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large power savings. In this thesis it has been proven that a good BAS system can reduce the 

energy usage with at least 20%. This means large savings can be made both in the power bill 

each month but also in a more global environmental perspective. 

The first principle house model is found to inadequately predict house heating times. 

Augmenting the model with a Kalman filter for estimating disturbances is greatly improving 

the estimations. Straight forward OLS regression shows good results during experiments 

using similar conditions.  

Three controllers are analyzed designed and implemented in Visual Studio (MPC,PID,and 

LQR). The Linear Quadratic Regulator is prosed as the optimal controller for the BAS MIMO 

system. 
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Nomenclature 
This chapter gives a list of symbols, abbreviations, and subscripts used in the thesis. 

 

ADC  Analogue to Digital Converter 

BAS  Building Automation System 

BB   Battery Board (ZigBee Pro Development kit) 

dSSM   Discrete State Space Model 

eSSM   Extended (augmented) State Space Model 

ED   End Device  See BB 

ENOB  Effective Number of Bits 

FURPS+ Functional Usability Reliability Performance Supportability + 

GUI   Graphical User Interface 

GW  Gateway  

IO  Input / Output 

LP  Low Pass 

LQR  Linear Quadratic Regulator 

MPC   Model Predictive Control 

MIMO  Multiple input Multiple Output  

NaN  Not a Number 

OLS   Ordinary Least Squares 

PRO  Professional 

SS  Steady State 

SSM   State Space Model 

SISO  Single Input Single Output 

UART  Universal asynchronous receiver/transmitter 

XML  Extensible Markup Language 

VS  Visual Studio 

WF  Windows Forms 
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1 Introduction 

1.1 Background 

The cold winter months in Northern Europe create a high demand for energy, and thus energy 

savings are highly prioritized. In Norway about 60% of the energy used is for heating 

purposes, and with prices exceeding 1kr/kW during winter time energy savings are prioritized 

[2, 3]. The high prices and the large amount of power needed for heating both contribute to a 

high demand for new and smarter ways to save energy. 

The Building Automation System (BAS) use sensors to monitor and a model to predict the 

heating time. A modeled approach will let the power be turned completely off when the house 

is empty and turned back on at the correct time thus saving the most amount of energy [1]. 

Current available systems only reduce the inside temperature with 5°C at the maximum [1].  

This thesis will both be an evaluation on using a model in the BAS system and which control 

methods to use in a finished system. 

The BAS sensors are needed at several places both inside and outside the building in question 

and create the need for a wireless sensor network [1].  

1.2 Market overview 

In the BAS master project work [1] there was proven that the most power savings to an 

automated system could be made by turning the power completely on and off again. There 

was done research into this particular area and what was available on the market. This 

research concluded two things. Firstly there are very few vendors on the market, and secondly 

there seems to be a misconception on how to save the most amount of energy. The few 

vendors are due to the relatively small market mainly Scandinavia. Existing methods from 

NOBØ [4] work by lowering the temperature during set intervals. The lowering schemes exist 

to prevent large heating times and ensure the comfort temperature is reached. Currently there 

exists no adaptable BAS system saving the most energy [1]. 

The basis for this project is to evaluate such an adaptable BAS system using a model to 

predict heating time ensuring comfort temperature at the correct time and maximizing the 

energy savings. 

 

 

 



 9 

1.3 Previous work 

A master project titled Building Automation Systems was concluded in the fall of 2012 [1] 

and creates the basis for the work done in this master thesis. During this project a house 

model was created together with Ph.D. student Whatsala Perera [5]. This model will be 

implemented in this thesis. Using a house model makes the BAS adaptable to changes. 

Adaptable BAS systems are a relatively new area and little information on the subject is 

currently available. The high usage of electric energy to heating is also primarily a concern in 

the northern regions which is a small market seen in a global perspective.  

Klaus Kaae Andersen, Henrik Madsen and Lars H. Hansen published a paper called 

'Modeling the heat dynamics of a building using stochastic differential equations'  in 1998. 

The procedure used in this dissertation  is a combination of using the laws of physics and 

statistical data for modeling the heating of houses [6]. Their model performed reliably to their 

specific conditions. The basis of the model is time consuming since statistical data needs to be 

acquired for each building. 

Bertil Thomasa, Mohsen Soleimani-Mohsenib and Per Fahle published a paper called “Feed-

forward in temperature control of buildings” where the approach the control problem with 

focus on rapid changes in the outside temperature. The feed forward controller model is 

proven to increase the inside temperatures stability [7]. 

The Norwegian building standards have standards on the minimum amount of insulation in 

buildings and are denoted using the U1 value [8]. U value properties and measurements are 

discussed in several on-line communities for energy savings [9]. 

The wireless sensor network was set up and tested in a summer job at TUC by the author [10]. 

The ZigBee ZStack code created in the BAS master project will be the basis for the 

communication to from the ZigBee nodes/ sensors to the ZigBee Coordinator /gateway[11] 

[12]. 

 

 

  

                                                 

 

1 A conduction and convection property 
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1.4 New work 

The new work in this thesis is to employ a model in a BAS creating an adaptable system 

estimating heating time based on current environmental data. The model will be from the 

BAS master project [1] [5]. 

In addition the thesis will propose which control algorithms will be best suited for house 

temperature control. The controllers are the feedback control (PID) the Model Predictive 

Control (MPC), and Linear Quadratic Regulator (LQR). All controllers will be designed using 

suitable parameters for the BAS, simulated and tested.  

There will be created a data acquisition program used as a ZigBee gateway parsing the 

environmental sensor data to file. The ZigBee gateway will be created using Visual Studio 

(VS) and C#. The gateway will be used in to gather experiment data from to validate the 

model. 

A prediction model will be created based on the house model and a Kalman filter for 

estimating the disturbances. The prediction model will be tested using the experiment data 

before implementation in VS. The BAS control system utilizing the sensor data the controllers 

and the predictor will be created in VS and tested. 

An interesting perspective is in having a good house model the BAS system will be invertible, 

estimating the cooling down period. This would open for energy savings in a much larger 

global market.  
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1.5 BAS system description

The Building AutomatedSystem (BAS) is a completehousetemperaturemonitoring and

control system.Thereforesensorsareneededin order to measurepresentconditions,a data

acquisition systemfunctioning as a gateway to transform the sensorsignals to readable

formats,anda controlsystemusingthesesensorsfor controllingthetemperature.In theBAS

masterproject it was proven that shutting the heaterscompletelyoff when the housewas

empty was the most energy efficient [1]. This createsthe need for a prediction model

estimating thetime to reachthesetpoint temperature.Thecompletesetupof theBAS system

canbe seenin Figure1-1. The dataacquisitionis doneby the wirelesssensornetworksent

througha gatewayto thepredictionsystem. This datais thenusedby thepredictorto estimate

theheatingtime basedon the remainingtime to a comfort interval. Thecontrol systemuses

thesamedatato keepthetemperatureatconstantlevel.

Figure 1-1 BASthesissetupshowingthethreepartsof thethesisandtheir mainpurpose.

The wireless sensornetwork has been selectedas a ZigBee network due to the fact of

interoperabilitybetweendifferent vendorsandthe low powerperformance[11]. The ZigBee

nodeswill be codedin IAR EW using embeddedC [1]. The main systemcodewill be in

Visual StudioandC#. Thefirst principlemodelwill beaugmentedusinga Kalmanfilter and

usedfor estimating heatingtime in paragraph3.2.3.1. Thecontrol outputwill be run through

softwarePulseWidth Modulatorseenin paragraph4.5, andtheheaterpowerwill besetby a

DAQ-6008device[13]. MATLAB will beusedto do dataandsystemanalysis.
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1.6 Report structure

The BAS systemwill be a comprehensivesystemandcanbe viewedas the combinationof

thethreemajorparts.

1. Dataacquisitionandhousemeasurements, thegateway

2. Predictionmodelandheatingtimeestimates, thepredictor

3. Controlsystemimplementation, thecontroller

The parts will be individually completedbefore the next part is startedand addedto the

systemin the way of Object OrientedDesign and Analyses[14]. This way the complete

systemcanbeviewedasthethreeusecasesseenin Figure1-2.

Figure1-2 Thesisoverviewseenasusecasediagram

All partswill follow the samebasicstructureand startwith the theoreticalbackground and

endwith a completedsystemtest.MATLAB softwarewill be usedto do dataanalysisand

controlmethodsimulationsbeforeimplementationin Visual Studio(VS). Thereportstructure

canbeseenin Figure1-3.
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Figure1-3 BASthesisstructureseenwith major partson theleft andsubpartsandsub

chapterson theright.
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Part 1

2 Data acquisition

2.1 Introduction

In order to monitor the temperaturesinside a housethere is the needfor severalsensors

locatedboth insideandoutsidethe housemeasuringtemperatures, humidity andventilation

[1]. To minimize the amountof cablingneededto all thesesensorsa wirelessnetworkhas

beenselectedfor communication. The ultra-low powerZigBeewill be usedas the wireless

sensorcommunicationplatform.Thecontrol systemanddataanalysissoftwarewill bebased

on theWindows OSplatform.

In order to achievecommunicationbetweenthe Windows OS and the ZigBee protocolsa

gatewayis needed,where the gatewaywill work as a translatorjoining togetherthe two

networks.Thegatewayshouldconvertthe ZigBeesensorinformationto readabledatain the

MATLAB environmentand the Windows OS basedcontrol system. There are two main

reasonsfor theneedof this softwaregateway:

1. The ZigBee devices lack the memory and the computationalpower to compute

optimalcontrolstrategies.

2. MATLAB andotherprogramsareneededto do sufficientdataanalysis.

2.1.1 System description

TheGatewaysystemwill be basedon datafrom the sensorsconnectedto the ZigBeenodes,

end devices, and coordinator. The ZigBee Professionaldevelopmentkit from Texas

Instrumentshasbeenusedto readthetemperaturesensorsin theenddevicesandsendtheseto

a ZigBeecoordinatorin theBAS masterproject [1]. The ZigBeecoordinatoris connectedto

thecomputersystemusingtheCOM port asthecommunicationmedium. This canbeseenin

Figure2-1

Figure 2-1 Part onesystemdescription- gateway
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2.1.2 Part 1 Structure

Thefirst partin this thesiswill addressthehousemeasurementsanddataacquisitionsoftware.

In order to understandthe systemto be monitoredsometheoreticalbackgroundis needed.

This will be gatheredby analyzingthe most important and measurableparametersof the

housemodel. At the end of part 1 there will be real life experimentsfurther testing the

gatewayandthevalidity of themodel.Thegatewaypartof this thesiswill follow thestructure

seenin Figure2-2 wherethemain chaptersareseenon theright andthesubchaptersareseen

on theleft.

Figure 2-2 Part 1 structureprogressingin a downwardsfashion
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2.2 Theory 

2.2.1 The house model  

In order to best approach the data acquisition software some theoretical background is needed. 

The house model will give a good understanding to what needs to be measured, and what 

should be set based on fixed values or theoretical data. The house model was created by PhD 

student Degurunnehalage Wathsala Upamali Perera [5] and used in the BAS master project 

[1]. It is based on two differential functions, the change in inside temperature seen in 

Equation (2-1) and the change in inside air density seen in Equation (2-2). The outside air 

density is assumed constant. 

푑푇

푑푡
=
휌푉̇ − 휌 푉̇

휌푉
푇 +

1

휌푉(푐 −
푅
푀)
휌 푉̇퐻 − 휌푉̇ 퐻 + 푄̇  (2-1) 

푑휌

푑푡
=
푁

3600
∙ (휌 − 휌) (2-2) 

The model parameters are seen in Table 2-1. 

 

Table 2-1 Model configuration parameters 

Notation Type Unit 

휌 퐼푛푠푖푑푒 푑푒푛푠푖푡푦 [푘푔/푚 ] 

휌  퐼푛푙푒푡 푑푒푛푠푖푡푦 [푘푔/푚 ] 

푉̇ Volumetric flow rate of inlet air [푚 /푠] 

푉̇  Volumetric flow rate of outlet air [푚 /푠] 

푀 Molar mass of outgoing moist air [푘푔/푚표푙] 

푐̂  Specific heat of moist air at constant pressure [퐽/푘푔퐾] 

푇 Temperature inside the room [퐾] 

퐻  Specific enthalpy of inlet air [퐽/푘푔] 

퐻  Specific enthalpy of outlet air [퐽/푘푔] 

푄̇ Net heat energy transported into the system 

푄̇ = 푄̇ − 푄̇  

[퐽/푠] 

푉 Volume of house [푚 ] 

푅 Gas constant [퐽/푚표푙 퐾] 

푁 푁푢푚푏푒푟 표푓 푎푖푟 푐ℎ푎푛푔푒푠 푝푒푟 ℎ표푢푟 [푚 /ℎ] 
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The house model parameters base on inside and outside conditions are visualized in Figure 

2-3.  

 

Figure 2-3 Visualization of model parameters 

 

For more specifics on the model the reader is advised to read the BAS master project [1] or 

the house model paper [5]. 

The house model depends on a set of parameters from the building. Understanding these 

parameters is important to implement a good model based temperature control system. The 

most important parameters will be discussed in the next section.  

2.2.1.1  House and model parameters 

The model depends on several parameters from a specific building in order to emulate that 

building properly. Many of these parameters should be measured directly by a sensor 

network. The inside temperature, outside temperature, density, ventilation and pressure are 

such parameters. The U- value, the overall heat transfer coefficient, might however be easier 

to estimate from tables using known materials and known U-values.  

The overall heat transfer coefficient U 

One of the major parameters in the building model is the heat loss through convection and 

conduction known as the overall heat transfer coefficient U. This value is a measure of how 

much heat is lost from building elements to the environment.  

A wall with a high U value means that it is leaking a lot of heat, while a low U value means a 

high degree of insulation. Figure 2-4 visualizes the difference between a well-insulated low 

U-value wall, and a poorly insulated high U-value wall.  
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Figure 2-4 Low andhigh U values

The heatlossequationseenin Equation(2-3) is thusbasedon the U-values, the conduction

andconvectionthroughcompositematerialselementswalls, windows,floors,doors,roof and

arebasedon the differencein insideandoutsidetemperature. Theheatlossequationcanbe

seenin Equation(2-3) wheretheparametersareseenin Table2-3.

(2-3)

Table2-2 Heatlossequationparameters

Notation Type Unit

Overall temperaturedifference [K]

A Areaof theelement [ ].

Overall heattransfercoefficient [ ]

The U valuesare useful in predictingthe behaviorof compositesmaterialswith regardsto

total heatlossfrom thecompleteelementinsteadof eachof thematerials. TheU valuefor a

wall, floor, roof, door, and window will be specific to that wall and that house[8]. The

Norwegianbuilding standardshavesetregulationsfor the maximumrecommendedU values

[8]. Togetherwith a housemodel thesevaluescanbe usedto predict if a houseis up to the

Norwegianstandardsassumingknown or measuredventilation temperature,pressureand

density. If the temperaturein thehousedropsfaster thansimulatedby the modelthis would

indicatethat the elementsof the building hasa higherU valuethenspecified. The U-values

may alsobemeasuredandthis is discussedin theAppendixsection7.2.

Themostpracticalmethodis to usethestandardvaluesfor thebuildingselementseitherfrom

the constructionor the Norwegianstandards,TEK-10 regulationson technicalrequirements

for construction[8]. The TEK-10 maximal recommendedvalueswill be usedfurther in the

thesisandareseenin Table2-3
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Table 2-3 TEK-10 U values. 

U-Wall U-Window/door U-Floor U-Roof 

0.18 W/(m2K) 0.12 W/(m2K) 0.15 W/(m2K) 0.13 W/(m2K) 

 

In order to test the validity of the model and further test the functionality of the created 
Gateway system some experiments were performed. The experiments are found in section 
2.4. 

2.3 Software Development 

The main objective of the gateway is to read several sensors values sent from the ZigBee end 

devices to the ZigBee coordinator2 and save these values to file. The maximum number of 

sensors for each device is 7 given by the maximum number of inputs on the End Devices 

(ED) [15]. The number of end devices, types of sensors, IO channels configuration and the 

name of the device should be stored in a configuration file. The configuration file will be 

parsed using extensible markup language (XML), which is used to keep the data structured, 

organized and promote easy access.  

The log file will be a text file with the sensor data and time stamp using the Norwegian CSV, 

separating values with a semicolon [16].  

The Gateway will be created in Visual Studio, C#, and the Graphical User Interface will be 

based on Windows Forms, the ZigBee nodes are coded in IAR workshop and embedded C. 

All the requirements of the gateway have been considered using the FURPS+3[14] method, 

the FURPS+ sheet can be found in Appendix 3 FURPS+ paragraph 7.3.1 

2.3.1  The Use Case Diagram 

The FURPS+ analysis of the Gateway are then made into a use case diagram. The use case 

diagram gives a good graphical overview of the functionality, and requirements of the system. 

The created use case diagram can be seen in Figure 2-5.  

                                                 

 
2 The ZigBee gateway device where the UART/COM port is located. 
3 Functional, Usability, Reliability, Performance, Supportability +Additional. 
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Figure 2-5 Usecasediagramof theGateway

In order to bettervisualizethe inner workingsof the gateway, a layeredarchitecturedesign

diagramhas beencreatedand can be seenin Figure 2-6. The layeredarchitectureshows

which usecases arecommunicating with eachother, the operatingsystem(OS) andthe user

throughthegraphicaluserinterface(GUI).

Figure 2-6 Layeredarchitectureof thegatewaysystem

Thenextstepin thesoftwareprocessis to furtheranalyze,design,codeandtesta selecteduse

case,often the onewith the highestrisk or importance. The configurationusecaseis needed

by all otherusecasesin theprogram, makingit important andconvenientto finish first. The

progressof the four usecases, following the Unified Process(UP) [14]canbe seenin Figure

2-7.
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Figure2-7 Softwareprocessfollowing theUP

All the classeswill start with the samenamesas their usecaseand a separate.cs file is

createdfor eachusecaseto simplify debuggingandupdating.

2.3.2 The configuration use case

Theconfigurationclassis responsiblefor storingandretrievingtheprogramconfiguration.

Theconfigurationwill beparsedusingtheExtensibleMarkupLanguage(XML ). A fully

dressedusecasedocumentwill becreatedthis gives gooddocumentationanda goodstarting

point for theprogramming. Thefully dressedusecasedocumentcanbefoundin Appendix4:

Fully dressedusecasedocumentsparagraph7.4. Followingwill bethedesignof theusecase

andits parameters.

2.3.2.1 Designing the configuration use case

The configurationusecaseis whereall the datawith changeableparametersarestored.The

gatewayprogramneeds to store information about eachsensornode, and the serial port

settings.Theremight alsobeneededto changethetimer savingdatato disc, thesampletime,

so the timer shouldalso be changeable.The main elements4 of information neededcan be

seenin Figure2-8.

4 An XML elementis consistsof a starttag,andendtag,andthecontentin between.
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Figure 2-8 Configurationnodes

The elementsspecificinformation, nodes,hasto be chosen. For the sensors thereis needed

information about the network address, namein order to know which End Device, ED is

sendingthe data.In additionthereis neededan Input Output(IO) channelnumberingto sort

the sensorsconnectedto eachED. Finally the location and the measuredvalue from the

sensorshould be set. For further use it might also be a good idea to add the rangeand

uncertaintyof the sensorand the installedbatterydateof the ED connectedto this sensor.

Lastly there should be a miscellaneouscolumn in order to set additional information not

thoughtof at the presenttime. The availablesensorinformation, for one typical sensor,are

summarizedin Table2-4.

Table2-4 Typicalexampleof onesensorsettingsin theconfiguration

The serial link propertiesshould be changeableto make the program run on different

computerswith different setups.Thebestway to do this let the userchoosefrom thecurrent

availableCOM portsandCOM port settingsin Visual Studio(VS). An exampleof theserial

informationneededto run theprogramcanbeseenTable2-5.

Table2-5 Typicalexampleof COM portsettings

Address

/ name

IO

channel

Type Location Measureand Range Uncertainty Battery

install

date

MISC

0AAA 00 PT1000 Bedroom Temperature -50°C to

+100°C

0.02% 1/1-2013 Additional

information

COM port BaudRate Parity Databits StopBits Handshake RTSenable

COM1 34800 none 8 one disabled enabled
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The selectedfunctions for creating this XML basedconfiguration is the XML serializer

functioncontainedin .NET, which is a straightforwardway of creatingtext basedXML files.

For reading,andwriting to file thefilestreamfunctionwill beused[17].

Theconfigurationfile formatwill beXML following thetemplateseenin Figure2-9.

Figure 2-9 XML script template

Excerptsof theconfigurationcodesmostimportantalgorithmsarefoundwith commentaryin

Appendix5 – SourceCodefrom paragraph7.5.1.1through7.5.1.3.

2.3.3 Display Configuration Data use case

The next use caseto be further analyzed, designedand addedto the code is the display

configurationusecase.This usecasecontainsthe interfacebetweenthe configurationdata

andthe user.The configurationwill be enteredin a programconfigurationeditor which will

work during runtime,and removeany erroneoustype errorsfrom usinga text basededitor.

TheDisplayConfigDatausecaseis createdasa windowsFormGUI to connecttheuserto the

XML configurationfile without theneedfor anyexternaleditingprograms.Thecreatedfully

dressedusecasedocumentcanbe found in Appendix 4: Fully dressedusecasedocuments

paragraph7.4.2.

2.3.3.1Designing the configuration GUI, DisplayConfigData

TheDisplayConfigDatausecaseneedsto give a goodandsimpleway to add,edit or remove

sensorsfrom theconfigurationfile. Somesensors might breakdownor for otherreasonsneed

to bechangedor newsensorsadded. TheGUI will bemadein VS andWindowsForms. The

information in the GUI is as discussedin the configurationuse case.The configuration

display will use a data grid view for the sensorinformation, comboboxesfor the serial
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configuration and a text box for the timer. The serial link properties should be selectable from 

available parameters in the .NET environment and the computer hardware. In addition an 

information button should be included to supply the user information about the configuration, 

and the correct way of inserting data. Lastly there should be an exit button and a button for 

saving the changes. The created configuration GUI can be seen in Figure 2-10. 

 

 

Figure 2-10 Configuration GUI. 

 

The code is based on reading and saving the configuration data using the config class and the 

main code excerpts with explanation, results, testing and error handling can be found in 

Appendix 5 – Source Code paragraph 7.5.1.7and 7.5.1.9.  Everything was found as working 

correctly and should be further checked in the log use case, for this reason the next use case to 

be further analyzed designed and added to the code will be the LOG use case. 

2.3.4 LOG use case 

The log use case main purpose is to parse the raw serial data, add a time stamp and save the 

data to file. The text received from the serial port will be a stream of characters that need to be 

redistributed in a readable format for MATLAB and other applications. The distribution of the 

sensor values should be based on the sensors configuration in the config.xml file.  The LOG 

fully dressed use case document can be found in Appendix 4: Fully dressed use case 

documents paragraph 7.4. 

2.3.4.1 Designing the log, the LOG use case 

The main function of the LOG use case is to parse the serial data into columns containing the 

date and time for the message and one column for each of the sensors values. The received 

raw data from the serial link contains the message between a start data sign, <, and a stop data 
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sign. The messageitself first consistsof the network addressor nameof the ZigBee end

device,followed by the IO addressfor that specificsensor.The reasonfor this is that some

end devicemay haveseveraldifferent sensorsconnected,but only one sensorfor eachIO

channel. Themaximumnumbersof sensorsIO addressesareeight, but theyarenotatedin the

sameway asin theTexasInstrumentsZigBeeZStack5 v 2.5.1as00 to 07 [15]. In Figure2-11

asensormessagefrom theenddevicesis seendividedup into thespecificparts.

Figure2-11Exampleof sensordatasentfrom theenddevices

Theseparatingcharacterbetweenthe columnsshouldbea semicolon.This makestheparsed

dataeasilyreadableby MATLAB andotherdataanalysissoftware.Theflow of theLOG use

casecanbeseenin Figure2-1.

Figure2-12Log messageflow

Thereneedsto becreatedanalgorithmin orderto split themessagedatainto packetswith the

information betweenthe two separatingsigns. This algorithm will work by searchingthe

incomingdatafor the endmessagesign > in order to be surea completemessagehasbeen

sent.Thenit will checkif the startmessagesign is the first part of the message.If both are

valid a completemessagehasbeenrecordedandit will beseparatedinto anarraybasedon the

lengthbetweenthemessagestartandthemessagestopsign.This is doneuntil theendof the

messageand the new createdmessagearray is ready for further processing. The parsing

methodwill searchthroughall themessagesin the messagearrayandpair it with thecorrect

sensorfrom the configuration.If a sensordoes not haveany messagesthe Not a Number

5 Formoreinformationon theZStackandZigBeereaderis advicedto read[10] S.Krogstad,"ZigBeePRO

developmentkit setupguide,"ed,2012,[15] T. Instruments,"CC253xSystem-on-ChipSolutionfor 2.4-

GHz,IEEE 802.15.4andZigBee®Applications,CC2540/41System-on-ChipSolutionfor 2.4-GHzBluetooth®

low energyApplicationsUser'sGuide" 2012.
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(NaN) valuewill be set.Receivingseveral valuesfrom onesensorwill only resultin the last

valuebeingoverwritten.Thefile will bein TXT formatfollowing thetemplateseenin Figure

2-13.

Figure 2-13 Logdatatemplate

2.3.4.2The LOG code

Thelog codeis madeup of thealgorithmusedto split up the raw serialdata,andmethods to

parsethe serialdataandsave it to file. Themain partsof the functionswill be gonethrough

more in detail and testingwith error handlingwill follow the codein Appendix5 – Source

Code paragraph7.5.1.7 through 7.5.1.9. The spacerequired for log file saving has been

calculatedandcanbefoundin 7.5.1.10

2.3.5 DisplaySerialData use case

TheDisplaySerialDatausecasehandlestheserialport informationandthevisualinterface

betweenthereceivedserialdataandtheuser. Theusecasemainpropertyis to readthe

currentdataon theserialport.Thecurrentconfigurationshouldbeavailablefrom the

configurationXML file. Theusershouldbepromptedfor savinga log file, andhavethe

availability to bothview andsavetheparseddata.Thereshouldalsobeanoptionfor saving

therawdatafor debuggingpurposes.Thedocumentationfor theDisplaySerialDatausecase

canbefoundin theAppendix4: Fully dressedusecasedocumentsparagraph7.4.

2.3.5.1Designing serial data GUI, DisplaySerialData

Using a serial port in C# is fairly straight forward it by draggingthe serial port from the

toolboxto thewindowsform. Theusecaseneedstwo timers,onefor the readserialdataand

one for savingthe log files to disk. Both timers are useddirectly from the toolbox in VS.

Sincethegatewayshouldberunningcontinuouslytheexit crossactionshouldbechangedto

hiding the applicationin the windows tray rather than closing the application.The created

GUI for themainform of thegatewayapplicationcanbeseenin Figure2-14.
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Figure 2-14 GUI of the read serial data 

 

The function to read the serial port will be the SerialPort.ReadExisting. The ReadExisting 

method works by reading all the available bytes from the serial port, before returning a string. 

In addition the save file dialog method will be used to prompt the user for file name and 

location.  

 

2.3.5.2 GUI and extra functions 

In order to create a better GUI several icons were found from www.iconfinder.com freely 

available for commercial use. In addition a main gateway icon was modified to fit this 

program. The icons can be seen in Figure 2-15. 

 

Figure 2-15 Icons used in the GUI of the gateway program 
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2.3.5.3Testing and error handling in the gateway system

The completegatewaysystemwas logging datafor 14 daysconsecutivelyand no problem

arose, andthegatewaywill befurthertestingin theexperimentpart.

All theerrorhandlingin thegatewayis doneby savingtheerrorto anerrorlog containingthe

time, date and type of the error including the methodnamewhere the error occurred.A

typicalerrorlog messagein thesplit messagemethodcanbeseenin VScode2-1

LogSave( "error. lo g" , DateTime . Now.ToString( ) + e. Message + e. Source +
"@splitmessage" ) ;

VScode2-1 Error handling

2.4 Experiments

2.4.1 Introduction

In orderto testthevalidity of themodelexperimentaltemperaturedataareneeded. This data

has been logged using the createdgatewayand can as such be directly imported to the

MATLAB environmentfor further processing. In the MATLAB environmentthe data is

easilyplottedandcomparedto themodelsoutputwith thesamecircumstances.This will also

introduceadditional testing of the data acquisitionsoftware.A sketchshowing the model

validation processcan be seenin Figure 2-16 the simulateddatagiven from the model is

comparedto theexperimentaldata.

Figure2-16Modelverificationprocess
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Thecreatedgatewayhasonly beentestedin simulationsandtheseexperimentswill alsobea

teston how it will work in a realhousemonitoringsituation.A housewasmadeavailablefor

the experimentsfrom the 21th of March to the 30th March 2013,and therewascreatednine

low power temperaturesensorsfor the temperaturemonitoring. The experimentaldata

acquisitionhardwareconsistsof a computerwith theGatewaysoftwareanda COM port for

theconnectionto theZigBeeCoordinator.TheZigBeeCoordinatoractsasa hubreceiving all

the data from the wirelessZigBee sensornetwork. The sensornetwork consistsof three

ZigBeeenddeviceseachwith threetemperaturesensors. Theheatersareusedaspureon off

devices,and the usedpower is readoff the powermeter.The experiment procedurecanbe

visualizedin Figure 2-17 wherethe experimentvaluesare readmanually from the power

meterand by the computerfor the temperaturesensors.The bottom level is visualizedas

either the heaterconnectedto the powermeteror the sensorsconnectedto the enddevices.

Connectionsarenotedwith anarrowanda labeldenotingwiredor wirelesscommunication.

Figure2-17 Experimentalhardware

The IAR EW ZigBeebasedBAS gatewaysystemcreatedfor the BAS MasterProjectwas

usedasthe ZigBeeto COM communication,andfor moretheoryon the ZigBeedevicesthe

readeris advisedto read[15] and[10].
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2.4.2 Experiment setup 

The nine temperature sensors should be spread out with at least one sensor in each of the main 

rooms in the house, large rooms should use several sensors in order to get a correct room 

average. In addition there should be at least two sensors outside on different sides of the 

house to have one always in the shadow. The temperature sensors are silicon devices of type 

TMP36 [18].The sensor placement is seen in the building drawing seen in Figure 2-18 In 

addition the heaters are marked with name, where red box heater indicates a panel heater and 

the tiles indicate a floor heater. The arrows, Vent, indicates where there is a ventilation 

opening. 

 

Figure 2-18 Temperature sensor locations and house setup 

 

The temperature sensors are seen as the silicon devices connected to the ZigBee nodes /end 

devices by 3 cables of 2 and 4 meters. The sensors are numbered according to their numbered 

setup in the gateway configuration file. The sensors were placed at approximately 1.5 meter 

location from the floor. A picture of such typical placing can be seen in Figure 2-19. 
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Figure 2-19 Typical sensor placement, sensor 2 on the left and 3 on the right 

 

The outside sensors outside were placed as seen in Figure 2-20. 

 

 

Figure 2-20 Outside sensor placement, sensor 7 seen in image 

 

A typical location of the ZigBee node can be seen in Figure 2-21. 

 

Figure 2-21 ZigBee end device placement, dining room node  

 

The 9 temperature sensors were connected to the ZigBee nodes by connectors that fit the IO 

header B port 15 on the ZigBee battery board. The slots were connected to the analogue 

digital converter (ADC) channel 02, 04 and 07 on the ZigBee nodes. The connection can be 

seen in Figure 2-22. 
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Figure 2-22 Connection to the ZigBee node (end device) 

 

In addition there was one vent in each room, the vents could be closed and all was of the type 

seen in Figure 2-23. 

 

Figure 2-23  Ventilation locations, living room vent seen in image 

 

The uncertainties of the measurements are important to know in order to do any analysis, and 

calculating the temperature sensors uncertainty needs to be done. The ADC have 12 effective 

number of bits (ENOB) for ADC conversion. The range is from -3V to 3V which gives 2048 

bins available on the positive side 0V to +3V .This gives as seen in Equation (2-4) and 

Equation (2-5) 

3푉

2048
= 0.0015 ≈

1.5푚푉

푏푖푛
 (2-4) 

1.5푚푉/푏푖푛

3푉
∗ 100 ≈ 0.05% 

(2-5) 

 

TMP6 Temperature sensor accuracy using worst case scenario will then as seen in Equation 

(2-6). 

±2°퐶

156°퐶
∗ 100 ≈ 1.3% (2-6) 

 

The complete uncertainty budget can be seen in Table 2-6 where the main sources of 

uncertainty is the TMP36 device and the manually read power meter. 

 

Ground Analogue inputs 

Vcc 
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Table 2-6 uncertainty budget 

Type Sensor Range Accuracy Note 
CC2530 EM ADC -3V to 3V ±0.05%  
Temperature TMP36 -25°C to 140°C ±1.3%  

Power meter N/A N/A ±0.9kWh 
The meter only 

shows kWh 

 

2.4.3 Gateway setup, and data acquisition 

The data was gathered using the created gateway organizing the sensor data. The gateway 

store all the information in text based log files that can be directly imported into MATLAB. 

The sensor data are included in columns separated by a semicolon where the first column is 

the Date time stamp. The sensor setup for the house experiments in the gateway can be seen 

in Figure 2-24. 

 

 

Figure 2-24 Gateway configuration for running the experiments 

 

The sampling time set in the save file timer is set to 3600ms or 6 minutes which should be a 

high enough sampling time due to the large time constants of  a house.  

2.4.4 Data processing 

The raw sensor data saved to file using the gateway need some processing in order to be 

correctly represented when analyzed. The raw data should be filtered through a low pass 

filter, all non-values, NaN, should be removed and there should also be a check for gross 

outliers. Several MATLAB functions were created in order to accommodate the data 

processing and verification needed and will be further discussed in 2.4.4.1 to 2.4.4.3. 

2.4.4.1 The NaNremove.m function 

The data acquisition system should interpolate between missing values and give the user 

information about the number of NaNs that are removed. There are efficient methods for this 

in the basic MATLAB setup. Using the find.m function with the isnan.m function any NaN 

values position is found. The MATLAB environment 2d interpolation function interp1.m is 
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used to interpolate between the known values and the found NaN indexes. The interpolate 

function requires values before and after the missing value in order to function. This means 

the data needs to be checked for missing values at the start of the data set, these rows are 

simply removed from the data set. This is seen in an excerpt of the NaNremove.m function 

seen in MATLAB script 2-1. 

while (find(isnan(data(j,:)))>0 & j<length(data(:,1))) 

      j=j+1; 

    end 

    %remove all first rows with NaN data 

    data=data(j:length(data(:,1)),:) 

MATLAB script 2-11check of first row NaNs 

Then all the NaN values that can be interpolated are found and the data is interpolated. This is 

seen in the excerpt of the NaNremove.m seen in MATLAB script 2-2 

for i=1:length(data(1,:)) 

    Non=data(:,i) 

    NonNan(:,i)=interp1(find(~isnan(Non)),Non(~isnan(Non)),1:length(Non))'; 

    NaNs=length(find(isnan(data))); 

End 

MATLAB script 2-2 interpolate between missing values 

Finally the data needs to be checked for NaN values at the end of the data file. If found these 

end rows are removed following the same principle as removing any NaNs contained in the 

first rows. This is seen in the NaNremove.m function excerpt in MATLAB script 2-3 

if (find(isnan(NonNan)) > 0 ) 

     [row,col,vals]=find(isnan(NonNan)); 

     EndNaNsRemoved=length(vals); 

     NonNanData=NonNan(1:min(row)-1,:); %Remove end rows with NaNs 

MATLAB script 2-3 removal of end rows containing NaN 

The function is then tested with all the three parameters the result can be found in Appendix 

6: MATLAB scripts paragraph 7.6.2. 

2.4.4.2 Sensor value to Temperature conversion 

In order to have the data in degrees Celsius the Analogue to Digital Converters (ADC) values 

needs to be converted. The ADC converter receives the voltage output from the TMP36 

temperature sensor which is directly correlated to the current temperature. The ADC on the 

ZigBee nodes has ENOB of 12bits, ranged from -2048 to 2048, or -3V to 3V [15], and the 

conversion is done based on the TMP36 sensor scaling. This is seen in Table 2-7. 

 

Table 2-7 TMP36 temperature sensor scaling parameters 

Sensor Offset voltage (V) Scaling voltage (mV/°C) Output voltage at 25°C (mV) 

TMP36 0.5 10 750 
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For the conversion the data is first converted back to the sensors voltage from the ADC value 

as seen in Equation (2-7). 

푉표푙푡푠 = 퐴퐷퐶 ∗
3

2048
 (2-7) 

The voltage data is then converted into °C seen in Equation (2-8). 

푇푒푚푝푒푟푎푡푢푟푒 = (푉표푙푡푠 − 0.5) ∗ 100 (2-8) 

2.4.4.3 The outlier marking function 

The outlier removal function will also use MATLAB to interpolation between the gross 

outliers. Gross outliers have been selected as values that lay 2 standard deviations from the 

mean of the entire data set. This is however an input to the function, and the size of this 

standard allowed deviation should be set regarding the length of the sample in question. Since 

the Interp1.m function will return NaN if there are outliers found in the end and start of the 

data file, this function should be run before the NaN remover. This will ensure that all outliers 

and all NaNs are removed before smoothing the data. The standard deviations and the mean 

of the data sets are found using the repmat.m function. An excerpt of the outlier detection and 

removal function can be seen in MATLAB script 2-4 the complete source code is found in 

Appendix 6: MATLAB scripts paragraph 7.6.3 

mu = mean(data); %Create a matrix of mean value 

sigma = std(data);%Get the standard deviation of the data 

[n,p] = size(data);%Get the size of the data matrix 

MeanMat = repmat(mu,n,1); % replicating the mu vector for n rows 

SigmaMat = repmat(sigma,n,1); % replicating the sigma vector for n rows 

outliers = abs(data - MeanMat) > 2*SigmaMat;% Create a matrix of zeros and 

ones, where ones indicate the location of outliers 

MATLAB script 2-4 outlier removal excerpt 

The outlier removal function was tested with some noisy data gathered during the 

experiments and the resulting plots before and after outlier removal can be seen in Figure 

2-25. 

 

Figure 2-25 Removed outliers using a standard deviation of two, top graph shows the data 

before outliers are removed and bottom shows after removal. 
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In this plot it may seem as one outlier is remaining at 23:10 March 23th and this may be 

discussed, however since it is not removed this means that there are at least 3 consecutive low 

samples. With a 6 minutes sampling time this means the samples are over an 18 minute period 

on the March 23th and as such should not be seen as outliers. The reason for these samples 

seeming erroneous is probably due to a door being kept open for too long letting cold air 

inside. The last points that have been interpolated are just single samples and as such can be 

seen as outliers. The data should also be run through a LP smoothing function that will take 

care of this. The LP filter function can be found in Appendix 6: MATLAB scripts paragraph 

7.6.4. 

The plots before and after all the data acquisition functions can be seen in Figure 2-26 and 

Figure 2-27 respectively. The script loading the log data, running the data processing 

functions and creating the correct axis and output format can be found in Appendix 6: 

MATLAB scripts paragraph 7.6.1. 

 

 

Figure 2-26 Raw data received from the ADC of the ZigBee nodes, before data processing 

 

 

Figure 2-27 Temperature data after data processing 
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2.4.5 Discussion 

The experiments clearly indicated that the model has some problems with estimating the 

correct time constants of the house. The cooling and heating times lasted both much longer in 

the real house than model simulations [5]. In order to better visualize this difference, the 

sensor values has been averaged to yield one inside temperature, and one outside temperature. 

Both the “all power on” and “all power off” experiments data will be compared with the 

model simulations using the same environmental conditions and house parameters. In the 

simulations the temperature in the ground is seen as 5°C higher than in the air for simplicity. 

The data used for the all power off simulation is from March 28th and 29th and gives 

representable data from all the “all power off” experiments. Some data colored by noise 

should still be removed before comparing with the model simulations. From 07:00 to 09:00 

on 29 March the inside temperature data is too colored by the sun which is seen from the 

outside temperatures in Figure 2-28. From 18:33 to 19:30 the data is also somewhat colored 

by unknown disturbances, probably cold wind from opening the door when leaving the house. 

The processed data for the entire power off interval can be seen in Figure 2-28. 

 

 

Figure 2-28 Averaged temperatures, inside temperature seen in top graph and outside 

temperature seen in bottom graph. 

 

The removal of this noise colored data results in a 10 hour period of good data quality ready 

for comparison. This temperature data is seen plotted together with the non-linear model in 

Figure 2-29. 
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Figure 2-29 experiment data “all power off” VS non- linear model, inside temperature seen 

in top graph and outside temperature seen in bottom graph. 

 

In the same manner an all power on representable data set was found at March 22th from 

09:30 to 19:00 and is plotted next to the non-linear model seen in Figure 2-30. 

 

 

Figure 2-30 Experiment data “all power on” VS non-linear model, inside temperature seen in 

top graph and outside temperature seen in bottom graph. 

 

In Figure 2-29 and Figure 2-30 as the non-linear model fits the experimental data poorly. 

There are several reasons for this: 

1.  The model does not take into account the mass of the house the walls the floor the 

furniture etc. All which has a lot of mass and much specific heat capacity. 

2. A statistical U- value has been used TEK10.  

3. The Ventilation is set to a statistical, TEK10, value and is not measured 

4. The effect of the sun i.e. the solar rays are not measured 

5. The temperature of the ground is unknown 
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The statistical data for the house blocks U-values and the ventilation might contribute 

significantly to the erroneous of the non-linear model. Both these parameters are changeable 

in the model and an experimental test was devised in order to test the correctness of the 

statistical data: All known ventilation was closed and the inside house temperature was kept at 

steady state during which the power consumption was monitored. 

At March 29th the outside and inside temperatures reached something close to steady state 

conditions, this can be seen in Figure 2-31. 

 

 

Figure 2-31 «Steady state» conditions for temperatures 

 

Even though the temperatures seen in Figure 2-31 are not in a completely steady state they 

should give a good approximation to the total house heat leakages. The inside temperature 

only changes from 21.5 ± 0.6, and the outside temperature change is −1 ± 0.5 over the 

interval of eight hours, and nine kWh of power was used which is approximately 1.1kW per 

hour. The temperature difference is taken as the mean of the differences over the length of the 

time interval. This gives ∆푇 ≈ 22.6, and the total area of the house is 퐴 = 218.6푚 . The total 

estimated leakage factor can then be estimated using equation (2-3), under paragraph 2.2.1.1  

House and model parameters. The result is seen in equation (2-9). 

푈 =
푄

퐴∆푇
=

1125푊

218.6푚 ∗ 22.6°퐶
≈ 0.228푊/푚 퐾 (2-9) 

The total house U value result of approximately 0.23 was set in the model with the total house 

area and the model was run and compared to the TEK 10 U values results. This can be seen in 

Figure 2-32. 
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Figure 2-32 TEK10 vs. estimated total U-value 

 

The TEK 10 standardized values show somewhat longer cooling time than the experimentally 

gained U – value. This means the TEK-10 used values are probably quite accurate since the 

total U-value also will include other leakages6. This also mean that the house mass is 

extremely important when creating a house model usable for control, and this heat capacity 

factor needs to be included in the model. This will be further discussed in the next part on 

creating the heating time estimation in section 3. 

 

  

                                                 

 
6 Leakages between elements (door and walls, window walls, etc) and in corners . 



41

Part 2

3 Estimation of heating time

3.1 Introduction

The main reasonfor using a model in this BAS systemis to havea predictionof how the

inside housetemperaturewill changeover time. Specifically the model shouldbe usedto

estimatetheheatingtime with currentenvironmentalconditions.This heatingtime estimation

shouldbeaccuratein orderto bothminimizetheamountof powerusedandreachthecorrect

temperature.In 2.4.5the housemodeldid not correspondto theexperimentaldata.Thehouse

massheat capacity will prolong the time used for heating and make any heating time

estimationtoo short.Thereforea newpredictionmodelneedsto becreated.

3.1.1 System description

Theheatingtime estimationis basedon a temperaturereferencenamedcomfort intervals.The

comfortintervalsarereferencesto whentheresidentsareathome, andnot sleeping.

Heatingtime estimationis neededto reachthe comfort temperaturewhen the residentsare

homefrom work or gettingup in themorning.Theestimationwill bemadewith a prediction

modelcalculatingthe presentheatingtime estimateusing the environmentalconditionsfrom

the gatewayseenin part 1 Data acquisition. This heatingtime estimationwill be run each

sampling time and when estimatedtime correspondswith the time remaining until the

comfort interval, the heatersshould be turned on. This is visualizedin Figure 3-1 where

heatingestimationsare seenas the blue dotted lines and the solid blue line is when the

estimationis the sameas the time remainingtill comfort interval. The red line denotesthe

temperaturereference.

Figure3-1 Heatingtimeestimationshowingheatersturnedonat thecorrecttimebasedon

thecurrentenvironmentalconditions.
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3.1.2 Contents and structure

Parttwo will first considerthetheorybehindthetemperaturereferences andpredictionmodel,

beforesimulations are performedin MATLAB. The temperaturepredictionsystemwill be

implementedin Visual Studioandthenthe finishedsystemis testedin anexperiment.Lastly

theresultsfrom this chapterwill bediscussed.Thestructureof part two is seenin Figure3-2

wherethemainchaptersareseenon theleft andthesub chaptersareon theright.

Figure 3-2 Part 2: heatingtimepredictions structuremainchapterson theleft andsub

chapterson theright, andprogressproceedsin a downwardsfashion.
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3.2 Theory

3.2.1 Comfort Intervals

In orderto control the insidetemperatureof a housethereis needfor a control reference.In a

home this control referencewill be basedon when the occupantsare at home and what

comfort temperatureis preferred.In a completedsystemthe comfort intervals will be based

on the specific residentswork schedule,and bed time. In a completedsystemthis can be

learnedusingthesensors,for this analysisandsimulationpurposeshowever“typical” family

workweekwill be invented:Theresidentswill go to bed at 23.00get up at 07.00go to work

at 08.00andgethomefrom workat 16.00.

Whenthehouseis in usethe residentwill wanta constantcomfort temperatureof 20°C, this

meanson a “typical” weekdayfor this inventedresidentwill follow this schedule.For a

typical weekendSaturdayandSunday, theresidentsmaygetup a little lateraround09.00 and

go to bed a little later around01.00. The temperaturereferencescan be seenin Figure 3-3

wheretheweekdaytemperaturereferencesareseenon theleft andweekendon theright.

Figure3-3 Temperaturecomfortintervals,referencezonesweekdayon theleft andweekend

on theright

In the caseof when the temperaturemay be lower the heatercanbe turnedcompletelyoff

savingthemostamountof energy,howeverthereshouldbesomelimitationsmakingsurethe

temperaturenever reachesbelow 5°C. The Comfort intervals are createdin a MATLAB

functionto beusedasreferencevectorsin in part3 ControlSystemsimulations.

In Figure3-3 theamountof time wherethetemperatureneedsto beat comfort level,20°C, at

weekdaysis lessthanwhenthe heaterscanbe turnedoff. This meansa lot of powercanbe

savedusing temperatureprediction in a control system. Somestraight forward calculation

gives that for one completeweek thereare72 hoursin which the temperatureshouldbe at

comfortlevel seenin Equation(3-1).
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(3-1)

This meansthatthereis 96 hoursa week,about7 monthsof theyearwheretheheaterscanbe

turnedcompletelyoff savingpower.Eventhoughthe heaterswill needto be turnedon more

thanthese44%, this is still a goodvisualizationon howmuchpowercanbesaved.

3.2.2 Prediction of heating time

In orderto savethemaximumamountof powerin a housea heatingtime predictionmodelis

needed,the modelwill be usedto predict future behaviorbasedon future known references

andcurrentenvironmentaldata. The temperatureestimatorwill beusedasa reference into the

future. The referencewill be where the heatingtime is calculatedby the prediction

model, and k is presenttime. The future referencesare basedon the residentscomfort

intervals.

Turning thepowercompletelyoff andthenon againwithout usinga heatingtime estimation

would result in the temperaturebeing too low in the comfort interval. This is visualizedin

Figure3-4

Figure 3-4 Why thereis neededa temperatureestimatorto reachthesetpoint temperaturein

time

Anotherway would be to usea fixed heatingtime basedon the fixed conditionparameters,

often includedas the temperaturelowering systems currentlyavailable[4]. This will not be

themostefficient asthesetpoint would bereachedtoo soonin almostall cases.In Figure3-5

this is visualizedwherethecomforttemperatureis reachedtoosoonandpoweris lost.
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Figure 3-5 Energylossusingfixedheatingtime, theloweringscheme[4]

This lastpowersavingschemeis not optimal,andthemainreasonfor this beingimplemented

in currentpower savingsystems[4] is that thereis no housemodel to estimatethe heating

time. This thesis is basedon a housemodel and an approximateheating time can be

calculated,resultingin saving themostamountof power.

The house model was shown to be inadequatein its present form since there is no

implementationof the housemassand the househeatcapacity. The heatcapacityof the

housewill bevery hardto measurein any directway, andshouldif possiblebeestimatedby

anobserver.In additiontheair densitiesarenot currentlymeasuredandshouldfor this reason

beaddedto theunknowndisturbancefactor.This will befurtherdiscussedin thenextsection.

3.2.3 Temperature prediction model

Theonly known parametersfor eachsamplingtime is the insideandoutsidetemperature.In

orderto havethebestpossiblefit to theexperimentaldatathereshouldbeusedtwo statesone

for the inside temperatureand one for the disturbances.The outsidetemperaturewill be

viewedasa slowly varyingdisturbanceandincludedin thestatecalculationat eachsampling

interval.The remainingdisturbancevalue, mainly the massheatcapacity,shouldif possible

beestimatedby anobserver.

Theestimationof the heatingtime is basedon the first differential functionseenin Equation

(2-1), thehouseparametersandthecurrentmeasuredvaluesfrom thesensors.

The housemassheatcapacityandotherdisturbancesareaddedasan extrastate, to the

temperaturepart of the housemodel, the outsidetemperatureis denoted , and the inside

temperatureis denoted . The disturbancesareviewedasconstantor slowly varying

. The differential function for inside temperature, augmentedwith the

disturbancemass, , canbeseenin Equation(3-2).
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푓 =
푣 푉̇ − 휌 푉̇

푣 푉
푥 +

1

푣 푉(푐 −
푅
푀)
휌 푉̇퐻 − 푣 푉̇ 퐻 + 푢 − 푈퐴 ∗ ∆푇 + 휗  (3-2) 

The heat loss equation (2-3) has been expanded into the first differential equation (2-1) where 

the difference between the inside and the outsider temperatures are seen as ∆푇, and the heater 

power as u, and house area as A. The other parameters are denoted in Table 2-1. 

The model is then transformed into a linear state space representation (SSM) in order to 

implement the augmented changes and using the model for prediction. The complete set of 

differential functions is then seen in Equation (3-3) 

푓(푥, 푢, 푣 ) =
푓
푓
=
퐼푛푠푖푑푒 푡푒푚푝푒푟푎푡푢푟푒 
퐷푖푠푡푟푢푏푎푛푐푒푠 

 (3-3) 

 

The state matrix A is found as the two first (linear terms) of a Taylor series expansion of the 

right hand side around the points x0 and u0 seen in Equation (3-4)  [19]. 

퐴 =
푑푓

푑푥
=

⎣
⎢
⎢
⎢
⎡
푑푓

푑푥

푑푓

푑휗
푑푓

푑푥

푑푓

푑휗 ⎦
⎥
⎥
⎥
⎤

 (3-4) 

 

The transition matrix B is found as the Jacobin seen in Equation (3-5) 

퐵 =
푑푓

푑푢
=

푑푓

푑푢
푑푓

푑푢

 (3-5) 

The model in Equation (3-2) is then expanded with all parameters [1], and deviated using 

symbolic MATLAB the results of this derivation operation can be seen from Equations (3-6) 

through (3-11). The complete expanded model can be found in Appendix 7: Expanded model. 

푑푓

푑푥
=

푁푉̇
3600 휌 −

푃푀
푅푣

휌
+
−푉̇ 퐶 + 푓 퐶푝푤 − 푈퐴

푉 휌 퐶
 

(3-6) 

푑푓

푑휗
= 1 (3-7) 

푑푓

푑푥
= 0 (3-8) 

푑푓

푑휗
= 0 (3-9) 
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푑푓

푑푢
=

1

푣 푉(푐 −
푅
푀)

 (3-10) 

푑푓

푑푢
= 0 (3-11) 

Evaluated at the steady state of 푥 | = 20°C, 푣 = −5°C 푢 = 910푊 the SSM is found as 

seen as in Equations (3-12) through (3-14) 

퐴 = −8.8817푒 휗
0 0

 (3-12) 

퐵 = 0.4392730484푒
0

0  (3-13) 

퐷 = [1 0] (3-14) 

 

The system is discretized using zero order hold and sampling time corresponding to the 

experiments sample time of six minutes. The calculation of the discrete matrices using the 

zero order hold numerical method can be seen in Equations (3-15) through (3-19) , the 

numerical method is based on [20]. 

퐴 = 퐼 + 퐴ℎ +
퐴 ℎ

2!
+
퐴 ℎ

3!
+ ⋯
퐴 ℎ

푛!
 (3-15) 

= 퐼 + 퐴 퐼 ℎ +
퐴ℎ

2!
+
퐴 ℎ

3!
+ ⋯
퐴 ℎ

푛!
 (3-16) 

= 퐼 + 퐴푆 (3-17) 

퐵 = 퐼 ℎ +
퐴ℎ

2!
+
퐴 ℎ

3!
+ ⋯
퐴 ℎ

푛!
퐵 (3-18) 

= 푆퐵 (3-19) 

 

After running the discretization function using the first ten polynomials the discrete SSM 

(dSSM) is seen in Equation (3-20) and Equation (3-21). 

퐴 =
0.7263  308.12
0 1

 (3-20) 

퐵 =
0.0014
0

 (3-21) 
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Observability 

In order to introduce an observer into the system the system needs to be fully observable. A 

SSM system will be fully observable if the rank of the observability matrix is equal to the 

number of states in the system [19]. The observability matrix for this two state system is 

calculated from the state matrix, 퐴  in Equation (3-20) and the output matrix 퐷 in Equation 

(3-14). The result can be seen in Equation (3-22) and Equation (3-23). 

푂 =
퐷
퐷 퐴

 (3-22) 

푂 =
1 0

0.7263 308.12
 (3-23) 

 

As seen in Equation (3-23) the rank of the observability matrix is two and equal to the number 

of states in the system which means the system is fully observable. This means the system can 

implement an observer for the house mass heat capacity and extra disturbances.  

The optimal observer Kalman filter will be used for the state estimation and will be discussed 

in the next section. 

 

3.2.3.1 State estimation 

The Kalman filter is a well-known model based algorithm useful to estimate unmeasured 

variables. It is seen as an optimal observer in the sense that the variance of the measurement 

error is minimized.  The Kalman filter will implemented on the apriori-apostriori form and the 

block diagram can be seen Figure 3-6.  

Kalman filter

controller

-
house

Kalman 
filter

-
-

 

Figure 3-6 Kalman filter block diagram 

 

In Figure 3-6 푥̅ is the apriori state estimate, 푥  is the apostriori state estimate, 푦  is the 

predicted output, 푟 is the reference and ∈  is the error between the predicted output and the 

measured output. W is assumed to be slowly varying stochastic process noise and V is 
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assumed to be slowly varying stochastic measurement noise. The state space model can be 

seen in Equation (3-24) and Equation (3-25).  

푥 = 퐴푥 + 퐵푢 +푊 (3-24) 

푦 = 퐷푥 + 푉 (3-25) 

In order to get in the algorithm the apriori state estimate initial values, needs to be specified.  

푥̅  (3-26) 

Then the rest of the algorithm should be run in all other time instances seen in Equation 

(3-27), (3-28), and (3-29). 

1. Calculate the predicted output measurement 

푦 = 퐷푥̅  (3-27) 

2. Calculate the aposteriori state estimate 

푥 = 푥̅ + 퐾 (푦 − 푦 )
∈

 (3-28) 

3. Update the apriori state estimate 

푥̅ = 퐴푥  (3-29) 

K is the constant Kalman filter gain calculated by minimizing x seen in Equation (3-30) , 

where X is the solution to the Riccati equation seen in Equation (3-31). 

퐾 = 푋 ∗ 퐷 ∗푊  (3-30) 

퐴푋 + 푋퐴 − 푋퐷 푊 퐷푋 + 푉 = 0 (3-31) 

 

The constant Kalman filter gain can be found by the kalman.m function in MATLAB, since 

however the Kalman filter should be implemented in a C# control system the best way is to 

use an iteration based solution. Constant Kalman filter gain converges fast and is found within 

a few iterations [21]. The Kalman filter gain is found iteratively by the following algorithm 

seen in Equations (3-32) through (3-35). 

1. Specify initial values for the states covariance matrix 

푃  (3-32) 

2. Obtain an estimate of the states covariance matrix before reading the output 

푃 = 퐴푃 퐴 + 푄 (3-33) 

3. Obtain the Kalman filter gain matrix 

퐾 = 푃 퐷 (퐷푃 퐷 + 푅)  (3-34) 

4. Correct the state covariance matrix after reading the output 
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푃 = (퐼 − 퐾 퐷)푃  (3-35) 

Where Q is the covariance matrix for the process noise, R is the covariance matrix for the 

measurement noise, K is the Kalman filter gain, and A and D are the SSM matrices with 

proper dimensions. The Kalman filter gain iterative calculation is based on [22]. The Kalman 

filter will be implemented and tested in the next section and further tested in the experiments 

in section 3.5. 

3.3 Implementation and simulation 

Before coding the Kalman filter and using it directly in the temperature predictor some more 

analysis is needed. This will be based on implementing the Kalman filter in MATLAB and 

simulation using the experimentally gained values from section 2.4. First the weighting 

parameters need to be defined. The covariance matrix for the measurement noise R is 

normally found as the variance of the time series [21].  Using the var.m function in MATLAB 

the result can be seen in Equation (3-37). 

푅 = [2.32] (3-36) 

The covariance matrix for the process noise Q is seen as a tuning parameter with each 

component responding to the variance of that specific state. The Q matrix is tuned to the 

highest value not causing too noisy measurements [19]. The found values can be seen in 

Equation (3-37). 

푄 =
0.01 0
0 0.1

 (3-37) 

 

The Kalman filter algorithm can be seen implemented in MATLAB script 2-1 

%Kalman gain matrix calculation------------------------------------------- 

    Phat=A*Phat*A'+Q;       %Estimate of covariance matrix       

    K=Phat*D'/(D*Phat*D'+R) %Kalman filter gain matrix      

    Phat=(I-K*D)*Phat;      %Correct the state covariance matrix         

%State estimation------------------------------------------------------ 

    Ykbar=D*x;              %Predicted output measurement          

    Yk=AvgInTemp(k);        %Read output vector     

    Xhat=Xbar+K*(Yk-Ykbar)  %Aposterori state estimate     

    Xbar=Ad*Xhat+Bd*u;      %Update the apriori state estimate     

MATLAB script 3-1 Kalman gain calculation and state estimation 

 

After the simulation has run four iterations the steady state Kalman filter gain is found as seen 

in Equation (3-38). 

퐾 =
0.998
0.0032

 (3-38) 

The resulting plots from the predicted output measurement using the estimated states from the 

Kalman filter can be seen in Figure 3-7.  
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Figure 3-7  SSM model simulation using Kalman filter state estimation 

 

In Figure 3-7 the SSM model with estimated disturbance states fits the experimental data 

nicely. The disturbance estimation is increasing with the increasing inside temperatures 

probably due to the increasing amount of thermal energy being stored.  

This increase is not negligible due to the large weight the disturbance has on the temperature 

state [2.4.5]. The increase is however close to linear and can be fitted using one polynomial 

ordinary least squares regression (OLS). In Figure 3-8 the disturbance change is seen plotted 

together with the fitted least squares line. 

 

 

Figure 3-8 Disturbance and least square fit 

 

In order to create the fit line and have a good heating time estimation based on the model 

there is needed a first heating run where the disturbance parameters can be learned. This 

should be done by keeping the temperature at the low point before turning all heaters to the 

maximum storing all the values until the set point temperature is reached. The new Kalman 

OLS State Space predictor (K-OLS-SSM) together with the non-linear model and pure linear 

regression estimation (OLS) can be seen estimating heating time as in Figure 3-9. 
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Figure 3-9 Temperature predictions using three methods 

 

The temperature estimation is on the same data as used to create the disturbance vector and 

the close fitting is to be expected, this is also evident when seen at the close fit to the pure 

linear regression fit (OLS). A new test set is gathered from the 24th of March in order to verify 

the prediction model on a different data set with different environmental conditions7. For the 

test set the two best estimations will be used, the purely OLS estimate and the K-OLS-SSM. 

The heating predictions can be seen in Figure 3-10. 

 

 

Figure 3-10 Heating predictions using a real test set 

 

The results shows that the Kalman filter  and OLS based estimate produce the best heating 

predictions. The SSM model is derived from the present conditions and will make the 

predictor more adaptable to change. There should be noted that the test set period only two 

hours and the functions should be more tested in the experiments part found in section 3.5. 

For this reason both the linear OLS regression and the Kalman estimated predictor will be 

implemented in VS.  

                                                 

 
7 The test sets on all other occasions of heating time is too much colored by the sun. Heating tests should for this 

reason in the future be set to run at night.   
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3.4 Software Development 

The temperature predictor needs to have the current measurements, house and model data in 

order to predict the heating time. These parameters are needed to create the discrete state 

space model using the current environmental conditions. In addition the temperature 

reference, the comfort intervals are needed to know when to send the start heating signal to 

the controller. The temperature references, model and house parameters should be stored in 

the XML configuration file in the same manner as in paragraph 2.3.2. The user should be able 

to set the comfort interval reference from a weekly table and the temperature reference system 

should get the current time date information in order to do the prediction into the future. In 

order to handle both Single Input Single Output (SISO) and Multiple Input Multiple Output 

(MIMO) systems, matrix calculation methods are needed. The FURPS+ sheet can be found in 

the Appendix 3 FURPS+ paragraph 7.3.2. 

3.4.1 The use case diagram 

The use case diagram is made to get a visual representation of the requirements to the 

temperature prediction system. The use case diagram can be made based on the found 

requirements can be seen in Figure 3-11. 

 

 

Figure 3-11 Use case diagram of the Temperature Predictor 

 

There are several classes in some use cases and to have a better visualization of these classes a 

layered architecture has been created in Figure 3-12 to visualize the classes in each use case. 

The configuration use case consists of three classes and the predictor use case consists of two 

classes. 
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Figure 3-12 Layeredarchitectureof theheatingtimeestimation

3.4.2 The Configuration use case

The configurationcontainsthe houseandmodelparameterandare responsiblefor the GUI

betweenthe user and thesesettings.The configuration is also responsiblefor storing the

parametersto a configuration file. The configuration file will be based on the XML

configurationusedin the gatewayfrom part 1 Dataacquisitionwith additionalelementsfor

thenewinformation.

There are neededmany configurationparameters and the GUI is divided into two main

WindowsForms(WF), thehouseandheaterparametersandthemodelparameters.

The fully dressedusecasedocumentcan be found in Appendix 4: Fully dressedusecase

documentsparagraph7.4.2.

3.4.2.1Designing the house parameters Windows Form

ThehouseparametersWF will give the usera visual representationof themodelparameters

neededin the calculationof the inside temperaturestate.The houseparametersare the U-

values,areasandheaterpower.The houseandsensorslocationsareseenin thehouselayout

imagebox. A savebutton is usedto savethe new valuesto the XML file. The GUI of the

houseparameterscanbeseenin Figure3-13.
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Figure 3-13 GUI of house configuration parameters 

 

3.4.2.2 Designing the Model parameters Windows Form 

The model parameters file name is ConfigModel.cs and should give a visual representation of 

the models parameters. The default values should be set in the .cs file if the user wants to 

reload these. The recalculate button will recalculated the parameters based on the new values. 

In Figure 3-14 the created GUI can be seen. 

 

 

Figure 3-14 GUI of model configuration parameters 
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3.4.2.3 Designing the comfort intervals use case 

The comfort intervals use case is mainly a GUI for setting the comfort intervals schedule of 

the residents. The user should be able to set his preference for comfort and low temperature, 

and when these temperatures are wanted. The intervals at comfort temperature should be set 

in a green color for easy visualization. The comfort intervals should for simplicity only accept 

integers and should give the user a notice if the temperature is set lower than 5°C or higher 

than 25°C. The WF file name is ConfigTemperatures.cs. In Figure 3-15 the GUI created is 

seen with the typical invented workweek comfort intervals.  

 

 

Figure 3-15 Comfort intervals configuration GUI 

 

The user may use the buttons to set comfort temperature or the low temperature or using the 

context menu strip, right mouse click option as seen in Figure 3-16. 

 

 

Figure 3-16 Context menu strip right click option 
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3.4.3 Read sensor values use case 

The sensor values are stored to a log file containing the time stamp and the sensors values in a 

numbered order as seen in part 1 paragraph 2.3.4. The get sensor values use case should 

convert the ADC values to temperature and pass the values through a low pass filter. The 

complete fully dressed use case document can be found in Appendix 4: Fully dressed use case 

documents paragraph 7.4.2 

3.4.3.1 Designing the read sensor values use case 

In C# there is no option for reading a specific line since this is not how the reader works on 

the lower levels. For this reason all lines will be read into an indexed array using the current 

index to remember which line to read. This might cause problems with very high sample 

times needed for fast systems (small time constants), however with the house system this is 

not a problem. The method should also return the date time stamp in order to plot the correct 

time values and have some information on the exact time of the specific sample. 

The low pass filter is added as a new class filtering the values based on the previous value, the 

filter time constant and the sampling time. Each sensor is filtered in turn.  

3.4.4 The predictor use case 

The predictor use case takes care of the heating time predictions, the predictions are done in 

the manner previously specified in paragraph 3.3. The predictor will use the Kalman filter to 

calculate the disturbance vector, and a least squares regression to get the direction of this 

vector. The estimated disturbance function should be calculated one the first run time from a 

stable Kalman filter gain has been achieved to set point. In addition the purely linear 

regression estimate will be also be implemented in parallel as a second heating time estimate. 

The complete fully dressed use case document can be found in Appendix 4: Fully dressed use 

case documents paragraph 7.4.2. 

3.4.4.1 Designing the predictor use case 

The predictor use case utilizes a Kalman filter algorithm and need a Matrix calculation class 

to function. The C# and .NET libraries do for some reason not contain any inbuilt Matrix 

manipulation functions. A functional Matrix library using the Strassen algorithm for large 

matrix manipulations have been created by Ivan Kucirc [23]and will be used for the matrix 

manipulations in this thesis. Some additions were made to the library since it could not 

facilitate matrix and scalar values together: Scalar values times matrix values, matrix values 

times scalar values, matrix divided on scalar values, and scalar values added to matrix 

values. The ordinary least squares regression is calculated using the matrix equation found in 

[24].  
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3.5 Experiments

3.5.1 Introduction

The predictionmodelandthe heatingestimationprogramshouldbe further testedto ensure

the functionality in a real life experiment. TelemarkUniversity College has an air heater

systemthat is basedon the samerulesasa completehouse. The time constant will be much

smallerthana real housedueto the very small volume,area,andlargeU-value. Therewill

alsobea high degreeof ventilationanda very largeheaterin relationsto thesize.Theseare

all changeableparametersin the modeland the air heatershouldthereforegive a good real

housesimulation.Theexperimentis visualizedin Figure3-17.

Figure3-17Heatingtimeexperiment

If the comfort intervalsare reachedat the correct time the heatingtime estimationwill be

workingproperly.

3.5.2 Experiment setup

Theexperimentsshouldutilize thecodealreadycreatedin thegatewaytogetherwith thenew

createdcodefrom thetemperatureprediction.Thetime constantof theair heaterwill bemuch

smaller and the sampling time should be set to a much lower value. In addition two

temperaturesensorsare use inside the air heater to get a good estimationof the inside

temperature.All datawill besavedto disk for plotting in MAT LAB, andthecomfort interval

referenceis changedfrom hour to second.The air heaterhasa lengthof 1m anda radiusof

7.5cm, the heaterpower is set by the USB DAQ-6008 device [25]. For more specific

informationon theair heatersee[13].

Thesetupfor theheatingtime predictionusingthegatewayandthe air heatercanbeseenin

Figure3-1.
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Figure 3-18 Heating time prediction setup 

 

The uncertainty budget for this experiment can be seen in Table 3-1, where the temperature 

sensors are the main source of uncertainty. The temperature uncertainty was calculated in 

paragraph 2.4.2. 

Table 3-1 Uncertainty budget 

Type Sensor Range Accuracy Note 
CC2530 EM ADC -3V to 3V ±0.05%  
Temperature TMP6 -25°C to 140°C ±1.3%  

NI-DAQ 6008 ADC 0-5V ±0.01%  

 

Prediction setup 

The U value for plexiglas of 5mm thickness is about 14 [26], and the heater is 15W [13], the 

ventilation parameter is unknown and set as a tuning parameter, with the starting value of ten 

air changes each second. This parameter creates the continuous model SSM model of the air 

heater seen in (3-39). 

퐴 = −0.02274, 퐵 = 4 퐷 = 1 (3-39) 

The Comfort intervals were setup to be between 25 and 40 degrees Celsius since the inside 

temperature in the room of 20 is the outside temperature when seen in regards to the air 

heater. The predictor will work as an on off controller turning the heater off when the 

temperature is at the comfort level, and back on again when the temperature is below.  

 

 

 

Temperature sensors 

Air Heater DAQ 

ZigBee 

node 

ZigBee 

Coordinator 

Computer SW 

Learn&GW 
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3.5.3 Results 

When the system was connected the gateway was started at the same time as the learn 

function. The learn function is set to wait until the Kalman filter estimates has stabilized. The 

learn function saves the data together with both the comfort interval reference and the 

predicted reference from the heating time estimations. The saved data is then imported into 

MATLAB for analysis. For the straight forward OLS regression model the results were 

correct and the predicted reference was hit at exactly the same time as the comfort interval 

reference seen in Figure 3-19 

 

Figure 3-19 Heating time estimates using linear OLS model 

 

For the K-OLS-SSM model the heating time estimate was too small and resulted in the 

comfort interval reference being reached to soon seen in Figure 3-20. 

 

 

Figure 3-20 Heating time estimates with K-OLS-SSM prediction model 

 

The K-OLS-SSM model is under predicting because of the time delay. This time delay lasts 

about two seconds and is not modeled in the SSM. The linear OLS model does however take 

this time delay into consideration when creating the regression line which resulted in a better 

prediction. This time delay factor can be calculated in the learn function from heating is 

started to the temperature is seen increasing and added to the K-OLS-SSM model creating a 

better and adaptable estimate. The prediction models can be found in Appendix 8: Regression 

models for predictor. 
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3.6 Discussion 

The learn function was tested several times and the prediction models tested. Each time the 

best prediction was from the straight forward linear OLS regression model. The K-OLS-SSM 

heating time estimate was close but needed an added time delay factor in order to predict 

correctly. Testing the model with different outside temperatures was not tested, since the Air 

heater should be kept inside the school with a set comfort temperature. Testing with the same 

prediction models and different outside temperatures might prove the K-OLS-SSM model to 

be more adaptable to change as in the simulation part seen in paragraph 3.3.  

From the real house experiments and the comfort intervals there can be created an estimate of 

the real power savings. The house heating time was found as roughly 1/3 of the cooling down 

time with the same environmental conditions. From the comfort intervals found in paragraph 

3.2.1 the heaters can be off 64 hours each week or roughly 60% of the time. In 2/3’s of these 

64 hours the heater can be turned off, during the on time however the heater will use more 

power than it would during steady state. The experiments steady state power usage was 

1.1kW seen in part 1 Data acquisition 2.4.5, and the heating is found to be 2.1kW from the 

experiment data. The power savings can then be calculated as seen in equations (3-40) and 

(3-41). 

푠푡푒푎푑푦 푠푡푎푡푒 푐표푛푠푢푚푝푡푖표푛 = 96ℎ표푢푟푠 ∗ 1125푊 = 108푘푊ℎ (3-40) 

푝표푤푒푟 표푓푓 푎푛푑 표푛 푐표푛푠푢푚푝푡푖표푛 = 96 ∗
2

3
∗ 0 + 96 ∗

1

3
∗ 2100 = 67.2푘푊ℎ (3-41) 

 

This means that approximately 22% of all the power used for heating can be saved utilizing a 

good model based control system in this specific house. This could be increased by adding 

more heaters and more power lowering the heating time.   

The on-off controller seen in Figure 3-19 and Figure 3-20 is not very good when seen in 

regards to both efficiency and comfort. The oscillations indicate the need for a controller to 

keep the temperature at set point and avoid oscillations and over or under shooting. For this 

reason the next and last part of this thesis will be on designing and testing several controllers 

for the BAS system. 
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Part 3

4 Control System

4.1 Introduction

In part2 [3.5] a straightforwardandcommonon-off heatercontrollersareseenasinadequate

for bothresidentcomfortandpowersavings.A moreadvancedcontrolalgorithmis neededto

keepthetemperature at thecomfort level andto avoidoscillations. This controller will useall

the partsof the BAS systemto function andis for this reasonsincludedin a main program

GUI bindingthesystemtogetherin a functionalcontrolsystem.

4.1.1 System description

Thecontrolsystemis responsiblefor reachingthecomfortintervalswith minimumovershoot,

minimizing power usage. Predicted heating time will be addedto the current reference

gatheredfrom the comfort intervals [3.2.2]. The control system will keep the inside

temperatureatcomfortlevel, andberesponsiblefor thecompleteGUI of theBAS.

Severalcontrol methodswill be tested;the feedbackPID controller, the Linear Quadratic

Regulator(LQR)andtheModelPredictivecontroller (MPC).

MPC andLQR rely on a goodmodelfor optimal control andfor the experimentspart a new

modelwill be created. Thenewmodelwill be createdusingthe DSR subspaceidentification

algorithm [27]. The control algorithmswill be madeapplicableboth for MIMO and SISO

systems.Thecompletecontrolsystemcanbeseenin Figure4-1.

Figure 4-1 Control systemdescription
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4.1.2 Part 3 Structure

This part follow the samebasisasthe previouspartsandin theobjectorientedprogramming

senseeachpartwill be finishedbeforethenext is started.The modelandcontrol theorywill

beexplainedbeforeperformingsimulation usingMATLAB . Thedifferent controllerswill be

discussedand compared.This gives a thoroughanalysisof the neededalgorithmsbefore

implementationin VS. After implementationa completesystemtestwill be performedusing

the air heaterandthe createdBAS Control System.The progressof this part canbe seenin

Figure4-2 whereeachmain chapteris seenon the left andthe subchaptersareseenon the

right.

Figure4-2 -Chapterprogressall mainchapterson theright andsubchapterson theleft,

progresswill movein a downwardsfashion.
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4.2 Control Theory 

4.2.1 Model conversion 

For utilizing known control methods the model is converted into linear discrete state space 

form as was seen in 3.2.3 Temperature prediction model. The simulations will be based on a 

scalar one state system. The discrete state space model is seen in Equation (4-1) and Equation 

(4-2) 

푥̇ = 퐴푥 + 퐵푢 + 푣 (4-1) 

푦 = 퐷푥 + 푤 (4-2) 

Where x is the state vector, 푥 ∈ 푅 × , u is the control input vector, 푢 ∈ 푅 × , y is the output 

vector, 푦 ∈ 푅 × , and A, B and D are known system matrices of appropriate dimensions. The 

disturbances v and w are both unknown disturbances. The model is discretized in the same 

manner as in [3.2.3] resulting in the scalar state space system seen in Equations (4-3), (4-4) 

and (4-5) 

퐴 = 0.7263 (4-3) 

퐵 = 0.0014 (4-4) 

퐷 = 1 (4-5) 

 

Observability and Controllability 

In order to make sure the model can be controlled a study is done on the controllability 

matrix. The observability of the system has already been tested found to be fully observable in 

[3.2.3]. The controllability matrix defines if the system can be controlled by the control input 

to the system. The controllability matrix is found in MATLAB using the ctrb.m function and 

the rank is found to be 1. This means the inside temperature state is controllable though B, 

which makes sense.  

4.2.1.1 The state-space model on deviation form 

The process noise term v and the measurement noise w are assumed to be constant or slowly 

varying. For this reason the model can be reformed using velocity, deviation form removing 

the unknown and constant or slowly varying noise terms from the equation. The Linear 

Quadratic Regulator (LQR) with integral action also needs the state space matrix on velocity 

form and the PID controller is normally included in the velocity form [19]. 

The state equation is seen in its discrete form in Equation (4-6) 

푥 = 퐴푥 + 퐵푢 + 푣 (4-6) 
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By using the last time instant, k=k-1 the state equation becomes as in Equation (4-7) 

푥 = 퐴푥 + 퐵푢 + 푣 (4-7) 

 

Inserting Equation (4-6) into (4-7) gives Equation (4-8) and (4-9) 

푥 − 푥 = 퐴푥 + 퐵푢 + 푣 − 퐴푥 − 퐵푢 − 푣 (4-8) 

∆푥 = 퐴∆푥 + 퐵∆푢  (4-9) 

Where delta x is denoted as the change from last sample time seen in Equation (4-10). 

∆푥 = 푥 − 푥 , and ∆푢 = 푢 − 푢  (4-10) 

 

The output equation on deviation form following the same principles becomes as seen in 

Equations (4-11) through (4-14). 

 

푦 = 퐷푥 + 푤 (4-11) 

푦 = 퐷푥 + 푤 (4-12) 

푦 −푦 = 퐷푥 + 푤 − 퐷푥 − 푤 (4-13) 

푦 = 푦 + 퐷∆푥  (4-14) 

 

The model has now been transformed into a well-known strictly proper state space model and 

several control methods can be implemented and simulated. First the different control 

strategies theory will be explained, and designed starting with the most common the PID 

feedback control. 
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4.2.2 Feedback control 

The first control method to be tested is the most common of all the control methods: the 

Feedback PID control. This controller is very robust and stable, and is not model dependent. 

The standard feedback control block diagram with BAS specific notations can be seen in 

Figure 4-3 

Hc
Comfort intervals reference yu

-

PID 
Controller House

Hp
Heater setting

Inside temperaturer

 

Figure 4-3 Standard feedback control block diagram 

 

The discrete PID controller discretized using explicit Euler on velocity form can be seen in 

Equations (4-15) and (4-16). 

푢 = 푢 + 푔 푒 + 푔 푒 + 푔 (푦 − 2푦 + 푦 ) (4-15) 

푔 = 퐾 ,    푔 = −퐾 ∗ 1 −
∆푡

푇
,     푔 = −

퐾 푇 ,

∆푡
  ,   푒 = 푟 − 푦  (4-16) 

Where 푢  is the control signal, 푢  the previous control signal 푦 the output and 푦 , 푦  

are the two previous outputs, ∆푡 is the sampling time, 퐾  is the proportional gain 푇  is the 

integral time and 푇 , is the derivation time.  

The SIMC settings will be used to tune the controller [28], and MATLAB will be used to do 

test the controller in simulations before implementing in the control system. The SSM model 

should be transformed to its transfer function equivalent for tuning purposes.  

The PID control parameters will be found in continuous time, we have the continuous state 

space model as seen in Equation (4-17) with the scalar numerical values from Equation (3-20) 

퐴 = −8.88푒       , 퐵 = 4.39푒 . 

푥̇ = 퐴푥 + 퐵푢 (4-17) 

The transfer function is found as in Equation (4-18) 

ℎ = 푘
1

1 + 푇푠
 (4-18) 

Where 푇 = −  and 푘 = 퐵 ∗ 푇 which gives Equation (4-19) 

ℎ = 0.0049 ∗
1

1 + 1125푠
 (4-19) 

The SIMC tuning rules then gives the PID parameters seen in Equation (4-20) [28]. 
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퐾 =
푇

푘 + 푇
=   , 푇 = 푇 , 푇 = 0 (4-20) 

Where 푇  is the user specified time constant from the closed loop set point response.  

4.2.3 Linear Quadratic Regulator 

In a typical house there will be several rooms and each room will probably have one or more 

heater. This means the BAS system will be a Multiple Input Multiple Output (MIMO) system. 

The PID controller which only has output feedback does not have state feedback and several 

individual tuned PID controllers would have to be used in a buildings control system. This 

might prove both advanced to tune correctly and inherently unstable.  

The Linear Quadratic Regulator (LQR) controller has both output and state feedback and can 

guarantee nominal stability of a MIMO system [29]. The LQ controller is suitable for use on 

non-linear systems when a linear state space model is available [29].  The LQR is model 

dependent, but can be compared with the feedback PI controller on velocity form. Di Rusccio 

[29] proposes a method to obtain integral action on the LQ controller. The state space model 

is augmented with the output equation, this means the output is included as a state in the 

model. The augmented SSM model on deviation form is seen in Equation (4-21) and Equation 

(4-22).  

∆푥
푦

=
퐴 0 ∗
퐷 퐼 ∗

∆푥
푦

+
퐵
0 ∗

∆푢  (4-21) 

푦 = [퐷 퐼 ∗ ]
∆푥
푦

 (4-22) 

Introducing the augmented model matrices the model is on strictly proper state space form as 

seen in Equation (4-23) and Equation (4-24). 

푥 = 퐴푥 + 퐵∆푢  (4-23) 

푦 = 퐷푥  (4-24) 

 

The LQ regulator needs a cost function, or a cost objective to be minimized, the cost objective 

is denoted 퐽 . This cost function is the squared sum of all future output deviations times the 

cost factor 푄 plus the squared sum of all future control outputs times the cost factor 푃. The 

cost objective in its matrix form using the augmented SSM can be seen in Equation (4-25). 

퐽 =
1

2
푥 푄푥 + ∆푢 푃∆푢  (4-25) 

 
The matrix 푄is seen as a weighting matrix weighting the cost of the deviation from the 
reference set point. In this BAS system the cost of deviation from the set point is seen as high 
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and the Q matrix should be given a high value. The 푄 matrix is seen in both weighting the 
output and the states. 

푄 =
푄 0
0 푄

 (4-26) 

 
The cost factor R denotes the cost of the control outputs and in the BAS system where power 
savings is the important factor this factor should also be high, however a high cost of both the 
control outputs and reference deviations are not obtainable at the same time, and since the 
reference deviations are seen as the primary concern at the comfort intervals the cost factor Q 
should be weighted the highest.  
Together the performance index seen in Equation (4-25) and the state-space model in 
Equations (4-23) and (4-24) defines a standard LQR optimal control problem. A solution to 
this optimal control problem, minimizing the cost objective, will exist if P > 0, the pair (퐴; 퐵) 
is stabilizable and that the pair (퐶; 퐴) is detectable where C is the square root matrix of 푄 
such that  푄  =  퐶 퐶.  
Minimizing the performance index in Equation (4-25) with respect to the control deviation is 
given by the state feedback seen in Equations (4-26) and (4-27) [29]. 

∆푢∗ = 퐺푥  (4-27) 

Where the feedback matrix G is obtained as seen in Equation (4-28), and R is the solution to 

the discrete time algebraic Riccati Equation (4-29) [29]. 

퐺 = −(푃 + 퐵 푅퐵 푃 + 퐵 푅퐵 퐵 푅퐴 (4-28) 

푅 = 푄 + 퐺 푃퐺 + 퐴 + 퐵퐺 푅(퐴 + 퐵퐺) (4-29) 

The solution to the discrete time algebraic Riccati equation can be solved simply with the 

MATLAB dlqr.m function, however since there is the need for implementation in Visual 

Studio (VS) there has been created a recursive solver. The recursive solver needs only be run 

at startup and will run until the steady state solution has been found, when the error between 

the new value and the previous value is below the set error limit. This is seen in MATLAB 

script 4-1. 

     while (error>1e-10 & it<=maxit); 

       G0=   (P+B'*R0*B)\(B'*R0*A);         

       R1=    A'*R0*A + Q -(A'*R0*B)*G0;    

       G1=   (P+B'*R1*B)\(B'*R1*A)        
     

       error=max(max(abs(G1-G0)));           

       it=it+1 

     R0=R1; 

      end; 
    

    G=-G1; 

        G1=G(:,1:size(A));  

      G2=G(:,size(A)+1:size(A)+size(D,1)); 
    

MATLAB script 4-1 Recursive Riccati solver 

 

The output from the MATLAB function the constant feedback gain matrix G can be viewed 

as seen in Equations (4-30)  and (4-31). 
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∆푢 = [퐺 퐺 ] 
∆푥
  푦 − 푟 = 푢 − 푢 ,       푢 = ∆푢 + 푢  (4-30) 

푢 = 푢 + 퐺 ∆푥 + 퐺 ∗ 푒  (4-31) 

 

The created LQR regulator can be seen in block diagram of the optimal LQ controller is seen 

with the optimal LQR gain parameters G1 and G2 in Figure 4-4. 

 

Comfort intervals   r Yu

-

LQ 
Regulator House

Hp
Inside temperature

+
XG1

G2

 

Figure 4-4 Linear quadratic regulator block diagram 

 

This means the controller structure is equivalent with the velocity form of the PI controller 

seen in Equations (4-32) and (4-33) [29]. 

푢 = 푢 + 푔 푒 + 푔 푒  (4-32) 

 

푔 = 퐾 ,    푔 = −퐾 ∗ 1 −
∆푡

푇
, (4-33) 
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4.2.4 Model predictive control 

Model based Predict Control (MPC) is a very important control method and can be found 

implemented in MATLAB, LabVIEW, CENIT and Honeywell’s Profit to mention some [30]. 

The MPC works with both SISO and MIMO systems making it useful for a complete house 

control and there exists also non-linear methods for MPC. MPC works by calculating the 

optimal control output based on a specified reference vector into the future [31]. This length 

of this reference trajectory into the future is called the prediction horizon, L. The optimal 

control output is based on minimizing a cost function based on a prediction model, similar to 

the Linear Quadratic Regulator (LQR). The main differences are that LQR uses an infinite 

prediction horizon, and that the MPC controller has inbuilt constraints handling [31]. In order 

to minimize the cost function based on the given prediction model and constraints there is 

needed an optimizer. The MPC controller can be seen in Figure 4-5. 

 

Model

Optimizer

-

Future errorsFuture inputs

Past inputs 
and outputs

Predicted output

Reference 
Trajectory

Cost 
function

Constraints

+

Prediction 
horizon  

Figure 4-5 MPC block diagram 

  

The Quadratic Programming problem with constraints can be solved by quadprog.m in 

MATLAB or by and an active set method [31].The solution to the QP problem in VS can be 

done using the Microsoft Solver Foundation [32] however the computing time to find a 

solution might be very high especially in a large house MIMO system. Another solution is to 

handle the constraints using if and else statements at a higher level. This can be done in this 

BAS system since the only constraints are the maximum and minimum heater capacity saving 

computing time and greatly simplify the optimizer. The only drawback of MPC is then the 

model dependency; a good model is needed to sustain good control solutions.  

The MPC controller needs a prediction model to be minimized subject to a cost function. This 

prediction model can be found from the augmented SSM seen in Equations (4-21) and (4-22) 

in order to give the controller integral action [33]. 
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4.2.4.1 Finding a prediction model 

The prediction model may be obtained from the augmented state space model (eSSM) on 

deviation form. The present time is predicted into the future with the prediction horizon L. To 

find the prediction model the prediction horizon L is set to be three. Using this prediction 

horizon the prediction model is calculated as seen from Equations (4-34) through (4-37).  

푦 = 퐷푥 = 퐷 퐴푥 + 퐵푢 = 퐷퐴푥 + 퐷퐵∆푢  (4-34) 

푦 = 퐷푥 = 퐷 퐴푥 + 퐵∆푢 = 퐷퐴 푥 + 퐷퐴퐵∆푢 + 퐷퐵∆푢  (4-35) 

푦 = 퐷푥 = 퐷퐴 푥 + 퐷퐴퐵∆푢 + 퐷퐵∆푢

= 퐷퐴 푥 + 퐷퐴 퐵푢 + 퐷퐴퐵∆푢 + 퐷퐵∆푢  
(4-36) 

푦
푦
푦

=
퐷
퐷퐴
퐷퐴

퐴푥 +

⎣
⎢
⎢
⎢
⎡ 퐷퐵
퐷퐴퐵
퐷퐴 퐵

  
0 0
퐷퐵 0
퐷퐴퐵 퐷퐵

⎦
⎥
⎥
⎥
⎤ 푢
푢
푢
푢

 (4-37) 

 

Where 푂  is the extended observability matrix퐴, 퐵 and 퐷 are the extended state space models 

and 퐻  is the lower block triangular Toeplitz matrix for the triple (퐷, 퐴, 

퐵) Error!  Bookmark not defined.. The prediction model with a prediction horizon of three is 

seen in Equation (4-38). 

푦 | = 푂 퐴푥  + [푂 퐵 퐻 ] ∗ ∆푢 |  (4-38) 

 

The prediction model can then be defined in the standard form as seen in Equation (4-39)  

푦 | = 푃 + 퐹 ∆푢 |  (4-39) 

Where the prediction model parameters are as seen in Equation (4-40) and the extended 

observability matrix 푂   and the deterministic Toeplitz matrix 퐻  can be seen in (4-41).  

 

푃 = 푂 퐴푥   , 퐹 = [푂 퐵 퐻 ] (4-40) 

푂 =

퐷
퐷퐴
⋮

퐷퐴

  , 푎푛푑 퐻 =
0 ⋯ 0
⋮ ⋱ ⋮

퐷퐴 퐵 ⋯ 퐷퐵
 (4-41) 

The prediction model has been specified and the control objective needs to be set. 
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4.2.4.2 MPC control objective 

In the MPC controller there is also needed a control objective to be minimized with respect to 

the found prediction model. A typical control objective guaranteeing stability may be seen in 

Equation (4-42) [31] 

퐽 =
1

2
[(푦 − 푟 ) 푄 (푦 − 푟 ) + ∆푢 푅 ∆푢 ] (4-42) 

 

The control Objective seen in Equation (4-42) may conveniently be written in more compact 

form as seen in Equation (4-43), where 푦 | , ∆푢 |  , and 푟 |  are seen in Equation (4-44). 

Q and R are the triangular weighting matrices seen in Equation (4-45). 

푗 = 푦 | − 푟 | 푄 푦 | − 푟 | + ∆푢 | 푅∆푢 |  (4-43) 

푦 | =

푦
푦
⋮
푦

   , ∆푢 | =

∆푢
∆푢
⋮

∆푢

   , 푟 | =

푟
푟
⋮

푟

 (4-44) 

푄 =

푄 0 0 0
0 푄 0 0
0 0 ⋱ 0
0 0 0 푄

   , , 푅 =

푅 0 0 0
0 푅 0 0
0 0 ⋱ 0
0 0 0 푅

 (4-45) 

 
 

The prediction model in Equation (4-39) is inserted into the control objective in Equation 

(4-43) resulting in a cost objective to be minimized seen in Equation (4-46). 

푗 = 푃 + 퐹 ∆푢 | − 푟 | 푄 푃 + 퐹 ∆푢 | − 푟 | + ∆푢 | 푅∆푢 |  (4-46) 

 

Some rearranging gives the objective in standard from seen in Equation (4-47), where the 

quadratic term Hessian matrix , 퐻, is as seen in Equation (4-48), the linear term , 푓 , is seen in 

Equation (4-49), and the scalar term,  퐽 , can be seen in Equation (4-50). 

 

퐽 = ∆푢 | 퐻∆푢 | + 2푓 ∆푢 | + 퐽  (4-47) 

퐻 = 푃 + 퐹 푄퐹    (4-48) 

  푓 = 퐹 푄 푃 − 푟 |     (4-49) 

   퐽 = 푃 − 푟 | 푄 푃 − 푟 |     (8) (4-50) 
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This control problem is a linear quadratic problem and there exists only one solution. The   

optimal unconstrained MPC control u*
k is found where 퐽  is minimized, where the derivative 

is equal to zero   
∆ |

= 0. This calculation can be seen in Equations (4-51) and (4-52). 

∆푢 |
∗ =

푑퐽

푑푢
= 2퐻∆푢 | + 2푓 + 0 = 0 (4-51) 

 

∆푢 |
∗ = −퐻 푓 = −퐻 퐹 푄(푃 − 푟 | ) (4-52) 

 

The optimal control deviation can then be calculated as seen in Equation (4-53), where the 

gain matrix 퐺 = −퐻 퐹 푄  may be calculated in advance. 

∆푢 |
∗ = 퐺(푃 − 푟 | ) (4-53) 

 

4.2.5  Feed forward control 

In this BAS system a rapidly decrease in outside temperature is quickly measured by the 

outside temperature sensors, however the feedback controllers will not react until the 

temperature decrease/increase has affected the inside temperature. A feed forward (FF) 

controller will keep the influence of the outside temperature to a minimum by modeling the 

effect of the disturbance on the system. The FF control has previously been tested 

successfully in house applications [7]. The controller needs to know when to act based on the 

systems time delay, and how much to act based on the disturbance model. In this case the 

time delay of the system is not known, but a FF controller can be designed from the current 

nonlinear model. The FF block diagram together with a common feedback controller can be 

seen in Figure 4-6. 

Comfort intervals y u
-

Controller
House

Hp
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+
+ +

+
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FF controller

 

Figure 4-6 Feed forward controller block diagram 

 

In Figure 4-6 the FF controller gain GFF is seen added to the controller gain from the PID, 

LQR or MPC, Gc .The FF gain is based on the modeled disturbance outside temperature VT.  



 74 

The FF controller needs to be designed based on the model, this means the model must be 

solved for the gain u based on the outside temperature. The solution is calculated assuming a 

constant reference 푥̇  = 0 seen in Equations (4-54) through (4-58). 

0 =
푥 푉̇ − 휌 푉̇

푥 푉
푥 +

1

푥 푉(푐 −
푅
푀)
휌 푉̇퐻 − 푥 푉̇ 퐻 + 푄̇  (4-54) 

−
푄̇

푥 푉(푐 −
푅
푀)
=
푥 푉̇ − 휌 푉̇

푥 푉
푥 +

1

푥 푉(푐 −
푅
푀)
휌 푉̇퐻 − 푥 푉̇ 퐻  (4-55) 

푄̇ = − 푥 푉̇ − 휌 푉̇ 푐 −
푅

푀
푥 − 휌 푉̇퐻 + 푥 푉̇ 퐻  (4-56) 

From the heat Equation (7-1) using steady state conditions the FF gain will be as seen in 

Equation (4-57) 

푄̇ = 푄̇ − 푄̇ ,   푄̇ = 푢  (4-57) 

Inserting Equation (4-57) into Equation (4-56) gives the control solution seen in Equation 

(4-58). 

푢 = − 푥 푉̇ − 휌 푉̇ 푐 −
푅

푀
푥 − 휌 푉̇퐻 + 푥 푉̇ 퐻 + 푄̇  (4-58) 

 

Since the model was found inadequate in the previous sections this should only be a basis on 

how to create a feed forward controller when the important mass factor is added. Some 

experiments on the time delay in real house systems should also be performed to time the FF 

controller correctly.  
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4.3 Control Simulations  

Before implementing the more advanced controllers in VS a good idea is to have them 

function in the MATLAB environment. The controller calculations are done based on the 

integrator model in Equations (4-3), (4-4) and (4-5) before the outputs are fed to the non-

linear model. The specific tuning parameters are seen in Table 4-1. 

 

Table 4-1 Controller parameters 

PID controller 퐾 = 375 푇 = 1126 푇 = 0 

LQR controller 푞 = 1 푟 = 0.01 N/A 

MPC controller 퐿 = 10 푞 = 10 ∗ 푒푦푒(퐿) 푟 = 0.01 ∗ 푒푦푒(퐿) 

 

Where the user specified time constant is three, and 푒푦푒(퐿),  denotes an identity matrix with 

the size of the prediction horizon L.  

The controller simulations can be seen in Figure 4-7. 

 

 

Figure 4-7 Controller simulations 

 

In Figure 4-7 all controllers and the predicted reference are working properly, the MPC 

controller is starting somewhat earlier due to the prediction horizon. Since the predicted 

reference will take care of the predictions into the future the MPC prediction horizon should 

be set to the smallest stable value on implementation. It is however also seen that the LQR 

especially reaches the comfort intervals a little too late due to the need to minimize the 

overshoot. This is handled by increasing the predicted reference with a percentage that should 

be set based on experimentally gained knowledge, 10% percent is adequate in this case.  

The advantage over the LQ regulator over the MPC controller is that because of the infinite 

prediction horizon the Controller feedback gain matrix G needs only be computed once, and 

not at each sampling interval. This makes the optimal controller much faster than the MPC 
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controller. The only disadvantage seen when in regards to the control problem is that no set 

basis to handle process constraints. Due to the simplicity of the constraints in the BAS system 

this does not propose any problems. The controller simulation function is found in the 

Appendix 6: MATLAB scripts paragraph 7.6.6 

4.4 Controller discussion 

All the control methods have been analyzed, designed and simulated and simulated based on a 

SSM model and the non-linear first principles house model seen in Part 1 paragraph 2.2.1. 

The finished BAS system will be MIMO systems which should remove the common feedback 

PI control as any option. MPC and LQR controller methods are model dependent but the basis 

of the thesis is to evaluate a model based BAS system and as such a working model is 

expected on implementation. 

The MPC controller is much more advanced than the LQR controller and the main reason to 

choose MPC over LQR would be the straight forward way of handling constraints. These 

constraints can however be handled simply using if-else statements. An overview of the 

control methods tested can be seen in Table 4-2. 

 

Table 4-2 Control methods properties overview, (X) included, (-) not included 

 

An important note not is that the only control not model dependent and thus not being limited 

by the correctness of the model is the feedback control.  

Feed forward control has been found to be a viable option in order to reduce the influence of 

the outside temperature [7] . The feed forward controller can in theory be added to all the 

controllers mentioned above. Care should be taken when introducing the feed forward 

controller to a MIMO system. 

 

Properties Feedback PID control Linear Quadratic Regulator Model Predictive Control 

SISO  X X X 

MIMO - X X 

Optimal control - X X 

Output feedback X X X 

State feedback - X X 

Constraints Handling - - X 

Model dependent - X X 

Complexity Low Medium High 

Computing time Low Low High 
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4.5 Heater control

For the BAS control systemto be a viable commercialapplicationthe control systemmust

work with existing heaters. In most casesthese heaterswill probably be simple on-off

thermostatcontrolled with some power settings. The control output delivered from the

controllersis howevera scalarvaluebetweenzeroandthemaximumavailableheaterpower.

Thesimplestsolutionwould beto usea socketon-off switchandturningall theheatersto the

maximumsettingsandletting theon-off controllerhandlewhentheheatersshouldbeon.This

is not thebestsolutionaswasevident in part2 paragraph3.5.3. A betterresultis achievedby

using a binary on/off Pulse Width Modulation (PWM) signal. This makes the heaters

applicablefor all variationsin output powersettings.In Figure 4-8 the PWM is visualized

with theconnectionto theheaters.

Figure 4-8 PWMcontrol layout

The PulseWidth Modulationof a signalusuallyrefersto rapid pulsingof a digital signal in

order to simulatevarying voltage. In this casethe PWM is useda little differently, as each

samplingtime the PWM is usedto have the correct power output from the heaters.The

samplingtime interval, (six minutes), is dividedinto a carriersignalfrequencyof 10 shiftsper

interval;thismeans36seconds’intervalsor 0.0278Hz.

The saw tooth waveformis usedto set the correcton-time basedon the duty cycle. For a

1000Wheatera 20%dutycyclemeansthattheheaterwill be1000W20%of thetimeand0W

80%of thetimemakingit average200Woverthesamplingperiod.An 80%dutycyclemeans

thattheheaterwill be1000W 80%of thetime and0W 20%of thetime averaging800Wover

thesamplingperiod.The200Wand800Wexamplescanbeseenin Figure4-9, on theleft and

right respectively.
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Figure 4-9 PWM with 20% duty cycle on the left and 80% duty cycle on the right 

 

In addition to the PWM software there needs to be a hardware on-off device connected to the 

control system between the heater and the power grid. This controllable socket device should 

be made to handle relatively high frequency on/off signals, however if the heaters use a too 

high PWM frequency this will create a problem on the power grid. In a large house the BAS 

system will control a lot of heaters, utilizing much power. If these loads are turned on and off 

at very frequent intervals they will chop up the 50Hz Sinus. This creates a non-linear load and 

Harmonics on the power grid which might create severe problems on the power grid. In order 

to resolve this issue the heaters will not be turned on and off at any speed near to the 50Hz net 

frequency. The selected low frequency carrier signal of 0.0287Hz will be adequate to ensure 

no harmonics occur. These low frequency shifts should not be a problem due to the large time 

constants of the model. Some additional control should be included to avoid very small duty 

cycles. This can be done by dividing the PWM duty cycles into minimum regions, i.e. 5%. 

The MATLAB function creating the PWM signal based on the maximum heater power and 

the output from the controller can be found in the Appendix 6: MATLAB scripts paragraph 

7.6.7. 
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4.6 Software development 

The control system should be the main GUI of the BAS monitoring and control system using 

the predictor and the control methods explained in paragraph 4.2, and the sensor data saved to 

file from the gateway system. The control algorithms have several tuning settings that should 

be changeable in a configuration, together with the controller type. The SSM model can be 

calculated from the model and house configurations or entered directly in the configuration. 

The MPC and LQR control algorithms should applicable for MIMO systems, however the 

main control system will use the SISO implementation from paragraph 4.1.2. 

The heater output will be through a DAQ 6008 device and the experiments will be run on the 

air heater using the built in PWM [13]for this reason the PWM will not be included in VS. 

All configurations from the control system and the predictor seen in paragraphs 4.6.2 and 

3.4.2  are added as tabbed forms to a main configuration form creating a straight forward 

GUI, and saved in XML using the XML class from part 1 paragraph 2.3.2.1 appended with 

new parameters. 

The sensor values will be plotted based on name and location into one outside temperature 

graph and one inside temperature graph. The outside sensors will be chosen on the basis that 

the location should include outside. The analysis sheet can be found in Appendix 3 FURPS+ 

paragraph 7.3.3. 

4.6.1 The use case diagram 

The functionality of the control system is made into a use case diagram to give a good visual 

representation. In Figure 4-10 the control systems use cases are seen with the gateway 

configuration seen in paragraph 2.3.2, predictor 3.4 and log files 2.3.4 as inputs to the system. 

The main outputs to the system are the heaters and the display.  

 

Figure 4-10 Control system use case diagram 
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Thecontrol systemlayeredarchitectureis seenin Figure4-11, whereall main classesin the

systemare visualizedand connectedto the physical layers.The operating systemfor the

sensorvalues and configurations. The arrows show the information flow between the

predictorthesensorvaluesandthecontrollers.

Figure 4-11 Layeredarchitectureof control system

4.6.2 Configuration use case

Theconfigurationusecasespecificfor this lastpartcontrolsystemwill consistof two main

forms,thefirst will bethecontrolconfigurationandthesecondthesensorconfiguration.The

sensorconfigurationwill functionasa copy of thegatewayconfigurationusedto getthe

correctsamplingtime,andsensorspecifications.All configurationparameterswill besaved

to thecontrolsystemconfig.XML file. Theanalysisdocumentationof theconfigurationis

foundin Appendix4: Fully dressedusecasedocumentsparagraph7.4.3

4.6.2.1Designing the sensor configuration form

Thesensorconfigurationform will readthecurrentconfiguration from thegatewayandstore

this in thecontrolsystemconfiguration.Thesensorconfigurationshouldnot bechangeablein

thecontrolsystemandis setto readonly. ThesensorconfigurationGUI will containthetable

with thesensorsandthesamplingtime andthepathof thesensorvalues.Thereis a buttonto

prompttheuserto selectthepathof thegatewayconfigurationfile andthepathof thesensor

log file. ThecreatedGUI in thesensorconfigurationform canbeseenin Figure4-12.
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Figure 4-12 Gateway / sensor configuration form GUI seen with sensor and sampling time 

values from Part 1 paragraph 2.4 

 

Since the system needs the sensor location file in order to function the main system will not 

start if this file is missing and the user will be prompted to enter the location and name of the 

file. 

4.6.2.2 Designing the controller configuration form 

The controller configuration should include all the setup needed to calculate the steady state 

gains from the Kalman filter seen in paragraph 3.2.3.1, the LQR 4.2.3 and the MPC matrices 

4.2.4. These setup algorithms are made into the Kalman filter and controller’s individual 

classes. The user should be able to select which controller to use and set the controllers tuning 

parameters, the LP filter constant, and the steady state values. The steady state values are used 

together with the house and model data to create the SSM model, however the SSM can also 

be entered directly in its discrete form. All this is included in the controller configuration GUI 

seen in Figure 4-13 

 



 82 

 

Figure 4-13 Controller configuration showing all configurations when run using air heater 

and parameters from Part 2 paragraph 3.5 

 

The MPC controller setup needed some new matrix manipulation functions added to the 

Matrix library. These extra functions are found in Appendix 5 – Source Code paragraph 

7.5.2.5. All parameters are saved in the config.XML file under the added controller element. 

New elements are added in the same manner as in paragraph 2.3.2.  

 

4.6.2.3 Control system configuration GUI 

In order to handle all the configurations needed for the created control system the 

configurations were added to a main configuration forms tab control. The BAS logo and the 

current date and time are visualized above the tab control. This can be seen in the screen 

dump of the configuration at run time in Figure 4-14 

 

 

Figure 4-14 Main control system GUI showing all the configurations needed for the control 

system in tab selections 

 

Each configuration parameter is included with a context menu strip giving a right click help 

button information option, and can be seen in the Appendix 5 – Source Code paragraph 

7.5.3.2. Excerpts of the configuration code primarily the control algorithm setup can be found 

with commentary in Appendix 5 – Source Code paragraph 7.5.3. 
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4.6.3 Calculate control output use case 

The controller use case is based on the parameters set in the configuration and the control 

theory in paragraph 4.2. Excerpts of the main code algorithm with commentary can be found 

in Appendix 5 – Source Code paragraphs 7.5.3.3 through 7.5.3.3.4.  

4.6.4 Display control system use case, the main GUI 

The main GUI of the control system should give the user the necessary information currently 

available. The main control system GUI is seen in a screen dump in Figure 4-15 while reading 

the log file from the data acquisition experiments done in part 1 paragraph 2.4. In Figure 4-15 

there are two main graphs; one for the inside and one for the outside temperature. Two 

smaller graphs contain the control output and the predicted heating time. The calculated 

predicted heating time, average inside temperature and average outside temperature is set in 

text boxes on the lower left side. The predicted heating time is seen as 59 minutes using the 

average inside temperature of 18°C for prediction. Average heater output from the five 

heaters is seen as 500W. 

 

 

Figure 4-15 Control system GUI while reading sensor values from log file 
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4.7 Experiments introduction 

The BAS system should be tested with the control methods and all relevant software. The 

MPC and LQR controllers are model dependent and a poor model will result in poor control. 

In order to make sure the controllers are working correctly a better model of the air heater will 

be gathered using the DSR subspace system identification method [27].  

4.7.1 Experiment setup 

The setup to the completed BAS experiments is the same as in part 2 Estimation of heating 

time and can be found under paragraph 3.5 Experiment setup. The control system is added to 

the computer software and including the predictor. Some changes were made to the control 

system for these experiments: The outside temperatures graph was changed to show all the 

controller outputs at the same time. The steps in the comfort intervals references were set to 

be 30 seconds, instead of an hour and only Mondays references was used for simplicity. The 

comfort temperature was set to be 40°C and the low temperature was set to be 30°C. The time 

stamps were used as the 0.2 second sample time and the MPC prediction horizon was set to 

30 samples, or two seconds  

 

To get the best model the air heater was excited using a pseudo random binary reference 

between the minimum 0V and the maximum 5V outputs [13]. The MATLAB dsr toolbox 

resulted in the following SSM matrices seen in Equation (4-59) 

퐴 = 0.9997      퐵 = 0.001459 (4-59) 

 

The experiments tuned weighting parameters are seen in Table 4-3. 

 

Table 4-3 Experiments controller parameters 

PID controller 퐾 = 0.8 푇 = 23 푇 = 0 

LQR controller 푞 = 0.01 푟 = 100  

MPC controller 퐿 = 30 푞 = 1.5 ∗ 푒푦푒(퐿), 푟 = 250 ∗ 푒푦푒(퐿) 
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4.7.2 BAS experiment results 

Using the new model the controllers showed some specific categories. The PID controller was 

simple to tune and produced good results, the LQR was somewhat harder to tune but gave the 

best results. The MPC controller proved very hard to tune and produced the least good results. 

The LQR controller can be seen working in the control system screen dump in Figure 4-16 

and all three controller experiments results can be seen plotted together using MATLAB in 

Figure 4-17. 

 

 

 

Figure 4-16 Screen dump of control system working with LQR controller; output temperature 

seen in top graph and all controller outputs seen in bottom graph.  

 

 

Figure 4-17 All controller experiments results plotted together in MATLAB  
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4.8 Discussion  

The control system experiments showed the standard feedback controller as a viable option 

for the air heater SISO system producing good control results. A complete house will 

however be a MIMO system and the correct tuning of several inputs (heaters) and several 

outputs (room temperature) will be complex [19]. The two controllers applicable for these 

MIMO systems are the LQR and the MPC. The MPC proved however hard to tune correctly 

and use complex matrix algorithms in the calculation of the control output. This makes the 

MPC controller both harder to understand code and debug. The LQR regulator however 

showed great promise during the experiments. Even though the comfort intervals were 

reached a little too the LQR both stabilized the system the fastest and also prevented 

overshoot.  

The MPC controller was shown in simulation to produce as good results in paragraph 4.3; 

however the added complexity of tuning the MPC resulted in poorer performance. The 

reasons to select the MPC over the LQR is the constraints handling and the future predictions 

contained in the prediction horizon. In this BAS system however the future predictions are 

taken care of by the predictor and the only constraints in the system are the maximum and 

minimum heater power. These constraints are proven handled just as good using if an else 

statements. 

Adding a feed forward controller to the BAS system will prove an advantage in response to 

sudden changes in the outside temperature. The added controller will also increase the 

complexity and will rely on a good model. The feed forward controller should be included to 

the system when a suitable model is obtained and new experiments should be run to answer 

the need for this controller’s added complexity. 
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5 Conclusions 

The gateway has been thoroughly analyzed, coded and tested. The gateway was running 

correctly for 12 consecutive days. The theory behind the main parameters of the house model 

was discussed and during the practical experiments part some ways of determining the U 

value has been tested.  

The model has been proven unsatisfactory in regards to the real experiments data. The model 

does not take into account the house mass and heat capacity the time constant will be too 

small. Augmenting the model using a Kalman filter has been shown to largely improve the 

estimations. The pure OLS regression model proved best when handling systems with time 

delayed reactions to the control output. Any time delay in the system added to the Kalman 

filter disturbance estimated SSM model should be added as an offset to the heating time 

estimations.  

Using a simple on-off controller for keeping the temperature at comfort interval was found as 

inadequate. Three controllers were tested for reliability, complexity and handling of MIMO 

systems. The MPC controller was found as unnecessary complex, the PID controller will 

prove advanced to tune in a MIMO system. The optimal controller for the MIMO BAS 

system is proposed as the LQ regulator. This selection is based on the fact that this BAS 

system will have a working house model. 

A subspace system identification method is simple to implement and will create a very good 

model when conditions are stable. A first principle model will be more adaptable to changes 

and the house model should be augmented with the house mass.  

During this thesis it has been proven that an adaptable BAS system will result in large energy 

savings for a common working household.  
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6 Future work 

In order to have a building model predicting correctly the current house model should be 

augmented with the house mass heat capacity using first principles. The house model should 

also be adapted to handle several rooms, floors and heaters (MIMO). The house mass is 

constant and should then be estimated correctly using the Kalman filter. 

Implementing a way for measuring the solar radiation is important to get an accurate 

estimation of heating time. In addition the sensor network should add sensors for measuring 

the ventilation, air density, and pressure.  

The ZigBee gateway should include a send method and tests should be performed using the 

software PWM together with heaters and the gateway in future experiments. 

The control system should add the possibility of MIMO systems configurations, and different 

temperature settings in different rooms. In addition a better way of sorting the inside and 

outside temperature sensors should be implemented.  

A feed forward controller should be implemented to work during the comfort intervals to 

minimize the influence of the outside temperature.  

The DSR subspace system identification algorithm should be implemented in VS. This 

algorithm can be used in parallel with the first principle house model to further test the 

functionality.  
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7.1  Appendix 1- Thesis text 
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7.2 Appendix 2: Measuring the U value 

In order to measure the U values directly with the ZigBee sensor network the house and 

outside temperatures are needed in a steady state. This might however happen in some 

meteorological instances and the U-values can be measured by using a tile with known 

resistance and three temperature sensors. This is seen in Figure 7-1. 

 

Figure 7-1 Measuring the U value experimentally 

 

Another way to measure the total house heat leakage value, 푈 , or energy leakage would be to 

measure the amount of power used over a period of steady state conditions8, with all 

ventilation closed, and use that in steady state we have as seen in (7-1) and (7-2). 

푄 = 푄 = 푈 퐴∆푇 (7-1) 

푈 =
푄

퐴∆푇
 

(7-2) 

 

Where 퐴 is the total surface area of the house, and ∆푇is the difference between inside and 

outside temperatures and Qw is the heater power used to keep the inside at constant 

temperature.  

Both these estimations rely heavily on steady state conditions and while steady state 

conditions in the inside temperature is obtainable. Steady state in the outside temperature 

rarely happens over any large amount of time. The best way to measure the U value would be 

to use a heat flux based measurement as TRSYS01 from Houseflux Thermal sensors. The heat 

flux based measurement does not need steady state conditions.   

                                                 

 
8 Steady state means 
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7.3 Appendix 3 FURPS+ 

7.3.1 Gateway FURPS+ 

Functional Get sensor values from the ZigBee sensors, and display them to a LCD 

Log to file on disc, parsed data and raw data if needed, containing tag 

information, current date and time 

Configuration; Specify time for saving the sensor data, holding all the 

needed information about the sensors, and all the serial link properties 

Usability Language English 

Keyboard and mouse 

Display (current values, parsed and raw and configuration) 

Hard Disk for saving the sensor data, and keeping the configuration 

Configuration file should be XML v 1.0 format containing sensors, sampling 

time and serial link configuration. 

LOG standard is in text format with extension .log as: 

[datetime;sensor1value;sensor2value;sensor3value….]  

Reliability The system will run 24x7. 

Performance Save file timer set in configuration 

Serial read existing parameter timer set in program. [50ms]. 

Supportability  

+ The gateway will run on windows based OS (32/64bit) using C# and 

windows forms 
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7.3.2 Predictor FURPS+ 

Functional Read sensor values from the log file created by gateway 

Predictor: Learn the system by logging the data and turning the heater on 

full. Learn both using OLS and K-OLS-SSM estimates. Predict the heating 

time based on current environmental values, and the prediction models 

created from the learn function. 

Configuration of the house model, house parameters, and comfort intervals 

Usability Language English 

Keyboard and mouse 

Display (current values, parsed and raw and configuration) 

Hard Disk for reading the sensor data, and keeping the configuration 

Configuration file should be XML v 1.0 format containing sensors, sampling 

time and serial link configuration. 

Set heater output using DAQ 6008 device 

Reliability The system will run when user specified and automatically the first time 

Performance Use sampling time from gateway to get correct prediction regression models 

Maximum output values in the DAQ-6008 device is 5V 

Supportability  

+ The gateway will run on windows based OS (32/64bit) using C# and 

windows forms 
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7.3.3 Control System FURPS+ 

Functional Control the temperature  and calculate the controller outputs based on the 

model and the configurations 

Display the complete control system GUI, plot the inside temperature 

outside temperature and heater output, and heating time estimation as 

graphs, give a clear indication to which controller method has been selected. 

Configuration of controllers and sensors including the Predictor 

configurations in a main configuration form. All configuration kept in a 

static data object and XML file. 

Usability Language English 

Keyboard and mouse 

Display  

Hard Disk for the configuration 

Configuration file should be XML v 1.0 format  

Controller output will be set using DAQ 6008 device 

Reliability The system will run when user specified and automatically the first time 

Performance Run each sampling time set in the gateway 

Maximum output values in the DAQ-6008 device is 5V 

Minimum output is set to be 0V 

Supportability  

+ The gateway will run on windows based OS (32/64bit) using C# and 

windows forms 
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7.4 Appendix 4: Fully dressed use case documents 

 

7.4.1 Gateway 

Use Case # 1 Gateway. 

1 Use Case Name Configuration 

2 System/Scope Gateway 

3 Level User Goal 

4 Primary Actor HD 

5 Stake Holders Control System 

6 Preconditions NA 

7 Success 

Guarantee 

Configuration created, opened and saved 

8 Main success 

scenario 

1 Open configuration 

2 Edit configuration add sensors 

3 Save configuration 

9 Extensions 1A no file to open, create new configuration file 

1B Error in file, create new configuration file 

3A Save error, give message to user, retry? 

10 Special 

Requirements 

Want to use XML V1.0 based configuration files 

11 Technology List  

12 Frequency of 

occurrence 

Each time the user needs to change the configuration or the system 

will need the configuration data 

13 MISC The configuration will be broken up in one windows form for 

displaying and editing the configuration values and one class file for 

the configuration XML based functions. This file will also handle 

extensions 1A and 1B 
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Use case # 2 Gateway 

1 Use Case Name DisplayConfigData 

2 System/Scope Gateway 

3 Level User Goal 

4 Primary Actor LOG HD and Display, User (keyboard, mouse) 

5 Stake Holders Control System 

6 Preconditions  

7 Success Guarantee Configuration loaded, changed, and saved 

8 Main success scenario 1 Open Configuration (USER) 

2 Display configuration data 

3 Edit Configuration data (USER) 

4 Save Configuration data to HD 

9 Extensions 4A Save new Configuration data Y/N/C 

4A: Y save the information , exit form 

4A: N do not save new information, exit form 

4A: C Break operation and return to form 

10 Special Requirements Want to use XML based configuration files 

11 Technology List .NET V, XML Version 1.0 

12 Frequency of 

occurrence 

@ user request 

13 MISC The software will be de the GUI between the user and the 

configuration data 
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Use case #.3 Gateway 

1 Use Case Name LOG 

2 System/Scope Gateway 

3 Level User Goal 

4 Primary Actor Harddisc 

5 Stake Holders Control System 

6 Preconditions  

7 Success 

Guarantee 

Raw serial data received, parsed, saved and returned 

8 Main success 

scenario 

1 Raw serial data received 

2 Split up raw serial data in messages 

3 Parse the split data into sensor data  [datetime;sensor1;sensor2; . .] 

4 Save data 

9 Extensions 1A no data received 

1B Return empty string 

3A return NAN if no value is found for that sensor 

4A IO error, save error in error.log 

4B retry 

10 Special 

Requirements 

 

11 Technology List .NET V, XML Version 1.0 

12 Frequency of 

occurrence 

@ program request 

13 MISC The LOG will be used by the other use cases in order to save error 

logs and, parse the raw serial data. 
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Use case #4 Gateway 

1 Use Case Name DisplaySerialData 

2 System/Scope Gateway 

3 Level User Goal 

4 Primary Actor ZigBee Coordinator[Serial port], timer 

5 Stake Holders Control System 

6 Preconditions The ZigBee network has been started and is up and running with 

all devices. The ZigBee SW is working correctly  

7 Success Guarantee Sensor values read, displayed and saved to file 

8 Main success scenario 1 Get Configuration (serial port, and save file timer) 

2 User pressed start log button 

3 Disable Configuration button 

4 Open COM port 

5 Save file dialog, select file to save log 

5 Start COM timer 

5.1 Read existing serial data into memory, and text box 

5.2  Sleep [100ms] 

5.4 go to 3.1 

6 Start save file timer 

6.1 Send raw data to the log class, parsed data returned 

6.2 Send Parsed data to parsed data text box 

6.3 Save Parsed data, and raw data if checkbox is checked 

6 .3 Sleep [Save File Timer] 

7 Stop log button pressed 

7.1 Stop logging to file  

7.2 Enable configuration button 

8 User press configuration button 

8.1 Show DisplayConfigData form 

9 User exit using Cross 

9.1 Hide application 

9.2 Give notice of application still running 

10 User exit using exit button 

10.1 Application stopped 
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Extensions 4A COM port error, give message box warning  

4B Save error to error.log 

4B Break saving operation 

5 No file selected 

5B Show message box warning 

5C Break operation 

 

 

Special Requirements Want to use XML based configuration files 

Technology List ZigBee Pro Development Kit Gateway device – Coordinator 

COM/ Serial port/ or USB to Serial port 

Frequency of occurrence @ Program request (each sampling time) 

MISC  
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7.4.2 Predictor 

Use case #1 Predictor 

1 Use Case Name Configuration (Predictor) 

2 System/Scope Predictor (Control System) 

3 Level User Goal 

4 Primary Actor OS 

5 Stake Holders Control System 

6 Preconditions NA 

7 Success Guarantee Configuration created, opened and saved 

8 Main success 

scenario 

Model parameters (molar mass, gas constant etc.) 

1 Open configuration 

2 Edit configuration 

3 Recalculate parameters 

4 Load default values 

5 Save configuration 

 

House parameters (heater effect, house area, volume ventilation, 

etc.) 

6 Open configuration 

7 Edit configuration 

8 Save configuration 

 

Comfort Intervals (comfort temperature, low temperature) 

9 Open configuration 

10 Set comfort temperature 

11 Set low temperature 

12 save new configurations 
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Extensions Model parameters (molar mass, gas constant etc.) 

1A no file to open, create new configuration file with default values 

1B Error in file, create new configuration file 

2A only numerical values and one separating sign allowed  

3A Save error, save the error to the error log file 

 

House parameters (heater effect, house area, volume ventilation, etc.) 

4A no file to open, create new configuration file with default values 

4B Error in file, create new configuration file 

5A only numerical values and one separating sign allowed  

8A Save error, save the error to the error log file 

 

Comfort Intervals (comfort temperature, low temperature) 

9A no file to open, create new configuration file with default values 

9B Error in file, create new configuration file 

10A only numerical values and one separating sign allowed  

11A only numerical values and one separating sign allowed  

12A Save error, save the error to the error log file 

Special 

Requirements 

Want to use XML V1.0 based configuration files 

Technology List  

Frequency of 

occurrence 

Each time the user needs to change the configuration or the system will 

need the configuration data 

MISC The configuration will be broken up into three windows forms for 

displaying and editing the configuration values and one class file for the 

configuration XML based functions. 

The configXML class will handle extensions 1A and 1B 
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Use case # 2 Predictor. 

1 Use Case Name Get sensor values 

2 System/Scope Predictor (Control System) 

3 Level User Goal 

4 Primary Actor OS 

5 Stake Holders Control System 

6 Preconditions Sensor values saved by the Gateway 

7 Success Guarantee Sensor values log file open and read to correct line 

8 Main success 

scenario 

1 Using log file (opening and closing at once reading is done) 

2 Read to current line 

3 Filter the data through a low pass filter 

3 Convert the ADC values to temperature data 

9 Extensions 1A no file to open,  prompt user with file missing error message 

1B Error in line, create new configuration file 

2A End of file 

2B Wait one sampling time  

3A Non numerical values received 

3B Save error log message  

3C Jump to next line 

10 Special 

Requirements 

Want to use XML V1.0 based configuration files 

11 Technology List  

12 Frequency of 

occurrence 

Each time the user needs to change the configuration or the 

system will need the configuration data 

13 MISC The low pass filter function will be created in one class and read 

sensor values in another class 
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Use case # 3 Predictor 

1 Use Case Name Predictor 

2 System/Scope Predictor  (Control system) 

3 Level User Goal 

4 Primary Actor Control System 

5 Stake Holders Control System 

6 Preconditions Sensor values read by Read sensor values 

Model, house and temperature data stored in XML file 

DAQ-6008 device on line 

7 Success Guarantee Learn function finished and regression models created 

8 Main success scenario Learn part 

1 Read configuration 

2 Run three sample times to stabilize Kalman gain 

3 Set heaters to maximum 

4 Comfort temperature reached 

5 Save regression models 

Prediction part 

6 Select OLS or K-OLS-SSM model 

7 Run heating time estimations 

8 Get comfort intervals reference 

9 Go to 6 

9 Extensions 1A no file to open,  prompt user with configuration file 

missing  

1B Error in configuration, prompt user to create new file 

4A Comfort temperature not reached within  maximum time 

4B Stop predictor and prompt user 

5A File save error 

5B prompt user and save error in error.log file 

10 Special Requirements Want to use XML V1.0 based configuration files 

11 Technology List DAQ-6008 USB device 

12 Frequency of 

occurrence 

Learn at fresh startup or user interaction 

Prediction each sampling time 

13 MISC  
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7.4.3 Control System 

Use case #1 for control system 

1 Use Case Name Configuration 

2 System/Scope Control system 

3 Level User Goal 

4 Primary Actor Display 

5 Stake Holders Control System 

6 Preconditions  

7 Success Guarantee Configurations parameters opened, edited and saved. 

8 Main success scenario Sensor values configuration 

1 Load current configuration from XML file 

2 User button pressed load gateway configuration 

3 Prompt user for path of gateway configuration 

4 Get configuration from gateway config.xml file 

5 Prompt user for path of sensor values log file 

6 Read sensor.log path 

7 Save new values to control system Config.XML file 

 

Controller configuration 

8 Load current configuration from XML file 

9 Edit configuration parameters set in text boxes 

10 Calculate new SSM matrices using set parameters 

11 Save button to save new configuration 
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9 Extensions Sensor values configuration 

1A File does not exist, Create new file 

1B Error in file, Create new file  

2B Prompt user with error message 

4A No file selected  

4B Prompt user with error message 

6A Save error 

6B Prompt user with error message 

 

Controller configuration 

8A File does not exist, Create new file 

8B Error in file, Create new file 

6A Save error 

6B Prompt user with error message 

10 Special 

Requirements 

Want to use XML V1.0 based configuration files 

11 Technology List  

12 Frequency of 

occurrence 

Each time the user needs to change the configuration or the system 

will need the configuration data. 

13 MISC This configuration also contains all parameters from the predictor 

configuration. 

Extensions 1A, B and 8A,B handled by the ConfigXML class 

In order to have changes made while running and save time used to 

open and read the XML file often the ConfigXML class should be 

set as static 
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Use case #2 for the control system 

1 Use Case Name Controller 

2 System/Scope Control system 

3 Level User Goal 

4 Primary Actor USB-6008 and Predictor 

5 Stake Holders Control System GUI 

6 Preconditions  

7 Success Guarantee Configurations parameters opened, control output calculated and 

sent to DAQ device. 

8 Main success 

scenario 

1 Load current configuration from XML file 

2 Open DAQ-6008 device 

3 Get current reference and sensor values from predictor 

4 Get current controller from XML config file 

5 Calculate control output 

6 Send control output to DAQ-6008 device 

7 Go to 3 (loop) 

8 At control system GUI request stop control and close DAQ-6008 

 

 

 



 111 

9 Extensions 1A File does not exist or file error, Prompt user for error 

1B Break control 

1C Open configuration 

2A DAQ not connected, 

2B Message user 

2C Break control operation 

4A Go to 1A 

5A Error in Calculation 

5B Save error message in error log file 

6A DAQ-error 

6B Send error message user 

6C Break control operation 

10 Special 

Requirements 

Using XML V1.0 based configuration files 

11 Technology List DAQ-6008 USB Device 

Predictor 

12 Frequency of 

occurrence 

At control system request each sample time 24/7 

13 MISC All control system configuration set as a static value in the main form 

Control System GUI to speed up system since reading and parsing 

XML file takes too much time during loop. 
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Use case #3 for the control system 

1 Use Case Name Control System GUI 

2 System/Scope Control system 

3 Level User Goal 

4 Primary Actor Display 

5 Stake Holders  

6 Preconditions  

7 Success 

Guarantee 

Configurations parameters opened, edited and saved. 

8 Main success 

scenario 

1 Load current sensor configuration from XML file 

2 Set up plots with correct sensors one series for each sensor and 

outside temperatures in one graph and inside temperatures in another 

graph. Separate the inside and outside sensors using the “out” keyword.  

3 User button pressed start control 

4 Start predictor 

5 Start Controller 

6 Plot Sensor values 

7 Plot Controller values 

8 Plot Predicted heating time 

9 Go to 4 (loop) 
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9 Extensions 1A Handled by Config.XML class 

4A Handled by predictor class 

5A Handled by controller class 

8A User interaction , stop control button pressed 

8B Verify stop control using Y/N 

8C Y- Break control operation 

8E N – Continue operation 

10 Special Requirements Using XML V1.0 based configuration files 

11 Technology List Software – Gateway and Predictor  

USB -6008 device 

Display with minimum resolution 1024*768 

12 Frequency of occurrence 24/7 

13 MISC  
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7.5 Appendix 5 – Source Code  

7.5.1 Gateway Code Excerpts 

7.5.1.1 The Configuration Code 

Setting the configuration data parameters 

The XML serializer function works by enabling conversion of XML documents to common 

language runtime objects [1]. In order to use this function all the data needs to be collected in 

a class of objects. This class has been called ConfigData and can be seen in VScode 7-1 

public class ConfigData 

    {  

        public Sensor[] Sensors; 

        public Timers timer; 

        public Serial serial; 

VScode 7-1 The configdata class 

 

From the VS output there is seen that the sensor is created as a sensor array since it will 
include several sensors, the serial and timer are singular properties. The next step is to create 
the sub element sensor with the configuration data selected for each sensor. This is done by 
setting the type, and sensor data as a struct. This can be seen in VScode 7-2. 
 

 [XmlType(TypeName = "Sensor")] 

    public struct Sensor 

    { 

        public string Macaddr; 

        public string IO; 

        public string Type; 

        public string Location; 

        public string Measureand; 

        public string Range; 

        public string Uncertanty; 

        public string BatteryDate; 

        public string MISC; 

    } 

VScode 7-2 Creating the XML nodes for the sensors 

The timer and serial properties are set in same manner and for further information the code 

with notations can be found in Appendix. 

 

Writing the XML data to file, ConfigWriteData method 

The writing data method will use FileStream with parameter FileMode.Create, the file will be 

created on saving, and if the file previously exists it will be overwritten.  The using statements 

are used to be sure the garbage handler will remove the created FileStream instance after use. 

The XML root is set before and the XmlSerializer method is used to create the XML file with  

the structure properties from the ConfigData class. This is seen in a code excerpt in VScode 

7-3. 
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using (var fs = new FileStream(ConfigFileName, FileMode.Create)) 

                {    

     XmlRootAttribute root = new XmlRootAttribute("Config"); 

                    XmlSerializer xs = new XmlSerializer(typeof(ConfigData), root); 

                    xs.Serialize(fs, Data); 

                    fs.Close();} 

VScode 7-3 XML write method 

 

Reading the XML data, ConfigReadData method 

It is also important to read the XML configuration data from within the program. The same 

file method is used as in the write function with different settings. The XmlSerializer function 

deserialize the XML document into data objects, based on the ConfigData class. The main 

parts of the read function can be seen in VScode 7-4 

using (FileStream fs = new FileStream(ConfigFileName, FileMode.Open)) 

                { 

                    XmlRootAttribute root = new XmlRootAttribute("Config"); 

                    XmlSerializer xs = new XmlSerializer(typeof(ConfigData), root); 

                    Data = (ConfigData)xs.Deserialize(fs); 

                    fs.Close(); 

                } 

VScode 7-4 Reading from XML file 

 

One important error handling is what will happen if the file contains faulty or missing data. 

This would create an file exception and the program would crash. This is handled by using a 

try and catch statement set around the function, and the catch will then create a new empty 

instance of the configuration XML file. This can be seen in VScode 7-5. 

            catch(Exception e) Data = new ConfigData();       

VScode 7-5 Creating a new file if missing or faulty 

 

7.5.1.2 Code results  

A new instance of the config class can be created and the ConfigReadData method can be run 

giving the program access to the XML data as objects. This is seen in VScode 7-6 

config = new Config(); 

 

config.ConfigReadData("config.xml"); 

VScode 7-6 Running the read function 

 

Then the serial port settings can be accessed as is seen in Figure 7-2 
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Figure 7-2 Accessing the configuration data 

 

When the correct settings are applied the new data can be saved using the write function, this 

can be seen in VScode 7-7. 

config.Data.serial.portName = "COM1"; 

config.Data.timer.SaveTimer = 2000; 

 

config.Data.Sensors[0].Macaddr = "0AAA"; 

config.Data.Sensors[0].IO = "00"; 

 

 

config.ConfigWriteData("config.xml"); 

VScode 7-7 Running the write function 

When the code in VScode 7-7 is run the XML file data was created as can be seen in 

XMLscript 1. 

<?xml version="1.0"?> 

<Config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

  <Sensors> 

    <Sensor> 

      <Macaddr>0AAA</Macaddr> 

      <IO>00</IO> 

    </Sensor> 

  </Sensors> 

  <timer> 

    <SaveTimer>2000</SaveTimer> 

  </timer> 

  <serial> 

    <portName>COM1</portName> 

  </serial> 

</Config>     

XMLscript 1 Configuration result when using the write function 
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7.5.1.3 Testing software and error handling 

In the configuration use case the testing part is mainly to see how the created functions will 

react to false or bad data, either due to the file being tampered with or the configuration file 

being deleted to see that these eventualities are taken into account by the program and no 

crashes will occur. First the functions will be tested when the config.xml file has been 

removed. 

Reading configuration file with missing file 

If the FileStream function tries to read a file that is not there, an unhandled exception will be 

thrown resulting in software crash. This is fixed by the try and catch  implemented in the read 

function. If a file is removed a new config.xml file will be created with the basic information 

given in the ConfigData class.  

 

Reading configuration file with faulty data 

If the XmlSerializer function reads data that is not of the type set in the ConfigData class there 

will be thrown an exception, and the same catch used for the missing file will create a new 

config.xml and overwrite the faulty data.   

 

Error during saving of file  

There might also be created an IO error when saving to file, if for instance another program is 

using the file at the exact same instance. These amongst other errors are handled by a try and 

catch statement around all methods that have the possibility to fail. All catch statements are 

included with a function to write the error to an errog.log file. The error.log file contains the 

time and date for the error, the type of error and a location notation on where the error occurs. 

This can be seen in VScode 7-8for the configuration write method. 

using (System.IO.StreamWriter file = new System.IO.StreamWriter(@error.log, true)) 

                { 

file.WriteLine(DateTime.Now.ToString()+e.Message + e.Source + "@ConfigWriteData"); 

               } 

VScode 7-8 Error handling in configuration use case 
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7.5.1.4 The DisplayConfigData code 

The code is based on reading and saving the configuration data using the config class.  In 

order to get the current available COM ports there is created a code for adding the computers 

available COM ports to the combo box. This can be seen in VScode 7-9. 

foreach (string s in System.IO.Ports.SerialPort.GetPortNames()) 

            { 

                comboBoxComPort.Items.Add(s); 

            }    

VScode 7-9 Adding the available COM ports to a combo box 

Getting the other serial information is done using the enumerable lists contained in 

System.IO.Ports.  

Two main methods are created to read and write the displayed configuration information, 

DisplayConfigData and DisplaySaveConfig, both will be explained in turn. 

 

Reading the configuration data, the DisplayConfigData() method 

In order to display the sensor information in the table9 a foreach loop is used looping through 

all the sensor objects in Sensors. In order to keep the numbering “out of the user’s hands” the 

first column is set as write protected and will only contain the sensor automatic counter. This 

can be seen in the VScode 7-10 

foreach (Sensor sensor in config.Data.Sensors) 

            { 

                ConfigurationSensorTable.Rows.Add(i, sensor.Macaddr, sensor.IO, 

sensor.Type, sensor.Location, sensor.Measureand, sensor.Range, sensor.Uncertanty, 

sensor.BatteryDate, sensor.MISC); 

                i++; 

            } 

VScode 7-10 reading the data to the table 

The serial and timer configuration is simply read straight into their control containers as can 

be seen by the excerpts VScode 7-11 

comboBoxComPort.Text = config.Data.serial.portName; 

textboxSaveTimer.Text = Convert.ToString(config.Data.timer.SaveTimer); 

VScode 7-11 reading configuration data into combo boxes         

 

 

 

 

                                                 

 
9 Data grid view control is used as table 
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Saving the configuration information, The DisplaySaveConfig() method 

When saving the sensor information a switch case statement is used together with the 

configWriteData method. The switch case is used to give the user the ability to cancel saving 

changes in the standard windows setup yes is to save and exit, no is to exit without saving and 

cancel is break the saving operation and return to the form. The information in the table, 

combo boxes and text boxes are set as the data to their corresponding objects. An excerpt of 

this can be seen in VScode 7-12 

//Sensors 

config.Data.Sensors[i].Macaddr = (string)ConfigurationSensorTable[1, i].Value; 

//timer 

config.Data.timer.SaveTimer = Convert.ToInt32(textbox_saveTimer.Text); 

//serial configuration 

config.Data.serial.portName = comboBoxComPort.Text; 

VScode 7-12 Excerpt of saving settings 

 

 

7.5.1.5 Testing and error handling 

The DisplayConfigData is just a visual representation of the ConfigData class, and should be 

tested to work in the same way. There is however several conversions that should be tested 

and the testing will be done in the same manner. First the old configuration file is deleted, 

then the DisplayConfigData form is run and new sensor information is added. This can be 

seen in Figure 7-3. 

 

 

Figure 7-3 Saving configuration 

 

 

Which results in the following config.xml file seen in XMLscript 2.  
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<?xml version="1.0"?> 

<Config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

  <Sensors> 

    <Sensor> 

      <Macaddr>0FFF</Macaddr> 

      <IO>00</IO> 

      <Type>PT1000</Type> 

      <Location>Living Room</Location> 

      <Measureand>Temperature</Measureand> 

      <Range>-50-100</Range> 

      <Uncertanty>0.02%</Uncertanty> 

      <BatteryDate>12/02-2013</BatteryDate> 

      <MISC>This is a test</MISC> 

    </Sensor> 

  </Sensors> 

  <timer> 

    <SaveTimer>1000</SaveTimer> 

  </timer> 

  <serial> 

    <portName>COM5</portName> 

    <baud>38400</baud> 

    <parity>None</parity> 

    <handshake>None</handshake> 

    <databits>8</databits> 

    <stopbits>One</stopbits> 

    <rtsenable>false</rtsenable> 

  </serial> 

</Config> 

XMLscript 2 new set information 

 

This means that starting the program with an empty configuration file is working properly and 

the configuration parameters are saved correctly. In addition several other tests were 

performed with missing data and or changed data. These tests resulted in some extra security 

being added to the use case: 

The combo box settings of the serial configuration are set as read only so the user only has the 

ability to select between the values available from the system namespaces.  

The sample time text box should be set to only give the user the availability of entering 

integers between 1000 and 100000. The minimum length was set to be sure that the save file 

timer was not set at a 0ms interval making the program stall. The maximum length is just set 

to one hour in order to prevent data loss. In order to only allow integers the following code 

was added to a new keypressed , as seen in the VScode 7-1. 
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if (char.IsNumber(e.KeyChar) != true) e.Handled = true; 

VScode 7-13 Only allow numbers 

 

The maximum length was set as 7 digits10 in the form design text box parameters; the 

minimum length is checked by the textbox.length property when saving. When it comes to the 

sensor information there is only one restriction. The length of the IO address should be 2 

digits since the IO ports of the ZigBee devices are noted using two digits [15]. 

 
 

7.5.1.6 The DisplaySerialdata Code 

The display serial data form has three main methods, and two timer ticks. The methods 

created are the DisplaySerialDataGetConfiguration responsible for retrieving the 

configuration from the xml file, the DisplaySerialDataLogStart method responsible for 

starting the logging to file, and the DisplaySerialDataLogStop  responsible for stopping the 

logging to file. The two timer ticks are the serialport timer responsible for reading the current 

bits available on the serial port, and the save file timer which is responsible for sending the 

data to the parser, displaying and saving the information. 

 

DisplaySerialDataGetConfiguration method 
This method should be run when the start log button is pressed, getting the current 
configuration from the user. If there are errors in the configuration the saving is stopped. An 
excerpt of the method can be seen in VScode 7-14 
 

SerialPort.PortName = config.Data.serial.portName; 

                    SerialPort.BaudRate = config.Data.serial.baud; 

                    SerialPort.DataBits = config.Data.serial.databits; 

                    SerialPort.Parity = config.Data.serial.parity; 

                    SerialPort.StopBits = config.Data.serial.stopbits; 

                    SerialPort.Handshake = config.Data.serial.handshake; 

                    SerialPort.RtsEnable = config.Data.serial.rtsenable; 

 

                    SaveFileTimer.Interval = config.Data.timer.SaveTimer; 

VScode 7-14 excerpt of Display serial data get configuration method. 

 
The DisplaySerialDataLogStart method 
This method should be run when the start logging button is pressed to prompt the user for a 
filename and location to save the log file. If the user does not select a file the start logging 
should be aborted, this is done by using the save file dialog ant the returned DialogResult.OK 
parameter. The configuration button is disabled during logging and the save log button is 
changed to a stop log button.  An excerpt of the method can be seen in VScode 7-15 

                                                 

 
10 9999999ms = 2.8hours 
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  if (saveFileDialogParsedData.ShowDialog() == System.Windows.Forms.DialogResult.OK) 

            { 

                ParsedDataFilename = saveFileDialogParsedData.FileName; 

                SerialTimer.Start(); 

                SaveFileTimer.Start(); 

                ButtonStartLog.Text = "Stop Log"; 

                ButtonDisplayConfiguration.Enabled = false; 

                ButtonStartLog.Image = Resources.gateway_cross; 

            } 

VScode 7-15 of display serial data log start method 

 
DisplaySerialDataLogStop 
The display serial data log stop method is created to give the user the ability to stop saving 
and set new configuration parameters without exiting the program. The method closes the 
serial port and stops the timers. An excerpt of the method can be seen in VScode 7-16 
 

MessageBox.Show("Data logging data stopped"); 

                    ButtonStartLog.Text = "Start Logging"; 

                    ButtonStartLog.Image = Resources.gateway_down; 

                    firstTime = true; 

 

                    SerialPort.Close(); 

                    SerialTimer.Stop(); 

                    SaveFileTimer.Stop(); 

                     

                    ButtonDisplayConfiguration.Enabled = true;         

VScode 7-16 Excerpt of the stop log method 

 
 
In addition to this methods the code contained in the timer ticks contains the main 
functionality of this use case.  The Serial timer use the above mentioned serialport. 
ReadExisting method and the return is passed to a text box containing the raw data. The save 
file timer make use of the LOG use case, and the raw text data.  

7.5.1.7 The LOG Code 

The splitmessage algorithm 

This algorithm is stable and should always return a complete message. The algorithm is 

reading to the end of the message by using the IndexOF method that returns the index of the 

selected character, >. Next the algorithm checks if the index of the start message is 0. If so the 

algorithm knows that a complete message is found. The Substring method reads the data 

between the start and end indexes and add it to a messages array. Then this part of the original 

message is removed, thus setting up the algorithm for splitting up the next message. If an end 

message sign is found but no start message sign, the message up to the end sign is just 

removed since this would indicate an incomplete message. This can be seen in VScode 7-17 

while ((endpos = message.IndexOf('>')) != -1) 

                    { 

                        if (message.IndexOf('<') == 0) 

                        { 

                           //check for message length 

                           value = message.Substring(1, endpos - 1); 

                           Array.Resize(ref messages, messages.Length + 1); 
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                           messages[messages.Length - 1] = value; 

                        } 

                        message = message.Substring(endpos + 1); 

                    } 

                } 

VScode 7-17 Splitting up the string message 

 

The LogParse method 

The log parse method takes the message array returned from the split algorithm and use the 

foreach loop counting through all the sensors in the configuration. The address length to the 

current sensor being checked is used to get the address of the sensor. Another foreach loop 

runs through all the messages in the array returned from the message splitter checking if the 

sensor address and the senor IO are found in the message array. If found the value is added to 

the logline with a semicolon as a separator. Several messages from the same sensor will as 

mentioned just be overwritten by the newest value, and the date and time is added to each new 

line. The NaN value is set to any sensors in the configuration that does not have any 

messages. An excerpt of the LogParse method can be seen in VScode 7-18 

 

logline = DateTime.Now.ToString() + ";"; 

    foreach (Sensor sensor in sensors) 

     { 

       value = "NaN"; 

       addresslength = sensor.Macaddr.Length; 

       foreach (string msg in message) 

        { 

          mac = msg.Substring(0, addresslength); 

          IO = msg.Substring(addresslength, 2);                            

           if (mac == sensor.Macaddr && IO == sensor.IO) 

           { 

             value = msg.Substring(addresslength + 2); 

           } 

         } logline += value + ";";                    }                    

VScode 7-18 Parsing the data 

 

The logsave method 

The log save method is a straitgh forward file saving methos using the stremwriter function. 

An excerpt can be seen in VScode 7-19 

using (System.IO.StreamWriter file = new System.IO.StreamWriter(@FileName, true)) 

                { 

                    file.WriteLine(data); 

                } 

VScode 7-19 Saving the data 

 



 124 

7.5.1.8 Log Results 

The next step is to test the entire code with the new use case. The new added code was tested 

by sending several known raw data messages, and studying the results. A typical message can 

be as follows 

<0AAA00805><0CCC00706><0BBB00804> 

Config date sets sensor 1 as 0AAA 00, sensor 2 as 0BBB 00, and sensor 3 as 0CCC 00 

The raw data sent resulted in the following line added to the log file, correctly parsed 

09.02.2013 22:32:21;805;804;706; 

7.5.1.9 LOG testing and error handling 

The split message algorithm 

The split message algorithm was tested with empty data , faulty data, no start sign and no end 

sign and everything was working as it should, returning only valid messages. One problem 

was found when the message was not anything, null, a null reference exception was thrown. 

This was taken care of by adding a try and catch statements around the parser, saving any 

eventual errors to a error log file with the time, date, type and location of the error. The 

message should however be set to an empty string in the main program at start up to avoid  

 

The logparse method 

When testing the logparse method an exception was thrown if error if the IO is not set in the 

code. This should be tested for in the configuration save and the following code is added to 

the Save Configuraiton method seen in VScode 7-20. 

for (int j = 0; j < ConfigurationSensorTable.RowCount - 1; j++) 

    { 

      if ((string)ConfigurationSensorTable[2, j].Value == null) 

      { 

          IOmissing = true; 

      } 

    } 

VScode 7-20 Added code to save configuration method  

Setting a Boolean to true if there is not set a IO value and adding a if IOmissing true then 

break to the save configuration switch case. 

 

During the testing of this method no errors occurred, but the StreamWriter method used has 

several exceptions including that if the filename is used by another program at saving time. In 

accordance with that the gateway should never stall a try and catch statement was also set 

around this method.  
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7.5.1.10 Space required for log file saving 

The gateway will be running 24/7 so it is a good necessary to see what HD space is needed 

for saving the log files over several years. This calculation will be done with a large system in 

order to use the worst case scenario. There will be 50 sensors logging every minute for one 

year. Using the standard text file one character is the same as one byte, 8bit. Each sensor will 

have the maximum of 5 characters in parsed data mode. 4 will be the largest data value from 

the ADC, and one ; is used to separate the messages. In addition there is used 21characters for 

the date and time each minute message.  

 

50푠푒푛푠표푟푠 ∗ 5푏푦푡푒푠 + 21푏푦푡푒 = 271푏푦푡푒푠 푝푟 푚푖푛푢푡푒 (7-3) 

271푏푦푡푒푠

푚푖푛푢푡푒
∗ 60푚푖푛푢푡푒푠 ∗ 24ℎ표푢푟푠 ∗ 365푑푎푦푠 = 1.4퐺퐵푝푟 푦푒푎푟 

(7-4) 

 

1.4GB means that a typical 140GB HD will last for about 10 years using the worst case 

scenario. This means that disk space should not be an issue; a larger problem would be 

handling the 140GB text file and care should be used to split up the log data for instance each 

year, or when the ZigBee devices has a battery change. For this reason the code was changed 

in order to set the current year as part of the file name, such that one file will only contain the 

data for one specific year. 
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7.5.2 Predictor methods and algorithms 

7.5.2.1 Coding the configuration 

The configuration code is based on the XML code from the gateway and the same principles 
are applied to the data grid view table as in section [7.5.1.1] and [2.3.3]. The code is for this 
reason not commented more on. 

 

7.5.2.2 Testing and error handling 

The text boxes are only allowed to have one decimal sign and numbered keys in the input; 

this is done by restricting the key down event to these parameters. Since there is many text 

boxes there is also important to get the information of the current text box in focus. This can 

be seen in VScode 7-21. 

if (!char.IsControl(e.KeyChar) && !char.IsDigit(e.KeyChar) && e.KeyChar != ',') 

                e.Handled = true; 

 

            //get the current name of the text box in focus 

            TextBox txb = (TextBox)sender; 

             

            // only allow one decimal point 

            if (e.KeyChar == ',' && txb.Text.IndexOf(',') > -1) 

                e.Handled = true; 

        } 

VScode 7-21 controlling the text input 

One important note to this excerpt is that it is set to the Norwegian standard signs for comma 

and will need to be changed in order to function with other separating signs. 

In addition all save parameters are made using a try and catch clause saving any error to a log 

file in the same principles as [7.5.1.3]. For more information on the code see APPENDIX. 

7.5.2.3 Coding the get sensor values 

There are two main functions in the Read sensor values use case the Filter.Cs and the 

SensorVal.Cs, The SensorVal.Cs class works by reading the saved sensor information from 

the gateway from the last read line as specified. This class also converts the ADC sensor 

values from the gateway to temperature. The sensor values are returned as a List of doubles, 

and the time stamps are returned as a date time object. This can be seen in the Excerpt in 

VScode 7-22. 

while ((data = sr.ReadLine()) != null) 

                    { 

                        if (i > LastLine) 

                        { 

                            LastLine = i; 

                            StringArray = data.Split(';'); 

 

//time is returned as out in order to have the correct time stamps 

 

                            time = Convert.ToDateTime(StringArray[0]); 
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//Convert the Values to Temperature values, -1 to remove date time stamp, and add 

to list 

                            for (int l = 1; l < StringArray.Length-1; l++) 

                            { 

                                ConvData = 

Math.Round(((Convert.ToDouble(StringArray[l]) * 3 / 2048) - 0.5) * 100,2); 

                                //filter the data through a low pass filter 

                                ConvFiltData = filter.LowPassFilter(ConvData, l-1); 

                                listSensVal.Add(ConvFiltData); 

                            } 

                            break; 

                        } 

                       i++; 

                    } 

VScode 7-22 Reading only the last line. 

 

The low pass filter filtering the values can be seen in excerpt in  

public double LowPassFilter(double SensorVal, int SensorNr) 
{ 
            a = Ts / (Ts + Tf); 
            yFiltered = (1 - a) * yk[SensorNr] + a * SensorVal; 
                         
            yk[SensorNr] = yFiltered; 
            return yFiltered;  
} 

VScode 7-23 Low pass filter excerpt 

 

7.5.2.4 Coding the predictor use case 

The predictor use case is made up of three main methods, creating and discretizing the State 

Space Matrices (SSM), estimating the disturbance state using the Kalman filter algorithm and 

the least squares algorithm. The state space matrices are made directly from the derivation of 

the model in [3.2.3], and the discretization of this model there is used a Zero Order Hold 

method. The function for discretizing the matrices based on the sample time from h, given 

from the gateway configuration file can be seen in VScode 7-24. 

//Create the S matrix for discretization  
Matrix S = (IA * h + (A * h * h) / (1 * 2) + (A * A * h * h * h) / (1 * 2 * 3) + (A * A * A 
* h * h * h * h) / (1 * 2 * 3 * 4) + (A * A * A * A * h * h * h * h * h) / (1 * 2 * 3 * 4 * 
5) + (A * A * A * A * A * h * h * h * h * h * h) / (1 * 2 * 3 * 4 * 5 * 6)); 
 
            // Calculate the discrete time matrices based on zero order hold 
            Ad = IA + A * S; 
            Bd = S * B; 

VScode 7-24 discretizing the state space model 

 

The Kalman filter algorithm is made using the Matrix class and the Kalman filter follows the 

algorithm defined in [3.2.3.1], the Kalman filter algorithm is seen in VScode 7-25. 
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            Matrix xhat = Ad * x + Bd * u; 

            Matrix I = Matrix.IdentityMatrix(Ad.rows, Ad.cols); 

            phat = Ad * phat * Matrix.Transpose(Ad) + Qv; 

            K = phat * Matrix.Transpose(D) / (D * phat * Matrix.Transpose(D) + Rw); 

            xbar = xhat + K * (Y - (D * xhat)[0, 0]); 

            yhat = (D * xbar)[0, 0]; 

            phat = (I - K * D) * phat; 

 

        } 

VScode 7-25 The Kalman Filter algorithm 

 

The least squares regression matrixes are calculated using the matrix functions and the known 

solution to the OLS matrix equation [24]. 

The least squares regression algorithm 

for (int i = 1; i < dataPoints.Count; i++) 

            { 

                ti = ti + i; 

                ti2 = ti2 + i * i; 

                yi = yi + dataPoints[i]; 

                yiti = yiti + dataPoints[i] * i; 

            } 

             

            //Setup the regression Matrices 

            Alpha[0, 0] = dataPoints.Count; 

            Alpha[0, 1] = ti; 

            Alpha[1, 0] = ti; 

            Alpha[1, 1] = ti2; 

            Beta[0, 0] = yi; 

            Beta[0, 1] = yiti; 

            Alpha = Alpha.Invert(); 

            Regression = Alpha*Matrix.Transpose(Beta); 

 
System Learn function 

The system learn function is based on applying the maximal power output to the heaters and 

log the data in the predictor until it reaches the set comfort temperature. After the system has 

been learned the predictor saves the regression models to the config.XML file and the 

controller takes over using the prediction times and the set comfort interval reference to keep 

the temperature at comfort level at the correct times. The system learn function can be seen in 

VScode 7-26. 

public bool PredictorLearn(double Y, int counter) 

        { 

            int test = counter; 

            if (counter ==1) 

            { 

                //Only calculate the discrete state space matrixes the first 

time 

                CalcualteSSM(273, 293); 

                CalculateDiscreteSSM(); 

 

            } 

            //run the Kalman filter 
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            KalmanFilter(Y, out yhat, out xbar); 

 

             

            double setpoint = 

ControlSystem.config.Data.Monday.ReferenceTemperature; 

 

            if (Y < setpoint && counter>10) //allow some time for system to 

stabilize 

            { 

                //Store the data in a matrix until the comfort temperature is 

reached 

                Dsaved.Add(xbar[1, 0]); // the disturbance vector 

                Ysaved.Add(Y); // the Temperature data 

                learn = true; 

             

            } 

                         

            //Calculate the Disturbance vector using The least squares method  

            if (Y >= setpoint) //need to set the comfort temperature as 

reference 

            { 

                //Read all the current configuration in order to not overwrite 

everything with blanks 

                ControlSystem.config.ConfigReadData("config.xml"); 

 

 

                Matrix DisturbanceRegression = Matrix.ZeroMatrix(1, 2); 

                Matrix yRegression = Matrix.ZeroMatrix(1, 2); 

                 

                DisturbanceRegression = LeastSquares(2, Dsaved);    //The 

disturbance regression function  

                yRegression = LeastSquares(2, Ysaved);              //The 

Temperature regression function 

 

                //Store the learned regression line in the XML file as learned 

parameter under predictor 

                ControlSystem.config.Data.controller.DpredictorAlpha = 

DisturbanceRegression[0, 0]; 

                ControlSystem.config.Data.controller.DpredictorBeta = 

DisturbanceRegression[1, 0]; 

                ControlSystem.config.Data.controller.YpredictorAlpha = 

yRegression[0, 0]; 

                ControlSystem.config.Data.controller.YpredictorBeta = 

yRegression[1, 0]; 

 

                ControlSystem.config.Data.controller.A11 = Ad[0, 0]; 

                ControlSystem.config.Data.controller.A12 = Ad[0, 1]; 

                ControlSystem.config.Data.controller.A21 = Ad[1, 0]; 

                ControlSystem.config.Data.controller.A22 = Ad[1, 1]; 

 

                ControlSystem.config.Data.controller.B11 = Bd[0, 0]; 

                ControlSystem.config.Data.controller.B21 = Bd[1, 0]; 

 

                //Write the new learned data 

                ControlSystem.config.ConfigWriteData("config.xml"); 

                //Return false = Learning finished 

        learn = false; 

            } 

VScode 7-26 The Learn function 

 

 

 



 130 

7.5.2.5 Additions to the Matrix library 

In order to facilitate the Kalman filter calculations some additions were needed in the Matrix 

class, these additions are seen in VScode 7-27 through VScode 7-29 

 

  private static Matrix Add(Matrix m1, double d) 
        { 
            Matrix r = new Matrix(m1.rows, m1.cols); 
            for (int i = 0; i < r.rows; i++) 
                for (int j = 0; j < r.cols; j++) 
                    r[i, j] = m1[i, j] + d; 
            return r; 
        } 

VScode 7-27 Adding double to a matrix 

 

  private static Matrix Multiply(Matrix m, double n)                          // 
Multiplication by constant n 
        { 
            Matrix r = new Matrix(m.rows, m.cols); 
            for (int i = 0; i < m.rows; i++) 
                for (int j = 0; j < m.cols; j++) 
                    r[i, j] = m[i, j] * n; 
            return r; 
        } 

VScode 7-28 Multiplying double to Matrix 

 

private static Matrix Multiply(double n, Matrix m)                          // 
Multiplication by constant n 
        { 
            Matrix r = new Matrix(m.rows, m.cols); 
            for (int i = 0; i < m.rows; i++) 
                for (int j = 0; j < m.cols; j++) 
                    r[i, j] = m[i, j] * n; 
            return r; 
        } 

VScode 7-29 Multiplying Matrix to double 

 

7.5.2.6 Testing and error handling 

The read sensor values are then tested with the gathered experiment data, the sensor values 

are plotted to a Chart using the sensor values names in the configuration of the gateway as the 

different time series. In fig the inside temperatures time series are seen Figure 7-4. 
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Figure 7-4 Testing the read sensor values use case 

All methods that might crash have been set with a try and catch clause in the same manner as 

in the previous sections [2.3.5.3].   
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7.5.3 Controller methods and algorithms 

7.5.3.1  The main configuration and tab controls 

The Tab control is made by using inheritance. All other configuration forms are inherits the 

ConfigMainForm in the class setup. This can be seen for the house configuraiton in  VScode 

7-30 

public partial class ConfigHouse : MainFormPage 

VScode 7-30 Code excerpt of inheriting the main form 

 

A panel is made to contain each of the configuration forms as seen in the house configuration 

example in VScode 7-31 

this.pnl = panelConfigHouse; 

VScode 7-31 Code for setting the panel of the House configuration form. 

 

A tab control is then created in the main configuration form GUI where the different 

configuration pages are added as seen in VScode 7-32 

tabControlConfiguration.TabPages.Add(new TabClass(new ConfigTemperatures())); 
       tabControlConfiguration.TabPages.Add(new TabClass(new ConfigSensors())); 
       tabControlConfiguration.TabPages.Add(new TabClass(new ConfigModel())); 
       tabControlConfiguration.TabPages.Add(new TabClass(new ConfigHouse())); 
       tabControlConfiguration.TabPages.Add(new TabClass(new ConfigControl())) 

VScode 7-32 Adding all the configuration settings to the tab control in the main config form 

 

The TabClass created to add the selected forms panel content can be seen in VScode 7-33 

private Form frm; 
        public TabClass(MainFormPage frm_content) 
        { 
            this.frm = frm_content; 
            this.Controls.Add(frm_content.pnl); 
            this.Text = frm_content.Text; 
        } 

VScode 7-33 Tab class excerpt 
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7.5.3.2 Configuration help examples 

 

 

Figure 7-5 Configuration information example 

 

7.5.3.2.1 Configuration testing and error handling 

The main parts of the configuration is the Config.XML file which has already been 

thoroughly tested. The error handling is done in the same manner as saving the date time and 

place of the error to a log file. 

 

7.5.3.3 Controller use case 

The controller use case consist of a class for each of the controllers with functions for setting 

up the controllers in the LQR and MPC cases, and functions for calculating the control output 

in all cases. 

In order to calculate the predicted references there was added a function to the Config.XML 

class this functions returns a reference vector based on the current date and time using the 

comfort intervals configuration and a switch case statement this is seen in VScode 7-34. 

public Matrix GetComfortTemperature(DateTime starttime,int l) 
        { 
            Matrix temp = Matrix.ZeroMatrix(l, 1); 
            DateTime time; 
            int hour; 
            for (int i = 0; i < l; i++) 
            { 
                time = starttime + TimeSpan.FromHours(i); 
                 hour = time.Hour;  
                 
                switch (time.DayOfWeek) 
                { 
                    case DayOfWeek.Monday: 
                        temp[i, 0] = 
Convert.ToDouble(Data.Monday.ComfortIntervals[hour]); 
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                        break; 
                     
   . . . . 
            return temp;         

VScode 7-34 Create reference vector 

 

  

7.5.3.3.1 PID class 

The D term in the PID controller only contributed noise to the system for this reason only a PI 

controller has been implemented. 

The function for calcualting the PI controllers output can be seen in  

public double PiController(double y, double r)  
        { 
            double e; // Error between Reference and Measurement 
            double u; // Controller Output 
            //PID Algoritm 
            e = r - y; 
            u = Kp * e + (Kp / Ti) * z; 
            z = z + Ts * e; 

VScode 7-35 Calculate PI controller output 

 

 

7.5.3.3.2 LQR class 

The LQR class is divided into two main functions the controllers setup and calculation of the 

steady state gains, i.e. solving the Riccati equation and calculating the controllers output 

Controller setup 

In order to give the controller integral action the eSSM models are needed calculated in a 

function called calculateESSM in the controller class and this can be seen in code excerpt 

VScode 7-36 

//Get the sizes of the matrices for MIMO systems 
            int nx = Ad.rows; 
            int nu = Bd.cols; 
            int ny = D.rows; 
 
 
//Create the eSSM models 
            At = Ad.AddRight(Matrix.ZeroMatrix(nx, 
ny)).AddBelow(D.AddRight(Matrix.IdentityMatrix(ny, ny))); 
            Bt = Bd.AddBelow(Matrix.ZeroMatrix(ny, nu)); 
            Dt = D.AddRight(Matrix.IdentityMatrix(ny, ny)); 
            Qt = Matrix.Transpose(Dt) * q * Dt; 

VScode 7-36Calculate the eSSM models 
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The Riccati equation solver loop is run until the error between the new and the previous value 

is below 0.00000000001 the loop can be seen in VScode 7-37. 

while (error > 1e-10 && iterations <= 10000) 
            { 
                f0 = (B_ * p0 * At) / (r + B_ * p0 * Bt); 
 
                p1 = A_ * p0 * At + Qt - (A_ * p0 * Bt) * f0; 
 
                f1 = (B_ * p1 * At) / (r + B_ * p1 * Bt); 
 
                error = Matrix.MaxAbs(f1 - f0); 
 
                p0 = p1; 
                iterations++; 
            } 

VScode 7-37 Solving the Riccati equation and calculating the SS gain. 

 

The controller gains are set for the scalar system as seen in VScode 7-38 

ControlSystem.config.Data.controller.G1 = -f1[0, 0]; 
ControlSystem.config.Data.controller.G2 = -f1[0, 1]; 

VScode 7-38 Saving the scalar SS LQR gain 

 

 

 

Calculate control output 

The LQR control output for the scalar system is then simply calculated as seen in VScode 

7-39. 

dx = x - x_old; 
u = (u_old + G1 * dx + G2 * (x_old - r)); 

VScode 7-39 Calculating the control output 

 

7.5.3.3.3 MPC class 

Since the MPC controller setup is complex the entire function is included with commentary, 

this is seen in VScode 7-40 

Controller setup 

        public void InitializeMPCControl(int L, double q, double r) 
        { 
          
 //Calculate the Extended State Space Matrixes 
            essm.CalculateESSM(q_lqr, out At, out Bt, out Dt, out Qlqr); 
             
            //Get the sizes of the eSSM matrices 
            int nx = At.rows; 



 136 

            int nu = Bt.cols; 
            int ny = Dt.rows; 
            int n = Dt.cols; 
 
             
            // Calculate observability matrix 
            O = Matrix.Parse(Dt.ToString()); 
            Matrix w = Matrix.Parse(Dt.ToString()); 
             
            for (int i = 2; i <= L; i++) 
            { 
                w *= At; 
                O = O.AddBelow(w); 
            } 
             
            // Calculate extended observability matrix 
            Matrix OB = O * Bt; 
 
            // Calculate the lower block triangular Toeplitz matrix 
            Matrix Ht = Matrix.ZeroMatrix(OB.rows,1); 
             
            for (int i = 1; i < Ht.rows; i++) 
            { 
                Ht[i, 0] = OB[i-1,0]; 
            } 
            Matrix HdL = Matrix.Parse(Ht.ToString()); 
            for (int i = 1; i < (L - 1); i++) 
            { 
                Matrix temp = Matrix.ZeroMatrix(Ht.rows, Ht.cols); 
                for (int rows = i; rows < L; rows++) 
                    for (int cols = 0; cols < Ht.cols; cols++) 
                    { 
                        temp[rows, cols] = Ht[rows - i, cols]; 
                    } 
                HdL = HdL.AddRight(temp); 
                
            } 
             
            //Calculat the prediction model parameters 
            F_L = Matrix.Parse(OB.ToString()); 
            F_L =F_L.AddRight(HdL); 
             
            //Create the weighting matrixes as identity matrices 
            Qt = Matrix.IdentityMatrix(L, L); 
            Rt = Matrix.IdentityMatrix(L, L); 
 
            //Multipling by weighting factors to create the weighting matrices 
            Qt = Qt * q; 
            Rt = Rt * r;  
 
            //Create the Hessian Matrix 
            H = Matrix.Transpose(F_L) * Qt * F_L+Rt; 

VScode 7-40 Set up MPC controller matrices 

 

The hessian matrix and the set up eSSM matrices is used as public values within the MPC 

class to avoid many out parameters in the methods. 

 

 

Calculate control output 
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The MPC control output is calculated using the reference from the get air heater reference 

function contained in the Config.XML. Excerpts of the control output function is seen in 

VScode 7-41. 

        //Create the state deviation parameter 
        xt = Matrix.ZeroMatrix(2,1); 
        xt[0, 0] = x - x_old; 
        xt[1, 0] = x_old; 
             
             
        //Create the future reference vectors 
        Matrix pl = O * At * xt; 
         
        //Get reference from config using the correct prediction horizon 
        Matrix r1l = ControlSystem.config.GetAirHeaterReference(startReference, L); 
     
        //Calculate future outputs 
        Matrix f = Matrix.Transpose(F_L) * Qt * (pl - r1l); 
        duf = -H.Invert()*f; 
        //Only use 1.st output as control output 
        u = u_old + duf[0, 0]; 
 
 

VScode 7-41 Calculate the MPC controller output 

 

7.5.3.3.4 PID class 

The PID controller needs no setup and is simply calculated as seen in 

public double PiController(double y, double r)  
        { 
            double e; // Error between Reference and Measurement 
            double u; // Controller Output 
            //PID Algoritm 
            e = r - y; 
            u = Kp * e + (Kp / Ti) * z; 
            z = z + Ts * e; 

VScode 7-42 Calculate PID controller output 

 

7.5.3.4  Control system GUI 

The control system GUI is mainly graphical user interface and not much is needed discussed 

or explained on the code. The two functions creating the plots and time series is however 

worth a mention. The plot creation function can be seen in code excerpt in VScode 7-43 

            foreach (Sensor sensor in config.Data.Sensors) 
            { 
                //Set up the two main graph series 
                var seriesOutside = new Series(); 
                var seriesInside = new Series(); 
 
                //Add outside sensors to outside plot 
                if (sensor.Location.Contains("Outside")) 
                { 
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                    seriesOutside.Name = sensor.Location; 
                    seriesOutside.ChartType = SeriesChartType.FastLine; 
                    seriesOutside.XValueType = ChartValueType.Time; 
                    chartOutsideTemperature.Series.Add(seriesOutside); 
                     
                } 
                else 
                //Add inside sensors to inside plot 
                    if (!sensor.Location.Contains("Outside")) 
                    { 
                        seriesInside.Name = sensor.Location; 
                        seriesInside.ChartType = SeriesChartType.FastLine; 
                        seriesInside.XValueType = ChartValueType.Time; 
                        chartInsideTemperature.Series.Add(seriesInside); 
                    } 
    //Set up axis 
    chartOutsideTemperature.ChartAreas[0].AxisX.Title = "Time"; 
            chartInsideTemperature.ChartAreas[0].AxisY.Title = "Temperature"; 
            chartInsideTemperature.ChartAreas[0].AxisX.Title = "Time"; 
            chartInsideTemperature.ChartAreas[0].AxisY.Title = "Temperature"; 

VScode 7-43 Setting up graphs with correct sensory information 

 

The plots were createt to display one day at a time, this is seen in VScode 7-44 

////Kepp X axis displaying last 24 hours 
            this.chartInsideTemperature.ChartAreas[0].AxisX.Minimum = (sensorTime - 
TimeSpan.FromHours(24)).ToOADate(); 
            this.chartInsideTemperature.ChartAreas[0].AxisX.Maximum = 
sensorTime.ToOADate();             

VScode 7-44 Creating moving plots 

 

7.5.3.4.1 Additions to the MATRIX class 

The four additions needed in the matrix class is seen in functions from VScode 7-45 through 

VScode 7-48 

public Matrix AddRight(Matrix m2) 
        { 
            if (rows != m2.rows) 
            { 
                throw new MException("Different rows!"); 
            } 
            Matrix r = new Matrix(rows, cols + m2.cols); 
            for (int i = 0; i < rows; i++) 
                for (int j = 0; j < cols; j++) 
                    r[i, j] = mat[i, j]; 
            for (int i = 0; i < m2.rows; i++) 
                for (int j = 0; j < m2.cols; j++) 
                    r[i, j + cols] = m2[i, j]; 
            return r; 

VScode 7-45 Add one matrix to the right of another matrix 

 

        public Matrix AddBelow(Matrix m2) 
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        { 
            if (cols != m2.cols) 
            { 
                throw new MException("Different cols!"); 
            } 
            Matrix r = new Matrix(rows+m2.rows, cols); 
            for (int i = 0; i < rows; i++) 
                for (int j = 0; j < cols; j++) 
                    r[i, j] = mat[i, j]; 
            for (int i = 0; i < m2.rows; i++) 
                for (int j = 0; j < m2.cols; j++) 
                    r[i + rows, j] = m2[i, j]; 
            return r; 
        } 

VScode 7-46 Add one matrix below another matrix  

 

        public Matrix SubMatrix(int rowfrom, int rows, int colfrom, int cols) 

        { 

            Matrix m = new Matrix(rows,cols); 

            for (int i = 0; i < rows; i++) 

                for (int j = 0; j < cols; j++) 

                    m[i, j] = mat[rowfrom + i, colfrom + j]; 

            return m; 

        } 

VScode 7-47 Create a sub matrix from a matrix 

 

public static double MaxAbs(Matrix m1) 
        { 
            double max = 0; 
            for (int i = 0; i < m1.rows; i++) 
                for (int j = 0; j < m1.cols; j++) 
                { 
                    if (Math.Abs(m1[i,j]) > max) 
                        max = Math.Abs(m1[i,j]); 
                } 
            return max; 
        } 

VScode 7-48 Calculating the Absolute difference between two matrices 

 

7.5.3.5  Testing and error handling 

Testing the complete system is done in the Experiments part in paragraph [4.7]. Error 

handling is done in the same manner as in the gateway system paragraph [2.3.5.3] 
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7.6 Appendix 6: MATLAB scripts 

7.6.1 The data processing script 

clear all; 
close all; 
%-----------------SETTINGS------------------------------------------------- 
%-------------------Set which data to plot 
DorawPlot=true;         %true will plott the raw data 
DoavgPlot=true;         %true will plot the average data 
%DoavgPlot=false; 
DoOutlierPlot=true;     %true will plot the outlier data 
%DoOutlierPlot=false; 
%-------------------Set interval for date time stamps on X axis 
Xstamps=15; 
%-------------------Set the Approved Standard deviation for outliers 
StdFactor=2.0; 
  
%----------import the data------------------------------------------------- 
A = importdata('C:\Users\Stian skole\Desktop\Master Thesis v0904\Experiments\LOG 
files\oneday.log') 
%A = importdata('C:\Users\Stian skole\Desktop\Master Thesis v0904\Experiments\LOG 
files\ParsedData2803-1826-all-power-off.log') 
%A = importdata('C:\Users\Stian skole\Desktop\Master Thesis v0904\Experiments\LOG 
files\ParsedData2903-1944-ss-ventsclosed.log') 
data=A.data; 
rowheaders=A.rowheaders; 
interval=length(data)/Xstamps; 
  
%------Create Titles and Axis values based on the rowheader--------------- 
%convert date time string into num vectors 
[year,month,day,hour,minute,~] = datevec(rowheaders, 'dd.mm.yyyy HH:MM:SS') 
Y=year(1); 
m=month(1); 
%get Month name from month name function 
M=Monthname(m); 
D=day(1); 
%create the title based on the row headers data 
TitleString = sprintf('Temperature readings started at %d %s %d',D,M,Y); 
%remove year and seconds for beter plotting 
Time=(datestr(rowheaders,'HH:MM')) 
%if there is much data the month i also plotted on the X axis 
if length(rowheaders)>470 
    for k=1:length(rowheaders)   
        D=day(k) 
        H=hour(k) 
        C=sprintf('D %d H %d',D,H) 
        Time(k,1:length(C))=C;  
        interval=10; 
    end 
end 
%------create the x axis values based on the Time data--------------------- 
XaxisValues=Time(1:interval:length(Time),:); 
count=length(XaxisValues) 
XtickValues=1:length(data)/count:length(data); 
%------------Convert ADC data to temperature data-------------------------- 
VoltData=(data*(3/2048)); 
TempData=((VoltData-0.5)*100); 
%----------Remove the Outliers--------------------------------------------- 
dataRemovedOutliers=OutlierRemover(TempData,StdFactor,DoOutlierPlot, XaxisValues,XtickValues, 
TitleString); 
%------------Run the NaNremoval function.---------------------------------- 
[RemovedRows,NaNs,dataRemovedNaNs]=NaNremove(dataRemovedOutliers); 
  
%----Smooth the data thorugh a low pass filter----------------------------- 
dataFiltered = LPfilt(dataRemovedNaNs); 
  
%----Split up TempData in inside and outside temperatures------------------ 
TempData=dataFiltered; 
insideTemperatures=[TempData(:,1),TempData(:,2),TempData(:,3),TempData(:,5),TempData(:,6),Temp
Data(:,8),TempData(:,9)]; 
outsideTemperatures=[TempData(:,4),TempData(:,7)]; 
  
%------------Plot the New TempData----------------------------------------- 
figure('units','normalized','position',[.1 .1 .4 .4]) 
TitleProcessedPlot = sprintf('Processed data - %s',TitleString); 
subplot(2,1,1) 
plot(insideTemperatures) 
%set date time on X axis  
xmin=0; 
xmax=length(data) 
xlim([xmin xmax]) 
set(gca,'XTick',XtickValues) 
set(gca,'XTickLabel',XaxisValues) 
set(gcf,'color','w') 
%set(gcf, 'Position', [100 100 150 150]) 
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title(TitleProcessedPlot) 
legend('Bedroom','Diningroom','Bathroom','Guestroom','Livingroom','Kitchen','Hallway','EastOut
side','Location','EastOutside') 
ylabel('Temperature [^oC]') 
xlabel('Time'); 
subplot(2,1,2) 
plot(outsideTemperatures) 
set(gca,'XTick',XtickValues) 
set(gca,'XTickLabel',XaxisValues) 
%set(gcf, 'Position', [100 100 150 150]) 
xlim([xmin xmax]) 
legend('Outside N', 'Outside S','Location','EastOutside') 
ylabel('Temperature [^oC]') 
xlabel('Time'); 
  
%-----plot Raw data-------------------------------------------------------- 
if DorawPlot 
insideRawData=[data(:,1),data(:,2),data(:,3),data(:,5),data(:,6),data(:,8),data(:,9)] 
outsideRawData=[data(:,4),data(:,7)] 
TitleRawPlot = sprintf('Raw data - %s',TitleString); 
  
figure('units','normalized','position',[.1 .1 .4 .4]) 
  
subplot(2,1,1) 
plot(insideRawData) 
%set date time on X axis  
xmin=0; 
xmax=length(data) 
xlim([xmin xmax]) 
set(gca,'XTick',XtickValues) 
set(gca,'XTickLabel',XaxisValues) 
set(gcf,'color','w') 
  
title(TitleRawPlot) 
legend('Bedroom','Diningroom','Bathroom','Guestroom','Livingroom','Kitchen','Hallway','EastOut
side','Location','EastOutside') 
ylabel('ZigBee ADC values') 
xlabel('Time'); 
subplot(2,1,2) 
plot(outsideRawData) 
set(gca,'XTick',XtickValues) 
set(gca,'XTickLabel',XaxisValues)%set(gcf, 'Position', [100 100 150 150]) 
xlim([xmin xmax]) 
legend('Outside N', 'Outside S','Location','EastOutside') 
ylabel('ZigBee ADC values') 
xlabel('Time'); 
end 
  
  
  
%---------Plot averaged inside and outside data---------------------------- 
if DoavgPlot 
insideAveragedTemperatures=mean(insideTemperatures,2); 
outsideAveragedTemperatures=mean(outsideTemperatures,2); 
TitleAvgPlot = sprintf('Averaged temperatures - %s',TitleString); 
  
figure('units','normalized','position',[.1 .1 .4 .4]) 
subplot(2,1,1) 
plot(insideAveragedTemperatures) 
%set date time on X axis  
xmin=0; 
xmax=length(data) 
xlim([xmin xmax]) 
set(gca,'XTick',XtickValues) 
set(gca,'XTickLabel',XaxisValues) 
set(gcf,'color','w') 
  
title(TitleAvgPlot) 
legend('Inside Temperatures') 
ylabel('Temperature [^oC]') 
xlabel('Time'); 
subplot(2,1,2) 
plot(outsideAveragedTemperatures) 
set(gca,'XTick',XtickValues) 
set(gca,'XTickLabel',XaxisValues)%set(gcf, 'Position', [100 100 150 150]) 
xlim([xmin xmax]) 
legend('Outside Temperatures') 
ylabel('Temperature [^oC]') 
xlabel('Time'); 
title('Averaged outside temperatures') 
  
end 
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7.6.2 NaN removal function 

function [ RemovedRows, NaNs, NonNanData] = NaNremove(data) 
%NaN removal and interpolation of data 
%   Data to be interpolated and NaN removed is input parameters 
%   The outpout parameters is the "filtered data" 
  
%first check if the first value is NaN if so remove until first not nan in 
%all rows in order to be able to do interpolation 
  
data; 
%-------------Check forn NaNs in the first rows---------------------------- 
j=0; 
if (find(isnan(data(1,:)))>0); 
    j=1; 
    while (find(isnan(data(j,:)))>0 & j<length(data(:,1))); 
      j=j+1; 
    end 
    %remove all first rows with NaN data 
    data=data(j:length(data(:,1)),:); 
end 
  
%-----------------Check for interpolatable NaNs------------------------------ 
if length(data(:,1))>2 %if not all values are removed 
  
    for i=1:length(data(1,:)) 
    Non=data(:,i); 
    NonNan(:,i)=interp1(find(~isnan(Non)),Non(~isnan(Non)),1:length(Non))'; 
    NaNs=length(find(isnan(data))); 
    end 
  
%----------------Check for NaNs at the end--------------------------------- 
  if (find(isnan(NonNan)) > 0 ) 
    
      [row,col,vals]=find(isnan(NonNan)); 
       EndNaNsRemoved=length(vals); 
       row 
        %Remove end rows with NaNs by using the lowest value left with NaNs 
       NonNanData=NonNan(1:min(row)-1,:);  
             
       
             
  %-------Print outputs------------------------------------------------------ 
   
  else 
     
     NonNanData=NonNan; 
 end 
 RemovedRows=length(data)-length(NonNanData)+j; 
else 
    RemovedRows=length(data(:,1))+j; 
    NonNanData=0; 
    NaNs=0; 
    disp('All data has been removed due to NaNs') 
end 
  
  
end 

  

 

7.6.2.1 Testing the NaN removal function 

>> [RemovedRows,NaNs,NonNaNdata]=NaNremove(dataTest) 
 
data = 
 
   438   NaN   483   341   469   474   358   480   490 
   438   475   483   341   469   474   358   480   490 
   437   477   NaN   343   469   472   353   481   NaN 
   439   478   NaN   335   472   477   355   483   491 
   438   479   487   339   472   478   350   483   492 
   438   479   489   342   NaN   479   351   485   492 
 
RemovedRows = 2 
 
NaNs = 4 
 
NonNaNdata = 
 
  438.0000  475.0000  483.0000  341.0000  469.0000  474.0000  358.0000  480.0000  490.0000 
  437.0000  477.0000  484.3333  343.0000  469.0000  472.0000  353.0000  481.0000  490.5000 
  439.0000  478.0000  485.6667  335.0000  472.0000  477.0000  355.0000  483.0000  491.0000 
  438.0000  479.0000  487.0000  339.0000  472.0000  478.0000  350.0000  483.0000  492.0000 
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7.6.3 The Outlier Removal function 

function [ dataRemovedOutliers ] = OutlierRemover(data, Factor,DoPlot, XaxisValues, 
XtickValues, TitleString) 
%This function finds and removes outliers based on the Factor value which 
%is a factor of the standard deviation of the data set 
%inputs data, StdFactos and Boolean value plot 
Nydata=data; 
  
%Create a matrix of mean values by 
mu = mean(Nydata); 
sigma = std(Nydata); 
[n,p] = size(Nydata); 
% Create a matrix of mean values by 
% replicating the mu vector for n rows 
MeanMat = repmat(mu,n,1); 
% replicating the sigma vector for n rows 
SigmaMat = repmat(sigma,n,1); 
% Create a matrix of zeros and ones, where ones indicate 
% the location of outliers 
outliers = abs(Nydata - MeanMat) > Factor*SigmaMat 
  
% Calculate the number of outliers  
nout = sum(sum(outliers)) 
%Mark the outliers 
  
  
for i=1:length(data(1,:)) 
i 
    potential_outlier=outliers(:,i); 
    X=1:length(Nydata(:,i)); 
    Y=Nydata(:,i); 
  if DoPlot 
    figure('units','normalized','position',[.1 .1 .4 .4]) 
    subplot(2,1,1) 
    plot(Y,'b') 
    xmin=0; 
    xmax=length(data) 
    xlim([xmin xmax]) 
    xlabel('Time [hours]') 
    ylabel('Temperture (^{\circ}C)') 
    set(gca,'XTick',XtickValues) 
    set(gca,'XTickLabel',XaxisValues)  
    set(gcf,'color','w') 
    title(TitleString) 
      
    hold 
    scatter(X(potential_outlier),Y(potential_outlier), '*r','LineWidth',5) 
    if i==1  
        legend('Bedroom','Outliers'); 
    elseif i==2  
        legend('Diningroom','Outliers'); 
        elseif i==3  
        legend('Bathroom','Outliers'); 
    elseif i==4 
        legend('Outside N','Outliers'); 
    elseif i==5 
        legend('Guestroom','Outliers'); 
    elseif i==6 
        legend('Livingroom','Outliers'); 
    elseif i==7 
        legend('Outside S','Outliers'); 
    elseif i==8 
        legend('Kitchen','Outliers'); 
    elseif i==9 
        legend('Hallway','Outliers'); 
     
         
    hold 
    end 
  end 
   
%interpolate the the outliers 
    InterP(:,i)=interp1(find(~potential_outlier),Y(~potential_outlier),X)' 
     
    if DoPlot 
    subplot(2,1,2) 
    xmax=length(data) 
    xlim([xmin xmax]) 
    scatter(X(potential_outlier),Y(potential_outlier), '*r','LineWidth',5) 
    set(gca,'XTick',XtickValues) 
    set(gca,'XTickLabel',XaxisValues)  
    hold 
    plot(InterP(:,i),'b') 
    xlim([xmin xmax]) 
    xlabel('Time') 
    ylabel('Temperture (^{\circ}C)') 
    title('Temperature data with marked removed outliers') 
    set(gca,'XTick',XtickValues) 
    set(gca,'XTickLabel',XaxisValues)  
    if sum(potential_outlier)>0 
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    legend('Removed Outliers') 
    end 
    hold 
    end 
end 
    dataRemovedOutliers=InterP; 
end 

  

  

7.6.4 The LP filter function 

function [ y] = LPfilt( data ) 
%Smoothing function 
%   Low pass filter 
  
t=zeros(length(data),1); 
for i=2:length(t) 
    t(i)=t(i-1)+1; 
end 
  
ToS=zeros(length(data),9); 
Ts=t(2)-t(1); 
Tf=5*Ts; 
a=Ts/(Ts+Tf); 
OldToS=data(1,:); 
ToS(1,:)=data(1,:); 
  
for l=1:9  
    for i=2:length(ToS) 
    ToS(i,l)=(1-a)*OldToS(1,l)+a*data(i,l); 
    OldToS(1,l)=ToS(i,l); 
    end 
end 
y=ToS; 
end 

  

7.6.5 The month to name month function 

function [ MonthName ] = MonthName( m ) 
%UNTITLED13 Summary of this function goes here 
%   Detailed explanation goes here 
for i=1:1 
switch m 
case 1 
m='January'; 
break; 
case 2 
m='Febuary'; 
break; 
case 3 
m='March'; 
break; 
case 4 
m='April' 
break; 
case 5 
m='May' 
break; 
case 6 
m='June'; 
break; 
case 7 
m='July'; 
case 8 
m='August'; 
break; 
case 9 
m='September'; 
break; 
case 10 
m='Oktober'; 
case 11 
m='November' 
break; 
case 12 
m='december'; 
break; 
end 
end 
MonthName=m; 
end 
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7.6.6 The control simulation function 

% Simulating all controls with prediction horizon 
  
clear all 
%-----Continous State Space Model------------------------------------------ 

Ac=-8.81*10^-4; 

Bc=0.439246148*10^-5; 

Dc=1; 

  

%-----Discrete time model-------------------------------------------------- 

h=60; %sampling time of 6 minute 

[Ad,Bd,Dd]=c2dm(Ac,Bc,Dc,zeros(1),h,'zoh'); 
  
  

% Simulation time horizon 

dt=0.001; t=0:dt:24; t=t'; N=length(t); 
  

%--------Optimal LQ parameters--------------------------------------------- 
 

q=1;  

Rdu=0.001; 

[G1,G2,At2,Bt2,Dt2]=dlqdu_pi(Ad,Bd,Dd,q,Rdu);  % MPC with infinite horizon 
  

%--------PID parameters--------------------------------------------------- 

Kp=805; 

Ti=10000; 

Td=0; 
  

%-------MPC--Prediction model matrices------------------------------------- 

L=10; %Prediction Horizon 

Q=10; R=0.001; %Weighting parameters 
  

nx=size(Ad,1); nu=size(Bd,2); ny=size(Dd,1); 

[HdL,OL,OLB]=ss2h(At2,Bt2,Dt2,zeros(ny,nu),L,0); 

F_L=[OLB HdL]; 

Qt=q2qt(Q,L); 

Rt=q2qt(R,L); 
  

H=F_L'*Qt*F_L + Rt; 

%-------------------------------------------------------------------------- 
   

%Steady state nominal values 

us=258.7252; 

xs=292.44; %  

v=258.7; 

r=292.44; 
 

x_old=x;  

y_old=ys; 

u_old=us; 

e_old=0; 

z=xs(1); 
  

%get refernce vector from comfort interval function 

[WdRef,WeRef,t]=ComfortRef(); 

MPCref=WeRef'; 

N=length(t) 
  

% Type of controller:1 PID controller, 2-(QP optimal controller),3 MPC 

Cntrl=3; 
  

L1=0; 

for k=1:N-200        
     

    %step change in disturbance outside temperature 

    if k==1900 

        v=250; 

    end 



 146 

     

    r=WeRef(k+L1); 

    y=Dd*x; 

    if Cntrl==1 

    %PID control on velocity form  

    e=r-y; 

    g0=Kp; 

    g1=-Kp*(1-(h/Ti)); 

    u=u_old+g0*e+g1*e_old; 

    e_old=e; 
     

    elseif Cntrl==2 

    %LQ optimal control 

     dx=x-x_old; 

     u=u_old+G1*dx+G2*(y_old-r) 

     %u=G1*x+G2*(y_old-r) 
     

    elseif Cntrl==3 

     %Unconstrained MPC control, constraints handled by if else 

       r1L=MPCref(k+1+L1:k+L+L1);% adding L1 inboth referances. the 

prediction time 

       xt=[x-x_old;y_old];      

       y_old=y;  

       x_old=x; 
     

       pl=OL*At2*xt; 

       f=F_L'*Qt*(pl-r1L); 

       duf=-inv(H)*f; 

       u=u_old+duf(1:nu);  

       u_old=u;     
      

    end 
         
      

     %setting oven constraints typical anti wind up mode 

        if u>800 

            u=800; 

        end 
       

        if u<0 

            u=0; 

        end 

     x_old=x;  

     u_old=u;  

     y_old=y; 
      
      
        

    % Save for plotting 

    Y(k,1)=y; 

    U(k,1)=u; 

    R_pred(k,1)=r; 

    R(k,1)=WeRef(k); 
                 

    %x=At*x+Bt*u; 
     
            

    %send control signal to the nonlinear function model 

    x=HouseMdl(h,v,x,u); 
     

    %use temperature estimation  
    

    L_est=TempEst(x,v,h,293,800) 

    if L_est>L1 

        L1=L_est 

    end 
    
     

        if WeRef(k+L1)>WeRef(k) 
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            r=WeRef(k+L1); 

        end 
     
     
     

end 
  

%---------Plot results----------------------------------------------------- 

t=1:N-200; 

figure(1) 

plot(t/100,Y,'-r',t/100,R_pred,'-g',t/100,R,'-.') 

legend('Output, y_k','Predicted Reference r_k_+_L','Reference, r_k') 
  

figure(2) 

subplot(211), plot(U) 

title('Control, u'); 

subplot(212), plot(diff(U)) 

title('Control, du'); 
 

 

 

 

 

7.6.7 The PWM function 

A=1; 
t=0:0.001:1; 
t=t(1:1000) 
%Create carrier Sawtooth wave 
a = 10*A;  
T = 0.1;  
c=a*mod(t,T);  
  
  
t=t*6; 
%setting ut the input length 
m=1:1:length(t); 
%Setting the input signal 
u_max=1000; % maximum oven power 
u=800;  %Control genterated input signal 
m(:)=u/u_max; 
  
n=length(c);%Length of carrier sawtooth is stored to 'n' 
for i=1:n%Comparing Message and Sawtooth amplitudes 
if (m(i)>=c(i)) 
    pwm(i)=1; 
else 
    pwm(i)=0; 
end 
end 
  
%subplot(2,1,2); 
plot(t,pwm,'b','LineWidth',2); 
axis([0 6 0 1.2]) 
title('PWM with 80% duty cycle'); 
xlabel('Time [Min]'); 
ylabel('1=On  ,  0=Off'); 
grid on; 

 

 

 

                                                 

 

 

 



 

7.7 Appendix 7: Expanded model 

 

푑푇

푑푡
= 푁푇 1 −

푝 푀

휌푅푇
+ 

푁푝 푀 (1 − 푥 )(퐶 푇 + 퐻 ) +
푥
푀

(퐶 + 퐻 + 퐻 ) − 휌푁(1 − 푥)(퐶 푇 + 퐻 ) +
푥
푀

(퐶 + 퐻 + 퐻 ) + 푄̇ − 푈퐴(푇 − 푇 )

휌푉( 1 −
푃푀 푥
휌 푅푇 ∗ 퐶 +

푝 푀 푥
휌푅푇 ∗ (퐶 ) −

푅
푀)

 

 

Where 푁 = N*V/3600, and 푇  is inlet temperature ,Cp is heat capacity of dry air, Cpw is heat capacity of humid air, x is fraction of water in air the rest of the 

parameters are seen in Table 2-1. For more information the reader is advised to read the BAS master project. 

The MATLAB model used for the derivation is 

dx(1)=Nt*x1*(x2-(P*M_AH/(R*v)))/(x2)+(Vi*(P*M_AH/(R*v))*(Cpa*(v-273)+fr*(Cpw*(v-273)+H_wv_ref))-Vo*x2*(Cpa*(x1-273)+fr*(Cpw*(x1-273)+H_wv_ref))+(u-(UA*(x1-
v))))/(Vr*x2*Cp)+Md; 

 

 

 

 
 



 

7.8 Appendix 8: Regression models for predictor 

The regression parameters as seen in the configuration XML file 

   <DpredictorAlpha>1.1984954138447921</DpredictorAlpha>  
  <DpredictorBeta>0.0020909035984212621</DpredictorBeta>  

  <YpredictorAlpha>27.786336336336362</YpredictorAlpha>  

  <YpredictorBeta>0.3766537966537955</YpredictorBeta>  

   <A11>0.99203191483706066</A11>  

  <A12>0.19920212907348425</A12>  

  <A21>0</A21>  

  <A22>1</A22>  

  <B11>0.031808516293937</B11>  

  <B21>0</B21>  

 
The Kalman filter disturbance model: 
 

Temperature = 퐴 ∗
푇푒푚푝푒푟푎푡푢푟푒

퐷푝푟푒푑푖푐푡표푟 푎푙푝ℎ푎 + 퐷푝푟푒푑푖푐푡표푟퐵푒푡푎 ∗ 푖
+ 퐵 ∗ 푇푒푚푝푒푟푎푡푢푟푒 

 
The OLS regression model: 
 

Temperature =YpredictorAlpha+YpredictorBeta*i 
 
Where i is the loop counter running each sampling time of 200ms. 
 
 
 


