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The Kragerg Waterways consist of 5 power plants downstream after Lake Toke, Dalsfos is the first of these
power plants. As a deterministic flood control of Lake Toke and Dalsfos there has been designed a MPC. The
MPC uses a horizon of 10 days with estimated influx of water into the Lake Toke water reservoir. As a
preliminary task before the MPC is designed, an assessment of the requirements and constraints of Lake Toke
was made. The primary constraint is to keep the level between an upper and lower limit regulated by NVE.

A 2 state model designed by Bjgrn Glemmestad was used to define Lake Toke, to further increase the precision
of the model, assessment parameters was done. A simulation and validation of the linearized model of Lake
Toke was performed to assess the precision, which proved to perform adequate.

A review of the structure of the MPC program is shown along with discussion and explanation of the
implementation of constraints and performance requirements. The controller is validated by simulation a flood
scenario with disturbances similar to a real flood situation, there was also added a secondary peak to resemble a
rainfall. The objective is to keep the level between a lower and upper limit, Irv and hrv, with a goal to avoid an
overshoot over hrv. The controller proved to avoid an overshoot when the weight lower limit in the performance
index was lower than the upper limit. A weight on the control output also proved to create a more stable control
output as well as avoiding an overshoot when the secondary rainfall arrived.

Telemark University College accepts no responsibility for results and conclusions presented in this report.
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Preface

The master thesis is entitled Deterministic Flood Control using MPC of the Kragerg
Waterways. This thesis is part of the education program System and Control Engineering at
Telemark University College. The main part of the thesis was carried out at TUC as the work
was computer based, the necessary data and information was given by mail or in meetings at
TUC.

The thesis is primarily about designing a Model Predictive Controller (MPC) which has a goal
to regulate the water level at Lake Toke by controlling the floodgate. The be able to
understand the report fully the reader should have general knowledge about Optimal Control
or Model predictive control, as well as fundamental understanding of modeling and
discretization of models. The code used in this thesis is given is shown in the Appendix,
additionally the code along with the necessary measurement data from Skagerak is also given
onaCD.

The task description for this thesis can be found in Appendix 1, the task description is also
built upon a project during a course at 3.semester which is shown in Appendix 2. There was
scheduled a test of a first version of the controller by 1. March 2013. Due to difficulties with
other parts of the thesis, | was not able to finish this first version by the date. The supervisor
Bernt Lie was able to develop another version of MPC that was implemented before the flood
season started. As a result the focus was held on the completion of the MPC controller itself,
as well as developing the models as this is an essential part of the controller.

Apart from writing the report, only MATLAB from MathWorks was used as a tool to work on
the thesis. As the most crucial part of MPC is Quadratic programming, MATLAB provides an
effective and stable function to solve these equations.

I would like to give a big thanks to Bernt Lie for his guidance that helped me push through
and finish the work at the parts where my competence came short, what comes to mind is the
design of Kalman Filter along with approaches for model development. During the project in
3. semester, several discussions with Anushka Perera helped me at solving several MPC
related problems as well as providing me with a linearization method which proved to give
good results. This prepared me for this thesis in regards of MPC and possible problems which
I could foresee. Ingvar Andreassen at Skagerak which was responsible for this project at
Skagerak was able to provide the necessary data used to develop the models needed.

<Porsgrunn, 3.6.2014>

<Robin Evensen>
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1 Introduction

Norway is one of the leading nations in hydro power facilities, with this comes a high
quantity of dams that need water level regulation and flood control. Dalsfos is the first of five
hydro power plants between Lake Toke and Kilsfjord in Skagerak. Originally Dalsfos is
regulated manually by using their experience and a predicted influx of water based on a
hydrological model. There has been proposed a fully automated solution to control the flood
gate at Dalsfos. A model predictive controller will be used to prevent a predicted flooding
situation, in addition to expending as little water as possible from the Lake Toke reservoir to
allow it to be used for electricity production. There is an estimate of influx water into Lake
Toke denoted Vi, which is calculated from an external firm using an hydrological model, the
generated electricity produced from the turbines at Dalsfos is denoted /7.

A 2 state nonlinear model is used to simulate the levels at Merkebekk and Dalsfos. There will
be done a study on possible improvements of this model by performing sensitivity analysis on
the existing parameters and estimating these using a Kalman Filter. Because W, is given as
kWh, the flow through the turbine needs to be modelled to give the necessary output m*/s.
Both the turbine flow model and the Lake Toke model will be linearized around realistic
steady state values and discretized, these will be simulated in realistic situation and validated.

From Skagerak there are regulated limits on the water level, the limits change depending on
the date of the year. The thesis will focus on the flooding season which ranges from April to
June. There are several constraints on the system which has to be handled by the control
system, i.e. the lower limit on the flow is 4 m*/s, and there are also regulations on the rate of
change on the flow. To satisfy the constraint a deterministic flood control will be created
using MPC. The controller will use a horizon of 10 days with disturbances Vi, and ¥, given
by Skagerak.

There will be an overall review of the structure of the MPC program as well as discussions
and reasoning’s behind the design of the controller. The basis of the structure which the MPC
program was built upon was designed in the 3. semester project, the program has several
functions and a structure which can be reused in this thesis [1]. To validate the controller
there will be performed simulations on the 2 state nonlinear model. The disturbances used are
simulated based on a real flooding situation. The goal of the simulations will be to maintain
the constraints and performance requirements described in Chapter 2.3. To tune the MPC, the
weights in the performance index will be disabled and/or changed, then the results will be
evaluation w.r.t the constraints and performance requirements.



2 System description

This chapter consists of an overall description of Lake Toke and a functional description
which is used to get an overview of the problems which the controller should manage.

2.1 Overview of the Kragerg river system

The system mentioned throughout the report is Lake Toke regulated using the hydropower
plant Dalsfos, south of Lake Toke. Lake Toke is located next to Drangedal and is a part of a
network of rivers and lakes in Telemark, finally ending up in Kilsfjord in Kragerg. Figure 2-1
shows how the entire lake, note that Merkebekk and Dalsfos is two measurement points used
as the reference point for the states h; and h; respectively in the model described in Chapter
3.2. To fulfill environmental demands from NVE, there is strict lower and upper water level
boundaries in Lake Toke that needs to be satisfied, denote Irv and hrv. These boundaries
changes depending on the time of the year.

Hielda

Bwre

VOJE Toke

STRAUME
MOLAND HENSEID

@. VEFALD

Nedre
SANNES

Sannes-
nosa

Toke
RerfroR-
fjorden

RER-
. VEFALD HOLT

KIL
NESLAND

MERKEBEKK DALSFOSS

Figure 2-1: Both upper and lower part of lake Toke [2]

From Dalsfos to Kilsfjord, there is a levitation drop of approximate 58 meters. Dalsfos is one
of five hydropower plants utilizing a levitation drop of approximate 21 m. See Figure 2-2 to
get an overview of the river system from Dalsfos to Kilsfjord. Dalsfos was originally built



with one Francis turbine in 1907. Dalsfos was expanded with 2 more Francis turbines in 1958.
[3]* Dalsfos is also fitted with flood gates, these floodgates are controlled manually by an

operator. This is operator is soon in retirement, thus came the need of an automatically
controlled floodgate.
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Figure 2-2: The river from Dalsfos to Kilsfjord [4]

2.2 Functional Description

The system of Lake Toke is described as a system with 1 controllable input, 2 disturbances

and 2 outputs. A block diagram of this system is shown in Figure 2-3. An explanation of the
system objects is in Table 2.1.

! In the reference from Store Norske Leksikon there is stated that Dalsfos is fitted with 3 Kaplan turbines, this is
wrong after a discussion with Ingvar Andreassen in Skagerak Energi.
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Figure 2-3: A block diagram of Lake Toke and Dalsfos

The level h; and h; is introduced as both states and inputs, since they are both a measured
value as well as estimated values for several time instances in the future. The generated power
We and water influx Vi, is assumed as known disturbances. The system consists of two
models, one that express the levels hy and hy, and another that express the turbine flow 7%

In reality the flood gate opening consist of three separate gate openings, but for the sake of
simplicity the gates are considered as one large gate. This issue is merely a scaling problem,
and can be dealt with when a real implementation is due.

Table 2.1: Description of the objects in Figure 2-3

Parameter  Unit Comment

hg m The flood gate opening (Controllable input)
We kWh Generated power at Dalsfos (Disturbance)
Vin m®/s Influx of water into the system (Disturbance)
hy m Water level at Merkebekk (State, Output)

h, m Water level at Dalsfos gate (State, Output)

1Z m®/s The flow through the turbine (State)

2.3 Problem description

The problem is based on the task description in Appendix A and Appendix B, as well as some
mention in an informal meeting with the supervisor Bernt Lie. The main goal of is to control
the level hy which are subject to restriction of upper and lower boundaries, in addition to
keeping the flow through the turbines as low as possible. By reducing the amount of water



through the flood gate, this water can be used to produce electricity instead. Because the
economic efficiency the controller is trying to increase is a contradiction to the safety of the
environment downstream, there should be some margin of error in case of estimate or
measurement errors (i.e. there should be enough time to react to a unpredicted flood). The
constraints as well as the performance requirements of the system are discussed in more detail
in Chapter 2.3.1 and 2.3.2.

2.3.1System constraints

The constraints that are mentioned here are is a general representation of the constraint. The
technicality of the implementation in a controller is shown in Chapter 4.2. The constraints in
this chapter are strict constraints which should be met.

The controller should keep the level of Lake Toke (h;) within the minimum and maximum
regulated water level. There will be situations where these constraints will be broken, but
keeping the level within these boundaries should be the main purpose of the controller:

h, > hrv (2-1)

h, <Irv (2-2)

There is a restriction on the maximum rate of change on the river flow Vo, denoted V5. This
constraint is due to the safety of the people who use the river downstream, to give the public
time to react to a sudden increase of flow:

VARSVAL, (2-3)

There is a restriction to the minimum allowed flow Vo, this limit is set to 4 m%/s. Although the
constraint might be fulfilled by Skagerak through the turbine flow, there can be situations
where there is maintenance on the turbine, resulting in that the constraint has to be fulfilled by
releasing water through the flood gates:

V zam’/ (2-4)
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2.3.2Performance requirements

This chapter discussed the problems description in Chapter 2.3 and how they can be improved
and fulfilled as good as possible.

The known future disturbances is 10 days, therefore the horizon of the system is set to 10 days
accordingly the controller should be able to give optimal solutions within these 10 days given
that the measurements and disturbances are correct. There are several possible scenarios that
the controller needs to handle which can occur during a whole year. Drought, change of hrv
and Irv, but the most importantly the controller needs to satisfy the constraints and
performance requirements during a flood season.

To give and indicator to the quality of the model as well as the stability of the controller, the
controller should be able to converge to a specified reference point. This also gives an
incentive to further improve the previous designed model, as well as designing the flow
through the turbine, 7;. Since model uses 5 variables with a relatively wide range of values
during the horizon, the performance of the controller will be highly influenced from the
steady state values used to linearize the models. The focus will be held on giving the best
result during a flood season, i.e. when the Vj, increases.

To keep the loss of potential economical income as low as possible, the flood gate flow V,
should be kept to a minimum, meanwhile keeping the water level h; within Irv and hrv. These
two requirements will contradict each other, although there is possible to satisfy the former
constraint, the latter should be fulfilled to it upmost potential, i.e. keeping the ¥y as low as
possible. Though it is only a requirement to keep the level within hrv and Irv, a reference
point is also used observe how the controllers performance as well as observing its precision.

11



3 System models

The system can be sketch and simplified as a two tank system with a flow between them, as
seen in Figure 3-1. Here h; represents the level at Merkebekk and h, at Dalsfos. 74 is the flow
through the turbines and ; is the flow through the flood gates. Vi, is the estimated collection
of water divided amongst the upper and lower compartment. Vi, consists of both water from
precipitation and snow melting. At Skagerak, they use an external firm to calculate this Vi,
based upon a hydrological model. This Vi, will be calculated 10 days beforehand, and is
considered as known in the MPC solution.
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Figure 3-1: Lake Toke sketched visualized as two compartments [5]

The Lake Toke system can be described using mass balance. There has been developed a 2
state nonlinear model at TUC by Bjgrn Glemmestad seen in in equation (3-1).

dh 1
E - (1_ a)A(hl) [(1 IB)Vin VlZ]
dh, 1 (3-1)

[ﬂvin _vlz _vt _vg]

dt aAhy)
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here

A(h,) = max(28x10° -h*1° 10°) (3-2)

Vi, = Alh, —hy)yh, =y (3-3)

V4 is the outflow through the gate and can be generally described as the equation (3-4).

V, =C,h,w,/2gh, (3-4)

The turbine flow V; is a function of hy, 17, and the level below Dalsfos Xq, where W is the
generated power and is given by Skagerak. As Xq isn’t measured, it will be estimated in the
model.

These parameters will be looked into more in Chapter 3.2.2 to improve its performance. The
parameters can be seen in Table 3.1:

Table 3.1: Parameters used in the 2 state nonlinear model

Parameter Value Unit Comment

a 0.05 ~ Fraction of surface of the compartment in h;
S 0.02 ~ Fraction of inflow into the compartment of h,
Co 1 ~ Friction loss factor

A 800 ~ Invented factor

w 11.2 m Width of flood gate

hy™ 5.6 m Maximal opening height of gate

X 55.75 m Minimal low regulated level value

X 60.35 m Maximal high regulated level value

3.1 The Linearizing method

Both the controller and the kalman filter described in Chapter 3.2.2.2 and 3.2.2.3 uses a
linearized model to calculate a Kalman Gain. The turbine flow model described in Chapter

13



3.3 is also linearized. This linearization method was proposed by Anushka Perera, a PhD
student at TUC. The linearization method is described generally below, where f is the function
to be linearized. Equation (3-5) and (3-6) describes the equation which is used to linearize,
with a description of the parameters listed in Table 3.2.

A=imag(%*f(x+h*i*lx,u)) (3-5)

B=imag(%*f(x,u+h*i*lu)) (3-6)

Table 3.2: Describes the parameters in Equation (3-5) and (3-6)

Parameter Comment

A Linearized transition matrix

B Linearized input matrix

f Function to linearize

X Model states

u Model input

h A very small number(used a function in MATLAB called eps)

[ Imaginary number (V-1)

I Identity matrix

3.2 The Lake Toke model

This chapter focuses only on the differential equation (3-7), the model for 74 is developed in
Chapter 3.3.

%_; B Y
& A - gV, Vi,

dn, 1
dt  aA(h,)

3-7)

[ﬂvin _V12 _vt _vg]
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3.2.1Linearization and simulation of the Lake Toke model

There are performed step changes on the linearized model to observe its performance. The
steady states are used to linearize the model are listed in Table 3.3. The steady state values
were found experimentally by adjusting the value until the best performance was observed.
The code for the simulations is in Appendix 7.

Table 3.3: List of steady state values that are used to linearize the model

Variable SS Value  Unit Comment

h, h, m The initial value of the level h; is used

h, h,, m The initial value of the level h; is used

h, 0.05*5.6 m 5 % of the maximum gate opening

V., 40 m7 Weight to keep the level hy below hrv
S

V, 10 m7 Weight to keep the level h; above Irv
S

There are done three simulations where they are compared to the nonlinear model described
in Chapter 3. Figure 3-2 shows a simulation where there is a large inflow, forcing the level to
increase from a low level to a high level. The linear model shows a deviation of 0.5 m higher
than the nonlinear model.

Nonlinear model

Height h, [m]

Time [s] 5

Height h, [m]
[
T

Times [s] 5

Figure 3-2: The simulation is done over 5 days. A step change is done on the influx Vi, from
50 to 250 m*/s after 1 day. The V; is kept steady at 24 m%/s and the hy of 1%.

When increasing the gate opening hq the watch how the linearization model handles a
descending level on both h; and hy. In Figure 3-3 nonlinear model and linearized model are

15



compared. One can observe that the level h; is almost the same, but the level h;, in the
linearized model drops about 0.5 m lower than the nonlinear model.

Nonlinear model

35

3

Height h, [m]

Time[s] 5

Height h, [m]

0 0.5 1 1..5 2 25 3 35 4 45
Times [s] 8

Figure 3-3: Simulation is done over 5 days. A step change on the hy after 1 day of 2% to 4 %

gate opening. The Vinis 70 m*/s and Vy is 15 m*/s. The level starts at h; =3 m and h, =2.7 m.

Finally there is performed a simulation over 10 days where there is an increase in Vi, from 50
m?*/s to 150 m%s after 2 days. Then after 5 days the hg is increased from 2 % to 5 %. The V4 is
15 m®/s throughout the 10 days. The result is shown in Figure 3-4.

Nonlinear model

45
4
35
3
25

Height h, [m]

Time [s] 5

Height h,, [m]

Times [s] 5

Figure 3-4: A simulation is performed over 10 days with a change in both Vi, and hy.

Although the model misses by 0.5 m over 10 days after performing these step changes, one
important aspect, is that the model should predict an eventual overflow within 10 days. The
fact that the linear model shoots higher when the Vi, reaches 150 — 200 m*/s, creates a safety
margin that causes the model to overshoot. Since the model is linearized around the last know
measured h; and hy, the precision will increase the further the level reaches steady state.
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3.2.2Calibrating the Lake Toke model

The 2 state nonlinear model had several parameters which were chosen experimentally to
make to model fit the experimental data. The code for the sensitivity analysis is given in
Appendix 8 To see how much impact each parameter have on the model, there was performed
a test on each of those parameters individually using the formula in Equation (3-8).

s - (X X0 X)) = F (X X0 X +AX ) (3-8)

% AX,

Here one wants to know the how the parameter x, affects the model. Ax, is 5% of x,. The
parameters of interest are «, 5, A and Cp and are listen in Table 3.1. Figure 3-5 shows the
effect on h; and Figure 3-6 shows the effect on h,. Since the goal of the sensitivity analysis is
to choose which parameters that are the best candidates for parameter estimation. To estimate
the parameters a Kalman Filter will be used which is described in Chapter 3.2.2. Because the
goal is to create a more stable model, a stable curve is more optimal than an unstable curve.
Another thing to consider is also whether the level h; or h, is most important. Primarily the
level h, is used to calculate the flow ¥, but since the most important constraints are
connected to the level h;, the graphs in Figure 3-5 are the once to consider. As one can see in
both Figure 3-5 and Figure 3-6, the parameter Cp, has the highest impact on level h; and h,.
The parameter A and 3 has too little impact on the model compared to a. First and foremost
the parameters a and Cp will be looked at.

When using the kalman filter on the whole data set in Chapter 3.2.2.2 and 3.2.2.3, the samples
from 1 to 1000 made both filters struggle. The reason behind this is unknown, but the
dynamics seems to change at around sample 900 — 950 which causes parameter o and Cp to
go to 0, resulting in the ODE solver to crash or struggle after these samples. Because of this
the test is performed from sample 1000 to sample 3117.

17
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Figure 3-6: Shows the sensitivity of parameter o, §, A and Cp on the level h;

18



3.2.2.1Augmenting the model

Before the model can be used in a kalman filter for parameters, the model from Chapter 3 has
to be augmented. The code for both the Kalman Filters is given in Appendix 6. The

augmented model is:

dh, _
dt

dh, _

dt
da

dt
dc,

dt

(3-9)
e ——— - ﬂ V V12 hz,ﬂ

[ﬁvm V12 V V (h2' g'CD)]

aA(h )
-0

=0

The states a and Cp can be estimated by introducing white noise to the model with suitable

amplitude. This gives us the

an _

dt
dh,
dt
da

dt

model:

I S
(1— a)A(h)

[8V,, —V,, =V, =V, (h,,h,,Co)]

[(1_,B)Vin _V'lz(hvhz’/i)] (3-10)

aA(h )

dc,

at

Co

where w, and wcp is white noise with a zero mean and a specified variance.

3.2.2.2Time varying kalman filter

Since the model is nonlinear,

it can be better to use a time varying kalman filter to

compensate for the varying A matrix.

The algorithm for a time-varying extended kalman filter is described below:

e Deciding initial matrices and parameters

=diag(l 10 0.001  0.0001])
[hlo\o 20\0 0.05 1]

o G—dlag([l 11 1)

W =d
V =di

Loop

iag(L 10 0.0001 0.0001]
ag([l 10)
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e Simulation using an ordinary differential equation solver:
O Yika = simulation( fk_l‘k_l)

e Finding the linearized matrices:

A=0A
o G=&
C=6&C
e Calculating the predicted covariance matrix:
0 Py = APy A +GWG'

e Finding the kalman gain:

Cka = Y = Y

o Egyy=CP,,CT+DVD’
Pk k—lCT
e
K|k-1

e Finding the corrected state estimate:

O Xk = Xqea T Kkek\k—l

e Finding the corrected covariance matrix:
o P,=P,, —KE,. K

Kk = Tklk—L k =k|k-L

e Transition up one time step: k=k-1

When calibrating the kalman filter by adjusting the variance it proved to have some issues at
specific samples, but it proved to that it could be hard to create a stable kalman filter. Since
the kalman gain should be a theoretical representation of the system, it is important that the
measurements given to the model for linearization is correct. As shown in Chapter 3.2.3,
some of the measurement is probably incorrect, thus basing the theoretical model on these
measurements used by the kalman filter can give wrong results.
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Figure 3-7: Shows the states when using a time varying kalman filter with respect to time
[days]

The result shows that a stabilizes around 0.3 from 0.05, but Cp decreases throughout the
whole simulation. The Cp parameter represents a coefficient factor on the floodgates, as

anything below 0.8 is probably wrong, the results in Figure 3-7 shows that the change on Cp
was too unrealistic to be considered. The parameter change is tested in Chapter 3.2.3.

3.2.2.3Steady state kalman filter

A steady state kalman filter was used to create a more stable kalman filter gain since the
measurements can create an incorrect kalman gain in a time varying kalman filter. The steady
state Kalman Filter algorithm is presented below:
e Deciding initial matrices and parameters
G=diag(l 1 1 1)
o W =diag(l 10 0.0001 0.0001])
V =diag(fL 10)
e Linearizing the model around steady states values defined in the step above and use it to
find the kalman gain
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Loop

e Simulation using an ordinary differential equation solver:
O Yika = simulation( fk_l‘k_l)

e Finding the corrected state estimate:
O Xk =X T Kek\k—l

e Transition up one time step: k=k-1

As shown in Figure 3-8, the filter finds obvious measurement errors which were not found by
the time varying kalman filter at around sample 200. In Figure 3-8 the initial values of o =
0.05 and Cp = 1 is used. Because the kalman filter in Chapter 3.2.2.2 suggested an o 0f 0.3,
this was tested, giving the result in Figure 3-9.
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Figure 3-8: Shows the states when using a steady state kalman filter with respect to time
[days] and an initial o of 0.05
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Figure 3-9: Shows the states when using a steady state kalman filter with respect to time
[days] and an initial o of 0.3

3.2.3Results of the parameter estimation on the Lake Toke
model

It is shown that the parameter the parameters a, 3, A has not enough impact on the model to
form its dynamics sufficiently. The effect is presented in Figure 3-10, Figure 3-11 and Figure
3-12. The parameter Cp is too unstable to make any conclusion from other then that it has a
noticeable effect on the model. The parameters are given an overly excessive change and are
simulated over 500 days, the goal is to see if there is actually possible to estimate parameters
that can have a noticeably effect on the model. The change on the parameters is not noticeable
in any of the figures below as the lines are on top of each other. The code used to test the
parameters is given in Appendix 9.
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Figure 3-11: Shows the effect on the model changing the parameter g from 0.02 to 0.7

25



Plot of the height h,

6 T T T T T T T T
E 4 ...............................................................................................................
5’) 2 : ............. N ...... ............... ................ Using test parameter
I Ok e e TR e .| ™ —Real measuments
” | | | | | | ——=Using original parameters
“o 50 100 150 200 250 300 350 400 450 500
Time [Days]
Plot of the height h,
6 T T T T T T T T
A I T T i
E : ; ;
£ 2 e N — -
% : : : : : A Using test parameter
T gl ST P e S R i.oo.| ——Real measuments
i | | | | | —==Using original parameters
-2 : . :
0 50 100 150 200 250 300 350 400 450 500
Time [days]

Figure 3-12: Shows the effect on the model changing the parameter A from 800 to 8000

3.3 Turbine flow model

In order to estimate the flow Vy, there is assumed a relationship between energy produced,

We, and the difference in water level between h, and Xq. The flow is calculated at Skagerak
using soft sensor, the same approach should therefore be looked at to calculate V;. Figure 3-13
shows a spatial description of the turbine system and its respective variables which is used to

derive the model for V.

Turbine (We)

¥ XQ

Figure 3-13: Sketch of the turbine system

In order to estimate a flow V;, some assumption has been made because of lack of information
in the data that is logged from Skagerak. E.qg. there is not logged how much the flood gates
have been opened, nor if it’s being opened at all.
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3.3.1Evaluating the data used to design the turbine flow model

In the data, it is not given if the floodgates have been opened or not. Since the maximum
capacity of the turbines is 36 m*/s, there is assumed that all flows over 36 m®/s are a result of
a floodgate being opened. As a result water flow below 36 m®/s is V; and the remaining flow
over 36 m%/s is considered as V. There are two different sensors below Dalsfos that measures
the level. Figure 3-14 shows the two separate measurements. They should measure
approximately the same level, but for unknown reasons there is a sudden drop of 2 meters.
Since there is no apparent reason for the level to drop by 2 meters, Xq is used instead of Xy.
The code used to plot Figure 3-14 is given in Appendix 5.
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Figure 3-14: Plot showing the difference between Xy and Xq

There was also some data which is lacking measurements of the level h, in 2008, as a result
will be excluded from the model. The missing samples are circled in Figure 3-15. The cause
of the missing samples may be due to a lot of construction at Dalsfos in the later years.
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Figure 3-15: Plot of h, data samples for 2008

3.3.2 Estimated model

The MATLAB code used to create the turbine flow model is given in Appendix 5. To
estimate the model, only the available parameters can be used to estimate the V flow:

e h,—Level above Dalsfos [m]
e W, — Power production [KWh]
e Vy—Flow through the flood gate [m*/s]
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A least square method approach is used create the model, instead of choosing a random
combination of the above parameters, the method will take into consideration the following
general equation for power production:

W, = K xV, (h, - X,) (3-12)

Since Xg is not available in the model, Xq will have to be substituted with another correlated
variable. A correlation between Vo and Xg is plotted in Figure 3-16 and examined. There has
been used a cubic fit on Vg to see the correlation between Vg and XQZ.
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Figure 3-16: Correlation between Vo and Xq

In order to solve this explicitly, V should be a first order or second order. As a third order or
higher equation can give quite a complex answer to the explicit solution. To have a reliable
model, an explicit solution is preferred to have control over which roots that should be
chosen. The equation to be fitted is:

. y 3-12
V W, (3-12)
(hz - XQ)
Replacing Xq with a fitted equation Xqo(Vy):
Xq =€, *V, +¢, (3-13)

Although the flow is correlated in the whole range of Vo, the equation is fitted in the range on
the flow from 0 to 36.5 m®/s. This corresponds to a range on Xq from 37.3 to 39.3 m. This

? The cubic fit was noticed from Bernt Lie in an informal meeting, he mentioned that this information could be
exploited to create the turbine flow model.
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choice give some error at higher total flow, but the error in flow is a necessary compromise to
get an exact Vy when Vg is lower.

By using Equation (3-12) and (3-13) one gets:

&, V2 +(C, — X o)™V, =W, (3-14)

The equation is solved for V; which gives:

(€= Xp) E4(e, — Xp)? —deW, ) (3-15)

Vt =G 2% C,
1

The least squared method is applied to both roots in Equation (3-15) to calculate the
parameters c3 and cq4, using the data from 2008. Then the model is then validated against the
data from 2009. The result from using the “+ root " is displayed in Figure 3-17, and “- root”
is displayed in Figure 3-18.
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Figure 3-17: Validating the data on samples from 2009, using LSM on equation (3-15),+ root
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Figure 3-18: Validating the data on samples from 2009, using LSM on equation (3-15),- root

When comparing Figure 3-17 and Figure 3-18, one can see that using the “- root”, as shown
in Figure 3-18, that this gives a better result. Generally, the model used in Figure 3-18 follows
the validation data with some exceptions. Around sample number 8000 there is a sudden drop
in the model, while the true value is shown to be 36 m”3/s. The reason for this is probably
because one of the turbines where turned off for maintains, as can be seen in the lower plot in
Figure 3-18, where the KWh production is lower.

3.3.3 Overview of the turbine flow model

Using the knowledge gained from Chapter 3.3.1 and 3.3.2, one can summarize the model as
Equation (3-16) with the parameters defined in Table 3.4.

— C3 *x (C2 - hZ) + \/(CZ - h2)2 _4C1We S (3'16)

Y
t 201 4
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Table 3.4: Parameter description of Equation (3-16)

Variable Value Unit Comment

h, h,, m The water level h;

W, Wek kWh The output of the turbine generator
o 0.0211 ~ Parameter found with the LSM

c, 37.1891 ~ Parameter found with the LSM

C, 132.0238 ~ Parameter found with the LSM

C, 2.8241 ~ Parameter found with the LSM

3.3.4 Linearization and simulation of the turbine flow model

The code used to validate the turbine flow model is given in Appendix 4. Skagerak gives a list
of W, hence the level h, is the unknown variable to linearize around. As the definition of
linearizing a function F(a,b) is F(a,b) = F(a,b) + Af(a,b) where Af(a,b) is the linearized
function found using the method explained in Chapter 3.1. When applying this to the turbine
flow model one gets where only an initial value of h, is know:

Vi (K) =V, (0) + &V, (h, (0), W, (k)) * (h, (0) — h, (k) (3-17)

In Figure 3-19 the linearize model at h, = 3 m the level is linearized at 1 m. The nonlinear
model at h, = 1 m shows the error the ¥; model would have without the knowledge of the
height h,. From the figure one can see that there will be an error of 4 m%s if the level
increases from 1to 3 m and W, increases from 0 to 5.6 kWh For comparison the nonlinear
model at h, = 3 m shows that the model is nearly linear.
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Figure 3-19: Simulated turbine flow to compare the effect the water level h;
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4 Model Predictive Controller

Since solving a QP or LP problem is the core of an MPC, MATLAB is used as this provides
the necessary functions as well as being a matrix based programmable language. The
MATLAB code for the MPC program is given in Appendix 3. To solve the QP equations, a
function called quadprog is used to find a feasible solution. Before one can use quadprog on a
model defined and keep the solution within the constraints, one needs to be redefined the
problem as a QP problem. Since quadprog uses the equations listen below, the system needs
to be redefined so that they fit into the Equations (4-1), (4-2) and (4-3).

min( % X' Hx + ¢ X, X) (¢
Ax=h, (4-2)
AX>h, (4-3)

To solve the QP problem, Equation (4-1) is minimizes by manipulating the x variables. The
solution needs to be within Equation (4-3) and on Equation (4-2).The solution is considered
unfeasible if the quadprog cannot find value for an x-variable which doesn’t fulfill the
constraints. The order which the variables are defined in the MPC program is defined in
Equation (4-4) with their respective explanation listed in Table 4.1.

In general there are strict lower and upper limits to hy, the goal is to see that the controller can
keep the system within its constraints without and without becoming unstable.

The performance index | needs uses Equation (4-1). Since performance index used by this
controller only consists of quadratic terms, the c in Equation (4-1) can be ignored.

The soft constraints are explained more detailed in Chapter 4.2.2.1. The variables are chosen
inside sometimes to simplify the code, e.g. the y variable is exactly the same as the h;
variable.

To define the variables used to solve the QP problem, and horizon length N must be defined.
By Skagerak, the available input data is 10 days, thereby giving a horizon length of N = 10
days. The data is presumed to be available on an hourly basis, thus giving 240 steps over 10
days.

P (VRRRTAYN 1\, RO y Y oYU -1/ VAL VA AT AR LU

maxN’

WV,) (4-4)
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Table 4.1: The variables used in the MPC

Variable  Unit Comment

u m The u represent hg

h m The height h; and h,

e m The error from a reference point from h;

y m The output of the system, represents h; directly

Sin ~ Used as a soft constraint on the lower regulated level
Smax ~ Used as a soft constraint on the higher regulated level
12 m%/s The turbine flow

4.1 Performance index

There is expected some knowledge about MPC, consequently there is only a brief description
of the structure of the program, more detailed code shown in Appendix 3. A performance
index used by the MPC is defined in Equation (4-1), only the variables which have a weight
other than 0 will be used by the MPC. Although all of the weights are listed in Table 4.2, not
all of them will have value given (i.e. some variables in the performance index can be
disabled during a simulation) at every test that is performed in Chapter 4.3. Since the weights
have no given or predefined value, they are chosen experimentally through the simulations.

Hll

O O O o o o

o O O O

O O O o o o

X (4-5)

The reason why there is a weight on the e variable is to perform simulation where one can test
the precision of controller (i.e. no integral error) and to see how well the controller can
converge the height to a specified reference point.
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Table 4.2: Lists the notations given to the respective weights

Variables Weight Hux Comment

THRTINN PPy Hi Weight to minimize the flood gate opening
e ..., € Qv Qy Has Weight to minimize an error e, =1, -y,
s;.nl ,___,s;_nN Quin, s Quin,,  Hls5 Weight to keep the level h; below hrv

ST vnSion Quax,ro Quax,  Hes Weight to keep the level h; above Irv

4.2 Constraints

To solve a QP problem there must exist a feasible solution that fulfill the constraints
described in Equations (4-2) and (4-3). The QP problem exists of equalities which defines
what “plane” the solution must exist on. In this MPC program, the equality constraints are
used to express model dynamics, e.g. the Lake Toke model and turbine flow model as well as
some other variables. The inequality constraints are used the express the boundaries of the
system, e.g. upper boundary of the level, or limits on the gate opening hy. Chapter 4.2.1 and
4.2.2 are simplified explanations which show the structure of the program, the detailed code is
in Appendix 3.

4.2.1Equality constraints

The equations listed in Table 4.3 define the equality constraint used in the MPC algorithm.
The Equation numbers are used to represent their respective position in the matrix Ae.

Table 4.3: Equations that define the equality constraints used by the MPC program

Equations Comment Equation number
Vﬁ Linearized and discretized state space

Xca = A% +BU +M v, model of Lake Toke system (1)

y, =Cx, Outoput hy 2)

e = —Y, The error based on a reference point ©)

V., =(h, —h, )*V.? 4V Linearized model of the Turbine flow (4)

The equality constraints have is ordered in a specific system which is described below.
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Table 4.4: The variables used in the MPC

Matrix Ae Matrix b Equation number
Ae,lu Ae,lh Ae,le Ae,ly Ae,lsmin Ae,lSmax Ae,l\/'t be,l (1)
Ae _ '%,Zu Ae,2h Ae,Ze Ae,2y '%,ZSmin Ae,ZSmax Ae,Z\/'t b — be,z (2)
Aa Aan A Asy Ass, Asse Aw | Do 3)
Ae,4u Ae,4h Ae,4e Ae,4y Ae,45min &,45maX Ae,4v" be,4 (4)

4.2.2Inequality constraints

Inequality constraints are also called hard constraints, compared to the soft constraints in

Chapter 4.2.2.1, hard constraints can’t be broken. This is important to keep in mind when

using hard constraints on variables that the MPC doesn’t have full control over, if one is not
fully aware of the region which the variable can reach, the solution can become infeasible. A
list of the inequality constraints are listed below:

Table 4.5: Equations that define the equality constraints used by the MPC program

Equations Comment Equation number
h <h The gate opening is at the same or lower )
o level as h,
hg >0 The gate opening is always over 0 m )
h +S,,, >h™ Defines the lower limit of the level ©)
h S, <h™ Defines the upper limit of the level (4)
Vg W24 T};e total flow Vo has to be higher than 4 ©)
m°/s
T T o The change of the flow rate Vo cannot
o TV Vg (6)

exceed a threshold
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Table 4.6: The variables used in the MPC

Matrix Ae Matrix b Equation number
Aie,lu Aie,lh Aie,le Aie,ly Aie,lsmin Aie,lsmax A.e,lv‘t bie,l @)
Aie,zu A1e,2h Aie,Ze Ae,Zy Ae,zsmin Aie,zsmax A1e,2\/’t bie,l (2)
A Aie,3u Aie,ah Aie,3e Aie,3y Aie,3smm Aie,SSmax Ve, 3V, b — bie,l (3)
¢ Aie,Su Ae,:ﬂh Aie,Be Aie,3y Aie,ssmin 'A‘ie,3Smax ie,3V, Ie bie,l (4)
Aie,Su Aie,3h Aie,Se Ae,Sy Aie,3smin Aie,35max e, 3V, bie,l (5)
Aie,3u Aie,ah Aie,3e Aie,3y Aﬁe,3smm Aie,SSmax A\e,av‘t bie,l (6)

The reason why the upper and lower limit needs to be a soft constraint in Table 4.5 is because
one it is a goal to keep the level under the hrv, but in extreme circumstances the level might
flow over. E.g. if Vi, was underestimated causing a sudden flood, the level can go over hrv.

In general in this system, if the constraint is controlled directly through the flood gate hg, there
can be used a hard constraint

The constraints are discussed in Chapter 2.3.1. Above the constraints are represented in a way
which is applicable into MPC.

4.2.2.1Soft constraints

Soft constraints are the same and inequality constraints except that they can be broken without
giving an infeasible solution. The general definition for a soft constraint for a lower boundary
is Equation (4-6), and for the upper boundary Equation (4-7).

Y in _Smink < Yi (4'6)

Yiex T Smaxk 2 Y« (4'7)

4.3 Simulation of the MPC

The simulations are based on fictitious values for ¥, and W, and are 60 days simulations
each. The disturbances are divided into 8 steps which are equally divided over those 70 days,
60 days with 10 extra days since the horizon is 10 days. The disturbances in between the 8
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steps are calculated using a spline function in MATLAB which creates a quadratic function
between the 8 steps. To separate the simulations from each other, they are presented in
separate subchapters where there is an explanation to purpose of each test as well as
interesting observations is pointed out. Each simulation is presented with graph of both the
control output plotted with the water level at Dalsfos h, and a plot of the water levels h; and
h,. There is also a plot of the disturbances Vi, and .. Most simulations are simulations where
there are similar conditions as the simulation in Chapter 4.3.1, this is to see how controller
reacts to either extreme situations or how some parameters or weights affect the controller.

4.3.10bservation of a realistic flood outcome

There is performed a simulation to observe a realistic response, the result is shown in Figure
4-1 with the initial water level of hy = 1m and h, = 0.8m. There is up both upper and lower
boundary as well as including the flood gate hg to the performance index. The initial values
are chosen out the statistic data given by Skagerak, it shows that before the flood season h; is
normally 1 m above Irv. The Vj, is also chosen with its amplitude and gradient according to
the data from Skagerak. The disturbance is shown in Figure 4-2. The result shows that it is
able converge itself to hrv with a slight overshoot. One can observe that the boundary of the
Vo < Vo™ constraint is quickly reached, as this the value of o™ is not given by Skagerak or
the supervisor the an value is chosen such that the effect of the constraint is visible.
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Figure 4-1: Simulation performed to observe a flood season with the following initial states
and parameters: h;(0) = 1 m and h,(0) = 0.8m, Quin = 10, Qmax = 10, P = 1, Vo™ =0.7m%/s.2
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Figure 4-2: Disturbances used in the simulation presented in Figure 4-1.

4.3.2Large weight on the hq variable in the performance index

If the ratio of weight on the control output hy and the upper and lower boundary Irv and hrv is

around 1, e.g. the weights in this simulation is set to 10 for both P, Qmin and Qmax, the

controller will create a relatively large overshot. The overshot is unnecessary as the conditions
for the simulations are exactly the same except for the weights. The result is shown in Figure

4-3 and the disturbances in Figure 4-4.
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Figure 4-3: Simulation performed to observe a flood season with the following initial states
and parameters: h;(0) = 1 m and h,(0) = 0.8m, Quin = 10, Qmax = 10, P = 10, Vo™
=0.7m%/s.?
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Figure 4-4: Disturbances used in the simulation presented in Figure 4-3.

4.3.3Disabling the Vo < Vo™ constraint and/or the weight P

This simulation was primarily done to see how the weight P affects the response from the
controller, see let the controller choose the optimal hy the constraint Vo < Vo™ was also
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disabled. The result from this is shown in Figure 4-5 with the disturbances Figure 4-7. From
the figure one can see that the controller chooses keep the level in the middle of Irv and hrv.
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Figure 4-5: Simulation performed to observe a flood season with the following initial states
and parameters: h;(0) = 1 m and h(0) = 0.8m, Qmin = 10, Qmax = 10, P =0,
Vo™ =1000 m*/s.?

max

Comparing the results from Figure 4-5 and Figure 4-6 where the constraint Vo™ is set to
0.7 m*/s., the result shows a slight overshot. The level h; will stabilizes in both simulations in
the middle of Irv and hrv. A reason why the level stabilizes in the middle of Irv and hrv might
be because the soft constraint variables Spin and Spax are given very small values (e.g. 107
values) even though they are within the constraints, the values are increased slightly when

nearing the boundaries.
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Figure 4-6: Simulation performed to observe a flood season with the following initial states
and parameters: h;(0) = 1 m and h(0) = 0.8m, Qmin = 10, Qmax = 10, P =0,
Vo™ =0.7 m*/s.?
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Figure 4-7: Disturbances used in the simulation presented in Figure 4-8.
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4.3.4Disabling the Vo < Vo™ constraint

Since the Vo™ might be larger than what was used in the simulation in Chapter 4.3.1. When
practically turning the constraint off by increasing Vo™ to 1000m*/s? the controller increases
faster as expected, but as shown in the simulation in Chapter 4.3.3 the weight P is causing the
difference on the effect from

Water level [m]
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Time [h]
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Figure 4-8: Simulation performed to observe a flood season with the following initial states
and parameters: h;(0) = 1m and h,(0) = 0.8m, Qmin = 10, Qmax =10, P =1,
Vo™ =1000 m*/s?.
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Figure 4-9: Disturbances used in the simulation presented in Figure 4-8.

4.3.5Disabling the lower boundary Irv

To disable the lower boundary Irv the boundary is set to 0 m. What is shown in Figure 4-10 is
that the controller handles an overshoot better when there the level is under Irv. This makes
sense since the weight Qmin and Qmax is both 10, and the level starts at 3 m below Irv, the level
needs to reach the lower limit because fast which also creates an overshoot. The weight Qnmin
can be used as an adjustment based on what Skagerak sees as most important, e.g. is it more
important to reach the level Irv faster or is it more important to keep the level below hrv.
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Figure 4-10: Simulation performed to observe a flood season with the following initial states
and parameters: h;(0) = 1m and h»(0) = 0.8m, Qmin = 10, Qmax = 10, P =0,
Vo™ =0.7 m¥/s’(Irv is set to O m).

)
m.§. 300 T T T T

D

"

=] |
-

D

A

o

- —
o

E : : e

% 0 i i I i I i i I

= 0 200 400 600 800 1000 1200 1400 1600 1800

Time [h]
6 T T T T

i i i l i I 1
0 200 400 600 800 1000 1200 1400 1600 1800

Time [h]

Generated electricity [kWh]

Figure 4-11: Disturbances used in the simulation presented in Figure 4-10.

4.3.6Using the results from the other simulations

Using the results from the previous simulations, and with assumptions about what Skagerak
emphasizes. As mentioned in Chapter 2.3.2, they probably emphasizes the ability to handle a

45



flooding situation as addition to using as little water as possible from the Lake Toke reservoir.
In all of the simulations below, the weight on Qmi, is adjusted to 1, Qmax is still 10.

4.3.6.1Using a low Qmin and disabling the weight P

The level should probably be in between Irv and hrv to keep a healthy safety margin such that
the controller has time to react to a sudden rainfall outside the flood season. There should also
be a focus on avoiding an overshoot if possible, the importance of reaching Irv is probably
less vital. Though the water flow through the gate is important to keep as low as possible, the
weight P on hy is removed in the simulation showed in Figure 4-12 with the disturbances in
Figure 4-13.
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Figure 4-12: Simulation performed to observe a flood season with the following initial states
and parameters: h;(0) = 1m and h,(0) = 0.8m, Qmin = 1, Qmax = 10, P =0,
Vo™ =0.7 m*/s®.
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Figure 4-13: Disturbances used in the simulation presented in Figure 4-12.

4.3.6.2Simulations with a sudden rainfall after the flood season

To see how the controller handles a sudden rainfall after the flooding season, there is added a
secondary peak in Vi, shown in Figure 4-16. The goal of this simulation is to prevent an
overshoot after the simulated rainfall. There are done two simulations, one with a weight P of
0 shown in Figure 4-14 and one with a weight P of 1.

The Figure 4-14 showed a slight overshoot, the controller applies its maximum control output
within the constraints but cannot prevent an overshot.
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Figure 4-14: Simulation performed to observe a flood season with the following initial states
and parameters: h;(0) = 1m and h,(0) = 0.8m, Qmin = 1, Qmax = 10, P =0,
Vo™ =0.7 m3/s?.

To comparison the simulation with and without a weight on P, the result with a P of 1 is
shown in Figure 4-15. This result shows no overshoot after the rainfall. What can be observed
from the control output hy is that the hg is more stable compared to not having a weight on P.
The controller should in theory be more effective at releasing less water through the flood
gate, the fact that there was no overshoot in Figure 4-15 might be because the gate was
already closed in Figure 4-14 before the rainfall, when in Figure 4-15 the flood gate had a
slight opening.
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Figure 4-15: Simulation performed to observe a flood season with the following initial states
and parameters: h;(0) = 1m and h,(0) = 0.8m, Qmin = 1, Qmax = 10, P =1,
Vo™ =07 m3/s2.
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Figure 4-16: Disturbances used in the simulation presented in Figure 4-14 and Figure 4-15.
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5 Discussion

This chapter includes discussions about problems that occurred and what might be the cause
of these problems. There will also be suggestions for future work, i.e. obvious improvements
after the MPC program was designed and tested.

5.1 Parameter estimation and Kalman Filter

In Chapter 3.2.2 there was attempt at adjusting the parameters to create a better model to
increase the precision of the control system. It was discovered that the several of the
parameters had very little impact on the model, and that the inflow 73, and the outflow V; was
influencing the model substantially more than the other parameters. To create a model it is
essential for a parameter estimation that the flow measurement, level measurement and
estimated inflow is correct. There should also be a log of how much the gate is opened, not
just the total outflow V5. It is also shown in Chapter 3.2.2.3 that there are a lot of obvious
measurement errors. The level seems to stagnate, when in fact the Kalman Filter showed that
the level should continue decreasing. In order to estimate a better model, better samples has to
be made such, and perhaps to have enough adjustment options, design a new model or
introduce new parameters.

Another application of a more precise model is that this can be used in a Kalman Filter to give
a warning whenever the level diverges away from its natural path.

5.2 Suggestions for the MPC

It is a possibility to use only compute hourly controller output for the first day, and then
compute a single controller output for the remaining 9 days. This could be used as a tuning
option to force the MPC to reach a steady state faster. This could also cause a problem as the
controller output’s amplitude is a function of the height h,, thus the controller will only be
able to give a control output that is the lowest of the modeled level h, during these 9 days.

During the simulations done in Chapter 4.3.6.2 the control output hy seemed more stable and
prevented an overshot better than the other simulations when there was a weight on hq
variable in the performance index. The only problem with this was that it only kept the level
h; stable on the upper level hrv. One way to counter this can be to introduce another upper
limit lower than hrv, this limit should have a lower weight than the weight on hrv. Doing this
might create some margin rather than having the level right on the boundary at all time.

It showed that controller gave less overshot when disabling the Irv, this lower limit should
maybe be disabled until the level reaches higher than Irv to give better result.
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There hard constraint Vo < Vo™ should maybe be a soft constraint since there is no control
over the 74, in this thesis there is assumed that Skagerak will adjust the ¥; according to their
regulations on Vo™
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6 Conclusion

The objective of this thesis is to study the possibility of a deterministic flood control to
control the water level at Lake Toke using MPC.

A 2 state nonlinear model designed by Bjgrn Glemmestad has undergone a parameter
estimation to further improve the model in Chapter 3.2.2. The parameters «, 5, Cpand A was
found intuitively when the model was designed. A sensitivity analysis showed that the
dynamics of the model was dominated by the influx Vi, and the outflow Vj, still a parameter
estimation was performed using a Kalman Filter. The time varying Kalman filter showed in
effective as the Kalman Gain was based on the measurements used in the linearization, this
cause the Kalman Filter to receive errors as the model was unreliable. The steady state
Kalman Filter proved more effective, but the results showed that there is no change in any of
the parameters «, 8, Cp and A that will improve the model.

To implement the nonlinear model into MPC the model was linearized around operation
points. To assess the linearized models, simulations were performed in Chapter 3.2.1.
Simulations where performed with both ascending water level as well as descending water
level using steady states at initial value to see how precise the linearized model predicts the
water level over 5 days, the linearization was validated against the nonlinear model of Lake
Toke. The simulation will start with an initial value of 1 m and end at 3 m when ascending or
vice versa when descending. When the linearized model was simulated with an ascending
slope the level hit approximately 0.5 m higher, and when simulating with a descending slope
the linearized model proved to be relatively accurate. The fact that the linearization hit higher
when ascending can be concluded as a healthy safety margin to prevent a flood during the
flooding season, as the controller will foresee the flood to happen before it actually happens.
The turbine flow was also modelled as a function of the level at Dalsfos h, and the generated
electricity .. The level h, proved to influence the model by 4 m*/s when the level
differentiated by 2 m.

To evaluate the controller several simulations was performed with a disturbances similar to a
realistic flooding scenario. A fixed horizon of 10 days was used. To test the limits of the
controllers as well as tuning it there was performed tests by varying the upper and lower
limits weights Qmin and Qmax as well as the weight on the flood gate P. The simulations proved
that the Qmin should be smaller than Qnax and that a weight on P not only preserves the
reservoir at Lake Toke more, but also created a more stable control output and less overshoot.
One issue that the P weight was causing was that the level tends to stagnate around the upper
limit. To counter this there could be added several upper limits like a hierarchy to fine tune
the controller to stabilize between Irv and hrv.
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Appendix 1

[ O) b 2 3
Telemark University College
Faculty of Technology

FMH606 Master's Thesis

Title: Deterministic Flood Control using MPC of the Kragera Waterways
TUC supervisor: Bernt Lie, prof., Telemark University College

External partmer:  Skaperak Energi, contact: Ingvar Andreassen

Task description:
The following tasks should be carried out:

L. A functional description should be given of a planned Kragere Waterways flood
control system, and the quality of the information should be ascertained.

2. MNecessary measurements'information for managing floods in Lake Toke should be
described (level measurements, current and future inflow predictions, current and
future turbine production flow, etc.). Necessary computer programs for reading data
from Skagerak Energi’s computer system into MATLARB should be developed,
together with programs for writing data back from MATLAB to Skagerak Energi’s
Computer system.

30 A dvnamic model of the relevant water levels at Lake Toke should be developed. The
mole] should be validated against experimental/historic data, and an assessment of the
accuracy of the model should be given. Methods for on-line updating of the model
based on measurements should be developed (parameter estimation, state estimation).

4. Managing floods should be posed as an MPC problem, and an MPC solution should be
developed and tested based on proposed deterministic inflow from a hydrological
maodel and production flow throwgh the tarbine.

5. A MATLAB program should be developed for testing out MPC for flood management.

6. The work that has been carried out should be documented in a master thesis.

Task background:

Five hydro power stations in the Kragers Waterways, starting at the Dalsfoss hvdro power
station, receive their water from Lake Toke in Telemark. The catchment of Lake Toke covers
ca. 1156 km2; the surface of the lake mself covers 32 km2. The lake holds some 150 million
m3 of water, and the annual average flow out of the lake is ca. 24 m3/5: the residence time of
the lake iz thus ca. 72 days, which is relatively little in a hydro power context. The Dalsfoss
hydro power turbines can maximally utilize 36 m3/s; with a higher flow rate than this, the
water must be allowed to bypass the turbine. which implies a lost opportunity from a hvdro

Address: Kjelnes ning 34, MO-3918 Porsgrann, Norway, Phome: 33 57 30 00, Fax: 35 58 75 47
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NG TP A

Calibri 17 = -
power point of view — it would be advantageous to use the butfer capacity of the lake 1o
smooth out some variations in the flow. With a relagyely heagy raindall 8810 mm'h, this
implies ca. 90 m3/s of water hitting the lake surface and ca. 3400 m3/s of water nitting the
catchment. The Dalsfoss hydro power station will be built out to allow for a-maximal capacity
of 960 m3/s flood bypass, Mormally, a flow of 300 m3/5 15 considered a dramatic flood, The
main spring flood starts in April each yvear; floods are cavsed by snow melting and rain, and
hydrological models are used to describe the complex flow through the catchment and into the
lake,

The operation of the hydro power station at Dalsfoss is strictly constrained by maximally and
minimally allowed levels — these constraints change during the vear, The flow out of Lake
Toke is also constrained. In addition, the operation is constrained by cconomic considerations.

At the moment, the floodgates are operated by a specialist operator who is approaching
retirement, It is thus of interest to develop an automatic system for controlling the flood gates,
In an initial attempt, it is reasonable o develop a dynamic model including a mass balance for
Lake Toke in combination with a hydrological model. The hyvdrological model will describe
the flow inte Toke, and will be provided by Skagerak Energi. The model will be used ina
Muodel based Predictive Contral setting, and the initial goal is to compute a proposed food
gate opening ofT-line. This proposed food gate opening will then be evaluated by a specialist
operator; this is necessary in a trial period due to the consequences if anything goes wrong.
This approach will lead to manual closed loop. In a later work, 1t 15 of interest to close the
loop automatically, but this will not be done right away,

Thus, a solution should be based on receiving hydrological predictions from Skagerak Energi
together with production plans, This should be used as input to a dynamic model of the lake
level, and an MPC controller should be used for on-ling computation of flood gate opening,
which should then be passed back to Skagerak Energi. A short term plan is that this solution
should be tested during the spring flood of 2014, following this MSc theses in the spring of
2014,
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“Flood Control using MPC of the Kragere Waterways™, MSc project, Telemark
University College. Porsgrunn.
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Appendix 2

Group Project 2013
SCE 4106 Predictive Control with Implementation

Bernt Lie
Telemark University College, Porsgrunn, Norway

October 2, 2013

Contents

1 Introduction 1

2 Model description 2
2.1 Model development . . . . . . L L 2
2.2 Model summary . . . oL oL L L e e 4

3 Performance index T

4 Task description 2]

A System Description 9

1 Introduction

This group project is a mandatory project in course SCFE {106 Predictive Control with
Implementation, and the grade counts 30% in the final grade of the course; the final test
counts 70% in the final grade. You, the students ol the course are required to set up vour
own groups of 3-4 students, You will have to hand in a group report and present your work
as a group 1n class according to the course schedule published in Fronter. It is required to
contribute in the group work in order to pass, and the grades may be adjusted individually
according to the understanding vou show both in the project report, and in the project
presentation.

The group project is related to an on-going project between Skagerak Energi in Pors-
grunn, and Telemark University College, and deals with flood management of the Kragere
waterways. A third semester project group also works with this topic; obviously, they will
have an advantage in that theyv will also work with the project in their project group. But
more will be expected of this group, so it should be relatively fair, Also, they don't know
much more about the topics in this course project than the other students, so yvou start more
or less on equal foot.
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In the sequel, a simple model of the water acenmulated in Lake Toke is given, and a
simple performance index is given. The group task is to study the control of the waterways
using MPC, The nonlinear model should be linearized, and a discrete time QP formulation
of the MPC problem should be given, Next, a QP based MPC solution should be nsed to

study the control performance of the Toke model. Important issues are centered around:

o developing a discrete time, linear model
o formulating the optimization problem as a quadratic (linear?) problem

o undersianding the modification of the controller to go from optimal control to predictive
control

o studying possible choices of horizon length in the controller, and weight “matrices” in
the performance index

o studying the importance of hard vs. soft constraints

In an appendix, a simple overview of the flood management problem is given, with specific
information about Lake Toke and the Kragera waterways.

2 Model description

2.1 Model development

The model is based on simple mass balance, and assuming constant density. A general mass
balance

dirt ) )
— = 1y — fit,
di :
with constant density, m = pV, m = pV, leads to
v -
a e

The relationship between volume and level is
dV = Ah)dh.

Thus, we get

dh Lo
E_ﬁ(h_m)'

In hydro power svstems, the mapping & — A is known as the filling curve. For Lake
Toke at large, the flling curve s given as

A(h) = max (28 x 10% - K%, 10%) (1)

where fi [m] is the water level above the datum line given by = = =3, the lowest regulated
value; iy = 55.75 m above sea level,
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Figure 2: Sketch of free-flood gate. After [3).

The geometry of a possible model of Lake Toke is indicated in fg. 1. The lake is split
into two compartments, where the main part of the inflow, (1 — 3) V. flows into the upper
compartment which has index 1, while the minor part of the inflow, 3V, flows into the lower
compartment. The flow between the two compartments is given by Via:

Via = 800 (hy — ha) v/l — Tua, (2)

an expression which is found by calibration to rather uncertain data. The outflow from the
lower compartment goes partially through the hydro power turbine, V;, and when needed
through a radial Hood gate, 1:}_.

A radial flood gate is sketched in fig. 2. Figure 2 indicates a free-flow gate, and a model
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of such a gate is typically given by [3]

r & . 25" {h: - Jhﬁ]’ L
V =dh,-w —I-Hf (3)
where § represents the contraction coefficient for the flow through the gate opening and £
represents the energy loss on the upstream side of the gate as well as the effects of non-
uniform velocity distribution in the system. by 15 the level upstream from boundary effects
(h;) close to the gate; hy, is the pinion height. The model presumes that by — dhy, = 0.
A more classical model is that of [1]:

V = Cphguy/2gh;, (4)

where the discharge coefficient (' is a funetion of the ratio fi;/fi,. A possible mapping {rom
:—I‘Ii: — (' in a free-flow gate could be a second order polynomial approximately going through
the points (0.32,0.55), (0.82,0.65), and (1.52,0.68), see fiz. 2 in [1). The model presumes
that fi; = (.

A proposed gate model for the Dalsfos gate is

v = { hewy/2gha, hy = hy )

£ . hy < 0
where fig is the level in the lower compartment. Here, b, € [U_. h;"“‘] and it is preswmed that
hy = hy; alternatively we could write hy = ugh2™, where u, € [0,1]. The model for the
Dalsfos gate can be guestioned: it does not seem reasonable that there should be no losses
in efficiency, ete.; see e.g. eq. 4 where O € [0.55,0.68]. Furthermore, the model should also
cover the possibility that f < 0 and that ke < &y,

In (2], a free-How weir is described as

1}5 = Chhiwy/29h;.

Note the change in the model as compared to eq. 5, where basically h; has been replaced by
Fii (Le. Tie), and the weir does not have any control input. To regain control, it is necessary
to reduce h, such that i, < by (here: ha).

2.2 Model summary

In summary, the following is a possible two-compartment model of Lake Toke:

dhy 1 e
E = m I:{l —Jf} Via — l12]
dhy 1 [ e o

At aA(hy) [ ”‘“‘"’B]

where the filling curve A (h) is given as

A(h) = max (28 x 10° - B¥1°, 10%) |

4
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Table 1: Parameters for the Lake Toke model
Parameter Value Unit Comment

o .05 - Fraction of surface area in compartment 2
3 0.02 Traction of inflow to compartment 2

w 11.2 m Width of gate

hg"”‘ 5.6 i Aaximal opening height of zate

Fmin 82.73 m Minimal low regulated level value

THEL, 60.35 m Maximal high regulated level value

Table 2: Operating conditions for validating the Lake Toke model,
Quantity Value Unit Comment

hy(t=0) 245 m Initial level, compartment 1

hit=0) 25 m Initial level, compartment 2

Vi - m*/s Inlet low jumps from 24m®*/ s to 200m*/ s after 25 x 10%s
hig - m Gate opening jumps from Om to hg™* after 50 x 10 s

[ 24 m*/s  Volumetric flow through turbines

the inter-compartment flow Vs is given as

Vig = 800 (hy — ha) /]l — hal,

and the gate Aow ‘;’; is given as

) hewy2gha,  ha = hy
VE = haw2gha, hy = ha =10 .
0, fl-z =<1

The model is only valid for (i, ha) = [0,0), where the levels refer to levels above the
datum level given by x[,, the minimal low regulated level value. To find the true altitude
above sea level of the water levels, these are thus hy + o5 and ha + 2%, respectively.
Parameters for the model are given in Table 1.

Operating conditions for validating the model are given in Table 2.

The dynamics of the system is rather slow. It is thus reasonable to use e.g. hours or days
as time unit, with the necessary conversion factor in the model, Figure 3 indicates the level
variations with parameters and operational conditions as specified above. Figure 4 indicates
the step f:hange in input/disturbance 1r,,, as well as the inter compartmental Qow L, 5 and the
gate flow 'Lf Note that in steady state, V is less than V), — the difference obviously is due
to the L'.uu.'itﬂ.nt turbine flow V. Figure 5 iudir:al;es the applied gate opening.

The output of the system, i.e. the quantity that is sought confrofled, is iy, the level in
the main compartment — the level at Merkebekls.

The model given here is quite crude. It is possible that better model fit could be achieved
by including a third compartment for upper Toke, with an inter compartment How through

Straume.  This is not relevant for the current project in course Predictive Control with
lmplementation, though.

[y
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Figure 3: Levels fiy and h; in the two compartments with the given parametes and operational
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Figure 4: Disturbance flow Vi,. with resulting inter compartmental flow Vis and gate flow
V. Note that in steady state, (1 — 3) Vi, = Vie, while Vi, = V, + V. Time in seconds.
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Figure 5: Gate opening i, Time in seconds.

Performance index

The concession conditions for operating the Kragero waterways power plants includes the
tollowing:

1.

The total water flow below Dalsfos power plant (V; + l:;;]l must under no conditions be
less that :l-mgfrﬁ.

It is a requirement that the level of Lake Toke at Merkebekk (ie. compartment 1) must
lie in the interval @ £ [-’f-'Lmn.-'f-'ﬂm'_L or converted to the b variable: iy € [0, rpry — Torv)-
However, the condition of Vi + 1}, = 4m*/s supersedes this requirement.

In reality, the regulation values oy and ey vary during the vear. It thus may make
sense to use ry and e as variables instead of by and fe, or better: use the lowest value
of rppy over the vear as the datum line.

There may be some constrains on V) wrt. avoiding cavitation in the turbine. However,
in this project, we will assume that V} is a disturbance and that someone else (i.e.
economists) has decided on the flow through the turbine.

A traditional performance index for the operation would be in the form:

I= -/:h [ (t) +p (t)0® (£)] dt

where f, is the horizon, ¢ = r — hy is the control deviation, and p(#) is the weight on the
control signal slope. It is convenient to instead use a discrete time index

N

I = Z [f? + (1 —'*15—1}2]

=1
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where e; =r; — hy .

Here, the reference signal could ep. lie in the midst of the regulation interval, e
r, = SHEV _TLREV
t ] .

A more economically based performance index could be to avoid discharging water
through the gate. Thus, the performance index should be:

N
1= Vi
i=1

where it is given that i’;c.i = 0. This performance index doesn’t easily lend itsell to being
formulated as a QF problem, but instead indicates that one should use an LP formulation
— where the linear equality constraints must come from a linearization of the model.

4 Task description

The following tasks should be considered.

1. Make sure you understand the model given. If you find it erroneous or lacking, you
should correct it and/or expand it.

2. Implement the model in MATLAB, and validate the model/implementation through
simulation, e.g. by comparing vour MATLAR results to those in figs. 3-5. Also carry
out step response tests on the model, ie. inject steps in Vi, h, and Vi (other than
those indicated above) and observe the step responses in by and ha. Preferably use
“day” as time unit,

3. Find a linearized model around steady state'. Find a linearized discrete time model
by (i) finding continuous time linear model %Jﬂ: = A dx + Bodu, dy = C'dr, and then
I[ii} use MATLAD function ¢2d{) to get the discrete time model do = Adrg + B,
and diyy, = Cdze. You may e.g. use 1h as discretization time, or 4 h, or something like
this.

4, Choose as reference value )

5 Imin

AKX
_ Tury — TLRv

T 2 1

and form the control deviation
£ =T — i
where y, = dh;. Use the following quadratic performance indesx:

N

I = Z [eF + pi (i — 1:-1)?]

=1

Choose N such that it is equivalent to, say, 10d.

Since the model is relatively simple, it is relatively simple to find an analytic linearized continnous time
mole].
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Rephrase the above performance index and linear discrete time model as a Quadratic
Program which fits into MATLADRs specification of a QP.

5. Study the optimal control of the model with the given performance index, Experiment
with changes in the inflow, e.g. V,, increasing to 200m?/s, and dropping to 01m®/ s.
How does the optimal controller handle the operation of the system? Inject the control
input into both the linearized model, and the full nonlinear model. Discuss differences
in behavior,

(Hint: Assume that vou know perfectly the real states of the svstem; in this project,
including a state estimator is not important. )

6. Introduce MPC, and studv a few scenarios of how the MPC handles the problem.
Apply the MPC to both the linearized model and to the full nonlinear model. Discuss
differences in behavior,

(Hint: Assume that you perfectly know the real states of the system.)

7. Discuss, without doing it, how you could handle the full case where you include con-
straints on the control input (either i, or u,). Furthermore, discuss how youn would
handle the case of constraints in by and hg, eg. by given time varying values for
Topy = o and rypy < 02 Finally, discuss how you would handle the case of a
madified performance index based on minimizing the loss /hypass of water through the
gate,

A System Description

Five hydro power stations in the Kragers Waterways, starting at the Dalsfos hydro power
station, receive their water from Lake Toke in Telemark. Figure 6 shows the location of Lake
Toke in Telemark County, Norway. The catchment of Lake Toke covers ca. 1156 km®; the
surface of the lake itself covers 32 km®, Figure 7?7 shows Lake Toke with Upper Toke and
Lower Toke with the Rerholt Fjord.* The lake holds some 150 = 10°m® of water, and the
annual average flow out of the lake is ca. 24 m*/s; the residence time is relatively little in a
hydro power context, The Dalsfos hydro power turbines can maximally utilize 36 m®/ s; with
a higher flow rate than this, the water must he allowed to bypass the turbine, which implies
a lost opportunity from a hydro power point of view — it would be advantageous to use the
buffer capacity of the lake to smooth out some variations in the fHow. With a relatively
heavy rainfall of 10 mm/ h, this implies ca. 90 m®/ s of water hitting the lake surface and ca.
3210m*/ s of water hitting the catchment. The Dalsfos hydro power station will be built
out to allow for a maximal capacity of 960m?/ s flood bypass. Normally, a flow of 300m®/ s
i5 considered a dramatic flood. The main spring Hood starts in April each year; floods are
caused by snow melting and rain, and hydrological models are used to deseribe the complex
fiow through the catchment and into the lake.

*There is another, considerably larger Lake Tokke in Upper Telemark.
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Figure 6: Location of Lake Toke in Telemark County.

R

Figure 7: Map displaying the shape of Lake Toke, Lower Telemark.
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Figure 8 Kragerg Waterways from Lake Toke to the Kils Fjord.

The operation of the hyvdro power station at Dalsfos is strictly constrained by maximally
and minimally allowed levels — these constraints change during the year. The level require-
ments are for site Merkebekk, before the final ca. 5 km river from the main part of Lake Toke
down to the pondage of the Dalstos hydro power station. The flow out of Lake Toke is also
constrained to a minimum of 4m?*/s; this requirement has higher ranking than the required
levels in Lake Toke. Figure 8 shows the Kragere Waterways from Lake Toke to the Kils
Fjord east of Kragera. In addition, the operation is constrained by economic considerations.

At the moment, the floodgates are operated by a specialist operator who is approaching
retirement. 1t is thus of interest to develop an automatic system for controlling the flood
gates, In an initial attempt, it is reasonable to develop a dynamic model including a mass
balance for Lake Toke in combination with a hydrological model. The hyvdrological model
will describe the flow into Toke, and will be provided by Skagerak Energi. The model will
be used in a Model based Predictive Control setting, and the initial goal is to compute a
proposed lood gate opening off-line. This proposed flood gate opening will then be evaluated
by a specialist operator; this is necessary in a trial period due to the consequences if anything
goes wrong. This approach will lead to manuoal closed loop. In a later work, it is of interest
to close the loop antomatically, butt his will not be done right away.

Thus, a solution should be based on receiving hydrological predictions from Skagerak
Energi together with production plans. This should be used as input to a dynamic mode] of
the lake level, and an MPC controller should be used for on-line computation of flood gate
opening, which should then be passed back to Skagerak Energi. A short term plan is that

11
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this solution should be tested during the spring flood of 2014, following this project work as
well as 2 MSe theses in the spring of 2014,
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Appendix 3

This program which runs the MPC on model of Lake Toke consists of 8 scripts:

Script 1: runMPC.m

Script 2: build_matrices.m

Script 3: Vinsimulator.m

Script 4: Wesimulator.m

Script 5: Vtnsimulator.m

Script 6: linearize_model_imag.m
Script 7: MPCmodel.m

Script 8: nonlinmodel.m

Script 9: plotwithh2inhgplot.m
Script10: plotwref0.m

Script 1(runMPC.m):

clc

% Initial states
x0 = [2.5,2.41]";

fmaximum opening of the gate
hgmax=5.6;

% Horizon
N=24*10;

%$Lowest and highest regulated level
lrv=55.75;
hrv=59;

o\°

Number of sample points, timestep is set to 1 hour
= 24*60;

o]

$weight of variable e
Q=1;

$Weight of variable u
P=1;

$Weight on Smin

Qmin = eps;
%$Weight on Smax
QOmax = 10;

%$Highest allowed change in flow
Vmax=25;

$reference point for the height i hl
r0 = 2.3;

$Sreference for upper and lower limit in hl
Ymin=0;

Ymax=3;

sconfigurating options for quadprog
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opts = optimset ('Algorithm', 'interior-point-convex',

%initializing matrices for plots
yplot=zeros (1l,n);
uplot=zeros(l,n);
x2plot=zeros(l,n);
Vinplot=zeros(l,n);
eplot=zeros(l,n);

%initialize time step for non linear model update
tspan=[1 60*60];

% Initial u and Vt
u0 = 0;
vt0 = 5;

%$Prepare disturbance matrices
Vin=Vinsimulator () ;

% Vt=ones (1, length(Vin)) *24;
We=Wesimulator () ;

$Defining sizes of system matrices

nx=2;

nu=1;

ny=1;

for 1 = 1:n
i
if (1i==10)

i;

end

$Steady states
hss=[x0(1); x0(2)];
hgss=0.05*5.6;
Vinss=40;

Vtss=10;

$sSystem matrices used by the controller
[A,B,C,D,M]=1linearize model imag(60*60, [hss (1)
hss(2)]1',hgss,Vinss,Vtss);
k=1;
3Creating matrice with Vin and Vt
for(j=i:i+N-1)
dmat (k:k+1)=M*[Vin(j);0];
k=k+2;
end

%$The Vin at time t
Vint=vin([5];

$Finding the parameters to calculate the flow Vt

Vtpara=linearize Vt imag(x0(2)+lrv,We (i+1:i+N-1));

%calculate area
Ahl=max (28*1000000*x0 (1)~ (1/10),1000);
Ah2=max (28*1000000*x0(2)~(1/10),1000) ;

% Present state and measurements

70

'Display’,

'off');



x = x0;
y = C*x0;

[H, £, Ae, Aineq] = build matrices(A,B,C,M,P,Q,N,nx,ny,nu,Qmin, Qmax,
Vtpara,x0(2));

% Calculate present u
rN = rO*ones(N,1);

$Building the b on the equality matrix

bl=[A*x0+dmat (1:2) ';zeros (nx* (N-1), 1) +dmat (3:N*2) '];

b2=[zeros (ny*N,1)];

b3=[rN];

bd=[[Vtmodel (x0 (2) +1rv,We[5])], [-Vtpara.*x0 (2) +Vtmodel (x0 (2) +1rv,
We (i+1:14N-1))11";

be=[bl;b2;b3;b4d];

bineqg = [x0(2),zeros(1,N*2*nu-1), ones(l,N)*-Ymin, ones(1l,N)*Ymax, (-
4) *ones (1,N), [Vmax+Vt0+uO* (11.2*sqrt(2*9.81*x0(2))), Vmax*ones(1l,N-1)]];

U0 = quadprog(H, f,Aineq,bineq,Ae,be, [],[]1,[],0pts);

u0 = UO(l:nu);

u = ul;

$Saving Vt0 for next iteration
Vt0=Vtmodel (x0(2) +1lrv,We[5]);

$update the non linear model to simulate a real step
mymodel = @ (t,x) MPCmodel (t,x,Vtmodel (x0(2)+1rv,We[5]), Vint,u);
[time, x1list]=0ded5 (mymodel, tspan, x) ;

x0=[xlist (length(xlist(:,1)),1),xlist(length(xlist(:,1)),2)]1";
%$filling plot

% Vinplot(l,i)=Vin;
x2plot(1,1i)=x0(2);
x1lplot (1,1)=x0(1);
hgplot(1,1)=u;
eplot (1,1)=U0 (N*3+1);

end

ref=r0*ones (1,n);

t=[0:1:n-17;

figure (1)

subplot (2,1,1)

plot (t,xlplot, t,x2plot, t,ref);
subplot (2,1,2)

plot (t,hgplot);

Script 2(build_matrices.m):

function [H,f, Ae, Aineq] = build matrices(A,B,C,M,P,Q,N, nx, ny, nu,
Qmin, Qmax, Vtpara,h?)

$number of vt variables and high and low soft limit
nvt=1;
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ns=2;

%Quadratic cost function
H1 = diag(P*ones (1,N));

H2 = zeros (N*nx,N*nx) ;

H3 = zeros (N,N);

% H3 = diag(Q*ones(1,N)); %This part is for the Q
H4 = zeros (N,N);

H5 = diag(Qmin*ones(1,N));

H6 = diag(Qmax*ones(1l,N));

H7 = zeros (N*nvt,N*nvt) ;

H = blkdiag(H1,H2,H3,H4,H5,H6,H7);

f = zeros(l, (nu+tnx+ny+ny+ns+nvt) *N) ;

$Equality constraints

Aell = -kron(eye(N,N),B);

Ael2 = kron(eye(N,N),eye(nx,nx)) - kron(diag(ones(N-1,1),-1),A);
RAel6 = kron(eye(N,N),-M(:,2));

Ae22 = -kron(eye(N,N),C);

)
Ae24 = eye (N*ny,N*ny);
Ae33 = eye (N*ny,N*ny)
Ae34 = eye (N*ny,N*ny) ;

RAe42 = kron(diag(Vtpara'.*ones(N-1,1),-1),I[0 -11);
Aed6 = eye (N*nvt,N*nvt);

’

Ae = [Aell,Ael2,zeros (nx*N,ny*N), zeros (nx*N,ny*N), =zeros (nx*N,2*N), Aelé6
$x (k+1)=Ax[3]+Bu[3]+M[3]
zeros (ny*N,nu*N) ,Ae22, zeros (ny*N,ny*N) ,Ae24, =zeros (N,ns*N),

zeros (nvt*N, nvt*N) Sy [3]1=Cx[3]
zeros (ny*N,nu*N) , zeros (ny*N, nx*N) ,Ae33,Ae34, zeros (N,ns*N),
zeros (nvt*N, nvt*N) %e[3]=r[3]-yI[3]

zeros (ny*N,nu*N) ,Aed2, =zeros(ny*N,ny*N), zeros(ny*N,ny*N),
zeros (N, ns*N), Aedo]; SVt[3]=(h2(N)-h2(0))*Vtpara + Vtmodel

[o)

% Inequality constraints

Ainegll= eye (N,N);

Aineqgl2= -kron(diag(ones(N-1,1),-1),10 11);
Aineg2l= -eye (N,N);

Aineqg34= -eye (N,N);

Aineg35= -eye (N,N);

Aineg44= eye (N,N);

Aineqg46= -eye (N,N);

Aineg5l= -1*(11.2*sqrt(2*9.81*h2)) *eye (N, N) ;
Aineg56= -eye (N,N);

Aineg6l= 11.2*sgrt(2*9.81*h2)*eye (N,N) - 11.2*sqgrt (2*9.81*h2)*diag(ones (N-
lrl)r_l);
Aineg66= eye (N,N) - diag(ones(N-1,1),-1);
Aineq = [Ainegll, Aineql2, zeros(N,ny*N),zeros(N,ny*N), zeros(N,2*N),
zeros (nvt*N, nvt*N) $hg-h2<=0

Aineg2l, =zeros (N,nx*N),zeros (N,ny*N),zeros (N,ny*N), zeros(N,2*N),
zeros (nvt*N, nvt*N) %-hg<=0

zeros (N,N), zeros(N,nx*N), zeros(N,ny*N),Aineg34, Aineqg35,
zeros (N,N), zeros (nvt*N,nvt*N) %-y-Smin<=-ymin

zeros (N,N), zeros(N,nx*N), zeros(N,ny*N),Aineqd44, zeros(N,N),
Aineqg46, zeros (nvt*N,nvt*N) Sy-Smax<=-Ymax
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Aineg5l, =zeros (N,nx*N), zeros(N,ny*N), zeros(N,ny*N), zeros(N,2*N),

Aineg56 $-hg<=(-4+Vt) / (w*sqgrt (2*g*h2))

Aineg6l, =zeros (N,nx*N), zeros(N,ny*N), zeros(N,ny*N), zeros(N,2*N),
Ainegb66]; Vg (k+1)-Vg[3]+Vt (k+1)-Vt[3]<=Vomax
End

Script 3(Vinsimulator.m):

function [ Vin ] = Vinsimulator ()

MK KKK

x=1:240:60%24+10*24+1;
Y=y;
xx=1:1:60%244+10*24+1;

yy = spline (x,Y,xXx);
Vin=yy;
end

Script 4(Wesimulator.m):
function [ Vt ] = Wesimulator ()

XQpara (1)=0.0211;
XQpara (2)=37.1891;

Vtpara (1)=132.0238;
Vtpara (2)=2.8241;
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x=1:240:60%24+10*24+1;
Y=y;
xx=1:1:60*24+10*24+1;

yy = spline (x,Y,xx);
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Vt=yy;

end

Script 5(Vtnsimulator.m):

function [ yVt ] = Vtmodel (XD, We )

XQpara (1)=0.0211;
XQpara (2)=37.1891;

Vtpara (1)=132.0238;
Vtpara (2)=2.8241;

yVt = Vtpara(l) .* (- (XQpara (2)-XD)-sqrt ( (XQpara (2) -XD) ."2-
4*XQpara (l) .*We)) ./ (2.*XQpara(l)) + Vtpara(2);

end

Script 6(linearize_model_imag.m):

function [A,B,C,D,M] = linearize model imag(Ts, xss, hgss, Vinss, Vtss)
nx = length (xss);
Ix = eye(nx,nx);

h = sgrt(eps);

A = zeros (nx,nx);

i = sqrt(-1);

for k = 1:nx

A(:,k) = (1/h)* imag(nonlinmodel (xss+h*i*Ix (:,k),hgss,Vinss, Vtss));
end

Btemp = zeros(nx,1);

Btemp(:,1) = (1/h)*imag(nonlinmodel (xss,hgss+h*i,Vinss, Vtss));
Btemp (:,2) (1/h) *imag (nonlinmodel (xss, hgss,Vinss+i*h, Vtss));
Btemp(:,3) = (1/h)*imag(nonlinmodel (xss,hgss,Vinss, Vtss+i*h));
% M = zeros(nx,1);

% M(:,1) = (1/h)*imag(nonlinmodel (xss,hgss,Vinss+i*h, Vtss));
% M(:,2) = (1/h)*imag(nonlinmodel (xss,hgss,Vinss, Vtss+i*h));
C = [1 0];

D = 0;

sys=ss (A,Btemp,C,D);
disc _sys=c2d(sys,Ts);

A=disc_sys.a;
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Btemp=disc sys.b;
C=disc_sys.c;
D=disc_sys.d;

$Separating know disturubance from input
B=Btemp (:,1);
M=[Btemp (:,2) Btemp(:,3)]1;

End
Script 7(MPCmodel.m):

function [dx_dt]= MPCmodel (t,x,Vt, Vin, hg)
dx dt=zeros(length(x),1);

a=0.05;

B=0.02;

w=11.2;

g=9.81;

Al=max (28*1000000*x (1)~ (1/10),1000) ;

A2=max (28*1000000*x (2) "~ (1/10),1000) ;
-X

’

V12=800* (x (1) -x(2)) *sgrt (abs (x (1) }2)))
if (x(2)>=hg)

Vg=hg*w*sgrt (2*g*x (2) ) ;
elseif (hg>=x(2) && x(2)>=0)

Vg=x (2) *w*sqrt (2*g*x (2) ) ;

elseif (x(2)<0)

Vg=0;
end
dx dt(l) = 1/((1l-a)*Al)*((1-B)*Vin-V12);
dx _dt(2) = 1/[3]1*(V12-Vt-Vg);

$transpose dx dt so it is a column vector
% dx dt = dx dt';
return

Script 8(nonlinmodel.m):
function [dx _dt]= nonlinmodel (x,hg, Vin,Vt)
dx dt=zeros(length(x),1);

omega=11.2;

a=0.05;

B=0.02;

w=11.2;

g=9.81;

Cd=1;

Al=max (28*1000000*x (1)~ (1/10),1000) ;
A2=max (28*1000000*x (2) "~ (1/10),1000) ;

V12=800*(x(1)-x(2)) *sqgrt(abs(x(1l)-x(2)));
$The flow Vg is replaced with

Vg=Cd*hg*omega*sqgrt (2*g*x (2)) ;
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o\

if (x(2)>=hqg)
Vg=hg*w*sqrt (2*g*x (2))
>

o\

% elseif (hg>=x(2) && x(2)>=0)

% Vg=x (2) *w*sqrt (2*g*x (2) ) ;

% elseif (x(2)<0)

% vVg=0;

% end

dx_dt (1) = 1/((l-a)*Al)*((1-B)*Vin-V12);
dx _dt(2) = 1/[3]1*(V12-Vt-Vg+B*Vin) ;

end

Script 9(plotwithh2inhgplot.m):

function plotwithh2inhgplot (X1, YMatrixl, YMatrix2)
$CREATEFIGURE (X1, YMATRIX1, YMATRIX2)

X1l: vector of x data

YMATRIX1: matrix of y data

YMATRIX2: matrix of y data

o oo

o°

o°

Auto-generated by MATLAB on 28-May-2014 22:35:33

[}

% Create figure

figurel = figure('PaperType', '<custom>', 'PaperSize', [29.7 1571, ...
'InvertHardcopy', 'off', ...

'"Color',[1 1 11);

o

% Create subplot
subplotl =
subplot (2,1,1, 'Parent', figurel, 'FontWeight', '1ight', 'YGrid', 'on', 'XGrid"', 'o
n',...
'FontSize',13);
ylim(subplotl, [0 51);
box (subplotl, 'on');
hold(subplotl, 'all');

)

% Create multiple lines using matrix input to plot

plotl = plot(X1l,YMatrixl, 'Parent’',subplotl, 'LineWidth',2);

set (plotl(l), 'LineStyle',"'-=", 'DisplayName','h 1");

set (plotl(2), 'LineStyle',":", 'DisplayName', 'h 2', 'Color', [0 O 0]);
set (plotl(3), 'DisplayName', "hrv');

set (plotl(4), 'Color',[1 0 0], 'DisplayName','lrv");

% Create xlabel

xlabel ('Time [h]', 'FontWeight', 'light', 'FontSize',13);

% Create ylabel
ylabel ('Water level [m]', 'FontWeight','light', 'FontSize',13);
% Create subplot
subplot2 =
subplot (2,1,2, "Parent', figurel, 'FontWeight', '1light', 'YGrid"', 'on', 'XGrid', 'o
n',...
'FontSize',13);
ylim(subplot2, [0 51);
box (subplot2, 'on');
hold(subplot2, 'all');
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[}

% Create multiple lines using matrix input to plot
plot2 = plot (X1l,YMatrix2, 'Parent’',subplot2, 'LineWidth',2);
set (plot2 (1), 'DisplayName', 'h g');
set (plot2(2), 'LineStyle', ': ", 'DisplayName', 'h 2', 'Coloxr', [0 0 0]);
% Create xlabel
xlabel ('Time [h]', 'FontWeight', 'light', 'FontSize',13);
% Create ylabel
ylabel ('Flood gate [m]', 'FontWeight','light', 'FontSize',13);
% Create legend
legendl = legend(subplotl, "show');
set (legendl, ...

'"Position', [0.147783473615092 0.757862341626222 0.06484375
0.1231884057971011]) ;

o

% Create legend
legend2 = legend(subplot2, "show');
set (legend2, ...
'Position', [0.818229166666667 0.351449275362319 0.05859375
0.07173913043478261) ;

Script 10(plotwref0.m):

function plotwrefO (X1, YMatrixl, Y1)
$CREATEFIGURE (X1, YMATRIX1, Y1)

X1l: wvector of x data

YMATRIX1: matrix of y data

Yl: vector of y data

o o

o\

o°

Auto-generated by MATLAB on 28-May-2014 22:14:39

o)

% Create figure

figurel = figure('PaperType', '<custom>', 'PaperSize', [29.7 1571, ...
'InvertHardcopy', 'off', ...

"Color',[1 1 11);

)

% Create subplot

subplotl = subplot(2,1,1, 'Parent', figurel, 'FontWeight', 'light', ...
'FontSize',13);

% Uncomment the following line to preserve the X-limits of the axes

xlim(subplotl, [0 15007);

Uncomment the following line to preserve the Y-limits of the axes

lim(subplotl, [0 5]);

% Uncomment the following line to preserve the Z-limits of the axes

zlim(subplotl, [-1 11);

box (subplotl, 'on');

hold(subplotl, 'all');

o° o©

o kg o

o°

Q

% Create multiple lines using matrix input to plot

plotl = plot(X1l,YMatrixl, 'Parent’',subplotl, 'LineWidth',2);

set (plotl (1), 'LineStyle','--"', 'DisplayName','h 1");

set (plotl(2), 'LineStyle',":", "DisplayName', 'h 2', 'Color', [0 0 0]);
set (plotl (3), 'DisplayName', "hrv');

set (plotl(4), 'Color',[1 O 0], 'DisplayName','lrv'");

o)

% Create xlabel
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xlabel ('Time [h]', 'FontWeight', 'light', 'FontSize',13);

% Create ylabel

ylabel ('Water level [m]', 'FontWeight', 'light', 'FontSize',13);

% Create subplot

subplot2 = subplot(2,1,2, 'Parent', figurel, 'FontWeight', "1light', ...
'FontSize',13);

% Uncomment the following line to preserve the X-limits of the axes

xlim (subplot2, [0 1500]);

Uncomment the following line to preserve the Y-limits of the axes

lim(subplot2, [0 5]1);

% Uncomment the following line to preserve the Z-limits of the axes

3 zlim(subplot2, [-1 1]);

box (subplot2, 'on');

hold (subplot2,'all');

o° oo

o\

O o0 kg

[}

% Create plot
plot (X1,Y1, 'Parent',subplot2, 'LineWidth',2, 'DisplayName', 'h g');

% Create xlabel
xlabel ('Time [h]', 'FontWeight', 'light', 'FontSize',13);
% Create ylabel
ylabel ('Flood gate [m]', 'FontWeight','light', 'FontSize',13);
% Create legend
legendl = legend(subplot2, "show');
set (legendl, ...
'Position', [0.160416666666667 0.383852691218131 0.05859375
0.050047214353163471) ;

[}

% Create legend
legend2 = legend(subplotl, "show');
set (legend2, ...
'Position', [0.159244791666668 0.767705382436265 0.06484375
0.160528800755431) ;
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Appendix 4

This appendix consists of the MATLAB code which run the test of the turbine flow model,
the code consists of 4 scripts.

Script 1: TestVtlin.m
Script 2: linearize_Vt_imag.m
Script 3: Vtmodel.m
Script 4: simuplot.m

Script 1(TestVtlin.m):

1lrv=55.75;

x2=1;

XD=x2+1rv;

n=20;

We=linspace (0,5.6,10);

%$Since the level is not expected to be less then the lrv, the model is
%linearized with a x2 from 0 to 2 if the level is lower then 1

Vtpara=linearize Vt imag (XD, We);

Vtlin = @ (XDdt, Wedt, XD, We) Vtpara*XDdt + Vtmodel (XD, We) ;
% Vtlin = @ (XDdt, Wedt, XD, We) Vtmodel (XD, We) ;

y1l=Vtmodel (XD+2,We) ';
y2=Vtlin(2,0,XD, We)';
y3=Vtmodel (XD, We) ';
x=0:1:1length(yl)-1;

% plot (We,yl,We,y2,We,y3)

simuplot (We, [yl y2 y31])

%# centimeters units

X = 29.7; %# A4 paper size

Y = 10; $# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; $# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units', 'centimeters', 'Position',[5 5 xSize ySize])

$# figure size printed on paper

set (gcf, 'PaperUnits', 'centimeters')

set (gcf, 'PaperSize', [X YI])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySize])
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set (gcf, 'PaperOrientation', 'portrait')
iptsetpref ('ImshowBorder', "tight'");
set (gca, 'LooselInset',get (gca, 'TightInset"))

Script 2(linearize_Vt_imag.m):
function [Vtpara] = linearize Vt imag (XD, We)

h

sgrt (eps) ;
i = sqrt(-1);

Vtpara = (1/h)* imag(Vtmodel (XD+h*i,We)) ;

end

Script 3(Vtmodel.m):

function [ yVt ] = Vtmodel (XD, We )

XQpara (1)=0.0211;
XQpara(2)=37.1891;

Vtpara(1)=132.0238;
Vtpara (2)=2.8241;

yVt = Vtpara(l) .* (- (XQpara (2) -XD) -sgrt ( (XQpara (2) -XD) ."2-

4*XQpara (l) .*We)) ./ (2.*XQpara(l)) + Vtpara(2);

end

Script 4(simuplot.m):

function simuplot (X1, YMatrixl)
$CREATEFIGURE (X1, YMATRIX1)

X1l: wvector of x data
YMATRIX1: matrix of y data

o°

o

o°

Auto-generated by MATLAB on 27-May-2014 11:03:46

o)

% Create figure

figurel = figure('PaperType', '<custom>', 'PaperSize', [29.7 10],...
'InvertHardcopy', 'off', ...

'"Color',[1 1 11);

% Create axes
axesl = axes('Parent', figurel, 'YGrid', 'on', 'XGrid', 'on', ...
'FontWeight', "1ight', ...
'FontSize',13);
% Uncomment the following line to preserve the X-limits of the axes
xlim(axesl, [0 9]);
% Uncomment the following line to preserve the Y-limits of the axes

o o°

oe
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oe

ylim(axesl, [0 45]);

% Uncomment the following line to preserve the Z-limits of the axes
zlim(axesl, [-1 1]);

box (axesl, 'on'");

hold(axesl, 'all');

o©

o©

[}

% Create multiple lines using matrix input to plot
plotl = plot (X1l,YMatrixl, 'Parent',axesl, 'LineWidth', 2
set (plotl(l), 'DisplayName', 'Nonlinear model at h 2 =
set (plotl(2), 'DisplayName', 'Linearized model at h 2 =
set (plotl(3), 'DisplayName', 'Nonlinear model at h 2

1l m','LineWidth',0.5);

% Create xlabel
xlabel ('Generated elecetricity [kWh]', 'FontWeight', 'light', 'FontSize',13);

% Create ylabel
ylabel ('Turbine flow dv/dt [m"3/s]', 'FontWeight','light', 'FontSize',13);

% Create legend
legend (axesl, "'show') ;
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Appendix 5

This MATLAB code creates the turbine flow model, the code consists of 5 scripts which.
Script 1 needs to be executed before script 2.

Script 1: LSM1.m

Script 2: LSM2.m

Script 3: plotcode.m

Script 4: remove_flow_to_XQ.m
Script 5: removeNaN.m

Script 6: split_vt_vg.m

Script 7: VovsXQ.m

Script 8: plotVovsXQ.m

Script 1(LSM1.m):

clear all
close all
clc

load Vo038
load Vo09
load We08
load We09
load XQO08
load XQO09
load XDO0O8
load XDO09

removeNaN;

Outlier=6870;
Vo08 (Outlier
XD08 (Outlier
Wel08 (Outlier
XQ08 (Outlier

vvvv
— — — —
[ 1
Ne Ne Ne N

Outlier=6492;
Vo009 (Outlier
XD09 (Outlier
We09 (Outlier

(

)
)
)
XQ09 (Outlier)

— — — —
[ I Y
Ne Ne Ne N

split vt vg;
remove flow to XQ;

$Using XQ = Vt + K
Als = [Votemp ones (1l,length (Votemp)) '];
yls = XQtemp';

x1s=inv (Als'*Als) *Als'*yls';

XQpara=xls;
yXQ = @ (Vo) x1ls(l).*Vo + xl1ls(2);
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figure
plot (Vt09,yXQ (Vt09), 'x',Votemp, XQtemp, "'x")

x1im ([0 407])

ylim ([37 38])

Vttest= (- (XQpara (2)-XD09) -sqgrt ( (XQpara (2)-XD09) .2~
4*XQpara (l) .*We09) )/ (2*XQpara (1)) ;

figure

plot (We09,Vo09, 'x',We09,Vttest, 'x")
y1lim ([0.017 0.26])

Script 2(LSM2.m):

close all

% %Using Vt = We + K

Als = [(-(XQpara (2)-XD08)-sqgrt ((XQpara (2)-XD08) ."2-
4*XQpara (1) .*We08) )/ (2*XQpara(l)) ones(l,length(Wel8))'];
yls = vt08';

x1ls=inv (Als'*Als) *Als'*yls';
yvVt = @ (XD, We, Vg) xls(l)*(-(XQpara(2)-XD)-sqgrt ((XQpara (2)-XD) ."2-
4*XQpara (1) .*We) )/ (2*XQpara (1)) + x1s(2);

% plot (Vo08,XQ08, 'x");
figure

plot (We09, yVt (XD09,We09, Vg09), 'x',Wel09,Vt09, "x")

$ x1im([])

% ylim ([0 3007])

x=0:1:1length (Wel09)-1;

plotcode (x, [yVE (XD09,We09,Vvg09) Vt09],We09)

$# centimeters units

X = 29.7; $# A4 paper size

Y = 15; $# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; $# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

$# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units','centimeters', 'Position',[5 5 xSize ySizel])

$# figure size printed on paper

set (gcf, 'PaperUnits', 'centimeters')

set (gcf, 'PaperSize',[X YI])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySizel)
set (gcf, 'PaperOrientation', 'portrait')

iptsetpref ('ImshowBorder', 'tight');

set (gca, 'LooselInset',get (gca, 'TightInset'"))

o)

% set(gca, 'position', [0 O 1 1], 'units', 'normalized')

o

% figure
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o\

subplot(2,1,1)

plot (x,yVt (XD09,We09,Vg09),x,Vt09)
subplot (2,1,2)

plot (x,We09)

o o°

o\

Script 3(plotcode.m):

function plotcode (X1, YMatrixl, Y1)
$CREATEFIGURE (X1, YMATRIX1, Y1)
X1l: wvector of x data

YMATRIX1: matrix of y data

Yl: wvector of y data

oe oo

oe

oe

Auto-generated by MATLAB on 03-Mar-2014 14:13:57

[}

% Create figure

figurel = figure;

% Create subplot

subplotl = subplot(2,1,1, 'Parent', figurel);
box (subplotl, 'on');

hold(subplotl, 'all');

[}

% Create multiple lines using matrix input to plot

plotl = plot(X1l,YMatrixl, 'Parent’',subplotl, 'LineWidth',2);
set (plotl (1), 'DisplayName’', 'Estimated dv_t/dt');

set (plotl(2), 'DisplayName', 'dv_t/dt 2009");

% Create xlabel
xlabel ('Sample') ;

o

% Create ylabel

ylabel ('dv_t/dt [m"3/s]'");

% Create subplot

subplot2 = subplot(2,1,2, 'Parent', figurel);
box (subplot2, 'on');

hold(subplot2, 'all');

o)

% Create plot

plot (X1,Y1l, '"Parent',subplot2, 'LineWidth',2);
% Create xlabel

xlabel ('Sample');

o)

% Create ylabel
ylabel ('Power production [KWh]');

o)

% Create legend
legendl = legend(subplotl, 'show');
set (legendl, ...
'Position', [0.289299536373768 0.657752401779758 0.127029608404967
.1788079470198687) ;

o® o o° o°

(@}

Script 4(remove_flow_to_XQ.m):
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rows_to remove09 = any(Vo09>=36, 2);
XQ09 (rows to remove09,:) = [];
XD09 (rows to remove09, :) [

Vo09 (rows _to remove09,:) = [
We09 (rows_to remove09, :) [

o

o

I
17
]

’

o\°

o\°

rows to removeO8 = any(Vo08>=36.5, 2);
XQtemp=XQ08;
XQtemp (rows _to remove08, :)
Votemp=Vo08;
Votemp (rows_to remove08,:) = [];

|
—
-
~.

Script 5(removeNaN.m):

rows to remove = any(isnan(XD08), 2);
XD08 (rows_to remove,:) = |
Vo08 (rows_to remove, :) [
We08 (rows_to remove, :) = |
XQ08 (rows_to_ remove, :) [

Script 6(split_vt_vg.m):

vt08=vo08;
vt09=vo09;

Vg08=zeros (length (vVvo08),1);
Vg09=zeros (length (Vo09),1);

rows = any(Vo08>=36.5, 2);
vt08 (rows,:) = 36.5;

rows = any(Vo09>=36.5, 2);
Vvt09 (rows,:) = 36.5;

rows = any(Vo08>36.5, 2);
Vg08 (rows, :) = Vo008 (rows)-Vt08 (rows) ;

rows = any(Vo09>36.5, 2);
Vg09 (rows, :) = Vo09 (rows)-Vt09 (rows) ;

Script 7(VovsXQ.m):

close all

$Using XQ = V0"3 + Vo.”"2 + Vo + K
Als = [Vo08.73 Vo08.72 Vo08 ones(l,length(Vo08))"'];
yls = XQ08';

x1s=inv (Als'*Als) *Als'*yls';
XQpara=xls;
yXQ = @ (Vo) xls(l).*Vo."3 + xls(2).*Vo."2 + x1s(3)*Vo + xls(4);

% testplot (Vo09, [XQ09 yXQ (Vo09)1)
plotVovsXQ (Vo09, [yXQ (Vo09) XQ09])
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Script 8(plotVovsXQ.m):

function plotVovsXQ (X1, YMatrixl)
SCREATEFIGURE (X1, YMATRIX1)

X1l: wvector of x data
YMATRIX1: matrix of y data

oe

oe

oe

Auto-generated by MATLAB on 05-Mar-2014 19:21:50

Q

% Create figure
figurel = figure();
% Create axes

axesl = axes('Parent',6 figurel, 'FontSize',14);
box (axesl, 'on'") ;

hold(axesl, 'all');

Q

% Create multiple lines using matrix input to plot

plotl =

plot (X1,YMatrixl, 'Parent',axesl, '"Marker', 'x', 'LineStyle', 'none', 'Linewidth’
1 2);

set (plotl(l), 'DisplayName', "X O 2009");

set (plotl(2), 'DisplayName', 'Cubic fit of dv_O/dt'");

% Create xlabel

xlabel ('dV _O/dt', 'FontSize',14);
% Create ylabel

ylabel ('X Q', 'FontSize',14);
legend (axesl, 'show');

x1im ([0 2207);
ylim([36 411)

%# centimeters units

X = 29.7; $# A4 paper size

Y = 10; $# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; $# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

$# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units','centimeters', 'Position',[5 5 xSize ySizel])

$# figure size printed on paper

set (gcf, 'PaperUnits', 'centimeters')

set (gcf, 'PaperSize',[X Y])

set (gcf, 'PaperPositionMode', 'manual')

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySizel])
set (gcf, 'PaperOrientation', 'portrait')

% 1ptsetpref ('ImshowBorder', '"tight');
% set(gca, 'LooselInset',get (gca, 'TightInset'))
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Appendix 6

This MATLAB code runs the both the steady state kalman filter (sskalmanfilter.m) and the
time varying kalman filter (tvkalmanfilter.m).

Script 1: sskalmanfilter.m
Script 2: tvkalmanfilter.m
Script 3: auglinearization.m
Script 4: figl.m

Script 5: fig2.m

Script 1(sskalmanfilter.m):

close all
clear all
load Data

%Gain matrix for the estimated noise
G=diag ([0 O 1 11);

H=diag ([l 11]);
W=diag ([10 100 0.0001 0.0011);
V=diag ([100 100]);

$Timestep on the nonlinear model [s]
tode=0:60:60*60%*24;

sParameters
hgmax=5.6;
Tslin=60*60*24;
hgmin=0.01*hgmax;
lrv=55.75;

%initializing matrices
yk=zeros(2,1);

xkk l=zeros(4,1);

xk 1k 1=zeros(4,1);
xkk=zeros (4,1);

%$Defining data length
tstart=1000;

tend=length (Data(:,1));

% tend=1000;
deltat=tend-tstart;
newdata=Data (tstart:tend, :);

$Initial steady state values
hl=newdata (1, 3)-1rv;
h2=newdata(1,2)-1rv;
if (h1<=0)

h1=0.01;
end
if (h2<=0)

h2=0.01;

00 o 0P o°

e
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end
if (newdata(l, 4) *hgmax<hgmin)
hgss=hgmin;
else
hgss=newdata (1, 4) *hgmax;
end

hgss=newdata (1, 4) *hgmax;
Vinss=newdata (1,1);
Vtss=newdata(l,5);

$Choosing initial value for parameters of interest
x3=0.05;
x4=1;

x0=[hl h2 x3 x4]"';
xk 1k 1=x0;

vk (1)=newdata(1l,3)-1rv;
vk (2)=newdata(1,2)-1rv;

%Plot newdata
xplot=0:1:deltat-1;
xkkplot (:,1)=x0;
ekkplot=zeros (4,deltat);
ekplot=zeros (2,deltat);

$Log the sum of error change
xec=zeros (4,1);

$Calculate steady state kalman gain

xssaug=[3.5 3.2 x3 x41"';
Vinssaug=50;

Vtssaug=24;
hgssaug=0.05*hgmax;

[Al Bl cl
H) ;
[Kk, Pp, Pc,E]=dlge(A,G,C,W,V);

D]=auglinearization(Tslin, xssaug, hgssaug,

% for(i=2:length(newdata(:,1)))
for (i=2:deltat)

1if (1==412)
i;
end

$Progagation step:

$Predicting measurment estimate for k+1
pred model=Q@ (t,x) augnonlinmodel (t,x, hgss,
[t,ynonlin]=o0ded5 (pred model, tode, [xk 1k 1(1)
xk 1k 1(4)1);

% [t,ynonlin]=o0ded5 (pred model, t, xc)

Vinss, Vtss);
xk 1k 1(2)

xkk 1(1)=real(ynonlin(length(ynonlin(:,1)),1));
xkk 1(2)=real(ynonlin(length(ynonlin(:,1)),2));
xkk 1(3)=real(ynonlin(length(ynonlin(:,1)),3));
xkk 1(4)=real (ynonlin (length(ynonlin(:,1)),4));

$Measurment update:

88
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ykk 1=C*xkk 1;
ekk 1=yk-ykk 1;

$Logging the error
ekplot (:,i-1)=ekk 1;

%Corrected measurment estimate
xkk=xkk 1+Kk*ekk 1;

$Logging kalman change effect
ekkplot (:,1-1)=Kk*ekk 1;
xec=xec+Kk*ekk 1;

% 1f (xkk(3)<0.8)
% xkk (3)=0.8;

$Shifting up one time instance

vk (1l)=newdata (i, 3)-1rv;

vk (2)=newdata(i,2)-1rv;

Vtss=newdata (i, 5);

if (newdata (i, 4) *hgmax<hgmin)
hgss=hgmin;

else
hgss=newdata (i, 4) *hgmax;

end

hgss=newdata (i, 4) *hgmax;

Vinss=newdata (i, 1) ;

o® o o oe

o°

xk 1k 1=xkk;

if(xk 1k 1(1)<=0)
xk 1k 1(1)=0.01;
elseif (xk 1k 1(2)<=0)
xk 1k 1(2)=0.01;
end
i
end
% figure(l)

o

subplot (4,1,1)
plot (xplot, xkkplot(l,:),xplot,newdata(l:deltat,3)-1rv)
grid on

o o° o©

oe

subplot (4,1,2)
plot (xplot, xkkplot (2, :),xplot,newdata(l:deltat,2)-1rv)
grid on

o° oo oP

o\

subplot (4,1, 3)

plot (xplot, xkkplot (3, :))
grid on

% ylim([-0.5 217)

o o o

o\°
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o\

subplot(4,1,4)
plot (xplot, xkkplot (4, :))
grid on

o©

o©

figl (xplot, [xkkplot(l,:)"' (newdata(l:deltat,3)-1lrv)] [xkkplot (2, :)"
newdata(l:deltat,2)-1rv], xkkplot(3,:), xkkplot(4,:)):

%# centimeters units

X = 29.7; $# A4 paper size

Y = 20; $# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; $# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

$# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units','centimeters', 'Position',[5 5 xSize ySizel])

$# figure size printed on paper

set (gcf, 'PaperUnits', 'centimeters')

set (gcf, 'PaperSize',[X Y])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySizel)
set (gcf, 'PaperOrientation', 'portrait')

iptsetpref ('ImshowBorder', "tight'");

set (gca, 'Looselnset',get (gca, 'TightInset'"))

o°

figure (2)

subplot(4,1,1)

plot (xplot,ekkplot (1, :))
grid on

o® o o oe

o°

subplot (4,1,2)
plot (xplot,ekkplot (2, :))
grid on

o oo oP

o°

subplot (4,1, 3)
plot (xplot,ekkplot (3, :))
grid on

o o o©

o°

subplot (4,1,4)
plot (xplot,ekkplot (4, :))
grid on

o°

o°

fig2 (xplot, ekkplot(l,:), ekkplot(2,:), ekkplot(3,:), ekkplot(4,:))

%# centimeters units

X = 29.7; %# A4 paper size

Y = 20; $# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; $# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

$# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units', 'centimeters', 'Position',[5 5 xSize ySize])

$# figure size printed on paper

set (gcf, 'PaperUnits', 'centimeters')

set (gcf, 'PaperSize', [X YI])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySizel])
set (gcf, 'PaperOrientation', 'portrait')
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iptsetpref (' ImshowBorder', "tight');
set (gca, 'LooselInset',get (gca, 'TightInset'"))

figure (3)

subplot (2,1,1)

plot (xplot,ekplot(l,:))
grid on

subplot (2,1,2)
plot (xplot,ekplot(2,:))

grid on

Script 2(tvkalmanfilter.m):

clear all
load Data

%Gain matrix for the estimated noise
G=diag ([l 1 1 1]);

H=diag ([l 11]);
W=diag([1 10 0.0001 0.0001]);
V=diag ([1l 10]);

$Timestep on the nonlinear model [s]
t=0:60:60*60%*24;

%$Parameters
hgmax=5.6;
Tslin=60*60*24;
hgmin=0.001*hgmax;
lrv=55.75;

$initializing matrices
yk=zeros(2,1);

xkk l=zeros(4,1);

xk 1k l=zeros(4,1);
xkk=zeros (4,1);

$Defining data length
tstart=1000;

tend=length (Data(:,1));

% tend=100;
deltat=tend-tstart;
newdata=Data (tstart:tend, :);

$Initial steady state wvalues
hl=newdata (1, 3)-1rv;
h2=newdata (1,2)-1rv;
1f (hl<=0)
h1=0.01;
end
if (h2<=0)
h2=0.01;
end
if (newdata(l, 4) *hgmax<hgmin)
hgss=hgmin;
else
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hgss=newdata (1, 4) *hgmax;
end
Vinss=newdata (1l,1);
Vtss=newdata(l,5);

x0=[hl,h2,0.05,11";
xk 1k 1=x0;

vk (1l)=newdata(l,3)-1rv;
vk (2)=newdata(l,2)-1rv;

$Defining initial value of the autocovariance matrix
PO=diag([1 10 0.001 0.00017);
Pk 1k 1=PO;

%Plot newdata
xplot=0:1:deltat-1;
xkkplot (:,1)=x0;
ekkplot=zeros (4,deltat);
ekplot=zeros (2,deltat);

$Log the sum of error change
xec=zeros (4,1);

% for (i=2:length (newdata(:,1)))
for (i=2:deltat)

$Progagation step:

$Predicting measurment estimate for k+1

pred model=Q@ (t,x) augnonlinmodel (t,x, hgss, Vinss, Vtss);
[t,ynonlin]=oded5 (pred model, t, [xk 1k 1(1) xk 1k 1(2) xk 1k 1(3)
xk 1k 1(4)1);

% [t,ynonlin]=ode45 (pred model, t, xc);

xkk 1(1)=real(ynonlin(length (ynonlin(:
xkk 1(2)=real (ynonlin (length (ynonlin (:
xkk 1(3)=real (ynonlin (length (ynonlin (:
xkk 1(4)=real (ynonlin (length (ynonlin (:
%$Find linearized model

[A, B, C, Dl=auglinearization(Tslin, xk 1k 1, hgss, Vinss, Vtss, G, H);

%Calculate predicted autocovariance for k+1
Pkk 1=A*Pk 1k 1*A' + B*W*B';

tMeasurment update:

ykk 1=C*xkk 1;

ekk l1=yk-ykk 1;

Zkk 1=Pkk 1*C';
Ekk_1=C*Pkk 1*C' + D*V*D';

$Logging the error

ekplot(:,i-1)=ekk 1;

$Find Kalman gain
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Kk=zkk 1/ (Ekk_1);

%$Corrected measurment estimate
xkk=xkk 1+Kk*ekk 1;

$Logging kalman change effect
ekkplot (:,1-1)=Kk*ekk 1;
xec=xec+tKk*ekk 1;

o°

1f(xkk(3)<0.8)
xkk (3)=0.8;
end
Pkk=Pkk 1 - Kk*Ekk 1*Kk';

o°

o\°

Q

%$Test if observable
Ob = obsv(A,C);

if (rank (obsv (A, C))<4)
rank (obsv (A,C))
pause;

o 0 o° o o°

o°

end

%$Check for positive definitness
if (~all (eig (Pkk) > 0))

Pkk

pause;
end

if(~all(eig(Pkk_1) > 0))
Pkk 1
pause;

end

%plots
xkkplot (:,1)=xkk;

$Shifting up one time instance
vk (1) =newdata (i, 3)-1lrv;
vk (2)=newdata (i,2)-1lrv;
Vtss=newdata (i, 5);
if (newdata (i, 4) *hgmax<hgmin)
hgss=hgmin;
else
hgss=newdata (i, 4) *hgmax;
end
Vinss=newdata (i, 1) ;

xk 1k 1=xkk;
% if (xk 1k 1(1)<=0

=0)
% xk 1k _1(1)=0.01;
% elseif (xk 1k 1(2)<=0)
% xk 1k 1(2)=0.01;
% end

Pk 1k 1=Pkk;

end
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oo

figure (1)

subplot(4,1,1)

plot (xplot, xkkplot (1, :),xplot,newdata(l:deltat,3)-1rv)
grid on

o o o o°

oo

subplot (4,1,2)
plot (xplot, xkkplot (2, :),xplot,newdata(l:deltat,2)-1rv)
grid on

o° o° o°

oo

subplot (4,1, 3)

plot (xplot, xkkplot (3, :))
grid on

% ylim([-0.5 27)

o° o° o o

oo

subplot(4,1,4)
plot (xplot, xkkplot (4, :))
grid on

oo

oo

figl (xplot, [xkkplot(1l,:)"' (newdata(l:deltat,3)-1rv)] [xkkplot (2, :)"
newdata(l:deltat,2)-1rv], xkkplot(3,:), xkkplot(4,:)):

%# centimeters units

X = 29.7; $# A4 paper size

Y = 20; $# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; $# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

$# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units','centimeters', 'Position',[5 5 xSize ySizel])

$# figure size printed on paper

set (gcf, 'PaperUnits', 'centimeters')

set (gcf, 'PaperSize',[X Y])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySizel])
set (gcf, 'PaperOrientation', 'portrait')
iptsetpref (' ImshowBorder', "tight'");

set (gca, 'Looselnset',get (gca, 'TightInset'"))

o

figure (2)

subplot (4,1,1)

plot (xplot,ekkplot(l,:))
grid on

o® o0 o oe

o

subplot (4,1,2)
plot (xplot,ekkplot(2,:))
grid on

o° oo oP

o\

subplot (4,1, 3)
plot (xplot,ekkplot(3,:))
grid on

o o o

o\

subplot(4,1,4)
plot (xplot,ekkplot (4, :))
grid on

o\

o

fig2 (xplot, ekkplot(l,:), ekkplot(2,:), ekkplot(3,:), ekkplot(4,:))
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%# centimeters units

X =29.7; $# A4 paper size

Y = 20; $# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

$# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units', 'centimeters', 'Position',[5 5 xSize ySize])

$# figure size printed on paper

set (gcf, 'PaperUnits', 'centimeters')

set (gcf, 'PaperSize', [X Y])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySizel])
set (gcf, 'PaperOrientation', 'portrait')

iptsetpref ('ImshowBorder', "tight'");

set (gca, 'LooselInset',get (gca, 'TightInset'"))

figure (3)

subplot (2,1,1)

plot (xplot,ekplot(l,:))
grid on

subplot (2,1,2)
plot (xplot,ekplot(2,:))

grid on

%# centimeters units

X = 29.7; %# A4 paper size

Y = 20; %# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

$# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units', 'centimeters', 'Position',[5 5 xSize ySize])

$# figure size printed on paper

set (gcf, 'PaperUnits', 'centimeters')

set (gcf, 'PaperSize',[X Y])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySizel])
set (gcf, 'PaperOrientation', 'portrait')

iptsetpref ('ImshowBorder', 'tight');

set (gca, 'LooselInset',get (gca, 'TightInset'"))

xXecC

Script 3(auglinearization.m):

function [A,B,C,D] = auglinearization(Ts, xss, hgss, Vinss, Vtss, G, H)

nx length (xss);

Ix = eye(nx,nx);
t = 0;

h = sqgrt(eps);
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= zeros (nx,nx);
i = sqrt(-1);

-
|

for k = 1:nx

A(:,k) = (1/h)* imag(augnonlinmodel (t,xss+h*i*Ix(:,k),hgss,Vinss, Vtss));
end

% B = zeros(nx,1);

% B(:,1) = (1/h)*imag(augnonlinmodel (t,xss,hgss+h*i,Vinss, Vtss));

% B(:,2) = (1/h)*imag(augnonlinmodel (t,xss,hgss,Vinss+h*i, Vtss));

cC=101000;01001;

sys=ss(A,G,C,d);
disc_sys=c2d(sys,Ts);

A=disc_sys.a;
B=disc_sys.b;
C=disc_sys.c;
D=H;

end
Script 3(figl.m):

function figl (X1, YMatrixl, YMatrix2, Y1, Y2)
$CREATEFIGURE (X1, YMATRIX1, YMATRIX2, Y1, Y2)
X1l: wvector of x data

YMATRIX1: matrix of y data

YMATRIX2: matrix of y data

Yl: wvector of y data

Y2: vector of y data

oC o° o o

o°

o°

Auto-generated by MATLAB on 05-May-2014 14:34:52

)

% Create figure

figurel = figure('PaperType', '<custom>', '"PaperSize',[29.7 201);
% Create subplot

subplotl = subplot(4,1,1, 'Parent', figurel);

box (subplotl, 'on');

grid(subplotl, 'on'");

hold(subplotl, 'all');

)

% Create multiple lines using matrix input to plot
plotl = plot (X1l,YMatrixl, 'Parent’',subplotl);
set (plotl(2), 'LinewWidth',2, "LineStyle',"':");

o

% Create xlabel
% xlabel ('Sample number');

Q

% Create ylabel
ylabel ("Height [m]");
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% Create title
title('Height h 1");
% Create subplot

subplot2 = subplot(4,1,2, 'Parent', figurel);
box (subplot2, 'on');

grid(subplot2, 'on'");

hold (subplot2,'all');

[}

% Create multiple lines using matrix input to plot
plot2 = plot (X1l,YMatrix2, 'Parent’',subplot2);
set (plot2(2), 'LineWidth',2, "LineStyle',"':");

% % Create xlabel
% xlabel ('Sample number');

[}

% Create ylabel
ylabel ("Height [m]");

% Create title
title('Height h 2");
% Create subplot

subplot3 = subplot(4,1,3, 'Parent', figurel);
box (subplot3, 'on');

grid(subplot3, 'on'");

hold(subplot3, 'all');

o

% Create plot

plot (X1,Y1l, "Parent',subplot3, 'LineWidth', 2);
% Create xlabel

xlabel ('Sample number');

o\

o\

% Create title
title ('Parameter \alpha');

)

% Create subplot

subplot4 = subplot(4,1,4, 'Parent', figurel);
box (subplot4, 'on');

grid(subplot4, 'on'");

hold(subplot4, 'all');

o)

% Create plot
plot (X1,Y2, 'Parent',subplot4, 'LineWidth',2);

o

% Create xlabel
% xlabel ('Sample number');

% Create title
title('Parameter C D');

Script 3(fig2.m):

function fig2 (X1, Y1, Y2, Y3, Y4)
SCREATEFIGURE (X1, Y1, Y2, Y3, Y4)
X1l: wvector of x data
Yl: wvector of y data
Y2: vector of y data

o o°

o\°
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o\

Y3: vector of y data
Y4: vector of y data

o©

o°

Auto-generated by MATLAB on 05-May-2014 15:03:05

[}

% Create figure
figurel = figure;

% Create subplot

subplotl = subplot(4,1,1, 'Parent', figurel);
box (subplotl, 'on');

grid(subplotl, 'on'");

hold(subplotl, 'all');

[}

% Create plot
plot (X1,Y1l, '"Parent',subplotl, 'LineWidth', 1)

% Create title

title('Height h 1");

% Create subplot

subplot2 = subplot(4,1,2,'Parent',figurel);
box (subplot2, 'on');

grid(subplot2, 'on'");

hold(subplot2, 'all');

[}

% Create plot
plot (X1,Y2, 'Parent',subplot2, 'LineWidth',1);

% Create title
title('Height h 1");
% Create subplot

subplot3 = subplot(4,1,3, 'Parent', figurel);
box (subplot3, 'on');

grid(subplot3, 'on'");

hold(subplot3, 'all');

o)

% Create plot
plot (X1,Y3, '"Parent',subplot3, 'LineWidth',1);

% Create title
title ('Parameter \alpha');

o)

% Create subplot

subplot4 = subplot(4,1,4, 'Parent', figurel);
box (subplot4, 'on');

grid(subplot4, 'on'");

hold(subplot4, 'all');

Q

% Create plot
plot (X1,Y4, 'Parent',subplot4, 'LineWidth',1);

% Create title
title('Parameter C D');
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Appendix 7

This is the MATLAB code which run simulations of the linearized model on Lake Toke. The
code consists of 5 scripts.

Script 1: simulation.m

Script 2: ssmodel.m

Script 3: linearized_model_imag.m
Script 4: modelusedforlin.m

Script 5: plotsime.m

Script 1(simulation.m):

close all;

hgmax=5.6;

t=[0 10*24*60*60];

x0=[3,2.71";

Vinl=50;

Vin2=150;

Vintl2=2*24*60*60;

hgl=0.02*hgmax;

hg2=0.5*hgmax;

hgtl12=5*24*60*60;

[A,B,C,D,M]=1linearize model imag(x0, 0.0l1*hgmax, 50,15);
statespacemodel = @ (t,x) ssmodel(t,x,Vinl,Vintl2,Vin2,hgl,hgtl2,hg2,A,B,M);
origmodel = @(t,x) nonlinmodel (t,x,Vinl,Vintl2,Vin2,hgl,hgtl2,hg2);
[timel, hss]=0de4d5 (statespacemodel, t, x0) ;

[time2, horig]=0ded5 (origmodel, t, x0) ;

plotsimu(time2, [horig(:,1) horig(:,2)],timel, [hss(:,1) hss(:,2)]);

%# centimeters units

X = 29.7; %# A4 paper size

Y = 15; $# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; %# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

$# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize])

$# figure size printed on paper

set (gcf, 'PaperUnits', 'centimeters')

set (gcf, 'PaperSize',[X YI])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySize])
set (gcf, 'PaperOrientation', 'portrait')
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iptsetpref (' ImshowBorder', "tight');
set (gca, 'LooselInset',get (gca, 'TightInset'"))

Script 2(ssmodel.m):

function [ dxdt ] = ssmodel (t,x,Vinl,Vintl2,Vin2,hgl,hgtl2,hg2, A, B, M )
dx dt=zeros(length(x),1);

1f (t<=Vintl2)
Vin=Vinl;
else
Vin=vVin2;
end
if (t<=hgtl2)
hg=hgl;
else
hg=hg2;
end

dxdt=A*x+B*hg+M*Vin;

end

Script 3(linearize_model_imag.m):

function [A,B,C,D,M] = linearize model imag(xss, hgss, Vinss, Vtss)

nx length (xss) ;

Ix

eye (nx,nx) ;

h = sgrt(eps):;

A = zeros (nx,nx);

i = sqgrt(-1);

for k = 1l:nx

A(:,k) = (1/h)* imag(modelusedforlin(xss+h*i*Ix(:,k),hgss,Vinss, Vtss));
end

Btemp = zeros(nx,1l);

Btemp (:,1) = (1/h)*imag(modelusedforlin(xss,hgss+h*i,Vinss, Vtss));
Btemp (:,2) = (1/h)*imag (modelusedforlin(xss,hgss,Vinss+i*h, Vtss));
% M = zeros (nx,1);

% M(:,1) = (1/h)*imag(nonlinmodel (xss,hgss,Vinss+i*h, Vtss));

% M(:,2) = (1/h)*imag(nonlinmodel (xss,hgss,Vinss, Vtss+i*h));

CcC = [1 0];

D = 0;

$Separating know disturubance from input
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B=Btemp (:,1);
M=Btemp (:,2);

end

Script 4(modelusedforlin.m):

function [dx dt]= modelusedforlin(x,hg,Vin,Vt)
dx dt=zeros (length(x),1);

a=0.05;
B=0.02;
w=11.2;
g=9.81;
Al=max (28*1000000*x (1)~ (1/10),1000);
A2=max (28*1000000*x (2) "~ (1/10),1000) ;
V12=800* (x(1)-x(2)) *sqgrt(abs(x(1l)-x

’

(2)));

if (x(2) >=hg)
Vg=hg*w*sqrt (2*g*x(2) ) ;
elseif (hg>=x(2) && x(2 ) =0)
Vg=x (2) *w*sqrt (2*g*x (2)
elseif (x(2)<0)

)i

Vg=0;
end
dx_dt (1) = 1/((l-a)*Al)*((1-B)*Vin-V12);
dx _dt(2) = 1/(a*A2)*(V12-Vt-Vg);

$transpose dx _dt so it is a column vector
% dx dt = dx dt';
return

Script 5(plotsimu.m):

function plotsimu (X1, YMatrixl, X2, YMatrix2)
$CREATEFIGURE (X1, YMATRIX1, X2, YMATRIX2)

% X1: wvector of x data
% YMATRIX1: matrix of y data
% X2: wvector of x data

o

YMATRIX2: matrix of y data

o

Auto-generated by MATLAB on 21-May-2014 23:27:00

% Create figure

figurel = figure('PaperType', '<custom>', 'PaperSize', [29.7 157,
'InvertHardcopy', 'off',
'Color',[1 1 11);

Q

% Create subplot

subplotl = subplot(2,1,1, 'Parent', figurel, 'YGrid', 'on', 'XGrid', 'on', ...

'FontWeight', 'light',

'FontSize',13);
% Uncomment the following line to preserve the X-limits of the axes
% xlim(subplotl, [0 4500007) ;

oe
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% Uncomment the following line to preserve the Y-limits of the axes
lim(subplotl, [2 4.5]);

% Uncomment the following line to preserve the Z-limits of the axes
% zlim(subplotl, [-1 11);

box (subplotl, 'on');

hold(subplotl, 'all');

0 K

[}

% Create multiple lines using matrix input to plot

plotl = plot (X1,YMatrixl, 'Parent',subplotl, 'LineWidth',2);
set (plotl(l), 'DisplayName','h 1');

set (plotl(2), 'LineStyle', '--"', 'DisplayName','h 2");

% Create xlabel

xlabel ('Time [s]', 'FontWeight','light', "FontSize',13);
% Create ylabel

ylabel ('Height h 1 [m]', 'FontWeight', 'light', 'FontSize',13);

% Create title
title ('Nonlinear model', 'FontWeight', 'light', 'FontSize',13);

[}

% Create subplot

subplot2 = subplot(2,1,2, 'Parent’',figurel, 'YGrid', 'on', 'XGrid', 'on', ...

'FontWeight', '"1light', ...

'FontSize',13);
% Uncomment the following line to preserve the X-limits of the axes
x1lim(subplot2, [0 4500007) ;
Uncomment the following line to preserve the Y-limits of the axes
lim(subplot2,[2 4.51);
% Uncomment the following line to preserve the Z-limits of the axes
3 zlim(subplot2, [-1 1]);
box (subplot2, 'on');
hold(subplot2, 'all');

o° o

o\

O o0 kg

[}

% Create multiple lines using matrix input to plot

plot2 = plot (X2,YMatrix2, 'Parent’',subplot2, 'LineWidth',2);
set (plot2 (1), 'DisplayName', 'h 1");

set (plot2(2), 'LineStyle', '-=", 'DisplayName', 'h 2");

% Create xlabel

xlabel ('Times [s]', 'FontWeight', 'light', 'FontSize',13);

% Create ylabel

ylabel ('Height h 2 [m]', 'FontWeight', 'light', 'FontSize',13);

% Create title
title('Linearized model', 'FontWeight', '1light', 'FontSize',13);
% Create legend
legendl = legend(subplotl, 'show');
set (legendl, ...

'Position', [0.849913194444444 0.828743961352657 0.0390625
0.09565217391304351) ;

Q

% Create legend
legend (subplot2, 'show');
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Appendix 8

This MATLAB code runs the sensitivity test on the parameters in the nonlinear Lake Toke

model. The code consists of 4 scripts.

Script 1: simulation.m
Script 2: nonlinmodel.m
Script 3: hlplot.m
Script 4: h2plot.m

Script 1(simulation.m):

close all;

hgmax=5.6;
tmaks=60*60*24*10;
t=[1:10:tmaks];
x0=[2.7,2.5]";
vt=24;

Vin=20;

u=1;
hg=60/100*hgmax;
V12para=800;
a=0.05;

B=0.02;

Cd=1;

%Calculating the sensitivity of Vl12para

mymodell = @(t,x) nonlinmodel (t,x,Vt,Vin,
mymodel?2 = @ (t,x) nonlinmodel (t,x,Vt,Vin,
Cd) ;

[time, hl]=0de45 (mymodell, t, x0) ;
[time2,h2]=0ded5 (mymodel2, t, x0) ;

hlsvl2para=(h2(:,1)-hl(:,

hg,
hg,

Vl12para*0.05);

1))/«
h2SvVl12para=(h2(:,2)-hl(:,2))/(Vl2para*0.05);

$Calculating the sensitivity of a
nonlinmodel (t,x,Vt,Vin,
nonlinmodel (t,x,Vt,Vin,

mymodell = @ (t,x)
mymodel2 @(t,x)

[time, hl]=0de45 (mymodell, t, x0) ;
[time2,h2]=0de4d5 (mymodel2, t,x0) ;

))

(:,1 *0.05);
:,2)-h1(:,2))

/ (a
/ (a*0.05);

$Calculating the sensitivity of B
nonlinmodel (t,x,Vt,Vin,
nonlinmodel (t,x,Vt,Vin,

mymodell = @ (t, x)
mymodel2 = @ (t, x)

[time, hl]=0de45 (mymodell, t, x0) ;
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hg,
hg,

hg,
hg,

Vl2para, a, B, Cd);
Vl12para+V12para*0.05,

Vl2para, a, B, Cd);
Vl12para, a+a*0.05, B,

V12para, a, B, Cd);
Vl2para, a, B+B*0.05,

a, B,

Cd) ;

Cd) ;



[time2,h2]=0ded5 (mymodel2, t,x0) ;

h1SB=(h2(:,1)-hl(:,1))/(B*0.05);
h2SB=(h2(:,2)-hl(:,2))/(B*0.05);

%$Calculating the sensitivity of Cd

mymodell = @(t,x) nonlinmodel (t,x,Vt,Vin, hg, V12para, a, B, Cd);
mymodel?2 = @ (t,x) nonlinmodel (t,x,Vt,Vin, hg, V12para+V12para*0.05,
Cd+Cd*0.05) ;

[time, hl]=0ded45 (mymodell, t, x0) ;

[time2,h2]=0ded5 (mymodel2, t,x0) ;

h1SCd=(h2(:,1)-h1(:,1))/(Cd*0.05);
h2SCd=(h2(:,2)-hl(:,2))/(Cd*0.05);

hlplot(t, hlSVl2para,hlSa,hlSB,hl1SCd)

%# centimeters units

X = 29.7; $# A4 paper size

Y = 20; %# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; $# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

%# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units', 'centimeters', 'Position',[5 5 xSize ySizel])

$# figure size printed on paper
set (gcf, 'PaperUnits', 'centimeters')
set (gcf, 'PaperSize', [X Y])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySizel])

set (gcf, 'PaperOrientation', 'portrait')
iptsetpref ('ImshowBorder', 'tight');

set (gca, 'Looselnset',get (gca, 'TightInset'"))

h2plot (t, h2SV12para,h2Sa,h2SB,h2SCd)
%# centimeters units

X = 29.7; %# A4 paper size

Y = 20; %# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; $# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

$# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units', 'centimeters', 'Position',[5 5 xSize ySize])

$# figure size printed on paper
set (gcf, 'PaperUnits', 'centimeters')
set (gcf, 'PaperSize',[X Y])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySizel])

set (gcf, 'PaperOrientation', 'portrait')
iptsetpref (' ImshowBorder', '"tight');

set (gca, 'LooselInset',get (gca, 'TightInset'))

Script 2(nonlinmodel.m):

104

ay

B,



function [dx_dt]= nonlinmodel (t,x,Vt, Vin,hg, Vl2para, a, B, Cd)
dx dt=zeros (length(x),1);
%a function which returns a rate of change vector
if (t<=vVintl2)
Vin=Vinl;
else
Vin=vin2;
end

o® o° oo o

o°

o°

if (t<=hgtl2)
hg=hgl;
else

hg=hg2;
end
vt=24;

o o oo o°

o°

o°

a=0.05;

B=0.02;

w=11.2;

g=9.81;

Al=max (28*1000000*x (1)~ (1/10),1000);

A2=max (28*1000000*x(2)~(1/10),1000) ;
V12=V12para* (x(1l)-x(2))*sqgrt(abs(x(1)-x(2)));

o°

1if(x(2)>=hqg)
Vg=Cd*hg*w*sqgrt (2*g*x (2)) ;
elseif (hg>=x(2) && x(2)>=0)
Vg=Cd*x (2) *w*sqgrt (2*g*x(2));
elseif (x(2)<0)

Vg=0;
end
dx_dt (1) = 1/((l-a)*Al)*((1-B)*Vin-V12);
dx _dt(2) = 1/(a*A2)* (B*Vin+V12-Vt-Vg);

$transpose dx dt so it is a column vector
% dx dt = dx dt';
return

Script 3(h1plot.m):

function hlplot (X1, Y1, Y2, Y3, Y4)
$CREATEFIGURE (X1, Y1, Y2, Y3, Y4)

% X1: wvector of x data
% Y1l: vector of y data
% Y2: wvector of y data
% Y3: wvector of y data
% Y4: vector of y data

Auto-generated by MATLAB on 30-Apr-2014 15:14:50

oe

Q

% Create figure
figurel = figure;
% Create subplot

subplotl = subplot(4,1,1, 'Parent', figurel, 'YGrid', 'on', 'XGrid', 'on");
box (subplotl, 'on');

hold (subplotl, 'all');
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[}

% Create plot
plot (X1,Y1l, "Parent',subplotl, 'LineWidth', 2);

% Create xlabel
xlabel ('Sample time [s]');

% Create ylabel
ylabel ('Sensitivity');

% Create title
title('Sensitivity of parameter \lambda');

[}

% Create subplot

subplot2 = subplot(4,1,2, 'Parent', figurel, 'YGrid', 'on', 'XGrid', 'on');
box (subplot2, 'on');

hold(subplot2, 'all');

% Create plot

plot (X1,Y2, 'Parent',subplot2, 'LineWidth',2);

% Create xlabel
xlabel ('Sample time [s]'");

% Create ylabel
ylabel ('Sensitivity');

% Create title
title('Sensitivity of parameter \alpha');

% Create subplot

subplot3 = subplot(4,1,3, 'Parent',figurel, 'YGrid', 'on', 'XGrid', 'on');
box (subplot3, 'on');

hold(subplot3, 'all');

% Create plot

plot (X1,Y3, '"Parent', subplot3, 'LineWidth',2);
% Create xlabel

xlabel ('Sample time [s]'");

% Create ylabel

ylabel ('Sensitivity');

% Create title
title('Sensitivity of parameter \beta');

% Create subplot

subplot4 = subplot(4,1,4, 'Parent', figurel, 'YGrid', 'on', 'XGrid', 'on");
box (subplot4, 'on');

hold(subplot4, 'all');

% Create plot

plot (X1,Y4, 'Parent',subplot4, 'LineWidth',2);

% Create xlabel
xlabel ('Sample time [s]');

% Create ylabel
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ylabel ('Sensitivity');

% Create title
title('Sensitivity of parameter C D');

Script 4(h2plot.m):

function h2plot (X1, Y1, Y2, Y3, Y4)
SCREATEFIGURE (X1, Y1, Y2, Y3, Y4)

% X1: wvector of x data
% Y1l: wvector of y data
% Y2: vector of y data
% Y3: wvector of y data
% Y4: vector of y data

o°

Auto-generated by MATLAB on 30-Apr-2014 14:53:28

[}

% Create figure
figurel = figure;
% Create subplot

subplotl = subplot(4,1,4, ' 'Parent',figurel, 'YGrid', 'on', 'XGrid', 'on');
box (subplotl, 'on');

hold(subplotl, 'all');

% Create plot

plot (X1,Y1l, "Parent',subplotl, 'LineWidth', 2);

% Create xlabel

xlabel ('Sample time [s]'");

% Create ylabel
ylabel ('Sensitivity');

% Create title

title('Sensitivity of the parameter C D');

% Create subplot

subplot2 = subplot(4,1,3, 'Parent', figurel, 'YGrid', 'on', 'XGrid', 'on");
box (subplot2, 'on');

hold(subplot2, 'all');

% Create plot

plot (X1,Y2, 'Parent',subplot2, 'LineWidth',2);
% Create xlabel

xlabel ('Sample time [s]'"):;

% Create ylabel

ylabel ('Sensitivity'");

% Create title
title('Sensitivity of the parameter \beta');

Q

% Create subplot
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subplot3 = subplot(4,1,2, 'Parent',figurel, 'YGrid', 'on', 'XGrid', 'on');
box (subplot3, 'on');
hold(subplot3, 'all');

% Create plot
plot (X1,Y3, 'Parent',subplot3, 'LineWidth',2);

% Create xlabel
xlabel ('Sample time [s]'");

% Create ylabel
ylabel ('Sensitivity');

% Create title
title('Sensitivity of the parameter \alpha');

% Create subplot

subplot4 = subplot(4,1,1,'Parent',figurel, 'YGrid', 'on', 'XGrid', 'on');
box (subplot4, 'on');

hold (subplot4, 'all');

% Create plot

plot (X1,Y4, 'Parent', subplot4, 'LineWidth',2);
% Create xlabel

xlabel ('Sample time [s]'");

% Create ylabel

ylabel ('Sensitivity');

% Create title
title('Sensitivity of the parameter \lambda');
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Appendix 9

This MATLAB code runs a simulation to see if the effect of changing the parameters. The
code consists of 4 scripts.

Script 1: testpara2.m
Script 2: originalmodel.m
Script 3: nonlinmodel.m
Script 4: testparaplot.m

Script 1(testpara2.m):

close all
clear all
load Data

hgmax=5.6;
lrv=55.75;

tspan=[0 60*60*24]
x=zeros (2,1);

$defining timespan
tstart=1000;

% tend=length (Data(:,1));
tend=1500;

newdata=Data (tstart:tend, :);
deltat=tend-tstart;

x0=[newdata(l,3)-1rv newdata(l,2)-1lrv]"';

for(i=1l:length (newdata(:,1)))

$testing new parameters
1if (1<2)
x=x0;
else
x(1)=hlkpl;
X (2)=h2kpl;
end
xplot (i,1)=x(1);
xplot (i,2)=x(2);

hg=newdata (i, 4) *hgmax;

Vin=newdata (i, 1) ;

Vt=newdata (i, 5);

model=@Q (t,x) nonlinmodel (t,x, hg, Vin, Vt);
[t,y]=0ded5 (model, tspan, x) ;

hlkpl=y(length(y(:,1)),1);
h2kpl=y(length(y(:,1)),2);
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end
for(i=1l:length (newdata(:,1)))
i
%using original parameters as a comparison
if (i<2)
xorig=x0;
else
xorig(l)=hlorigkpl;
xorig(2)=h2origkpl;
end
xorigplot (i,1)=xorig(l);
xorigplot (i, 2)=xorig(2);

hg=newdata (i, 4) *hgmax;

Vin=newdata (i, 1) ;

Vt=newdata (i, 5);

model=@ (t,x) originalmodel (t,x, hg, Vin, Vt);
[t,y]=0ded5 (model, tspan,xoriqg) ;

hlorigkpl=y(length(y(:,1)),1);
h2origkpl=y (length(y(:,1)),2);

end

$Logging the error
xerrortest=xplot-[newdata(:,3) newdata(:,2)];
MSEtestl=mean (abs (xerrortest(:,1)))
MSEtest2=mean (abs (xerrortest(:,2)))

xerrororig=xorigplot-[newdata (:,
MSEorigl=mean (abs (xerrororig(:,1
MSEorig2=mean (abs (xerrororig(:,2

3) newdata(:,2)1;
)))

)))
tplot=0:1:deltat;

testparplot (tplot, [xplot(:,1) newdata(:,3)-1lrv xorigplot(:,1)], [xplot(:,2)
newdata(:,2)-1lrv xorigplot(:,2)1);

%# centimeters units

X = 29.7; %# A4 paper size

Y = 15; %# A4 paper size

xMargin = 1; $# left/right margins from page borders
yMargin = 1; $# bottom/top margins from page borders
xSize = X - 2*xMargin; $# figure size on paper (widht & hieght)
ySize = Y - 2*yMargin; $# figure size on paper (widht & hieght)

$# figure size on screen (50% scaled, but same aspect ratio)
set (gcf, 'Units', 'centimeters', 'Position',[5 5 xSize ySize])

$# figure size printed on paper

set (gcf, 'PaperUnits', 'centimeters')

set (gcf, 'PaperSize', [X YI])

set (gcf, 'PaperPosition', [xMargin yMargin xSize ySizel])
set (gcf, 'PaperOrientation', 'portrait')
iptsetpref (' ImshowBorder', '"tight');

set (gca, 'LooselInset',get (gca, 'TightInset'"))
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Script 2(originalmodel.m):

function [dx _dt]= originalmodel (t, x,hg, Vin,Vt)
% tstep=60*60;

hg=hgv ( (t+tstep) /tstep) ;
Vin=vVinv ( (t+tstep) /tstep);

Vt=Vtv ((t+tstep)/tstep);

dx dt=zeros (length(x),1);

o° o

o\°

omega=11.2;

%new parameters
a=0.18;

B=0.4;

o o

o\°

%0ld parameters
a=0.05;
B=0.02;

w=11.2;

g=9.81;

Ccd=1;

Al=max (28*1000000*x (1)~ (1/10),1000) ;
A2=max (28*1000000*x(2)”~(1/10),1000) ;

% Al=2.8e7*1.1* x(1)"0.1
% A2=2.8e7*1.1* x(2)"0.1;

V12=800* (x(1)-x(2))*sqgrt(abs(x(1l)-x(2)));
Vg=Cd*hg*omega*sqrt (2*g*x (2) ) ;

o°

if (x(2) >=hg)
Vg=hg*w*sqrt (2*g*x (2)) ;
elseif (hg>=x(2) && x(2)>=0)
Vg=x (2) *w*sqrt (2*g*x (2)
elseif (x(2)<0)
Vg=0;
end

o oP

o°

)i

o° o©

o

dx dt(l) = 1/((l-a)*Al)*((1-B)*Vin-V12);
dx dt(2) = 1/(a*A2)*(V12-Vt-Vg+B*Vin);

end

Script 3(nonlinmodel.m):

function [dx _dt]= nonlinmodel (t,x,hg, Vin,Vt)
tstep=60*60;

hg=hgv ( (t+tstep) /tstep) ;
Vin=Vinv ( (t+tstep) /tstep);

Vt=Vtv ( (t+tstep) /tstep);

dx dt=zeros(length(x),1);

o° oo oP

o\

omega=11.2;

% %new parameters
a=0.18;

% B=0.4;

o
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Al=max (28*1000000*x (1)~ (1/10),1000);
A2=max (28*1000000*x(2) " (1/10),1000) ;

% Al=2.8e7*1.1* x(1)"0.1;
% A2=2.8e7*1.1* x(2)70.1;
V12=800*(x(1)-x(2)) *sqgrt(abs(x(1l)-x(2)));
Vg=Cd*hg*omega*sqgrt (2*g*x (2)) ;

o°

if (x(2)>=hqg)
Vg=hg*w*sqrt (2*g*x (2)) ;
elseif (hg>=x(2) && x(2)>=0)
Vg=x (2) *w*sqrt (2*g*x (2)
elseif (x(2)<0)

o° o

o\°

)i

o°

% Vg=0;

% end

dx dt(l) = 1/((1l-a)*Al)*((1-B)*Vin-V12);
dx _dt(2) = 1/(a*A2)*(V12-Vt-Vg+B*Vin);
end

Script 3(testparplot.m):

function testparplot (X1, YMatrixl, YMatrix2)
$CREATEFIGURE (X1, YMATRIX1, YMATRIX2)

X1l: wvector of x data

YMATRIX1: matrix of y data

YMATRIX2: matrix of y data

o oo

o°

o°

Auto-generated by MATLAB on 06-May-2014 16:45:33

% Create figure

figurel = figure;

% Create subplot

subplotl = subplot(2,1,1, 'Parent', figurel);
box (subplotl, 'on');

grid(subplotl, 'on'");

hold(subplotl, 'all');

% Create multiple lines using matrix input to plot

plotl = plot(X1l,YMatrixl, 'Parent’',subplotl, 'LineWidth',2);
set (plotl(l), 'LineStyle',':"','DisplayName', 'Using test parameter');

set (plotl(2), 'DisplayName', '"Real measuments');

set (plotl(3), 'LineStyle','-=",'DisplayName', 'Using original parameters

o)

% Create xlabel
xlabel ('Time [Days]');

o)

% Create ylabel
ylabel ("Height [m]");
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% Create title
title('Plot of the height h 1'");

Q

% Create subplot

subplot2 = subplot(2,1,2, 'Parent', figurel);
box (subplot2, 'on');

grid(subplot2, 'on'");

hold (subplot2,'all');

[}

% Create multiple lines using matrix input to plot

plot2 = plot (X1l,YMatrix2, 'Parent’',subplot2, 'LineWidth',2);

set (plot2(1l), 'LineStyle',':"', 'DisplayName"', 'Using test parameter');

set (plot2(2), 'DisplayName', 'Real measuments');

set (plot2(3), 'LineStyle','--", 'DisplayName', 'Using original parameters');
% Create xlabel

xlabel ('Time [days]');
% Create ylabel
ylabel ("Heigh [m]"');

% Create title

title('Plot of the height h 2");
% Create legend

legendl = legend(subplotl, 'hide');
set (legendl, 'Location', 'SouthEast'") ;
% Create legend

legend2 = legend (subplot2, 'hide');
set (legend2, 'Location', 'SouthEast"') ;
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