

Telemark University College

 Faculty of Technology
Kjølnes
3914 Porsgrunn
Norway
Lower Degree Programmes – M.Sc. Programmes – Ph.D. Programmes TFver. 0.9

Master’s Thesis 2014

Candidate: Robin Evensen

Title: Determenistic Flood Control using MPC

 on the Kragerø Waterways

 2

Telemark University College
Faculty of Technology

M.Sc. Programme

MASTER’S THESIS, COURSE CODE FMH606

Student: <Robin Evensen>

Thesis title: <Deterministic Flood Control using MPC on the Kragerø Waterways >

Signature: .

Number of pages: <113>

Keywords: MPC, Flood Control, Lake Toke,

Kragerø Waterways.

 .

Supervisor: <Bernt Lie> sign.: .

2
nd

 Supervisor: < > sign.: .

Censor: <N/A> sign.: .

External partner: <Skagerak Energi> sign.: .

Availability: <Open >

Archive approval (supervisor signature): sign.: . Date :

Abstract:

The Kragerø Waterways consist of 5 power plants downstream after Lake Toke, Dalsfos is the first of these

power plants. As a deterministic flood control of Lake Toke and Dalsfos there has been designed a MPC. The

MPC uses a horizon of 10 days with estimated influx of water into the Lake Toke water reservoir. As a

preliminary task before the MPC is designed, an assessment of the requirements and constraints of Lake Toke

was made. The primary constraint is to keep the level between an upper and lower limit regulated by NVE.

A 2 state model designed by Bjørn Glemmestad was used to define Lake Toke, to further increase the precision

of the model, assessment parameters was done. A simulation and validation of the linearized model of Lake

Toke was performed to assess the precision, which proved to perform adequate.

A review of the structure of the MPC program is shown along with discussion and explanation of the

implementation of constraints and performance requirements. The controller is validated by simulation a flood

scenario with disturbances similar to a real flood situation, there was also added a secondary peak to resemble a

rainfall. The objective is to keep the level between a lower and upper limit, lrv and hrv, with a goal to avoid an

overshoot over hrv. The controller proved to avoid an overshoot when the weight lower limit in the performance

index was lower than the upper limit. A weight on the control output also proved to create a more stable control

output as well as avoiding an overshoot when the secondary rainfall arrived.

Telemark University College accepts no responsibility for results and conclusions presented in this report.

 3

Table of contents

1 INTRODUCTION ... 6

2 SYSTEM DESCRIPTION .. 7

2.1 OVERVIEW OF THE KRAGERØ RIVER SYSTEM .. 7

2.2 FUNCTIONAL DESCRIPTION ... 8

2.3 PROBLEM DESCRIPTION ... 9

2.3.1 System constraints ... 10

2.3.2 Performance requirements .. 11

3 SYSTEM MODELS .. 12

3.1 THE LINEARIZING METHOD.. 13

3.2 THE LAKE TOKE MODEL .. 14

3.2.1 Linearization and simulation of the Lake Toke model .. 15

3.2.2 Calibrating the Lake Toke model .. 17

3.2.3 Results of the parameter estimation on the Lake Toke model ... 24

3.3 TURBINE FLOW MODEL .. 26

3.3.1 Evaluating the data used to design the turbine flow model ... 27

3.3.2 Estimated model .. 27

3.3.3 Overview of the turbine flow model .. 30

3.3.4 Linearization and simulation of the turbine flow model .. 31

4 MODEL PREDICTIVE CONTROLLER ... 33

4.1 PERFORMANCE INDEX.. 34

4.2 CONSTRAINTS .. 35

4.2.1 Equality constraints .. 35

4.2.2 Inequality constraints .. 36

4.3 SIMULATION OF THE MPC ... 37

4.3.1 Observation of a realistic flood outcome .. 38

4.3.2 Large weight on the hg variable in the performance index ... 39

4.3.3 O O
max

 constraint and/or the weight P.. 40

4.3.4 O O
max

 constraint .. 43

4.3.5 Disabling the lower boundary lrv ... 44

4.3.6 Using the results from previous simulations ... 45

5 DISCUSSION ... 50

5.1 PARAMETER ESTIMATION AND KALMAN FILTER ... 50

5.2 SUGGESTIONS FOR THE MPC ... 50

6 CONCLUSION .. 52

 4

Preface

The master thesis is entitled Deterministic Flood Control using MPC of the Kragerø

Waterways. This thesis is part of the education program System and Control Engineering at

Telemark University College. The main part of the thesis was carried out at TUC as the work

was computer based, the necessary data and information was given by mail or in meetings at

TUC.

The thesis is primarily about designing a Model Predictive Controller (MPC) which has a goal

to regulate the water level at Lake Toke by controlling the floodgate. The be able to

understand the report fully the reader should have general knowledge about Optimal Control

or Model predictive control, as well as fundamental understanding of modeling and

discretization of models. The code used in this thesis is given is shown in the Appendix,

additionally the code along with the necessary measurement data from Skagerak is also given

on a CD.

The task description for this thesis can be found in Appendix 1, the task description is also

built upon a project during a course at 3.semester which is shown in Appendix 2. There was

scheduled a test of a first version of the controller by 1. March 2013. Due to difficulties with

other parts of the thesis, I was not able to finish this first version by the date. The supervisor

Bernt Lie was able to develop another version of MPC that was implemented before the flood

season started. As a result the focus was held on the completion of the MPC controller itself,

as well as developing the models as this is an essential part of the controller.

Apart from writing the report, only MATLAB from MathWorks was used as a tool to work on

the thesis. As the most crucial part of MPC is Quadratic programming, MATLAB provides an

effective and stable function to solve these equations.

I would like to give a big thanks to Bernt Lie for his guidance that helped me push through

and finish the work at the parts where my competence came short, what comes to mind is the

design of Kalman Filter along with approaches for model development. During the project in

3. semester, several discussions with Anushka Perera helped me at solving several MPC

related problems as well as providing me with a linearization method which proved to give

good results. This prepared me for this thesis in regards of MPC and possible problems which

I could foresee. Ingvar Andreassen at Skagerak which was responsible for this project at

Skagerak was able to provide the necessary data used to develop the models needed.

<Porsgrunn, 3.6.2014>

<Robin Evensen>

 5

Nomenclature

hrv Limit for the highest regulated water level

lrv Limit for the lowest regulated water level

LSM Least Square Method

MATLAB Matrix Laboratory

MPC Model Predictive Controller

NVE Norges vassdrags- og energidirektorat

TUC Telemark University College

 6

1 Introduction

Norway is one of the leading nations in hydro power facilities, with this comes a high

quantity of dams that need water level regulation and flood control. Dalsfos is the first of five

hydro power plants between Lake Toke and Kilsfjord in Skagerak. Originally Dalsfos is

regulated manually by using their experience and a predicted influx of water based on a

hydrological model. There has been proposed a fully automated solution to control the flood

gate at Dalsfos. A model predictive controller will be used to prevent a predicted flooding

situation, in addition to expending as little water as possible from the Lake Toke reservoir to

allow it to be used for electricity production. There is an estimate of influx water into Lake

Toke denoted in which is calculated from an external firm using an hydrological model, the

generated electricity produced from the turbines at Dalsfos is denoted e.

A 2 state nonlinear model is used to simulate the levels at Merkebekk and Dalsfos. There will

be done a study on possible improvements of this model by performing sensitivity analysis on

the existing parameters and estimating these using a Kalman Filter. Because e is given as

kWh, the flow through the turbine needs to be modelled to give the necessary output m
3
/s.

Both the turbine flow model and the Lake Toke model will be linearized around realistic

steady state values and discretized, these will be simulated in realistic situation and validated.

From Skagerak there are regulated limits on the water level, the limits change depending on

the date of the year. The thesis will focus on the flooding season which ranges from April to

June. There are several constraints on the system which has to be handled by the control

system, i.e. the lower limit on the flow is 4 m
3
/s, and there are also regulations on the rate of

change on the flow. To satisfy the constraint a deterministic flood control will be created

using MPC. The controller will use a horizon of 10 days with disturbances in and e given

by Skagerak.

There will be an overall review of the structure of the MPC program as well as discussions

and reasoning’s behind the design of the controller. The basis of the structure which the MPC

program was built upon was designed in the 3. semester project, the program has several

functions and a structure which can be reused in this thesis [1]. To validate the controller

there will be performed simulations on the 2 state nonlinear model. The disturbances used are

simulated based on a real flooding situation. The goal of the simulations will be to maintain

the constraints and performance requirements described in Chapter 2.3. To tune the MPC, the

weights in the performance index will be disabled and/or changed, then the results will be

evaluation w.r.t the constraints and performance requirements.

 7

2 System description

This chapter consists of an overall description of Lake Toke and a functional description

which is used to get an overview of the problems which the controller should manage.

2.1 Overview of the Kragerø river system

The system mentioned throughout the report is Lake Toke regulated using the hydropower

plant Dalsfos, south of Lake Toke. Lake Toke is located next to Drangedal and is a part of a

network of rivers and lakes in Telemark, finally ending up in Kilsfjord in Kragerø. Figure 2-1

shows how the entire lake, note that Merkebekk and Dalsfos is two measurement points used

as the reference point for the states h1 and h2 respectively in the model described in Chapter

3.2. To fulfill environmental demands from NVE, there is strict lower and upper water level

boundaries in Lake Toke that needs to be satisfied, denote lrv and hrv. These boundaries

changes depending on the time of the year.

Figure 2-1: Both upper and lower part of lake Toke [2]

From Dalsfos to Kilsfjord, there is a levitation drop of approximate 58 meters. Dalsfos is one

of five hydropower plants utilizing a levitation drop of approximate 21 m. See Figure 2-2 to

get an overview of the river system from Dalsfos to Kilsfjord. Dalsfos was originally built

 8

with one Francis turbine in 1907. Dalsfos was expanded with 2 more Francis turbines in 1958.

[3]
1
 Dalsfos is also fitted with flood gates, these floodgates are controlled manually by an

operator. This is operator is soon in retirement, thus came the need of an automatically

controlled floodgate.

Figure 2-2: The river from Dalsfos to Kilsfjord [4]

2.2 Functional Description

The system of Lake Toke is described as a system with 1 controllable input, 2 disturbances

and 2 outputs. A block diagram of this system is shown in Figure 2-3. An explanation of the

system objects is in Table 2.1.

1
 In the reference from Store Norske Leksikon there is stated that Dalsfos is fitted with 3 Kaplan turbines, this is

wrong after a discussion with Ingvar Andreassen in Skagerak Energi.

 9

System models

Figure 2-3: A block diagram of Lake Toke and Dalsfos

The level h1 and h2 is introduced as both states and inputs, since they are both a measured

value as well as estimated values for several time instances in the future. The generated power

 e and water influx in is assumed as known disturbances. The system consists of two

models, one that express the levels h1 and h2, and another that express the turbine flow t.

In reality the flood gate opening consist of three separate gate openings, but for the sake of

simplicity the gates are considered as one large gate. This issue is merely a scaling problem,

and can be dealt with when a real implementation is due.

Table 2.1: Description of the objects in Figure 2-3

Parameter Unit Comment

hg m The flood gate opening (Controllable input)

 e kWh Generated power at Dalsfos (Disturbance)

 in m
3
/s Influx of water into the system (Disturbance)

h1 m Water level at Merkebekk (State, Output)

h2 m Water level at Dalsfos gate (State, Output)

 t m
3
/s The flow through the turbine (State)

2.3 Problem description

The problem is based on the task description in Appendix A and Appendix B, as well as some

mention in an informal meeting with the supervisor Bernt Lie. The main goal of is to control

the level h1 which are subject to restriction of upper and lower boundaries, in addition to

keeping the flow through the turbines as low as possible. By reducing the amount of water

 e in

hg
h1

h2

h2 t h1

 10

through the flood gate, this water can be used to produce electricity instead. Because the

economic efficiency the controller is trying to increase is a contradiction to the safety of the

environment downstream, there should be some margin of error in case of estimate or

measurement errors (i.e. there should be enough time to react to a unpredicted flood). The

constraints as well as the performance requirements of the system are discussed in more detail

in Chapter 2.3.1 and 2.3.2.

2.3.1 System constraints

The constraints that are mentioned here are is a general representation of the constraint. The

technicality of the implementation in a controller is shown in Chapter 4.2. The constraints in

this chapter are strict constraints which should be met.

The controller should keep the level of Lake Toke (h1) within the minimum and maximum

regulated water level. There will be situations where these constraints will be broken, but

keeping the level within these boundaries should be the main purpose of the controller:

 hrvh 1 (2-1)

 lrvh 1 (2-2)

There is a restriction on the maximum rate of change on the river flow O, denoted O. This

constraint is due to the safety of the people who use the river downstream, to give the public

time to react to a sudden increase of flow:

 max

OO VV   (2-3)

There is a restriction to the minimum allowed flow O, this limit is set to 4 m
3
/s. Although the

constraint might be fulfilled by Skagerak through the turbine flow, there can be situations

where there is maintenance on the turbine, resulting in that the constraint has to be fulfilled by

releasing water through the flood gates:

s

mVO

3

4 (2-4)

 11

2.3.2 Performance requirements

This chapter discussed the problems description in Chapter 2.3 and how they can be improved

and fulfilled as good as possible.

The known future disturbances is 10 days, therefore the horizon of the system is set to 10 days

accordingly the controller should be able to give optimal solutions within these 10 days given

that the measurements and disturbances are correct. There are several possible scenarios that

the controller needs to handle which can occur during a whole year. Drought, change of hrv

and lrv, but the most importantly the controller needs to satisfy the constraints and

performance requirements during a flood season.

To give and indicator to the quality of the model as well as the stability of the controller, the

controller should be able to converge to a specified reference point. This also gives an

incentive to further improve the previous designed model, as well as designing the flow

through the turbine, t. Since model uses 5 variables with a relatively wide range of values

during the horizon, the performance of the controller will be highly influenced from the

steady state values used to linearize the models. The focus will be held on giving the best

result during a flood season, i.e. when the in increases.

To keep the loss of potential economical income as low as possible, the flood gate flow g

should be kept to a minimum, meanwhile keeping the water level h1 within lrv and hrv. These

two requirements will contradict each other, although there is possible to satisfy the former

constraint, the latter should be fulfilled to it upmost potential, i.e. keeping the g as low as

possible. Though it is only a requirement to keep the level within hrv and lrv, a reference

point is also used observe how the controllers performance as well as observing its precision.

 12

3 System models

The system can be sketch and simplified as a two tank system with a flow between them, as

seen in Figure 3-1. Here h1 represents the level at Merkebekk and h2 at Dalsfos. t is the flow

through the turbines and g is the flow through the flood gates. in is the estimated collection

of water divided amongst the upper and lower compartment. in consists of both water from

precipitation and snow melting. At Skagerak, they use an external firm to calculate this in

based upon a hydrological model. This in will be calculated 10 days beforehand, and is

considered as known in the MPC solution.

Figure 3-1: Lake Toke sketched visualized as two compartments [5]

The Lake Toke system can be described using mass balance. There has been developed a 2

state nonlinear model at TUC by Bjørn Glemmestad seen in in equation (3-1).

  

 gtin

in

VVVV
hAdt

dh

VV
hAdt

dh












12

2

2

12

1

1

)(

1

)1(
)()1(

1







 (3-1)

 13

here

)10,1028max()(310/16 hhA x  (3-2)

212112)(hhhhV   (3-3)

 g is the outflow through the gate and can be generally described as the equation (3-4).

22ghwhCV gDg 

 (3-4)

The turbine flow t is a function of h2, e and the level below Dalsfos XQ, where e is the

generated power and is given by Skagerak. As XQ isn’t measured, it will be estimated in the

model.

These parameters will be looked into more in Chapter 3.2.2 to improve its performance. The

parameters can be seen in Table 3.1:

Table 3.1: Parameters used in the 2 state nonlinear model

Parameter Value Unit Comment

α 0.05 ~ Fraction of surface of the compartment in h2

β 0.02 ~ Fraction of inflow into the compartment of h2

CD 1 ~ Friction loss factor

λ 800 ~ Invented factor

w 11.2 m Width of flood gate

max

gh 5.6 m Maximal opening height of gate

min

LRVx 55.75 m Minimal low regulated level value

max

HRVx 60.35 m Maximal high regulated level value

3.1 The Linearizing method

Both the controller and the kalman filter described in Chapter 3.2.2.2 and 3.2.2.3 uses a

linearized model to calculate a Kalman Gain. The turbine flow model described in Chapter

 14

3.3 is also linearized. This linearization method was proposed by Anushka Perera, a PhD

student at TUC. The linearization method is described generally below, where f is the function

to be linearized. Equation (3-5) and (3-6) describes the equation which is used to linearize,

with a description of the parameters listed in Table 3.2.

)),**(*

1
(uIihxf
h

imagA x
(3-5)

))**,(*

1
(uIihuxf
h

imagB 
(3-6)

Table 3.2: Describes the parameters in Equation (3-5) and (3-6)

Parameter Comment

A Linearized transition matrix

B Linearized input matrix

f Function to linearize

x Model states

u Model input

h A very small number(used a function in MATLAB called eps)

i Imaginary number (√-1)

I Identity matrix

3.2 The Lake Toke model

This chapter focuses only on the differential equation (3-7), the model for t is developed in

Chapter 3.3.

  

 gtin

in

VVVV
hAdt

dh

VV
hAdt

dh












12

2

2

12

1

1

)(

1

)1(
)()1(

1







 (3-7)

 15

3.2.1 Linearization and simulation of the Lake Toke model

There are performed step changes on the linearized model to observe its performance. The

steady states are used to linearize the model are listed in Table 3.3. The steady state values

were found experimentally by adjusting the value until the best performance was observed.

The code for the simulations is in Appendix 7.

Table 3.3: List of steady state values that are used to linearize the model

Variable SS Value Unit Comment

1h
01h m The initial value of the level h1 is used

2h
02h m The initial value of the level h2 is used

gh 6.5*05.0 m 5 % of the maximum gate opening

inV 40
s

m3

 Weight to keep the level h1 below hrv

tV 10
s

m3

 Weight to keep the level h1 above lrv

There are done three simulations where they are compared to the nonlinear model described

in Chapter 3. Figure 3-2 shows a simulation where there is a large inflow, forcing the level to

increase from a low level to a high level. The linear model shows a deviation of 0.5 m higher

than the nonlinear model.

Figure 3-2: The simulation is done over 5 days. A step change is done on the influx in from

50 to 250 m
3
/s after 1 day t is kept steady at 24 m

3
/s and the hg of 1%.

When increasing the gate opening hg the watch how the linearization model handles a

descending level on both h1 and h2. In Figure 3-3 nonlinear model and linearized model are

 16

compared. One can observe that the level h1 is almost the same, but the level h2 in the

linearized model drops about 0.5 m lower than the nonlinear model.

Figure 3-3: Simulation is done over 5 days. A step change on the hg after 1 day of 2 % to 4 %

 in is 70 m
3
 t is 15 m

3
/s. The level starts at h1 =3 m and h2 =2.7 m.

Finally there is performed a simulation over 10 days where there is an increase in in from 50

m
3
/s to 150 m

3
/s after 2 days. Then after 5 days the hg is increased from 2 % to 5 %. The t is

15 m
3
/s throughout the 10 days. The result is shown in Figure 3-4.

Figure 3-4 in and hg.

Although the model misses by 0.5 m over 10 days after performing these step changes, one

important aspect, is that the model should predict an eventual overflow within 10 days. The

fact that the linear model shoots higher when the in reaches 150 – 200 m
3
/s, creates a safety

margin that causes the model to overshoot. Since the model is linearized around the last know

measured h1 and h2, the precision will increase the further the level reaches steady state.

 17

3.2.2 Calibrating the Lake Toke model

The 2 state nonlinear model had several parameters which were chosen experimentally to

make to model fit the experimental data. The code for the sensitivity analysis is given in

Appendix 8 To see how much impact each parameter have on the model, there was performed

a test on each of those parameters individually using the formula in Equation (3-8).

p

ppnpn

x
x

xxxxfxxxf
S

p 




),,...,(),,...,(11

(3-8)

Here one wants to know the how the parameter xp affects the model. Δxp is 5% of xp. The

parameters of interest are α, β, λ and CD and are listen in Table 3.1. Figure 3-5 shows the

effect on h1 and Figure 3-6 shows the effect on h2. Since the goal of the sensitivity analysis is

to choose which parameters that are the best candidates for parameter estimation. To estimate

the parameters a Kalman Filter will be used which is described in Chapter 3.2.2. Because the

goal is to create a more stable model, a stable curve is more optimal than an unstable curve.

Another thing to consider is also whether the level h1 or h2 is most important. Primarily the

level h2 is used to calculate the flow g, but since the most important constraints are

connected to the level h1, the graphs in Figure 3-5 are the once to consider. As one can see in

both Figure 3-5 and Figure 3-6, the parameter CD has the highest impact on level h1 and h2.

The parameter λ and β has too little impact on the model compared to α. First and foremost

the parameters α and CD will be looked at.

When using the kalman filter on the whole data set in Chapter 3.2.2.2 and 3.2.2.3, the samples

from 1 to 1000 made both filters struggle. The reason behind this is unknown, but the

dynamics seems to change at around sample 900 – 950 which causes parameter α and CD to

go to 0, resulting in the ODE solver to crash or struggle after these samples. Because of this

the test is performed from sample 1000 to sample 3117.

 18

Figure 3-5: Shows the sensitivity of parameter α, β, λ and CD on the level h1

Figure 3-6: Shows the sensitivity of parameter α, β, λ and CD on the level h2

 19

3.2.2.1 Augmenting the model

Before the model can be used in a kalman filter for parameters, the model from Chapter 3 has

to be augmented. The code for both the Kalman Filters is given in Appendix 6. The

augmented model is:

  

 

0

0

),,(
)(

1

),,()1(
)()1(

1

212

2

2

2112

1

1












dt

dC

dt

d

ChhVVVV
hAdt

dh

hhVV
hAdt

dh

D

Dggtin

in













(3-9)

The states α and CD can be estimated by introducing white noise to the model with suitable

amplitude. This gives us the model:

  

 

DC
D

Dggtin

in

w
dt

dC

w
dt

d

ChhVVVV
hAdt

dh

hhVV
hAdt

dh






















),,(
)(

1

),,()1(
)()1(

1

212

2

2

2112

1

1





(3-10)

where wα and wCD is white noise with a zero mean and a specified variance.

3.2.2.2 Time varying kalman filter

Since the model is nonlinear, it can be better to use a time varying kalman filter to

compensate for the varying A matrix.

The algorithm for a time-varying extended kalman filter is described below:

 Deciding initial matrices and parameters

o

 

 
 
 
 )101(

)0001.00001.0101(

)1111(

105.0

)0001.0001.0101(

00200100

00

diagV

diagW

diagG

hhx

diagP











Loop

 20

 Simulation using an ordinary differential equation solver:

o)(
111 


kkkk

fsimulationy

 Finding the linearized matrices:

o

CC

GG

AA













 Calculating the predicted covariance matrix:

o TT

kkkk
GWGAAPP 

 111

 Finding the kalman gain:

o

1

1

11

11















kk

T

kk

k

TT

kkkk

kkkkk

E

CP
K

DVDCCPE

yye

 Finding the corrected state estimate:

o
11 


kkkkkkk

eKxx

 Finding the corrected covariance matrix:

o T

kkkkkkkk
KEKPP

11 


 Transition up one time step: k=k-1

When calibrating the kalman filter by adjusting the variance it proved to have some issues at

specific samples, but it proved to that it could be hard to create a stable kalman filter. Since

the kalman gain should be a theoretical representation of the system, it is important that the

measurements given to the model for linearization is correct. As shown in Chapter 3.2.3,

some of the measurement is probably incorrect, thus basing the theoretical model on these

measurements used by the kalman filter can give wrong results.

 21

Figure 3-7: Shows the states when using a time varying kalman filter with respect to time

[days]

The result shows that α stabilizes around 0.3 from 0.05, but CD decreases throughout the

whole simulation. The CD parameter represents a coefficient factor on the floodgates, as

anything below 0.8 is probably wrong, the results in Figure 3-7 shows that the change on CD

was too unrealistic to be considered. The parameter change is tested in Chapter 3.2.3.

3.2.2.3 Steady state kalman filter

A steady state kalman filter was used to create a more stable kalman filter gain since the

measurements can create an incorrect kalman gain in a time varying kalman filter. The steady

state Kalman Filter algorithm is presented below:

 Deciding initial matrices and parameters

o

 
 
 )101(

)0001.00001.0101(

)1111(

diagV

diagW

diagG







 Linearizing the model around steady states values defined in the step above and use it to

find the kalman gain

 22

o

2.3

5.3

%5

24

50

2

1











h

h

hg

V

V

t

in





o

CC

GG

AA













o dlqeK 

Loop

 Simulation using an ordinary differential equation solver:

o)(
111 


kkkk

fsimulationy

 Finding the corrected state estimate:

o
11 


kkkkkk

Kexx

 Transition up one time step: k=k-1

As shown in Figure 3-8, the filter finds obvious measurement errors which were not found by

the time varying kalman filter at around sample 200. In Figure 3-8 the initial values of α =

0.05 and CD = 1 is used. Because the kalman filter in Chapter 3.2.2.2 suggested an α of 0.3,

this was tested, giving the result in Figure 3-9.

 23

Figure 3-8: Shows the states when using a steady state kalman filter with respect to time

[days] α 5

 24

Figure 3-9: Shows the states when using a steady state kalman filter with respect to time

[days] α 3

3.2.3 Results of the parameter estimation on the Lake Toke

model

It is shown that the parameter the parameters α, β, λ has not enough impact on the model to

form its dynamics sufficiently. The effect is presented in Figure 3-10, Figure 3-11 and Figure

3-12. The parameter CD is too unstable to make any conclusion from other then that it has a

noticeable effect on the model. The parameters are given an overly excessive change and are

simulated over 500 days, the goal is to see if there is actually possible to estimate parameters

that can have a noticeably effect on the model. The change on the parameters is not noticeable

in any of the figures below as the lines are on top of each other. The code used to test the

parameters is given in Appendix 9.

 25

Figure 3-10: Shows the effect on the model changing the parameter α from 0.05 to 0.7

Figure 3-11: Shows the effect on the model changing the parameter β from 0.02 to 0.7

 26

Figure 3-12: Shows the effect on the model changing the parameter λ from 800 to 8000

3.3 Turbine flow model

In order to estimate the flow t, there is assumed a relationship between energy produced,

 e, and the difference in water level between h2 and XQ. The flow is calculated at Skagerak

using soft sensor, the same approach should therefore be looked at to calculate Vt. Figure 3-13

shows a spatial description of the turbine system and its respective variables which is used to

derive the model for t.

Figure 3-13: Sketch of the turbine system

In order to estimate a flow t, some assumption has been made because of lack of information

in the data that is logged from Skagerak. E.g. there is not logged how much the flood gates

have been opened, nor if it’s being opened at all.

 27

3.3.1 Evaluating the data used to design the turbine flow model

In the data, it is not given if the floodgates have been opened or not. Since the maximum

capacity of the turbines is 36 m
3
/s, there is assumed that all flows over 36 m

3
/s are a result of

a floodgate being opened. As a result water flow below 36 m
3
 s is t and the remaining flow

over 36 m
3
 s is considered as g. There are two different sensors below Dalsfos that measures

the level. Figure 3-14 shows the two separate measurements. They should measure

approximately the same level, but for unknown reasons there is a sudden drop of 2 meters.

Since there is no apparent reason for the level to drop by 2 meters, XQ is used instead of XU.

The code used to plot Figure 3-14 is given in Appendix 5.

Figure 3-14: Plot showing the difference between XU and XQ

There was also some data which is lacking measurements of the level h2 in 2008, as a result

will be excluded from the model. The missing samples are circled in Figure 3-15. The cause

of the missing samples may be due to a lot of construction at Dalsfos in the later years.

Figure 3-15: Plot of h2 data samples for 2008

3.3.2 Estimated model

The MATLAB code used to create the turbine flow model is given in Appendix 5. To

estimate the model, only the available parameters can be used to estimate the t flow:

 h2 – Level above Dalsfos [m]

 e – Power production [kWh]

 g – Flow through the flood gate [m
3
/s]

 28

A least square method approach is used create the model, instead of choosing a random

combination of the above parameters, the method will take into consideration the following

general equation for power production:

  QtE XhVKW  2
 (3-11)

Since XQ is not available in the model, XQ will have to be substituted with another correlated

variable. correlation between O and XQ is plotted in Figure 3-16 and examined. There has

been used a cubic fit on O to see the correlation between O and XQ
2
.

Figure 3-16: Correlation O and XQ

In order to solve this explicitly, t should be a first order or second order. As a third order or

higher equation can give quite a complex answer to the explicit solution. To have a reliable

model, an explicit solution is preferred to have control over which roots that should be

chosen. The equation to be fitted is:

)(2 Q

e
t

Xh

W
V







(3-12)

Replacing XQ with a fitted equation XQ(t):

21 * cVcX tQ   (3-13)

 lthough the flow is correlated in the whole range of O, the equation is fitted in the range on

the flow from 0 to 36.5 m
3
/s. This corresponds to a range on XQ from 37.3 to 39.3 m. This

2
 The cubic fit was noticed from Bernt Lie in an informal meeting, he mentioned that this information could be

exploited to create the turbine flow model.

 29

choice give some error at higher total flow, but the error in flow is a necessary compromise to

get an e act t when O is lower.

By using Equation (3-12) and (3-13) one gets:

etDt WVXcVc   *)(* 2

2

1 (3-14)

The equation is solved for t which gives:

4

1

1

2

22

3
2

4)()(
* c

c

WcXcXc
cV

eDD

t 







(3-15)

The least squared method is applied to both roots in Equation (3-15) to calculate the

parameters c3 and c4, using the data from 2008. Then the model is then validated against the

data from 2009. The result from using the “+ root” is displayed in Figure 3-17, and “- ”

is displayed in Figure 3-18.

Figure 3-17: Validating the data on samples from 2009, using LSM on equation (3-15),+ root

 30

Figure 3-18: Validating the data on samples from 2009, using LSM on equation (3-15),- root

When comparing Figure 3-17 and Figure 3-18, one can see that using the “- ”, as shown

in Figure 3-18, that this gives a better result. Generally, the model used in Figure 3-18 follows

the validation data with some exceptions. Around sample number 8000 there is a sudden drop

in the model, while the true value is shown to be 36 m^3/s. The reason for this is probably

because one of the turbines where turned off for maintains, as can be seen in the lower plot in

Figure 3-18, where the KWh production is lower.

3.3.3 Overview of the turbine flow model

Using the knowledge gained from Chapter 3.3.1 and 3.3.2, one can summarize the model as

Equation (3-16) with the parameters defined in Table 3.4.

4

1

1

2

2222

3
2

4)()(
* c

c

Wchchc
cV

e

t 







(3-16)

 31

Table 3.4: Parameter description of Equation (3-16)

Variable Value Unit Comment

2h
k

h2 m The water level h2

eW
keW kWh The output of the turbine generator

1c 0.0211 ~ Parameter found with the LSM

2c 37.1891 ~ Parameter found with the LSM

3c 132.0238 ~ Parameter found with the LSM

4c 2.8241 ~ Parameter found with the LSM

3.3.4 Linearization and simulation of the turbine flow model

The code used to validate the turbine flow model is given in Appendix 4. Skagerak gives a list

of e, hence the level h2 is the unknown variable to linearize around. As the definition of

linearizing a function F(a,b) is F(a,b) ≈ F(,) + Δf(a,b) where Δf(a,b) is the linearized

function found using the method explained in Chapter 3.1. When applying this to the turbine

flow model one gets where only an initial value of h2 is know:

  )()0(*))(),0(()0()(222 khhkWhVVkV ettt    (3-17)

In Figure 3-19 the linearize model at h2 = 3 m the level is linearized at 1 m. The nonlinear

model at h2 = 1 m shows the error the t model would have without the knowledge of the

height h2. From the figure one can see that there will be an error of 4 m
3
/s if the level

increases from 1 to 3 m and e increases from 0 to 5.6 kWh For comparison the nonlinear

model at h2 = 3 m shows that the model is nearly linear.

 32

Figure 3-19: Simulated turbine flow to compare the effect the water level h2

 33

4 Model Predictive Controller

Since solving a QP or LP problem is the core of an MPC, MATLAB is used as this provides

the necessary functions as well as being a matrix based programmable language. The

MATLAB code for the MPC program is given in Appendix 3. To solve the QP equations, a

function called quadprog is used to find a feasible solution. Before one can use quadprog on a

model defined and keep the solution within the constraints, one needs to be redefined the

problem as a QP problem. Since quadprog uses the equations listen below, the system needs

to be redefined so that they fit into the Equations (4-1), (4-2) and (4-3).

),

2

1
min(xxcHxx TT 

(4-1)

ee bxA  (4-2)

ieie bxA  (4-3)

To solve the QP problem, Equation (4-1) is minimizes by manipulating the x variables. The

solution needs to be within Equation (4-3) and on Equation (4-2).The solution is considered

unfeasible if the quadprog cannot find value for an x-variable which doesn’t fulfill the

constraints. The order which the variables are defined in the MPC program is defined in

Equation (4-4) with their respective explanation listed in Table 4.1.

In general there are strict lower and upper limits to h1, the goal is to see that the controller can

keep the system within its constraints without and without becoming unstable.

The performance index I needs uses Equation (4-1). Since performance index used by this

controller only consists of quadratic terms, the c in Equation (4-1) can be ignored.

The soft constraints are explained more detailed in Chapter 4.2.2.1. The variables are chosen

inside sometimes to simplify the code, e.g. the y variable is exactly the same as the h1

variable.

To define the variables used to solve the QP problem, and horizon length N must be defined.

By Skagerak, the available input data is 10 days, thereby giving a horizon length of N = 10

days. The data is presumed to be available on an hourly basis, thus giving 240 steps over 10

days.

),...,,,...,,,...,,,...,,...,,...,,,,...,,,,...,(
01111 maxmaxminmin11212110 NNNN tt

T

N

TTTT

N

TT

N

TTTTTT

N

TT VVSSSSyyeehhhhuux 
 (4-4)

 34

Table 4.1: The variables used in the MPC

Variable Unit Comment

u m The u represent hg

h m The height h1 and h2

e m The error from a reference point from h1

y m The output of the system, represents h1 directly

Smin ~ Used as a soft constraint on the lower regulated level

Smax ~ Used as a soft constraint on the higher regulated level

 t m
3
/s The turbine flow

4.1 Performance index

There is expected some knowledge about MPC, consequently there is only a brief description

of the structure of the program, more detailed code shown in Appendix 3. A performance

index used by the MPC is defined in Equation (4-1), only the variables which have a weight

other than 0 will be used by the MPC. Although all of the weights are listed in Table 4.2, not

all of them will have value given (i.e. some variables in the performance index can be

disabled during a simulation) at every test that is performed in Chapter 4.3. Since the weights

have no given or predefined value, they are chosen experimentally through the simulations.

x

H

H

H

H

H

H

H

xI T































77

66

55

44

33

22

11

000000

000000

000000

000000

000000

000000

000000

2

1
 (4-5)

The reason why there is a weight on the e variable is to perform simulation where one can test

the precision of controller (i.e. no integral error) and to see how well the controller can

converge the height to a specified reference point.

 35

Table 4.2: Lists the notations given to the respective weights

Variables Weight Hxx Comment

T

N

T uu 10 ,...,  10 ,..., NPP H11 Weight to minimize the flood gate opening

T

N

T ee ,...,1 NQQ ,...,1 H33 Weight to minimize an error kkk yre 

TT

N
SS minmin ,...,

1

N
QQ minmin ,...,

1
 H55 Weight to keep the level h1 below hrv

T

N

T SS maxmax ,...,
1

N

QQ maxmax ,...,
1

 H66 Weight to keep the level h1 above lrv

4.2 Constraints

To solve a QP problem there must exist a feasible solution that fulfill the constraints

described in Equations (4-2) and (4-3). The QP problem exists of equalities which defines

what “plane” the solution must exist on. In this MPC program, the equality constraints are

used to express model dynamics, e.g. the Lake Toke model and turbine flow model as well as

some other variables. The inequality constraints are used the express the boundaries of the

system, e.g. upper boundary of the level, or limits on the gate opening hg. Chapter 4.2.1 and

4.2.2 are simplified explanations which show the structure of the program, the detailed code is

in Appendix 3.

4.2.1 Equality constraints

The equations listed in Table 4.3 define the equality constraint used in the MPC algorithm.

The Equation numbers are used to represent their respective position in the matrix Ae.

Table 4.3: Equations that define the equality constraints used by the MPC program

Equations Comment Equation number

k

k

t

in

kkk
V

V
MBuAxx 


1

Linearized and discretized state space

model of Lake Toke system
(1)

kk Cxy  Outoput h1 (2)

kkk yre  The error based on a reference point (3)

00
*)(22 t

para

tt VVhhV
kNk

  Linearized model of the Turbine flow (4)

The equality constraints have is ordered in a specific system which is described below.

 36

Table 4.4: The variables used in the MPC

Matrix Ae Matrix be Equation number























t

t

t

t

VeSeSeyeeeheue

VeSeSeyeeeheue

VeSeSeyeeeheue

VeSeSeyeeeheue

e

AAAAAAA

AAAAAAA

AAAAAAA

AAAAAAA

A









4,4,4,4,4,4,4,

3,3,3,3,3,3,3,

2,2,2,2,2,2,2,

1,1,1,1,1,1,1,

maxmin

maxmin

maxmin

maxmin

,

4,

3,

2,

1,

e

e

e

e

e

b

b

b

b

b  ,

)4(

)3(

)2(

)1(

4.2.2 Inequality constraints

Inequality constraints are also called hard constraints, compared to the soft constraints in

Chapter 4.2.2.1, hard constraints can’t be broken. This is important to keep in mind when

using hard constraints on variables that the MPC doesn’t have full control over, if one is not

fully aware of the region which the variable can reach, the solution can become infeasible. A

list of the inequality constraints are listed below:

Table 4.5: Equations that define the equality constraints used by the MPC program

Equations Comment Equation number

2hhg 
The gate opening is at the same or lower

level as h2
(1)

0hg The gate opening is always over 0 m (2)

min

1min1 hSh  Defines the lower limit of the level (3)

max

1max1 hSh  Defines the upper limit of the level (4)

4 tg VV 
 O has to be higher than 4

m
3
/s

(5)

max
~~

Otg VVV  
 O cannot

exceed a threshold
(6)

 37

Table 4.6: The variables used in the MPC

Matrix Ae Matrix be Equation number





























t

t

t

t

t

t

Vie

Vie

Vie

Sie

Sie

Sie

Sie

Sie

Sie

yie

yie

yie

eie

eie

eie

hie

hie

hie

uie

uie

uie

VieSieSieyieeiehieuie

VieSieSieyieeiehieuie

VieSieSieyieeiehieuie

ie

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AAAAAAA

AAAAAAA

AAAAAAA

A













3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,3,3,3,3,3,3,

2,2,2,2,2,2,2,

1,1,1,1,1,1,1,

max

max

max

min

min

min

maxmin

maxmin

maxmin

,

1,

1,

1,

1,

1,

1,

ie

ie

ie

ie

ie

ie

ie

b

b

b

b

b

b

b 

,
)6(

)5(

)4(

)3(

)2(

)1(

The reason why the upper and lower limit needs to be a soft constraint in Table 4.5 is because

one it is a goal to keep the level under the hrv, but in extreme circumstances the level might

flow over. E.g. if in was underestimated causing a sudden flood, the level can go over hrv.

In general in this system, if the constraint is controlled directly through the flood gate hg, there

can be used a hard constraint

The constraints are discussed in Chapter 2.3.1. Above the constraints are represented in a way

which is applicable into MPC.

4.2.2.1 Soft constraints

Soft constraints are the same and inequality constraints except that they can be broken without

giving an infeasible solution. The general definition for a soft constraint for a lower boundary

is Equation (4-6), and for the upper boundary Equation (4-7).

kySy

k
 minmin (4-6)

kySy

k
 maxmax (4-7)

4.3 Simulation of the MPC

The simulations are based on fictitious values for in and e and are 60 days simulations

each. The disturbances are divided into 8 steps which are equally divided over those 70 days,

60 days with 10 extra days since the horizon is 10 days. The disturbances in between the 8

 38

steps are calculated using a spline function in MATLAB which creates a quadratic function

between the 8 steps. To separate the simulations from each other, they are presented in

separate subchapters where there is an explanation to purpose of each test as well as

interesting observations is pointed out. Each simulation is presented with graph of both the

control output plotted with the water level at Dalsfos h2 and a plot of the water levels h1 and

h2. There is also a plot of the disturbances in and e. Most simulations are simulations where

there are similar conditions as the simulation in Chapter 4.3.1, this is to see how controller

reacts to either extreme situations or how some parameters or weights affect the controller.

4.3.1 Observation of a realistic flood outcome

There is performed a simulation to observe a realistic response, the result is shown in Figure

4-1 with the initial water level of h1 = 1m and h2 = 0.8m. There is up both upper and lower

boundary as well as including the flood gate hg to the performance index. The initial values

are chosen out the statistic data given by Skagerak, it shows that before the flood season h1 is

normally 1 m above lrv. The in is also chosen with its amplitude and gradient according to

the data from Skagerak. The disturbance is shown in Figure 4-2. The result shows that it is

able converge itself to hrv with a slight overshoot. One can observe that the boundary of the

 O O
max

 constraint is quickly reached, as this the value of O
max

 is not given by Skagerak or

the supervisor the an value is chosen such that the effect of the constraint is visible.

Figure 4-1: Simulation performed to observe a flood season with the following initial states

and parameters: h1(0) = 1 m and h2(0) = 0.8m, Qmin = 10, Qmax = 10, P = 1, O
max

 =0.7m
3
/s.

2

 39

Figure 4-2: Disturbances used in the simulation presented in Figure 4-1.

4.3.2 Large weight on the hg variable in the performance index

If the ratio of weight on the control output hg and the upper and lower boundary lrv and hrv is

around 1, e.g. the weights in this simulation is set to 10 for both P, Qmin and Qmax, the

controller will create a relatively large overshot. The overshot is unnecessary as the conditions

for the simulations are exactly the same except for the weights. The result is shown in Figure

4-3 and the disturbances in Figure 4-4.

 40

Figure 4-3: Simulation performed to observe a flood season with the following initial states

and parameters: h1(0) = 1 m and h2(0) = 0.8m, Qmin = 10, Qmax , , O
max

=0.7m
3
/s.

2

Figure 4-4: Disturbances used in the simulation presented in Figure 4-3.

4.3.3 Disabling the O O
max

 constraint and/or the weight P

This simulation was primarily done to see how the weight P affects the response from the

controller, see let the controller choose the optimal hg the constraint O O
max

 was also

 41

disabled. The result from this is shown in Figure 4-5 with the disturbances Figure 4-7. From

the figure one can see that the controller chooses keep the level in the middle of lrv and hrv.

Figure 4-5: Simulation performed to observe a flood season with the following initial states

and parameters: h1(0) = 1 m and h2(0) = 0.8m, Qmin = 10, Qmax = 10, P = 0,

 O
max

 =1000 m
3
/s.

2

Comparing the results from Figure 4-5 and Figure 4-6 where the constraint O
max

 is set to

0.7 m
3
/s.

2
, the result shows a slight overshot. The level h1 will stabilizes in both simulations in

the middle of lrv and hrv. A reason why the level stabilizes in the middle of lrv and hrv might

be because the soft constraint variables Smin and Smax are given very small values (e.g. 10
-9

values) even though they are within the constraints, the values are increased slightly when

nearing the boundaries.

 42

Figure 4-6: Simulation performed to observe a flood season with the following initial states

and parameters: h1(0) = 1 m and h2(0) = 0.8m, Qmin = 10, Qmax = 10, P = 0,

 O
max

 =0.7 m
3
/s.

2

Figure 4-7: Disturbances used in the simulation presented in Figure 4-8.

 43

4.3.4 Disabling the O O
max

 constraint

Since the O
max

 might be larger than what was used in the simulation in Chapter 4.3.1. When

practically turning the constraint off by increasing O
max

 to 1000m
3
/s

2
 the controller increases

faster as expected, but as shown in the simulation in Chapter 4.3.3 the weight P is causing the

difference on the effect from

Figure 4-8: Simulation performed to observe a flood season with the following initial states

and parameters: h1(0) = 1m and h2(0) = 0.8m, Qmin = 10, Qmax = 10, P = 1,

 O
max

 =1000 m
3
/s

2
.

 44

Figure 4-9: Disturbances used in the simulation presented in Figure 4-8.

4.3.5 Disabling the lower boundary lrv

To disable the lower boundary lrv the boundary is set to 0 m. What is shown in Figure 4-10 is

that the controller handles an overshoot better when there the level is under lrv. This makes

sense since the weight Qmin and Qmax is both 10, and the level starts at 3 m below lrv, the level

needs to reach the lower limit because fast which also creates an overshoot. The weight Qmin

can be used as an adjustment based on what Skagerak sees as most important, e.g. is it more

important to reach the level lrv faster or is it more important to keep the level below hrv.

 45

Figure 4-10: Simulation performed to observe a flood season with the following initial states

and parameters: h1(0) = 1m and h2(0) = 0.8m, Qmin = 10, Qmax = 10, P = 0,

 O
max

 =0.7 m
3
/s

2
(lrv is set to 0 m).

Figure 4-11: Disturbances used in the simulation presented in Figure 4-10.

4.3.6 Using the results from the other simulations

Using the results from the previous simulations, and with assumptions about what Skagerak

emphasizes. As mentioned in Chapter 2.3.2, they probably emphasizes the ability to handle a

 46

flooding situation as addition to using as little water as possible from the Lake Toke reservoir.

In all of the simulations below, the weight on Qmin is adjusted to 1, Qmax is still 10.

4.3.6.1 Using a low Qmin and disabling the weight P

The level should probably be in between lrv and hrv to keep a healthy safety margin such that

the controller has time to react to a sudden rainfall outside the flood season. There should also

be a focus on avoiding an overshoot if possible, the importance of reaching lrv is probably

less vital. Though the water flow through the gate is important to keep as low as possible, the

weight P on hg is removed in the simulation showed in Figure 4-12 with the disturbances in

Figure 4-13.

Figure 4-12: Simulation performed to observe a flood season with the following initial states

and parameters: h1(0) = 1m and h2(0) = 0.8m, Qmin = 1, Qmax = 10, P = 0,

 O
max

 =0.7 m
3
/s

2
.

 47

Figure 4-13: Disturbances used in the simulation presented in Figure 4-12.

4.3.6.2 Simulations with a sudden rainfall after the flood season

To see how the controller handles a sudden rainfall after the flooding season, there is added a

secondary peak in in shown in Figure 4-16. The goal of this simulation is to prevent an

overshoot after the simulated rainfall. There are done two simulations, one with a weight P of

0 shown in Figure 4-14 and one with a weight P of 1.

The Figure 4-14 showed a slight overshoot, the controller applies its maximum control output

within the constraints but cannot prevent an overshot.

 48

Figure 4-14: Simulation performed to observe a flood season with the following initial states

and parameters: h1(0) = 1m and h2(0) = 0.8m, Qmin = 1, Qmax = 10, P = 0,

 O
max

 =0.7 m
3
/s

2
.

To comparison the simulation with and without a weight on P, the result with a P of 1 is

shown in Figure 4-15. This result shows no overshoot after the rainfall. What can be observed

from the control output hg is that the hg is more stable compared to not having a weight on P.

The controller should in theory be more effective at releasing less water through the flood

gate, the fact that there was no overshoot in Figure 4-15 might be because the gate was

already closed in Figure 4-14 before the rainfall, when in Figure 4-15 the flood gate had a

slight opening.

 49

Figure 4-15: Simulation performed to observe a flood season with the following initial states

and parameters: h1(0) = 1m and h2(0) = 0.8m, Qmin = 1, Qmax = 10, P = 1,

 O
max

 =0.7 m
3
/s

2
.

Figure 4-16: Disturbances used in the simulation presented in Figure 4-14 and Figure 4-15.

 50

5 Discussion

This chapter includes discussions about problems that occurred and what might be the cause

of these problems. There will also be suggestions for future work, i.e. obvious improvements

after the MPC program was designed and tested.

5.1 Parameter estimation and Kalman Filter

In Chapter 3.2.2 there was attempt at adjusting the parameters to create a better model to

increase the precision of the control system. It was discovered that the several of the

parameters had very little impact on the model, and that the inflow in and the outflow g was

influencing the model substantially more than the other parameters. To create a model it is

essential for a parameter estimation that the flow measurement, level measurement and

estimated inflow is correct. There should also be a log of how much the gate is opened, not

just the total outflow O. It is also shown in Chapter 3.2.2.3 that there are a lot of obvious

measurement errors. The level seems to stagnate, when in fact the Kalman Filter showed that

the level should continue decreasing. In order to estimate a better model, better samples has to

be made such, and perhaps to have enough adjustment options, design a new model or

introduce new parameters.

Another application of a more precise model is that this can be used in a Kalman Filter to give

a warning whenever the level diverges away from its natural path.

5.2 Suggestions for the MPC

It is a possibility to use only compute hourly controller output for the first day, and then

compute a single controller output for the remaining 9 days. This could be used as a tuning

option to force the MPC to reach a steady state faster. This could also cause a problem as the

controller output’s amplitude is a function of the height h2, thus the controller will only be

able to give a control output that is the lowest of the modeled level h2 during these 9 days.

During the simulations done in Chapter 4.3.6.2 the control output hg seemed more stable and

prevented an overshot better than the other simulations when there was a weight on hg

variable in the performance index. The only problem with this was that it only kept the level

h1 stable on the upper level hrv. One way to counter this can be to introduce another upper

limit lower than hrv, this limit should have a lower weight than the weight on hrv. Doing this

might create some margin rather than having the level right on the boundary at all time.

It showed that controller gave less overshot when disabling the lrv, this lower limit should

maybe be disabled until the level reaches higher than lrv to give better result.

 51

There hard constraint O O
max

 should maybe be a soft constraint since there is no control

over the t, in this thesis there is assumed that Skagerak will adjust the t according to their

regulations on O
max

.

 52

6 Conclusion

The objective of this thesis is to study the possibility of a deterministic flood control to

control the water level at Lake Toke using MPC.

A 2 state nonlinear model designed by Bjørn Glemmestad has undergone a parameter

estimation to further improve the model in Chapter 3.2.2. The parameters α, β, CD and λ was

found intuitively when the model was designed. A sensitivity analysis showed that the

dynamics of the model was dominated by the influx in and the outflow g, still a parameter

estimation was performed using a Kalman Filter. The time varying Kalman filter showed in

effective as the Kalman Gain was based on the measurements used in the linearization, this

cause the Kalman Filter to receive errors as the model was unreliable. The steady state

Kalman Filter proved more effective, but the results showed that there is no change in any of

the parameters α, β, CD and λ that will improve the model.

To implement the nonlinear model into MPC the model was linearized around operation

points. To assess the linearized models, simulations were performed in Chapter 3.2.1.

Simulations where performed with both ascending water level as well as descending water

level using steady states at initial value to see how precise the linearized model predicts the

water level over 5 days, the linearization was validated against the nonlinear model of Lake

Toke. The simulation will start with an initial value of 1 m and end at 3 m when ascending or

vice versa when descending. When the linearized model was simulated with an ascending

slope the level hit approximately 0.5 m higher, and when simulating with a descending slope

the linearized model proved to be relatively accurate. The fact that the linearization hit higher

when ascending can be concluded as a healthy safety margin to prevent a flood during the

flooding season, as the controller will foresee the flood to happen before it actually happens.

The turbine flow was also modelled as a function of the level at Dalsfos h2 and the generated

electricity e. The level h2 proved to influence the model by 4 m
3
/s when the level

differentiated by 2 m.

To evaluate the controller several simulations was performed with a disturbances similar to a

realistic flooding scenario. A fixed horizon of 10 days was used. To test the limits of the

controllers as well as tuning it there was performed tests by varying the upper and lower

limits weights Qmin and Qmax as well as the weight on the flood gate P. The simulations proved

that the Qmin should be smaller than Qmax and that a weight on P not only preserves the

reservoir at Lake Toke more, but also created a more stable control output and less overshoot.

One issue that the P weight was causing was that the level tends to stagnate around the upper

limit. To counter this there could be added several upper limits like a hierarchy to fine tune

the controller to stabilize between lrv and hrv.

 53

References

1. RE, RA, TØ. Study the control of the Kragerø waterways in Lake Toke using MPC.

[A report written on a project task during a MPC course]. In press 2013.

2. Toke [Internet]. Wikipedia (2013). Cited 29.01.2014. Available from:

http://no.wikipedia.org/wiki/Toke.

3. Rosvold KA. Dalsfos Kraftverk (2013). Cited 29.01.2014. Available from:

http://snl.no/Dalsfos_kraftverk.

4. Vassdraget og regulering [Internet]. Kragerø Vassdraget (2013). Cited 29.01.2014.

Available from: http://www.kragerovassdraget.no/kragerovassdraget/Vassdraget-og-

regulering/cid/27654/.

5. Lie B. Predictive Controle with Implementation. [A project task at College University

of Telemark]. In press 2013.

http://no.wikipedia.org/wiki/Toke
http://snl.no/Dalsfos_kraftverk
http://www.kragerovassdraget.no/kragerovassdraget/Vassdraget-og-regulering/cid/27654/
http://www.kragerovassdraget.no/kragerovassdraget/Vassdraget-og-regulering/cid/27654/

 54

Appendices

Appendix 1: Task description

Appendix 2: Project description 3. Semester 2013

Appendix 3: MPC

Appendix 4: Testing of the turbine flow model

Appendix 5: Designing the turbine flow model

Appendix 6: Kalman Filter

Appendix 7: Simulations of the linearized Lake Toke model

Appendix 8: Testing the sensitivity of the parameters in the Lake Toke model

Appendix 9: Testing the effect of the change on parameters

 55

Appendix 1

 56

 57

Appendix 2

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

Appendix 3
This program which runs the MPC on model of Lake Toke consists of 8 scripts:

Script 1: runMPC.m

Script 2: build_matrices.m

Script 3: Vinsimulator.m

Script 4: Wesimulator.m

Script 5: Vtnsimulator.m

Script 6: linearize_model_imag.m

Script 7: MPCmodel.m

Script 8: nonlinmodel.m

Script 9: plotwithh2inhgplot.m

Script10: plotwref0.m

Script 1(runMPC.m):

clc

% Initial states
x0 = [2.5,2.41]';

%maximum opening of the gate
hgmax=5.6;

% Horizon
N=24*10;

%Lowest and highest regulated level
lrv=55.75;
hrv=59;

% Number of sample points, timestep is set to 1 hour
n = 24*60;

%weight of variable e
Q=1;

%Weight of variable u
P=1;

%Weight on Smin
Qmin = eps;
%Weight on Smax
Qmax = 10;

%Highest allowed change in flow
Vmax=25;

%reference point for the height i h1
r0 = 2.3;

%reference for upper and lower limit in h1
Ymin=0;
Ymax=3;

%configurating options for quadprog

 70

opts = optimset('Algorithm','interior-point-convex', 'Display', 'off');

%initializing matrices for plots
yplot=zeros(1,n);
uplot=zeros(1,n);
x2plot=zeros(1,n);
Vinplot=zeros(1,n);
eplot=zeros(1,n);

%initialize time step for non linear model update
tspan=[1 60*60];

% Initial u and Vt
u0 = 0;
Vt0 = 5;

%Prepare disturbance matrices
Vin=Vinsimulator();

% Vt=ones(1,length(Vin))*24;
We=Wesimulator();

%Defining sizes of system matrices
nx=2;
nu=1;
ny=1;

for i = 1:n
 i

 if(i==10)
 i;
 end
 %Steady states
 hss=[x0(1); x0(2)];
 hgss=0.05*5.6;
 Vinss=40;
 Vtss=10;

 %System matrices used by the controller
 [A,B,C,D,M]=linearize_model_imag(60*60, [hss(1)

hss(2)]',hgss,Vinss,Vtss);
 k=1;
 %Creating matrice with Vin and Vt
 for(j=i:i+N-1)
 dmat(k:k+1)=M*[Vin(j);0];
 k=k+2;
 end

 %The Vin at time t
 Vint=Vin[5];

 %Finding the parameters to calculate the flow Vt
 Vtpara=linearize_Vt_imag(x0(2)+lrv,We(i+1:i+N-1));

 %calculate area
 Ah1=max(28*1000000*x0(1)^(1/10),1000);
 Ah2=max(28*1000000*x0(2)^(1/10),1000);

 % Present state and measurements

 71

 x = x0;
 y = C*x0;

 [H, f, Ae, Aineq] = build_matrices(A,B,C,M,P,Q,N,nx,ny,nu,Qmin,Qmax,

Vtpara,x0(2));

 % Calculate present u
 rN = r0*ones(N,1);

 %Building the b on the equality matrix
 b1=[A*x0+dmat(1:2)';zeros(nx*(N-1),1)+dmat(3:N*2)'];
 b2=[zeros(ny*N,1)];
 b3=[rN];
 b4=[[Vtmodel(x0(2)+lrv,We[5])],[-Vtpara.*x0(2)+Vtmodel(x0(2)+lrv,

We(i+1:i+N-1))]]';

 be=[b1;b2;b3;b4];
 bineq = [x0(2),zeros(1,N*2*nu-1), ones(1,N)*-Ymin, ones(1,N)*Ymax, (-

4)*ones(1,N), [Vmax+Vt0+u0*(11.2*sqrt(2*9.81*x0(2))), Vmax*ones(1,N-1)]];
 U0 = quadprog(H,f,Aineq,bineq,Ae,be,[],[],[],opts);
 u0 = U0(1:nu);
 u = u0;

 %Saving Vt0 for next iteration
 Vt0=Vtmodel(x0(2)+lrv,We[5]);

 %update the non linear model to simulate a real step
 mymodel = @(t,x) MPCmodel(t,x,Vtmodel(x0(2)+lrv,We[5]), Vint,u);
 [time,xlist]=ode45(mymodel,tspan,x);

x0=[xlist(length(xlist(:,1)),1),xlist(length(xlist(:,1)),2)]';
%filling plot
% Vinplot(1,i)=Vin;
x2plot(1,i)=x0(2);
x1plot(1,i)=x0(1);
hgplot(1,i)=u;
eplot(1,i)=U0(N*3+1);

end

ref=r0*ones(1,n);
t=[0:1:n-1];
figure(1)
subplot(2,1,1)
plot(t,x1plot,t,x2plot,t,ref);
subplot(2,1,2)
plot(t,hgplot);

Script 2(build_matrices.m):

function [H,f, Ae, Aineq] = build_matrices(A,B,C,M,P,Q,N, nx, ny, nu,

Qmin,Qmax, Vtpara,h2)

%number of vt variables and high and low soft limit
nvt=1;

 72

ns=2;

%Quadratic cost function
H1 = diag(P*ones(1,N));
H2 = zeros(N*nx,N*nx);
H3 = zeros(N,N);
% H3 = diag(Q*ones(1,N)); %This part is for the Q
H4 = zeros(N,N);
H5 = diag(Qmin*ones(1,N));
H6 = diag(Qmax*ones(1,N));
H7 = zeros(N*nvt,N*nvt);
H = blkdiag(H1,H2,H3,H4,H5,H6,H7);

f = zeros(1,(nu+nx+ny+ny+ns+nvt)*N);

%Equality constraints
Ae11 = -kron(eye(N,N),B);
Ae12 = kron(eye(N,N),eye(nx,nx)) - kron(diag(ones(N-1,1),-1),A);
Ae16 = kron(eye(N,N),-M(:,2));
Ae22 = -kron(eye(N,N),C);
Ae24 = eye(N*ny,N*ny);
Ae33 = eye(N*ny,N*ny);
Ae34 = eye(N*ny,N*ny);
Ae42 = kron(diag(Vtpara'.*ones(N-1,1),-1),[0 -1]);
Ae46 = eye(N*nvt,N*nvt);

Ae = [Ae11,Ae12,zeros(nx*N,ny*N),zeros(nx*N,ny*N), zeros(nx*N,2*N), Ae16

%x(k+1)=Ax[3]+Bu[3]+M[3]
 zeros(ny*N,nu*N),Ae22,zeros(ny*N,ny*N),Ae24, zeros(N,ns*N),

zeros(nvt*N,nvt*N) %y[3]=Cx[3]
 zeros(ny*N,nu*N),zeros(ny*N,nx*N),Ae33,Ae34, zeros(N,ns*N),

zeros(nvt*N,nvt*N) %e[3]=r[3]-y[3]
 zeros(ny*N,nu*N),Ae42, zeros(ny*N,ny*N), zeros(ny*N,ny*N),

zeros(N,ns*N), Ae46]; %Vt[3]=(h2(N)-h2(0))*Vtpara + Vtmodel

% Inequality constraints
Aineq11= eye(N,N);
Aineq12= -kron(diag(ones(N-1,1),-1),[0 1]);
Aineq21= -eye(N,N);
Aineq34= -eye(N,N);
Aineq35= -eye(N,N);
Aineq44= eye(N,N);
Aineq46= -eye(N,N);
Aineq51= -1*(11.2*sqrt(2*9.81*h2))*eye(N,N);
Aineq56= -eye(N,N);
Aineq61= 11.2*sqrt(2*9.81*h2)*eye(N,N) - 11.2*sqrt(2*9.81*h2)*diag(ones(N-

1,1),-1);
Aineq66= eye(N,N) - diag(ones(N-1,1),-1);

Aineq = [Aineq11, Aineq12, zeros(N,ny*N),zeros(N,ny*N), zeros(N,2*N),

zeros(nvt*N,nvt*N) %hg-h2<=0
 Aineq21, zeros(N,nx*N),zeros(N,ny*N),zeros(N,ny*N), zeros(N,2*N),

zeros(nvt*N,nvt*N) %-hg<=0
 zeros(N,N), zeros(N,nx*N), zeros(N,ny*N),Aineq34, Aineq35,

zeros(N,N), zeros(nvt*N,nvt*N) %-y-Smin<=-ymin
 zeros(N,N), zeros(N,nx*N), zeros(N,ny*N),Aineq44, zeros(N,N),

Aineq46, zeros(nvt*N,nvt*N) %y-Smax<=-Ymax

 73

 Aineq51, zeros(N,nx*N), zeros(N,ny*N), zeros(N,ny*N), zeros(N,2*N),

Aineq56 %-hg<=(-4+Vt)/(w*sqrt(2*g*h2))
 Aineq61, zeros(N,nx*N), zeros(N,ny*N), zeros(N,ny*N), zeros(N,2*N),

Aineq66]; %Vg(k+1)-Vg[3]+Vt(k+1)-Vt[3]<=Vomax

End

Script 3(Vinsimulator.m):

function [Vin] = Vinsimulator()

y(1)=30;
y(2)=50;
y(3)=150;
y(4)=200;
y(5)=210;
y(6)=150;
y(7)=80;
y(8)=80;

x=1:240:60*24+10*24+1;
Y=y;
xx=1:1:60*24+10*24+1;

yy = spline(x,Y,xx);

Vin=yy;
end

Script 4(Wesimulator.m):

function [Vt] = Wesimulator()

XQpara(1)=0.0211;
XQpara(2)=37.1891;

Vtpara(1)=132.0238;
Vtpara(2)=2.8241;

y(1)=3.5;
y(2)=3.5;
y(3)=4.5;
y(4)=5.5;
y(5)=3.3;
y(6)=1;
y(7)=1;
y(8)=0;

x=1:240:60*24+10*24+1;
Y=y;
xx=1:1:60*24+10*24+1;

yy = spline(x,Y,xx);

 74

Vt=yy;

end

Script 5(Vtnsimulator.m):

function [yVt] = Vtmodel(XD, We)

XQpara(1)=0.0211;
XQpara(2)=37.1891;

Vtpara(1)=132.0238;
Vtpara(2)=2.8241;

yVt = Vtpara(1).*(-(XQpara(2)-XD)-sqrt((XQpara(2)-XD).^2-

4*XQpara(1).*We))./(2.*XQpara(1)) + Vtpara(2);

end

Script 6(linearize_model_imag.m):

function [A,B,C,D,M] = linearize_model_imag(Ts, xss, hgss, Vinss, Vtss)

nx = length(xss);

Ix = eye(nx,nx);

h = sqrt(eps);

A = zeros(nx,nx);
i = sqrt(-1);

for k = 1:nx
A(:,k) = (1/h)* imag(nonlinmodel(xss+h*i*Ix(:,k),hgss,Vinss, Vtss));
end

Btemp = zeros(nx,1);
Btemp(:,1) = (1/h)*imag(nonlinmodel(xss,hgss+h*i,Vinss, Vtss));
Btemp(:,2) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss+i*h, Vtss));
Btemp(:,3) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss, Vtss+i*h));

% M = zeros(nx,1);
% M(:,1) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss+i*h, Vtss));
% M(:,2) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss, Vtss+i*h));

C = [1 0];

D = 0;

sys=ss(A,Btemp,C,D);
disc_sys=c2d(sys,Ts);

A=disc_sys.a;

 75

Btemp=disc_sys.b;
C=disc_sys.c;
D=disc_sys.d;

%Separating know disturubance from input
B=Btemp(:,1);
M=[Btemp(:,2) Btemp(:,3)];

End

Script 7(MPCmodel.m):

function [dx_dt]= MPCmodel(t,x,Vt, Vin, hg)
dx_dt=zeros(length(x),1);

a=0.05;
B=0.02;
w=11.2;
g=9.81;
A1=max(28*1000000*x(1)^(1/10),1000);
A2=max(28*1000000*x(2)^(1/10),1000);
V12=800*(x(1)-x(2))*sqrt(abs(x(1)-x(2)));

if(x(2)>=hg)
 Vg=hg*w*sqrt(2*g*x(2));
elseif(hg>=x(2) && x(2)>=0)
 Vg=x(2)*w*sqrt(2*g*x(2));
elseif(x(2)<0)
 Vg=0;
end

dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12);
dx_dt(2) = 1/[3]*(V12-Vt-Vg);

%transpose dx_dt so it is a column vector
% dx_dt = dx_dt';
return

Script 8(nonlinmodel.m):

function [dx_dt]= nonlinmodel(x,hg, Vin,Vt)

dx_dt=zeros(length(x),1);

omega=11.2;
a=0.05;
B=0.02;
w=11.2;
g=9.81;
Cd=1;
A1=max(28*1000000*x(1)^(1/10),1000);
A2=max(28*1000000*x(2)^(1/10),1000);

V12=800*(x(1)-x(2))*sqrt(abs(x(1)-x(2)));

%The flow Vg is replaced with
Vg=Cd*hg*omega*sqrt(2*g*x(2));

 76

% if(x(2)>=hg)
% Vg=hg*w*sqrt(2*g*x(2));
% elseif(hg>=x(2) && x(2)>=0)
% Vg=x(2)*w*sqrt(2*g*x(2));
% elseif(x(2)<0)
% Vg=0;
% end

dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12);
dx_dt(2) = 1/[3]*(V12-Vt-Vg+B*Vin);

end

Script 9(plotwithh2inhgplot.m):

function plotwithh2inhgplot(X1, YMatrix1, YMatrix2)
%CREATEFIGURE(X1, YMATRIX1, YMATRIX2)
% X1: vector of x data
% YMATRIX1: matrix of y data
% YMATRIX2: matrix of y data

% Auto-generated by MATLAB on 28-May-2014 22:35:33

% Create figure
figure1 = figure('PaperType','<custom>','PaperSize',[29.7 15],...
 'InvertHardcopy','off',...
 'Color',[1 1 1]);

% Create subplot
subplot1 =

subplot(2,1,1,'Parent',figure1,'FontWeight','light','YGrid','on','XGrid','o

n',...
 'FontSize',13);
ylim(subplot1,[0 5]);
box(subplot1,'on');
hold(subplot1,'all');

% Create multiple lines using matrix input to plot
plot1 = plot(X1,YMatrix1,'Parent',subplot1,'LineWidth',2);
set(plot1(1),'LineStyle','--','DisplayName','h_1');
set(plot1(2),'LineStyle',':','DisplayName','h_2','Color',[0 0 0]);
set(plot1(3),'DisplayName','hrv');
set(plot1(4),'Color',[1 0 0],'DisplayName','lrv');

% Create xlabel
xlabel('Time [h]','FontWeight','light','FontSize',13);

% Create ylabel
ylabel('Water level [m]','FontWeight','light','FontSize',13);

% Create subplot
subplot2 =

subplot(2,1,2,'Parent',figure1,'FontWeight','light','YGrid','on','XGrid','o

n',...
 'FontSize',13);
ylim(subplot2,[0 5]);
box(subplot2,'on');
hold(subplot2,'all');

 77

% Create multiple lines using matrix input to plot
plot2 = plot(X1,YMatrix2,'Parent',subplot2,'LineWidth',2);
set(plot2(1),'DisplayName','h_g');
set(plot2(2),'LineStyle',':','DisplayName','h_2','Color',[0 0 0]);

% Create xlabel
xlabel('Time [h]','FontWeight','light','FontSize',13);

% Create ylabel
ylabel('Flood gate [m]','FontWeight','light','FontSize',13);

% Create legend
legend1 = legend(subplot1,'show');
set(legend1,...
 'Position',[0.147783473615092 0.757862341626222 0.06484375

0.123188405797101]);

% Create legend
legend2 = legend(subplot2,'show');
set(legend2,...
 'Position',[0.818229166666667 0.351449275362319 0.05859375

0.0717391304347826]);

Script 10(plotwref0.m):

function plotwref0(X1, YMatrix1, Y1)
%CREATEFIGURE(X1, YMATRIX1, Y1)
% X1: vector of x data
% YMATRIX1: matrix of y data
% Y1: vector of y data

% Auto-generated by MATLAB on 28-May-2014 22:14:39

% Create figure
figure1 = figure('PaperType','<custom>','PaperSize',[29.7 15],...
 'InvertHardcopy','off',...
 'Color',[1 1 1]);

% Create subplot
subplot1 = subplot(2,1,1,'Parent',figure1,'FontWeight','light',...
 'FontSize',13);
%% Uncomment the following line to preserve the X-limits of the axes
% xlim(subplot1,[0 1500]);
% Uncomment the following line to preserve the Y-limits of the axes
ylim(subplot1,[0 5]);
%% Uncomment the following line to preserve the Z-limits of the axes
% zlim(subplot1,[-1 1]);
box(subplot1,'on');
hold(subplot1,'all');

% Create multiple lines using matrix input to plot
plot1 = plot(X1,YMatrix1,'Parent',subplot1,'LineWidth',2);
set(plot1(1),'LineStyle','--','DisplayName','h_1');
set(plot1(2),'LineStyle',':','DisplayName','h_2','Color',[0 0 0]);
set(plot1(3),'DisplayName','hrv');
set(plot1(4),'Color',[1 0 0],'DisplayName','lrv');

% Create xlabel

 78

xlabel('Time [h]','FontWeight','light','FontSize',13);

% Create ylabel
ylabel('Water level [m]','FontWeight','light','FontSize',13);

% Create subplot
subplot2 = subplot(2,1,2,'Parent',figure1,'FontWeight','light',...
 'FontSize',13);
%% Uncomment the following line to preserve the X-limits of the axes
% xlim(subplot2,[0 1500]);
% Uncomment the following line to preserve the Y-limits of the axes
ylim(subplot2,[0 5]);
%% Uncomment the following line to preserve the Z-limits of the axes
% zlim(subplot2,[-1 1]);
box(subplot2,'on');
hold(subplot2,'all');

% Create plot
plot(X1,Y1,'Parent',subplot2,'LineWidth',2,'DisplayName','h_g');

% Create xlabel
xlabel('Time [h]','FontWeight','light','FontSize',13);

% Create ylabel
ylabel('Flood gate [m]','FontWeight','light','FontSize',13);

% Create legend
legend1 = legend(subplot2,'show');
set(legend1,...
 'Position',[0.160416666666667 0.383852691218131 0.05859375

0.0500472143531634]);

% Create legend
legend2 = legend(subplot1,'show');
set(legend2,...
 'Position',[0.159244791666668 0.767705382436265 0.06484375

0.16052880075543]);

 79

Appendix 4

This appendix consists of the MATLAB code which run the test of the turbine flow model,

the code consists of 4 scripts.

Script 1: TestVtlin.m

Script 2: linearize_Vt_imag.m

Script 3: Vtmodel.m

Script 4: simuplot.m

Script 1(TestVtlin.m):

lrv=55.75;

x2=1;
XD=x2+lrv;
n=20;
We=linspace(0,5.6,10);

%Since the level is not expected to be less then the lrv, the model is
%linearized with a x2 from 0 to 2 if the level is lower then 1

Vtpara=linearize_Vt_imag(XD,We);

Vtlin = @(XDdt, Wedt, XD, We) Vtpara*XDdt + Vtmodel(XD,We);
% Vtlin = @(XDdt, Wedt, XD, We) Vtmodel(XD,We);

y1=Vtmodel(XD+2,We)';
y2=Vtlin(2,0,XD, We)';
y3=Vtmodel(XD,We)';
x=0:1:length(y1)-1;

% plot(We,y1,We,y2,We,y3)

simuplot(We, [y1 y2 y3])

%# centimeters units
X = 29.7; %# A4 paper size
Y = 10; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])

 80

set(gcf, 'PaperOrientation','portrait')
iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))

Script 2(linearize_Vt_imag.m):

function [Vtpara] = linearize_Vt_imag(XD,We)

h = sqrt(eps);

i = sqrt(-1);

Vtpara = (1/h)* imag(Vtmodel(XD+h*i,We));

end

Script 3(Vtmodel.m):

function [yVt] = Vtmodel(XD, We)

XQpara(1)=0.0211;
XQpara(2)=37.1891;

Vtpara(1)=132.0238;
Vtpara(2)=2.8241;

yVt = Vtpara(1).*(-(XQpara(2)-XD)-sqrt((XQpara(2)-XD).^2-

4*XQpara(1).*We))./(2.*XQpara(1)) + Vtpara(2);

end

Script 4(simuplot.m):

function simuplot(X1, YMatrix1)
%CREATEFIGURE(X1, YMATRIX1)
% X1: vector of x data
% YMATRIX1: matrix of y data

% Auto-generated by MATLAB on 27-May-2014 11:03:46

% Create figure
figure1 = figure('PaperType','<custom>','PaperSize',[29.7 10],...
 'InvertHardcopy','off',...
 'Color',[1 1 1]);

% Create axes
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',...
 'FontWeight','light',...
 'FontSize',13);
%% Uncomment the following line to preserve the X-limits of the axes
% xlim(axes1,[0 9]);
%% Uncomment the following line to preserve the Y-limits of the axes

 81

% ylim(axes1,[0 45]);
%% Uncomment the following line to preserve the Z-limits of the axes
% zlim(axes1,[-1 1]);
box(axes1,'on');
hold(axes1,'all');

% Create multiple lines using matrix input to plot
plot1 = plot(X1,YMatrix1,'Parent',axes1,'LineWidth',2);
set(plot1(1),'DisplayName','Nonlinear model at h_2 = 3m');
set(plot1(2),'DisplayName','Linearized model at h_2 = 3 m');
set(plot1(3),'DisplayName','Nonlinear model at h_2 = 1 m','LineWidth',0.5);

% Create xlabel
xlabel('Generated elecetricity [kWh]','FontWeight','light','FontSize',13);

% Create ylabel
ylabel('Turbine flow dV/dt [m^3/s]','FontWeight','light','FontSize',13);

% Create legend
legend(axes1,'show');

 82

Appendix 5

This MATLAB code creates the turbine flow model, the code consists of 5 scripts which.

Script 1 needs to be executed before script 2.

Script 1: LSM1.m

Script 2: LSM2.m

Script 3: plotcode.m

Script 4: remove_flow_to_XQ.m

Script 5: removeNaN.m

Script 6: split_vt_vg.m

Script 7: VovsXQ.m

Script 8: plotVovsXQ.m

Script 1(LSM1.m):

clear all
close all
clc

load Vo08
load Vo09
load We08
load We09
load XQ08
load XQ09
load XD08
load XD09

removeNaN;

Outlier=6870;
Vo08(Outlier) = [];
XD08(Outlier) = [];
We08(Outlier) = [];
XQ08(Outlier) = [];

Outlier=6492;
Vo09(Outlier) = [];
XD09(Outlier) = [];
We09(Outlier) = [];
XQ09(Outlier) = [];

split_vt_vg;
remove_flow_to_XQ;

%==
%Using XQ = Vt + K
Als = [Votemp ones(1,length(Votemp))'];
yls = XQtemp';

xls=inv(Als'*Als)*Als'*yls';
XQpara=xls;
yXQ = @(Vo) xls(1).*Vo + xls(2);

 83

figure
plot(Vt09,yXQ(Vt09),'x',Votemp,XQtemp,'x')
xlim([0 40])
ylim([37 38])

Vttest=(-(XQpara(2)-XD09)-sqrt((XQpara(2)-XD09).^2-

4*XQpara(1).*We09))/(2*XQpara(1));
figure
plot(We09,Vo09,'x',We09,Vttest,'x')
ylim([0.017 0.26])

Script 2(LSM2.m):

close all

%

%==
% %Using Vt = We + K
Als = [(-(XQpara(2)-XD08)-sqrt((XQpara(2)-XD08).^2-

4*XQpara(1).*We08))/(2*XQpara(1)) ones(1,length(We08))'];
yls = Vt08';

xls=inv(Als'*Als)*Als'*yls';
yVt = @(XD, We, Vg) xls(1)*(-(XQpara(2)-XD)-sqrt((XQpara(2)-XD).^2-

4*XQpara(1).*We))/(2*XQpara(1)) + xls(2);

% plot(Vo08,XQ08,'x');
figure
plot(We09,yVt(XD09,We09, Vg09),'x',We09,Vt09,'x')
% xlim([])
% ylim([0 300])
x=0:1:length(We09)-1;

plotcode(x,[yVt(XD09,We09,Vg09) Vt09],We09)

%# centimeters units
X = 29.7; %# A4 paper size
Y = 15; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')
iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))
% set(gca,'position',[0 0 1 1],'units','normalized')

% figure

 84

% subplot(2,1,1)
% plot(x,yVt(XD09,We09,Vg09),x,Vt09)
% subplot(2,1,2)
% plot(x,We09)

Script 3(plotcode.m):

function plotcode(X1, YMatrix1, Y1)
%CREATEFIGURE(X1, YMATRIX1, Y1)
% X1: vector of x data
% YMATRIX1: matrix of y data
% Y1: vector of y data

% Auto-generated by MATLAB on 03-Mar-2014 14:13:57

% Create figure
figure1 = figure;

% Create subplot
subplot1 = subplot(2,1,1,'Parent',figure1);
box(subplot1,'on');
hold(subplot1,'all');

% Create multiple lines using matrix input to plot
plot1 = plot(X1,YMatrix1,'Parent',subplot1,'LineWidth',2);
set(plot1(1),'DisplayName','Estimated dV_t/dt');
set(plot1(2),'DisplayName','dV_t/dt 2009');

% Create xlabel
xlabel('Sample');

% Create ylabel
ylabel('dV_t/dt [m^3/s]');

% Create subplot
subplot2 = subplot(2,1,2,'Parent',figure1);
box(subplot2,'on');
hold(subplot2,'all');

% Create plot
plot(X1,Y1,'Parent',subplot2,'LineWidth',2);

% Create xlabel
xlabel('Sample');

% Create ylabel
ylabel('Power production [KWh]');

% % Create legend
% legend1 = legend(subplot1,'show');
% set(legend1,...
% 'Position',[0.289299536373768 0.657752401779758 0.127029608404967

0.178807947019868]);

Script 4(remove_flow_to_XQ.m):

 85

% rows_to_remove09 = any(Vo09>=36, 2);
% XQ09(rows_to_remove09,:) = [];
% XD09(rows_to_remove09,:) = [];
% Vo09(rows_to_remove09,:) = [];
% We09(rows_to_remove09,:) = [];

rows_to_remove08 = any(Vo08>=36.5, 2);
XQtemp=XQ08;
XQtemp(rows_to_remove08,:) = [];
Votemp=Vo08;
Votemp(rows_to_remove08,:) = [];

Script 5(removeNaN.m):

rows_to_remove = any(isnan(XD08), 2);
XD08(rows_to_remove,:) = [];
Vo08(rows_to_remove,:) = [];
We08(rows_to_remove,:) = [];
XQ08(rows_to_remove,:) = [];

Script 6(split_vt_vg.m):

Vt08=Vo08;
Vt09=Vo09;

Vg08=zeros(length(Vo08),1);
Vg09=zeros(length(Vo09),1);

rows = any(Vo08>=36.5, 2);
Vt08(rows,:) = 36.5;

rows = any(Vo09>=36.5, 2);
Vt09(rows,:) = 36.5;

rows = any(Vo08>36.5, 2);
Vg08(rows,:) = Vo08(rows)-Vt08(rows);

rows = any(Vo09>36.5, 2);
Vg09(rows,:) = Vo09(rows)-Vt09(rows);

Script 7(VovsXQ.m):

close all
%==
%Using XQ = V0^3 + Vo.^2 + Vo + K
Als = [Vo08.^3 Vo08.^2 Vo08 ones(1,length(Vo08))'];
yls = XQ08';

xls=inv(Als'*Als)*Als'*yls';
XQpara=xls;
yXQ = @(Vo) xls(1).*Vo.^3 + xls(2).*Vo.^2 + xls(3)*Vo + xls(4);

% testplot(Vo09,[XQ09 yXQ(Vo09)])
plotVovsXQ(Vo09,[yXQ(Vo09) XQ09])

 86

Script 8(plotVovsXQ.m):

function plotVovsXQ(X1, YMatrix1)
%CREATEFIGURE(X1, YMATRIX1)
% X1: vector of x data
% YMATRIX1: matrix of y data

% Auto-generated by MATLAB on 05-Mar-2014 19:21:50

% Create figure
figure1 = figure();

% Create axes
axes1 = axes('Parent',figure1,'FontSize',14);
box(axes1,'on');
hold(axes1,'all');

% Create multiple lines using matrix input to plot
plot1 =

plot(X1,YMatrix1,'Parent',axes1,'Marker','x','LineStyle','none','Linewidth'

,2);
set(plot1(1),'DisplayName','X_Q 2009');
set(plot1(2),'DisplayName','Cubic fit of dV_O/dt');

% Create xlabel
xlabel('dV_O/dt','FontSize',14);

% Create ylabel
ylabel('X_Q','FontSize',14);
legend(axes1,'show');

xlim([0 220]);
ylim([36 41])

%# centimeters units
X = 29.7; %# A4 paper size
Y = 10; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPositionMode', 'manual')
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')
% iptsetpref('ImshowBorder','tight');
% set(gca,'LooseInset',get(gca,'TightInset'))

 87

Appendix 6

This MATLAB code runs the both the steady state kalman filter (sskalmanfilter.m) and the

time varying kalman filter (tvkalmanfilter.m).

Script 1: sskalmanfilter.m

Script 2: tvkalmanfilter.m

Script 3: auglinearization.m

Script 4: fig1.m

Script 5: fig2.m

Script 1(sskalmanfilter.m):

close all
clear all
load Data

%Gain matrix for the estimated noise
G=diag([0 0 1 1]);
H=diag([1 1]);
W=diag([10 100 0.0001 0.001]);
V=diag([100 100]);

%Timestep on the nonlinear model [s]
tode=0:60:60*60*24;

%Parameters
hgmax=5.6;
Tslin=60*60*24;
hgmin=0.01*hgmax;
lrv=55.75;

%initializing matrices
yk=zeros(2,1);
xkk_1=zeros(4,1);
xk_1k_1=zeros(4,1);
xkk=zeros(4,1);

%Defining data length
tstart=1000;
tend=length(Data(:,1));
% tend=1000;
deltat=tend-tstart;
newdata=Data(tstart:tend,:);

%Initial steady state values
h1=newdata(1,3)-lrv;
h2=newdata(1,2)-lrv;
% if(h1<=0)
% h1=0.01;
% end
% if(h2<=0)
% h2=0.01;

 88

% end
% if(newdata(1,4)*hgmax<hgmin)
% hgss=hgmin;
% else
% hgss=newdata(1,4)*hgmax;
% end
hgss=newdata(1,4)*hgmax;
Vinss=newdata(1,1);
Vtss=newdata(1,5);

%Choosing initial value for parameters of interest
x3=0.05;
x4=1;

x0=[h1 h2 x3 x4]';
xk_1k_1=x0;

yk(1)=newdata(1,3)-lrv;
yk(2)=newdata(1,2)-lrv;

%Plot newdata
xplot=0:1:deltat-1;
xkkplot(:,1)=x0;
ekkplot=zeros(4,deltat);
ekplot=zeros(2,deltat);

%Log the sum of error change
xec=zeros(4,1);

%Calculate steady state kalman gain

xssaug=[3.5 3.2 x3 x4]';
Vinssaug=50;
Vtssaug=24;
hgssaug=0.05*hgmax;

[A, B, C, D]=auglinearization(Tslin, xssaug, hgssaug, Vinssaug, Vtssaug, G,

H);
[Kk,Pp,Pc,E]=dlqe(A,G,C,W,V);

% for(i=2:length(newdata(:,1)))
for(i=2:deltat)

 if(i==412)
 i;
 end

%Progagation step:
%Predicting measurment estimate for k+1
pred_model=@(t,x) augnonlinmodel(t,x, hgss, Vinss, Vtss);
[t,ynonlin]=ode45(pred_model,tode,[xk_1k_1(1) xk_1k_1(2) xk_1k_1(3)

xk_1k_1(4)]);
% [t,ynonlin]=ode45(pred_model,t,xc);
xkk_1(1)=real(ynonlin(length(ynonlin(:,1)),1));
xkk_1(2)=real(ynonlin(length(ynonlin(:,1)),2));
xkk_1(3)=real(ynonlin(length(ynonlin(:,1)),3));
xkk_1(4)=real(ynonlin(length(ynonlin(:,1)),4));

%Measurment update:

 89

ykk_1=C*xkk_1;
ekk_1=yk-ykk_1;

%Logging the error
ekplot(:,i-1)=ekk_1;

%Corrected measurment estimate
xkk=xkk_1+Kk*ekk_1;

%Logging kalman change effect
ekkplot(:,i-1)=Kk*ekk_1;
xec=xec+Kk*ekk_1;

% if(xkk(3)<0.8)
% xkk(3)=0.8;
% end

%plots
xkkplot(:,i)=xkk;

%===============================
%Shifting up one time instance
yk(1)=newdata(i,3)-lrv;
yk(2)=newdata(i,2)-lrv;
Vtss=newdata(i,5);
% if(newdata(i,4)*hgmax<hgmin)
% hgss=hgmin;
% else
% hgss=newdata(i,4)*hgmax;
% end
hgss=newdata(i,4)*hgmax;
Vinss=newdata(i,1);

xk_1k_1=xkk;
if(xk_1k_1(1)<=0)
 xk_1k_1(1)=0.01;
elseif(xk_1k_1(2)<=0)
 xk_1k_1(2)=0.01;
end

i

end

% figure(1)
% subplot(4,1,1)
% plot(xplot,xkkplot(1,:),xplot,newdata(1:deltat,3)-lrv)
% grid on
%
% subplot(4,1,2)
% plot(xplot,xkkplot(2,:),xplot,newdata(1:deltat,2)-lrv)
% grid on
%
% subplot(4,1,3)
% plot(xplot,xkkplot(3,:))
% grid on
% % ylim([-0.5 2])
%

 90

% subplot(4,1,4)
% plot(xplot,xkkplot(4,:))
% grid on

fig1(xplot,[xkkplot(1,:)' (newdata(1:deltat,3)-lrv)], [xkkplot(2,:)'

newdata(1:deltat,2)-lrv], xkkplot(3,:), xkkplot(4,:));

%# centimeters units
X = 29.7; %# A4 paper size
Y = 20; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')
iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))

% figure(2)
% subplot(4,1,1)
% plot(xplot,ekkplot(1,:))
% grid on
%
% subplot(4,1,2)
% plot(xplot,ekkplot(2,:))
% grid on
%
% subplot(4,1,3)
% plot(xplot,ekkplot(3,:))
% grid on
%
% subplot(4,1,4)
% plot(xplot,ekkplot(4,:))
% grid on

fig2(xplot, ekkplot(1,:), ekkplot(2,:), ekkplot(3,:), ekkplot(4,:))

%# centimeters units
X = 29.7; %# A4 paper size
Y = 20; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')

 91

iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))

figure(3)
subplot(2,1,1)
plot(xplot,ekplot(1,:))
grid on

subplot(2,1,2)
plot(xplot,ekplot(2,:))
grid on

xec

Script 2(tvkalmanfilter.m):

clear all
load Data

%Gain matrix for the estimated noise
G=diag([1 1 1 1]);
H=diag([1 1]);
W=diag([1 10 0.0001 0.0001]);
V=diag([1 10]);

%Timestep on the nonlinear model [s]
t=0:60:60*60*24;

%Parameters
hgmax=5.6;
Tslin=60*60*24;
hgmin=0.001*hgmax;
lrv=55.75;

%initializing matrices
yk=zeros(2,1);
xkk_1=zeros(4,1);
xk_1k_1=zeros(4,1);
xkk=zeros(4,1);

%Defining data length
tstart=1000;
tend=length(Data(:,1));
% tend=100;
deltat=tend-tstart;
newdata=Data(tstart:tend,:);

%Initial steady state values
h1=newdata(1,3)-lrv;
h2=newdata(1,2)-lrv;
if(h1<=0)
 h1=0.01;
end
if(h2<=0)
 h2=0.01;
end
if(newdata(1,4)*hgmax<hgmin)
 hgss=hgmin;
else

 92

 hgss=newdata(1,4)*hgmax;
end
Vinss=newdata(1,1);
Vtss=newdata(1,5);

x0=[h1,h2,0.05,1]';
xk_1k_1=x0;

yk(1)=newdata(1,3)-lrv;
yk(2)=newdata(1,2)-lrv;

%Defining initial value of the autocovariance matrix
P0=diag([1 10 0.001 0.0001]);
Pk_1k_1=P0;

%Plot newdata
xplot=0:1:deltat-1;
xkkplot(:,1)=x0;
ekkplot=zeros(4,deltat);
ekplot=zeros(2,deltat);

%Log the sum of error change
xec=zeros(4,1);

% for(i=2:length(newdata(:,1)))
for(i=2:deltat)

%Progagation step:
%Predicting measurment estimate for k+1
pred_model=@(t,x) augnonlinmodel(t,x, hgss, Vinss, Vtss);
[t,ynonlin]=ode45(pred_model,t,[xk_1k_1(1) xk_1k_1(2) xk_1k_1(3)

xk_1k_1(4)]);
% [t,ynonlin]=ode45(pred_model,t,xc);
xkk_1(1)=real(ynonlin(length(ynonlin(:,1)),1));
xkk_1(2)=real(ynonlin(length(ynonlin(:,1)),2));
xkk_1(3)=real(ynonlin(length(ynonlin(:,1)),3));
xkk_1(4)=real(ynonlin(length(ynonlin(:,1)),4));

%Find linearized model
[A, B, C, D]=auglinearization(Tslin, xk_1k_1, hgss, Vinss, Vtss, G, H);

%Calculate predicted autocovariance for k+1
Pkk_1=A*Pk_1k_1*A' + B*W*B';

%Measurment update:
ykk_1=C*xkk_1;
ekk_1=yk-ykk_1;
Zkk_1=Pkk_1*C';
Ekk_1=C*Pkk_1*C' + D*V*D';

%Logging the error
ekplot(:,i-1)=ekk_1;

%Find Kalman gain

 93

Kk=Zkk_1/(Ekk_1);

%Corrected measurment estimate
xkk=xkk_1+Kk*ekk_1;

%Logging kalman change effect
ekkplot(:,i-1)=Kk*ekk_1;
xec=xec+Kk*ekk_1;

% if(xkk(3)<0.8)
% xkk(3)=0.8;
% end
Pkk=Pkk_1 - Kk*Ekk_1*Kk';

% %Test if observable
% Ob = obsv(A,C);
% if(rank(obsv(A,C))<4)
% rank(obsv(A,C))
% pause;
% end

%Check for positive definitness
if(~all(eig(Pkk) > 0))
 Pkk
 pause;
end

if(~all(eig(Pkk_1) > 0))
 Pkk_1
 pause;
end

%plots
xkkplot(:,i)=xkk;

%===============================
%Shifting up one time instance
yk(1)=newdata(i,3)-lrv;
yk(2)=newdata(i,2)-lrv;
Vtss=newdata(i,5);
if(newdata(i,4)*hgmax<hgmin)
 hgss=hgmin;
else
 hgss=newdata(i,4)*hgmax;
end
Vinss=newdata(i,1);

xk_1k_1=xkk;
% if(xk_1k_1(1)<=0)
% xk_1k_1(1)=0.01;
% elseif(xk_1k_1(2)<=0)
% xk_1k_1(2)=0.01;
% end
Pk_1k_1=Pkk;

i

end

 94

% figure(1)
% subplot(4,1,1)
% plot(xplot,xkkplot(1,:),xplot,newdata(1:deltat,3)-lrv)
% grid on
%
% subplot(4,1,2)
% plot(xplot,xkkplot(2,:),xplot,newdata(1:deltat,2)-lrv)
% grid on
%
% subplot(4,1,3)
% plot(xplot,xkkplot(3,:))
% grid on
% % ylim([-0.5 2])
%
% subplot(4,1,4)
% plot(xplot,xkkplot(4,:))
% grid on

fig1(xplot,[xkkplot(1,:)' (newdata(1:deltat,3)-lrv)], [xkkplot(2,:)'

newdata(1:deltat,2)-lrv], xkkplot(3,:), xkkplot(4,:));

%# centimeters units
X = 29.7; %# A4 paper size
Y = 20; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')
iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))

% figure(2)
% subplot(4,1,1)
% plot(xplot,ekkplot(1,:))
% grid on
%
% subplot(4,1,2)
% plot(xplot,ekkplot(2,:))
% grid on
%
% subplot(4,1,3)
% plot(xplot,ekkplot(3,:))
% grid on
%
% subplot(4,1,4)
% plot(xplot,ekkplot(4,:))
% grid on

fig2(xplot, ekkplot(1,:), ekkplot(2,:), ekkplot(3,:), ekkplot(4,:))

 95

%# centimeters units
X = 29.7; %# A4 paper size
Y = 20; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')
iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))

figure(3)
subplot(2,1,1)
plot(xplot,ekplot(1,:))
grid on

subplot(2,1,2)
plot(xplot,ekplot(2,:))
grid on

%# centimeters units
X = 29.7; %# A4 paper size
Y = 20; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')
iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))

xec

Script 3(auglinearization.m):

function [A,B,C,D] = auglinearization(Ts, xss, hgss, Vinss, Vtss, G, H)

nx = length(xss);

Ix = eye(nx,nx);
t = 0;

h = sqrt(eps);

 96

A = zeros(nx,nx);
i = sqrt(-1);

for k = 1:nx
A(:,k) = (1/h)* imag(augnonlinmodel(t,xss+h*i*Ix(:,k),hgss,Vinss, Vtss));
end

% B = zeros(nx,1);
% B(:,1) = (1/h)*imag(augnonlinmodel(t,xss,hgss+h*i,Vinss, Vtss));
% B(:,2) = (1/h)*imag(augnonlinmodel(t,xss,hgss,Vinss+h*i, Vtss));

C = [1 0 0 0;0 1 0 0];

d=0;

sys=ss(A,G,C,d);
disc_sys=c2d(sys,Ts);

A=disc_sys.a;
B=disc_sys.b;
C=disc_sys.c;
D=H;

end

Script 3(fig1.m):

function fig1(X1, YMatrix1, YMatrix2, Y1, Y2)
%CREATEFIGURE(X1, YMATRIX1, YMATRIX2, Y1, Y2)
% X1: vector of x data
% YMATRIX1: matrix of y data
% YMATRIX2: matrix of y data
% Y1: vector of y data
% Y2: vector of y data

% Auto-generated by MATLAB on 05-May-2014 14:34:52

% Create figure
figure1 = figure('PaperType','<custom>','PaperSize',[29.7 20]);

% Create subplot
subplot1 = subplot(4,1,1,'Parent',figure1);
box(subplot1,'on');
grid(subplot1,'on');
hold(subplot1,'all');

% Create multiple lines using matrix input to plot
plot1 = plot(X1,YMatrix1,'Parent',subplot1);
set(plot1(2),'LineWidth',2,'LineStyle',':');

% % Create xlabel
% xlabel('Sample number');

% Create ylabel
ylabel('Height [m]');

 97

% Create title
title('Height h_1');

% Create subplot
subplot2 = subplot(4,1,2,'Parent',figure1);
box(subplot2,'on');
grid(subplot2,'on');
hold(subplot2,'all');

% Create multiple lines using matrix input to plot
plot2 = plot(X1,YMatrix2,'Parent',subplot2);
set(plot2(2),'LineWidth',2,'LineStyle',':');

% % Create xlabel
% xlabel('Sample number');

% Create ylabel
ylabel('Height [m]');

% Create title
title('Height h_2');

% Create subplot
subplot3 = subplot(4,1,3,'Parent',figure1);
box(subplot3,'on');
grid(subplot3,'on');
hold(subplot3,'all');

% Create plot
plot(X1,Y1,'Parent',subplot3,'LineWidth',2);

% % Create xlabel
% xlabel('Sample number');

% Create title
title('Parameter \alpha');

% Create subplot
subplot4 = subplot(4,1,4,'Parent',figure1);
box(subplot4,'on');
grid(subplot4,'on');
hold(subplot4,'all');

% Create plot
plot(X1,Y2,'Parent',subplot4,'LineWidth',2);

% % Create xlabel
% xlabel('Sample number');

% Create title
title('Parameter C_D');

Script 3(fig2.m):

function fig2(X1, Y1, Y2, Y3, Y4)
%CREATEFIGURE(X1, Y1, Y2, Y3, Y4)
% X1: vector of x data
% Y1: vector of y data
% Y2: vector of y data

 98

% Y3: vector of y data
% Y4: vector of y data

% Auto-generated by MATLAB on 05-May-2014 15:03:05

% Create figure
figure1 = figure;

% Create subplot
subplot1 = subplot(4,1,1,'Parent',figure1);
box(subplot1,'on');
grid(subplot1,'on');
hold(subplot1,'all');

% Create plot
plot(X1,Y1,'Parent',subplot1,'LineWidth',1);

% Create title
title('Height h_1');

% Create subplot
subplot2 = subplot(4,1,2,'Parent',figure1);
box(subplot2,'on');
grid(subplot2,'on');
hold(subplot2,'all');

% Create plot
plot(X1,Y2,'Parent',subplot2,'LineWidth',1);

% Create title
title('Height h_1');

% Create subplot
subplot3 = subplot(4,1,3,'Parent',figure1);
box(subplot3,'on');
grid(subplot3,'on');
hold(subplot3,'all');

% Create plot
plot(X1,Y3,'Parent',subplot3,'LineWidth',1);

% Create title
title('Parameter \alpha');

% Create subplot
subplot4 = subplot(4,1,4,'Parent',figure1);
box(subplot4,'on');
grid(subplot4,'on');
hold(subplot4,'all');

% Create plot
plot(X1,Y4,'Parent',subplot4,'LineWidth',1);

% Create title
title('Parameter C_D');

 99

Appendix 7

This is the MATLAB code which run simulations of the linearized model on Lake Toke. The

code consists of 5 scripts.

Script 1: simulation.m

Script 2: ssmodel.m

Script 3: linearized_model_imag.m

Script 4: modelusedforlin.m

Script 5: plotsime.m

Script 1(simulation.m):

close all;

hgmax=5.6;
t=[0 10*24*60*60];
x0=[3,2.7]';
Vin1=50;
Vin2=150;
Vint12=2*24*60*60;
hg1=0.02*hgmax;
hg2=0.5*hgmax;
hgt12=5*24*60*60;

[A,B,C,D,M]=linearize_model_imag(x0, 0.01*hgmax, 50,15);

statespacemodel = @(t,x) ssmodel(t,x,Vin1,Vint12,Vin2,hg1,hgt12,hg2,A,B,M);

origmodel = @(t,x) nonlinmodel(t,x,Vin1,Vint12,Vin2,hg1,hgt12,hg2);

[time1,hss]=ode45(statespacemodel,t,x0);

[time2,horig]=ode45(origmodel,t,x0);

plotsimu(time2,[horig(:,1) horig(:,2)],time1, [hss(:,1) hss(:,2)]);

%# centimeters units
X = 29.7; %# A4 paper size
Y = 15; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')

 100

iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))

Script 2(ssmodel.m):

function [dxdt] = ssmodel(t,x,Vin1,Vint12,Vin2,hg1,hgt12,hg2, A, B, M)
dx_dt=zeros(length(x),1);

if(t<=Vint12)
 Vin=Vin1;
else
 Vin=Vin2;
end

if(t<=hgt12)
hg=hg1;
else
 hg=hg2;
end

dxdt=A*x+B*hg+M*Vin;

end

Script 3(linearize_model_imag.m):

function [A,B,C,D,M] = linearize_model_imag(xss, hgss, Vinss, Vtss)

nx = length(xss);

Ix = eye(nx,nx);

h = sqrt(eps);

A = zeros(nx,nx);
i = sqrt(-1);

for k = 1:nx
A(:,k) = (1/h)* imag(modelusedforlin(xss+h*i*Ix(:,k),hgss,Vinss, Vtss));
end

Btemp = zeros(nx,1);
Btemp(:,1) = (1/h)*imag(modelusedforlin(xss,hgss+h*i,Vinss, Vtss));
Btemp(:,2) = (1/h)*imag(modelusedforlin(xss,hgss,Vinss+i*h, Vtss));

% M = zeros(nx,1);
% M(:,1) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss+i*h, Vtss));
% M(:,2) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss, Vtss+i*h));

C = [1 0];

D = 0;

%Separating know disturubance from input

 101

B=Btemp(:,1);
M=Btemp(:,2);

end

Script 4(modelusedforlin.m):

function [dx_dt]= modelusedforlin(x,hg,Vin,Vt)
dx_dt=zeros(length(x),1);

a=0.05;
B=0.02;
w=11.2;
g=9.81;
A1=max(28*1000000*x(1)^(1/10),1000);
A2=max(28*1000000*x(2)^(1/10),1000);
V12=800*(x(1)-x(2))*sqrt(abs(x(1)-x(2)));

if(x(2)>=hg)
 Vg=hg*w*sqrt(2*g*x(2));
elseif(hg>=x(2) && x(2)>=0)
 Vg=x(2)*w*sqrt(2*g*x(2));
elseif(x(2)<0)
 Vg=0;
end

dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12);
dx_dt(2) = 1/(a*A2)*(V12-Vt-Vg);

%transpose dx_dt so it is a column vector
% dx_dt = dx_dt';
return

Script 5(plotsimu.m):

function plotsimu(X1, YMatrix1, X2, YMatrix2)
%CREATEFIGURE(X1, YMATRIX1, X2, YMATRIX2)
% X1: vector of x data
% YMATRIX1: matrix of y data
% X2: vector of x data
% YMATRIX2: matrix of y data

% Auto-generated by MATLAB on 21-May-2014 23:27:00

% Create figure
figure1 = figure('PaperType','<custom>','PaperSize',[29.7 15],...
 'InvertHardcopy','off',...
 'Color',[1 1 1]);

% Create subplot
subplot1 = subplot(2,1,1,'Parent',figure1,'YGrid','on','XGrid','on',...
 'FontWeight','light',...
 'FontSize',13);
%% Uncomment the following line to preserve the X-limits of the axes
% xlim(subplot1,[0 450000]);

 102

% Uncomment the following line to preserve the Y-limits of the axes
ylim(subplot1,[2 4.5]);
%% Uncomment the following line to preserve the Z-limits of the axes
% zlim(subplot1,[-1 1]);
box(subplot1,'on');
hold(subplot1,'all');

% Create multiple lines using matrix input to plot
plot1 = plot(X1,YMatrix1,'Parent',subplot1,'LineWidth',2);
set(plot1(1),'DisplayName','h_1');
set(plot1(2),'LineStyle','--','DisplayName','h_2');

% Create xlabel
xlabel('Time [s]','FontWeight','light','FontSize',13);

% Create ylabel
ylabel('Height h_1 [m]','FontWeight','light','FontSize',13);

% Create title
title('Nonlinear model','FontWeight','light','FontSize',13);

% Create subplot
subplot2 = subplot(2,1,2,'Parent',figure1,'YGrid','on','XGrid','on',...
 'FontWeight','light',...
 'FontSize',13);
%% Uncomment the following line to preserve the X-limits of the axes
% xlim(subplot2,[0 450000]);
% Uncomment the following line to preserve the Y-limits of the axes
ylim(subplot2,[2 4.5]);
%% Uncomment the following line to preserve the Z-limits of the axes
% zlim(subplot2,[-1 1]);
box(subplot2,'on');
hold(subplot2,'all');

% Create multiple lines using matrix input to plot
plot2 = plot(X2,YMatrix2,'Parent',subplot2,'LineWidth',2);
set(plot2(1),'DisplayName','h_1');
set(plot2(2),'LineStyle','--','DisplayName','h_2');

% Create xlabel
xlabel('Times [s]','FontWeight','light','FontSize',13);

% Create ylabel
ylabel('Height h_2 [m]','FontWeight','light','FontSize',13);

% Create title
title('Linearized model','FontWeight','light','FontSize',13);

% Create legend
legend1 = legend(subplot1,'show');
set(legend1,...
 'Position',[0.849913194444444 0.828743961352657 0.0390625

0.0956521739130435]);

% Create legend
legend(subplot2,'show');

 103

Appendix 8

This MATLAB code runs the sensitivity test on the parameters in the nonlinear Lake Toke

model. The code consists of 4 scripts.

Script 1: simulation.m

Script 2: nonlinmodel.m

Script 3: h1plot.m

Script 4: h2plot.m

Script 1(simulation.m):

close all;

hgmax=5.6;
tmaks=60*60*24*10;
t=[1:10:tmaks];
x0=[2.7,2.5]';
Vt=24;
Vin=20;
u=1;
hg=60/100*hgmax;
V12para=800;
a=0.05;
B=0.02;
Cd=1;

%Calculating the sensitivity of V12para
mymodel1 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a, B, Cd);
mymodel2 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para+V12para*0.05, a, B,

Cd);

[time,h1]=ode45(mymodel1,t,x0);
[time2,h2]=ode45(mymodel2,t,x0);

h1SV12para=(h2(:,1)-h1(:,1))/(V12para*0.05);
h2SV12para=(h2(:,2)-h1(:,2))/(V12para*0.05);

%Calculating the sensitivity of a
mymodel1 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a, B, Cd);
mymodel2 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a+a*0.05, B, Cd);

[time,h1]=ode45(mymodel1,t,x0);
[time2,h2]=ode45(mymodel2,t,x0);

h1Sa=(h2(:,1)-h1(:,1))/(a*0.05);
h2Sa=(h2(:,2)-h1(:,2))/(a*0.05);

%Calculating the sensitivity of B
mymodel1 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a, B, Cd);
mymodel2 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a, B+B*0.05, Cd);

[time,h1]=ode45(mymodel1,t,x0);

 104

[time2,h2]=ode45(mymodel2,t,x0);

h1SB=(h2(:,1)-h1(:,1))/(B*0.05);
h2SB=(h2(:,2)-h1(:,2))/(B*0.05);

%Calculating the sensitivity of Cd
mymodel1 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a, B, Cd);
mymodel2 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para+V12para*0.05, a, B,

Cd+Cd*0.05);

[time,h1]=ode45(mymodel1,t,x0);
[time2,h2]=ode45(mymodel2,t,x0);

h1SCd=(h2(:,1)-h1(:,1))/(Cd*0.05);
h2SCd=(h2(:,2)-h1(:,2))/(Cd*0.05);

h1plot(t, h1SV12para,h1Sa,h1SB,h1SCd)
%# centimeters units
X = 29.7; %# A4 paper size
Y = 20; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')
iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))

h2plot(t, h2SV12para,h2Sa,h2SB,h2SCd)
%# centimeters units
X = 29.7; %# A4 paper size
Y = 20; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')
iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))

Script 2(nonlinmodel.m):

 105

function [dx_dt]= nonlinmodel(t,x,Vt, Vin,hg, V12para, a, B, Cd)
dx_dt=zeros(length(x),1);
%a function which returns a rate of change vector
% if(t<=Vint12)
% Vin=Vin1;
% else
% Vin=Vin2;
% end

% if(t<=hgt12)
% hg=hg1;
% else
% hg=hg2;
% end
% Vt=24;

% a=0.05;
% B=0.02;
w=11.2;
g=9.81;
A1=max(28*1000000*x(1)^(1/10),1000);
A2=max(28*1000000*x(2)^(1/10),1000);
V12=V12para*(x(1)-x(2))*sqrt(abs(x(1)-x(2)));

if(x(2)>=hg)
 Vg=Cd*hg*w*sqrt(2*g*x(2));
elseif(hg>=x(2) && x(2)>=0)
 Vg=Cd*x(2)*w*sqrt(2*g*x(2));
elseif(x(2)<0)
 Vg=0;
end

dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12);
dx_dt(2) = 1/(a*A2)*(B*Vin+V12-Vt-Vg);

%transpose dx_dt so it is a column vector
% dx_dt = dx_dt';
return

Script 3(h1plot.m):

function h1plot(X1, Y1, Y2, Y3, Y4)
%CREATEFIGURE(X1, Y1, Y2, Y3, Y4)
% X1: vector of x data
% Y1: vector of y data
% Y2: vector of y data
% Y3: vector of y data
% Y4: vector of y data

% Auto-generated by MATLAB on 30-Apr-2014 15:14:50

% Create figure
figure1 = figure;

% Create subplot
subplot1 = subplot(4,1,1,'Parent',figure1,'YGrid','on','XGrid','on');
box(subplot1,'on');
hold(subplot1,'all');

 106

% Create plot
plot(X1,Y1,'Parent',subplot1,'LineWidth',2);

% Create xlabel
xlabel('Sample time [s]');

% Create ylabel
ylabel('Sensitivity');

% Create title
title('Sensitivity of parameter \lambda');

% Create subplot
subplot2 = subplot(4,1,2,'Parent',figure1,'YGrid','on','XGrid','on');
box(subplot2,'on');
hold(subplot2,'all');

% Create plot
plot(X1,Y2,'Parent',subplot2,'LineWidth',2);

% Create xlabel
xlabel('Sample time [s]');

% Create ylabel
ylabel('Sensitivity');

% Create title
title('Sensitivity of parameter \alpha');

% Create subplot
subplot3 = subplot(4,1,3,'Parent',figure1,'YGrid','on','XGrid','on');
box(subplot3,'on');
hold(subplot3,'all');

% Create plot
plot(X1,Y3,'Parent',subplot3,'LineWidth',2);

% Create xlabel
xlabel('Sample time [s]');

% Create ylabel
ylabel('Sensitivity');

% Create title
title('Sensitivity of parameter \beta');

% Create subplot
subplot4 = subplot(4,1,4,'Parent',figure1,'YGrid','on','XGrid','on');
box(subplot4,'on');
hold(subplot4,'all');

% Create plot
plot(X1,Y4,'Parent',subplot4,'LineWidth',2);

% Create xlabel
xlabel('Sample time [s]');

% Create ylabel

 107

ylabel('Sensitivity');

% Create title
title('Sensitivity of parameter C_D');

Script 4(h2plot.m):

function h2plot(X1, Y1, Y2, Y3, Y4)
%CREATEFIGURE(X1, Y1, Y2, Y3, Y4)
% X1: vector of x data
% Y1: vector of y data
% Y2: vector of y data
% Y3: vector of y data
% Y4: vector of y data

% Auto-generated by MATLAB on 30-Apr-2014 14:53:28

% Create figure
figure1 = figure;

% Create subplot
subplot1 = subplot(4,1,4,'Parent',figure1,'YGrid','on','XGrid','on');
box(subplot1,'on');
hold(subplot1,'all');

% Create plot
plot(X1,Y1,'Parent',subplot1,'LineWidth',2);

% Create xlabel
xlabel('Sample time [s]');

% Create ylabel
ylabel('Sensitivity');

% Create title
title('Sensitivity of the parameter C_D');

% Create subplot
subplot2 = subplot(4,1,3,'Parent',figure1,'YGrid','on','XGrid','on');
box(subplot2,'on');
hold(subplot2,'all');

% Create plot
plot(X1,Y2,'Parent',subplot2,'LineWidth',2);

% Create xlabel
xlabel('Sample time [s]');

% Create ylabel
ylabel('Sensitivity');

% Create title
title('Sensitivity of the parameter \beta');

% Create subplot

 108

subplot3 = subplot(4,1,2,'Parent',figure1,'YGrid','on','XGrid','on');
box(subplot3,'on');
hold(subplot3,'all');

% Create plot
plot(X1,Y3,'Parent',subplot3,'LineWidth',2);

% Create xlabel
xlabel('Sample time [s]');

% Create ylabel
ylabel('Sensitivity');

% Create title
title('Sensitivity of the parameter \alpha');

% Create subplot
subplot4 = subplot(4,1,1,'Parent',figure1,'YGrid','on','XGrid','on');
box(subplot4,'on');
hold(subplot4,'all');

% Create plot
plot(X1,Y4,'Parent',subplot4,'LineWidth',2);

% Create xlabel
xlabel('Sample time [s]');

% Create ylabel
ylabel('Sensitivity');

% Create title
title('Sensitivity of the parameter \lambda');

 109

Appendix 9

This MATLAB code runs a simulation to see if the effect of changing the parameters. The

code consists of 4 scripts.

Script 1: testpara2.m

Script 2: originalmodel.m

Script 3: nonlinmodel.m

Script 4: testparaplot.m

Script 1(testpara2.m):

close all
clear all
load Data

hgmax=5.6;
lrv=55.75;

tspan=[0 60*60*24]
x=zeros(2,1);

%defining timespan
tstart=1000;
% tend=length(Data(:,1));
tend=1500;
newdata=Data(tstart:tend,:);
deltat=tend-tstart;

x0=[newdata(1,3)-lrv newdata(1,2)-lrv]';

for(i=1:length(newdata(:,1)))

 i

 %testing new parameters
 if(i<2)
 x=x0;
 else
 x(1)=h1kp1;
 x(2)=h2kp1;
 end
 xplot(i,1)=x(1);
 xplot(i,2)=x(2);

 hg=newdata(i,4)*hgmax;
 Vin=newdata(i,1);
 Vt=newdata(i,5);
 model=@(t,x) nonlinmodel(t,x, hg, Vin, Vt);
 [t,y]=ode45(model,tspan,x);

 h1kp1=y(length(y(:,1)),1);
 h2kp1=y(length(y(:,1)),2);

 110

end
for(i=1:length(newdata(:,1)))
 i
%using original parameters as a comparison
 if(i<2)
 xorig=x0;
 else
 xorig(1)=h1origkp1;
 xorig(2)=h2origkp1;
 end
 xorigplot(i,1)=xorig(1);
 xorigplot(i,2)=xorig(2);

 hg=newdata(i,4)*hgmax;
 Vin=newdata(i,1);
 Vt=newdata(i,5);
 model=@(t,x) originalmodel(t,x, hg, Vin, Vt);
 [t,y]=ode45(model,tspan,xorig);

 h1origkp1=y(length(y(:,1)),1);
 h2origkp1=y(length(y(:,1)),2);

end

%Logging the error
xerrortest=xplot-[newdata(:,3) newdata(:,2)];
MSEtest1=mean(abs(xerrortest(:,1)))
MSEtest2=mean(abs(xerrortest(:,2)))

xerrororig=xorigplot-[newdata(:,3) newdata(:,2)];
MSEorig1=mean(abs(xerrororig(:,1)))
MSEorig2=mean(abs(xerrororig(:,2)))

tplot=0:1:deltat;

testparplot(tplot,[xplot(:,1) newdata(:,3)-lrv xorigplot(:,1)],[xplot(:,2)

newdata(:,2)-lrv xorigplot(:,2)]);

%# centimeters units
X = 29.7; %# A4 paper size
Y = 15; %# A4 paper size
xMargin = 1; %# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; %# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; %# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

%# figure size printed on paper
set(gcf, 'PaperUnits','centimeters')
set(gcf, 'PaperSize',[X Y])
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize])
set(gcf, 'PaperOrientation','portrait')
iptsetpref('ImshowBorder','tight');
set(gca,'LooseInset',get(gca,'TightInset'))

 111

Script 2(originalmodel.m):

function [dx_dt]= originalmodel(t,x,hg, Vin,Vt)
% tstep=60*60;
% hg=hgv((t+tstep)/tstep);
% Vin=Vinv((t+tstep)/tstep);
% Vt=Vtv((t+tstep)/tstep);
dx_dt=zeros(length(x),1);

omega=11.2;
% %new parameters
% a=0.18;
% B=0.4;

%old parameters
a=0.05;
B=0.02;

w=11.2;
g=9.81;
Cd=1;
A1=max(28*1000000*x(1)^(1/10),1000);
A2=max(28*1000000*x(2)^(1/10),1000);

% A1=2.8e7*1.1* x(1)^0.1;
% A2=2.8e7*1.1* x(2)^0.1;

V12=800*(x(1)-x(2))*sqrt(abs(x(1)-x(2)));
Vg=Cd*hg*omega*sqrt(2*g*x(2));

% if(x(2)>=hg)
% Vg=hg*w*sqrt(2*g*x(2));
% elseif(hg>=x(2) && x(2)>=0)
% Vg=x(2)*w*sqrt(2*g*x(2));
% elseif(x(2)<0)
% Vg=0;
% end

dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12);
dx_dt(2) = 1/(a*A2)*(V12-Vt-Vg+B*Vin);

end

Script 3(nonlinmodel.m):

function [dx_dt]= nonlinmodel(t,x,hg, Vin,Vt)
% tstep=60*60;
% hg=hgv((t+tstep)/tstep);
% Vin=Vinv((t+tstep)/tstep);
% Vt=Vtv((t+tstep)/tstep);
dx_dt=zeros(length(x),1);

omega=11.2;
% %new parameters
% a=0.18;
% B=0.4;

 112

%old parameters
a=0.05;
B=0.7;
w=11.2;
g=9.81;
Cd=1;
A1=max(28*1000000*x(1)^(1/10),1000);
A2=max(28*1000000*x(2)^(1/10),1000);

% A1=2.8e7*1.1* x(1)^0.1;
% A2=2.8e7*1.1* x(2)^0.1;

V12=800*(x(1)-x(2))*sqrt(abs(x(1)-x(2)));
Vg=Cd*hg*omega*sqrt(2*g*x(2));

% if(x(2)>=hg)
% Vg=hg*w*sqrt(2*g*x(2));
% elseif(hg>=x(2) && x(2)>=0)
% Vg=x(2)*w*sqrt(2*g*x(2));
% elseif(x(2)<0)
% Vg=0;
% end

dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12);
dx_dt(2) = 1/(a*A2)*(V12-Vt-Vg+B*Vin);

end

Script 3(testparplot.m):

function testparplot(X1, YMatrix1, YMatrix2)
%CREATEFIGURE(X1, YMATRIX1, YMATRIX2)
% X1: vector of x data
% YMATRIX1: matrix of y data
% YMATRIX2: matrix of y data

% Auto-generated by MATLAB on 06-May-2014 16:45:33

% Create figure
figure1 = figure;

% Create subplot
subplot1 = subplot(2,1,1,'Parent',figure1);
box(subplot1,'on');
grid(subplot1,'on');
hold(subplot1,'all');

% Create multiple lines using matrix input to plot
plot1 = plot(X1,YMatrix1,'Parent',subplot1,'LineWidth',2);
set(plot1(1),'LineStyle',':','DisplayName','Using test parameter');
set(plot1(2),'DisplayName','Real measuments');
set(plot1(3),'LineStyle','--','DisplayName','Using original parameters');

% Create xlabel
xlabel('Time [Days]');

% Create ylabel
ylabel('Height [m]');

 113

% Create title
title('Plot of the height h_1');

% Create subplot
subplot2 = subplot(2,1,2,'Parent',figure1);
box(subplot2,'on');
grid(subplot2,'on');
hold(subplot2,'all');

% Create multiple lines using matrix input to plot
plot2 = plot(X1,YMatrix2,'Parent',subplot2,'LineWidth',2);
set(plot2(1),'LineStyle',':','DisplayName','Using test parameter');
set(plot2(2),'DisplayName','Real measuments');
set(plot2(3),'LineStyle','--','DisplayName','Using original parameters');

% Create xlabel
xlabel('Time [days]');

% Create ylabel
ylabel('Heigh [m]');

% Create title
title('Plot of the height h_2');

% Create legend
legend1 = legend(subplot1,'hide');
set(legend1,'Location','SouthEast');

% Create legend
legend2 = legend(subplot2,'hide');
set(legend2,'Location','SouthEast');

