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Abstract: 

In practical applications, biogas flow sensors are used to measure the output methane gas from the 

reactor. But none of the states are measured. State estimation methods can be used to solve this problem.  

In this thesis the problem of optimal state estimation regarding to an anaerobic digestion (AD) reactor is 

considered. For the nonlinear system, different approaches:  extended Kalman filter (EKF), unscented 

Kalman filter (UKF) and particle filter (PF), are used to estimate the unmeasured states. 

The main aim is to evaluate and compare the three alternative Kalman filter algorithms with a proper state 

augmentation, both in terms of estimation accuracy and computational efforts, by applying them to a real 

and a simulated AD reactor. 

Both the simulation and test with real data show that UKF has a similar performance with EKF, but more 

susceptible to the initial condition. PF has the best state estimate performance with the highest 

computational requirement, about 30 times more CPU time than the EKF. Overall we conclude that the 

EKF, with Jacobian calculations every time step, is the best choice for the unmeasured state estimation in 

this case. 

Telemark University College accepts no responsibility for results and conclusions presented in this report. 
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Nomenclature 

List of symbols 

Symbol Meaning/Explanation 

     Concentration of VFA in reactor [g VFA/L]. 

     Concentration of BVS in reactor [g BVS/L]. 

      Concentration of acidogens[g acidogens/L]. 

      Concentration of methanogens[g methanogens/L]. 

      Reactor temperature [℃]. 

      
Influent or feed flow or load rate, assumed equal to effluent flow 

(constant volume) [L/d]. 

      Methane gas flow [L CH4/d]. 

   State matrix of state-space model in continuous time domain. 

   Input-to-state matrix of state-space model in continuous time domain. 

   State-to-output matrix of state-space model in continuous time domain. 

   Direct feed-through matrix of state-space model in continuous time domain. 

  Identity matrix. 

      Time continuous representation of variable x at time   . 

       Time derivative of      . 

     Expected value of x. 

       Covariance of x. 

     Covariance squared matrix of process noise, in discrete time domain. 

     Observation (sensor) noise covariance, in discrete time domain. 

     Process noise or system noise; vector in discrete time domain. 

     Observation or sensor noise; vector in discrete time domain. 

      
Subscripts of a sum or subscripts of a matrix elements, or index denoting 

iteration. 
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AD Anaerobic digestion 

BVS Biodegradable volatile solid 
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VFA Volatile fatty acids 

EKF Extended Kalman filter 

UKF Unscented Kalman filter 

PF Particle filter 

RMSE Root mean square error 

pdf Probability distribution function 

PID Proportional Integral Derivative 

P&ID Piping &Instrumentation diagram 
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1 Introduction 

1.1Backgrond and previous work 

Nowadays, state estimation of dynamic systems plays an important role in operating the industry 

processes safely and economically, since it is of central importance in monitoring and control of 

system. Furthermore, a variety of system identification problems can be addressed by state 

estimation. As it was indicated by Simon (2006a), the states of a system are those variables that 

provide a complete representation of the internal conditions or status of the system at a given 

instant of time. The problem of determining the state of a system from noisy measurements is 

called estimation or filtering(Jazwinski, 1970). State estimation algorithm can estimate and 

predict desired state variables of a dynamic system from available noisy measurements, and 

estimation of the state variables is one of the fundamental and significant problems in control 

and signal processing areas.  State estimation can be utilized for supervision in a physical process 

where states cannot be directly measured or disturbances that can be of vital importance. 

Likewise, it is critical to make a more reliable or advanced controller for the processes, because 

it can help to overcome measurement uncertainties due to sensor failure or noise.  

One of the most popular state estimation tools is Kalman filter, which has been applied in 

various engineering and scientific areas such as communications, machine learning, neuroscience, 

economics, finance, political science, and many others. The Kalman filter(Kalman, 1960)  is a 

popular and effective tool which can estimate the variables of a great variety of processes. It 

provides a way to estimate the state vector using an optimal observer gain to minimize the 

expected mean square error of the estimate.  

The standard Kalman filter can be easily applied to linear system.  Nonlinear systems, however, 

require approximations in order to handle the nonlinearity in the state dynamic equations and/or 

the output equations of the system. There are many variations on the Kalman filter for nonlinear 

systems, three of the most common ones are the extended Kalman filter (EKF), the unscented 

Kalman filter (UKF) and the particle filter (PF). These three filters use different approaches to 

handle the nonlinearity. The EKF relies on linearization of both the transition and measurement 

equations of the nonlinear system which involving calculation of Jacobian matrices. 

Unfortunately, the EKF has two important potential drawbacks. First, the derivation of the 

Jacobian matrices can be complex causing implementation difficulties. Second, the linearization 

can lead to filter instability if the time step intervals are not sufficiently small (Julier et al., 1995, 

Simon, 2006c). To handle with these limitations, Julier et al. (1995) suggested an alternative as 

UKF. The UKF uses a statistical approach called the Unscented Transformation (UT) (Julier and 

Uhlmann, 1997) for propagation of means and covariances. The PF, introduced by Gordon et al. 
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(1993b), estimate the posterior density of the state-space by directly implementing the Bayesian 

recursion equations. On comparing with the last two approximation methods, the particle method 

do not rely on a linear approximation scheme or any crude functional approximation and give a 

better result with sufficient samples. The price is that more computational effort needs to be paid 

for this flexibility.  

Recently, Kalman filters have been applied in different kinds of anaerobic digestion (AD) 

reactors. In a study of catalytic reactor,  Kupilik and Vincent (2011) have successfully used the 

EKF method in estimating an unknown inlet composition from only measurement of the reactor 

temperature.  In a study based on real data, Haugen et al. (2014) estimate  four states and an 

unknown influent concentration for a real AD pilot reactor fed with dairy manure.  Modified Hill 

model and UKF method are deployed. The state estimator uses only methane gas flow 

measurement to update its states.  

From different comparison studies, UKF is a superior alternative to EKF for a variety of 

estimation and control problems. Based on both theoretical and empirical analyses of a particular 

application, the EKF was found to be approximately 10 times more computationally efficient 

than the UKF(Gross et al., 2012). A test conducted by Chai et al. (2007) in wastewater treatment 

area found similar performance between them. According to Myers et al. (2012), it was found 

that the EKF and PF methods presented similar results when using the one-way ultrasonic pulse 

time of flight measurement model.  However, an empirical study(LaViola Jr, 2003) shows that 

EKF is a better choice for estimating quaternion motion in virtual reality. By comparing different 

filtering approaches, Simon (2008) concluded that EKF is the best choice for aircraft engine 

health estimation. In an explicit study on comparison of EKF, UKF and PF applying to a tracking 

problem, has (Ristic et al., 2004)found that the EKF is fast but unreliable, UKF shows similar 

error with PF while needs more CPU time. Regarding the state estimation of AD reactor, a 

pioneering work by (Haugen et al., 2012a) illustrated that UKF has the similar performance as 

EKF, but more adaptable when model changes.   

Many estimation algorithms employ a dynamic model of the system under consideration. It’s 

effective to use augmented models to extend such algorithms to fit practical problems. 

Augmentative states describe appending additional dynamics to an existing model of the system. 

These augmented dynamics may represent system disturbances or model parameters. The 

advantage of augmented models is that they don’t conceptually change the underlying algorithm, 

and still retain most or all of its properties(Maeder, 2010). In the domain of state estimation or 

system identification, augmented models have shown to be useful. According to Ray (1997) and 

Gustafsson (1997), tire/road friction coefficients for vehicles were inferred from the behavior of 

the vehicles. However, in simulation study of a simple nonlinear case, Fuming et al. (2009) 

found that UKF is scenario-dependent, that means, non-augmented UKF has better performance 

than the augmented UKF in the presence of a bigger process noise. 
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1.2 Statement of the Problem 

In the AD reactor there are several parameters and states which are not measured, but are crucial 

for the performance. Such kind of parameter like the concentration of volatile fatty acids (    ), 

should cause process failure in case of abnormal situation. Because high concentration of volatile 

fatty acids (VFA) is inhibitory to methane generating microbes. In addition, advanced controllers 

may be developed based on the estimation of system states. So it is necessary to estimate the 

internal condition of the system using a state estimation algorithm. It is interesting to identify 

which method is most appropriate for the AD reactor.  

The purpose of this thesis is to evaluate and compare different Kalman filter algorithms for state 

estimation of the AD reactor. Therefore, we will focus on study the differences of the three filters 

when applying to the biogas reactor.  

 Comparison of Estimation Accuracy of the filtering techniques. 

 Comparison of Computational efficiency. 

 Comparison of augmented and non-augmented Kalman filters  

1.3 Thesis outline 

In Chapter 1, an introduction of the state estimation application is given, including literature 

review and a short statement of the purpose of this thesis. A popular mathematical model is 

briefly explained in Chapter 2, where the deduction of the model to the Kalman filter algorithms 

is also proposed. In Chapter 3, three estimation methods are described and analysis of difference 

among the estimation algorithms is focused. In particular, the Bayesian approach for nonlinear 

dynamic systems is discussed. Chapter 4 explains the implementation of both model and Kalman 

filters in MATLAB, and simulation results. In chapter 5, Real time series data from Foss Biolab 

is applied to the filters, all the states are estimated by the different filters.  Chapter 6 concludes 

the work and suggests some future works. 

 

 

 

 

 

 



4 
 

2 Mathematical modeling 

Several models have been proposed for biogas reactor. Some popular models such as Hill’s 

model(Hill, 1983), which states a kinetic model that describes the fermentation of animal wastes 

with upgrade accuracy and predictive ability; Husain’s model(Husain, 1998) developed a steady 

state solution to Hill’s simplified dynamic model. In the next context, a simply modified Hill’s 

model proposed by (Haugen et al., 2013)will be used. The biogas plant will be described in 

Section 2.1 and followed with a model presentation in Section 2.2. Section 2.3 shows a state 

space model and Section 2.4 carries out a model linearization.  

2.1 System description 

Foss Biolab is a pilot biological plant for nutrient and energy recovery, situated at Foss farm, 

Skien, Norway. The plant contains AD reactor. The feedstock to the reactor is dairy manure 

diluted with 25% water and filtered with a sieve. Output from the AD reactor is biogas consisting 

of approximately 70% methane and liquid fertilizer, which is fed to a nitrification reactor at the 

plant. The AD reactor temperature is kept fixed at its set point with an automatic temperature 

control system. The plant is monitored and controlled by a PC-based automation system that 

implemented in LabVIEW. Figure 2.1 shows a Piping &Instrumentation Diagram (P&ID) of the 

biological plant. 

The plant is mainly consists of four different parts as shown in Figure 2.1. According to Haugen 

et al. (2012b), “the first is a reservoir for raw dairy manure containing approximately 25% added 

water.  The second is a separator for separating the manure into two fractions of similar total 

solid mass: >70% of the volume is the wetter fraction and <30% is the dryer fraction. The third 

part is a 220L high rate AD reactor fed with filtered cow manure as substrate for production of 

energy-rich biogas that contains mainly methane. The last part is a 200L nitrification reactor fed 

with AD reactor effluent to produce high quality liquid fertilizer and pellets fertilizer from 

formed foam.” 
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Figure 2.1: Piping & Instrumentation Diagram (P&ID) of the biological process line of the pilot 

plant at Foss Biolab(Haugen et al., 2013). 

2.2 Modified Hill’s model 

This thesis work will directly use the modified Hill’s model, which has been deliberately 

depicted and approved sufficiently accurate as a basis for both state estimation and advanced 

control strategies design(Haugen et al., 2013). The dynamic model consists of four states. 

      - Concentration of biodegradable volatile solids (BVS) 
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      - Concentration of total volatile fatty acid (VFA) 

       - Concentration of acid-forming micro-organisms 

       - Concentration of methane-forming micro-organisms 

Model equations in the modified Hill’s model can be expressed as follows. Defining that portion 

of the raw waste which can serve as biodegradable material (substrate): 

                                                         
        

                                                                   (2.1)     

Defining that portion of the biodegradable material which is initially in acid form: 

                                                        
         

                                                                 (2.2) 

Mass balance of BVS: 

                                  
           

      
      

 
                                                (2.3) 

Mass balance of total VFA: 

                       
           

      
      

 
+           

 
                                 (2.4) 

Mass balance of acidogens: 

                                        
            

      

  
                                                 (2.5) 

Mass balance of methanogens: 

                                      
        

 
     

      

  
                                            (2.6) 

Methane gas flow rate (gas production): 

                                                       
 
                                                             (2.7) 

Where, the reaction rates, with Monod kinetics, are as follows: 

                                                          
 

    

       
                                                               (2.8) 

                                                       
 

  
  

    

       
                                                           (2.9) 

Where, the maximum reaction rates are functions of the reactor temperature as follows: 

                                                  
 

         
  

                                      (2.10) 

                                                                                                          

Known parameters are provided as illustrated in Table 2.1. 
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Table 2.1: Parameters in Modified Hill’s model adapted to AD reactor at Foss Biolab(Haugen et 

al., 2014). 

Parameter Value  Unit Comment 

   0.69 (g VFA/L)/ (g BVS/L) Acidity constant 

                   2.90 d/d Retention time ratio 

   0.25 (g BVS/L)/ (g VS/L) Biodegradability constant 

   3.89 g BVS/(g acidogens/L) Yield constant 

   1.76 g VFA/(g acidogens/L) Yield constant 

   31.7 g VFA/(g methanogens/L) Yield constant 

   26.3 L/g methanogens Yield constant 

   0.02 d
−1

 Specific death rate of acidogens 

    0.02 d
−1

 Specific death rate of methanogens 

   15.5 g BVS/L Monod half-velocity constant for acidogens 

    3 g VFA/L Monod half-velocity constant for 

Methanogens 

  250 L Effective reactor volume 

 

2.3 State space model 

A state space model is a mathematical model of a process, where the process state   is 

represented by a numerical vector. State space model consists of a process model which 

describes how the state propagates in time based on external influences such as input and noise, 

and a measurement model which describes how the measurement   is obtained from the process. 

The model provided for the AD reactor is a continuous time model and for implementation of 

state estimation algorithm the model has to be discretized. The continuous model was discretized 

using an Euler forward approximation. There are other types of discretization methods, however 

Euler forward was chosen as it is straightforward and simple to use. 

Continuous-time model: 

Letting                         ,         ,         , the continuous-time model 

can be represented in a more condense form as: 

                                                                                                                             (2.11) 

                                                                           (2.12) 

Where   is the system function composed of four differential equations as (2.3 – 2.6),   is the 

measurement or process output function as (2.7),      is the state vector,   is the input. 

Applying the forward Euler approximation on the Continuous model 
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                                                   (2.13) 

Which leads to the discrete-time model as 

                                                                          (2.14) 

                                                                                (2.15) 

Where,    is the integration interval. However the sampling time Ts correlated to the integration 

time as        typically with m=1. In numerical theory, as    becomes infinitesimally small, 

the finite difference relation in (2.13) becomes a better approximation of the differential equation 

in (2.11). Here    depends on the experimental data. In the real process, the produced methane 

gas is sampled every 15 minutes and filtered every 0.1 day (8640 seconds). For a better 

prediction and given that a slow and steady process, we choose 0.1 day (8640 seconds) as our 

sampling time.  

 

2.4 Linearization and evaluation 

The purpose for this section is to build a linearized model for the state estimation algorithms. 

2.4.1 Steady-state operating point 
The idea of linearization is to find a linear system whose states represent the deviations from a 

nominal trajectory of the nonlinear system(Simon, 2006c). To linearize the nonlinear system, we 

first need to find a nominal state, also known as steady-state operating point or equilibrium point. 

The desired behavior of a system is when it maintains a predefined output and state stability. 

This means that the system can be linearized around this equilibrium point (     ). With 

equilibrium point means that the first derivative of the states is equal to zero,  

                                                        ≡ 0                                                                  (2.16) 

The equilibrium point includes state variables that do not change with time.by analysis of the AD 

reactor dynamics and stability,  Haugen et al. (2013) have given such a point in a systematic way. 

Values of inputs and states in the steady-state operation point are showed in Table 2.2.  
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Table 2.2: Values of inputs and states in the steady-state operation point. 

       = 45L/d 

       = 35 ℃ 

      = 5.2155g/L 

     = 1.0094g/L 

       = 1.3128g/L 

      = 0.3635g/L 

      = 30.2g/L 

      = 196.1560 L CH4/d 

2.4.2 Linearization 
The result from the modeling of the reactor was nonlinear functions which depend on the state-

space variable   and the input signal      . By linearizing these nonlinear equations, as Eqs. 

(2.3-2.6), will result in the following description of the dynamics 

                                                                    (2.17) 

                                                                       (2.18) 

Where x is the state vector 

                          
 

                                     (2.19) 

                                                                                      (2.20) 

                     
                                                          (2.21) 

                     
                                                        (2.22) 

The linearization of the dynamic model will result in    ,     ,    and    matrices, where the 

elements in these matrices are given by ai,j, bi,j, ci,j, respectively, 

                     
              

   
,          

              

       

,         
              

   
        

              

       

   (2.23) 

Where i denotes the row and j denotes the column, i, j = 1…4. 

   

     

            

            

            

            

  



10 
 

 

 
 
 
 
 
 
 
 
 
  

     

 
 

           

         
 

  
        

         
 

           

         
 

 
     

 
 

             

          
 

        

         
 

         

          

         

         
 

  
     

  
 

      

         
    

 
           

          
   

     

  
 

       

         
    

 
 
 
 
 
 
 
 
 
 

 

(2.24) 

    

   

   

   

   

  

 
 
 
 
 
 
 

       
     

 
         

     

 

 
     

  

 
     

   
 
 
 
 
 
 

                                                      (2.25) 

                    
              

          
  

          

                             (2.26) 

                                                                             (2.27) 

The linearized discrete-time model can be derived from Eq.(2.17) and (2.18) 

                                                                          (2.28) 

                                                                   (2.29)     

Where A, B, C, and D can be calculated from    ,     ,    and    matrices by command ‘c2d’ 

in MATLAB. As discussed in Section 2.2, discretization time is selected as 0.1 day. 

Corresponding program can be seen as Appendix B and the results as below. 
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2.4.3 Linearized model evaluation 
For this work we assumed a perfect model being used, so we are not discussing the dynamics of 

the Modified Hill’s model. The topic here is to compare the response from both the nonlinear 

model and the discrete-time model given the identical condition. Figure 2.2 displays the 

simulation result when same step responses are given to both nonlinear and linear model. 

Corresponding code can be seen as Appendix C. 

 

Figure 2.2: Simulation result when same step responses are given to both nonlinear and linear 

model. Initial value as [0; 0; 0; 0] for both nonlinear model and linearized model. 

The simulation show that the discrete-time model gives a similar response as the nonlinear model 

does. Hence we can conclude that the discrete model can describe the most dominant dynamics 

of the AD reactor. 
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3 State estimation with Kalman filter 

Measuring all of the states through sensors is usually not possible, because required sensors can 

be expensive, and some states cannot be measured. The commonly used method to get around 

this problem is to construct an estimator for the state based on the output.  Specifically, the 

output measures some of the state variables, which are affected by the states that we do not 

measure. By examining how the measured states change with time, we can potentially determine 

the values of the unmeasured states as well. We will do this by constructing a state estimator as 

Kalman filter. 

In this chapter, three nonlinear extensions of the Kalman filter will be discussed. In Section 3.1, 

we will explain briefly how a Kalman filter works.  In Section 3.2 we will develop an augmented 

model for different nonlinear filters. Then Section 3.3 will put emphasis on the EKF algorithm, 

which is the most widely used estimation technique the past few decades. In Section 3.4, we will 

introduce the unscented transformation and after that the UKF, an extension of Kalman filter that 

reduces the linearization error of the EKF. And in the last section, we will discuss the PF method, 

which is a probability-based estimator. 

3.1 Introduction to Kalman filter 

The Kalman filter is an algorithm used to estimates the values of state variables of a dynamic 

system which is exited by stochastic disturbances and stochastic measurement noise. The 

Kalman filter will produce an optimal estimate in the sense that the mean value of the sum of the 

estimation error gets a minimal value. A Kalman filter usually works as shown in Figure 3.1. 

 

Figure 3.1: Block diagram of principle of Kalman filter. 
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The Kalman filter runs parallel with the physical process, which contains the system and 

measuring devices as shown in Figure 3.1. Thus the input-output data can be processed 

recursively as they become available. Consider the dynamic system described by linear 

stochastic difference equation   and measuring devices by  , the problem now is to estimate the 

(desired) unknown system state vector from noisy (observed) measurement  . The system model 

should also consists of simulated process noise and measurement noise, which are usually 

assumed to be mutually independent, white, Gaussian noises with known covariance matrices 

respectively. The initial state vector     is also assumed to be independent of the noises. The 

Kalman filter estimates the system states with two set of equations: time update equations 

(apriori estimates) and measurement update equations (aposteriori estimates). To obtain the 

apriori estimates for the next time step the time update equations project forward (in time) the 

current state and error covariance estimates. The measurement update equations get the feedback 

to obtain an improved aposteriori estimate incorporating a new measurement into the apriori 

estimate.  

3.2 Augmented model for nonlinear filtering 

Augmented models can be used for online estimation of system parameters. The parameters 

which define the dynamics of the system are assumed to be unknown or varying. Since the 

parameters usually enter the system dynamics nonlinearly, nonlinear estimation schemes such as 

EKF or UKF are applied. In this project, we will introduce an augmentative state variable - an 

assumed unknown influent concentration      . We choose this parameter because it has a close 

relationship with the methane that was produced by the digester(Fischer et al., 1984).  

The corresponding differential equation is  

  
                                                                            (3.1) 

And discrete form 

                                                                             (3.2) 

Where       is white process noise with assumed auto-covariance     . 

Our system now evolves to a five states system. The state vector is 

                                  

                                                                              (3.3) 

Nothing changed when we try to implement a Kalman filter for the augmented model. The 

Kalman filter estimates both the original states and the augmentative states. Then the discrete 

nonlinear model for our state estimator can be developed from the continuous time model as 

Eqs.(2.14) and (2.15). 
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                                                                          (3.4) 

                                                                                       (3.5) 

  is the random process noise with mean 0 and covariance Q 

                

  is the random process noise with mean 0 and covariance R 

                

The linearized discrete-time model can be derived from Eqs.(2.28) and (2.29) 

                                                                   (3.6) 

                                                            (3.7)     

Where A, B, C, and D can be calculated by command ‘c2d’ in MATLAB.    

3.3 Extended Kalman Filter  

The system and measurement equations are (3.4) and (3.5). 

The filter algorithm can be summarized as follows(Haugen et al., 2012b). 

Initial step (   ): 

Aposteriori state estimate: 

                                                                                  (3.8) 

Covariance of estimation error: 

             
                  

                  
                                     (3.9) 

For time steps        … 

1. Partial derivative of system function (Jacobian matrix): 

           

  
 
                    

     
    

  
 
                    

            (3.10) 

2. Time-updates: 

(a) Apriori estimate (predicted estimate): 
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                                                (3.11) 

(b) Covariance of estimation-error: 

                                    
                          (3.12) 

3. Partial derivative of output function (Jacobian matrix): 

         

  
 
               

                                                       (3.13) 

4. Measurement updates: 

(a) Kalman filter gain: 

                                            
  

                      (3.14) 

(b) Measurement estimate: 

                                                                                          (3.15) 

(c) State estimate (Aposteriori estimate, or corrected estimate), which is used as the applied 

estimate,   : 

                                                                    (3.16) 

(d) Covariance of estimation error: 

                                                                                      (3.17) 

Equations (3.8) - (3.17) are the complete algorithm of EKF. The algorithm is implemented in 

MATLAB and attached in Appendix D. 

According to the algorithm, EKF takes the estimate            from last loop to the initial step of 

the current loop. The estimation result is then used as a nominal state, where states of the linear 

system represent the deviations from a nominal trajectory of the nonlinear system(Simon, 2006b). 

Therefore, the accuracy of estimation in a loop is not only relied to the linearization in the loop, 

but also the estimated value from last loop. That means this algorithm can be divergent if the 

consecutive linearization is not good approximation of the nonlinear model. Normally, attention 

needs to be paid in these two points when using EKF: 

 The linearization method based on Taylor expansion is susceptible to the nominal state, 

where EKF recursively take up with the current estimate. The Kalman gain       

depends on the current state estimate. So if there a big difference between the current 
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estimate and real values, further linearization error and imprecise Kalman filter updates 

will be caused.  

 Because of calculation of two Jacobian matrices, the continuity of the state transition 

model and observation model should be paid attention when using EKF. 

The above points illustrate the basic premises of EKF: Small deviation of initial conditions and 

system of weak nonlinearity; enough smoothness and continuity of the model to make sure the 

existence of Jacobian matrix       and      . 

3.4 Unscented Kalman Filter 

As discussed earlier, EKF always use first-order linearization to propagate the mean and 

covariance of the state, thus the posterior mean and covariance could be corrupted.  Unlike EKF, 

the UKF overcome this problem by using a deterministic sampling approach(Wan and van der 

Merwe, 2002). The state distribution is represented using a minimal set of carefully chosen 

sample points, called sigma points. The points are then propagated through the non-linear 

transformation, obtaining a cloud of points in the transformed space, and their mean and 

covariance are computed. This method permits to avoid the linearization and takes the name of 

UT. 

3.4.1 Unscented Transformation 
The UT calculates the statistics of a random variable by a nonlinear transformation.  And it is 

based on the principle, that it is easier to approximate a Gaussian distribution than to 

approximate an arbitrary nonlinear function or transformation(Julier and Uhlmann, 1997). The 

UT method can be summarized as follows(Simon, 2006a). 

Consider propagating a  -element vector   through an arbitrary nonlinear function        to 

generate the mean and covariance of  , denoted as       and     . The ensemble mean and 

covariance of the transformed vectors approximate the true mean and covariance up to the third 

order(Simon, 2006a). Assume   has mean    and covariance  .  

1. Form    sigma point vectors      as follows: 

                           

            
                

               
                                                        (3.18) 

Where     is the matrix square root of    such that           =   , and        is 

the  th row of    . 

2. Transform the sigma points as follows: 

                                                                          (3.19) 
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3. Approximate the mean and covariance of   as follows: 

      
 

  
     

  

   

 

     
 

  
                   

   
                                   (3.20) 

Figure 3.2 shows an example of 2-dimentional system to illustrate the idea of EKF and UKF. 

The left plot shows the true mean and covariance propagation using Monte-Carlo sampling; the 

middle plot shows the result when using linearization approach as in EKF; the right plot shows 

the performance of the UT (note only 5 sigma points are required). The superior performance of 

the UT is clear. 

 
Figure 3.2: Comparison of different linearization methods for mean and covariance propagation. 

a) actual, b) first-order linearization (EKF), c) UT.(Wan and Van der Merwe, 2000). 

3.4.2 Unscented Kalman Filter 
Considering the nonlinear state and measurement equations as (3.4)-(3.5), the UKF algorithm 

can be states as follows(Haugen et al., 2012b). 
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Initial step (   ): 

-Aposteriori state estimate: 

                                                                                 (3.21) 

-Covariance of estimation error: 

             
                  

                  
                                    (3.22) 

For time steps           

1. Time updates: 

(a) Calculate    sigma points(  is the number of states) based on the available aposteri 

estimate: 

  
                                                              (3.23) 

                      

 
                                      (3.24) 

                         

 
                                   (3.25) 

Where   means matrix square root, and sub index   means      row. 

 

(b) Propagate the sigma points using the (discrete-time) system function  (below,    is 

the continuous-time system function): 

  
            

                   

   
                 

                  (Explicit Euler)                 (3.26) 

 

(c) Calculate the apriori state estimate as the mean values of the propagated, transformed 

sigma points: 

          
 

  
   

         
                                           (3.27) 

 

(d) Calculate the  apriori state error covariance: 

          
 

  
    

                     
                  

 
  
             (3.28) 

 

2. Measurement updates: 

(a) Calculate    sigma points(  is the number of states) based on the available apriori 

estimate: 

  
                                                                 (3.29) 
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                                              (3.30) 

                     
 

 
                                          (3.31) 

Where   means matrix square root, and sub index   means      row. 

 

(b) Transform the state estimate sigma points to corresponding measurement ‘sigma 

points’ using the measurement function  : 

  
            

                                                      (3.32) 

 

(c) Calculate the predicted measurement as the mean values of the transformed 

measurement ‘sigma points’: 

          
 

  
   

         
                                             (3.33) 

 

(d) Estimate the covariance of predicted measurement and take the measurement noise 

into account: 

       
 

  
    

                     
                  

 
  
            (3.34) 

 

(e) Estimate the cross variance between apriori state estimate and predicted measurement: 

    
 

  
    

                     
                  

 
  
                   (3.35) 

 

(f) Calculate Kalman filter gain: 

           
                                             (3.36) 

 

(g) Calculate the innovation process: 

                                                       (3.37) 

 

(h) Calculate the state estimate(aposteriori estimate, or corrected estimate), which is used 

as the applied estimate: 

                                                        (3.38) 

 

(i) Estimate the covariance of aposteriori state estimate: 

                                                      (3.39) 

The algorithm above is based on the assumption that the process and measurement function are 

linear with respect to the noise as shown in Equations (3.4) and (3.5). Compared to EKF, UKF 

doesn’t need to calculate Jacobian matrices, and it can solve state estimation problem in case of 

arbitrary Gaussian high nonlinearity. 
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3.5 Particle filter  

This section presents the PF, which is a probability-based estimator. In Section 3.5.1, a Bayesian 

approach to state estimate will be briefly discussed. And based on the approach, we will derive 

the PF algorithm. 

3.5.1 Bayesian state estimation 
Bayesian estimation is an optimal estimation method that constructs probability distribution of 

the target state based on the available information. In a general discrete-time state-space model，

the system and measurement equations are given as follows: 

                                                                   (3.40) 

                                                                 (3.41) 

The noise sequence       and       are assumed to be independent and white with known 

probability density functions (pdf). The goal of a Bayesian estimator is to approximate the 

conditional pdf of      based on measurements                      The conditional pdf is 

denoted as  

                                                                            (3.42) 

According to  Gordon et al. (1993a) and Simon (2006a), the recursive equations of the Bayesian 

state estimation filter can be summarized as follows. 

The recursive Bayesian state estimator: 

1. Assuming that the pdf of the initial state          is known, initialize the estimator as 

follows: 

                                                                       (3.43) 

 

2. For           perform the following. 

(a) The apriori pdf                   is computed from the filtering distribution  

                   at time    , which can be deduced as 

                                                                       (3.44) 

 

(b) The aposteriori pdf          can be derived as 

               
                              

                                     
                                   (3.45) 

Execution of Equations (3.44) and (3.45) in a loop is the basic method of recursive Bayesian 

estimation. 
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3.5.2 Particle filter algorithm 
Considering the nonlinear state and measurement equations as (3.40)-(3.41), the PF algorithm 

can be states as follows(Simon, 2006a). 

1. Assuming that the pdf of the initial state       is known, randomly generate N initial 

particles on the basis of pdf       . These particles are denoted as       
          

     . The parameter N is chosen by the user as a tradeoff between computational effort 

and estimation accuracy. 

 

2. For          do the following. 

(a) Perform the time propagation step to obtain apriori particles      
        using the 

known process equation and the known pdf of process noise. 

     
                   

           
                                 (3.46) 

Where each            noise vector is randomly generated on the basis of known pdf 

of        . 

(b) Compute the relative likelihood    of each particle      
       , conditioned on the 

measurement      . This is done by evaluating the pdf              
         on the 

basis of the nonlinear measurement equation and the pdf of the measurement noise. 

 

(c) Scale the relative likelihoods obtained in the previous step as follows: 

   
  

   
 
   

                                                         (3.47) 

Now the sum of all the likelihoods is equal to one. 

 

(d) Generate a set of aposteriori particles        
        on the basis of the relative 

likelihood   . This is called the resampling step. A straightforward resampling 

method can be formed as follows(Ristic et al., 2004). 

 

 Generate a random number   that is uniformly distributed on      . 

 Compare the sum of likelihood    with   at each step. If  

   
   
         

 
                                              (3.48) 

Then the new particle        
        is set equal to the old particle      

       , 

       
              

                                                    (3.49) 

 

(e) As we have get a set of particles        
        that are distributed according to pdf 

              , we can compute the desired state mean and covariance of this pdf. 
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3.6 Implementation issues 

In this section, a few implementation issues that often arise in the application of Kalman filters 

are discussed.  

While the calculations of Jacobian matrices for the EKF may seem straightforward, in practice 

these calculations are prone to errors. Many mistakes in EKF implementations can be happen 

either when calculation or coding of the Jacobian matrices, which can be time-consuming and 

complex. The UKF does not require this calculation, and therefore is typically easier and faster 

to implement than an EKF. However, the EKF usually seems to be more computationally 

efficient for most applications, as long as the EKF is using analytically determined Jacobian 

matrices instead of numerical derivatives. Because UKF requires the calculation of the nonlinear 

functions multiple times (proportional to the number of states), while the EKF requires this 

calculation only once. A critical phase of the filter implementation is initialization. An initial 

state estimate and error covariance can be chosen based on mainly intuition. The measurement 

noise covariance can be obtained by calibration of the real sensors. The process noise which 

drives the bias estimation can be tuned to improve the convergence. The biases are supposed to 

be constant or slow varying, so the process noise must have a small covariance. 

From the PF algorithm, it’s easy to find that given a large number of particles, the resampling 

process will be time consuming. However, there must be enough particles to guarantee the 

approximation accuracy of sampling and maintain a small variance. Especially when dealing 

with a high dimensional state space, insufficient number of particles will lead to the failure of the 

algorithm. Unfortunately, there is no unified rule on how to choose the number of particles. It 

relies on the experience and known specification. The three estimators are implemented in 

MATLAB and can be seen in Appendix D. 
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4 Simulation–State estimation with simulated reactor 

4.1 Introduction 

In this chapter, the three state estimators will be applied to a simulated AD reactor. 

 Evaluation Methods will be used as follows. 

(1) To determine how well the EKF, UKF and PF algorithms are performing, we need to 

compare the estimated data to the ‘real’ data which is generated by a simulator. With the 

real data, we can calculate the root mean square error (RMSE) for each test. For real and 

estimated state,       and           , RMSE is defined by 

        

 
                    

 
                    

                      (4.1) 

(2) Computational efficiency. The relative efficiency of each algorithm is determined based 

on computational time and degree of precision required. 

It may be very useful to test an estimator (in code function) with a simulated process before 

applied to the real (physical) process. If the mathematical model used in the simulator is an 

accurate representation of the real process, we may even tune the estimator parameters (e.g.   ) 

using the simulator. Besides, analysis of robustness of the estimator is focused on, that is, how 

these estimators react to model error. 

In Section 4.2, we are going to explore how the Kalman filters react to model with or without 

state augmentation. In the following Sections, we will use the model as equations (3.5) and (3.6) 

with augmentative state. Where, it is assumed that the noise sequences are pure white, zero-mean, 

and uncorrelated. 

4.2 State augmentation 

As we have discussed in Chapter 2, state augmentation consists of defining new states. In this 

case, we have generated an augment model with state       . Thus, to recognize the value of 

augmentative state, we will compare the performance of the estimators with and without 

augmentation. 

4.2.1 Simulation setup 
The model and estimators are implemented in MATLAB. Sample time is 0.1 day for all the 

simulation tasks. The ordinary Kalman filters and augmented Kalman filters are equally tuned.  

To tune the estimator, it is vital to choose a steady-state operating point as a start point for all the 

filters. For example, EKF is based on a linearized model around the steady-state point, so fast 
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rate of convergence to true value and a stronger stability can be achieved by doing this. In this 

system,              can be calculated from the real-time series of data. So            and   

can be adjusted here. Measurement noise covariance   is usually set to a constant matrix. Here   

is one element matrix as there is only one output in our system. As we know, the standard 

deviation of a representative real time-series of       is 1.2 L CH4/d. So  

                                                                  (4.2)            

                                                                           (4.3) 

(1) Initial state estimation error             is a diagonal matrix which has the same dimension 

with system matrix. From Eqs. (3.12) and (3.14), we know a small            will lead to a small 

Kalman gain and thus the Kalman filter places more importance on model-predicted estimation 

of states. Conversely, a small measurement noise and a large estimation-error covariance 

estimate results in the measured value of states dominating the aposteriori state estimate. As 

initial state            is quite close to the real value, a properly small             like zero 

matrix is more fit here. 

           

 
 
 
 
 
        

        
        
        
         

 
 
 
 

                                 (4.4) 

(2) Process noise covariance   is a diagonal matrix with a same dimension with system matrix. 

A good model means a good estimation of the process, and a small Q. The parameters belonging 

to Q on the other hand are much more difficult to obtain, and this is why the Kalman filter is 

known as difficult to tune. Here we are not sure about the quality of model. From experience, the 

the standard deviation of each of the state disturbances can be guessed as one percent of the 

representative value of the respective state variable.  

                       
 
                                           (4.5) 

  

 
 
 
 
 
            

          
            
            
           

 
 
 
 

                     (4.6) 
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4.2.2 Augmented Kalman filters  
A good way to see the value of augmented Kalman filters is to impose a model error. Model 

error is caused by wrong or inaccurate parameters when building the model. There can be model 

error regarding model parameters, and model error regarding assumption about initial state, and 

both these types of model errors are easily to implement in a simulator based test system. An 

effective way to simulate the model error is to impose an error on the initial state. Another way 

to reduce the influence of model error is to use primary nonlinear model.  A nonlinear model 

should represent more dynamic characteristics of the real process than a linearized model. That’s 

why we prefer the nonlinear model both for calculation of the states and output inside the 

algorithm. 

Here we simulate a model error with the augmentative state. The value of       from lab analysis 

at the selected operating point is  

                                                                            (4.7) 

To impose a model error, we assume the real process value is 

                                                        (4.8) 

             will be used in the simulated reactor while       will be used as initial state in the 

state estimator. Thus we can detect how the augmented Kalman filters response to the error 

model. Figure 4.1-4.3 show the augmented Kalman filters performs well when model error added. 
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Figure 4.1 : State estimation of simulated reactor,  S_bvs and S_vfa. 

 

 

Figure 4.2: State estimation of simulated AD reactor,  X_acid and X_meth. 
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Figure 4.3: State estimation of simulated AD reactor, augmented state  S_vsin. 

Figure 4.1-4.2 illustrate that augmentation methods have superior performance compared to the 

ordinary nonlinear filtering versions. Figure 4.3 shows the augmented methods perform very 

good when model error added.  

Figure 4.4 shows that the Kalman gains for each estimator are almost the same. But be noted that 

the two algorithms have different calculation methods for Kalman gain. EKF use the iterated 

Jacobian matrices, while UKF calculation is based on the chosen sigma points. So in this case, it 

proves our model is adaptable for both algorithms. 

 

Figure 4.4: Kalman gains for the augmented EKF and augmented UKF. 
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4.3 Tuning the particle filter 

The aim of the section is find the proper setup for particle filter with regard to number of 

particles. The number of particles N is the most direct and important design parameter in the PF.  

Figure 4.5-4.7 clearly show how the particle filter performs when number of particles changes. 

 

Figure 4.5: Particle filter estimation with different number of particles, S_bvs and S_vfa. 
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Figure 4.6: Particle filter estimation with different number of particles, X_acid and X_meth. 

 

Figure 4.7: Particle filter estimation with different number of particles, Svsin. 
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From Figure 4.5-4.7, we can see the blue line which represents 50 particles goes far away from 

the real data and show a trend of divergence. While the others with 200 and 500 particles show a 

robust performance. A series of tests show that the more particles, the better estimation accuracy. 

And when the number is above 200, a satisfactory result can be obtained.   

Table 4.1 shows the RMSE for each state estimate across the different number of sampling 

points. Note that when the number of samples increases, the RMSE slightly decreases, but 

execution time of the algorithm increase a lot.  

Table 4.1: RMSE and execution time with different number of particles. 

                   Numbers    

Performance 
N=50 N=200 N=500 

Elapsed time(sec) 0.869 5.910 31.648 

        
 0.005 0.004 0.008 

        
 0.024 0.010 0.003 

         
 0.017 0.016 0.009 

         
 0.024 0.005 0.008 

          
 0.027 0.021 0.024 
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4.4 Comparison of the filters 

In this simulation task, the same initial value will be used as Section 4.2.1.  

4.4.1 Performance with respect to different process noise. 
In this task, we set three different process noise covariance as 0.01*Q, Q and 100*Q. Figure 4.8-

4.9 show the estimation error when various values of Q are used in the Kalman filters.   

 

 

 

 

Figure 4.8: Estimation error with respect to various process noise covariance, S_bvs. 
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Figure 4.9: Estimation error with respect to various process noise covariance, S_vfa. 

As the process noise gets larger, the estimation error becomes larger, as we can see the amplitude 

of y-axis increases. This means the estimation is becoming more inaccurate and noisy. The 

reason behind is that the Kalman gain will converge to a larger steady-state value when Q is 

larger, which cause the filters more dependent on noisy measurements. An appropriate larger Q 

can be a compensation to model error, because a system with too little noise might be overly 

susceptible to model error(Simon, 2006a). 

An interesting phenomenon is that EKF shows more stable than UKF at the first few days of 

simulation. And when the process noise covariance increases (i.e. 1000*Q), UKF even becomes 

to divergent. That means EKF is more robust to the process noise. 
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4.4.2 Performance with respect to different measurement noise. 
It’s important to know how the Kalman filters react to measurements. In this task, we set three 

different measurement noise covariance as 0.0144, 1.44 and 144. The simulation result can be 

presented as Figure 4.10-4.11. 

 

 

 

 

Figure 4.10: State estimation with respect to various measurement noise covariance, S_bvs. 
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Figure 4.11: State estimation with respect to various measurement noise covariance, S_vfa. 

It can be easily found from Figure 4.10-4.11, even the measurement noise increases by a factor 

of 100, The Kalman filters can give estimation accuracy with a small difference as before. That 

means all the filters are essentially immune to the measurement noise, as the algorithms put more 

weights on the process model. Note when      , EKF becomes extremely sensitive, while the 

UKF and PF show a strong robustness regarding to this measurement noise. 
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4.4.3 Performance with respect to different initial error covariance. 
In order to test the performance of the filters with different initial errors, three different initial 

conditions are applied. For initial state estimation error, we will start with             and set the 

second and third test value as                and                . The results can be shown 

as Figure 4.12 and 4.13.  

 

Figure 4.12: State estimation with respect to various initial state covariance, S_bvs. 
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Figure 4.13: State estimation with respect to various measurement noise covariance, S_vfa. 

The simulation results show that UKF, EKF and PF, give very similar results while having a 

small initial estimation error. However, when a large initial error (for example,      

           in this case) is given, the UKF is highly susceptible and shows a slower convergence 

with respect to the EKF and PF, but after a settling time the performance become identical. 

Compare to UKF and EKF, The reason behind this may be the sigma points that UKF relies on. 

PF does a better job. The estimation is more stable with a faster convergence.  
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4.4.4 Performance comparison under same initial condition 
Figure 4.14-4.16 present the simulation results of EKF (dotted), UKF (dash-dot) and PF (dashed) 

in 80 days.  The solid, black line represents the true states. 

 

 

Figure 4.14: Simulation: Estimates of the states S_bvs and S_vfa, disturbance S_vsin=35 at day 

40. 
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Figure 4.15: Simulation: estimates of the states X_acid and X_meth, disturbance S_vsin=35 at 

day 40. 

 

Figure 4.16: Simulation: Estimates of the state S_vsin, disturbance S_vsin=35 at day 40. 

From Figure 14-16, it can be easily seen that the UKF and PF give a better estimation 

performance than EKF from day 0 to 40. When a disturbance happens at day 40, as       

suddenly increases to 35, EKF and UKF show a fast response and estimate the states as well as 

before. In contrast, the PF shows a slow convergence and unstable estimation especially 
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estimation of       and      . From this experiment, we find that EKF and UKF have better 

robust stability that PF. 

To compare the estimation qualities of the EKF and the UKF, Figure 4.17 below plots the 

absolute value of estimation errors which are relative to the true states. The result shows that the 

three Kalman filters give the similar absolute estimation error for all the five states. However, for 

the states       and      , the superior performance of the PF and UKF is clear(absolute 

estimation error is under 0.1 and 0.02 for the whole time axis). 

 

Figure 4.17: Comparison of the absolute estimation errors of EKF (dashed), UKF (dotted) and 

PF (solid) for each state. 

Table 4.2 shows the RMSE of each algorithm. From the number, we can find the performance 

between EKF and UKF almost the same. PF shows better performance than the others regarding 

to estimation of       and bigger error with     . 
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Table 4.2: Performance results of the nonlinear estimation filters. 

                  Algorithm    

Performance 
EKF UKF PF 

        
 0.0001 0.0001 0.0004 

        
 0.0046 0.0046 0.0040 

         
 0.0037 0.0038 0.0017 

         
 0.0069 0.0067 0.0066 

          
 0.0042 0.0040 0.0043 

 

Table 4.3 shows that the discrete-time UKF is the fastest filter with an elapsed time around 0.8 

second, compared to 2.5 seconds of EKF and 70.9 seconds of PF. PF algorithm need more 

computational effort with approximately 90 times and 30 times more time consuming in terms of 

CPU time usage.  For instance, the discrete-time UKF requires about 31% of the computational 

burden of the EKF, because the calculation of the Jacobian matrix in the EKF is time-consuming.  

The algorithms were implemented on a 2.6 GHz machine which had 4 GB RAM. Simulation 

software used is MATLAB R2012a(64-bits). A sampling time of 0.1sec was considered. 

Table 4.3: Elapsed time of filtering algorithms. 

                    Algorithm          

Time steps         

EKF 

time(sec) 

UKF  

time(sec) 

PF  

time(sec) 

800 2.5 0.8 70.9 

 

The simulation results show that UKF is more sensitive to noise than EKF and PF. UKF is the 

fastest algorithm based on the same condition.  

4.5 Summary 

These results show that the EKF and UKF have roughly the same error in all cases. EKF has a 

satisfactory estimate with higher computational cost as update of Jacobian matrix in every time 

step. UKF has a similar performance with EKF, but susceptible to the initial condition. UKF can 

avoid linearization in algorithm implementation. When there is no disturbance, PF has the best 

performance, which unfortunately based on a high computational requirement. Also, UKF and 

PF are more complicated than EKF. No one algorithm has absolute advantage over another one.  

The only way is to consider case by case. For this AD reactor, EKF can be a good choice as a 

reliable estimator, and simple model used such that easily calculation of Jacobian matrix. 
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 5 Test – State estimation with real reactor 

In this part, the real process data will be applied to the state estimators to see how they 

performance. We are also interested in that how they deal with a sensor failure. We do this by 

changing the real process data to be zero at some point. 

5.1 Data preprocessing 

Remove outliers from raw data 

Removing outliers can cause data to become more normal but contrary data reality always lies in 

these suchlike “outliers”. There may be many truly valid reasons to remove data-points. These 

include outliers caused by measurement errors, incorrectly entered data-points or impossible 

values in real life. In Figure 5.1 below, there are two potential outliers in methane gas flow 

happened at day 34 and 74. Yet we are not sure they are outliers or not, because temperature and 

feed flow change during this time. A decrease in temperature can slow down the reaction and 

thus results in low output. Such decrease can cost time from practical experience. A rough but 

reliable method is to observe the lasting time in change of the data. Observe from the raw data, 

temperature change from 35 ℃ to 22℃and to 40℃, and this change actually lasts almost one 

day around the day 34. So an overshot in methane gas flow can be possible. 

The upper part shows the real data given is from t = 0d (19. May 2012) to t = 110d (15. Aug 

2013). The time step between each point of sensor data is 15 minutes. The lower part shows the 

time series of feed flow, reactor temperature and methane gas flow during this period.  

 

Figure 5.1: Upper: Measured methane gas flow. Lower: Measured feed flow and reactor 

temperature. 
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Interpolation  

As in our raw dataset, there are miserable data and a big number of NaNs exists inside. So our 

method is to remove these NaNs and substitute them with interpolation. Linear interpolation will 

be deployed as our data is logged on a small interval. So in a small time zone, a linear 

relationship should be holding on these data. An example as Figure 5.2 shows our interpolation 

for the analysis data inf_vs, which in fact equal to state       . There are four points of NaNs and 

interpolated here. All the data processed and being prepared to used in our estimator are stored in 

mat file test.mat as Appendix E. 

 

Figure 5.2: Interpolation for the analysis data inf_vs. 

5.2 Tuning the state estimators 

A tuned Kalman filter will accurately estimate the statistical characteristics of the measurement 

and process model, such that a minimum variance estimate of the state is produced. Tuning is 

often considered as an art, but through dynamic simulation and statistical testing, the filter can be 

systematically adjusted to produce optimal results.  

When the initial state of the system is unknown, it is usually set as zero with a high valued initial 

state covariance matrix. If the best estimation is used as initial value, then a small valued 

diagonal matrix can be deployed to express the uncertainty of this estimate. Note that for UKF, 

the initial state covariance is a significant and susceptible parameter. Because the sigma points 

are chosen so that their mean and covariance to be exactly the initial state and the initial state 

covariance. And the estimation ability of UKF highly depends on the set of sigma points. UKF 
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uses a weighted set of deterministically sampled points called sigma-points, which are passed 

through the nonlinearity and are used to approximate the statistics of the distribution. 

The Kalman filter should be tuned to be robust enough to compensate for initial errors. In 

Section 4.2.1 we have defining    and   to simulate the real system and the Kalman filters have 

achieved a satisfactory robust behavior. For  , it can be found directly as the covariance of 

measurement noise. But for  , it must either be tuned using a combination of model knowledge 

and trial and error or via adaptive methods that estimate the covariance while performing the 

actual estimation. In this case, a trial and error method can be used. The same tuning method will 

be used in this actual application. Kalman filters with the same initial values and tuning 

parameters are given in Section 4.2.1. 

5.3 Results and discussions 

Figure 5.3-5.5 shows the state estimators together with real data from online sensor and 

laboratory analysis over a time interval of 110 days. Figure 5.3 shows lab analysis data and 

estimates of the state         and        . 

 

Figure 5.3: Lab analysis data and estimates of the state S_bvs=x_1 and S_vfa=x_2. 

Figure 5.4 shows estimates of the state          and         . We don’t have lab analysis 

data for these two variables. The only way to judge the estimation is to see if these data are stable 

and around the steady point or not. 
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Figure 5.4: Estimate of the states X_acid=x_3 and X_meth=x_4. 

Figure 5.5 shows lab analysis data and estimates of the augmentative state          . 

 

Figure 5.5: Lab analysis data and estimate of the state S_vs,in=x_5 . 

Another point is deserved to be discussed is sensor failure. With the rapid development of sensor 

technology, an increasing number of sensors are installed in various applications for monitoring 

and control. Due to high employment, the frequency of occurrence of sensor faults is 

increasing(Kullaa, 2013). As the monitoring and control applications rely on the sensor data, it is 

of importance that the sensors give accurate and reliable information. A faulty sensor cannot 
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function properly but instead provide false data, which can result in fatal damage of the system. 

Therefore, it is necessary to detect such faults and adapt to the new situations with right actions. 

Sensor failure can happen due to reasons like battery failure or improper service procedures, and 

a controller like PID based on this sensor will make a wrong action. And this can put the real 

process into dangerous situation. But with a Kalman filter, we can avoid the consequence of such 

a sensor failure may bring to our system. The reason is that the Kalman filters rely on the model 

predict even without measurement update. So it’s vital for the algorithm to recognize a sensor 

failure. To simulate such an abnormal scenario, we can easily set the sensor measurement value 

to zero. And when this abnormal scenario happens, the estimators should detect it and react by 

deleting the innovation process. That means the Kalman filters now completely depends on the 

process model. 

Deleting the innovation process and the Kalman algorithms changed at formula (3.14) and (3.38) 

                                                                       (5.1) 

                                                                       (5.2) 

In this simulation test, we compare the result of keeping the innovation process and deleting it.  

By doing this, we actually make the Kalman filter algorithms more intelligent. Figure 5.6 shows 

      and relative states      and      when we start a sensor failure scenario without deleting 

the innovation process.  
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Figure 5.6: Result without deleting the innovation process. The upper is F_meth& the lower are 

S_bvs and S_vfa. 

When sensor measurement fails, the states estimate and measurement estimate      also lose 

control. Based on the theory, EKF and UKF should react similarly as the measurement update of 

the sate estimate using the normal Kalman filter equations. Instead of innovation process, PF 

algorithm is using kind of process called resampling. It’s interesting to see that the PF perform 

well when sensor measurement becomes to zero.   

Figure 5.7 shows result after deleting the innovation process. Different from Figure 5.6, the 

states estimate and measurement estimate      keep running and have a good performance as 

normal situation. 
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Figure 5.7: Result after deleting the innovation process. The upper is F_meth& the lower are 

S_bvs and S_vfa. 
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6 Conclusion and future work 

6.1 Conclusion 

This report has compared three nonlinear Kalman filtering approaches for the estimation of the 

states of an AD reactor. The tests have been made by simulating real working conditions, 

including the failure of biogas measurement sensor. The tests results show that the three filters 

have good estimation and similar performances. 

The simulation results show that the performance of the three filters is similar in case of good 

knowledge of the initial state. On the contrary, if the initial estimation error covariance is large, 

then PF shows a faster convergence compared with UKF and EKF. A large enough error can 

even bring the UKF and EKF to instability. The difference depends on the nature of the three 

filters. The EKF obtains the posterior by exploiting the linear approximation of the system 

equations; whereas the UKF, instead of approximating the nonlinear equations, approximates the 

prior by a limited number of sigma points. The posterior is then obtained by propagating these 

points through the original nonlinear function. In another side, PF uses a number of independent 

random variables called particles, sampled directly from the state space, to represent the 

posterior probability, and update the posterior by involving the new observations. The three 

approaches give similar results if the initial uncertainty is very close to the mean, so that the 

sigma points are very close to each other as well as the particles.  

In general, the performances of the UKF and of the EKF may differ more or less according to the 

specific application considered. The main factors that can make the UKF perform better than the 

EKF are the type of non-linearity and the level of uncertainty that characterize the considered 

application.  

Some considerations must be done on the computational burden of the filters. In this case, the 

UKF is presented as less demanding compared with EKF, from a computational point of view, 

because it doesn’t require the computation of Jacobian matrices at each time step. Compared to 

other methods, the PF is easy to implement and applicable to a wider range of problems.  
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6.2 Future work 

There are several aspects that should be considered for future work. 

 Auto-tuning method can be developed for the filters. 

 

 Different models for the AD reactor can be deployed to test one specific Kalman filter. 

It’s meaningful to explore how a Kalman filter reacts to different mathematical models. 

 

 Automatic control method can be developed for this AD reactor. A feed-forward 

controller or an advanced model-based controller can be used to cooperate with the 

Kalman filter. 

 

 Filtering with non-Gaussian nonlinear state space model. With the expansion of 

applications - for example, in the detection of structural changes of time series models, in 

the analysis of time series with outliers, and in nonlinear time series modeling -  the 

necessity of non-Gaussian state space modeling has become apparent(Kitagawa, 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

Reference 

CHAI, Q., FURENES, B. & LIE, B. 2007. Comparison of state estimation techniques, applied to 

a biological wastewater treatment process.  10th International IFAC symposium on 

computer applications in biotechnology, Mexico, 2007. 

FISCHER, J. R., IANNOTTI, E. L. & PORTER, J. H. 1984. Anaerobic digestion of swine 

manure at various influent solids concentrations. Agricultural Wastes, 11, 157-166. 

FUMING, S., GUANGLIN, L. & JINGLI, W. 2009. Unscented Kalman Filter Using Augmented 

State in the Presence of Additive Noise.  Control, Automation and Systems Engineering. 

CASE 2009. IITA International Conference on, 11-12 July 2009. 379-382. 

GORDON, N. J., SALMOND, D. J. & SMITH, A. F. 1993a. Novel approach to nonlinear/non-

Gaussian Bayesian state estimation.  IEE Proceedings F (Radar and Signal Processing). IET, 

107-113. 

GORDON, N. J., SALMOND, D. J. & SMITH, A. F. M. 1993b. Novel approach to 

nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Processing, IEE 

Proceedings F, 140, 107-113. 

GROSS, J. N., YU, G., RHUDY, M. B., GURURAJAN, S. & NAPOLITANO, M. R. 2012. 

Flight-Test Evaluation of Sensor Fusion Algorithms for Attitude Estimation. Aerospace and 

Electronic Systems, IEEE Transactions on, 48, 2128-2139. 

GUSTAFSSON, F. 1997. Slip-based tire-road friction estimation. Automatica, 33, 1087-1099. 

HAUGEN, F., BAKKE, R. & LIE, B. 2012b. State Estimation of a Pilot Anaerobic Digestion 

Reactor. Nordic Process Control Workshop 2012. 

HAUGEN, F., BAKKE, R. & LIE, B. 2013. Adapting Dynamic Mathematical Models to a Pilot 

Anaerobic Digestion Reactor. MODELING IDENTIFICATION AND CONTROL, 34, 35-54. 

HAUGEN, F., BAKKE, R. & LIE, B. 2014. State Estimation and Model-Based Control of a 

Pilot Anaerobic Digestion Reactor. Journal of Control Science and Engineering, 2014, 19. 

HILL, D. T. 1983. Simplified monod kinetics of methane fermentation of animal wastes. 

Agricultural Wastes, 5, 1-16. 

HUSAIN, A. 1998. Mathematical models of the kinetics of anaerobic digestion—a selected 

review. Biomass and Bioenergy, 14, 561-571. 

JAZWINSKI, A. H. 1970. Preface. In: ANDREW, H. J. (ed.) Mathematics in Science and 

Engineering. Elsevier. 

JULIER, S. & UHLMANN, J. 1997. A New Extension of the Kalman Filter to Nonlinear 

Systems.  International Symposium Aerospace/Defense Sensing, Simulation and Controls, 

1997. 182-193. 

JULIER, S. J., UHLMANN, J. K. & DURRANT-WHYTE, H. F. 1995. A new approach for 

filtering nonlinear systems.  American Control Conference, Proceedings of the 1995, 21-23 

Jun 1995. 1628-1632 vol.3. 



51 
 

KALMAN, R. E. 1960. A new approach to linear filtering and prediction problems. Journal of 

basic Engineering, 82, 35-45. 

KITAGAWA, G. 1996. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State 

Space Models. Journal of Computational and Graphical Statistics, 5, 1-25. 

KULLAA, J. 2013. Detection, identification, and quantification of sensor fault in a sensor 

network. Mechanical Systems and Signal Processing, 40, 208-221. 

KUPILIK, M. J. & VINCENT, T. L. 2011. Estimation of biogas composition in a catalytic 

reactor via an extended Kalman filter.  Control Applications (CCA), 2011 IEEE 

International Conference on, 28-30 Sept. 2011. 768-773. 

LAVIOLA JR, J. J. 2003. A comparison of unscented and extended Kalman filtering for 

estimating quaternion motion.  American Control Conference, 2003. Proceedings of the 

2003. IEEE, 2435-2440. 

MAEDER, U. 2010. Augmented models in estimation and control, DSc Dissertation ETH 

Zurich. 

MYERS, M. R., JORGE, A. B., MUTTON, M. J. & WALKER, D. G. 2012. A comparison of 

extended Kalman filter, particle filter, and least squares localization methods for a high heat 

flux concentrated source. International Journal of Heat and Mass Transfer, 55, 2219-2228. 

RAY, L. R. 1997. Nonlinear Tire Force Estimation and Road Friction Identification: Simulation 

and Experiments. Automatica, 33, 1819-1833. 

RISTIC, B., ARULAMPALAM, S. & GORDON, N. 2004. Beyond the Kalman filter: Particle 

filters for tracking applications, Artech house. 

SIMON, D. 2006a. Optimal state estimation: Kalman, H infinity, and nonlinear approaches, 

Wiley. com. 

SIMON, D. 2006b. Using nonlinear Kalman filtering to estimate signals [Online]. Available: 

http://www.embedded.com/design/connectivity/4025693/Using-nonlinear-Kalman-filtering-

to-estimate-signals 2014]. 

SIMON, D. 2008. A comparison of filtering approaches for aircraft engine health estimation. 

Aerospace Science and Technology, 12, 276-284. 

SIMON, D. J. 2006c. Using nonlinear Kalman filtering to estimate signals. Embedded Systems 

Design, 19, 38-53. 

WAN, E. A. & VAN DER MERWE, R. 2000. The unscented Kalman filter for nonlinear 

estimation.  Adaptive Systems for Signal Processing, Communications, and Control 

Symposium 2000. AS-SPCC. The IEEE 2000,  2000. 153-158. 

WAN, E. A. & VAN DER MERWE, R. 2002. The Unscented Kalman Filter. Kalman Filtering 

and Neural Networks. John Wiley & Sons, Inc. 

 

http://www.embedded.com/design/connectivity/4025693/Using-nonlinear-Kalman-filtering-to-estimate-signals
http://www.embedded.com/design/connectivity/4025693/Using-nonlinear-Kalman-filtering-to-estimate-signals


52 
 

Appendices 

Appendix A Task description for this thesis 

 

Telemark University College 

Faculty of Technology 

FMH606 Master's Thesis 

Title: Evaluation and comparison of Kalman Filter algorithms 

TUC supervisor: Associate Professor Finn Haugen 

External partner: - 

Task description:   

The main aim of the thesis is to evaluate and compare a number of alternative Kalman Filter 

algorithms in applications to a real and a simulated anaerobic digestion (AD) reactor. 

If possible, the results should be presented in an article to be submitted to a recognized scientific 

journal. This article, or a draft of an article, will then be a part of the thesis. 

Task background:   

State estimators in the form of an appropriate Kalman Filter are useful for monotoring AD 

reactors. Typically, in practical applications, biogas flow sensors are used. None of the state 

variables are measured, but they can be estimated with a Kalman Filter. It is of interest to 

compare and evaluate alternative Kalman Filter algorithms with respect to their implementation 

and performance. Both online sensor data and laboratory data for the real AD reactor exist. 

 Student category: SCE student. 

Practical arrangements: 

The thesis will be accomplished at TUC. 

Signatures:  

Students (date and signature): 

 Supervisor (date and signature):  



53 
 

Appendix B Calculation of Jacobian matrix 

% Calculate Jacobian matrix for EKF 
function [A B C] = ComputeJacobian(x,Ffeed) 
%state space model of the biogas reactor 
%---------------------------------------------------------------------- 
% Define parameters 
Af = 0.69;  %acidity constant (g VFA/L) 
b  = 2.90;  %Retention time ratio d/d 
B0 = 0.25;  %Biodegradability constant (g BVS/L)/ (g VS/L) 
k1 = 3.89;  %Yield constant g BVS/(g acidogens/L) 
k2 = 1.76;  %Yield constant g VFA/(g acidogens/L) 
k3 = 31.7;  %Yield constant g VFA/(g methanogens/L) 
k5 = 26.3;  %Yield constant L/g methanogens   
Kd = 0.02;  %Specific death rate of acidogens d/1 
Kdc = 0.02; %Specific death rate of methanogens d/1 
Ksc = 3;    %Monod half-velocity constant for methanogens g VFA/L     
V = 250;    %Effective reactor volume L 
Treac = 35; %temperature in the reactor 
um = 0.013*Treac-0.129; 
umc = um; 
Svsin=30.2; 
%----------------------------------------------------------------------- 
%Naming states 
Sbvs = x(1); 
Svfa = x(2); 
Xacid = x(3); 
Xmeth = x(4); 
% Svsin = x(5); 
%define matrices for the continuous time model 
%Ac matrix 
A11 = -(Ffeed/V)-(um*k1*Ks*Xacid)/((Ks+Sbvs)^2); 
A12 = 0; 
A13 = -((k1*um*Sbvs)/(Ks+Sbvs)); 
A14 = 0; 
A21 = (um*k2*Ks*Xacid)/(Ks+Sbvs)^2; 
A22 = -(Ffeed/V)-(umc*k3*Ksc*Xmeth)/(Ksc+Svfa)^2; 
A23 = (k2*um*Sbvs)/(Ks+Sbvs); 
A24 = -((k3*umc*Svfa)/(Ksc+Svfa)); 
A31 = (um*Ks*Xacid)/(Ks+Sbvs)^2; 
A32 = 0; 
A33 = -(Ffeed/(b*V))+(um*Sbvs)/(Ks+Sbvs)-Kd; 
A34 = 0; 
A41 = 0; 
A42 = (umc*Ksc*Xmeth)/((Ksc+Svfa)^2); 
A43 = 0; 
A44 = -(Ffeed/(b*V))+(umc*Svfa)/(Ksc+Svfa)-Kdc; 
Ac = [A11 A12 A13 A14;A21 A22 A23 A24;A31 A32 A33  A34;A41 A42 A43 A44]; 
%Bc matrix 
B11 = (B0*Svsin - Sbvs)/V; 
B21 = (Af*B0*Svsin - Svfa)/V; 
B31 = -Xacid/(b*V); 
B41 = -Xmeth/(b*V); 
Bc = [B11;B21;B31;B41]; 
%Cc matrix 
C11 = 0; 
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C12 = (umc*V*k5*Ksc*Xmeth)/((Ksc+Svfa)^2); 
C13 = 0; 
C14 = (V*k5*umc*Svfa)/(Ksc+Svfa); 
Cc = [C11 C12 C13 C14]; 
%Dc matrix 
D11 = 0; 
Dc = D11; 
sys = ss(Ac,Bc,Cc,Dc); %continuous time model 
%------------------------------------------------------------------------- 
%Transfer continuous time model to disctrete time model 
Ts = 0.1; %sampling time unit:s 
sysd = c2d(sys,Ts,'zoh'); %discrete time model 
%-----------------######################################------------------- 
%Augmented state space model(discrete time),augmented state Svsin 
% A15 = B0*Ffeed/V; %after add Svsin as an augmented state variable 
% A25 = B0*Af*Ffeed/V; 
% A35 = 0; 
% A45 = 0; 
% A51 = 0; A52 = 0; A53 = 0; A54 = 0; A55 = 0; 
% B51 = 0; 
% C15 = 0; 
% Acaug = [A11 A12 A13 A14 A15;A21 A22 A23 A24 A25;A31 A32 A33  A34 

A35;A41... 
%     A42 A43 A44 A45;A51 A52 A53 A54 A55]; 
% Bcaug = [B11;B21;B31;B41;B51]; 
% Ccaug = [C11 C12 C13 C14 C15]; 
% Dcaug = 0; 
% sysaug = ss(Acaug,Bcaug,Ccaug,Dcaug); %continuous time model 
% sysdaug = c2d(sysaug,Ts,'zoh'); %discrete time model 
[A,B,C,D] = ssdata(sysd); 
%------------------------------------------------------------------------- 
%Transfer function can be deployed for a PID controller 
% Had = tf(sys); %continuous transfer function 
% Hadaug = tf(sysaug); %continuous transfer function of augmented model 

 

Appendix C Step test of nonlinear model and linearized 

model 

%Evaluation of linearized model 
T_min = 0; 
T_max = 2000; 
T=T_min: T_max; 
N=length(T_min:T_max); 
dt= (T_max-T_min)/(N-1)/100; 

  
X_data1=zeros(N,4); 
Y_data1=zeros(N,1); 
U_data1=zeros(N,1); 
%Steady-state operating point 
Xs=[5.1; 1.01 ;  1.31 ;0.364]; 
Us=45;  
X1= [5.1; 1.01 ; 1.31 ;0.364];  %initial value[0;0;0;0];% 
%parameters 
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k5 = 26.3; 
Kd = 0.02; 
Kdc = 0.02; 
Ks = 15.5; 
Ksc = 3; 
V = 250; 
Treac = 35;  
um = 0.013*Treac-0.129; 
umc = um; 
Ys=V*(umc*Xs(2)/(Ksc+Xs(2)))*k5*Xs(4); 
u=45; %give step amptitude 

  

  
X= [5.1; 1.01 ; 1.31 ;0.364]; %[0;0;0;0]; 
X_data=zeros(N,4); 
Y_data=zeros(N,1); 
U_data=zeros(N,1); 
%step test of nonlinear model 
for k=1:N 
    X= X+dt*nonlinearmodel(X,u); %Forward euler method 
    X_data(k,1:4)=X'; %Output states 
    Y = V*(umc*X(2)/(Ksc+X(2)))*k5*X(4);  
    Y_data(1,1)=Y'; %output methane gas 
end 

  
%step test of linearized model 
%to get Ac Bc Cc, need to run file'discretespacemodel'first 
for l=1:N 
    %d(x-xs)/dt=Ac*(x-xs)+Bc*(u-us) xs-the steady point 
    X1= X1 + dt*(Ac*(X1-Xs)+Bc*(u-Us));  
    X_data1(l,1:4)=X1'; 
    Y1 = Ys + Cc*(X1-Xs); %(y-ys)=Cc*(x-xs) 
    Y_data1(l,1)=Y1'; 
end 
%%plot result 
figure(1) 
plot(T,X_data1(:,1),'r:',T,X_data1(:,2),'b:',T,X_data1(:,3),'c:',... 
    T,X_data1(:,4),'k:') 
hold on 
plot(T,X_data(:,1),'r',T,X_data(:,2),'b',T,X_data(:,3),'c',T,X_data(:,4),'k') 
title('Sbvs--red  Svfa--blue  Xacid--brillantblue  Xmeth--black') 
ylabel('[g/L]') 
xlabel('Time step') 
legend('nonlinear','linearized') 
hold off 
figure(2) 
hold on 
plot(T,Y_data1(:,1),'g:') 
plot(T,Y_data(:,1),'r') 
legend('Fmeth') 
hold off 
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Appendix D Simulation-State estimation with Kalman 

filters 

%============================================================================ 

%%SCRIPT FILE COMPUTATION OF STATES OF AD REACTOR 
% 
% (C) Chao xi 
%     Telemark University College 
%     March 15, 2014 
% Discrete-time EKF, UKF, PF simulation for a biogas reactor  
% Estimate Sbvs, Svfa, Xacid, Xmeth and Svsin on the basis of noisy 

measurements of Fmeth  
%========================================================================== 
clear all; clc; 
T_stop = 50; 
dt=0.1;       % how often measurements are obtained 
t=0:dt:T_stop; 
N=length(t);  % Simulation length  

  

  
R = 1.44;     % Measurement noise covariance  
Q = diag([0.002725 0.0001 0.000169 0.000013 0.1024]); %process noise 

covariance 
%Add noise to each state and measurement 
w = sqrt(Q)*randn(5,N); %process noise 
pn = w; 
v = sqrt(R)*randn(1,N); %measurement noise 
mn = v; 

  
E=eye(5,5); 
P_apost=0.01*eye(5,5);%initial covariance of estimation error ekf 
Pukf = 0.01*eye(5,5);%initial covariance of estimation error ukf 

  
x_apost=[5.2155;1.0094;1.3128;0.3635;30.2]; %initial state estimate ekf 
x_apostukf = [5.2155;1.0094;1.3128;0.3635;30.2];  %initial state estimate ukf 
x = [5.2155;1.0094;1.3128;0.3635;40.2];     %initial state simulator 

  
Ffeedk=45;      %feed into the AD reactor 
% Initialize arrays for plotting at the end of the program 
Y=zeros(N,1); 
X=zeros(N,5); 
X_ekf=zeros(N,5); 
X_ukf=zeros(N,5); 
X_pf=zeros(N,5); 
Y_m = zeros(N,1); 
Y_p = zeros(N,1); 

  
% Initialization for particle filter 
Ppf = 0.01*eye(5,5);     %initial covariance of estimation error pf 
n = 500;           %number of particles 
% Initialize the particle filter. 
for k = 1 : n 
    x_apostpf(:,k) = x + sqrt(Ppf)* pn(:,k); 
end 
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%------------------------------EKF----------------------------------------  
for i=1:N 
    %output measurement states(or calculated from model)  
    X(i,:)=x'; 
    %simulation state variable for next step 
    x=x+dt*(nonlinearmodel(x,Ffeedk))+ pn(:,i)); 
    %Simulate noisy measurement(or calculated from model) 
    y=250*(0.326*x(2)/(3+x(2)))*26.3*x(4)+ mn(:,i); 
    Y_m(i,:)=y'; 
   % tic; 
      %%Calculate Jacobian matrix A 
        [A B C] = ComputeJacobian(x_apost,Ffeedk); 
    %%Time update 
    %(1) Apriori estimate(predicted estimate) 
          x_apri = x_apost + dt*nonlinearmodel(x_apost,Ffeedk); 

     
    %(2) Covariance of estimation error 
          P_apri = A*P_apost*A'+E*Q*E'; 

      
    %%Measurement update 
    %(1) Kalman filter gain matrix 
         a1 = P_apri*C'; 
         a2 = C*P_apri*C'+R; 
         K=a1/a2; 
         Kekf_gain(i,:)= K'; 
    %(2) Measurement estimate 
         y_apri=250*(0.326*x_apri(2)/(3+x_apri(2)))*26.3*x_apri(4); 
         Y_p(i,:)=y_apri'; 
    %(3) State estimate or corrected estimate 
         x_apost=x_apri+K*(y-y_apri); 
         X_ekf(i,:)=x_apost'; 
    %(4) Update Covariance of estimation error 
         I=eye(5,5); 
         P_apost=(I-K*C)*P_apri*(I-K*C)'+K*R*K'; 

  
%---------------------------UKF------------------------------------------- 

  
   W = ones(10,1) / 10; % UKF weights (2*5 states) 
   % Generate the UKF sigma points. 
   [root,p] = chol(5*Pukf);%  
   for j = 1 : 5 
       sigma(:,j) = x_apostukf + root(j,:)'; % the first 5 sigma points 
       sigma(:,j+5) = x_apostukf - root(j,:)'; % the last 5 sigma points 
   end 
   for j = 1 : 10 
       xbreve(:,j) = sigma(:,j); %10 sigma points in vector xbreve 
   end 

    
 % UKF time update 
   for j = 1 : 10 
         xbreve(:,j) = xbreve(:,j) + dt*nonlinearmodel(xbreve(:,j),Ffeedk); 
   end 
      x_apriukf = zeros(5,1); 
  for j = 1 : 10 
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      x_apriukf = x_apriukf + W(j) * xbreve(:,j); 
  end 
      Pukf = zeros(5,5); 
  for j = 1 : 10 
      Pukf = Pukf + W(j) * (xbreve(:,j) - x_apriukf) * (xbreve(:,j) - 

x_apriukf)'; 
  end 
      Pukf = Pukf + Q; 

   
   % UKF measurement update 
   %(a)Generating new sigma points 
   [root,p] = chol(5*Pukf);% number 5 means 5 states 
   for j = 1 : 5 
       sigma(:,j) = x_apriukf + root(j,:)'; % the first 5 sigma points 
       sigma(:,j+5) = x_apriukf - root(j,:)'; % the last 5 sigma points 
   end 
   for j = 1 : 10 
       xbreve(:,j) = sigma(:,j); %10 sigma points in vector xbreve 
   end 
   %(b)substitute the sigma points into nonlinear equation 
  for j = 1 : 10 
      zukf(:,j) = 250*(0.326*xbreve(2,j)/(3+xbreve(2,j)))*26.3*xbreve(4,j); 
  end 
   %(c)Caiculate the predicted measurement 
      zhat = 0; 
  for j = 1 : 10 
      zhat = zhat + W(j) * zukf(:,j); 
  end 
  %(d)Estimate the covariance of the predicted measurement and cross 

covariance 
  Py = 0; 
  Pxy = zeros(5,1); 
  for j = 1 : 10 
      Py = Py + W(j) * (zukf(:,j) - zhat) * (zukf(:,j) - zhat)'; 
      Pxy = Pxy + W(j) * (xbreve(:,j) - x_apriukf) * (zukf(:,j) - zhat)'; 
  end 
  Py = Py + R; 
  Kukf = Pxy /(Py); 
  Kukf_gain(i,:) = Kukf'; 
  Y_ukf(i,:)=zhat'; 
  %(e)measurement update of the state estimate 
  x_apostukf = x_apriukf + Kukf * (y - zhat); 
  X_ukf(i,:)=x_apostukf'; 
  Pukf = Pukf - Kukf * Py * Kukf';    

   
  %-------------------PF(Particle filter)---------------------------------- 
  % initial sate value see xhat,state corvariance Ppf, noise as Q,R 
  % Simulate the continuous-time part of the particle filter (time update). 
     x_apripf = x_apostpf; 
  for k = 1:n 
     x_apripf(:,k) = x_apripf(:,k)+dt*(nonlinearmodel(x_apripf(:,k),Ffeedk)+ 

pn(:,k)); 
     yhat = 250*(0.326*x_apripf(2,k)/(3+x_apripf(2,k)))*26.3*x_apripf(4,k); 
     vhat(k) = y - yhat; 
  end 
     Y_pf(i,:)=yhat'; 
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    % Note that we need to scale all of the q(k) probabilities in a way 
    % that does not change their relative magnitudes. 
    % Otherwise all of the q(k) elements will be zero because of the 
    % large value of the exponential. 
    vhatscale = max(abs(vhat)) / 4;  
    qsum = 0; 
    for k = 1 : n 
        q(k) = exp(-(vhat(k)/vhatscale)^2); 
        qsum = qsum + q(k); 
    end 
   % Normalize the likelihood of each a priori estimate. 
    for k = 1 : n 
        q(k) = q(k) / qsum; 
    end 
   % Resample. 
    for k = 1 : n 
        u = rand; % uniform random number between 0 and 1 
        qtempsum = 0; 
        for m = 1 : n 
            qtempsum = qtempsum + q(m); 
            if qtempsum >= u 
                x_apostpf(:,k) = x_apripf(:,m); 
                % Use roughening to prevent sample impoverishment. 
                E_pf = max(x_apripf')' - min(x_apripf')'; 
                sigma_pf = 0.2 * E_pf * n^(-1/length(x)); 
                x_apostpf(:,k) = x_apostpf(:,k) + sigma_pf .* pn(:,k); 
%               x_apostpf(3,k) = max(0,x_apostpf(3,i)); % xacid cannot be 

negative 
                break; 
            end 
        end 
    end 

     
    % The particle filter estimate is the mean of the particles. 
    xhat = 0; 
    for k = 1 : n 
        xhat = xhat + x_apostpf(:,k); 
    end 
    xhat = xhat / n; 
    X_pf(i,:)= xhat'; 
end  

  
%---------------------------Plot results--------------------------------- 
close all; 
figure(1) 
 subplot(2,1,1) 
plot(t,X(:,1),'k',t,X_ekf(:,1),':b',t,X_ukf(:,1),'-.r',t,X_pf(:,1),'--

g','LineWidth',1.3) 
ylabel('Sbvs[g/L]') 
title('Sbvs: Real=black  AEKF.est=blue&dotted  AUKF.est=red&dash-dot  

APF.est=green&dashed') 
% legend('Real','EKF','UKF','PF') 
% xlabel('Time(days)') 
% grid on 
% figure(2) 
 subplot(2,1,2) 
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% figure(2) 
plot(t,X(:,2),'k',t,X_ekf(:,2),':b',t,X_ukf(:,2),'-.r',t,X_pf(:,2),'--

g','LineWidth',1.3) 
ylabel('Svfa[g/L]') 
xlabel('Time(days)') 
title('Svfa: Real=black  AEKF.est=blue&dotted  AUKF.est=red&dash-dot  

APF.est=green&dashed') 
% legend('Real','EKF','UKF','PF') 
% grid on 
hold on 
figure(3) 
subplot(2,1,1) 
plot(t,X(:,3),'k',t,X_ekf(:,3),':b',t,X_ukf(:,3),'-.r',t,X_pf(:,3),'--

g','LineWidth',1.3) 
ylabel('Xacid[g/L]') 
title('Xacid: Real=black  AEKF.est=blue&dotted  AUKF.est=red&dash-dot  

APF.est=green&dashed') 
% xlabel('Time(days)') 
% legend('Real','EKF','UKF','PF') 
% grid on 

  
subplot(2,1,2) 
% figure(4) 
plot(t,X(:,4),'k',t,X_ekf(:,4),':b',t,X_ukf(:,4),'-.r',t,X_pf(:,4),'--

g','LineWidth',1.3) 
ylabel('Xmeth[g/L]') 
xlabel('Time(days)') 
title('Xmeth: Real=black  AEKF.est=blue&dotted  AUKF.est=red&dash-dot  

APF.est=green&dashed') 
hold on 
% legend('Real','EKF','UKF','PF') 
% grid on 

  
figure(4) 
plot(t,X(:,5),'k',t,X_ekf(:,5),':b',t,X_ukf(:,5),'-.r',t,X_pf(:,5),'--

g','LineWidth',1.3) 
ylabel('Svs,in[g/L]') 
xlabel('Time(days)') 
title('Svs,in: Real=black  AEKF.est=blue&dotted  AUKF.est=red&dash-dot  

APF.est=green&dashed') 
legend('Real','AEKF','AUKF','APF') 
grid on 

  
%  figure(4); 
%  subplot(2,3,1) 
%  plot(t,Kekf_gain(:,1),'b',t,Kukf_gain(:,1),'r','LineWidth',1.3) 
%  title('K1: EKF=blue UKF=red') 
%  xlabel('Time(days)') 
%  subplot(2,3,2) 
%  plot(t,Kekf_gain(:,2),'b',t,Kukf_gain(:,2),'r','LineWidth',1.3) 
%  title('K2: EKF=blue UKF=red') 
%  xlabel('Time(days)') 
%  subplot(2,3,3) 
%  plot(t,Kekf_gain(:,3),'b',t,Kukf_gain(:,3),'r','LineWidth',1.3) 
%  title('K3: EKF=blue UKF=red') 
%  xlabel('Time(days)') 
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%  subplot(2,3,4) 
%  plot(t,Kekf_gain(:,4),'b',t,Kukf_gain(:,4),'r','LineWidth',1.3) 
%  title('K4: EKF=blue UKF=red') 
%  xlabel('Time(days)') 
%  subplot(2,3,5) 
%  plot(t,Kekf_gain(:,5),'b',t,Kukf_gain(:,5),'r','LineWidth',1.3) 
%  title('K5: EKF=blue UKF=red') 
%  xlabel('Time(days)') 

  
%  figure(6); 
%  plot(t,Y_m,'k',t,Y_p,':b',t,Y_ukf,'--r',t,Y_pf,'-.g') 
%  title('R=0.0144 Sensor.output-blue Priori.Est:EKF-blue UKF-red PF-green') 
%  legend('measurement','EKF','UKF','PF') 
%  
%plot error 
RMSErr_ekf = zeros(1,4); 
RMSErr_ukf = zeros(1,4); 
RMSErr_pf = zeros(1,4); 
for i = 1 : 4 
    RMSErr_ekf(i) = sqrt((norm(X(i,:) - X_ekf(i,:)))^2 / N / dt); 
    RMSErr_ukf(i) = sqrt((norm(X(i,:) - X_ukf(i,:)))^2 / N / dt); 
    RMSErr_pf(i)  = sqrt((norm(X(i,:) - X_pf(i,:)))^2 / N / dt); 
end 
disp(['extend filter RMS error = ', num2str(RMSErr_ekf)]); 
disp(['unscented filter RMS error = ', num2str(RMSErr_ukf)]); 
disp(['particle filter RMS error = ', num2str(RMSErr_pf)]); 
% %%=======================================================================%% 

Appendix E Outlier removing and data preprocessing 

%%======================================================================= 
load('foss_data_from_19apr2012_to_15oct2013') 
%%remove outlier 
% Calculate the mean and the standard deviation 
mu = mean(biogasflow_bronkhorst_filt) 
sigma = std(biogasflow_bronkhorst_filt) 
[n,p] = size(biogasflow_bronkhorst_filt); 
% Create a matrix of mean values by 
% replicating the mu vector for n rows 
MeanMat = repmat(mu,n,1); 
% Create a matrix of standard deviation values by 
% replicating the sigma vector for n rows 
SigmaMat = repmat(sigma,n,1); 
% Create a matrix of zeros and ones, where ones indicate 
% the location of outliers 
outliers = abs(biogasflow_bronkhorst_filt - MeanMat) > 3*SigmaMat; 
% Calculate the number of outliers in each column 
nout = sum(outliers) 
count(any(outliers),:) = []; 

  
%%interpolation for analysis data 
x = inf_vs; 
t = [1:length(x)]; 
i = find(isnan(x)==1) %find the location of element with value of NaN 
t_nan = t(~isnan(x)); 
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x_nan = x(~isnan(x)); %delete the value of NaN 

  
for j = 1:length(i) 
    x(i(j)) = interp1(t_nan,x_nan,i(j),'linear','extrap');%Intopolation 
end 
figure; 
plot(1:length(inf_vs),inf_vs,'r',1:length(x),x,'go') 
ylabel('[g/L]') 
title('Interpolation_ Analysis data Svsin:total cod in influent') 
%---------Data preprocessing------------------------- 
 % Save variables, where FILENAME is a variable: 
    savefile = 'test.mat'; 
    %save log data,pick one every 10 values 
    t_an = t_an_rel_ref; 
    t_log = t_log_rel_ref(1:10:length(t_log_rel_ref)); 
    Fmeth = Fmeth_raw(1:10:length(Fmeth_raw)); 
    Ffeed = Ffeed_raw(1:10:length(Ffeed_raw)); 
    Treac = Treac_raw(1:10:length(Treac_raw)); 

     
    save(savefile, 'xlabel_txt','t_init','t_final',... 
't_log','Ffeed','Treac', 'Fmeth','t_an','Sbvs_an','Svfa_an','Svsin_an'); 
%----------------------------------- 

 


