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Abstract. Recently an elastic inverted pendulum structure was proposed as a means to make nonlinear
energy harvesters. An effective dynamical model of this bi-stable system has an effective lumped mass that
is dependent on the displacement, hence preventing direct application of previous analyses for nonlinear
harvesters driven by random vibrations. We have set up a stationary Fokker-Planck equation for the
inverted pendulum and solved it to obtain explicit expressions for the stationary probability densities
of the system. We found that the marginal distribution of velocity is non-Gaussian, but numerically it
differs little from a Gaussian when parameters for a recently published device are used. The conditional
probability of position given velocity, has two peaks for low velocities. These merge into one upon increase
of velocity.

1 Introduction

Vibration energy harvesting is one among several means
to provide power to sensor nodes in a way that make
them autonomous and thereby allows maintenance free
operation [1]. A great number of recent vibration energy
harvesters are nonlinear. This is so either because design
constraints make linear response unattainable, or because
nonlinearities are believed useful in tailoring the device
behaviour to the vibration of the environment. Examples
of strongly nonlinear devices are found among harvesters
of all the three main transducer types, i.e., electromag-
netic [2–4], piezoelectric [5–9] and electrostatic [10–14]
generators.

In analyzing or testing these devices, a number of dif-
ferent vibration waveforms are used, either measured
waveforms or artificial ones. In numerical computations
and in experiments, there is a great flexibility in treat-
ing different waveforms. For theoretical analyses, simple
artificial waveforms such as a pure harmonic vibration or
white noise are commonly used because they capture some
significant aspects of vibrations and because of the techni-
cal difficulties in dealing analytically with the alternatives.
With a white-noise excitation that is additive, the proba-
bility density of the state variables is given by a Fokker-
Planck equation [15] which can be written down rather
generally for a harvester with one mechanical degree of
freedom and one electrical port [16]. Alternatively one can
work directly with the equations of motions for correlation
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functions. These equations can be solved by several
means such as cumulant closure [17], orthogonal function
expansions [18,19], equivalent stochastic linearization [20]
or finite element methods [21]. Explicit analytical solution
for mechanically nonlinear devices [16,22] are achievable
in limiting cases of electrical loading when the stationary
probability density of velocity and displacement simplifies
to the one for a Brownian particle in a potential.

Recently an energy harvester utilizing an elastic
inverted pendulum was proposed [23]. The elastic inverted
pendulum consists of a thin, vertically oriented beam
which can buckle under the gravitational load of a proof
mass attached to its end, thereby creating a bistable
configuration which can be excited by e.g., horizontal
motion of the base. The equations of motion for this sys-
tem can be reduced to a low-order model with one mechan-
ical degree of freedom. This model has been investigated
numerically with harmonic [23–25] and random [26] exci-
tation. The model has the additional complication com-
pared with previous harvester models that the effective
lumped mass is dependent on the lateral displacement.
This displacement-dependent lumped mass prevents
direct application of previous formulations of the Fokker-
Planck for energy harvesters with nonlinear stiffness. Since
the displacement-dependent lumped mass is a feature of
the pendulum structure itself, it is reasonable first to dis-
regard effects of a transducer and focus on the mechanical
part of this system in order to gain better understand-
ing of it. In this paper we derive the stationary proba-
bility distributions for the effective model of the inverted
pendulum.
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Fig. 1. Main features of the inverted pendulum.

2 The model

The elastic inverted-pendulum configuration is shown in
Figure 1 depicting both the reference geometry and an
arbitrary state of displacement. The dynamics of the har-
monically excited inverted pendulum were studied in pre-
vious papers [23,24] where a simplified equation of
motion in terms of the tip horizontal displacement was
given. The details of the derivation were presented in the
reference [23]. It was based on Hamilton’s principle using
a Lagrangian T − V where the kinetic energy T includes
translational kinetic energy of both the beam and tip-mass
Mt, as well as the rotational kinetic energy of the tip mass.
For the potential energy, the strain energy due to bending
and the work done by the gravitational field on the beam
and tip-mass were taken into account. The Lagrangian
is written in terms of longitudinal and transversal beam
displacements up = up(s) and vp = vp(s) respectively as
functions of distance s along the beam. Assuming small
strains, but not necessarily small displacement, both up

and the beam curvature can be perturbatively given in
terms of vp so that the Lagrangian is written as a func-
tional of vp only. The final approximation is to choose an
admissible trial function for vp with the tip-displacement
x = vp(L) as the only free parameter. After expanding the
Lagrangian to fourth order in x and ẋ, the corresponding
Euler-Lagrange equation of motion reduces to:

(α1 + α2x
2)ẍ + α2xẋ2 + (γ1 + γ2x

2)x + βẋ = F, (1)

where F is the fictitious inertial force due to base motion.
The parameters α1 and α2 parameterize the inertial term
which corresponds to a particle with a lumped mass:

m(x) = α1 + α2x
2, (2)

which is position dependent for nonzero α2. The effective
elastic force corresponds to a potential:

U(x) = γ1x
2/2 + γ2x

4/4, (3)

which has γ2 > 0. The configurations of most interest have
γ1 < 0, and hence (3) is a bistable potential. The damping

Table 1. Model parameters. Taken from [24].

Parameter Value Unit

α1 0.0294 kg

α2 1.1094 kg/m2

γ1 –0.0633 N/m

γ2 53.8479 N/m3

β 0.01 kg/s
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Fig. 2. Potential (full line) and lumped mass (dashed line) vs.
displacement. Note that the system has a mirror symmetry.
The minimum of the potential is fixed at x = ±�−γ1/γ2 ≈
±3.43 cm.

is treated as a linear damper characterized by a constant
β. The parameter values used for numerical examples here
are taken from [24] and are listed in Table 1. The potential
and lumped mass for these parameters are depicted in
Figure 2.

We consider a wideband base-excitation which is mod-
eled as a Gaussian-white-noise fictitious force F with
autocorrelation function:

〈F (t)F (t′)〉 = SFF δ(t − t′), (4)

where 〈· · · 〉 denotes the expectation value and δ is the
Dirac delta-function. The constant SFF is the (two-sided)
spectral density of the force. Note that there are sev-
eral normalization conventions for the spectral density in
the literature, some differing from this one by a factor 2
and/or a factor 1/2π.

3 Probability distributions

In this section we derive the stationary probability den-
sity functions for the system and investigate a selection of
numerical examples.

3.1 Analytical solutions

We derive the probability densities by setting up and
solving a Fokker-Planck equation corresponding to (1).
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There are several ways to do this depending on how we
choose dynamical variables. We found it most convenient
to use the lateral displacement x and its momentum:

p = m(x)ẋ. (5)

For the lossless case (β = 0) and without base
excitation (F = 0), the dynamics are then governed by
Hamilton’s equations ẋ = ∂H/∂p and ṗ = −∂H/∂x with
the Hamiltonian:

H(x, p) =
1

2m(x)
p2 + U(x). (6)

With loss and base-excitation, the equation of motion (1)
applies and can be recast as:

ẋ =
∂H

∂p
, (7)

ṗ = −∂H

∂x
− β

∂H

∂p
+ F. (8)

We now seek the stationary joint probability density
Wst = Wst(x, p) of displacement and momentum.1 For the
stationary case, the Fokker-Planck equation correspond-
ing to (7), (8) reduces to (see [27], Sect. 4.3):

− ∂

∂x

(
∂H

∂p
Wst

)
+

∂

∂p

[(
∂H

∂x
+ β

∂H

∂p

)
Wst

]

+
SFF

2
∂2Wst

∂p2
= 0. (9)

We make the ansatz that the stationary probability
distribution only depends on x and p through the
Hamiltonian, i.e., Wst(x, p) = f(H(x, p)) = f(H) for some
function f . This form is motivated by the exact form for an
ordinary constant-mass Brownian particle in a potential.
In our case this ansatz turns out to work for the joint prob-
ability density of x and p, but in contrast to the constant-
mass case [28], it can then not work for the probability
density of x and ẋ.

Inserting the ansatz into (9), we obtain:

∂2H

∂p2

[
f ′ +

2β

SFF
f

]
+

(
∂H

∂p

)2 [
f ′′ +

2β

SFF
f ′

]
= 0. (10)

As both terms in brackets must vanish, the solution to this
equation indeed must be on the form f ∝exp(−2βH/SFF),
i.e., a Boltzmann factor with 2β/SFF analogous to the
reciprocal of temperature. We therefore have:

Wst = Z−1 exp
(
− β

SFF

p2

m(x)
− 2β

SFF
U(x)

)
, (11)

where

Z =
∫ ∞

−∞
dx

∫ ∞

−∞
dp exp

(
− β

SFF

p2

m(x)
− 2β

SFF
U(x)

)
,

(12)

1 As is common in physics and engineering, we use the
same notation for the dummy variables in the probability
distributions as for the corresponding stochastic variables,
i.e., x and ẋ.

ensures correct normalization of the probability density.
The x-dependence in (11) is the same as would have been
obtained by simply replacing the mass by a spatially vary-
ing one in the expression for the probability density for an
ordinary constant-mass Brownian particle. However, the
normalization factor is different for that case.

If we instead seek the joint probability density W̃st =
W̃st(x, ẋ) of displacement and velocity, we can make a
change of variables to find W̃st(x, ẋ)=m(x)Wst(x,m(x)ẋ),
i.e.,

W̃st = Z−1m(x) exp
(
− β

SFF
m(x)ẋ2 − 2β

SFF
U(x)

)
.

(13)
In contrast to the constant-mass case, velocity and posi-
tion are no longer independent stochastic variables, but
their equal-time covariance is 〈xẋ〉 = 0 as it should.

The marginal probability density Wx,st for position can
be found by integrating out either momentum in (11) or
velocity in (13). The result is:

Wx,st(x) = Z−1

√
πSFFm(x)

β
exp

(
− 2β

SFF
U(x)

)
. (14)

The marginal probability density Wẋ,st for velocity is simi-
larly obtained by integrating out the displacement in (13).
For the form of m(x) and U(x) in (2) and (3), we obtain
the explicit result:

Wẋ,st(ẋ) = Z−1
√

π

(
SFF

βγ2

)1
4

exp
(

− βα1

SFF
ẋ2

)

× exp
(

β

4SFF γ2
(γ1 + α2ẋ

2)2
)

×
[
α1D− 1

2

(√
β

SFF γ2
(γ1 + α2ẋ

2)

)

+
α2

2

√
SFF

βγ2
D− 3

2

(√
β

SFF γ2
(γ1 + α2ẋ

2)

)]
,

(15)

where D− 1
2

and D− 3
2

are parabolic cylinder functions [29].

3.2 Examples

The expression for the marginal probability density of
velocity (15) appears quite different from the Gaussian
distribution one would have if the lumped mass did not
depend on displacement. We plotted it for SFF = 1.0 ×
10−6 N2/Hz in Figure 3 compared to the Gaussian dis-
tribution resulting from setting α2 = 0. The effect of
the displacement-dependent lumped mass is in this case
a heightening and narrowing of the distribution. That
this effect is rather small, is understandable in this case
because the lumped mass changes only with a few percent
within the double well as seen from Figure 2. We would
need a mass-variation with displacement that is signifi-
cant within the probable displacement-range in order to
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Fig. 3. Marginal probability distribution of velocity: α2 =
1.1094 kg/m2 (full line) and α2 = 0 (dashed line).

have a large effect. This is not the case for this particu-
lar device. From the expression (14), we see that also the
marginal distribution for the displacement will have this
feature.

Since the velocity and displacement are not statisti-
cally independent when the lumped mass is displacement-
dependent, we might expect a stronger effect in the joint
probability distribution for x and ẋ than for the marginal
distributions of either quantity, or alternatively in the con-
ditional probabilities. The exponent in (13) is proportional
to the energy which can be written:

E(x, ẋ) = H(x,m(x)ẋ)

=
1
2
α1ẋ

2 +
1
2
(γ1 + α2ẋ

2)x2 +
1
4
γ2x

4, (16)

for the inverted pendulum. The middle term is zero when
|ẋ| =

√−γ1/α2 ≈ 0.2389 m/s and we could expect an
effective lowering of the barrier on the high-velocity tails
of the distribution. This is the case and is illustrated in
Figure 4 which shows the conditional probability density
of displacement given the velocity, i.e., W̃st(x, ẋ)/Wẋ,st(ẋ),
for SFF = 1.0 × 10−6 N2/Hz and three velocities. For a
position-independent lumped mass all three cases should
be equal. Here we see that for ẋ = 0, we have the double-
peak structure that is typical for the bistable potential.
With increasing velocity these peaks tend to merge
and at ẋ = 0.24 m/s the double-peak structure almost
vanished. The full probability distribution is shown
in Figure 5.

For better clarity regarding the system response, we
solved (1) numerically. The corresponding Langevin
equation as a first-order system of stochastic differential
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Fig. 4. Conditional probability distribution of displacement
W̃st(x, ẋ)/Wẋ,st(ẋ) for velocities ẋ = 0 m/s (solid line),
0.12 m/s (dashed line) and 0.24 m/s (dotted line).
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Fig. 5. Stationary probability distribution W̃st(x, ẋ).

equations was written:

ẋ = v, (17)

v̇ =
−α2xv2 − (γ1 + γ2x

2)x − βv + F

α1 + α2x2
. (18)

After time discretization, we performed the numerical
integration via Runge-Kutta-Maruyama algorithm [30,31].

The results of numerical simulations are presented in
Figure 6. Both time history (Fig. 6a) and phase portrait
(Fig. 6b) show the solution characterized by hopping
between the symmetric potential wells.
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Fig. 6. Time history of displacement (a) and phase portrait (b)
of the noise-driven pendulum with SFF = 1.0 × 10−6 N2/Hz.

4 Conclusion

We formulated and solved a Fokker-Planck equation
for an elastic inverted pendulum based on a previously
derived equation of motion for the system. The form of
the joint probability distributions turns out to be sim-
ply the ones of a Brownian particle in potential with its
constant mass replaced by the position-dependent one.
The marginal distribution of velocity is not Gaussian as
in the constant-mass case, but can be expressed in terms
of parabolic cylinder functions. The conditional probabil-
ity density of position for given velocity displays a change
from a two-peak distribution characteristic of a bi-stable
potential potential to a single-peak function as velocity
increases from zero. The analytic expressions for the prob-
ability densities obtained here may be useful for further
development of an analytic treatment of the noise-driven
inverted-pendulum-based energy harvester.
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