

Master’s Thesis 2013

Candidate: Stian Krogstad

Title: Heating of buildings with focus on

measurement and control

 2

Telemark University College
Faculty of Technology
M.Sc. Programme

MASTER’S THESIS, COURSE CODE FMH606

Student: Stian Krogstad

Thesis title: Heating of buildings with focus on measurement and control

Signature: .

Number of pages: 149

Keywords: .

 .

 .

Supervisor: Nils Olav Skeie sign.: .

2nd

Censor: sign.: .

 Supervisor: Carlos Pfeiffer sign.: .

External partner: sign.: .

Availability: Open

Archive approval (supervisor signature): sign.: . Date :

Abstract:

In Norway 60% of all energy is commonly used for heating, during cold winters this number

is seen to rise even higher. Any reduction in the standby power used for heating will result in

large power savings. In this thesis it has been proven that a good BAS system can reduce the

energy usage with at least 20%. This means large savings can be made both in the power bill

each month but also in a more global environmental perspective.

The first principle house model is found to inadequately predict house heating times.

Augmenting the model with a Kalman filter for estimating disturbances is greatly improving

the estimations. Straight forward OLS regression shows good results during experiments

using similar conditions.

Three controllers are analyzed designed and implemented in Visual Studio (MPC,PID,and

LQR). The Linear Quadratic Regulator is prosed as the optimal controller for the BAS MIMO

system.

Telemark University College accepts no responsibility for results and conclusions presented in this report.

 3

Table of Contents
MASTER’S THESIS 2013 .. 1

TITLE: HEATING OF BUILDINGS WITH FOCUS ON MEASUREMENT AND CONTROL 1

1 INTRODUCTION ... 8

1.1 BACKGROUND ... 8

1.2 MARKET OVERVIEW .. 8

1.3 PREVIOUS WORK .. 9

1.4 NEW WORK .. 10

1.5 BAS SYSTEM DESCRIPTION .. 11

1.6 REPORT STRUCTURE .. 12

PART 1 ... 14

2 DATA ACQUISITION ... 14

2.1 INTRODUCTION .. 14

2.1.1 System description ... 14

2.1.2 Part 1 Structure ... 15

2.2 THEORY ... 16

2.2.1 The house model .. 16

2.3 SOFTWARE DEVELOPMENT .. 19

2.3.1 The Use Case Diagram ... 19

2.3.2 The configuration use case .. 21

2.3.3 Display Configuration Data use case.. 23

2.3.4 LOG use case .. 24

2.3.5 DisplaySerialData use case .. 26

2.4 EXPERIMENTS .. 28

2.4.1 Introduction ... 28

2.4.2 Experiment setup ... 30

2.4.3 Gateway setup, and data acquisition .. 33

2.4.4 Data processing .. 33

2.4.5 Discussion ... 37

PART 2 ... 41

3 ESTIMATION OF HEATING TIME ... 41

3.1 INTRODUCTION .. 41

3.1.1 System description ... 41

3.1.2 Contents and structure .. 42

3.2 THEORY ... 43

3.2.1 Comfort Intervals .. 43

3.2.2 Prediction of heating time ... 44

3.2.3 Temperature prediction model .. 45

3.3 IMPLEMENTATION AND SIMULATION ... 50

3.4 SOFTWARE DEVELOPMENT .. 53

3.4.1 The use case diagram .. 53

3.4.2 The Configuration use case ... 54

3.4.3 Read sensor values use case .. 57

 4

3.4.4 The predictor use case... 57

3.5 EXPERIMENTS .. 58

3.5.1 Introduction ... 58

3.5.2 Experiment setup ... 58

3.5.3 Results ... 60

3.6 DISCUSSION ... 61

PART 3 ... 62

4 CONTROL SYSTEM ... 62

4.1 INTRODUCTION .. 62

4.1.1 System description ... 62

4.1.2 Part 3 Structure ... 63

4.2 CONTROL THEORY .. 64

4.2.1 Model conversion .. 64

4.2.2 Feedback control ... 66

4.2.3 Linear Quadratic Regulator .. 67

4.2.4 Model predictive control ... 70

4.2.5 Feed forward control .. 73

4.3 CONTROL SIMULATIONS .. 75

4.4 CONTROLLER DISCUSSION ... 76

4.5 HEATER CONTROL ... 77

4.6 SOFTWARE DEVELOPMENT .. 79

4.6.1 The use case diagram .. 79

4.6.2 Configuration use case .. 80

4.6.3 Calculate control output use case ... 83

4.6.4 Display control system use case, the main GUI .. 83

4.7 EXPERIMENTS INTRODUCTION ... 84

4.7.1 Experiment setup ... 84

4.7.2 BAS experiment results.. 85

4.8 DISCUSSION ... 86

5 CONCLUSIONS .. 87

6 FUTURE WORK... 88

7 APPENDICES ... 91

7.1 APPENDIX 1- THESIS TEXT ... 93

7.2 APPENDIX 2: MEASURING THE U VALUE ... 95

7.3 APPENDIX 3 FURPS+ .. 96

7.3.1 Gateway FURPS+ ... 96

7.3.2 Predictor FURPS+ .. 97

7.3.3 Control System FURPS+ .. 98

7.4 APPENDIX 4: FULLY DRESSED USE CASE DOCUMENTS ... 99

7.4.1 Gateway .. 99

7.4.2 Predictor ... 104

7.4.3 Control System .. 108

7.5 APPENDIX 5 – SOURCE CODE... 114

7.5.1 Gateway Code Excerpts .. 114

7.5.2 Predictor methods and algorithms .. 126

7.5.3 Controller methods and algorithms .. 132

7.6 APPENDIX 6: MATLAB SCRIPTS ... 140

 5

7.6.1 The data processing script .. 140

7.6.2 NaN removal function ... 142

7.6.3 The Outlier Removal function ... 143

7.6.4 The LP filter function .. 144

7.6.5 The month to name month function ... 144

7.6.6 The control simulation function .. 145

7.6.7 The PWM function ... 147

7.7 APPENDIX 7: EXPANDED MODEL ... 148

7.8 APPENDIX 8: REGRESSION MODELS FOR PREDICTOR .. 149

 6

Preface

This dissertation is based on a research program at Telemark University College regarding

smart houses and energy savings and the BAS master project [1]. None of the thesis text or

experimental data is taken directly from previously published material.

This thesis was written as a completion of the Systems and Control Master’s program at

Telemark University College (TUC). The thesis is a summary of the last two years culminated

knowledge during the master’s program.

My first word of thanks goes to the thesis supervisor Nils Olav Skeie for keeping me on

schedule and some good on (and off) topic discussions.

A second word of thanks goes to co. supervisor Carlos Pfeifer for advice on the Riccati

equations and the Kalman filter implementation algorithm.

Third, I would like to thank Whatsala Perera for creating the non-linear house model that has

been tested in this thesis.

Fourth, I would like to thank Anders Theodorsen for some help with the Matrix library.

Last but definitely not least I would like to thank Ole P. Kordahl for proof reading the thesis,

gathering the statistical energy data from his workplace at NVE and always giving

encouraging advice.

The fully dressed use cases, FURPS+ sheets and MATLAB scripts are found in the Appendix

sections of this thesis, including excerpts of the main code algorithms.

The complete source code has been given to thesis supervisor Nils Olav Skeie, but is available

upon request.

Notodden 31th May 2013

Stian Krogstad

 7

Nomenclature
This chapter gives a list of symbols, abbreviations, and subscripts used in the thesis.

ADC Analogue to Digital Converter

BAS Building Automation System

BB Battery Board (ZigBee Pro Development kit)

dSSM Discrete State Space Model

eSSM Extended (augmented) State Space Model

ED End Device See BB

ENOB Effective Number of Bits

FURPS+ Functional Usability Reliability Performance Supportability +

GUI Graphical User Interface

GW Gateway

IO Input / Output

LP Low Pass

LQR Linear Quadratic Regulator

MPC Model Predictive Control

MIMO Multiple input Multiple Output

NaN Not a Number

OLS Ordinary Least Squares

PRO Professional

SS Steady State

SSM State Space Model

SISO Single Input Single Output

UART Universal asynchronous receiver/transmitter

XML Extensible Markup Language

VS Visual Studio

WF Windows Forms

 8

1 Introduction

1.1 Background

The cold winter months in Northern Europe create a high demand for energy, and thus energy

savings are highly prioritized. In Norway about 60% of the energy used is for heating

purposes, and with prices exceeding 1kr/kW during winter time energy savings are prioritized

[2, 3]. The high prices and the large amount of power needed for heating both contribute to a

high demand for new and smarter ways to save energy.

The Building Automation System (BAS) use sensors to monitor and a model to predict the

heating time. A modeled approach will let the power be turned completely off when the house

is empty and turned back on at the correct time thus saving the most amount of energy [1].

Current available systems only reduce the inside temperature with 5°C at the maximum [1].

This thesis will both be an evaluation on using a model in the BAS system and which control

methods to use in a finished system.

The BAS sensors are needed at several places both inside and outside the building in question

and create the need for a wireless sensor network [1].

1.2 Market overview

In the BAS master project work [1] there was proven that the most power savings to an

automated system could be made by turning the power completely on and off again. There

was done research into this particular area and what was available on the market. This

research concluded two things. Firstly there are very few vendors on the market, and secondly

there seems to be a misconception on how to save the most amount of energy. The few

vendors are due to the relatively small market mainly Scandinavia. Existing methods from

NOBØ [4] work by lowering the temperature during set intervals. The lowering schemes exist

to prevent large heating times and ensure the comfort temperature is reached. Currently there

exists no adaptable BAS system saving the most energy [1].

The basis for this project is to evaluate such an adaptable BAS system using a model to

predict heating time ensuring comfort temperature at the correct time and maximizing the

energy savings.

 9

1.3 Previous work

A master project titled Building Automation Systems was concluded in the fall of 2012 [1]

and creates the basis for the work done in this master thesis. During this project a house

model was created together with Ph.D. student Whatsala Perera [5]. This model will be

implemented in this thesis. Using a house model makes the BAS adaptable to changes.

Adaptable BAS systems are a relatively new area and little information on the subject is

currently available. The high usage of electric energy to heating is also primarily a concern in

the northern regions which is a small market seen in a global perspective.

Klaus Kaae Andersen, Henrik Madsen and Lars H. Hansen published a paper called

'Modeling the heat dynamics of a building using stochastic differential equations' in 1998.

The procedure used in this dissertation is a combination of using the laws of physics and

statistical data for modeling the heating of houses [6]. Their model performed reliably to their

specific conditions. The basis of the model is time consuming since statistical data needs to be

acquired for each building.

Bertil Thomasa, Mohsen Soleimani-Mohsenib and Per Fahle published a paper called “Feed-

forward in temperature control of buildings” where the approach the control problem with

focus on rapid changes in the outside temperature. The feed forward controller model is

proven to increase the inside temperatures stability [7].

The Norwegian building standards have standards on the minimum amount of insulation in

buildings and are denoted using the U1 value [8]. U value properties and measurements are

discussed in several on-line communities for energy savings [9].

The wireless sensor network was set up and tested in a summer job at TUC by the author [10].

The ZigBee ZStack code created in the BAS master project will be the basis for the

communication to from the ZigBee nodes/ sensors to the ZigBee Coordinator /gateway[11]

[12].

1 A conduction and convection property

 10

1.4 New work

The new work in this thesis is to employ a model in a BAS creating an adaptable system

estimating heating time based on current environmental data. The model will be from the

BAS master project [1] [5].

In addition the thesis will propose which control algorithms will be best suited for house

temperature control. The controllers are the feedback control (PID) the Model Predictive

Control (MPC), and Linear Quadratic Regulator (LQR). All controllers will be designed using

suitable parameters for the BAS, simulated and tested.

There will be created a data acquisition program used as a ZigBee gateway parsing the

environmental sensor data to file. The ZigBee gateway will be created using Visual Studio

(VS) and C#. The gateway will be used in to gather experiment data from to validate the

model.

A prediction model will be created based on the house model and a Kalman filter for

estimating the disturbances. The prediction model will be tested using the experiment data

before implementation in VS. The BAS control system utilizing the sensor data the controllers

and the predictor will be created in VS and tested.

An interesting perspective is in having a good house model the BAS system will be invertible,

estimating the cooling down period. This would open for energy savings in a much larger

global market.

11

1.5 BAS system description

The Building AutomatedSystem (BAS) is a completehousetemperaturemonitoring and

control system.Thereforesensorsareneededin order to measurepresentconditions,a data

acquisition systemfunctioning as a gateway to transform the sensorsignals to readable

formats,anda controlsystemusingthesesensorsfor controllingthetemperature.In theBAS

masterproject it was proven that shutting the heaterscompletelyoff when the housewas

empty was the most energy efficient [1]. This createsthe need for a prediction model

estimating thetime to reachthesetpoint temperature.Thecompletesetupof theBAS system

canbe seenin Figure1-1. The dataacquisitionis doneby the wirelesssensornetworksent

througha gatewayto thepredictionsystem. This datais thenusedby thepredictorto estimate

theheatingtime basedon the remainingtime to a comfort interval. Thecontrol systemuses

thesamedatato keepthetemperatureatconstantlevel.

Figure 1-1 BASthesissetupshowingthethreepartsof thethesisandtheir mainpurpose.

The wireless sensornetwork has been selectedas a ZigBee network due to the fact of

interoperabilitybetweendifferent vendorsandthe low powerperformance[11]. The ZigBee

nodeswill be codedin IAR EW using embeddedC [1]. The main systemcodewill be in

Visual StudioandC#. Thefirst principlemodelwill beaugmentedusinga Kalmanfilter and

usedfor estimating heatingtime in paragraph3.2.3.1. Thecontrol outputwill be run through

softwarePulseWidth Modulatorseenin paragraph4.5, andtheheaterpowerwill besetby a

DAQ-6008device[13]. MATLAB will beusedto do dataandsystemanalysis.

12

1.6 Report structure

The BAS systemwill be a comprehensivesystemandcanbe viewedas the combinationof

thethreemajorparts.

1. Dataacquisitionandhousemeasurements, thegateway

2. Predictionmodelandheatingtimeestimates, thepredictor

3. Controlsystemimplementation, thecontroller

The parts will be individually completedbefore the next part is startedand addedto the

systemin the way of Object OrientedDesign and Analyses[14]. This way the complete

systemcanbeviewedasthethreeusecasesseenin Figure1-2.

Figure1-2 Thesisoverviewseenasusecasediagram

All partswill follow the samebasicstructureand startwith the theoreticalbackground and

endwith a completedsystemtest.MATLAB softwarewill be usedto do dataanalysisand

controlmethodsimulationsbeforeimplementationin Visual Studio(VS). Thereportstructure

canbeseenin Figure1-3.

13

Figure1-3 BASthesisstructureseenwith major partson theleft andsubpartsandsub

chapterson theright.

14

Part 1

2 Data acquisition

2.1 Introduction

In order to monitor the temperaturesinside a housethere is the needfor severalsensors

locatedboth insideandoutsidethe housemeasuringtemperatures, humidity andventilation

[1]. To minimize the amountof cablingneededto all thesesensorsa wirelessnetworkhas

beenselectedfor communication. The ultra-low powerZigBeewill be usedas the wireless

sensorcommunicationplatform.Thecontrol systemanddataanalysissoftwarewill bebased

on theWindows OSplatform.

In order to achievecommunicationbetweenthe Windows OS and the ZigBee protocolsa

gatewayis needed,where the gatewaywill work as a translatorjoining togetherthe two

networks.Thegatewayshouldconvertthe ZigBeesensorinformationto readabledatain the

MATLAB environmentand the Windows OS basedcontrol system. There are two main

reasonsfor theneedof this softwaregateway:

1. The ZigBee devices lack the memory and the computationalpower to compute

optimalcontrolstrategies.

2. MATLAB andotherprogramsareneededto do sufficientdataanalysis.

2.1.1 System description

TheGatewaysystemwill be basedon datafrom the sensorsconnectedto the ZigBeenodes,

end devices, and coordinator. The ZigBee Professionaldevelopmentkit from Texas

Instrumentshasbeenusedto readthetemperaturesensorsin theenddevicesandsendtheseto

a ZigBeecoordinatorin theBAS masterproject [1]. The ZigBeecoordinatoris connectedto

thecomputersystemusingtheCOM port asthecommunicationmedium. This canbeseenin

Figure2-1

Figure 2-1 Part onesystemdescription- gateway

15

2.1.2 Part 1 Structure

Thefirst partin this thesiswill addressthehousemeasurementsanddataacquisitionsoftware.

In order to understandthe systemto be monitoredsometheoreticalbackgroundis needed.

This will be gatheredby analyzingthe most important and measurableparametersof the

housemodel. At the end of part 1 there will be real life experimentsfurther testing the

gatewayandthevalidity of themodel.Thegatewaypartof this thesiswill follow thestructure

seenin Figure2-2 wherethemain chaptersareseenon theright andthesubchaptersareseen

on theleft.

Figure 2-2 Part 1 structureprogressingin a downwardsfashion

 16

2.2 Theory

2.2.1 The house model

In order to best approach the data acquisition software some theoretical background is needed.

The house model will give a good understanding to what needs to be measured, and what

should be set based on fixed values or theoretical data. The house model was created by PhD

student Degurunnehalage Wathsala Upamali Perera [5] and used in the BAS master project

[1]. It is based on two differential functions, the change in inside temperature seen in

Equation (2-1) and the change in inside air density seen in Equation (2-2). The outside air

density is assumed constant.

푑푇

푑푡
=
휌푉̇ − 휌 푉̇

휌푉
푇 +

1

휌푉(푐 −
푅
푀)
휌 푉̇퐻 − 휌푉̇ 퐻 + 푄̇ (2-1)

푑휌

푑푡
=
푁

3600
∙ (휌 − 휌) (2-2)

The model parameters are seen in Table 2-1.

Table 2-1 Model configuration parameters

Notation Type Unit

휌 퐼푛푠푖푑푒 푑푒푛푠푖푡푦 [푘푔/푚]

휌 퐼푛푙푒푡 푑푒푛푠푖푡푦 [푘푔/푚]

푉̇ Volumetric flow rate of inlet air [푚 /푠]

푉̇ Volumetric flow rate of outlet air [푚 /푠]

푀 Molar mass of outgoing moist air [푘푔/푚표푙]

푐̂ Specific heat of moist air at constant pressure [퐽/푘푔퐾]

푇 Temperature inside the room [퐾]

퐻 Specific enthalpy of inlet air [퐽/푘푔]

퐻 Specific enthalpy of outlet air [퐽/푘푔]

푄̇ Net heat energy transported into the system

푄̇ = 푄̇ − 푄̇

[퐽/푠]

푉 Volume of house [푚]

푅 Gas constant [퐽/푚표푙 퐾]

푁 푁푢푚푏푒푟 표푓 푎푖푟 푐ℎ푎푛푔푒푠 푝푒푟 ℎ표푢푟 [푚 /ℎ]

 17

The house model parameters base on inside and outside conditions are visualized in Figure

2-3.

Figure 2-3 Visualization of model parameters

For more specifics on the model the reader is advised to read the BAS master project [1] or

the house model paper [5].

The house model depends on a set of parameters from the building. Understanding these

parameters is important to implement a good model based temperature control system. The

most important parameters will be discussed in the next section.

2.2.1.1 House and model parameters

The model depends on several parameters from a specific building in order to emulate that

building properly. Many of these parameters should be measured directly by a sensor

network. The inside temperature, outside temperature, density, ventilation and pressure are

such parameters. The U- value, the overall heat transfer coefficient, might however be easier

to estimate from tables using known materials and known U-values.

The overall heat transfer coefficient U

One of the major parameters in the building model is the heat loss through convection and

conduction known as the overall heat transfer coefficient U. This value is a measure of how

much heat is lost from building elements to the environment.

A wall with a high U value means that it is leaking a lot of heat, while a low U value means a

high degree of insulation. Figure 2-4 visualizes the difference between a well-insulated low

U-value wall, and a poorly insulated high U-value wall.

18

Figure 2-4 Low andhigh U values

The heatlossequationseenin Equation(2-3) is thusbasedon the U-values, the conduction

andconvectionthroughcompositematerialselementswalls, windows,floors,doors,roof and

arebasedon the differencein insideandoutsidetemperature. Theheatlossequationcanbe

seenin Equation(2-3) wheretheparametersareseenin Table2-3.

(2-3)

Table2-2 Heatlossequationparameters

Notation Type Unit

Overall temperaturedifference [K]

A Areaof theelement [].

Overall heattransfercoefficient []

The U valuesare useful in predictingthe behaviorof compositesmaterialswith regardsto

total heatlossfrom thecompleteelementinsteadof eachof thematerials. TheU valuefor a

wall, floor, roof, door, and window will be specific to that wall and that house[8]. The

Norwegianbuilding standardshavesetregulationsfor the maximumrecommendedU values

[8]. Togetherwith a housemodel thesevaluescanbe usedto predict if a houseis up to the

Norwegianstandardsassumingknown or measuredventilation temperature,pressureand

density. If the temperaturein thehousedropsfaster thansimulatedby the modelthis would

indicatethat the elementsof the building hasa higherU valuethenspecified. The U-values

may alsobemeasuredandthis is discussedin theAppendixsection7.2.

Themostpracticalmethodis to usethestandardvaluesfor thebuildingselementseitherfrom

the constructionor the Norwegianstandards,TEK-10 regulationson technicalrequirements

for construction[8]. The TEK-10 maximal recommendedvalueswill be usedfurther in the

thesisandareseenin Table2-3

 19

Table 2-3 TEK-10 U values.

U-Wall U-Window/door U-Floor U-Roof

0.18 W/(m2K) 0.12 W/(m2K) 0.15 W/(m2K) 0.13 W/(m2K)

In order to test the validity of the model and further test the functionality of the created
Gateway system some experiments were performed. The experiments are found in section
2.4.

2.3 Software Development

The main objective of the gateway is to read several sensors values sent from the ZigBee end

devices to the ZigBee coordinator2 and save these values to file. The maximum number of

sensors for each device is 7 given by the maximum number of inputs on the End Devices

(ED) [15]. The number of end devices, types of sensors, IO channels configuration and the

name of the device should be stored in a configuration file. The configuration file will be

parsed using extensible markup language (XML), which is used to keep the data structured,

organized and promote easy access.

The log file will be a text file with the sensor data and time stamp using the Norwegian CSV,

separating values with a semicolon [16].

The Gateway will be created in Visual Studio, C#, and the Graphical User Interface will be

based on Windows Forms, the ZigBee nodes are coded in IAR workshop and embedded C.

All the requirements of the gateway have been considered using the FURPS+3[14] method,

the FURPS+ sheet can be found in Appendix 3 FURPS+ paragraph 7.3.1

2.3.1 The Use Case Diagram

The FURPS+ analysis of the Gateway are then made into a use case diagram. The use case

diagram gives a good graphical overview of the functionality, and requirements of the system.

The created use case diagram can be seen in Figure 2-5.

2 The ZigBee gateway device where the UART/COM port is located.
3 Functional, Usability, Reliability, Performance, Supportability +Additional.

20

Figure 2-5 Usecasediagramof theGateway

In order to bettervisualizethe inner workingsof the gateway, a layeredarchitecturedesign

diagramhas beencreatedand can be seenin Figure 2-6. The layeredarchitectureshows

which usecases arecommunicating with eachother, the operatingsystem(OS) andthe user

throughthegraphicaluserinterface(GUI).

Figure 2-6 Layeredarchitectureof thegatewaysystem

Thenextstepin thesoftwareprocessis to furtheranalyze,design,codeandtesta selecteduse

case,often the onewith the highestrisk or importance. The configurationusecaseis needed

by all otherusecasesin theprogram, makingit important andconvenientto finish first. The

progressof the four usecases, following the Unified Process(UP) [14]canbe seenin Figure

2-7.

21

Figure2-7 Softwareprocessfollowing theUP

All the classeswill start with the samenamesas their usecaseand a separate.cs file is

createdfor eachusecaseto simplify debuggingandupdating.

2.3.2 The configuration use case

Theconfigurationclassis responsiblefor storingandretrievingtheprogramconfiguration.

Theconfigurationwill beparsedusingtheExtensibleMarkupLanguage(XML). A fully

dressedusecasedocumentwill becreatedthis gives gooddocumentationanda goodstarting

point for theprogramming. Thefully dressedusecasedocumentcanbefoundin Appendix4:

Fully dressedusecasedocumentsparagraph7.4. Followingwill bethedesignof theusecase

andits parameters.

2.3.2.1 Designing the configuration use case

The configurationusecaseis whereall the datawith changeableparametersarestored.The

gatewayprogramneeds to store information about eachsensornode, and the serial port

settings.Theremight alsobeneededto changethetimer savingdatato disc, thesampletime,

so the timer shouldalso be changeable.The main elements4 of information neededcan be

seenin Figure2-8.

4 An XML elementis consistsof a starttag,andendtag,andthecontentin between.

22

Figure 2-8 Configurationnodes

The elementsspecificinformation, nodes,hasto be chosen. For the sensors thereis needed

information about the network address, namein order to know which End Device, ED is

sendingthe data.In additionthereis neededan Input Output(IO) channelnumberingto sort

the sensorsconnectedto eachED. Finally the location and the measuredvalue from the

sensorshould be set. For further use it might also be a good idea to add the rangeand

uncertaintyof the sensorand the installedbatterydateof the ED connectedto this sensor.

Lastly there should be a miscellaneouscolumn in order to set additional information not

thoughtof at the presenttime. The availablesensorinformation, for one typical sensor,are

summarizedin Table2-4.

Table2-4 Typicalexampleof onesensorsettingsin theconfiguration

The serial link propertiesshould be changeableto make the program run on different

computerswith different setups.Thebestway to do this let the userchoosefrom thecurrent

availableCOM portsandCOM port settingsin Visual Studio(VS). An exampleof theserial

informationneededto run theprogramcanbeseenTable2-5.

Table2-5 Typicalexampleof COM portsettings

Address

/ name

IO

channel

Type Location Measureand Range Uncertainty Battery

install

date

MISC

0AAA 00 PT1000 Bedroom Temperature -50°C to

+100°C

0.02% 1/1-2013 Additional

information

COM port BaudRate Parity Databits StopBits Handshake RTSenable

COM1 34800 none 8 one disabled enabled

23

The selectedfunctions for creating this XML basedconfiguration is the XML serializer

functioncontainedin .NET, which is a straightforwardway of creatingtext basedXML files.

For reading,andwriting to file thefilestreamfunctionwill beused[17].

Theconfigurationfile formatwill beXML following thetemplateseenin Figure2-9.

Figure 2-9 XML script template

Excerptsof theconfigurationcodesmostimportantalgorithmsarefoundwith commentaryin

Appendix5 – SourceCodefrom paragraph7.5.1.1through7.5.1.3.

2.3.3 Display Configuration Data use case

The next use caseto be further analyzed, designedand addedto the code is the display

configurationusecase.This usecasecontainsthe interfacebetweenthe configurationdata

andthe user.The configurationwill be enteredin a programconfigurationeditor which will

work during runtime,and removeany erroneoustype errorsfrom usinga text basededitor.

TheDisplayConfigDatausecaseis createdasa windowsFormGUI to connecttheuserto the

XML configurationfile without theneedfor anyexternaleditingprograms.Thecreatedfully

dressedusecasedocumentcanbe found in Appendix 4: Fully dressedusecasedocuments

paragraph7.4.2.

2.3.3.1Designing the configuration GUI, DisplayConfigData

TheDisplayConfigDatausecaseneedsto give a goodandsimpleway to add,edit or remove

sensorsfrom theconfigurationfile. Somesensors might breakdownor for otherreasonsneed

to bechangedor newsensorsadded. TheGUI will bemadein VS andWindowsForms. The

information in the GUI is as discussedin the configurationuse case.The configuration

display will use a data grid view for the sensorinformation, comboboxesfor the serial

 24

configuration and a text box for the timer. The serial link properties should be selectable from

available parameters in the .NET environment and the computer hardware. In addition an

information button should be included to supply the user information about the configuration,

and the correct way of inserting data. Lastly there should be an exit button and a button for

saving the changes. The created configuration GUI can be seen in Figure 2-10.

Figure 2-10 Configuration GUI.

The code is based on reading and saving the configuration data using the config class and the

main code excerpts with explanation, results, testing and error handling can be found in

Appendix 5 – Source Code paragraph 7.5.1.7and 7.5.1.9. Everything was found as working

correctly and should be further checked in the log use case, for this reason the next use case to

be further analyzed designed and added to the code will be the LOG use case.

2.3.4 LOG use case

The log use case main purpose is to parse the raw serial data, add a time stamp and save the

data to file. The text received from the serial port will be a stream of characters that need to be

redistributed in a readable format for MATLAB and other applications. The distribution of the

sensor values should be based on the sensors configuration in the config.xml file. The LOG

fully dressed use case document can be found in Appendix 4: Fully dressed use case

documents paragraph 7.4.

2.3.4.1 Designing the log, the LOG use case

The main function of the LOG use case is to parse the serial data into columns containing the

date and time for the message and one column for each of the sensors values. The received

raw data from the serial link contains the message between a start data sign, <, and a stop data

25

sign. The messageitself first consistsof the network addressor nameof the ZigBee end

device,followed by the IO addressfor that specificsensor.The reasonfor this is that some

end devicemay haveseveraldifferent sensorsconnected,but only one sensorfor eachIO

channel. Themaximumnumbersof sensorsIO addressesareeight, but theyarenotatedin the

sameway asin theTexasInstrumentsZigBeeZStack5 v 2.5.1as00 to 07 [15]. In Figure2-11

asensormessagefrom theenddevicesis seendividedup into thespecificparts.

Figure2-11Exampleof sensordatasentfrom theenddevices

Theseparatingcharacterbetweenthe columnsshouldbea semicolon.This makestheparsed

dataeasilyreadableby MATLAB andotherdataanalysissoftware.Theflow of theLOG use

casecanbeseenin Figure2-1.

Figure2-12Log messageflow

Thereneedsto becreatedanalgorithmin orderto split themessagedatainto packetswith the

information betweenthe two separatingsigns. This algorithm will work by searchingthe

incomingdatafor the endmessagesign > in order to be surea completemessagehasbeen

sent.Thenit will checkif the startmessagesign is the first part of the message.If both are

valid a completemessagehasbeenrecordedandit will beseparatedinto anarraybasedon the

lengthbetweenthemessagestartandthemessagestopsign.This is doneuntil theendof the

messageand the new createdmessagearray is ready for further processing. The parsing

methodwill searchthroughall themessagesin the messagearrayandpair it with thecorrect

sensorfrom the configuration.If a sensordoes not haveany messagesthe Not a Number

5 Formoreinformationon theZStackandZigBeereaderis advicedto read[10] S.Krogstad,"ZigBeePRO

developmentkit setupguide,"ed,2012,[15] T. Instruments,"CC253xSystem-on-ChipSolutionfor 2.4-

GHz,IEEE 802.15.4andZigBee®Applications,CC2540/41System-on-ChipSolutionfor 2.4-GHzBluetooth®

low energyApplicationsUser'sGuide" 2012.

26

(NaN) valuewill be set.Receivingseveral valuesfrom onesensorwill only resultin the last

valuebeingoverwritten.Thefile will bein TXT formatfollowing thetemplateseenin Figure

2-13.

Figure 2-13 Logdatatemplate

2.3.4.2The LOG code

Thelog codeis madeup of thealgorithmusedto split up the raw serialdata,andmethods to

parsethe serialdataandsave it to file. Themain partsof the functionswill be gonethrough

more in detail and testingwith error handlingwill follow the codein Appendix5 – Source

Code paragraph7.5.1.7 through 7.5.1.9. The spacerequired for log file saving has been

calculatedandcanbefoundin 7.5.1.10

2.3.5 DisplaySerialData use case

TheDisplaySerialDatausecasehandlestheserialport informationandthevisualinterface

betweenthereceivedserialdataandtheuser. Theusecasemainpropertyis to readthe

currentdataon theserialport.Thecurrentconfigurationshouldbeavailablefrom the

configurationXML file. Theusershouldbepromptedfor savinga log file, andhavethe

availability to bothview andsavetheparseddata.Thereshouldalsobeanoptionfor saving

therawdatafor debuggingpurposes.Thedocumentationfor theDisplaySerialDatausecase

canbefoundin theAppendix4: Fully dressedusecasedocumentsparagraph7.4.

2.3.5.1Designing serial data GUI, DisplaySerialData

Using a serial port in C# is fairly straight forward it by draggingthe serial port from the

toolboxto thewindowsform. Theusecaseneedstwo timers,onefor the readserialdataand

one for savingthe log files to disk. Both timers are useddirectly from the toolbox in VS.

Sincethegatewayshouldberunningcontinuouslytheexit crossactionshouldbechangedto

hiding the applicationin the windows tray rather than closing the application.The created

GUI for themainform of thegatewayapplicationcanbeseenin Figure2-14.

 27

Figure 2-14 GUI of the read serial data

The function to read the serial port will be the SerialPort.ReadExisting. The ReadExisting

method works by reading all the available bytes from the serial port, before returning a string.

In addition the save file dialog method will be used to prompt the user for file name and

location.

2.3.5.2 GUI and extra functions

In order to create a better GUI several icons were found from www.iconfinder.com freely

available for commercial use. In addition a main gateway icon was modified to fit this

program. The icons can be seen in Figure 2-15.

Figure 2-15 Icons used in the GUI of the gateway program

28

2.3.5.3Testing and error handling in the gateway system

The completegatewaysystemwas logging datafor 14 daysconsecutivelyand no problem

arose, andthegatewaywill befurthertestingin theexperimentpart.

All theerrorhandlingin thegatewayis doneby savingtheerrorto anerrorlog containingthe

time, date and type of the error including the methodnamewhere the error occurred.A

typicalerrorlog messagein thesplit messagemethodcanbeseenin VScode2-1

LogSave("error. lo g" , DateTime . Now.ToString() + e. Message + e. Source +
"@splitmessage") ;

VScode2-1 Error handling

2.4 Experiments

2.4.1 Introduction

In orderto testthevalidity of themodelexperimentaltemperaturedataareneeded. This data

has been logged using the createdgatewayand can as such be directly imported to the

MATLAB environmentfor further processing. In the MATLAB environmentthe data is

easilyplottedandcomparedto themodelsoutputwith thesamecircumstances.This will also

introduceadditional testing of the data acquisitionsoftware.A sketchshowing the model

validation processcan be seenin Figure 2-16 the simulateddatagiven from the model is

comparedto theexperimentaldata.

Figure2-16Modelverificationprocess

29

Thecreatedgatewayhasonly beentestedin simulationsandtheseexperimentswill alsobea

teston how it will work in a realhousemonitoringsituation.A housewasmadeavailablefor

the experimentsfrom the 21th of March to the 30th March 2013,and therewascreatednine

low power temperaturesensorsfor the temperaturemonitoring. The experimentaldata

acquisitionhardwareconsistsof a computerwith theGatewaysoftwareanda COM port for

theconnectionto theZigBeeCoordinator.TheZigBeeCoordinatoractsasa hubreceiving all

the data from the wirelessZigBee sensornetwork. The sensornetwork consistsof three

ZigBeeenddeviceseachwith threetemperaturesensors. Theheatersareusedaspureon off

devices,and the usedpower is readoff the powermeter.The experiment procedurecanbe

visualizedin Figure 2-17 wherethe experimentvaluesare readmanually from the power

meterand by the computerfor the temperaturesensors.The bottom level is visualizedas

either the heaterconnectedto the powermeteror the sensorsconnectedto the enddevices.

Connectionsarenotedwith anarrowanda labeldenotingwiredor wirelesscommunication.

Figure2-17 Experimentalhardware

The IAR EW ZigBeebasedBAS gatewaysystemcreatedfor the BAS MasterProjectwas

usedasthe ZigBeeto COM communication,andfor moretheoryon the ZigBeedevicesthe

readeris advisedto read[15] and[10].

 30

2.4.2 Experiment setup

The nine temperature sensors should be spread out with at least one sensor in each of the main

rooms in the house, large rooms should use several sensors in order to get a correct room

average. In addition there should be at least two sensors outside on different sides of the

house to have one always in the shadow. The temperature sensors are silicon devices of type

TMP36 [18].The sensor placement is seen in the building drawing seen in Figure 2-18 In

addition the heaters are marked with name, where red box heater indicates a panel heater and

the tiles indicate a floor heater. The arrows, Vent, indicates where there is a ventilation

opening.

Figure 2-18 Temperature sensor locations and house setup

The temperature sensors are seen as the silicon devices connected to the ZigBee nodes /end

devices by 3 cables of 2 and 4 meters. The sensors are numbered according to their numbered

setup in the gateway configuration file. The sensors were placed at approximately 1.5 meter

location from the floor. A picture of such typical placing can be seen in Figure 2-19.

 31

Figure 2-19 Typical sensor placement, sensor 2 on the left and 3 on the right

The outside sensors outside were placed as seen in Figure 2-20.

Figure 2-20 Outside sensor placement, sensor 7 seen in image

A typical location of the ZigBee node can be seen in Figure 2-21.

Figure 2-21 ZigBee end device placement, dining room node

The 9 temperature sensors were connected to the ZigBee nodes by connectors that fit the IO

header B port 15 on the ZigBee battery board. The slots were connected to the analogue

digital converter (ADC) channel 02, 04 and 07 on the ZigBee nodes. The connection can be

seen in Figure 2-22.

 32

Figure 2-22 Connection to the ZigBee node (end device)

In addition there was one vent in each room, the vents could be closed and all was of the type

seen in Figure 2-23.

Figure 2-23 Ventilation locations, living room vent seen in image

The uncertainties of the measurements are important to know in order to do any analysis, and

calculating the temperature sensors uncertainty needs to be done. The ADC have 12 effective

number of bits (ENOB) for ADC conversion. The range is from -3V to 3V which gives 2048

bins available on the positive side 0V to +3V .This gives as seen in Equation (2-4) and

Equation (2-5)

3푉

2048
= 0.0015 ≈

1.5푚푉

푏푖푛
 (2-4)

1.5푚푉/푏푖푛

3푉
∗ 100 ≈ 0.05%

(2-5)

TMP6 Temperature sensor accuracy using worst case scenario will then as seen in Equation

(2-6).

±2°퐶

156°퐶
∗ 100 ≈ 1.3% (2-6)

The complete uncertainty budget can be seen in Table 2-6 where the main sources of

uncertainty is the TMP36 device and the manually read power meter.

Ground Analogue inputs

Vcc

 33

Table 2-6 uncertainty budget

Type Sensor Range Accuracy Note
CC2530 EM ADC -3V to 3V ±0.05%
Temperature TMP36 -25°C to 140°C ±1.3%

Power meter N/A N/A ±0.9kWh
The meter only

shows kWh

2.4.3 Gateway setup, and data acquisition

The data was gathered using the created gateway organizing the sensor data. The gateway

store all the information in text based log files that can be directly imported into MATLAB.

The sensor data are included in columns separated by a semicolon where the first column is

the Date time stamp. The sensor setup for the house experiments in the gateway can be seen

in Figure 2-24.

Figure 2-24 Gateway configuration for running the experiments

The sampling time set in the save file timer is set to 3600ms or 6 minutes which should be a

high enough sampling time due to the large time constants of a house.

2.4.4 Data processing

The raw sensor data saved to file using the gateway need some processing in order to be

correctly represented when analyzed. The raw data should be filtered through a low pass

filter, all non-values, NaN, should be removed and there should also be a check for gross

outliers. Several MATLAB functions were created in order to accommodate the data

processing and verification needed and will be further discussed in 2.4.4.1 to 2.4.4.3.

2.4.4.1 The NaNremove.m function

The data acquisition system should interpolate between missing values and give the user

information about the number of NaNs that are removed. There are efficient methods for this

in the basic MATLAB setup. Using the find.m function with the isnan.m function any NaN

values position is found. The MATLAB environment 2d interpolation function interp1.m is

 34

used to interpolate between the known values and the found NaN indexes. The interpolate

function requires values before and after the missing value in order to function. This means

the data needs to be checked for missing values at the start of the data set, these rows are

simply removed from the data set. This is seen in an excerpt of the NaNremove.m function

seen in MATLAB script 2-1.

while (find(isnan(data(j,:)))>0 & j<length(data(:,1)))

 j=j+1;

 end

 %remove all first rows with NaN data

 data=data(j:length(data(:,1)),:)

MATLAB script 2-11check of first row NaNs

Then all the NaN values that can be interpolated are found and the data is interpolated. This is

seen in the excerpt of the NaNremove.m seen in MATLAB script 2-2

for i=1:length(data(1,:))

 Non=data(:,i)

 NonNan(:,i)=interp1(find(~isnan(Non)),Non(~isnan(Non)),1:length(Non))';

 NaNs=length(find(isnan(data)));

End

MATLAB script 2-2 interpolate between missing values

Finally the data needs to be checked for NaN values at the end of the data file. If found these

end rows are removed following the same principle as removing any NaNs contained in the

first rows. This is seen in the NaNremove.m function excerpt in MATLAB script 2-3

if (find(isnan(NonNan)) > 0)

 [row,col,vals]=find(isnan(NonNan));

 EndNaNsRemoved=length(vals);

 NonNanData=NonNan(1:min(row)-1,:); %Remove end rows with NaNs

MATLAB script 2-3 removal of end rows containing NaN

The function is then tested with all the three parameters the result can be found in Appendix

6: MATLAB scripts paragraph 7.6.2.

2.4.4.2 Sensor value to Temperature conversion

In order to have the data in degrees Celsius the Analogue to Digital Converters (ADC) values

needs to be converted. The ADC converter receives the voltage output from the TMP36

temperature sensor which is directly correlated to the current temperature. The ADC on the

ZigBee nodes has ENOB of 12bits, ranged from -2048 to 2048, or -3V to 3V [15], and the

conversion is done based on the TMP36 sensor scaling. This is seen in Table 2-7.

Table 2-7 TMP36 temperature sensor scaling parameters

Sensor Offset voltage (V) Scaling voltage (mV/°C) Output voltage at 25°C (mV)

TMP36 0.5 10 750

 35

For the conversion the data is first converted back to the sensors voltage from the ADC value

as seen in Equation (2-7).

푉표푙푡푠 = 퐴퐷퐶 ∗
3

2048
 (2-7)

The voltage data is then converted into °C seen in Equation (2-8).

푇푒푚푝푒푟푎푡푢푟푒 = (푉표푙푡푠 − 0.5) ∗ 100 (2-8)

2.4.4.3 The outlier marking function

The outlier removal function will also use MATLAB to interpolation between the gross

outliers. Gross outliers have been selected as values that lay 2 standard deviations from the

mean of the entire data set. This is however an input to the function, and the size of this

standard allowed deviation should be set regarding the length of the sample in question. Since

the Interp1.m function will return NaN if there are outliers found in the end and start of the

data file, this function should be run before the NaN remover. This will ensure that all outliers

and all NaNs are removed before smoothing the data. The standard deviations and the mean

of the data sets are found using the repmat.m function. An excerpt of the outlier detection and

removal function can be seen in MATLAB script 2-4 the complete source code is found in

Appendix 6: MATLAB scripts paragraph 7.6.3

mu = mean(data); %Create a matrix of mean value

sigma = std(data);%Get the standard deviation of the data

[n,p] = size(data);%Get the size of the data matrix

MeanMat = repmat(mu,n,1); % replicating the mu vector for n rows

SigmaMat = repmat(sigma,n,1); % replicating the sigma vector for n rows

outliers = abs(data - MeanMat) > 2*SigmaMat;% Create a matrix of zeros and

ones, where ones indicate the location of outliers

MATLAB script 2-4 outlier removal excerpt

The outlier removal function was tested with some noisy data gathered during the

experiments and the resulting plots before and after outlier removal can be seen in Figure

2-25.

Figure 2-25 Removed outliers using a standard deviation of two, top graph shows the data

before outliers are removed and bottom shows after removal.

 36

In this plot it may seem as one outlier is remaining at 23:10 March 23th and this may be

discussed, however since it is not removed this means that there are at least 3 consecutive low

samples. With a 6 minutes sampling time this means the samples are over an 18 minute period

on the March 23th and as such should not be seen as outliers. The reason for these samples

seeming erroneous is probably due to a door being kept open for too long letting cold air

inside. The last points that have been interpolated are just single samples and as such can be

seen as outliers. The data should also be run through a LP smoothing function that will take

care of this. The LP filter function can be found in Appendix 6: MATLAB scripts paragraph

7.6.4.

The plots before and after all the data acquisition functions can be seen in Figure 2-26 and

Figure 2-27 respectively. The script loading the log data, running the data processing

functions and creating the correct axis and output format can be found in Appendix 6:

MATLAB scripts paragraph 7.6.1.

Figure 2-26 Raw data received from the ADC of the ZigBee nodes, before data processing

Figure 2-27 Temperature data after data processing

 37

2.4.5 Discussion

The experiments clearly indicated that the model has some problems with estimating the

correct time constants of the house. The cooling and heating times lasted both much longer in

the real house than model simulations [5]. In order to better visualize this difference, the

sensor values has been averaged to yield one inside temperature, and one outside temperature.

Both the “all power on” and “all power off” experiments data will be compared with the

model simulations using the same environmental conditions and house parameters. In the

simulations the temperature in the ground is seen as 5°C higher than in the air for simplicity.

The data used for the all power off simulation is from March 28th and 29th and gives

representable data from all the “all power off” experiments. Some data colored by noise

should still be removed before comparing with the model simulations. From 07:00 to 09:00

on 29 March the inside temperature data is too colored by the sun which is seen from the

outside temperatures in Figure 2-28. From 18:33 to 19:30 the data is also somewhat colored

by unknown disturbances, probably cold wind from opening the door when leaving the house.

The processed data for the entire power off interval can be seen in Figure 2-28.

Figure 2-28 Averaged temperatures, inside temperature seen in top graph and outside

temperature seen in bottom graph.

The removal of this noise colored data results in a 10 hour period of good data quality ready

for comparison. This temperature data is seen plotted together with the non-linear model in

Figure 2-29.

 38

Figure 2-29 experiment data “all power off” VS non- linear model, inside temperature seen

in top graph and outside temperature seen in bottom graph.

In the same manner an all power on representable data set was found at March 22th from

09:30 to 19:00 and is plotted next to the non-linear model seen in Figure 2-30.

Figure 2-30 Experiment data “all power on” VS non-linear model, inside temperature seen in

top graph and outside temperature seen in bottom graph.

In Figure 2-29 and Figure 2-30 as the non-linear model fits the experimental data poorly.

There are several reasons for this:

1. The model does not take into account the mass of the house the walls the floor the

furniture etc. All which has a lot of mass and much specific heat capacity.

2. A statistical U- value has been used TEK10.

3. The Ventilation is set to a statistical, TEK10, value and is not measured

4. The effect of the sun i.e. the solar rays are not measured

5. The temperature of the ground is unknown

 39

The statistical data for the house blocks U-values and the ventilation might contribute

significantly to the erroneous of the non-linear model. Both these parameters are changeable

in the model and an experimental test was devised in order to test the correctness of the

statistical data: All known ventilation was closed and the inside house temperature was kept at

steady state during which the power consumption was monitored.

At March 29th the outside and inside temperatures reached something close to steady state

conditions, this can be seen in Figure 2-31.

Figure 2-31 «Steady state» conditions for temperatures

Even though the temperatures seen in Figure 2-31 are not in a completely steady state they

should give a good approximation to the total house heat leakages. The inside temperature

only changes from 21.5 ± 0.6, and the outside temperature change is −1 ± 0.5 over the

interval of eight hours, and nine kWh of power was used which is approximately 1.1kW per

hour. The temperature difference is taken as the mean of the differences over the length of the

time interval. This gives ∆푇 ≈ 22.6, and the total area of the house is 퐴 = 218.6푚 . The total

estimated leakage factor can then be estimated using equation (2-3), under paragraph 2.2.1.1

House and model parameters. The result is seen in equation (2-9).

푈 =
푄

퐴∆푇
=

1125푊

218.6푚 ∗ 22.6°퐶
≈ 0.228푊/푚 퐾 (2-9)

The total house U value result of approximately 0.23 was set in the model with the total house

area and the model was run and compared to the TEK 10 U values results. This can be seen in

Figure 2-32.

 40

Figure 2-32 TEK10 vs. estimated total U-value

The TEK 10 standardized values show somewhat longer cooling time than the experimentally

gained U – value. This means the TEK-10 used values are probably quite accurate since the

total U-value also will include other leakages6. This also mean that the house mass is

extremely important when creating a house model usable for control, and this heat capacity

factor needs to be included in the model. This will be further discussed in the next part on

creating the heating time estimation in section 3.

6 Leakages between elements (door and walls, window walls, etc) and in corners .

41

Part 2

3 Estimation of heating time

3.1 Introduction

The main reasonfor using a model in this BAS systemis to havea predictionof how the

inside housetemperaturewill changeover time. Specifically the model shouldbe usedto

estimatetheheatingtime with currentenvironmentalconditions.This heatingtime estimation

shouldbeaccuratein orderto bothminimizetheamountof powerusedandreachthecorrect

temperature.In 2.4.5the housemodeldid not correspondto theexperimentaldata.Thehouse

massheat capacity will prolong the time used for heating and make any heating time

estimationtoo short.Thereforea newpredictionmodelneedsto becreated.

3.1.1 System description

Theheatingtime estimationis basedon a temperaturereferencenamedcomfort intervals.The

comfortintervalsarereferencesto whentheresidentsareathome, andnot sleeping.

Heatingtime estimationis neededto reachthe comfort temperaturewhen the residentsare

homefrom work or gettingup in themorning.Theestimationwill bemadewith a prediction

modelcalculatingthe presentheatingtime estimateusing the environmentalconditionsfrom

the gatewayseenin part 1 Data acquisition. This heatingtime estimationwill be run each

sampling time and when estimatedtime correspondswith the time remaining until the

comfort interval, the heatersshould be turned on. This is visualizedin Figure 3-1 where

heatingestimationsare seenas the blue dotted lines and the solid blue line is when the

estimationis the sameas the time remainingtill comfort interval. The red line denotesthe

temperaturereference.

Figure3-1 Heatingtimeestimationshowingheatersturnedonat thecorrecttimebasedon

thecurrentenvironmentalconditions.

42

3.1.2 Contents and structure

Parttwo will first considerthetheorybehindthetemperaturereferences andpredictionmodel,

beforesimulations are performedin MATLAB. The temperaturepredictionsystemwill be

implementedin Visual Studioandthenthe finishedsystemis testedin anexperiment.Lastly

theresultsfrom this chapterwill bediscussed.Thestructureof part two is seenin Figure3-2

wherethemainchaptersareseenon theleft andthesub chaptersareon theright.

Figure 3-2 Part 2: heatingtimepredictions structuremainchapterson theleft andsub

chapterson theright, andprogressproceedsin a downwardsfashion.

43

3.2 Theory

3.2.1 Comfort Intervals

In orderto control the insidetemperatureof a housethereis needfor a control reference.In a

home this control referencewill be basedon when the occupantsare at home and what

comfort temperatureis preferred.In a completedsystemthe comfort intervals will be based

on the specific residentswork schedule,and bed time. In a completedsystemthis can be

learnedusingthesensors,for this analysisandsimulationpurposeshowever“typical” family

workweekwill be invented:Theresidentswill go to bed at 23.00get up at 07.00go to work

at 08.00andgethomefrom workat 16.00.

Whenthehouseis in usethe residentwill wanta constantcomfort temperatureof 20°C, this

meanson a “typical” weekdayfor this inventedresidentwill follow this schedule.For a

typical weekendSaturdayandSunday, theresidentsmaygetup a little lateraround09.00 and

go to bed a little later around01.00. The temperaturereferencescan be seenin Figure 3-3

wheretheweekdaytemperaturereferencesareseenon theleft andweekendon theright.

Figure3-3 Temperaturecomfortintervals,referencezonesweekdayon theleft andweekend

on theright

In the caseof when the temperaturemay be lower the heatercanbe turnedcompletelyoff

savingthemostamountof energy,howeverthereshouldbesomelimitationsmakingsurethe

temperaturenever reachesbelow 5°C. The Comfort intervals are createdin a MATLAB

functionto beusedasreferencevectorsin in part3 ControlSystemsimulations.

In Figure3-3 theamountof time wherethetemperatureneedsto beat comfort level,20°C, at

weekdaysis lessthanwhenthe heaterscanbe turnedoff. This meansa lot of powercanbe

savedusing temperatureprediction in a control system. Somestraight forward calculation

gives that for one completeweek thereare72 hoursin which the temperatureshouldbe at

comfortlevel seenin Equation(3-1).

0 5 10 15 20 25
0

5

10

15

20

25
Reference temperature Weekday

Time hours

T
em
pe
ra
tu
re
[oC
]

0 5 10 15 20 25
0

5

10

15

20

25
Reference temperature Weekend

Time hours

T
em
pe
ra
tu
re
[oC
]

44

(3-1)

This meansthatthereis 96 hoursa week,about7 monthsof theyearwheretheheaterscanbe

turnedcompletelyoff savingpower.Eventhoughthe heaterswill needto be turnedon more

thanthese44%, this is still a goodvisualizationon howmuchpowercanbesaved.

3.2.2 Prediction of heating time

In orderto savethemaximumamountof powerin a housea heatingtime predictionmodelis

needed,the modelwill be usedto predict future behaviorbasedon future known references

andcurrentenvironmentaldata. The temperatureestimatorwill beusedasa reference into the

future. The referencewill be where the heatingtime is calculatedby the prediction

model, and k is presenttime. The future referencesare basedon the residentscomfort

intervals.

Turning thepowercompletelyoff andthenon againwithout usinga heatingtime estimation

would result in the temperaturebeing too low in the comfort interval. This is visualizedin

Figure3-4

Figure 3-4 Why thereis neededa temperatureestimatorto reachthesetpoint temperaturein

time

Anotherway would be to usea fixed heatingtime basedon the fixed conditionparameters,

often includedas the temperaturelowering systems currentlyavailable[4]. This will not be

themostefficient asthesetpoint would bereachedtoo soonin almostall cases.In Figure3-5

this is visualizedwherethecomforttemperatureis reachedtoosoonandpoweris lost.

45

Figure 3-5 Energylossusingfixedheatingtime, theloweringscheme[4]

This lastpowersavingschemeis not optimal,andthemainreasonfor this beingimplemented

in currentpower savingsystems[4] is that thereis no housemodel to estimatethe heating

time. This thesis is basedon a housemodel and an approximateheating time can be

calculated,resultingin saving themostamountof power.

The house model was shown to be inadequatein its present form since there is no

implementationof the housemassand the househeatcapacity. The heatcapacityof the

housewill bevery hardto measurein any directway, andshouldif possiblebeestimatedby

anobserver.In additiontheair densitiesarenot currentlymeasuredandshouldfor this reason

beaddedto theunknowndisturbancefactor.This will befurtherdiscussedin thenextsection.

3.2.3 Temperature prediction model

Theonly known parametersfor eachsamplingtime is the insideandoutsidetemperature.In

orderto havethebestpossiblefit to theexperimentaldatathereshouldbeusedtwo statesone

for the inside temperatureand one for the disturbances.The outsidetemperaturewill be

viewedasa slowly varyingdisturbanceandincludedin thestatecalculationat eachsampling

interval.The remainingdisturbancevalue, mainly the massheatcapacity,shouldif possible

beestimatedby anobserver.

Theestimationof the heatingtime is basedon the first differential functionseenin Equation

(2-1), thehouseparametersandthecurrentmeasuredvaluesfrom thesensors.

The housemassheatcapacityandotherdisturbancesareaddedasan extrastate, to the

temperaturepart of the housemodel, the outsidetemperatureis denoted , and the inside

temperatureis denoted . The disturbancesareviewedasconstantor slowly varying

. The differential function for inside temperature, augmentedwith the

disturbancemass, , canbeseenin Equation(3-2).

 46

푓 =
푣 푉̇ − 휌 푉̇

푣 푉
푥 +

1

푣 푉(푐 −
푅
푀)
휌 푉̇퐻 − 푣 푉̇ 퐻 + 푢 − 푈퐴 ∗ ∆푇 + 휗 (3-2)

The heat loss equation (2-3) has been expanded into the first differential equation (2-1) where

the difference between the inside and the outsider temperatures are seen as ∆푇, and the heater

power as u, and house area as A. The other parameters are denoted in Table 2-1.

The model is then transformed into a linear state space representation (SSM) in order to

implement the augmented changes and using the model for prediction. The complete set of

differential functions is then seen in Equation (3-3)

푓(푥, 푢, 푣) =
푓
푓
=
퐼푛푠푖푑푒 푡푒푚푝푒푟푎푡푢푟푒
퐷푖푠푡푟푢푏푎푛푐푒푠

 (3-3)

The state matrix A is found as the two first (linear terms) of a Taylor series expansion of the

right hand side around the points x0 and u0 seen in Equation (3-4) [19].

퐴 =
푑푓

푑푥
=

⎣
⎢
⎢
⎢
⎡
푑푓

푑푥

푑푓

푑휗
푑푓

푑푥

푑푓

푑휗 ⎦
⎥
⎥
⎥
⎤

 (3-4)

The transition matrix B is found as the Jacobin seen in Equation (3-5)

퐵 =
푑푓

푑푢
=

푑푓

푑푢
푑푓

푑푢

 (3-5)

The model in Equation (3-2) is then expanded with all parameters [1], and deviated using

symbolic MATLAB the results of this derivation operation can be seen from Equations (3-6)

through (3-11). The complete expanded model can be found in Appendix 7: Expanded model.

푑푓

푑푥
=

푁푉̇
3600 휌 −

푃푀
푅푣

휌
+
−푉̇ 퐶 + 푓 퐶푝푤 − 푈퐴

푉 휌 퐶

(3-6)

푑푓

푑휗
= 1 (3-7)

푑푓

푑푥
= 0 (3-8)

푑푓

푑휗
= 0 (3-9)

 47

푑푓

푑푢
=

1

푣 푉(푐 −
푅
푀)

 (3-10)

푑푓

푑푢
= 0 (3-11)

Evaluated at the steady state of 푥 | = 20°C, 푣 = −5°C 푢 = 910푊 the SSM is found as

seen as in Equations (3-12) through (3-14)

퐴 = −8.8817푒 휗
0 0

 (3-12)

퐵 = 0.4392730484푒
0

0 (3-13)

퐷 = [1 0] (3-14)

The system is discretized using zero order hold and sampling time corresponding to the

experiments sample time of six minutes. The calculation of the discrete matrices using the

zero order hold numerical method can be seen in Equations (3-15) through (3-19) , the

numerical method is based on [20].

퐴 = 퐼 + 퐴ℎ +
퐴 ℎ

2!
+
퐴 ℎ

3!
+ ⋯
퐴 ℎ

푛!
 (3-15)

= 퐼 + 퐴 퐼 ℎ +
퐴ℎ

2!
+
퐴 ℎ

3!
+ ⋯
퐴 ℎ

푛!
 (3-16)

= 퐼 + 퐴푆 (3-17)

퐵 = 퐼 ℎ +
퐴ℎ

2!
+
퐴 ℎ

3!
+ ⋯
퐴 ℎ

푛!
퐵 (3-18)

= 푆퐵 (3-19)

After running the discretization function using the first ten polynomials the discrete SSM

(dSSM) is seen in Equation (3-20) and Equation (3-21).

퐴 =
0.7263 308.12
0 1

 (3-20)

퐵 =
0.0014
0

 (3-21)

 48

Observability

In order to introduce an observer into the system the system needs to be fully observable. A

SSM system will be fully observable if the rank of the observability matrix is equal to the

number of states in the system [19]. The observability matrix for this two state system is

calculated from the state matrix, 퐴 in Equation (3-20) and the output matrix 퐷 in Equation

(3-14). The result can be seen in Equation (3-22) and Equation (3-23).

푂 =
퐷
퐷 퐴

 (3-22)

푂 =
1 0

0.7263 308.12
 (3-23)

As seen in Equation (3-23) the rank of the observability matrix is two and equal to the number

of states in the system which means the system is fully observable. This means the system can

implement an observer for the house mass heat capacity and extra disturbances.

The optimal observer Kalman filter will be used for the state estimation and will be discussed

in the next section.

3.2.3.1 State estimation

The Kalman filter is a well-known model based algorithm useful to estimate unmeasured

variables. It is seen as an optimal observer in the sense that the variance of the measurement

error is minimized. The Kalman filter will implemented on the apriori-apostriori form and the

block diagram can be seen Figure 3-6.

Kalman filter

controller

-
house

Kalman
filter

-
-

Figure 3-6 Kalman filter block diagram

In Figure 3-6 푥̅ is the apriori state estimate, 푥 is the apostriori state estimate, 푦 is the

predicted output, 푟 is the reference and ∈ is the error between the predicted output and the

measured output. W is assumed to be slowly varying stochastic process noise and V is

 49

assumed to be slowly varying stochastic measurement noise. The state space model can be

seen in Equation (3-24) and Equation (3-25).

푥 = 퐴푥 + 퐵푢 +푊 (3-24)

푦 = 퐷푥 + 푉 (3-25)

In order to get in the algorithm the apriori state estimate initial values, needs to be specified.

푥̅ (3-26)

Then the rest of the algorithm should be run in all other time instances seen in Equation

(3-27), (3-28), and (3-29).

1. Calculate the predicted output measurement

푦 = 퐷푥̅ (3-27)

2. Calculate the aposteriori state estimate

푥 = 푥̅ + 퐾 (푦 − 푦)
∈

 (3-28)

3. Update the apriori state estimate

푥̅ = 퐴푥 (3-29)

K is the constant Kalman filter gain calculated by minimizing x seen in Equation (3-30) ,

where X is the solution to the Riccati equation seen in Equation (3-31).

퐾 = 푋 ∗ 퐷 ∗푊 (3-30)

퐴푋 + 푋퐴 − 푋퐷 푊 퐷푋 + 푉 = 0 (3-31)

The constant Kalman filter gain can be found by the kalman.m function in MATLAB, since

however the Kalman filter should be implemented in a C# control system the best way is to

use an iteration based solution. Constant Kalman filter gain converges fast and is found within

a few iterations [21]. The Kalman filter gain is found iteratively by the following algorithm

seen in Equations (3-32) through (3-35).

1. Specify initial values for the states covariance matrix

푃 (3-32)

2. Obtain an estimate of the states covariance matrix before reading the output

푃 = 퐴푃 퐴 + 푄 (3-33)

3. Obtain the Kalman filter gain matrix

퐾 = 푃 퐷 (퐷푃 퐷 + 푅) (3-34)

4. Correct the state covariance matrix after reading the output

 50

푃 = (퐼 − 퐾 퐷)푃 (3-35)

Where Q is the covariance matrix for the process noise, R is the covariance matrix for the

measurement noise, K is the Kalman filter gain, and A and D are the SSM matrices with

proper dimensions. The Kalman filter gain iterative calculation is based on [22]. The Kalman

filter will be implemented and tested in the next section and further tested in the experiments

in section 3.5.

3.3 Implementation and simulation

Before coding the Kalman filter and using it directly in the temperature predictor some more

analysis is needed. This will be based on implementing the Kalman filter in MATLAB and

simulation using the experimentally gained values from section 2.4. First the weighting

parameters need to be defined. The covariance matrix for the measurement noise R is

normally found as the variance of the time series [21]. Using the var.m function in MATLAB

the result can be seen in Equation (3-37).

푅 = [2.32] (3-36)

The covariance matrix for the process noise Q is seen as a tuning parameter with each

component responding to the variance of that specific state. The Q matrix is tuned to the

highest value not causing too noisy measurements [19]. The found values can be seen in

Equation (3-37).

푄 =
0.01 0
0 0.1

 (3-37)

The Kalman filter algorithm can be seen implemented in MATLAB script 2-1

%Kalman gain matrix calculation---

 Phat=A*Phat*A'+Q; %Estimate of covariance matrix

 K=Phat*D'/(D*Phat*D'+R) %Kalman filter gain matrix

 Phat=(I-K*D)*Phat; %Correct the state covariance matrix

%State estimation--

 Ykbar=D*x; %Predicted output measurement

 Yk=AvgInTemp(k); %Read output vector

 Xhat=Xbar+K*(Yk-Ykbar) %Aposterori state estimate

 Xbar=Ad*Xhat+Bd*u; %Update the apriori state estimate

MATLAB script 3-1 Kalman gain calculation and state estimation

After the simulation has run four iterations the steady state Kalman filter gain is found as seen

in Equation (3-38).

퐾 =
0.998
0.0032

 (3-38)

The resulting plots from the predicted output measurement using the estimated states from the

Kalman filter can be seen in Figure 3-7.

 51

Figure 3-7 SSM model simulation using Kalman filter state estimation

In Figure 3-7 the SSM model with estimated disturbance states fits the experimental data

nicely. The disturbance estimation is increasing with the increasing inside temperatures

probably due to the increasing amount of thermal energy being stored.

This increase is not negligible due to the large weight the disturbance has on the temperature

state [2.4.5]. The increase is however close to linear and can be fitted using one polynomial

ordinary least squares regression (OLS). In Figure 3-8 the disturbance change is seen plotted

together with the fitted least squares line.

Figure 3-8 Disturbance and least square fit

In order to create the fit line and have a good heating time estimation based on the model

there is needed a first heating run where the disturbance parameters can be learned. This

should be done by keeping the temperature at the low point before turning all heaters to the

maximum storing all the values until the set point temperature is reached. The new Kalman

OLS State Space predictor (K-OLS-SSM) together with the non-linear model and pure linear

regression estimation (OLS) can be seen estimating heating time as in Figure 3-9.

 52

Figure 3-9 Temperature predictions using three methods

The temperature estimation is on the same data as used to create the disturbance vector and

the close fitting is to be expected, this is also evident when seen at the close fit to the pure

linear regression fit (OLS). A new test set is gathered from the 24th of March in order to verify

the prediction model on a different data set with different environmental conditions7. For the

test set the two best estimations will be used, the purely OLS estimate and the K-OLS-SSM.

The heating predictions can be seen in Figure 3-10.

Figure 3-10 Heating predictions using a real test set

The results shows that the Kalman filter and OLS based estimate produce the best heating

predictions. The SSM model is derived from the present conditions and will make the

predictor more adaptable to change. There should be noted that the test set period only two

hours and the functions should be more tested in the experiments part found in section 3.5.

For this reason both the linear OLS regression and the Kalman estimated predictor will be

implemented in VS.

7 The test sets on all other occasions of heating time is too much colored by the sun. Heating tests should for this

reason in the future be set to run at night.

 53

3.4 Software Development

The temperature predictor needs to have the current measurements, house and model data in

order to predict the heating time. These parameters are needed to create the discrete state

space model using the current environmental conditions. In addition the temperature

reference, the comfort intervals are needed to know when to send the start heating signal to

the controller. The temperature references, model and house parameters should be stored in

the XML configuration file in the same manner as in paragraph 2.3.2. The user should be able

to set the comfort interval reference from a weekly table and the temperature reference system

should get the current time date information in order to do the prediction into the future. In

order to handle both Single Input Single Output (SISO) and Multiple Input Multiple Output

(MIMO) systems, matrix calculation methods are needed. The FURPS+ sheet can be found in

the Appendix 3 FURPS+ paragraph 7.3.2.

3.4.1 The use case diagram

The use case diagram is made to get a visual representation of the requirements to the

temperature prediction system. The use case diagram can be made based on the found

requirements can be seen in Figure 3-11.

Figure 3-11 Use case diagram of the Temperature Predictor

There are several classes in some use cases and to have a better visualization of these classes a

layered architecture has been created in Figure 3-12 to visualize the classes in each use case.

The configuration use case consists of three classes and the predictor use case consists of two

classes.

54

Figure 3-12 Layeredarchitectureof theheatingtimeestimation

3.4.2 The Configuration use case

The configurationcontainsthe houseandmodelparameterandare responsiblefor the GUI

betweenthe user and thesesettings.The configuration is also responsiblefor storing the

parametersto a configuration file. The configuration file will be based on the XML

configurationusedin the gatewayfrom part 1 Dataacquisitionwith additionalelementsfor

thenewinformation.

There are neededmany configurationparameters and the GUI is divided into two main

WindowsForms(WF), thehouseandheaterparametersandthemodelparameters.

The fully dressedusecasedocumentcan be found in Appendix 4: Fully dressedusecase

documentsparagraph7.4.2.

3.4.2.1Designing the house parameters Windows Form

ThehouseparametersWF will give the usera visual representationof themodelparameters

neededin the calculationof the inside temperaturestate.The houseparametersare the U-

values,areasandheaterpower.The houseandsensorslocationsareseenin thehouselayout

imagebox. A savebutton is usedto savethe new valuesto the XML file. The GUI of the

houseparameterscanbeseenin Figure3-13.

 55

Figure 3-13 GUI of house configuration parameters

3.4.2.2 Designing the Model parameters Windows Form

The model parameters file name is ConfigModel.cs and should give a visual representation of

the models parameters. The default values should be set in the .cs file if the user wants to

reload these. The recalculate button will recalculated the parameters based on the new values.

In Figure 3-14 the created GUI can be seen.

Figure 3-14 GUI of model configuration parameters

 56

3.4.2.3 Designing the comfort intervals use case

The comfort intervals use case is mainly a GUI for setting the comfort intervals schedule of

the residents. The user should be able to set his preference for comfort and low temperature,

and when these temperatures are wanted. The intervals at comfort temperature should be set

in a green color for easy visualization. The comfort intervals should for simplicity only accept

integers and should give the user a notice if the temperature is set lower than 5°C or higher

than 25°C. The WF file name is ConfigTemperatures.cs. In Figure 3-15 the GUI created is

seen with the typical invented workweek comfort intervals.

Figure 3-15 Comfort intervals configuration GUI

The user may use the buttons to set comfort temperature or the low temperature or using the

context menu strip, right mouse click option as seen in Figure 3-16.

Figure 3-16 Context menu strip right click option

 57

3.4.3 Read sensor values use case

The sensor values are stored to a log file containing the time stamp and the sensors values in a

numbered order as seen in part 1 paragraph 2.3.4. The get sensor values use case should

convert the ADC values to temperature and pass the values through a low pass filter. The

complete fully dressed use case document can be found in Appendix 4: Fully dressed use case

documents paragraph 7.4.2

3.4.3.1 Designing the read sensor values use case

In C# there is no option for reading a specific line since this is not how the reader works on

the lower levels. For this reason all lines will be read into an indexed array using the current

index to remember which line to read. This might cause problems with very high sample

times needed for fast systems (small time constants), however with the house system this is

not a problem. The method should also return the date time stamp in order to plot the correct

time values and have some information on the exact time of the specific sample.

The low pass filter is added as a new class filtering the values based on the previous value, the

filter time constant and the sampling time. Each sensor is filtered in turn.

3.4.4 The predictor use case

The predictor use case takes care of the heating time predictions, the predictions are done in

the manner previously specified in paragraph 3.3. The predictor will use the Kalman filter to

calculate the disturbance vector, and a least squares regression to get the direction of this

vector. The estimated disturbance function should be calculated one the first run time from a

stable Kalman filter gain has been achieved to set point. In addition the purely linear

regression estimate will be also be implemented in parallel as a second heating time estimate.

The complete fully dressed use case document can be found in Appendix 4: Fully dressed use

case documents paragraph 7.4.2.

3.4.4.1 Designing the predictor use case

The predictor use case utilizes a Kalman filter algorithm and need a Matrix calculation class

to function. The C# and .NET libraries do for some reason not contain any inbuilt Matrix

manipulation functions. A functional Matrix library using the Strassen algorithm for large

matrix manipulations have been created by Ivan Kucirc [23]and will be used for the matrix

manipulations in this thesis. Some additions were made to the library since it could not

facilitate matrix and scalar values together: Scalar values times matrix values, matrix values

times scalar values, matrix divided on scalar values, and scalar values added to matrix

values. The ordinary least squares regression is calculated using the matrix equation found in

[24].

58

3.5 Experiments

3.5.1 Introduction

The predictionmodelandthe heatingestimationprogramshouldbe further testedto ensure

the functionality in a real life experiment. TelemarkUniversity College has an air heater

systemthat is basedon the samerulesasa completehouse. The time constant will be much

smallerthana real housedueto the very small volume,area,andlargeU-value. Therewill

alsobea high degreeof ventilationanda very largeheaterin relationsto thesize.Theseare

all changeableparametersin the modeland the air heatershouldthereforegive a good real

housesimulation.Theexperimentis visualizedin Figure3-17.

Figure3-17Heatingtimeexperiment

If the comfort intervalsare reachedat the correct time the heatingtime estimationwill be

workingproperly.

3.5.2 Experiment setup

Theexperimentsshouldutilize thecodealreadycreatedin thegatewaytogetherwith thenew

createdcodefrom thetemperatureprediction.Thetime constantof theair heaterwill bemuch

smaller and the sampling time should be set to a much lower value. In addition two

temperaturesensorsare use inside the air heater to get a good estimationof the inside

temperature.All datawill besavedto disk for plotting in MAT LAB, andthecomfort interval

referenceis changedfrom hour to second.The air heaterhasa lengthof 1m anda radiusof

7.5cm, the heaterpower is set by the USB DAQ-6008 device [25]. For more specific

informationon theair heatersee[13].

Thesetupfor theheatingtime predictionusingthegatewayandthe air heatercanbeseenin

Figure3-1.

 59

Figure 3-18 Heating time prediction setup

The uncertainty budget for this experiment can be seen in Table 3-1, where the temperature

sensors are the main source of uncertainty. The temperature uncertainty was calculated in

paragraph 2.4.2.

Table 3-1 Uncertainty budget

Type Sensor Range Accuracy Note
CC2530 EM ADC -3V to 3V ±0.05%
Temperature TMP6 -25°C to 140°C ±1.3%

NI-DAQ 6008 ADC 0-5V ±0.01%

Prediction setup

The U value for plexiglas of 5mm thickness is about 14 [26], and the heater is 15W [13], the

ventilation parameter is unknown and set as a tuning parameter, with the starting value of ten

air changes each second. This parameter creates the continuous model SSM model of the air

heater seen in (3-39).

퐴 = −0.02274, 퐵 = 4 퐷 = 1 (3-39)

The Comfort intervals were setup to be between 25 and 40 degrees Celsius since the inside

temperature in the room of 20 is the outside temperature when seen in regards to the air

heater. The predictor will work as an on off controller turning the heater off when the

temperature is at the comfort level, and back on again when the temperature is below.

Temperature sensors

Air Heater DAQ

ZigBee

node

ZigBee

Coordinator

Computer SW

Learn&GW

 60

3.5.3 Results

When the system was connected the gateway was started at the same time as the learn

function. The learn function is set to wait until the Kalman filter estimates has stabilized. The

learn function saves the data together with both the comfort interval reference and the

predicted reference from the heating time estimations. The saved data is then imported into

MATLAB for analysis. For the straight forward OLS regression model the results were

correct and the predicted reference was hit at exactly the same time as the comfort interval

reference seen in Figure 3-19

Figure 3-19 Heating time estimates using linear OLS model

For the K-OLS-SSM model the heating time estimate was too small and resulted in the

comfort interval reference being reached to soon seen in Figure 3-20.

Figure 3-20 Heating time estimates with K-OLS-SSM prediction model

The K-OLS-SSM model is under predicting because of the time delay. This time delay lasts

about two seconds and is not modeled in the SSM. The linear OLS model does however take

this time delay into consideration when creating the regression line which resulted in a better

prediction. This time delay factor can be calculated in the learn function from heating is

started to the temperature is seen increasing and added to the K-OLS-SSM model creating a

better and adaptable estimate. The prediction models can be found in Appendix 8: Regression

models for predictor.

 61

3.6 Discussion

The learn function was tested several times and the prediction models tested. Each time the

best prediction was from the straight forward linear OLS regression model. The K-OLS-SSM

heating time estimate was close but needed an added time delay factor in order to predict

correctly. Testing the model with different outside temperatures was not tested, since the Air

heater should be kept inside the school with a set comfort temperature. Testing with the same

prediction models and different outside temperatures might prove the K-OLS-SSM model to

be more adaptable to change as in the simulation part seen in paragraph 3.3.

From the real house experiments and the comfort intervals there can be created an estimate of

the real power savings. The house heating time was found as roughly 1/3 of the cooling down

time with the same environmental conditions. From the comfort intervals found in paragraph

3.2.1 the heaters can be off 64 hours each week or roughly 60% of the time. In 2/3’s of these

64 hours the heater can be turned off, during the on time however the heater will use more

power than it would during steady state. The experiments steady state power usage was

1.1kW seen in part 1 Data acquisition 2.4.5, and the heating is found to be 2.1kW from the

experiment data. The power savings can then be calculated as seen in equations (3-40) and

(3-41).

푠푡푒푎푑푦 푠푡푎푡푒 푐표푛푠푢푚푝푡푖표푛 = 96ℎ표푢푟푠 ∗ 1125푊 = 108푘푊ℎ (3-40)

푝표푤푒푟 표푓푓 푎푛푑 표푛 푐표푛푠푢푚푝푡푖표푛 = 96 ∗
2

3
∗ 0 + 96 ∗

1

3
∗ 2100 = 67.2푘푊ℎ (3-41)

This means that approximately 22% of all the power used for heating can be saved utilizing a

good model based control system in this specific house. This could be increased by adding

more heaters and more power lowering the heating time.

The on-off controller seen in Figure 3-19 and Figure 3-20 is not very good when seen in

regards to both efficiency and comfort. The oscillations indicate the need for a controller to

keep the temperature at set point and avoid oscillations and over or under shooting. For this

reason the next and last part of this thesis will be on designing and testing several controllers

for the BAS system.

62

Part 3

4 Control System

4.1 Introduction

In part2 [3.5] a straightforwardandcommonon-off heatercontrollersareseenasinadequate

for bothresidentcomfortandpowersavings.A moreadvancedcontrolalgorithmis neededto

keepthetemperature at thecomfort level andto avoidoscillations. This controller will useall

the partsof the BAS systemto function andis for this reasonsincludedin a main program

GUI bindingthesystemtogetherin a functionalcontrolsystem.

4.1.1 System description

Thecontrolsystemis responsiblefor reachingthecomfortintervalswith minimumovershoot,

minimizing power usage. Predicted heating time will be addedto the current reference

gatheredfrom the comfort intervals [3.2.2]. The control system will keep the inside

temperatureatcomfortlevel, andberesponsiblefor thecompleteGUI of theBAS.

Severalcontrol methodswill be tested;the feedbackPID controller, the Linear Quadratic

Regulator(LQR)andtheModelPredictivecontroller (MPC).

MPC andLQR rely on a goodmodelfor optimal control andfor the experimentspart a new

modelwill be created. Thenewmodelwill be createdusingthe DSR subspaceidentification

algorithm [27]. The control algorithmswill be madeapplicableboth for MIMO and SISO

systems.Thecompletecontrolsystemcanbeseenin Figure4-1.

Figure 4-1 Control systemdescription

63

4.1.2 Part 3 Structure

This part follow the samebasisasthe previouspartsandin theobjectorientedprogramming

senseeachpartwill be finishedbeforethenext is started.The modelandcontrol theorywill

beexplainedbeforeperformingsimulation usingMATLAB . Thedifferent controllerswill be

discussedand compared.This gives a thoroughanalysisof the neededalgorithmsbefore

implementationin VS. After implementationa completesystemtestwill be performedusing

the air heaterandthe createdBAS Control System.The progressof this part canbe seenin

Figure4-2 whereeachmain chapteris seenon the left andthe subchaptersareseenon the

right.

Figure4-2 -Chapterprogressall mainchapterson theright andsubchapterson theleft,

progresswill movein a downwardsfashion.

 64

4.2 Control Theory

4.2.1 Model conversion

For utilizing known control methods the model is converted into linear discrete state space

form as was seen in 3.2.3 Temperature prediction model. The simulations will be based on a

scalar one state system. The discrete state space model is seen in Equation (4-1) and Equation

(4-2)

푥̇ = 퐴푥 + 퐵푢 + 푣 (4-1)

푦 = 퐷푥 + 푤 (4-2)

Where x is the state vector, 푥 ∈ 푅 × , u is the control input vector, 푢 ∈ 푅 × , y is the output

vector, 푦 ∈ 푅 × , and A, B and D are known system matrices of appropriate dimensions. The

disturbances v and w are both unknown disturbances. The model is discretized in the same

manner as in [3.2.3] resulting in the scalar state space system seen in Equations (4-3), (4-4)

and (4-5)

퐴 = 0.7263 (4-3)

퐵 = 0.0014 (4-4)

퐷 = 1 (4-5)

Observability and Controllability

In order to make sure the model can be controlled a study is done on the controllability

matrix. The observability of the system has already been tested found to be fully observable in

[3.2.3]. The controllability matrix defines if the system can be controlled by the control input

to the system. The controllability matrix is found in MATLAB using the ctrb.m function and

the rank is found to be 1. This means the inside temperature state is controllable though B,

which makes sense.

4.2.1.1 The state-space model on deviation form

The process noise term v and the measurement noise w are assumed to be constant or slowly

varying. For this reason the model can be reformed using velocity, deviation form removing

the unknown and constant or slowly varying noise terms from the equation. The Linear

Quadratic Regulator (LQR) with integral action also needs the state space matrix on velocity

form and the PID controller is normally included in the velocity form [19].

The state equation is seen in its discrete form in Equation (4-6)

푥 = 퐴푥 + 퐵푢 + 푣 (4-6)

 65

By using the last time instant, k=k-1 the state equation becomes as in Equation (4-7)

푥 = 퐴푥 + 퐵푢 + 푣 (4-7)

Inserting Equation (4-6) into (4-7) gives Equation (4-8) and (4-9)

푥 − 푥 = 퐴푥 + 퐵푢 + 푣 − 퐴푥 − 퐵푢 − 푣 (4-8)

∆푥 = 퐴∆푥 + 퐵∆푢 (4-9)

Where delta x is denoted as the change from last sample time seen in Equation (4-10).

∆푥 = 푥 − 푥 , and ∆푢 = 푢 − 푢 (4-10)

The output equation on deviation form following the same principles becomes as seen in

Equations (4-11) through (4-14).

푦 = 퐷푥 + 푤 (4-11)

푦 = 퐷푥 + 푤 (4-12)

푦 −푦 = 퐷푥 + 푤 − 퐷푥 − 푤 (4-13)

푦 = 푦 + 퐷∆푥 (4-14)

The model has now been transformed into a well-known strictly proper state space model and

several control methods can be implemented and simulated. First the different control

strategies theory will be explained, and designed starting with the most common the PID

feedback control.

 66

4.2.2 Feedback control

The first control method to be tested is the most common of all the control methods: the

Feedback PID control. This controller is very robust and stable, and is not model dependent.

The standard feedback control block diagram with BAS specific notations can be seen in

Figure 4-3

Hc
Comfort intervals reference yu

-

PID
Controller House

Hp
Heater setting

Inside temperaturer

Figure 4-3 Standard feedback control block diagram

The discrete PID controller discretized using explicit Euler on velocity form can be seen in

Equations (4-15) and (4-16).

푢 = 푢 + 푔 푒 + 푔 푒 + 푔 (푦 − 2푦 + 푦) (4-15)

푔 = 퐾 , 푔 = −퐾 ∗ 1 −
∆푡

푇
, 푔 = −

퐾 푇 ,

∆푡
 , 푒 = 푟 − 푦 (4-16)

Where 푢 is the control signal, 푢 the previous control signal 푦 the output and 푦 , 푦

are the two previous outputs, ∆푡 is the sampling time, 퐾 is the proportional gain 푇 is the

integral time and 푇 , is the derivation time.

The SIMC settings will be used to tune the controller [28], and MATLAB will be used to do

test the controller in simulations before implementing in the control system. The SSM model

should be transformed to its transfer function equivalent for tuning purposes.

The PID control parameters will be found in continuous time, we have the continuous state

space model as seen in Equation (4-17) with the scalar numerical values from Equation (3-20)

퐴 = −8.88푒 , 퐵 = 4.39푒 .

푥̇ = 퐴푥 + 퐵푢 (4-17)

The transfer function is found as in Equation (4-18)

ℎ = 푘
1

1 + 푇푠
 (4-18)

Where 푇 = − and 푘 = 퐵 ∗ 푇 which gives Equation (4-19)

ℎ = 0.0049 ∗
1

1 + 1125푠
 (4-19)

The SIMC tuning rules then gives the PID parameters seen in Equation (4-20) [28].

 67

퐾 =
푇

푘 + 푇
= , 푇 = 푇 , 푇 = 0 (4-20)

Where 푇 is the user specified time constant from the closed loop set point response.

4.2.3 Linear Quadratic Regulator

In a typical house there will be several rooms and each room will probably have one or more

heater. This means the BAS system will be a Multiple Input Multiple Output (MIMO) system.

The PID controller which only has output feedback does not have state feedback and several

individual tuned PID controllers would have to be used in a buildings control system. This

might prove both advanced to tune correctly and inherently unstable.

The Linear Quadratic Regulator (LQR) controller has both output and state feedback and can

guarantee nominal stability of a MIMO system [29]. The LQ controller is suitable for use on

non-linear systems when a linear state space model is available [29]. The LQR is model

dependent, but can be compared with the feedback PI controller on velocity form. Di Rusccio

[29] proposes a method to obtain integral action on the LQ controller. The state space model

is augmented with the output equation, this means the output is included as a state in the

model. The augmented SSM model on deviation form is seen in Equation (4-21) and Equation

(4-22).

∆푥
푦

=
퐴 0 ∗
퐷 퐼 ∗

∆푥
푦

+
퐵
0 ∗

∆푢 (4-21)

푦 = [퐷 퐼 ∗]
∆푥
푦

 (4-22)

Introducing the augmented model matrices the model is on strictly proper state space form as

seen in Equation (4-23) and Equation (4-24).

푥 = 퐴푥 + 퐵∆푢 (4-23)

푦 = 퐷푥 (4-24)

The LQ regulator needs a cost function, or a cost objective to be minimized, the cost objective

is denoted 퐽 . This cost function is the squared sum of all future output deviations times the

cost factor 푄 plus the squared sum of all future control outputs times the cost factor 푃. The

cost objective in its matrix form using the augmented SSM can be seen in Equation (4-25).

퐽 =
1

2
푥 푄푥 + ∆푢 푃∆푢 (4-25)

The matrix 푄is seen as a weighting matrix weighting the cost of the deviation from the
reference set point. In this BAS system the cost of deviation from the set point is seen as high

 68

and the Q matrix should be given a high value. The 푄 matrix is seen in both weighting the
output and the states.

푄 =
푄 0
0 푄

 (4-26)

The cost factor R denotes the cost of the control outputs and in the BAS system where power
savings is the important factor this factor should also be high, however a high cost of both the
control outputs and reference deviations are not obtainable at the same time, and since the
reference deviations are seen as the primary concern at the comfort intervals the cost factor Q
should be weighted the highest.
Together the performance index seen in Equation (4-25) and the state-space model in
Equations (4-23) and (4-24) defines a standard LQR optimal control problem. A solution to
this optimal control problem, minimizing the cost objective, will exist if P > 0, the pair (퐴; 퐵)
is stabilizable and that the pair (퐶; 퐴) is detectable where C is the square root matrix of 푄
such that 푄 = 퐶 퐶.
Minimizing the performance index in Equation (4-25) with respect to the control deviation is
given by the state feedback seen in Equations (4-26) and (4-27) [29].

∆푢∗ = 퐺푥 (4-27)

Where the feedback matrix G is obtained as seen in Equation (4-28), and R is the solution to

the discrete time algebraic Riccati Equation (4-29) [29].

퐺 = −(푃 + 퐵 푅퐵 푃 + 퐵 푅퐵 퐵 푅퐴 (4-28)

푅 = 푄 + 퐺 푃퐺 + 퐴 + 퐵퐺 푅(퐴 + 퐵퐺) (4-29)

The solution to the discrete time algebraic Riccati equation can be solved simply with the

MATLAB dlqr.m function, however since there is the need for implementation in Visual

Studio (VS) there has been created a recursive solver. The recursive solver needs only be run

at startup and will run until the steady state solution has been found, when the error between

the new value and the previous value is below the set error limit. This is seen in MATLAB

script 4-1.

 while (error>1e-10 & it<=maxit);

 G0= (P+B'*R0*B)\(B'*R0*A);

 R1= A'*R0*A + Q -(A'*R0*B)*G0;

 G1= (P+B'*R1*B)\(B'*R1*A)

 error=max(max(abs(G1-G0)));

 it=it+1

 R0=R1;

 end;

 G=-G1;

 G1=G(:,1:size(A));

 G2=G(:,size(A)+1:size(A)+size(D,1));

MATLAB script 4-1 Recursive Riccati solver

The output from the MATLAB function the constant feedback gain matrix G can be viewed

as seen in Equations (4-30) and (4-31).

 69

∆푢 = [퐺 퐺]
∆푥
 푦 − 푟 = 푢 − 푢 , 푢 = ∆푢 + 푢 (4-30)

푢 = 푢 + 퐺 ∆푥 + 퐺 ∗ 푒 (4-31)

The created LQR regulator can be seen in block diagram of the optimal LQ controller is seen

with the optimal LQR gain parameters G1 and G2 in Figure 4-4.

Comfort intervals r Yu

-

LQ
Regulator House

Hp
Inside temperature

+
XG1

G2

Figure 4-4 Linear quadratic regulator block diagram

This means the controller structure is equivalent with the velocity form of the PI controller

seen in Equations (4-32) and (4-33) [29].

푢 = 푢 + 푔 푒 + 푔 푒 (4-32)

푔 = 퐾 , 푔 = −퐾 ∗ 1 −
∆푡

푇
, (4-33)

 70

4.2.4 Model predictive control

Model based Predict Control (MPC) is a very important control method and can be found

implemented in MATLAB, LabVIEW, CENIT and Honeywell’s Profit to mention some [30].

The MPC works with both SISO and MIMO systems making it useful for a complete house

control and there exists also non-linear methods for MPC. MPC works by calculating the

optimal control output based on a specified reference vector into the future [31]. This length

of this reference trajectory into the future is called the prediction horizon, L. The optimal

control output is based on minimizing a cost function based on a prediction model, similar to

the Linear Quadratic Regulator (LQR). The main differences are that LQR uses an infinite

prediction horizon, and that the MPC controller has inbuilt constraints handling [31]. In order

to minimize the cost function based on the given prediction model and constraints there is

needed an optimizer. The MPC controller can be seen in Figure 4-5.

Model

Optimizer

-

Future errorsFuture inputs

Past inputs
and outputs

Predicted output

Reference
Trajectory

Cost
function

Constraints

+

Prediction
horizon

Figure 4-5 MPC block diagram

The Quadratic Programming problem with constraints can be solved by quadprog.m in

MATLAB or by and an active set method [31].The solution to the QP problem in VS can be

done using the Microsoft Solver Foundation [32] however the computing time to find a

solution might be very high especially in a large house MIMO system. Another solution is to

handle the constraints using if and else statements at a higher level. This can be done in this

BAS system since the only constraints are the maximum and minimum heater capacity saving

computing time and greatly simplify the optimizer. The only drawback of MPC is then the

model dependency; a good model is needed to sustain good control solutions.

The MPC controller needs a prediction model to be minimized subject to a cost function. This

prediction model can be found from the augmented SSM seen in Equations (4-21) and (4-22)

in order to give the controller integral action [33].

 71

4.2.4.1 Finding a prediction model

The prediction model may be obtained from the augmented state space model (eSSM) on

deviation form. The present time is predicted into the future with the prediction horizon L. To

find the prediction model the prediction horizon L is set to be three. Using this prediction

horizon the prediction model is calculated as seen from Equations (4-34) through (4-37).

푦 = 퐷푥 = 퐷 퐴푥 + 퐵푢 = 퐷퐴푥 + 퐷퐵∆푢 (4-34)

푦 = 퐷푥 = 퐷 퐴푥 + 퐵∆푢 = 퐷퐴 푥 + 퐷퐴퐵∆푢 + 퐷퐵∆푢 (4-35)

푦 = 퐷푥 = 퐷퐴 푥 + 퐷퐴퐵∆푢 + 퐷퐵∆푢

= 퐷퐴 푥 + 퐷퐴 퐵푢 + 퐷퐴퐵∆푢 + 퐷퐵∆푢
(4-36)

푦
푦
푦

=
퐷
퐷퐴
퐷퐴

퐴푥 +

⎣
⎢
⎢
⎢
⎡ 퐷퐵
퐷퐴퐵
퐷퐴 퐵

0 0
퐷퐵 0
퐷퐴퐵 퐷퐵

⎦
⎥
⎥
⎥
⎤ 푢
푢
푢
푢

 (4-37)

Where 푂 is the extended observability matrix퐴, 퐵 and 퐷 are the extended state space models

and 퐻 is the lower block triangular Toeplitz matrix for the triple (퐷, 퐴,

퐵) Error! Bookmark not defined.. The prediction model with a prediction horizon of three is

seen in Equation (4-38).

푦 | = 푂 퐴푥 + [푂 퐵 퐻] ∗ ∆푢 | (4-38)

The prediction model can then be defined in the standard form as seen in Equation (4-39)

푦 | = 푃 + 퐹 ∆푢 | (4-39)

Where the prediction model parameters are as seen in Equation (4-40) and the extended

observability matrix 푂 and the deterministic Toeplitz matrix 퐻 can be seen in (4-41).

푃 = 푂 퐴푥 , 퐹 = [푂 퐵 퐻] (4-40)

푂 =

퐷
퐷퐴
⋮

퐷퐴

 , 푎푛푑 퐻 =
0 ⋯ 0
⋮ ⋱ ⋮

퐷퐴 퐵 ⋯ 퐷퐵
 (4-41)

The prediction model has been specified and the control objective needs to be set.

 72

4.2.4.2 MPC control objective

In the MPC controller there is also needed a control objective to be minimized with respect to

the found prediction model. A typical control objective guaranteeing stability may be seen in

Equation (4-42) [31]

퐽 =
1

2
[(푦 − 푟) 푄 (푦 − 푟) + ∆푢 푅 ∆푢] (4-42)

The control Objective seen in Equation (4-42) may conveniently be written in more compact

form as seen in Equation (4-43), where 푦 | , ∆푢 | , and 푟 | are seen in Equation (4-44).

Q and R are the triangular weighting matrices seen in Equation (4-45).

푗 = 푦 | − 푟 | 푄 푦 | − 푟 | + ∆푢 | 푅∆푢 | (4-43)

푦 | =

푦
푦
⋮
푦

 , ∆푢 | =

∆푢
∆푢
⋮

∆푢

 , 푟 | =

푟
푟
⋮

푟

 (4-44)

푄 =

푄 0 0 0
0 푄 0 0
0 0 ⋱ 0
0 0 0 푄

 , , 푅 =

푅 0 0 0
0 푅 0 0
0 0 ⋱ 0
0 0 0 푅

 (4-45)

The prediction model in Equation (4-39) is inserted into the control objective in Equation

(4-43) resulting in a cost objective to be minimized seen in Equation (4-46).

푗 = 푃 + 퐹 ∆푢 | − 푟 | 푄 푃 + 퐹 ∆푢 | − 푟 | + ∆푢 | 푅∆푢 | (4-46)

Some rearranging gives the objective in standard from seen in Equation (4-47), where the

quadratic term Hessian matrix , 퐻, is as seen in Equation (4-48), the linear term , 푓 , is seen in

Equation (4-49), and the scalar term, 퐽 , can be seen in Equation (4-50).

퐽 = ∆푢 | 퐻∆푢 | + 2푓 ∆푢 | + 퐽 (4-47)

퐻 = 푃 + 퐹 푄퐹 (4-48)

 푓 = 퐹 푄 푃 − 푟 | (4-49)

 퐽 = 푃 − 푟 | 푄 푃 − 푟 | (8) (4-50)

 73

This control problem is a linear quadratic problem and there exists only one solution. The

optimal unconstrained MPC control u*
k is found where 퐽 is minimized, where the derivative

is equal to zero
∆ |

= 0. This calculation can be seen in Equations (4-51) and (4-52).

∆푢 |
∗ =

푑퐽

푑푢
= 2퐻∆푢 | + 2푓 + 0 = 0 (4-51)

∆푢 |
∗ = −퐻 푓 = −퐻 퐹 푄(푃 − 푟 |) (4-52)

The optimal control deviation can then be calculated as seen in Equation (4-53), where the

gain matrix 퐺 = −퐻 퐹 푄 may be calculated in advance.

∆푢 |
∗ = 퐺(푃 − 푟 |) (4-53)

4.2.5 Feed forward control

In this BAS system a rapidly decrease in outside temperature is quickly measured by the

outside temperature sensors, however the feedback controllers will not react until the

temperature decrease/increase has affected the inside temperature. A feed forward (FF)

controller will keep the influence of the outside temperature to a minimum by modeling the

effect of the disturbance on the system. The FF control has previously been tested

successfully in house applications [7]. The controller needs to know when to act based on the

systems time delay, and how much to act based on the disturbance model. In this case the

time delay of the system is not known, but a FF controller can be designed from the current

nonlinear model. The FF block diagram together with a common feedback controller can be

seen in Figure 4-6.

Comfort intervals y u
-

Controller
House

Hp
Inside temperaturer

Outside Temperature

Heater

VT

GFF

+
+ +

+
GC

FF controller

Figure 4-6 Feed forward controller block diagram

In Figure 4-6 the FF controller gain GFF is seen added to the controller gain from the PID,

LQR or MPC, Gc .The FF gain is based on the modeled disturbance outside temperature VT.

 74

The FF controller needs to be designed based on the model, this means the model must be

solved for the gain u based on the outside temperature. The solution is calculated assuming a

constant reference 푥̇ = 0 seen in Equations (4-54) through (4-58).

0 =
푥 푉̇ − 휌 푉̇

푥 푉
푥 +

1

푥 푉(푐 −
푅
푀)
휌 푉̇퐻 − 푥 푉̇ 퐻 + 푄̇ (4-54)

−
푄̇

푥 푉(푐 −
푅
푀)
=
푥 푉̇ − 휌 푉̇

푥 푉
푥 +

1

푥 푉(푐 −
푅
푀)
휌 푉̇퐻 − 푥 푉̇ 퐻 (4-55)

푄̇ = − 푥 푉̇ − 휌 푉̇ 푐 −
푅

푀
푥 − 휌 푉̇퐻 + 푥 푉̇ 퐻 (4-56)

From the heat Equation (7-1) using steady state conditions the FF gain will be as seen in

Equation (4-57)

푄̇ = 푄̇ − 푄̇ , 푄̇ = 푢 (4-57)

Inserting Equation (4-57) into Equation (4-56) gives the control solution seen in Equation

(4-58).

푢 = − 푥 푉̇ − 휌 푉̇ 푐 −
푅

푀
푥 − 휌 푉̇퐻 + 푥 푉̇ 퐻 + 푄̇ (4-58)

Since the model was found inadequate in the previous sections this should only be a basis on

how to create a feed forward controller when the important mass factor is added. Some

experiments on the time delay in real house systems should also be performed to time the FF

controller correctly.

 75

4.3 Control Simulations

Before implementing the more advanced controllers in VS a good idea is to have them

function in the MATLAB environment. The controller calculations are done based on the

integrator model in Equations (4-3), (4-4) and (4-5) before the outputs are fed to the non-

linear model. The specific tuning parameters are seen in Table 4-1.

Table 4-1 Controller parameters

PID controller 퐾 = 375 푇 = 1126 푇 = 0

LQR controller 푞 = 1 푟 = 0.01 N/A

MPC controller 퐿 = 10 푞 = 10 ∗ 푒푦푒(퐿) 푟 = 0.01 ∗ 푒푦푒(퐿)

Where the user specified time constant is three, and 푒푦푒(퐿), denotes an identity matrix with

the size of the prediction horizon L.

The controller simulations can be seen in Figure 4-7.

Figure 4-7 Controller simulations

In Figure 4-7 all controllers and the predicted reference are working properly, the MPC

controller is starting somewhat earlier due to the prediction horizon. Since the predicted

reference will take care of the predictions into the future the MPC prediction horizon should

be set to the smallest stable value on implementation. It is however also seen that the LQR

especially reaches the comfort intervals a little too late due to the need to minimize the

overshoot. This is handled by increasing the predicted reference with a percentage that should

be set based on experimentally gained knowledge, 10% percent is adequate in this case.

The advantage over the LQ regulator over the MPC controller is that because of the infinite

prediction horizon the Controller feedback gain matrix G needs only be computed once, and

not at each sampling interval. This makes the optimal controller much faster than the MPC

 76

controller. The only disadvantage seen when in regards to the control problem is that no set

basis to handle process constraints. Due to the simplicity of the constraints in the BAS system

this does not propose any problems. The controller simulation function is found in the

Appendix 6: MATLAB scripts paragraph 7.6.6

4.4 Controller discussion

All the control methods have been analyzed, designed and simulated and simulated based on a

SSM model and the non-linear first principles house model seen in Part 1 paragraph 2.2.1.

The finished BAS system will be MIMO systems which should remove the common feedback

PI control as any option. MPC and LQR controller methods are model dependent but the basis

of the thesis is to evaluate a model based BAS system and as such a working model is

expected on implementation.

The MPC controller is much more advanced than the LQR controller and the main reason to

choose MPC over LQR would be the straight forward way of handling constraints. These

constraints can however be handled simply using if-else statements. An overview of the

control methods tested can be seen in Table 4-2.

Table 4-2 Control methods properties overview, (X) included, (-) not included

An important note not is that the only control not model dependent and thus not being limited

by the correctness of the model is the feedback control.

Feed forward control has been found to be a viable option in order to reduce the influence of

the outside temperature [7] . The feed forward controller can in theory be added to all the

controllers mentioned above. Care should be taken when introducing the feed forward

controller to a MIMO system.

Properties Feedback PID control Linear Quadratic Regulator Model Predictive Control

SISO X X X

MIMO - X X

Optimal control - X X

Output feedback X X X

State feedback - X X

Constraints Handling - - X

Model dependent - X X

Complexity Low Medium High

Computing time Low Low High

77

4.5 Heater control

For the BAS control systemto be a viable commercialapplicationthe control systemmust

work with existing heaters. In most casesthese heaterswill probably be simple on-off

thermostatcontrolled with some power settings. The control output delivered from the

controllersis howevera scalarvaluebetweenzeroandthemaximumavailableheaterpower.

Thesimplestsolutionwould beto usea socketon-off switchandturningall theheatersto the

maximumsettingsandletting theon-off controllerhandlewhentheheatersshouldbeon.This

is not thebestsolutionaswasevident in part2 paragraph3.5.3. A betterresultis achievedby

using a binary on/off Pulse Width Modulation (PWM) signal. This makes the heaters

applicablefor all variationsin output powersettings.In Figure 4-8 the PWM is visualized

with theconnectionto theheaters.

Figure 4-8 PWMcontrol layout

The PulseWidth Modulationof a signalusuallyrefersto rapid pulsingof a digital signal in

order to simulatevarying voltage. In this casethe PWM is useda little differently, as each

samplingtime the PWM is usedto have the correct power output from the heaters.The

samplingtime interval, (six minutes), is dividedinto a carriersignalfrequencyof 10 shiftsper

interval;thismeans36seconds’intervalsor 0.0278Hz.

The saw tooth waveformis usedto set the correcton-time basedon the duty cycle. For a

1000Wheatera 20%dutycyclemeansthattheheaterwill be1000W20%of thetimeand0W

80%of thetimemakingit average200Woverthesamplingperiod.An 80%dutycyclemeans

thattheheaterwill be1000W 80%of thetime and0W 20%of thetime averaging800Wover

thesamplingperiod.The200Wand800Wexamplescanbeseenin Figure4-9, on theleft and

right respectively.

 78

Figure 4-9 PWM with 20% duty cycle on the left and 80% duty cycle on the right

In addition to the PWM software there needs to be a hardware on-off device connected to the

control system between the heater and the power grid. This controllable socket device should

be made to handle relatively high frequency on/off signals, however if the heaters use a too

high PWM frequency this will create a problem on the power grid. In a large house the BAS

system will control a lot of heaters, utilizing much power. If these loads are turned on and off

at very frequent intervals they will chop up the 50Hz Sinus. This creates a non-linear load and

Harmonics on the power grid which might create severe problems on the power grid. In order

to resolve this issue the heaters will not be turned on and off at any speed near to the 50Hz net

frequency. The selected low frequency carrier signal of 0.0287Hz will be adequate to ensure

no harmonics occur. These low frequency shifts should not be a problem due to the large time

constants of the model. Some additional control should be included to avoid very small duty

cycles. This can be done by dividing the PWM duty cycles into minimum regions, i.e. 5%.

The MATLAB function creating the PWM signal based on the maximum heater power and

the output from the controller can be found in the Appendix 6: MATLAB scripts paragraph

7.6.7.

0 1 2 3 4 5 6
0

0.5

1

Carrier sawtooth wave

0 1 2 3 4 5 6
0

0.5

1

PWM with 20% duty cycle

Time [Min]

1=
O

n
 ,

0=

O
ff

0 1 2 3 4 5 6
0

0.5

1

Carrier sawtooth wave

0 1 2 3 4 5 6
0

0.5

1

PWM with 80% duty cycle

Time [Min]

1=
O

n
 ,

0=

O
ff

 79

4.6 Software development

The control system should be the main GUI of the BAS monitoring and control system using

the predictor and the control methods explained in paragraph 4.2, and the sensor data saved to

file from the gateway system. The control algorithms have several tuning settings that should

be changeable in a configuration, together with the controller type. The SSM model can be

calculated from the model and house configurations or entered directly in the configuration.

The MPC and LQR control algorithms should applicable for MIMO systems, however the

main control system will use the SISO implementation from paragraph 4.1.2.

The heater output will be through a DAQ 6008 device and the experiments will be run on the

air heater using the built in PWM [13]for this reason the PWM will not be included in VS.

All configurations from the control system and the predictor seen in paragraphs 4.6.2 and

3.4.2 are added as tabbed forms to a main configuration form creating a straight forward

GUI, and saved in XML using the XML class from part 1 paragraph 2.3.2.1 appended with

new parameters.

The sensor values will be plotted based on name and location into one outside temperature

graph and one inside temperature graph. The outside sensors will be chosen on the basis that

the location should include outside. The analysis sheet can be found in Appendix 3 FURPS+

paragraph 7.3.3.

4.6.1 The use case diagram

The functionality of the control system is made into a use case diagram to give a good visual

representation. In Figure 4-10 the control systems use cases are seen with the gateway

configuration seen in paragraph 2.3.2, predictor 3.4 and log files 2.3.4 as inputs to the system.

The main outputs to the system are the heaters and the display.

Figure 4-10 Control system use case diagram

80

Thecontrol systemlayeredarchitectureis seenin Figure4-11, whereall main classesin the

systemare visualizedand connectedto the physical layers.The operating systemfor the

sensorvalues and configurations. The arrows show the information flow between the

predictorthesensorvaluesandthecontrollers.

Figure 4-11 Layeredarchitectureof control system

4.6.2 Configuration use case

Theconfigurationusecasespecificfor this lastpartcontrolsystemwill consistof two main

forms,thefirst will bethecontrolconfigurationandthesecondthesensorconfiguration.The

sensorconfigurationwill functionasa copy of thegatewayconfigurationusedto getthe

correctsamplingtime,andsensorspecifications.All configurationparameterswill besaved

to thecontrolsystemconfig.XML file. Theanalysisdocumentationof theconfigurationis

foundin Appendix4: Fully dressedusecasedocumentsparagraph7.4.3

4.6.2.1Designing the sensor configuration form

Thesensorconfigurationform will readthecurrentconfiguration from thegatewayandstore

this in thecontrolsystemconfiguration.Thesensorconfigurationshouldnot bechangeablein

thecontrolsystemandis setto readonly. ThesensorconfigurationGUI will containthetable

with thesensorsandthesamplingtime andthepathof thesensorvalues.Thereis a buttonto

prompttheuserto selectthepathof thegatewayconfigurationfile andthepathof thesensor

log file. ThecreatedGUI in thesensorconfigurationform canbeseenin Figure4-12.

 81

Figure 4-12 Gateway / sensor configuration form GUI seen with sensor and sampling time

values from Part 1 paragraph 2.4

Since the system needs the sensor location file in order to function the main system will not

start if this file is missing and the user will be prompted to enter the location and name of the

file.

4.6.2.2 Designing the controller configuration form

The controller configuration should include all the setup needed to calculate the steady state

gains from the Kalman filter seen in paragraph 3.2.3.1, the LQR 4.2.3 and the MPC matrices

4.2.4. These setup algorithms are made into the Kalman filter and controller’s individual

classes. The user should be able to select which controller to use and set the controllers tuning

parameters, the LP filter constant, and the steady state values. The steady state values are used

together with the house and model data to create the SSM model, however the SSM can also

be entered directly in its discrete form. All this is included in the controller configuration GUI

seen in Figure 4-13

 82

Figure 4-13 Controller configuration showing all configurations when run using air heater

and parameters from Part 2 paragraph 3.5

The MPC controller setup needed some new matrix manipulation functions added to the

Matrix library. These extra functions are found in Appendix 5 – Source Code paragraph

7.5.2.5. All parameters are saved in the config.XML file under the added controller element.

New elements are added in the same manner as in paragraph 2.3.2.

4.6.2.3 Control system configuration GUI

In order to handle all the configurations needed for the created control system the

configurations were added to a main configuration forms tab control. The BAS logo and the

current date and time are visualized above the tab control. This can be seen in the screen

dump of the configuration at run time in Figure 4-14

Figure 4-14 Main control system GUI showing all the configurations needed for the control

system in tab selections

Each configuration parameter is included with a context menu strip giving a right click help

button information option, and can be seen in the Appendix 5 – Source Code paragraph

7.5.3.2. Excerpts of the configuration code primarily the control algorithm setup can be found

with commentary in Appendix 5 – Source Code paragraph 7.5.3.

 83

4.6.3 Calculate control output use case

The controller use case is based on the parameters set in the configuration and the control

theory in paragraph 4.2. Excerpts of the main code algorithm with commentary can be found

in Appendix 5 – Source Code paragraphs 7.5.3.3 through 7.5.3.3.4.

4.6.4 Display control system use case, the main GUI

The main GUI of the control system should give the user the necessary information currently

available. The main control system GUI is seen in a screen dump in Figure 4-15 while reading

the log file from the data acquisition experiments done in part 1 paragraph 2.4. In Figure 4-15

there are two main graphs; one for the inside and one for the outside temperature. Two

smaller graphs contain the control output and the predicted heating time. The calculated

predicted heating time, average inside temperature and average outside temperature is set in

text boxes on the lower left side. The predicted heating time is seen as 59 minutes using the

average inside temperature of 18°C for prediction. Average heater output from the five

heaters is seen as 500W.

Figure 4-15 Control system GUI while reading sensor values from log file

 84

4.7 Experiments introduction

The BAS system should be tested with the control methods and all relevant software. The

MPC and LQR controllers are model dependent and a poor model will result in poor control.

In order to make sure the controllers are working correctly a better model of the air heater will

be gathered using the DSR subspace system identification method [27].

4.7.1 Experiment setup

The setup to the completed BAS experiments is the same as in part 2 Estimation of heating

time and can be found under paragraph 3.5 Experiment setup. The control system is added to

the computer software and including the predictor. Some changes were made to the control

system for these experiments: The outside temperatures graph was changed to show all the

controller outputs at the same time. The steps in the comfort intervals references were set to

be 30 seconds, instead of an hour and only Mondays references was used for simplicity. The

comfort temperature was set to be 40°C and the low temperature was set to be 30°C. The time

stamps were used as the 0.2 second sample time and the MPC prediction horizon was set to

30 samples, or two seconds

To get the best model the air heater was excited using a pseudo random binary reference

between the minimum 0V and the maximum 5V outputs [13]. The MATLAB dsr toolbox

resulted in the following SSM matrices seen in Equation (4-59)

퐴 = 0.9997 퐵 = 0.001459 (4-59)

The experiments tuned weighting parameters are seen in Table 4-3.

Table 4-3 Experiments controller parameters

PID controller 퐾 = 0.8 푇 = 23 푇 = 0

LQR controller 푞 = 0.01 푟 = 100

MPC controller 퐿 = 30 푞 = 1.5 ∗ 푒푦푒(퐿), 푟 = 250 ∗ 푒푦푒(퐿)

 85

4.7.2 BAS experiment results

Using the new model the controllers showed some specific categories. The PID controller was

simple to tune and produced good results, the LQR was somewhat harder to tune but gave the

best results. The MPC controller proved very hard to tune and produced the least good results.

The LQR controller can be seen working in the control system screen dump in Figure 4-16

and all three controller experiments results can be seen plotted together using MATLAB in

Figure 4-17.

Figure 4-16 Screen dump of control system working with LQR controller; output temperature

seen in top graph and all controller outputs seen in bottom graph.

Figure 4-17 All controller experiments results plotted together in MATLAB

 86

4.8 Discussion

The control system experiments showed the standard feedback controller as a viable option

for the air heater SISO system producing good control results. A complete house will

however be a MIMO system and the correct tuning of several inputs (heaters) and several

outputs (room temperature) will be complex [19]. The two controllers applicable for these

MIMO systems are the LQR and the MPC. The MPC proved however hard to tune correctly

and use complex matrix algorithms in the calculation of the control output. This makes the

MPC controller both harder to understand code and debug. The LQR regulator however

showed great promise during the experiments. Even though the comfort intervals were

reached a little too the LQR both stabilized the system the fastest and also prevented

overshoot.

The MPC controller was shown in simulation to produce as good results in paragraph 4.3;

however the added complexity of tuning the MPC resulted in poorer performance. The

reasons to select the MPC over the LQR is the constraints handling and the future predictions

contained in the prediction horizon. In this BAS system however the future predictions are

taken care of by the predictor and the only constraints in the system are the maximum and

minimum heater power. These constraints are proven handled just as good using if an else

statements.

Adding a feed forward controller to the BAS system will prove an advantage in response to

sudden changes in the outside temperature. The added controller will also increase the

complexity and will rely on a good model. The feed forward controller should be included to

the system when a suitable model is obtained and new experiments should be run to answer

the need for this controller’s added complexity.

 87

5 Conclusions

The gateway has been thoroughly analyzed, coded and tested. The gateway was running

correctly for 12 consecutive days. The theory behind the main parameters of the house model

was discussed and during the practical experiments part some ways of determining the U

value has been tested.

The model has been proven unsatisfactory in regards to the real experiments data. The model

does not take into account the house mass and heat capacity the time constant will be too

small. Augmenting the model using a Kalman filter has been shown to largely improve the

estimations. The pure OLS regression model proved best when handling systems with time

delayed reactions to the control output. Any time delay in the system added to the Kalman

filter disturbance estimated SSM model should be added as an offset to the heating time

estimations.

Using a simple on-off controller for keeping the temperature at comfort interval was found as

inadequate. Three controllers were tested for reliability, complexity and handling of MIMO

systems. The MPC controller was found as unnecessary complex, the PID controller will

prove advanced to tune in a MIMO system. The optimal controller for the MIMO BAS

system is proposed as the LQ regulator. This selection is based on the fact that this BAS

system will have a working house model.

A subspace system identification method is simple to implement and will create a very good

model when conditions are stable. A first principle model will be more adaptable to changes

and the house model should be augmented with the house mass.

During this thesis it has been proven that an adaptable BAS system will result in large energy

savings for a common working household.

 88

6 Future work

In order to have a building model predicting correctly the current house model should be

augmented with the house mass heat capacity using first principles. The house model should

also be adapted to handle several rooms, floors and heaters (MIMO). The house mass is

constant and should then be estimated correctly using the Kalman filter.

Implementing a way for measuring the solar radiation is important to get an accurate

estimation of heating time. In addition the sensor network should add sensors for measuring

the ventilation, air density, and pressure.

The ZigBee gateway should include a send method and tests should be performed using the

software PWM together with heaters and the gateway in future experiments.

The control system should add the possibility of MIMO systems configurations, and different

temperature settings in different rooms. In addition a better way of sorting the inside and

outside temperature sensors should be implemented.

A feed forward controller should be implemented to work during the comfort intervals to

minimize the influence of the outside temperature.

The DSR subspace system identification algorithm should be implemented in VS. This

algorithm can be used in parallel with the first principle house model to further test the

functionality.

 89

References
i

[1] X. G. Stian Krogstad, Moa'atasim Amer, Terje Nordal, "Smart House: BAS
Design for Electrical Heating," 2012.

[2] L. H. G. Birger Bergesen, Benedicte Langseth, and D. S. Ingrid H.
Magnussen, Jun Elin Wiik Toutain. (2012). Energibruksrapporten 2012 -
Energibruk i husholdninger. Available:
http://webby.nve.no/publikasjoner/rapport/2012/rapport2012_30.pdf

[3] S. Sentralbyrå. (2011). Priser på elektrisk kraft, 4. kvartal 2010. Available:
http://ssb.no/elkraftpris/arkiv/art-2011-01-11-01.html

[4] Nobø. (2013). Energikontroll gjort enkelt. Available: http://www.nobo.no/

[5] C. P. D.W.U. Perera, N.-O. Skeie "Modelling and simulation of heat dynamics
of a single room with ventilation under Norwegian building regulations," 2013.

[6] K. K. Andersen, H. Madsen, and L. H. Hansen, "Modelling the heat dynamics
of a building using stochastic differential equations," 1998.

[7] M. S.-M. Bertil Thomasa, Per Fahle, "Feed-forward in temperature control of
buildings," 2004.

[8] I. Forening. Forskrift om krav til byggverk (Byggteknisk forskrift) TEK10.
Available: http://www.ipf.as/forskrifter.htm

[9] RIBA. (2013). U-Values. Available:
http://www.architecture.com/SustainabilityHub/Designstrategies/Earth/1-1-1-
10-Uvalues(INCOMPLETE).aspx

[10] S. Krogstad, "ZigBee PRO development kit set up guide," ed, 2012.

[11] Z. Alliance, "ZigBee Specification," 2007.

[12] T. Instruments, "A True System-on-Chip Solution for 2.4-GHz IEEE 802.15.4
and ZigBee Applications," 2009.

[13] F. Haugen. (2010). Lab Station: Air Heater. Available:
http://home.hit.no/~finnh/air_heater/

[14] N.-O. Skeie, "Object-Oriented Analysis, Design, and Programming using UML
and C#," 2011.

[15] T. Instruments, "CC253x System-on-Chip Solution for 2.4-GHz, IEEE 802.15.4
and ZigBee® Applications, CC2540/41 System-on-Chip Solution for 2.4-GHz
Bluetooth® low energy Applications User's Guide " 2012.

[16] Wikipedia. (2011). CSV. Available: http://no.wikipedia.org/wiki/CSV

[17] D. Obasanjo and M. Corporation. (2003). XML Serialization in the .NET
Framework. Available: http://msdn.microsoft.com/en-us/library/ms950721.aspx

[18] A. Devices. (2010). Low Voltage Temperature Sensors

TMP35/TMP36/TMP37. Available: http://www.analog.com/static/imported-
files/data_sheets/TMP35_36_37.pdf

[19] D. D. Ruscio, System theory, State Space Analysis and Control Theory, 1996.

[20] T. Finn Haugen. (2005). Discrete-time signals and systems. Available:
http://www.scribd.com/doc/26420589/39/Discretization-with-zero-order-hold-
element-on-the-input

[21] D. D. Ruscio, Subspace System Identification Theory and applications, 1995.

[22] C. F. Pfeiffer, "Title," unpublished|.

 90

[23] I. Kuckir. (2011). Lightweight fast matrix class in C# (Strassen algorithm, LU
decomposition). Available: http://blog.ivank.net/lightweight-matrix-class-in-c-
strassen-algorithm-lu-decomposition.html

[24] H. P. L. Aslak Tveito, Bjørn Frederik Nielsen, Xing Cai, "Elements of Scientific
Computing," ed, 2010.

[25] H. P. Halvorsen. (2013). NI USB-6008 DAQ Device. Available:
http://home.hit.no/~hansha/documents/lab/Lab%20Equipment/NI%20USB-
6008%20DAQ%20Device/NI%20USB-6008%20DAQ%20Device.pdf

[26] Wikipedia. (2013). What is the U value of plexiglass? Available:
http://wiki.answers.com/Q/What_is_the_U_value_of_plexiglass

[27] D. D. Ruscio. (2013). D-SR Toolbox for MATLAB. Available: http://www-
pors.hit.no/tf/fag/sce2206/d-sr/d-sr_e.html

[28] S. Skogestad, "Probably the best simple PID tuning rules in the world," 2001.

[29] D. D. Ruscio, "Discrete LQ optimal control with integral action:

A simple controller on incremental form for MIMO

systems," 2012.

[30] H. P. Halvorsen. (2011). Model Predictive Control in LabVIEW. Available:
http://home.hit.no/~hansha/documents/labview/training/Model%20Predictive%
20Control%20in%20LabVIEW/Model%20Predictive%20Control%20in%20Lab
VIEW.pdf

[31] D. D. Ruscio, MODEL PREDICTIVE CONTROL

and optimization, 2001.

[32] Microsoft. (2013). Microsoft Solver Foundation. Available:
http://msdn.microsoft.com/en-us/devlabs/hh145003.aspx

[33] D. D. Ruscio, "Model Predictive Control with integral action," 2011.

 91

7 Appendices

Appendices table of contents
7.1 APPENDIX 1- THESIS TEXT ... 93

7.2 APPENDIX 2: MEASURING THE U VALUE ... 95

7.3 APPENDIX 3 FURPS+ .. 96

7.3.1 Gateway FURPS+ ... 96

7.3.2 Predictor FURPS+ .. 97

7.3.3 Control System FURPS+ .. 98

7.4 APPENDIX 4: FULLY DRESSED USE CASE DOCUMENTS ... 99

7.4.1 Gateway .. 99

7.4.2 Predictor ... 104

7.4.3 Control System .. 108

7.5 APPENDIX 5 – SOURCE CODE... 114

7.5.1 Gateway Code Excerpts .. 114

7.5.1.1 The Configuration Code ... 114
7.5.1.2 Code results .. 115
7.5.1.3 Testing software and error handling ... 117
7.5.1.4 The DisplayConfigData code .. 118
7.5.1.5 Testing and error handling .. 119
7.5.1.6 The DisplaySerialdata Code ... 121
7.5.1.7 The LOG Code ... 122
7.5.1.8 Log Results ... 124
7.5.1.9 LOG testing and error handling .. 124
7.5.1.10 Space required for log file saving .. 125

7.5.2 Predictor methods and algorithms .. 126

7.5.2.1 Coding the configuration .. 126
7.5.2.2 Testing and error handling .. 126
7.5.2.3 Coding the get sensor values .. 126
7.5.2.4 Coding the predictor use case ... 127
7.5.2.5 Additions to the Matrix library ... 130
7.5.2.6 Testing and error handling .. 130

7.5.3 Controller methods and algorithms .. 132

7.5.3.1 The main configuration and tab controls .. 132
7.5.3.2 Configuration help examples .. 133

7.5.3.2.1 Configuration testing and error handling ... 133
7.5.3.3 Controller use case .. 133

7.5.3.3.1 PID class .. 134
7.5.3.3.2 LQR class ... 134
7.5.3.3.3 MPC class .. 135
7.5.3.3.4 PID class .. 137

7.5.3.4 Control system GUI .. 137
7.5.3.4.1 Additions to the MATRIX class ... 138

7.5.3.5 Testing and error handling .. 139

7.6 APPENDIX 6: MATLAB SCRIPTS ... 140

7.6.1 The data processing script .. 140

7.6.2 NaN removal function ... 142

7.6.2.1 Testing the NaN removal function .. 142

7.6.3 The Outlier Removal function ... 143

7.6.4 The LP filter function .. 144

 92

7.6.5 The month to name month function ... 144

7.6.6 The control simulation function .. 145

7.6.7 The PWM function ... 147

7.7 APPENDIX 7: EXPANDED MODEL ... 148

7.8 APPENDIX 8: REGRESSION MODELS FOR PREDICTOR .. 149

 93

7.1 Appendix 1- Thesis text

 94

 95

7.2 Appendix 2: Measuring the U value

In order to measure the U values directly with the ZigBee sensor network the house and

outside temperatures are needed in a steady state. This might however happen in some

meteorological instances and the U-values can be measured by using a tile with known

resistance and three temperature sensors. This is seen in Figure 7-1.

Figure 7-1 Measuring the U value experimentally

Another way to measure the total house heat leakage value, 푈 , or energy leakage would be to

measure the amount of power used over a period of steady state conditions8, with all

ventilation closed, and use that in steady state we have as seen in (7-1) and (7-2).

푄 = 푄 = 푈 퐴∆푇 (7-1)

푈 =
푄

퐴∆푇

(7-2)

Where 퐴 is the total surface area of the house, and ∆푇is the difference between inside and

outside temperatures and Qw is the heater power used to keep the inside at constant

temperature.

Both these estimations rely heavily on steady state conditions and while steady state

conditions in the inside temperature is obtainable. Steady state in the outside temperature

rarely happens over any large amount of time. The best way to measure the U value would be

to use a heat flux based measurement as TRSYS01 from Houseflux Thermal sensors. The heat

flux based measurement does not need steady state conditions.

8 Steady state means

 96

7.3 Appendix 3 FURPS+

7.3.1 Gateway FURPS+

Functional Get sensor values from the ZigBee sensors, and display them to a LCD

Log to file on disc, parsed data and raw data if needed, containing tag

information, current date and time

Configuration; Specify time for saving the sensor data, holding all the

needed information about the sensors, and all the serial link properties

Usability Language English

Keyboard and mouse

Display (current values, parsed and raw and configuration)

Hard Disk for saving the sensor data, and keeping the configuration

Configuration file should be XML v 1.0 format containing sensors, sampling

time and serial link configuration.

LOG standard is in text format with extension .log as:

[datetime;sensor1value;sensor2value;sensor3value….]

Reliability The system will run 24x7.

Performance Save file timer set in configuration

Serial read existing parameter timer set in program. [50ms].

Supportability

+ The gateway will run on windows based OS (32/64bit) using C# and

windows forms

 97

7.3.2 Predictor FURPS+

Functional Read sensor values from the log file created by gateway

Predictor: Learn the system by logging the data and turning the heater on

full. Learn both using OLS and K-OLS-SSM estimates. Predict the heating

time based on current environmental values, and the prediction models

created from the learn function.

Configuration of the house model, house parameters, and comfort intervals

Usability Language English

Keyboard and mouse

Display (current values, parsed and raw and configuration)

Hard Disk for reading the sensor data, and keeping the configuration

Configuration file should be XML v 1.0 format containing sensors, sampling

time and serial link configuration.

Set heater output using DAQ 6008 device

Reliability The system will run when user specified and automatically the first time

Performance Use sampling time from gateway to get correct prediction regression models

Maximum output values in the DAQ-6008 device is 5V

Supportability

+ The gateway will run on windows based OS (32/64bit) using C# and

windows forms

 98

7.3.3 Control System FURPS+

Functional Control the temperature and calculate the controller outputs based on the

model and the configurations

Display the complete control system GUI, plot the inside temperature

outside temperature and heater output, and heating time estimation as

graphs, give a clear indication to which controller method has been selected.

Configuration of controllers and sensors including the Predictor

configurations in a main configuration form. All configuration kept in a

static data object and XML file.

Usability Language English

Keyboard and mouse

Display

Hard Disk for the configuration

Configuration file should be XML v 1.0 format

Controller output will be set using DAQ 6008 device

Reliability The system will run when user specified and automatically the first time

Performance Run each sampling time set in the gateway

Maximum output values in the DAQ-6008 device is 5V

Minimum output is set to be 0V

Supportability

+ The gateway will run on windows based OS (32/64bit) using C# and

windows forms

 99

7.4 Appendix 4: Fully dressed use case documents

7.4.1 Gateway

Use Case # 1 Gateway.

1 Use Case Name Configuration

2 System/Scope Gateway

3 Level User Goal

4 Primary Actor HD

5 Stake Holders Control System

6 Preconditions NA

7 Success

Guarantee

Configuration created, opened and saved

8 Main success

scenario

1 Open configuration

2 Edit configuration add sensors

3 Save configuration

9 Extensions 1A no file to open, create new configuration file

1B Error in file, create new configuration file

3A Save error, give message to user, retry?

10 Special

Requirements

Want to use XML V1.0 based configuration files

11 Technology List

12 Frequency of

occurrence

Each time the user needs to change the configuration or the system

will need the configuration data

13 MISC The configuration will be broken up in one windows form for

displaying and editing the configuration values and one class file for

the configuration XML based functions. This file will also handle

extensions 1A and 1B

 100

Use case # 2 Gateway

1 Use Case Name DisplayConfigData

2 System/Scope Gateway

3 Level User Goal

4 Primary Actor LOG HD and Display, User (keyboard, mouse)

5 Stake Holders Control System

6 Preconditions

7 Success Guarantee Configuration loaded, changed, and saved

8 Main success scenario 1 Open Configuration (USER)

2 Display configuration data

3 Edit Configuration data (USER)

4 Save Configuration data to HD

9 Extensions 4A Save new Configuration data Y/N/C

4A: Y save the information , exit form

4A: N do not save new information, exit form

4A: C Break operation and return to form

10 Special Requirements Want to use XML based configuration files

11 Technology List .NET V, XML Version 1.0

12 Frequency of

occurrence

@ user request

13 MISC The software will be de the GUI between the user and the

configuration data

 101

Use case #.3 Gateway

1 Use Case Name LOG

2 System/Scope Gateway

3 Level User Goal

4 Primary Actor Harddisc

5 Stake Holders Control System

6 Preconditions

7 Success

Guarantee

Raw serial data received, parsed, saved and returned

8 Main success

scenario

1 Raw serial data received

2 Split up raw serial data in messages

3 Parse the split data into sensor data [datetime;sensor1;sensor2; . .]

4 Save data

9 Extensions 1A no data received

1B Return empty string

3A return NAN if no value is found for that sensor

4A IO error, save error in error.log

4B retry

10 Special

Requirements

11 Technology List .NET V, XML Version 1.0

12 Frequency of

occurrence

@ program request

13 MISC The LOG will be used by the other use cases in order to save error

logs and, parse the raw serial data.

 102

Use case #4 Gateway

1 Use Case Name DisplaySerialData

2 System/Scope Gateway

3 Level User Goal

4 Primary Actor ZigBee Coordinator[Serial port], timer

5 Stake Holders Control System

6 Preconditions The ZigBee network has been started and is up and running with

all devices. The ZigBee SW is working correctly

7 Success Guarantee Sensor values read, displayed and saved to file

8 Main success scenario 1 Get Configuration (serial port, and save file timer)

2 User pressed start log button

3 Disable Configuration button

4 Open COM port

5 Save file dialog, select file to save log

5 Start COM timer

5.1 Read existing serial data into memory, and text box

5.2 Sleep [100ms]

5.4 go to 3.1

6 Start save file timer

6.1 Send raw data to the log class, parsed data returned

6.2 Send Parsed data to parsed data text box

6.3 Save Parsed data, and raw data if checkbox is checked

6 .3 Sleep [Save File Timer]

7 Stop log button pressed

7.1 Stop logging to file

7.2 Enable configuration button

8 User press configuration button

8.1 Show DisplayConfigData form

9 User exit using Cross

9.1 Hide application

9.2 Give notice of application still running

10 User exit using exit button

10.1 Application stopped

 103

Extensions 4A COM port error, give message box warning

4B Save error to error.log

4B Break saving operation

5 No file selected

5B Show message box warning

5C Break operation

Special Requirements Want to use XML based configuration files

Technology List ZigBee Pro Development Kit Gateway device – Coordinator

COM/ Serial port/ or USB to Serial port

Frequency of occurrence @ Program request (each sampling time)

MISC

 104

7.4.2 Predictor

Use case #1 Predictor

1 Use Case Name Configuration (Predictor)

2 System/Scope Predictor (Control System)

3 Level User Goal

4 Primary Actor OS

5 Stake Holders Control System

6 Preconditions NA

7 Success Guarantee Configuration created, opened and saved

8 Main success

scenario

Model parameters (molar mass, gas constant etc.)

1 Open configuration

2 Edit configuration

3 Recalculate parameters

4 Load default values

5 Save configuration

House parameters (heater effect, house area, volume ventilation,

etc.)

6 Open configuration

7 Edit configuration

8 Save configuration

Comfort Intervals (comfort temperature, low temperature)

9 Open configuration

10 Set comfort temperature

11 Set low temperature

12 save new configurations

 105

Extensions Model parameters (molar mass, gas constant etc.)

1A no file to open, create new configuration file with default values

1B Error in file, create new configuration file

2A only numerical values and one separating sign allowed

3A Save error, save the error to the error log file

House parameters (heater effect, house area, volume ventilation, etc.)

4A no file to open, create new configuration file with default values

4B Error in file, create new configuration file

5A only numerical values and one separating sign allowed

8A Save error, save the error to the error log file

Comfort Intervals (comfort temperature, low temperature)

9A no file to open, create new configuration file with default values

9B Error in file, create new configuration file

10A only numerical values and one separating sign allowed

11A only numerical values and one separating sign allowed

12A Save error, save the error to the error log file

Special

Requirements

Want to use XML V1.0 based configuration files

Technology List

Frequency of

occurrence

Each time the user needs to change the configuration or the system will

need the configuration data

MISC The configuration will be broken up into three windows forms for

displaying and editing the configuration values and one class file for the

configuration XML based functions.

The configXML class will handle extensions 1A and 1B

 106

Use case # 2 Predictor.

1 Use Case Name Get sensor values

2 System/Scope Predictor (Control System)

3 Level User Goal

4 Primary Actor OS

5 Stake Holders Control System

6 Preconditions Sensor values saved by the Gateway

7 Success Guarantee Sensor values log file open and read to correct line

8 Main success

scenario

1 Using log file (opening and closing at once reading is done)

2 Read to current line

3 Filter the data through a low pass filter

3 Convert the ADC values to temperature data

9 Extensions 1A no file to open, prompt user with file missing error message

1B Error in line, create new configuration file

2A End of file

2B Wait one sampling time

3A Non numerical values received

3B Save error log message

3C Jump to next line

10 Special

Requirements

Want to use XML V1.0 based configuration files

11 Technology List

12 Frequency of

occurrence

Each time the user needs to change the configuration or the

system will need the configuration data

13 MISC The low pass filter function will be created in one class and read

sensor values in another class

 107

Use case # 3 Predictor

1 Use Case Name Predictor

2 System/Scope Predictor (Control system)

3 Level User Goal

4 Primary Actor Control System

5 Stake Holders Control System

6 Preconditions Sensor values read by Read sensor values

Model, house and temperature data stored in XML file

DAQ-6008 device on line

7 Success Guarantee Learn function finished and regression models created

8 Main success scenario Learn part

1 Read configuration

2 Run three sample times to stabilize Kalman gain

3 Set heaters to maximum

4 Comfort temperature reached

5 Save regression models

Prediction part

6 Select OLS or K-OLS-SSM model

7 Run heating time estimations

8 Get comfort intervals reference

9 Go to 6

9 Extensions 1A no file to open, prompt user with configuration file

missing

1B Error in configuration, prompt user to create new file

4A Comfort temperature not reached within maximum time

4B Stop predictor and prompt user

5A File save error

5B prompt user and save error in error.log file

10 Special Requirements Want to use XML V1.0 based configuration files

11 Technology List DAQ-6008 USB device

12 Frequency of

occurrence

Learn at fresh startup or user interaction

Prediction each sampling time

13 MISC

 108

7.4.3 Control System

Use case #1 for control system

1 Use Case Name Configuration

2 System/Scope Control system

3 Level User Goal

4 Primary Actor Display

5 Stake Holders Control System

6 Preconditions

7 Success Guarantee Configurations parameters opened, edited and saved.

8 Main success scenario Sensor values configuration

1 Load current configuration from XML file

2 User button pressed load gateway configuration

3 Prompt user for path of gateway configuration

4 Get configuration from gateway config.xml file

5 Prompt user for path of sensor values log file

6 Read sensor.log path

7 Save new values to control system Config.XML file

Controller configuration

8 Load current configuration from XML file

9 Edit configuration parameters set in text boxes

10 Calculate new SSM matrices using set parameters

11 Save button to save new configuration

 109

9 Extensions Sensor values configuration

1A File does not exist, Create new file

1B Error in file, Create new file

2B Prompt user with error message

4A No file selected

4B Prompt user with error message

6A Save error

6B Prompt user with error message

Controller configuration

8A File does not exist, Create new file

8B Error in file, Create new file

6A Save error

6B Prompt user with error message

10 Special

Requirements

Want to use XML V1.0 based configuration files

11 Technology List

12 Frequency of

occurrence

Each time the user needs to change the configuration or the system

will need the configuration data.

13 MISC This configuration also contains all parameters from the predictor

configuration.

Extensions 1A, B and 8A,B handled by the ConfigXML class

In order to have changes made while running and save time used to

open and read the XML file often the ConfigXML class should be

set as static

 110

Use case #2 for the control system

1 Use Case Name Controller

2 System/Scope Control system

3 Level User Goal

4 Primary Actor USB-6008 and Predictor

5 Stake Holders Control System GUI

6 Preconditions

7 Success Guarantee Configurations parameters opened, control output calculated and

sent to DAQ device.

8 Main success

scenario

1 Load current configuration from XML file

2 Open DAQ-6008 device

3 Get current reference and sensor values from predictor

4 Get current controller from XML config file

5 Calculate control output

6 Send control output to DAQ-6008 device

7 Go to 3 (loop)

8 At control system GUI request stop control and close DAQ-6008

 111

9 Extensions 1A File does not exist or file error, Prompt user for error

1B Break control

1C Open configuration

2A DAQ not connected,

2B Message user

2C Break control operation

4A Go to 1A

5A Error in Calculation

5B Save error message in error log file

6A DAQ-error

6B Send error message user

6C Break control operation

10 Special

Requirements

Using XML V1.0 based configuration files

11 Technology List DAQ-6008 USB Device

Predictor

12 Frequency of

occurrence

At control system request each sample time 24/7

13 MISC All control system configuration set as a static value in the main form

Control System GUI to speed up system since reading and parsing

XML file takes too much time during loop.

 112

Use case #3 for the control system

1 Use Case Name Control System GUI

2 System/Scope Control system

3 Level User Goal

4 Primary Actor Display

5 Stake Holders

6 Preconditions

7 Success

Guarantee

Configurations parameters opened, edited and saved.

8 Main success

scenario

1 Load current sensor configuration from XML file

2 Set up plots with correct sensors one series for each sensor and

outside temperatures in one graph and inside temperatures in another

graph. Separate the inside and outside sensors using the “out” keyword.

3 User button pressed start control

4 Start predictor

5 Start Controller

6 Plot Sensor values

7 Plot Controller values

8 Plot Predicted heating time

9 Go to 4 (loop)

 113

9 Extensions 1A Handled by Config.XML class

4A Handled by predictor class

5A Handled by controller class

8A User interaction , stop control button pressed

8B Verify stop control using Y/N

8C Y- Break control operation

8E N – Continue operation

10 Special Requirements Using XML V1.0 based configuration files

11 Technology List Software – Gateway and Predictor

USB -6008 device

Display with minimum resolution 1024*768

12 Frequency of occurrence 24/7

13 MISC

 114

7.5 Appendix 5 – Source Code

7.5.1 Gateway Code Excerpts

7.5.1.1 The Configuration Code

Setting the configuration data parameters

The XML serializer function works by enabling conversion of XML documents to common

language runtime objects [1]. In order to use this function all the data needs to be collected in

a class of objects. This class has been called ConfigData and can be seen in VScode 7-1

public class ConfigData

 {

 public Sensor[] Sensors;

 public Timers timer;

 public Serial serial;

VScode 7-1 The configdata class

From the VS output there is seen that the sensor is created as a sensor array since it will
include several sensors, the serial and timer are singular properties. The next step is to create
the sub element sensor with the configuration data selected for each sensor. This is done by
setting the type, and sensor data as a struct. This can be seen in VScode 7-2.

 [XmlType(TypeName = "Sensor")]

 public struct Sensor

 {

 public string Macaddr;

 public string IO;

 public string Type;

 public string Location;

 public string Measureand;

 public string Range;

 public string Uncertanty;

 public string BatteryDate;

 public string MISC;

 }

VScode 7-2 Creating the XML nodes for the sensors

The timer and serial properties are set in same manner and for further information the code

with notations can be found in Appendix.

Writing the XML data to file, ConfigWriteData method

The writing data method will use FileStream with parameter FileMode.Create, the file will be

created on saving, and if the file previously exists it will be overwritten. The using statements

are used to be sure the garbage handler will remove the created FileStream instance after use.

The XML root is set before and the XmlSerializer method is used to create the XML file with

the structure properties from the ConfigData class. This is seen in a code excerpt in VScode

7-3.

 115

using (var fs = new FileStream(ConfigFileName, FileMode.Create))

 {

 XmlRootAttribute root = new XmlRootAttribute("Config");

 XmlSerializer xs = new XmlSerializer(typeof(ConfigData), root);

 xs.Serialize(fs, Data);

 fs.Close();}

VScode 7-3 XML write method

Reading the XML data, ConfigReadData method

It is also important to read the XML configuration data from within the program. The same

file method is used as in the write function with different settings. The XmlSerializer function

deserialize the XML document into data objects, based on the ConfigData class. The main

parts of the read function can be seen in VScode 7-4

using (FileStream fs = new FileStream(ConfigFileName, FileMode.Open))

 {

 XmlRootAttribute root = new XmlRootAttribute("Config");

 XmlSerializer xs = new XmlSerializer(typeof(ConfigData), root);

 Data = (ConfigData)xs.Deserialize(fs);

 fs.Close();

 }

VScode 7-4 Reading from XML file

One important error handling is what will happen if the file contains faulty or missing data.

This would create an file exception and the program would crash. This is handled by using a

try and catch statement set around the function, and the catch will then create a new empty

instance of the configuration XML file. This can be seen in VScode 7-5.

 catch(Exception e) Data = new ConfigData();

VScode 7-5 Creating a new file if missing or faulty

7.5.1.2 Code results

A new instance of the config class can be created and the ConfigReadData method can be run

giving the program access to the XML data as objects. This is seen in VScode 7-6

config = new Config();

config.ConfigReadData("config.xml");

VScode 7-6 Running the read function

Then the serial port settings can be accessed as is seen in Figure 7-2

 116

Figure 7-2 Accessing the configuration data

When the correct settings are applied the new data can be saved using the write function, this

can be seen in VScode 7-7.

config.Data.serial.portName = "COM1";

config.Data.timer.SaveTimer = 2000;

config.Data.Sensors[0].Macaddr = "0AAA";

config.Data.Sensors[0].IO = "00";

config.ConfigWriteData("config.xml");

VScode 7-7 Running the write function

When the code in VScode 7-7 is run the XML file data was created as can be seen in

XMLscript 1.

<?xml version="1.0"?>

<Config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Sensors>

 <Sensor>

 <Macaddr>0AAA</Macaddr>

 <IO>00</IO>

 </Sensor>

 </Sensors>

 <timer>

 <SaveTimer>2000</SaveTimer>

 </timer>

 <serial>

 <portName>COM1</portName>

 </serial>

</Config>

XMLscript 1 Configuration result when using the write function

 117

7.5.1.3 Testing software and error handling

In the configuration use case the testing part is mainly to see how the created functions will

react to false or bad data, either due to the file being tampered with or the configuration file

being deleted to see that these eventualities are taken into account by the program and no

crashes will occur. First the functions will be tested when the config.xml file has been

removed.

Reading configuration file with missing file

If the FileStream function tries to read a file that is not there, an unhandled exception will be

thrown resulting in software crash. This is fixed by the try and catch implemented in the read

function. If a file is removed a new config.xml file will be created with the basic information

given in the ConfigData class.

Reading configuration file with faulty data

If the XmlSerializer function reads data that is not of the type set in the ConfigData class there

will be thrown an exception, and the same catch used for the missing file will create a new

config.xml and overwrite the faulty data.

Error during saving of file

There might also be created an IO error when saving to file, if for instance another program is

using the file at the exact same instance. These amongst other errors are handled by a try and

catch statement around all methods that have the possibility to fail. All catch statements are

included with a function to write the error to an errog.log file. The error.log file contains the

time and date for the error, the type of error and a location notation on where the error occurs.

This can be seen in VScode 7-8for the configuration write method.

using (System.IO.StreamWriter file = new System.IO.StreamWriter(@error.log, true))

 {

file.WriteLine(DateTime.Now.ToString()+e.Message + e.Source + "@ConfigWriteData");

 }

VScode 7-8 Error handling in configuration use case

 118

7.5.1.4 The DisplayConfigData code

The code is based on reading and saving the configuration data using the config class. In

order to get the current available COM ports there is created a code for adding the computers

available COM ports to the combo box. This can be seen in VScode 7-9.

foreach (string s in System.IO.Ports.SerialPort.GetPortNames())

 {

 comboBoxComPort.Items.Add(s);

 }

VScode 7-9 Adding the available COM ports to a combo box

Getting the other serial information is done using the enumerable lists contained in

System.IO.Ports.

Two main methods are created to read and write the displayed configuration information,

DisplayConfigData and DisplaySaveConfig, both will be explained in turn.

Reading the configuration data, the DisplayConfigData() method

In order to display the sensor information in the table9 a foreach loop is used looping through

all the sensor objects in Sensors. In order to keep the numbering “out of the user’s hands” the

first column is set as write protected and will only contain the sensor automatic counter. This

can be seen in the VScode 7-10

foreach (Sensor sensor in config.Data.Sensors)

 {

 ConfigurationSensorTable.Rows.Add(i, sensor.Macaddr, sensor.IO,

sensor.Type, sensor.Location, sensor.Measureand, sensor.Range, sensor.Uncertanty,

sensor.BatteryDate, sensor.MISC);

 i++;

 }

VScode 7-10 reading the data to the table

The serial and timer configuration is simply read straight into their control containers as can

be seen by the excerpts VScode 7-11

comboBoxComPort.Text = config.Data.serial.portName;

textboxSaveTimer.Text = Convert.ToString(config.Data.timer.SaveTimer);

VScode 7-11 reading configuration data into combo boxes

9 Data grid view control is used as table

 119

Saving the configuration information, The DisplaySaveConfig() method

When saving the sensor information a switch case statement is used together with the

configWriteData method. The switch case is used to give the user the ability to cancel saving

changes in the standard windows setup yes is to save and exit, no is to exit without saving and

cancel is break the saving operation and return to the form. The information in the table,

combo boxes and text boxes are set as the data to their corresponding objects. An excerpt of

this can be seen in VScode 7-12

//Sensors

config.Data.Sensors[i].Macaddr = (string)ConfigurationSensorTable[1, i].Value;

//timer

config.Data.timer.SaveTimer = Convert.ToInt32(textbox_saveTimer.Text);

//serial configuration

config.Data.serial.portName = comboBoxComPort.Text;

VScode 7-12 Excerpt of saving settings

7.5.1.5 Testing and error handling

The DisplayConfigData is just a visual representation of the ConfigData class, and should be

tested to work in the same way. There is however several conversions that should be tested

and the testing will be done in the same manner. First the old configuration file is deleted,

then the DisplayConfigData form is run and new sensor information is added. This can be

seen in Figure 7-3.

Figure 7-3 Saving configuration

Which results in the following config.xml file seen in XMLscript 2.

 120

<?xml version="1.0"?>

<Config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Sensors>

 <Sensor>

 <Macaddr>0FFF</Macaddr>

 <IO>00</IO>

 <Type>PT1000</Type>

 <Location>Living Room</Location>

 <Measureand>Temperature</Measureand>

 <Range>-50-100</Range>

 <Uncertanty>0.02%</Uncertanty>

 <BatteryDate>12/02-2013</BatteryDate>

 <MISC>This is a test</MISC>

 </Sensor>

 </Sensors>

 <timer>

 <SaveTimer>1000</SaveTimer>

 </timer>

 <serial>

 <portName>COM5</portName>

 <baud>38400</baud>

 <parity>None</parity>

 <handshake>None</handshake>

 <databits>8</databits>

 <stopbits>One</stopbits>

 <rtsenable>false</rtsenable>

 </serial>

</Config>

XMLscript 2 new set information

This means that starting the program with an empty configuration file is working properly and

the configuration parameters are saved correctly. In addition several other tests were

performed with missing data and or changed data. These tests resulted in some extra security

being added to the use case:

The combo box settings of the serial configuration are set as read only so the user only has the

ability to select between the values available from the system namespaces.

The sample time text box should be set to only give the user the availability of entering

integers between 1000 and 100000. The minimum length was set to be sure that the save file

timer was not set at a 0ms interval making the program stall. The maximum length is just set

to one hour in order to prevent data loss. In order to only allow integers the following code

was added to a new keypressed , as seen in the VScode 7-1.

 121

if (char.IsNumber(e.KeyChar) != true) e.Handled = true;

VScode 7-13 Only allow numbers

The maximum length was set as 7 digits10 in the form design text box parameters; the

minimum length is checked by the textbox.length property when saving. When it comes to the

sensor information there is only one restriction. The length of the IO address should be 2

digits since the IO ports of the ZigBee devices are noted using two digits [15].

7.5.1.6 The DisplaySerialdata Code

The display serial data form has three main methods, and two timer ticks. The methods

created are the DisplaySerialDataGetConfiguration responsible for retrieving the

configuration from the xml file, the DisplaySerialDataLogStart method responsible for

starting the logging to file, and the DisplaySerialDataLogStop responsible for stopping the

logging to file. The two timer ticks are the serialport timer responsible for reading the current

bits available on the serial port, and the save file timer which is responsible for sending the

data to the parser, displaying and saving the information.

DisplaySerialDataGetConfiguration method
This method should be run when the start log button is pressed, getting the current
configuration from the user. If there are errors in the configuration the saving is stopped. An
excerpt of the method can be seen in VScode 7-14

SerialPort.PortName = config.Data.serial.portName;

 SerialPort.BaudRate = config.Data.serial.baud;

 SerialPort.DataBits = config.Data.serial.databits;

 SerialPort.Parity = config.Data.serial.parity;

 SerialPort.StopBits = config.Data.serial.stopbits;

 SerialPort.Handshake = config.Data.serial.handshake;

 SerialPort.RtsEnable = config.Data.serial.rtsenable;

 SaveFileTimer.Interval = config.Data.timer.SaveTimer;

VScode 7-14 excerpt of Display serial data get configuration method.

The DisplaySerialDataLogStart method
This method should be run when the start logging button is pressed to prompt the user for a
filename and location to save the log file. If the user does not select a file the start logging
should be aborted, this is done by using the save file dialog ant the returned DialogResult.OK
parameter. The configuration button is disabled during logging and the save log button is
changed to a stop log button. An excerpt of the method can be seen in VScode 7-15

10 9999999ms = 2.8hours

 122

 if (saveFileDialogParsedData.ShowDialog() == System.Windows.Forms.DialogResult.OK)

 {

 ParsedDataFilename = saveFileDialogParsedData.FileName;

 SerialTimer.Start();

 SaveFileTimer.Start();

 ButtonStartLog.Text = "Stop Log";

 ButtonDisplayConfiguration.Enabled = false;

 ButtonStartLog.Image = Resources.gateway_cross;

 }

VScode 7-15 of display serial data log start method

DisplaySerialDataLogStop
The display serial data log stop method is created to give the user the ability to stop saving
and set new configuration parameters without exiting the program. The method closes the
serial port and stops the timers. An excerpt of the method can be seen in VScode 7-16

MessageBox.Show("Data logging data stopped");

 ButtonStartLog.Text = "Start Logging";

 ButtonStartLog.Image = Resources.gateway_down;

 firstTime = true;

 SerialPort.Close();

 SerialTimer.Stop();

 SaveFileTimer.Stop();

 ButtonDisplayConfiguration.Enabled = true;

VScode 7-16 Excerpt of the stop log method

In addition to this methods the code contained in the timer ticks contains the main
functionality of this use case. The Serial timer use the above mentioned serialport.
ReadExisting method and the return is passed to a text box containing the raw data. The save
file timer make use of the LOG use case, and the raw text data.

7.5.1.7 The LOG Code

The splitmessage algorithm

This algorithm is stable and should always return a complete message. The algorithm is

reading to the end of the message by using the IndexOF method that returns the index of the

selected character, >. Next the algorithm checks if the index of the start message is 0. If so the

algorithm knows that a complete message is found. The Substring method reads the data

between the start and end indexes and add it to a messages array. Then this part of the original

message is removed, thus setting up the algorithm for splitting up the next message. If an end

message sign is found but no start message sign, the message up to the end sign is just

removed since this would indicate an incomplete message. This can be seen in VScode 7-17

while ((endpos = message.IndexOf('>')) != -1)

 {

 if (message.IndexOf('<') == 0)

 {

 //check for message length

 value = message.Substring(1, endpos - 1);

 Array.Resize(ref messages, messages.Length + 1);

 123

 messages[messages.Length - 1] = value;

 }

 message = message.Substring(endpos + 1);

 }

 }

VScode 7-17 Splitting up the string message

The LogParse method

The log parse method takes the message array returned from the split algorithm and use the

foreach loop counting through all the sensors in the configuration. The address length to the

current sensor being checked is used to get the address of the sensor. Another foreach loop

runs through all the messages in the array returned from the message splitter checking if the

sensor address and the senor IO are found in the message array. If found the value is added to

the logline with a semicolon as a separator. Several messages from the same sensor will as

mentioned just be overwritten by the newest value, and the date and time is added to each new

line. The NaN value is set to any sensors in the configuration that does not have any

messages. An excerpt of the LogParse method can be seen in VScode 7-18

logline = DateTime.Now.ToString() + ";";

 foreach (Sensor sensor in sensors)

 {

 value = "NaN";

 addresslength = sensor.Macaddr.Length;

 foreach (string msg in message)

 {

 mac = msg.Substring(0, addresslength);

 IO = msg.Substring(addresslength, 2);

 if (mac == sensor.Macaddr && IO == sensor.IO)

 {

 value = msg.Substring(addresslength + 2);

 }

 } logline += value + ";"; }

VScode 7-18 Parsing the data

The logsave method

The log save method is a straitgh forward file saving methos using the stremwriter function.

An excerpt can be seen in VScode 7-19

using (System.IO.StreamWriter file = new System.IO.StreamWriter(@FileName, true))

 {

 file.WriteLine(data);

 }

VScode 7-19 Saving the data

 124

7.5.1.8 Log Results

The next step is to test the entire code with the new use case. The new added code was tested

by sending several known raw data messages, and studying the results. A typical message can

be as follows

<0AAA00805><0CCC00706><0BBB00804>

Config date sets sensor 1 as 0AAA 00, sensor 2 as 0BBB 00, and sensor 3 as 0CCC 00

The raw data sent resulted in the following line added to the log file, correctly parsed

09.02.2013 22:32:21;805;804;706;

7.5.1.9 LOG testing and error handling

The split message algorithm

The split message algorithm was tested with empty data , faulty data, no start sign and no end

sign and everything was working as it should, returning only valid messages. One problem

was found when the message was not anything, null, a null reference exception was thrown.

This was taken care of by adding a try and catch statements around the parser, saving any

eventual errors to a error log file with the time, date, type and location of the error. The

message should however be set to an empty string in the main program at start up to avoid

The logparse method

When testing the logparse method an exception was thrown if error if the IO is not set in the

code. This should be tested for in the configuration save and the following code is added to

the Save Configuraiton method seen in VScode 7-20.

for (int j = 0; j < ConfigurationSensorTable.RowCount - 1; j++)

 {

 if ((string)ConfigurationSensorTable[2, j].Value == null)

 {

 IOmissing = true;

 }

 }

VScode 7-20 Added code to save configuration method

Setting a Boolean to true if there is not set a IO value and adding a if IOmissing true then

break to the save configuration switch case.

During the testing of this method no errors occurred, but the StreamWriter method used has

several exceptions including that if the filename is used by another program at saving time. In

accordance with that the gateway should never stall a try and catch statement was also set

around this method.

 125

7.5.1.10 Space required for log file saving

The gateway will be running 24/7 so it is a good necessary to see what HD space is needed

for saving the log files over several years. This calculation will be done with a large system in

order to use the worst case scenario. There will be 50 sensors logging every minute for one

year. Using the standard text file one character is the same as one byte, 8bit. Each sensor will

have the maximum of 5 characters in parsed data mode. 4 will be the largest data value from

the ADC, and one ; is used to separate the messages. In addition there is used 21characters for

the date and time each minute message.

50푠푒푛푠표푟푠 ∗ 5푏푦푡푒푠 + 21푏푦푡푒 = 271푏푦푡푒푠 푝푟 푚푖푛푢푡푒 (7-3)

271푏푦푡푒푠

푚푖푛푢푡푒
∗ 60푚푖푛푢푡푒푠 ∗ 24ℎ표푢푟푠 ∗ 365푑푎푦푠 = 1.4퐺퐵푝푟 푦푒푎푟

(7-4)

1.4GB means that a typical 140GB HD will last for about 10 years using the worst case

scenario. This means that disk space should not be an issue; a larger problem would be

handling the 140GB text file and care should be used to split up the log data for instance each

year, or when the ZigBee devices has a battery change. For this reason the code was changed

in order to set the current year as part of the file name, such that one file will only contain the

data for one specific year.

 126

7.5.2 Predictor methods and algorithms

7.5.2.1 Coding the configuration

The configuration code is based on the XML code from the gateway and the same principles
are applied to the data grid view table as in section [7.5.1.1] and [2.3.3]. The code is for this
reason not commented more on.

7.5.2.2 Testing and error handling

The text boxes are only allowed to have one decimal sign and numbered keys in the input;

this is done by restricting the key down event to these parameters. Since there is many text

boxes there is also important to get the information of the current text box in focus. This can

be seen in VScode 7-21.

if (!char.IsControl(e.KeyChar) && !char.IsDigit(e.KeyChar) && e.KeyChar != ',')

 e.Handled = true;

 //get the current name of the text box in focus

 TextBox txb = (TextBox)sender;

 // only allow one decimal point

 if (e.KeyChar == ',' && txb.Text.IndexOf(',') > -1)

 e.Handled = true;

 }

VScode 7-21 controlling the text input

One important note to this excerpt is that it is set to the Norwegian standard signs for comma

and will need to be changed in order to function with other separating signs.

In addition all save parameters are made using a try and catch clause saving any error to a log

file in the same principles as [7.5.1.3]. For more information on the code see APPENDIX.

7.5.2.3 Coding the get sensor values

There are two main functions in the Read sensor values use case the Filter.Cs and the

SensorVal.Cs, The SensorVal.Cs class works by reading the saved sensor information from

the gateway from the last read line as specified. This class also converts the ADC sensor

values from the gateway to temperature. The sensor values are returned as a List of doubles,

and the time stamps are returned as a date time object. This can be seen in the Excerpt in

VScode 7-22.

while ((data = sr.ReadLine()) != null)

 {

 if (i > LastLine)

 {

 LastLine = i;

 StringArray = data.Split(';');

//time is returned as out in order to have the correct time stamps

 time = Convert.ToDateTime(StringArray[0]);

 127

//Convert the Values to Temperature values, -1 to remove date time stamp, and add

to list

 for (int l = 1; l < StringArray.Length-1; l++)

 {

 ConvData =

Math.Round(((Convert.ToDouble(StringArray[l]) * 3 / 2048) - 0.5) * 100,2);

 //filter the data through a low pass filter

 ConvFiltData = filter.LowPassFilter(ConvData, l-1);

 listSensVal.Add(ConvFiltData);

 }

 break;

 }

 i++;

 }

VScode 7-22 Reading only the last line.

The low pass filter filtering the values can be seen in excerpt in

public double LowPassFilter(double SensorVal, int SensorNr)
{
 a = Ts / (Ts + Tf);
 yFiltered = (1 - a) * yk[SensorNr] + a * SensorVal;

 yk[SensorNr] = yFiltered;
 return yFiltered;
}

VScode 7-23 Low pass filter excerpt

7.5.2.4 Coding the predictor use case

The predictor use case is made up of three main methods, creating and discretizing the State

Space Matrices (SSM), estimating the disturbance state using the Kalman filter algorithm and

the least squares algorithm. The state space matrices are made directly from the derivation of

the model in [3.2.3], and the discretization of this model there is used a Zero Order Hold

method. The function for discretizing the matrices based on the sample time from h, given

from the gateway configuration file can be seen in VScode 7-24.

//Create the S matrix for discretization
Matrix S = (IA * h + (A * h * h) / (1 * 2) + (A * A * h * h * h) / (1 * 2 * 3) + (A * A * A
* h * h * h * h) / (1 * 2 * 3 * 4) + (A * A * A * A * h * h * h * h * h) / (1 * 2 * 3 * 4 *
5) + (A * A * A * A * A * h * h * h * h * h * h) / (1 * 2 * 3 * 4 * 5 * 6));

 // Calculate the discrete time matrices based on zero order hold
 Ad = IA + A * S;
 Bd = S * B;

VScode 7-24 discretizing the state space model

The Kalman filter algorithm is made using the Matrix class and the Kalman filter follows the

algorithm defined in [3.2.3.1], the Kalman filter algorithm is seen in VScode 7-25.

 128

 Matrix xhat = Ad * x + Bd * u;

 Matrix I = Matrix.IdentityMatrix(Ad.rows, Ad.cols);

 phat = Ad * phat * Matrix.Transpose(Ad) + Qv;

 K = phat * Matrix.Transpose(D) / (D * phat * Matrix.Transpose(D) + Rw);

 xbar = xhat + K * (Y - (D * xhat)[0, 0]);

 yhat = (D * xbar)[0, 0];

 phat = (I - K * D) * phat;

 }

VScode 7-25 The Kalman Filter algorithm

The least squares regression matrixes are calculated using the matrix functions and the known

solution to the OLS matrix equation [24].

The least squares regression algorithm

for (int i = 1; i < dataPoints.Count; i++)

 {

 ti = ti + i;

 ti2 = ti2 + i * i;

 yi = yi + dataPoints[i];

 yiti = yiti + dataPoints[i] * i;

 }

 //Setup the regression Matrices

 Alpha[0, 0] = dataPoints.Count;

 Alpha[0, 1] = ti;

 Alpha[1, 0] = ti;

 Alpha[1, 1] = ti2;

 Beta[0, 0] = yi;

 Beta[0, 1] = yiti;

 Alpha = Alpha.Invert();

 Regression = Alpha*Matrix.Transpose(Beta);

System Learn function

The system learn function is based on applying the maximal power output to the heaters and

log the data in the predictor until it reaches the set comfort temperature. After the system has

been learned the predictor saves the regression models to the config.XML file and the

controller takes over using the prediction times and the set comfort interval reference to keep

the temperature at comfort level at the correct times. The system learn function can be seen in

VScode 7-26.

public bool PredictorLearn(double Y, int counter)

 {

 int test = counter;

 if (counter ==1)

 {

 //Only calculate the discrete state space matrixes the first

time

 CalcualteSSM(273, 293);

 CalculateDiscreteSSM();

 }

 //run the Kalman filter

 129

 KalmanFilter(Y, out yhat, out xbar);

 double setpoint =

ControlSystem.config.Data.Monday.ReferenceTemperature;

 if (Y < setpoint && counter>10) //allow some time for system to

stabilize

 {

 //Store the data in a matrix until the comfort temperature is

reached

 Dsaved.Add(xbar[1, 0]); // the disturbance vector

 Ysaved.Add(Y); // the Temperature data

 learn = true;

 }

 //Calculate the Disturbance vector using The least squares method

 if (Y >= setpoint) //need to set the comfort temperature as

reference

 {

 //Read all the current configuration in order to not overwrite

everything with blanks

 ControlSystem.config.ConfigReadData("config.xml");

 Matrix DisturbanceRegression = Matrix.ZeroMatrix(1, 2);

 Matrix yRegression = Matrix.ZeroMatrix(1, 2);

 DisturbanceRegression = LeastSquares(2, Dsaved); //The

disturbance regression function

 yRegression = LeastSquares(2, Ysaved); //The

Temperature regression function

 //Store the learned regression line in the XML file as learned

parameter under predictor

 ControlSystem.config.Data.controller.DpredictorAlpha =

DisturbanceRegression[0, 0];

 ControlSystem.config.Data.controller.DpredictorBeta =

DisturbanceRegression[1, 0];

 ControlSystem.config.Data.controller.YpredictorAlpha =

yRegression[0, 0];

 ControlSystem.config.Data.controller.YpredictorBeta =

yRegression[1, 0];

 ControlSystem.config.Data.controller.A11 = Ad[0, 0];

 ControlSystem.config.Data.controller.A12 = Ad[0, 1];

 ControlSystem.config.Data.controller.A21 = Ad[1, 0];

 ControlSystem.config.Data.controller.A22 = Ad[1, 1];

 ControlSystem.config.Data.controller.B11 = Bd[0, 0];

 ControlSystem.config.Data.controller.B21 = Bd[1, 0];

 //Write the new learned data

 ControlSystem.config.ConfigWriteData("config.xml");

 //Return false = Learning finished

 learn = false;

 }

VScode 7-26 The Learn function

 130

7.5.2.5 Additions to the Matrix library

In order to facilitate the Kalman filter calculations some additions were needed in the Matrix

class, these additions are seen in VScode 7-27 through VScode 7-29

 private static Matrix Add(Matrix m1, double d)
 {
 Matrix r = new Matrix(m1.rows, m1.cols);
 for (int i = 0; i < r.rows; i++)
 for (int j = 0; j < r.cols; j++)
 r[i, j] = m1[i, j] + d;
 return r;
 }

VScode 7-27 Adding double to a matrix

 private static Matrix Multiply(Matrix m, double n) //
Multiplication by constant n
 {
 Matrix r = new Matrix(m.rows, m.cols);
 for (int i = 0; i < m.rows; i++)
 for (int j = 0; j < m.cols; j++)
 r[i, j] = m[i, j] * n;
 return r;
 }

VScode 7-28 Multiplying double to Matrix

private static Matrix Multiply(double n, Matrix m) //
Multiplication by constant n
 {
 Matrix r = new Matrix(m.rows, m.cols);
 for (int i = 0; i < m.rows; i++)
 for (int j = 0; j < m.cols; j++)
 r[i, j] = m[i, j] * n;
 return r;
 }

VScode 7-29 Multiplying Matrix to double

7.5.2.6 Testing and error handling

The read sensor values are then tested with the gathered experiment data, the sensor values

are plotted to a Chart using the sensor values names in the configuration of the gateway as the

different time series. In fig the inside temperatures time series are seen Figure 7-4.

 131

Figure 7-4 Testing the read sensor values use case

All methods that might crash have been set with a try and catch clause in the same manner as

in the previous sections [2.3.5.3].

 132

7.5.3 Controller methods and algorithms

7.5.3.1 The main configuration and tab controls

The Tab control is made by using inheritance. All other configuration forms are inherits the

ConfigMainForm in the class setup. This can be seen for the house configuraiton in VScode

7-30

public partial class ConfigHouse : MainFormPage

VScode 7-30 Code excerpt of inheriting the main form

A panel is made to contain each of the configuration forms as seen in the house configuration

example in VScode 7-31

this.pnl = panelConfigHouse;

VScode 7-31 Code for setting the panel of the House configuration form.

A tab control is then created in the main configuration form GUI where the different

configuration pages are added as seen in VScode 7-32

tabControlConfiguration.TabPages.Add(new TabClass(new ConfigTemperatures()));
 tabControlConfiguration.TabPages.Add(new TabClass(new ConfigSensors()));
 tabControlConfiguration.TabPages.Add(new TabClass(new ConfigModel()));
 tabControlConfiguration.TabPages.Add(new TabClass(new ConfigHouse()));
 tabControlConfiguration.TabPages.Add(new TabClass(new ConfigControl()))

VScode 7-32 Adding all the configuration settings to the tab control in the main config form

The TabClass created to add the selected forms panel content can be seen in VScode 7-33

private Form frm;
 public TabClass(MainFormPage frm_content)
 {
 this.frm = frm_content;
 this.Controls.Add(frm_content.pnl);
 this.Text = frm_content.Text;
 }

VScode 7-33 Tab class excerpt

 133

7.5.3.2 Configuration help examples

Figure 7-5 Configuration information example

7.5.3.2.1 Configuration testing and error handling

The main parts of the configuration is the Config.XML file which has already been

thoroughly tested. The error handling is done in the same manner as saving the date time and

place of the error to a log file.

7.5.3.3 Controller use case

The controller use case consist of a class for each of the controllers with functions for setting

up the controllers in the LQR and MPC cases, and functions for calculating the control output

in all cases.

In order to calculate the predicted references there was added a function to the Config.XML

class this functions returns a reference vector based on the current date and time using the

comfort intervals configuration and a switch case statement this is seen in VScode 7-34.

public Matrix GetComfortTemperature(DateTime starttime,int l)
 {
 Matrix temp = Matrix.ZeroMatrix(l, 1);
 DateTime time;
 int hour;
 for (int i = 0; i < l; i++)
 {
 time = starttime + TimeSpan.FromHours(i);
 hour = time.Hour;

 switch (time.DayOfWeek)
 {
 case DayOfWeek.Monday:
 temp[i, 0] =
Convert.ToDouble(Data.Monday.ComfortIntervals[hour]);

 134

 break;

 return temp;

VScode 7-34 Create reference vector

7.5.3.3.1 PID class

The D term in the PID controller only contributed noise to the system for this reason only a PI

controller has been implemented.

The function for calcualting the PI controllers output can be seen in

public double PiController(double y, double r)
 {
 double e; // Error between Reference and Measurement
 double u; // Controller Output
 //PID Algoritm
 e = r - y;
 u = Kp * e + (Kp / Ti) * z;
 z = z + Ts * e;

VScode 7-35 Calculate PI controller output

7.5.3.3.2 LQR class

The LQR class is divided into two main functions the controllers setup and calculation of the

steady state gains, i.e. solving the Riccati equation and calculating the controllers output

Controller setup

In order to give the controller integral action the eSSM models are needed calculated in a

function called calculateESSM in the controller class and this can be seen in code excerpt

VScode 7-36

//Get the sizes of the matrices for MIMO systems
 int nx = Ad.rows;
 int nu = Bd.cols;
 int ny = D.rows;

//Create the eSSM models
 At = Ad.AddRight(Matrix.ZeroMatrix(nx,
ny)).AddBelow(D.AddRight(Matrix.IdentityMatrix(ny, ny)));
 Bt = Bd.AddBelow(Matrix.ZeroMatrix(ny, nu));
 Dt = D.AddRight(Matrix.IdentityMatrix(ny, ny));
 Qt = Matrix.Transpose(Dt) * q * Dt;

VScode 7-36Calculate the eSSM models

 135

The Riccati equation solver loop is run until the error between the new and the previous value

is below 0.00000000001 the loop can be seen in VScode 7-37.

while (error > 1e-10 && iterations <= 10000)
 {
 f0 = (B_ * p0 * At) / (r + B_ * p0 * Bt);

 p1 = A_ * p0 * At + Qt - (A_ * p0 * Bt) * f0;

 f1 = (B_ * p1 * At) / (r + B_ * p1 * Bt);

 error = Matrix.MaxAbs(f1 - f0);

 p0 = p1;
 iterations++;
 }

VScode 7-37 Solving the Riccati equation and calculating the SS gain.

The controller gains are set for the scalar system as seen in VScode 7-38

ControlSystem.config.Data.controller.G1 = -f1[0, 0];
ControlSystem.config.Data.controller.G2 = -f1[0, 1];

VScode 7-38 Saving the scalar SS LQR gain

Calculate control output

The LQR control output for the scalar system is then simply calculated as seen in VScode

7-39.

dx = x - x_old;
u = (u_old + G1 * dx + G2 * (x_old - r));

VScode 7-39 Calculating the control output

7.5.3.3.3 MPC class

Since the MPC controller setup is complex the entire function is included with commentary,

this is seen in VScode 7-40

Controller setup

 public void InitializeMPCControl(int L, double q, double r)
 {

 //Calculate the Extended State Space Matrixes
 essm.CalculateESSM(q_lqr, out At, out Bt, out Dt, out Qlqr);

 //Get the sizes of the eSSM matrices
 int nx = At.rows;

 136

 int nu = Bt.cols;
 int ny = Dt.rows;
 int n = Dt.cols;

 // Calculate observability matrix
 O = Matrix.Parse(Dt.ToString());
 Matrix w = Matrix.Parse(Dt.ToString());

 for (int i = 2; i <= L; i++)
 {
 w *= At;
 O = O.AddBelow(w);
 }

 // Calculate extended observability matrix
 Matrix OB = O * Bt;

 // Calculate the lower block triangular Toeplitz matrix
 Matrix Ht = Matrix.ZeroMatrix(OB.rows,1);

 for (int i = 1; i < Ht.rows; i++)
 {
 Ht[i, 0] = OB[i-1,0];
 }
 Matrix HdL = Matrix.Parse(Ht.ToString());
 for (int i = 1; i < (L - 1); i++)
 {
 Matrix temp = Matrix.ZeroMatrix(Ht.rows, Ht.cols);
 for (int rows = i; rows < L; rows++)
 for (int cols = 0; cols < Ht.cols; cols++)
 {
 temp[rows, cols] = Ht[rows - i, cols];
 }
 HdL = HdL.AddRight(temp);

 }

 //Calculat the prediction model parameters
 F_L = Matrix.Parse(OB.ToString());
 F_L =F_L.AddRight(HdL);

 //Create the weighting matrixes as identity matrices
 Qt = Matrix.IdentityMatrix(L, L);
 Rt = Matrix.IdentityMatrix(L, L);

 //Multipling by weighting factors to create the weighting matrices
 Qt = Qt * q;
 Rt = Rt * r;

 //Create the Hessian Matrix
 H = Matrix.Transpose(F_L) * Qt * F_L+Rt;

VScode 7-40 Set up MPC controller matrices

The hessian matrix and the set up eSSM matrices is used as public values within the MPC

class to avoid many out parameters in the methods.

Calculate control output

 137

The MPC control output is calculated using the reference from the get air heater reference

function contained in the Config.XML. Excerpts of the control output function is seen in

VScode 7-41.

 //Create the state deviation parameter
 xt = Matrix.ZeroMatrix(2,1);
 xt[0, 0] = x - x_old;
 xt[1, 0] = x_old;

 //Create the future reference vectors
 Matrix pl = O * At * xt;

 //Get reference from config using the correct prediction horizon
 Matrix r1l = ControlSystem.config.GetAirHeaterReference(startReference, L);

 //Calculate future outputs
 Matrix f = Matrix.Transpose(F_L) * Qt * (pl - r1l);
 duf = -H.Invert()*f;
 //Only use 1.st output as control output
 u = u_old + duf[0, 0];

VScode 7-41 Calculate the MPC controller output

7.5.3.3.4 PID class

The PID controller needs no setup and is simply calculated as seen in

public double PiController(double y, double r)
 {
 double e; // Error between Reference and Measurement
 double u; // Controller Output
 //PID Algoritm
 e = r - y;
 u = Kp * e + (Kp / Ti) * z;
 z = z + Ts * e;

VScode 7-42 Calculate PID controller output

7.5.3.4 Control system GUI

The control system GUI is mainly graphical user interface and not much is needed discussed

or explained on the code. The two functions creating the plots and time series is however

worth a mention. The plot creation function can be seen in code excerpt in VScode 7-43

 foreach (Sensor sensor in config.Data.Sensors)
 {
 //Set up the two main graph series
 var seriesOutside = new Series();
 var seriesInside = new Series();

 //Add outside sensors to outside plot
 if (sensor.Location.Contains("Outside"))
 {

 138

 seriesOutside.Name = sensor.Location;
 seriesOutside.ChartType = SeriesChartType.FastLine;
 seriesOutside.XValueType = ChartValueType.Time;
 chartOutsideTemperature.Series.Add(seriesOutside);

 }
 else
 //Add inside sensors to inside plot
 if (!sensor.Location.Contains("Outside"))
 {
 seriesInside.Name = sensor.Location;
 seriesInside.ChartType = SeriesChartType.FastLine;
 seriesInside.XValueType = ChartValueType.Time;
 chartInsideTemperature.Series.Add(seriesInside);
 }
 //Set up axis
 chartOutsideTemperature.ChartAreas[0].AxisX.Title = "Time";
 chartInsideTemperature.ChartAreas[0].AxisY.Title = "Temperature";
 chartInsideTemperature.ChartAreas[0].AxisX.Title = "Time";
 chartInsideTemperature.ChartAreas[0].AxisY.Title = "Temperature";

VScode 7-43 Setting up graphs with correct sensory information

The plots were createt to display one day at a time, this is seen in VScode 7-44

////Kepp X axis displaying last 24 hours
 this.chartInsideTemperature.ChartAreas[0].AxisX.Minimum = (sensorTime -
TimeSpan.FromHours(24)).ToOADate();
 this.chartInsideTemperature.ChartAreas[0].AxisX.Maximum =
sensorTime.ToOADate();

VScode 7-44 Creating moving plots

7.5.3.4.1 Additions to the MATRIX class

The four additions needed in the matrix class is seen in functions from VScode 7-45 through

VScode 7-48

public Matrix AddRight(Matrix m2)
 {
 if (rows != m2.rows)
 {
 throw new MException("Different rows!");
 }
 Matrix r = new Matrix(rows, cols + m2.cols);
 for (int i = 0; i < rows; i++)
 for (int j = 0; j < cols; j++)
 r[i, j] = mat[i, j];
 for (int i = 0; i < m2.rows; i++)
 for (int j = 0; j < m2.cols; j++)
 r[i, j + cols] = m2[i, j];
 return r;

VScode 7-45 Add one matrix to the right of another matrix

 public Matrix AddBelow(Matrix m2)

 139

 {
 if (cols != m2.cols)
 {
 throw new MException("Different cols!");
 }
 Matrix r = new Matrix(rows+m2.rows, cols);
 for (int i = 0; i < rows; i++)
 for (int j = 0; j < cols; j++)
 r[i, j] = mat[i, j];
 for (int i = 0; i < m2.rows; i++)
 for (int j = 0; j < m2.cols; j++)
 r[i + rows, j] = m2[i, j];
 return r;
 }

VScode 7-46 Add one matrix below another matrix

 public Matrix SubMatrix(int rowfrom, int rows, int colfrom, int cols)

 {

 Matrix m = new Matrix(rows,cols);

 for (int i = 0; i < rows; i++)

 for (int j = 0; j < cols; j++)

 m[i, j] = mat[rowfrom + i, colfrom + j];

 return m;

 }

VScode 7-47 Create a sub matrix from a matrix

public static double MaxAbs(Matrix m1)
 {
 double max = 0;
 for (int i = 0; i < m1.rows; i++)
 for (int j = 0; j < m1.cols; j++)
 {
 if (Math.Abs(m1[i,j]) > max)
 max = Math.Abs(m1[i,j]);
 }
 return max;
 }

VScode 7-48 Calculating the Absolute difference between two matrices

7.5.3.5 Testing and error handling

Testing the complete system is done in the Experiments part in paragraph [4.7]. Error

handling is done in the same manner as in the gateway system paragraph [2.3.5.3]

 140

7.6 Appendix 6: MATLAB scripts

7.6.1 The data processing script

clear all;
close all;
%-----------------SETTINGS---
%-------------------Set which data to plot
DorawPlot=true; %true will plott the raw data
DoavgPlot=true; %true will plot the average data
%DoavgPlot=false;
DoOutlierPlot=true; %true will plot the outlier data
%DoOutlierPlot=false;
%-------------------Set interval for date time stamps on X axis
Xstamps=15;
%-------------------Set the Approved Standard deviation for outliers
StdFactor=2.0;

%----------import the data---
A = importdata('C:\Users\Stian skole\Desktop\Master Thesis v0904\Experiments\LOG
files\oneday.log')
%A = importdata('C:\Users\Stian skole\Desktop\Master Thesis v0904\Experiments\LOG
files\ParsedData2803-1826-all-power-off.log')
%A = importdata('C:\Users\Stian skole\Desktop\Master Thesis v0904\Experiments\LOG
files\ParsedData2903-1944-ss-ventsclosed.log')
data=A.data;
rowheaders=A.rowheaders;
interval=length(data)/Xstamps;

%------Create Titles and Axis values based on the rowheader---------------
%convert date time string into num vectors
[year,month,day,hour,minute,~] = datevec(rowheaders, 'dd.mm.yyyy HH:MM:SS')
Y=year(1);
m=month(1);
%get Month name from month name function
M=Monthname(m);
D=day(1);
%create the title based on the row headers data
TitleString = sprintf('Temperature readings started at %d %s %d',D,M,Y);
%remove year and seconds for beter plotting
Time=(datestr(rowheaders,'HH:MM'))
%if there is much data the month i also plotted on the X axis
if length(rowheaders)>470
 for k=1:length(rowheaders)
 D=day(k)
 H=hour(k)
 C=sprintf('D %d H %d',D,H)
 Time(k,1:length(C))=C;
 interval=10;
 end
end
%------create the x axis values based on the Time data---------------------
XaxisValues=Time(1:interval:length(Time),:);
count=length(XaxisValues)
XtickValues=1:length(data)/count:length(data);
%------------Convert ADC data to temperature data--------------------------
VoltData=(data*(3/2048));
TempData=((VoltData-0.5)*100);
%----------Remove the Outliers---
dataRemovedOutliers=OutlierRemover(TempData,StdFactor,DoOutlierPlot, XaxisValues,XtickValues,
TitleString);
%------------Run the NaNremoval function.----------------------------------
[RemovedRows,NaNs,dataRemovedNaNs]=NaNremove(dataRemovedOutliers);

%----Smooth the data thorugh a low pass filter-----------------------------
dataFiltered = LPfilt(dataRemovedNaNs);

%----Split up TempData in inside and outside temperatures------------------
TempData=dataFiltered;
insideTemperatures=[TempData(:,1),TempData(:,2),TempData(:,3),TempData(:,5),TempData(:,6),Temp
Data(:,8),TempData(:,9)];
outsideTemperatures=[TempData(:,4),TempData(:,7)];

%------------Plot the New TempData---
figure('units','normalized','position',[.1 .1 .4 .4])
TitleProcessedPlot = sprintf('Processed data - %s',TitleString);
subplot(2,1,1)
plot(insideTemperatures)
%set date time on X axis
xmin=0;
xmax=length(data)
xlim([xmin xmax])
set(gca,'XTick',XtickValues)
set(gca,'XTickLabel',XaxisValues)
set(gcf,'color','w')
%set(gcf, 'Position', [100 100 150 150])

 141

title(TitleProcessedPlot)
legend('Bedroom','Diningroom','Bathroom','Guestroom','Livingroom','Kitchen','Hallway','EastOut
side','Location','EastOutside')
ylabel('Temperature [^oC]')
xlabel('Time');
subplot(2,1,2)
plot(outsideTemperatures)
set(gca,'XTick',XtickValues)
set(gca,'XTickLabel',XaxisValues)
%set(gcf, 'Position', [100 100 150 150])
xlim([xmin xmax])
legend('Outside N', 'Outside S','Location','EastOutside')
ylabel('Temperature [^oC]')
xlabel('Time');

%-----plot Raw data--
if DorawPlot
insideRawData=[data(:,1),data(:,2),data(:,3),data(:,5),data(:,6),data(:,8),data(:,9)]
outsideRawData=[data(:,4),data(:,7)]
TitleRawPlot = sprintf('Raw data - %s',TitleString);

figure('units','normalized','position',[.1 .1 .4 .4])

subplot(2,1,1)
plot(insideRawData)
%set date time on X axis
xmin=0;
xmax=length(data)
xlim([xmin xmax])
set(gca,'XTick',XtickValues)
set(gca,'XTickLabel',XaxisValues)
set(gcf,'color','w')

title(TitleRawPlot)
legend('Bedroom','Diningroom','Bathroom','Guestroom','Livingroom','Kitchen','Hallway','EastOut
side','Location','EastOutside')
ylabel('ZigBee ADC values')
xlabel('Time');
subplot(2,1,2)
plot(outsideRawData)
set(gca,'XTick',XtickValues)
set(gca,'XTickLabel',XaxisValues)%set(gcf, 'Position', [100 100 150 150])
xlim([xmin xmax])
legend('Outside N', 'Outside S','Location','EastOutside')
ylabel('ZigBee ADC values')
xlabel('Time');
end

%---------Plot averaged inside and outside data----------------------------
if DoavgPlot
insideAveragedTemperatures=mean(insideTemperatures,2);
outsideAveragedTemperatures=mean(outsideTemperatures,2);
TitleAvgPlot = sprintf('Averaged temperatures - %s',TitleString);

figure('units','normalized','position',[.1 .1 .4 .4])
subplot(2,1,1)
plot(insideAveragedTemperatures)
%set date time on X axis
xmin=0;
xmax=length(data)
xlim([xmin xmax])
set(gca,'XTick',XtickValues)
set(gca,'XTickLabel',XaxisValues)
set(gcf,'color','w')

title(TitleAvgPlot)
legend('Inside Temperatures')
ylabel('Temperature [^oC]')
xlabel('Time');
subplot(2,1,2)
plot(outsideAveragedTemperatures)
set(gca,'XTick',XtickValues)
set(gca,'XTickLabel',XaxisValues)%set(gcf, 'Position', [100 100 150 150])
xlim([xmin xmax])
legend('Outside Temperatures')
ylabel('Temperature [^oC]')
xlabel('Time');
title('Averaged outside temperatures')

end

 142

7.6.2 NaN removal function

function [RemovedRows, NaNs, NonNanData] = NaNremove(data)
%NaN removal and interpolation of data
% Data to be interpolated and NaN removed is input parameters
% The outpout parameters is the "filtered data"

%first check if the first value is NaN if so remove until first not nan in
%all rows in order to be able to do interpolation

data;
%-------------Check forn NaNs in the first rows----------------------------
j=0;
if (find(isnan(data(1,:)))>0);
 j=1;
 while (find(isnan(data(j,:)))>0 & j<length(data(:,1)));
 j=j+1;
 end
 %remove all first rows with NaN data
 data=data(j:length(data(:,1)),:);
end

%-----------------Check for interpolatable NaNs------------------------------
if length(data(:,1))>2 %if not all values are removed

 for i=1:length(data(1,:))
 Non=data(:,i);
 NonNan(:,i)=interp1(find(~isnan(Non)),Non(~isnan(Non)),1:length(Non))';
 NaNs=length(find(isnan(data)));
 end

%----------------Check for NaNs at the end---------------------------------
 if (find(isnan(NonNan)) > 0)

 [row,col,vals]=find(isnan(NonNan));
 EndNaNsRemoved=length(vals);
 row
 %Remove end rows with NaNs by using the lowest value left with NaNs
 NonNanData=NonNan(1:min(row)-1,:);

 %-------Print outputs--

 else

 NonNanData=NonNan;
 end
 RemovedRows=length(data)-length(NonNanData)+j;
else
 RemovedRows=length(data(:,1))+j;
 NonNanData=0;
 NaNs=0;
 disp('All data has been removed due to NaNs')
end

end

7.6.2.1 Testing the NaN removal function

>> [RemovedRows,NaNs,NonNaNdata]=NaNremove(dataTest)

data =

 438 NaN 483 341 469 474 358 480 490
 438 475 483 341 469 474 358 480 490
 437 477 NaN 343 469 472 353 481 NaN
 439 478 NaN 335 472 477 355 483 491
 438 479 487 339 472 478 350 483 492
 438 479 489 342 NaN 479 351 485 492

RemovedRows = 2

NaNs = 4

NonNaNdata =

 438.0000 475.0000 483.0000 341.0000 469.0000 474.0000 358.0000 480.0000 490.0000
 437.0000 477.0000 484.3333 343.0000 469.0000 472.0000 353.0000 481.0000 490.5000
 439.0000 478.0000 485.6667 335.0000 472.0000 477.0000 355.0000 483.0000 491.0000
 438.0000 479.0000 487.0000 339.0000 472.0000 478.0000 350.0000 483.0000 492.0000

 143

7.6.3 The Outlier Removal function

function [dataRemovedOutliers] = OutlierRemover(data, Factor,DoPlot, XaxisValues,
XtickValues, TitleString)
%This function finds and removes outliers based on the Factor value which
%is a factor of the standard deviation of the data set
%inputs data, StdFactos and Boolean value plot
Nydata=data;

%Create a matrix of mean values by
mu = mean(Nydata);
sigma = std(Nydata);
[n,p] = size(Nydata);
% Create a matrix of mean values by
% replicating the mu vector for n rows
MeanMat = repmat(mu,n,1);
% replicating the sigma vector for n rows
SigmaMat = repmat(sigma,n,1);
% Create a matrix of zeros and ones, where ones indicate
% the location of outliers
outliers = abs(Nydata - MeanMat) > Factor*SigmaMat

% Calculate the number of outliers
nout = sum(sum(outliers))
%Mark the outliers

for i=1:length(data(1,:))
i
 potential_outlier=outliers(:,i);
 X=1:length(Nydata(:,i));
 Y=Nydata(:,i);
 if DoPlot
 figure('units','normalized','position',[.1 .1 .4 .4])
 subplot(2,1,1)
 plot(Y,'b')
 xmin=0;
 xmax=length(data)
 xlim([xmin xmax])
 xlabel('Time [hours]')
 ylabel('Temperture (^{\circ}C)')
 set(gca,'XTick',XtickValues)
 set(gca,'XTickLabel',XaxisValues)
 set(gcf,'color','w')
 title(TitleString)

 hold
 scatter(X(potential_outlier),Y(potential_outlier), '*r','LineWidth',5)
 if i==1
 legend('Bedroom','Outliers');
 elseif i==2
 legend('Diningroom','Outliers');
 elseif i==3
 legend('Bathroom','Outliers');
 elseif i==4
 legend('Outside N','Outliers');
 elseif i==5
 legend('Guestroom','Outliers');
 elseif i==6
 legend('Livingroom','Outliers');
 elseif i==7
 legend('Outside S','Outliers');
 elseif i==8
 legend('Kitchen','Outliers');
 elseif i==9
 legend('Hallway','Outliers');

 hold
 end
 end

%interpolate the the outliers
 InterP(:,i)=interp1(find(~potential_outlier),Y(~potential_outlier),X)'

 if DoPlot
 subplot(2,1,2)
 xmax=length(data)
 xlim([xmin xmax])
 scatter(X(potential_outlier),Y(potential_outlier), '*r','LineWidth',5)
 set(gca,'XTick',XtickValues)
 set(gca,'XTickLabel',XaxisValues)
 hold
 plot(InterP(:,i),'b')
 xlim([xmin xmax])
 xlabel('Time')
 ylabel('Temperture (^{\circ}C)')
 title('Temperature data with marked removed outliers')
 set(gca,'XTick',XtickValues)
 set(gca,'XTickLabel',XaxisValues)
 if sum(potential_outlier)>0

 144

 legend('Removed Outliers')
 end
 hold
 end
end
 dataRemovedOutliers=InterP;
end

7.6.4 The LP filter function

function [y] = LPfilt(data)
%Smoothing function
% Low pass filter

t=zeros(length(data),1);
for i=2:length(t)
 t(i)=t(i-1)+1;
end

ToS=zeros(length(data),9);
Ts=t(2)-t(1);
Tf=5*Ts;
a=Ts/(Ts+Tf);
OldToS=data(1,:);
ToS(1,:)=data(1,:);

for l=1:9
 for i=2:length(ToS)
 ToS(i,l)=(1-a)*OldToS(1,l)+a*data(i,l);
 OldToS(1,l)=ToS(i,l);
 end
end
y=ToS;
end

7.6.5 The month to name month function

function [MonthName] = MonthName(m)
%UNTITLED13 Summary of this function goes here
% Detailed explanation goes here
for i=1:1
switch m
case 1
m='January';
break;
case 2
m='Febuary';
break;
case 3
m='March';
break;
case 4
m='April'
break;
case 5
m='May'
break;
case 6
m='June';
break;
case 7
m='July';
case 8
m='August';
break;
case 9
m='September';
break;
case 10
m='Oktober';
case 11
m='November'
break;
case 12
m='december';
break;
end
end
MonthName=m;
end

 145

7.6.6 The control simulation function

% Simulating all controls with prediction horizon

clear all
%-----Continous State Space Model--

Ac=-8.81*10^-4;

Bc=0.439246148*10^-5;

Dc=1;

%-----Discrete time model--

h=60; %sampling time of 6 minute

[Ad,Bd,Dd]=c2dm(Ac,Bc,Dc,zeros(1),h,'zoh');

% Simulation time horizon

dt=0.001; t=0:dt:24; t=t'; N=length(t);

%--------Optimal LQ parameters---

q=1;

Rdu=0.001;

[G1,G2,At2,Bt2,Dt2]=dlqdu_pi(Ad,Bd,Dd,q,Rdu); % MPC with infinite horizon

%--------PID parameters---

Kp=805;

Ti=10000;

Td=0;

%-------MPC--Prediction model matrices-------------------------------------

L=10; %Prediction Horizon

Q=10; R=0.001; %Weighting parameters

nx=size(Ad,1); nu=size(Bd,2); ny=size(Dd,1);

[HdL,OL,OLB]=ss2h(At2,Bt2,Dt2,zeros(ny,nu),L,0);

F_L=[OLB HdL];

Qt=q2qt(Q,L);

Rt=q2qt(R,L);

H=F_L'*Qt*F_L + Rt;

%--

%Steady state nominal values

us=258.7252;

xs=292.44; %

v=258.7;

r=292.44;

x_old=x;

y_old=ys;

u_old=us;

e_old=0;

z=xs(1);

%get refernce vector from comfort interval function

[WdRef,WeRef,t]=ComfortRef();

MPCref=WeRef';

N=length(t)

% Type of controller:1 PID controller, 2-(QP optimal controller),3 MPC

Cntrl=3;

L1=0;

for k=1:N-200

 %step change in disturbance outside temperature

 if k==1900

 v=250;

 end

 146

 r=WeRef(k+L1);

 y=Dd*x;

 if Cntrl==1

 %PID control on velocity form

 e=r-y;

 g0=Kp;

 g1=-Kp*(1-(h/Ti));

 u=u_old+g0*e+g1*e_old;

 e_old=e;

 elseif Cntrl==2

 %LQ optimal control

 dx=x-x_old;

 u=u_old+G1*dx+G2*(y_old-r)

 %u=G1*x+G2*(y_old-r)

 elseif Cntrl==3

 %Unconstrained MPC control, constraints handled by if else

 r1L=MPCref(k+1+L1:k+L+L1);% adding L1 inboth referances. the

prediction time

 xt=[x-x_old;y_old];

 y_old=y;

 x_old=x;

 pl=OL*At2*xt;

 f=F_L'*Qt*(pl-r1L);

 duf=-inv(H)*f;

 u=u_old+duf(1:nu);

 u_old=u;

 end

 %setting oven constraints typical anti wind up mode

 if u>800

 u=800;

 end

 if u<0

 u=0;

 end

 x_old=x;

 u_old=u;

 y_old=y;

 % Save for plotting

 Y(k,1)=y;

 U(k,1)=u;

 R_pred(k,1)=r;

 R(k,1)=WeRef(k);

 %x=At*x+Bt*u;

 %send control signal to the nonlinear function model

 x=HouseMdl(h,v,x,u);

 %use temperature estimation

 L_est=TempEst(x,v,h,293,800)

 if L_est>L1

 L1=L_est

 end

 if WeRef(k+L1)>WeRef(k)

 147

 r=WeRef(k+L1);

 end

end

%---------Plot results---

t=1:N-200;

figure(1)

plot(t/100,Y,'-r',t/100,R_pred,'-g',t/100,R,'-.')

legend('Output, y_k','Predicted Reference r_k_+_L','Reference, r_k')

figure(2)

subplot(211), plot(U)

title('Control, u');

subplot(212), plot(diff(U))

title('Control, du');

7.6.7 The PWM function

A=1;
t=0:0.001:1;
t=t(1:1000)
%Create carrier Sawtooth wave
a = 10*A;
T = 0.1;
c=a*mod(t,T);

t=t*6;
%setting ut the input length
m=1:1:length(t);
%Setting the input signal
u_max=1000; % maximum oven power
u=800; %Control genterated input signal
m(:)=u/u_max;

n=length(c);%Length of carrier sawtooth is stored to 'n'
for i=1:n%Comparing Message and Sawtooth amplitudes
if (m(i)>=c(i))
 pwm(i)=1;
else
 pwm(i)=0;
end
end

%subplot(2,1,2);
plot(t,pwm,'b','LineWidth',2);
axis([0 6 0 1.2])
title('PWM with 80% duty cycle');
xlabel('Time [Min]');
ylabel('1=On , 0=Off');
grid on;

7.7 Appendix 7: Expanded model

푑푇

푑푡
= 푁푇 1 −

푝 푀

휌푅푇
+

푁푝 푀 (1 − 푥)(퐶 푇 + 퐻) +
푥
푀

(퐶 + 퐻 + 퐻) − 휌푁(1 − 푥)(퐶 푇 + 퐻) +
푥
푀

(퐶 + 퐻 + 퐻) + 푄̇ − 푈퐴(푇 − 푇)

휌푉(1 −
푃푀 푥
휌 푅푇 ∗ 퐶 +

푝 푀 푥
휌푅푇 ∗ (퐶) −

푅
푀)

Where 푁 = N*V/3600, and 푇 is inlet temperature ,Cp is heat capacity of dry air, Cpw is heat capacity of humid air, x is fraction of water in air the rest of the

parameters are seen in Table 2-1. For more information the reader is advised to read the BAS master project.

The MATLAB model used for the derivation is

dx(1)=Nt*x1*(x2-(P*M_AH/(R*v)))/(x2)+(Vi*(P*M_AH/(R*v))*(Cpa*(v-273)+fr*(Cpw*(v-273)+H_wv_ref))-Vo*x2*(Cpa*(x1-273)+fr*(Cpw*(x1-273)+H_wv_ref))+(u-(UA*(x1-
v))))/(Vr*x2*Cp)+Md;

7.8 Appendix 8: Regression models for predictor

The regression parameters as seen in the configuration XML file

 <DpredictorAlpha>1.1984954138447921</DpredictorAlpha>
 <DpredictorBeta>0.0020909035984212621</DpredictorBeta>

 <YpredictorAlpha>27.786336336336362</YpredictorAlpha>

 <YpredictorBeta>0.3766537966537955</YpredictorBeta>

 <A11>0.99203191483706066</A11>

 <A12>0.19920212907348425</A12>

 <A21>0</A21>

 <A22>1</A22>

 <B11>0.031808516293937</B11>

 <B21>0</B21>

The Kalman filter disturbance model:

Temperature = 퐴 ∗
푇푒푚푝푒푟푎푡푢푟푒

퐷푝푟푒푑푖푐푡표푟 푎푙푝ℎ푎 + 퐷푝푟푒푑푖푐푡표푟퐵푒푡푎 ∗ 푖
+ 퐵 ∗ 푇푒푚푝푒푟푎푡푢푟푒

The OLS regression model:

Temperature =YpredictorAlpha+YpredictorBeta*i

Where i is the loop counter running each sampling time of 200ms.

