
self-feedback loops is shown in Figure 7.

Figure 7. The architecture for feedback ANN with self-feedback (denoted by green connections),
feedback loops (denoted by blue connections) and direct connections from inputs to the output neuron
(denoted by brown connections). Ultrasonic level measurements as input vectors to the network and
the drilling fluid flow rate as the output from the network [21].

In this paper, feedback ANN with three different learning algorithms, Back Propagation Through
Time (BPTT), Real-Time Recurrent Learning (RTRL) and Extended Kalman Filter Learning (EKF),
is studied. BPTT is an extension of the classical gradient-based back-propagation algorithm where the
feedback ANN architecture is unfolded into feedforward ANN with a different number of folds [35–38].
It converges faster, but it is an offline learning algorithm [35–38]. On the other hand, both RTRL and
EKF are online learning algorithm. RTRL is simple and the slowest converging algorithm, whereas
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EKF is complex and the fastest learning algorithm [35–38]. Mean squared error defined by Equation (3)
is used as a cost function in all three feedback learning algorithms.

4.4. Support Vector Regression

The Support Vector Machine (SVM) technique is applied in applications like classification
problems, pattern recognition, time series predictions and regression problems [39–42]. The basic
idea of the SVM technique is to perform a mapping of original data in the input space into the higher
dimensional feature space through non-linear mapping functions. In this paper, SVM is used in its
regression form, defined by (Equation (5)) as Support Vector Regression (SVR) [39].

y =
NSV

∑
i=1

(wi · φi(x)) + b (5)

where φ(x) (also represented as k(x, xi), k representing the kernel function) is the mapping function
from the input space to the feature space, b is the bias term, x represents the input, y represents the
output and NSV is the number of support vectors. The architecture of SVR used in this paper is shown
in Figure 8. Three ultrasonic level measurements (X) are transformed into higher dimensional feature
space using the Radial Basis Function (RBF) kernel. Thus, the obtained higher dimensional feature is
mapped with mass flow rate to develop a regression model.

Figure 8. An architecture of Support Vector Regression (SVR) showing a mapping from input space to
high dimensional feature space using the radial basis kernel function. Ultrasonic level measurements
as input vectors and the drilling fluid flow rate as the output [20].

4.5. Building AI Models

Different AI models are developed using the data from three ultrasonic level measurements LT-1,
LT-2 and LT-3 as inputs and Coriolis mass flow readings as the output. The dataset is normalized and
divided into three sets for training, validation and testing. Different empirical relations (hypothesis)
between inputs and output are developed using the training dataset. The empirical models developed
are then validated leading to the final hypothesis with associated optimal model parameters. Finally,
the eight models are tested for their performance. The flowchart for training, validating and testing all
the AI models is shown in Figure 9. A pseudocode for training, validating and testing different AI
models is presented below.

(a) % Get and normalize dataset
dataSet = GetDataSet()
data = Normalize(dataSet)
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(b) % Divide dataset into training, validation and testing sets
trainingData = FindTrainingSet(data)
validationData = FindValidationSet(data)
testData = FindTestSet(data)

(c) % Construct two arrays of different AI techniques and corresponding learning algorithms
arti f icial IntelligenceTechniques = {′ f uzzyLogicAlgorithm′, ′ f eed f orwardLMAlgorithm′,
′ f eed f orwardBRAlgorithm′, ′ f eed f orwardSCGAlgorithm′, ′ f eedbackBPTTAlgorithm′,
′ f eedbackRTRLAlgorithm′, ′ f eedbackEKFAlgorithm′, ′svrAlgorithm′}
LearningAlgorithms = {′ANFISLearningAlgorithm′, ′LMLearningAlgorithm′,
′BRLearningAlgorithm′, ′SCGLearningAlgorithm′, ′BPTTLearningAlgorithm′,
′RTRLLearningAlgorithm′, ′EKFLearningAlgorithm′, ′SVRLearningAlgorithm′}

(d) % Train different AI techniques using training data set
FOR algorithm = 1–8
arti f icial IntelligenceTechniques{algorithm} = LearningAlgorithms{algorithm}(trainingData)
ENDFOR

(e) % Validate all the AI techniques using the validation dataset
FOR algorithm = 1–8
Validate(arti f icial IntelligenceTechniques{algorithm}, validationData)
ENDFOR

(f) % Test all the AI techniques using test set
FOR algorithm = 1–8
Test(arti f icial IntelligenceTechniques{algorithm}, testData)
ENDFOR

Figure 9. A flowchart for training, validating and testing different AI techniques.

4.6. Cross-Validation for Model Selection

In this work, the cross-validation technique is used for model selection. For the purpose of model
selection, the dataset is divided into k number of folds (k = 10, in our case). Out of k subsets, the
(k− 1) set is used for training or calibrating the model, and remaining subsets are used for validating
or testing the model. The process is repeated by changing the validation subset, and then, the average
cross-validation error is calculated. The model with the lowest cross-validation error is considered to
be the best model using this technique [43,44].

Further, Table 3 shows the pros and cons of different AI methods used in this study. The selection
of a suitable model is application dependent.
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Table 3. Pros and cons of different AI methods used in this study.

AI Methods Pros Cons

Fuzzy Logic
Simple to implement and can
be a good alternative for
solving complex problems.

The performance depends on the
model parameters and rules.
Insufficient knowledge about the
system can degrade the performance.

Artificial Neural Network

Suitable for modeling non-linear
problems and one of the best
choices for a large number of
input features.

Training is computationally expensive.

Support Vector Regression
Works very well with non-linear
problems and is not biased by
outliers.

The algorithm is more complex and is
not the best method for a large number
of features.

5. Simulation Study

Based on the setup discussed in Section 3, the results of the simulation study are presented under
this section. As discussed in Section 3, we have measurements from three level measurements from
ultrasonic sensors LT-1, LT-2 and LT-3 and the Coriolis mass flowmeter. All the models are evaluated
using Mean Absolute Percentage Error (MAPE) and coefficient of determination R2. The low value of
MAPE represents the better performance of the model, as it gives the error percentage value. On the
other hand, the value of R2 closer to 1.0 indicates that the model predictions and target values are
highly correlated. The parameter tuning of models is one of the most important steps in empirical
modeling. In this paper, the parameters of ANN models are tuned based on the grid search method
followed by some adjustment using trial and error. Most of the parameters of the Sugeno-type fuzzy
logic model are tuned automatically, and the rest of the parameters are based on trial and error. Optimal
selection of SVR model parameters is made using the process described in [45]. Table 4 shows the
optimal parameters used in all the models. All the symbols used in Table 4 are given in Appendix A.

Table 4. The optimal parameters used in all the proposed models for estimating the flow rate of
the non-Newtonian fluid. All models implemented off-line using MATLAB. Model parameters,
mostly software specific, are described in the nomenclature.

Methods Optimal Parameters

Sugeno-type fuzzy logic Nm = 3, Nr = 27, Mm = Gaussian-type, output = linear-type
Feedforward ANN with LM learning Nh = 1, Nn = 4, α = 0.1, Epoch = 1000
Feedforward ANN with BR learning Nh = 1, Nn = 4, α = 0.1, Epoch = 1000

Feedforward ANN with SCG learning Nh = 1, Nn = 4, α = 0.1, Epoch = 1000
Feedback ANN with BPTT learning Nn = 7, α = 0.1, N f = 7, Epoch = 200, Ni = 1, No = 3
Feedback ANN with RTRL learning Nn = 7, α = 0.1, Epoch = 200, Ni = 4, No = 4
Feedback ANN with EKF learning Nn = 7, α = 0.1, Epoch = 200, Ni = 4, No = 4

Support vector regression with
RBF C = 500, ε = 0.01, σ = 0.1

Figure 10 shows the flow rate estimations of non-Newtonian fluid using all the proposed empirical
models compared to the Coriolis mass flow measurements. From these simulation studies, it can be
seen that all the proposed models can track the changes in flow rates with high accuracy and are
capable of describing both the steady state and dynamic behaviors of the fluid flow.
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Figure 10. The flow rate estimates of non-Newtonian fluid based on simulations compared to the flow
rate using from Coriolis meter. Both in static and dynamic conditions, simulation results and Coriolis
meter readings tally very well.

Table 5 shows the comparison of the results from different proposed models based on MAPE
and R2. Based on these performance criteria, feedforward ANN with Bayesian Regularization and
Levenberg–Marquardt learning algorithms are the best models to be implemented with the lowest
percentage error and highest correlation with target values. However, other proposed models also
have very accurate predictions.

Table 5. The comparison of the simulation performance in estimating output flow; all the proposed
models are based on MAPE or R2. Selected methods (represented by bold numbers) are considered in
cross-validation for model selection.

Methods MAPE (%) R2

Sugeno-type fuzzy logic 1.74 0.98
Feedforward ANN with LM learning 1.58 0.99
Feedforward ANN with BR learning 1.58 0.99

Feedforward ANN with SCG learning 1.97 0.99
Feedback ANN with BPTT learning 2.89 0.97
Feedback ANN with RTRL learning 2.57 0.98
Feedback ANN with EKF learning 2.71 0.98

Support vector regression with RBF 1.61 0.99

For further analysis, four different types of models are selected, one from each method.
The cross-validation technique with 10-folds is implemented in each of the selected models. Table 6
shows the selected models with corresponding cross-validation error. Based on the cross-validation
check, the best model for flow rate estimation is feedforward ANN with the Bayesian regularization
model, which has the lowest cross-validation error. It is due to the fact that the BR learning algorithm
uses regularization for the generalization of a model. The regularization parameter prevents the model
from being over-fit by minimizing the connection weights.
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Table 6. The model selection using the cross-validation technique.

Methods Cross-Validation Error (%)

Sugeno-type fuzzy logic 1.89
Feedforward ANN with BR learning 1.59
Feedback ANN with RTRL learning 2.70
Support vector regression with RBF 1.75

6. Experimental Study

Based on the simulation study, four different models, the Sugeno-type fuzzy logic model,
feedforward ANN with BR learning model, feedback ANN with RTRL learning and SVR with RBF
kernel model, are implemented in the flow loop. Figure 11 shows the experimental results obtained
with non-Newtonian fluid using these models. During the experiments, the set point is randomly
varied between 250 and 475 kg/min. In response, all the models can track the varying references with
good accuracy. Table 7 shows the comparison of the experimental performance of different models
based on MAPE, R2 and Root Mean Squared Error (RMSE). From the performance table, it can be seen
that the feedforward ANN with BR learning model having the lowest MAPE and RMSE of 3.28% and
0.3 L/s respectively, and the highest R2 of 94% is the best generalized model for estimating the flow
rate of the non-Newtonian fluid. However, all these models give much smaller RMSE with acceptable
uncertainties for a flowmeter needed for the current application.
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Figure 11. The flow rate estimates using feedback ANN with the RTRL learning algorithm, SVR with
the RBF kernel function, feedforward ANN with the Bayesian regularization learning algorithm and
Sugeno-type FL compared to the Coriolis meter readings.

Table 7. The comparison of the experimental performance of different models used for estimating flow
based on MAPE, R2 and RMSE.

Methods MAPE (%) R2 RMSE (kg/min) RMSE (L/s)

Sugeno-type fuzzy logic 7.72 0.83 34.94 0.51
Feedforward ANN with BR learning 3.28 0.94 20.90 0.30
Feedback ANN with RTRL learning 4.25 0.91 25.02 0.36
Support vector regression with RBF 6.43 0.89 28.30 0.41
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Figure 12 shows box plots for Coriolis flowmeter readings and feedforward ANN estimates at
different flow rates. As a reference, a varying setpoint is also included in the plots. In the box plot, a blue
box is an Interquartile Range (IQR), and the central red line is a median of measurements/estimates.
Two whiskers above and below the box are 1.5× IQR from the edge of the box, which corresponds
to the 99.3% confidence interval for a normal distribution. Hence, the size of a box represents the
spread or variance of measurements/estimates. Figure 12a shows that the sizes of boxes for Coriolis
readings are very small, and the medians are very close to the reference line. This represents the high
accuracy of the Coriolis flowmeter; whereas, the size of boxes for the estimates of feedforward ANN
are comparatively larger, as shown in Figure 12b. The sizes of boxes are small at low flow rates and
large at high flow rates, representing low and high variances, respectively. In addition, the medians
for feedforward ANN are slightly displaced from the reference line showing some limited accuracy
in estimations.
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Figure 12. Box plots showing the spread of the sensor measurements and model-based estimates at
different flow rates. Green dots, black dots and the red plus sign represent measurements/estimates
within the Interquartile Range (IQR), within the upper and lower bounds, but out of IQR, and outliers,
respectively. (a) Box plots for Coriolis mass flow meter readings. (b) Box plots for flow rate estimations of
feedforward ANN.

Further, feedforward ANN is considered under the repeatability test as shown in Figure 13.
Under similar conditions, three experiments are performed, and the estimates of feedforward ANN are
compared. For the comparison, only the steady state measurements are considered. Table 8 shows the
results of the repeatability test. The calculated MAPE and R2 show that the estimates of feedforward
ANN are highly repeatable.
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Figure 13. Repeatability test conducted on three different experiments under the same conditions.
The estimated flow rates using feedforward ANN in different experiments are compared against the
reference setpoints.
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Table 8. Repeatability test performed with three experiments under the same conditions. The results
are evaluated based on MAPE and R2.

Experiments MAPE (%) R2

1 1.97 0.975
2 1.90 0.977
3 2.01 0.975

The simulation and experimental study is summarized in Figure 14.

Figure 14. Overview of the strategies used during the simulation and experimental studies.
Feedforward with Bayesian Regularization (BR) learning comes out as the best approach for soft
sensing of the flow rate.

7. Conclusions

The drilling operation is one of the main phases of extracting oil and gas from the reservoir
in oil and gas industries. In the context of geothermal applications, it helps to reach the necessary
depth for achieving the high-temperature environment for heat transfer. In the context of oil and gas
boring operations, due to extreme conditions in the bottom-hole, there is a high risk of failure while
drilling. In unusual cases, there might be two problems while drilling: the influx of formation fluid
(i.e., kick) and loss of circulation fluid. One of the best ways to detect these problems is the delta
flow method, which utilizes the difference in inflow and outflow measurements of drilling fluid in
a flow loop. There are different methods to perform accurate inflow measurements discussed in the
literature. However, it is complicated to measure the outflow measurement accurately, particularly so
for non-Newtonian fluids. In this paper, we introduce different empirical models and present both
simulation and experimental results based on the comparison to readings from the Coriolis mass
flowmeter. The starting point for this particular investigation is the set of three ultrasonic height
measurements. The question is whether we can estimate the bulk flow velocity based only on these
three parameters using non-invasive techniques. This is where soft sensor models come into play.
The results from extensive experiments with non-Newtonian model-drilling fluids in the research
laboratory of Statoil and in the flow loop at USN are used to develop the soft sensor models presented
in this paper.

Different empirical models presented in this work are: the Sugeno-type fuzzy logic
model, feedforward ANN models with three learning algorithms (Levenberg–Marquardt learning,
Bayesian regularization learning and scaled conjugate gradient learning), feedback ANN models with
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three learning algorithms (back propagation through time, real-time recurrent learning and extended
Kalman filter learning) and support vector regression model with the radial basis function as the kernel
function. For these models, the partial least square method is used to identify the inputs and output
variables. In the simulation study, feedforward ANN with LM learning and BR learning are found to
be the best models based on the MAPE and R2. Further, some of the models are considered under the
10-fold cross-validation technique for suitable model selection. In this study, feedforward ANN with
BR learning is selected to be the best generalized model with the lowest cross-validation error. Similar
to simulation results, the flow rate estimates using feedforward ANN with BR learning are close to the
results from the experiments. However, all the presented models are capable of tracking both the static
and dynamic behavior of time-varying non-Newtonian fluid flow. The results presented here along
with the measurements based on the array of ultrasonic transducers confirm that the flow rate of the
drilling fluids could be measured satisfying the requirements specified in [9].

For future work, the quality and quantity of the training and validating datasets can be improved.
As the proposed modeling is mainly dependent on the type of data, we believe that improvement
in data measurement and extraction will improve the performance of the models. For this purpose,
the first step will be filtering the noise from the data and performing other signal processing techniques
to improve the signal information.

The technique presented here paves the way for realizing a simple and effective soft sensing
system for monitoring a commonly-occurring module in the fossil fuel and renewable industries,
viz. the operational unit for transport, cleaning recovery and mass balance budgeting of a costly and
environmentally-hazardous drilling fluid, which is non-Newtonian. The soft sensing of the fluid flow
rate using an array of non-intrusive and non-invasive ultrasonic transducers could spare the operators
expensive maintenance costs and improve autonomous operation of plants in conventional fossil fuel
and emerging renewable energy industries. For interested researchers, the data used in this study are
made available in the web portal of this journal.
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Appendix A. List of Symbols and Abbreviations

Appendix A consist of a list of symbols and abbreviations used in this work.

Symbols Abbreviations
b Bias term AI Artificial Intelligence
C Punishing factor ANFIS Adaptive Neuro-Fuzzy Inference System
Epoch Maximum epochs for learning ANN Artificial Neural Network
g Acceleration of gravity BPTT Back Propagation Through Time
h Fluid level BR Bayesian Regularization
J Cost function CFD Computational Fluid Dynamics
Mm Type of membership function DP Differential Pressure
n Number of samples EKF Extended Kalman Filter
N f Number of folding FB Feedback

http://www.mdpi.com/1424-8220/17/11/2458/s1
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Nh Number of hidden layers FF Feedforward
Ni Number of previous inputs FL Fuzzy Logic
Nm Number of membership function IQR Interquartile Range
Nn Number of hidden neurons LM Levenberg–Marquardt
No Number of previous outputs LT Level Transmitter
Nr Number of rules MAPE Mean Absolute Percentage Error
Nsv Number of support vectors PLS Partial Least Square
p Model predictions RBF Radial Basis Function
P Fluid pressure RMSE Root Mean Squared Error
Pb Formation pressure RTRL Real-Time Recurrent Learning
Pf f Formation fracture pressure SCG Scaled Conjugate Gradient
Qm Mass flow rate SVM Support Vector Machine
Qv Volumetric flow rate SVR Support Vector Regression
R2 Coefficient of determination USN University College of Southeast Norway
T Target
u Fluid velocity
w Weight
W Weight parameter vector
X Input matrix
Y Outputs
z Elevation relative to a datum
α Learning rate
ε Tolerance zone
ρ Fluid density
σ Width of RBF function
λ Regularization parameter
φ(·) Mapping function
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