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Abstract: 

The Kragerø Waterways consist of 5 power plants downstream after Lake Toke, Dalsfos is the first of these 

power plants. As a deterministic flood control of Lake Toke and Dalsfos there has been designed a MPC. The 

MPC uses a horizon of 10 days with estimated influx of water into the Lake Toke water reservoir. As a 

preliminary task before the MPC is designed, an assessment of the requirements and constraints of Lake Toke 

was made. The primary constraint is to keep the level between an upper and lower limit regulated by NVE. 

A 2 state model designed by Bjørn Glemmestad was used to define Lake Toke, to further increase the precision 

of the model, assessment parameters was done. A simulation and validation of the linearized model of Lake 

Toke was performed to assess the precision, which proved to perform adequate. 

A review of the structure of the MPC program is shown along with discussion and explanation of the 

implementation of constraints and performance requirements. The controller is validated by simulation a flood 

scenario with disturbances similar to a real flood situation, there was also added a secondary peak to resemble a 

rainfall. The objective is to keep the level between a lower and upper limit, lrv and hrv, with a goal to avoid an 

overshoot over hrv. The controller proved to avoid an overshoot when the weight lower limit in the performance 

index was lower than the upper limit. A weight on the control output also proved to create a more stable control 

output as well as avoiding an overshoot when the secondary rainfall arrived. 
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Preface 

The master thesis is entitled Deterministic Flood Control using MPC of the Kragerø 

Waterways. This thesis is part of the education program System and Control Engineering at 

Telemark University College. The main part of the thesis was carried out at TUC as the work 

was computer based, the necessary data and information was given by mail or in meetings at 

TUC. 

The thesis is primarily about designing a Model Predictive Controller (MPC) which has a goal 

to regulate the water level at Lake Toke by controlling the floodgate. The be able to 

understand the report fully the reader should have general knowledge about Optimal Control 

or Model predictive control, as well as fundamental understanding of modeling and 

discretization of models. The code used in this thesis is given is shown in the Appendix, 

additionally the code along with the necessary measurement data from Skagerak is also given 

on a CD. 

The task description for this thesis can be found in Appendix 1, the task description is also 

built upon a project during a course at 3.semester which is shown in Appendix 2. There was 

scheduled a test of a first version of the controller by 1. March 2013. Due to difficulties with 

other parts of the thesis, I was not able to finish this first version by the date. The supervisor 

Bernt Lie was able to develop another version of MPC that was implemented before the flood 

season started. As a result the focus was held on the completion of the MPC controller itself, 

as well as developing the models as this is an essential part of the controller. 

Apart from writing the report, only MATLAB from MathWorks was used as a tool to work on 

the thesis. As the most crucial part of MPC is Quadratic programming, MATLAB provides an 

effective and stable function to solve these equations.  

I would like to give a big thanks to Bernt Lie for his guidance that helped me push through 

and finish the work at the parts where my competence came short, what comes to mind is the 

design of Kalman Filter along with approaches for model development. During the project in 

3. semester, several discussions with Anushka Perera helped me at solving several MPC 

related problems as well as providing me with a linearization method which proved to give 

good results. This prepared me for this thesis in regards of MPC and possible problems which 

I could foresee. Ingvar Andreassen at Skagerak which was responsible for this project at 

Skagerak was able to provide the necessary data used to develop the models needed. 

 

 

<Porsgrunn, 3.6.2014> 

<Robin Evensen> 
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Nomenclature 

hrv Limit for the highest regulated water level 

lrv Limit for the lowest regulated water level 

LSM Least Square Method 

MATLAB Matrix Laboratory 

MPC Model Predictive Controller 

NVE Norges vassdrags- og energidirektorat 

TUC Telemark University College 
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1 Introduction 

Norway is one of the leading nations in hydro power facilities, with this comes a high 

quantity of dams that need water level regulation and flood control. Dalsfos is the first of five 

hydro power plants between Lake Toke and Kilsfjord in Skagerak. Originally Dalsfos is 

regulated manually by using their experience and a predicted influx of water based on a 

hydrological model. There has been proposed a fully automated solution to control the flood 

gate at Dalsfos. A model predictive controller will be used to prevent a predicted flooding 

situation, in addition to expending as little water as possible from the Lake Toke reservoir to 

allow it to be used for electricity production. There is an estimate of influx water into Lake 

Toke denoted   in which is calculated from an external firm using an hydrological model, the 

generated electricity produced from the turbines at Dalsfos is denoted  e.  

A 2 state nonlinear model is used to simulate the levels at Merkebekk and Dalsfos. There will 

be done a study on possible improvements of this model by performing sensitivity analysis on 

the existing parameters and estimating these using a Kalman Filter. Because  e is given as 

kWh, the flow through the turbine needs to be modelled to give the necessary output m
3
/s. 

Both the turbine flow model and the Lake Toke model will be linearized around realistic 

steady state values and discretized, these will be simulated in realistic situation and validated. 

From Skagerak there are regulated limits on the water level, the limits change depending on 

the date of the year. The thesis will focus on the flooding season which ranges from April to 

June. There are several constraints on the system which has to be handled by the control 

system, i.e. the lower limit on the flow is 4 m
3
/s, and there are also regulations on the rate of 

change on the flow. To satisfy the constraint a deterministic flood control will be created 

using MPC. The controller will use a horizon of 10 days with disturbances   in and  e given 

by Skagerak.  

There will be an overall review of the structure of the MPC program as well as discussions 

and reasoning’s behind the design of the controller. The basis of the structure which the MPC 

program was built upon was designed in the 3. semester project, the program has several 

functions and a structure which can be reused in this thesis [1]. To validate the controller 

there will be performed simulations on the 2 state nonlinear model. The disturbances used are 

simulated based on a real flooding situation. The goal of the simulations will be to maintain 

the constraints and performance requirements described in Chapter 2.3. To tune the MPC, the 

weights in the performance index will be disabled and/or changed, then the results will be 

evaluation w.r.t the constraints and performance requirements. 
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2 System description 

This chapter consists of an overall description of Lake Toke and a functional description 

which is used to get an overview of the problems which the controller should manage. 

2.1 Overview of the Kragerø river system 

The system mentioned throughout the report is Lake Toke regulated using the hydropower 

plant Dalsfos, south of Lake Toke. Lake Toke is located next to Drangedal and is a part of a 

network of rivers and lakes in Telemark, finally ending up in Kilsfjord in Kragerø. Figure 2-1 

shows how the entire lake, note that Merkebekk and Dalsfos is two measurement points used 

as the reference point for the states h1 and h2 respectively in the model described in Chapter 

3.2. To fulfill environmental demands from NVE, there is strict lower and upper water level 

boundaries in Lake Toke that needs to be satisfied, denote lrv and hrv. These boundaries 

changes depending on the time of the year. 

 

Figure 2-1: Both upper and lower part of lake Toke [2] 

From Dalsfos to Kilsfjord, there is a levitation drop of approximate 58 meters.  Dalsfos is one 

of five hydropower plants utilizing a levitation drop of approximate 21 m. See Figure 2-2 to 

get an overview of the river system from Dalsfos to Kilsfjord. Dalsfos was originally built 
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with one Francis turbine in 1907. Dalsfos was expanded with 2 more Francis turbines in 1958. 

[3]
1
 Dalsfos is also fitted with flood gates, these floodgates are controlled manually by an 

operator. This is operator is soon in retirement, thus came the need of an automatically 

controlled floodgate. 

 

Figure 2-2: The river from Dalsfos to Kilsfjord [4] 

2.2 Functional Description 

The system of Lake Toke is described as a system with 1 controllable input, 2 disturbances 

and 2 outputs. A block diagram of this system is shown in Figure 2-3. An explanation of the 

system objects is in Table 2.1. 

                                                 

 

1
 In the reference from Store Norske Leksikon there is stated that Dalsfos is fitted with 3 Kaplan turbines, this is 

wrong after a discussion with Ingvar Andreassen in Skagerak Energi. 
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System models

 

Figure 2-3: A block diagram of Lake Toke and Dalsfos 

The level h1 and h2 is introduced as both states and inputs, since they are both a measured 

value as well as estimated values for several time instances in the future. The generated power 

 e and water influx   in is assumed as known disturbances. The system consists of two 

models, one that express the levels h1 and h2, and another that express the turbine flow   t. 

In reality the flood gate opening consist of three separate gate openings, but for the sake of 

simplicity the gates are considered as one large gate. This issue is merely a scaling problem, 

and can be dealt with when a real implementation is due. 

 

Table 2.1: Description of the objects in Figure 2-3  

Parameter Unit Comment 

hg m The flood gate opening (Controllable input) 

 e kWh Generated power at Dalsfos (Disturbance) 

  in m
3
/s Influx of water into the system (Disturbance) 

h1 m Water level at Merkebekk (State, Output) 

h2 m Water level at Dalsfos gate (State, Output) 

  t m
3
/s The flow through the turbine (State) 

 

2.3 Problem description 

The problem is based on the task description in Appendix A and Appendix B, as well as some 

mention in an informal meeting with the supervisor Bernt Lie. The main goal of is to control 

the level h1 which are subject to restriction of upper and lower boundaries, in addition to 

keeping the flow through the turbines as low as possible. By reducing the amount of water 

 e   in 

hg 
h1 

h2 

h2   t h1 



 10 

through the flood gate, this water can be used to produce electricity instead. Because the 

economic efficiency the controller is trying to increase is a contradiction to the safety of the 

environment downstream, there should be some margin of error in case of estimate or 

measurement errors (i.e. there should be enough time to react to a unpredicted flood). The 

constraints as well as the performance requirements of the system are discussed in more detail 

in Chapter 2.3.1 and 2.3.2. 

2.3.1 System constraints 

The constraints that are mentioned here are is a general representation of the constraint. The 

technicality of the implementation in a controller is shown in Chapter 4.2. The constraints in 

this chapter are strict constraints which should be met. 

The controller should keep the level of Lake Toke (h1) within the minimum and maximum 

regulated water level. There will be situations where these constraints will be broken, but 

keeping the level within these boundaries should be the main purpose of the controller:  

 hrvh 1  (2-1) 

 lrvh 1  (2-2) 

 

 

There is a restriction on the maximum rate of change on the river flow   O, denoted   O. This 

constraint is due to the safety of the people who use the river downstream, to give the public 

time to react to a sudden increase of flow: 

 

 max

OO VV    (2-3) 

 

 

There is a restriction to the minimum allowed flow   O, this limit is set to 4 m
3
/s. Although the 

constraint might be fulfilled by Skagerak through the turbine flow, there can be situations 

where there is maintenance on the turbine, resulting in that the constraint has to be fulfilled by 

releasing water through the flood gates: 

 

 
s

mVO

3

4  (2-4) 
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2.3.2 Performance requirements 

This chapter discussed the problems description in Chapter 2.3 and how they can be improved 

and fulfilled as good as possible.  

The known future disturbances is 10 days, therefore the horizon of the system is set to 10 days 

accordingly the controller should be able to give optimal solutions within these 10 days given 

that the measurements and disturbances are correct. There are several possible scenarios that 

the controller needs to handle which can occur during a whole year. Drought, change of hrv 

and lrv, but the most importantly the controller needs to satisfy the constraints and 

performance requirements during a flood season. 

To give and indicator to the quality of the model as well as the stability of the controller, the 

controller should be able to converge to a specified reference point. This also gives an 

incentive to further improve the previous designed model, as well as designing the flow 

through the turbine,   t. Since model uses 5 variables with a relatively wide range of values 

during the horizon, the performance of the controller will be highly influenced from the 

steady state values used to linearize the models. The focus will be held on giving the best 

result during a flood season, i.e. when the   in increases. 

To keep the loss of potential economical income as low as possible, the flood gate flow   g 

should be kept to a minimum, meanwhile keeping the water level h1 within lrv and hrv. These 

two requirements will contradict each other, although there is possible to satisfy the former 

constraint, the latter should be fulfilled to it upmost potential, i.e. keeping the   g as low as 

possible. Though it is only a requirement to keep the level within hrv and lrv, a reference 

point is also used observe how the controllers performance as well as observing its precision. 
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3 System models 

The system can be sketch and simplified as a two tank system with a flow between them, as 

seen in Figure 3-1. Here h1 represents the level at Merkebekk and h2 at Dalsfos.   t is the flow 

through the turbines and   g is the flow through the flood gates.   in is the estimated collection 

of water divided amongst the upper and lower compartment.   in consists of both water from 

precipitation and snow melting. At Skagerak, they use an external firm to calculate this   in 

based upon a hydrological model. This   in will be calculated 10 days beforehand, and is 

considered as known in the MPC solution. 

 

Figure 3-1: Lake Toke sketched visualized as two compartments [5] 

 

The Lake Toke system can be described using mass balance. There has been developed a 2 

state nonlinear model at TUC by Bjørn Glemmestad seen in in equation (3-1). 

  

 gtin

in

VVVV
hAdt

dh

VV
hAdt

dh












12

2

2

12

1

1

)(

1

)1(
)()1(

1







 (3-1) 
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here 

 )10,1028max()( 310/16 hhA x   (3-2) 

 

 
212112 )( hhhhV    (3-3) 

 

  g is the outflow through the gate and can be generally described as the equation (3-4).  

 
22ghwhCV gDg 

  (3-4) 

 

The turbine flow   t is a function of h2,  e and the level below Dalsfos XQ, where  e is the 

generated power and is given by Skagerak. As XQ isn’t measured, it will be estimated in the 

model. 

These parameters will be looked into more in Chapter 3.2.2 to improve its performance. The 

parameters can be seen in Table 3.1: 

 

Table 3.1: Parameters used in the 2 state nonlinear model 

Parameter Value Unit Comment 

α 0.05 ~ Fraction of surface of the compartment in h2 

β 0.02 ~ Fraction of inflow into the compartment of h2 

CD 1 ~ Friction loss factor 

λ 800 ~ Invented factor 

w 11.2 m Width of flood gate 

max

gh  5.6 m Maximal opening height of gate 

min

LRVx  55.75 m Minimal low regulated level value 

max

HRVx  60.35 m Maximal high regulated level value 

 

 

3.1 The Linearizing method 

Both the controller and the kalman filter described in Chapter 3.2.2.2 and 3.2.2.3 uses a 

linearized model to calculate a Kalman Gain. The turbine flow model described in Chapter 
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3.3 is also linearized. This linearization method was proposed by Anushka Perera, a PhD 

student at TUC. The linearization method is described generally below, where f is the function 

to be linearized. Equation (3-5) and (3-6) describes the equation which is used to linearize, 

with a description of the parameters listed in Table 3.2. 

 

 
)),**(*

1
( uIihxf
h

imagA x  
(3-5) 

 

 
))**,(*

1
( uIihuxf
h

imagB   
(3-6) 

 

Table 3.2: Describes the parameters in Equation (3-5) and (3-6) 

Parameter Comment 

A  Linearized transition matrix 

B  Linearized input matrix 

f  Function to linearize 

x  Model states 

u  Model input 

h  A very small number(used a function in MATLAB called eps) 

i  Imaginary number (√-1) 

I  Identity matrix 

3.2 The Lake Toke model 

This chapter focuses only on the differential equation (3-7), the model for   t is developed in 

Chapter 3.3. 

 

  

 gtin

in

VVVV
hAdt

dh

VV
hAdt

dh
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
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


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3.2.1 Linearization and simulation of the Lake Toke model 

There are performed step changes on the linearized model to observe its performance. The 

steady states are used to linearize the model are listed in Table 3.3. The steady state values 

were found experimentally by adjusting the value until the best performance was observed. 

The code for the simulations is in Appendix 7. 

Table 3.3: List of steady state values that are used to linearize the model 

Variable SS Value Unit Comment 

1h  
01h  m The initial value of the level h1 is used 

2h  
02h  m The initial value of the level h2 is used 

gh  6.5*05.0  m 5 % of the maximum gate opening 

inV  40  
s

m3

 Weight to keep the level h1 below hrv 

tV  10  
s

m3

 Weight to keep the level h1 above lrv 

 

There are done three simulations where they are compared to the nonlinear model described 

in Chapter 3. Figure 3-2 shows a simulation where there is a large inflow, forcing the level to 

increase from a low level to a high level. The linear model shows a deviation of 0.5 m higher 

than the nonlinear model. 

 

Figure 3-2: The simulation is done over 5 days. A step change is done on the influx   in from 

50 to 250 m
3
/s after 1 day        t is kept steady at 24 m

3
/s and the hg of 1%. 

When increasing the gate opening hg the watch how the linearization model handles a 

descending level on both h1 and h2. In Figure 3-3 nonlinear model and linearized model are 
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compared. One can observe that the level h1 is almost the same, but the level h2 in the 

linearized model drops about 0.5 m lower than the nonlinear model. 

 

Figure 3-3: Simulation is done over 5 days. A step change on the hg after 1 day of 2 % to 4  % 

                    in is 70 m
3
         t is 15 m

3
/s. The level starts at h1 =3 m and h2 =2.7 m. 

Finally there is performed a simulation over 10 days where there is an increase in   in from 50 

m
3
/s to 150 m

3
/s after 2 days. Then after 5 days the hg is increased from 2 % to 5 %. The   t is 

15 m
3
/s throughout the 10 days. The result is shown in Figure 3-4. 

 

Figure 3-4                                                                 in and hg. 

Although the model misses by 0.5 m over 10 days after performing these step changes, one 

important aspect, is that the model should predict an eventual overflow within 10 days. The 

fact that the linear model shoots higher when the   in reaches 150 – 200 m
3
/s, creates a safety 

margin that causes the model to overshoot. Since the model is linearized around the last know 

measured h1 and h2, the precision will increase the further the level reaches steady state. 
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3.2.2 Calibrating the Lake Toke model 

The 2 state nonlinear model had several parameters which were chosen experimentally to 

make to model fit the experimental data. The code for the sensitivity analysis is given in 

Appendix 8 To see how much impact each parameter have on the model, there was performed 

a test on each of those parameters individually using the formula in Equation (3-8).  

 

p

ppnpn

x
x

xxxxfxxxf
S

p 




),,...,(),,...,( 11
 

(3-8) 

 

Here one wants to know the how the parameter xp affects the model. Δxp is 5% of xp. The 

parameters of interest are α, β, λ and CD and are listen in Table 3.1. Figure 3-5 shows the 

effect on h1 and Figure 3-6 shows the effect on h2. Since the goal of the sensitivity analysis is 

to choose which parameters that are the best candidates for parameter estimation. To estimate 

the parameters a Kalman Filter will be used which is described in Chapter 3.2.2. Because the 

goal is to create a more stable model, a stable curve is more optimal than an unstable curve. 

Another thing to consider is also whether the level h1 or h2 is most important. Primarily the 

level h2 is used to calculate the flow   g, but since the most important constraints are 

connected to the level h1, the graphs in Figure 3-5 are the once to consider. As one can see in 

both Figure 3-5 and Figure 3-6, the parameter CD has the highest impact on level h1 and h2. 

The parameter λ and β has too little impact on the model compared to α. First and foremost 

the parameters α and CD will be looked at. 

When using the kalman filter on the whole data set in Chapter 3.2.2.2 and 3.2.2.3, the samples 

from 1 to 1000 made both filters struggle. The reason behind this is unknown, but the 

dynamics seems to change at around sample 900 – 950 which causes parameter α and CD to 

go to 0, resulting in the ODE solver to crash or struggle after these samples. Because of this 

the test is performed from sample 1000 to sample 3117. 
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Figure 3-5: Shows the sensitivity of parameter α, β, λ and CD on the level h1 

 

Figure 3-6: Shows the sensitivity of parameter α, β, λ and CD on the level h2 
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3.2.2.1 Augmenting the model 

Before the model can be used in a kalman filter for parameters, the model from Chapter 3 has 

to be augmented. The code for both the Kalman Filters is given in Appendix 6. The 

augmented model is: 

  

 
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(3-9) 

The states α and CD can be estimated by introducing white noise to the model with suitable 

amplitude. This gives us the model: 
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(3-10) 

 

where wα and wCD is white noise with a zero mean and a specified variance.  

3.2.2.2 Time varying kalman filter 

Since the model is nonlinear, it can be better to use a time varying kalman filter to 

compensate for the varying A matrix. 

The algorithm for a time-varying extended kalman filter is described below: 

 

 Deciding initial matrices and parameters 

o 

 

 
 
 
 )101(

)0001.00001.0101(

)1111(

105.0

)0001.0001.0101(

00200100

00

diagV

diagW

diagG

hhx

diagP











 

Loop         
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 Simulation using an ordinary differential equation solver: 

o )(
111 


kkkk

fsimulationy  

 Finding the linearized matrices: 

o 

CC

GG

AA













 

 Calculating the predicted covariance matrix: 

o TT

kkkk
GWGAAPP 

 111
 

 Finding the kalman gain: 

o 

1

1

11

11















kk

T

kk

k

TT

kkkk

kkkkk

E

CP
K

DVDCCPE

yye

 

 Finding the corrected state estimate: 

o 
11 


kkkkkkk

eKxx  

 Finding the corrected covariance matrix: 

o T

kkkkkkkk
KEKPP

11 
  

 Transition up one time step: k=k-1 

 

When calibrating the kalman filter by adjusting the variance it proved to have some issues at 

specific samples, but it proved to that it could be hard to create a stable kalman filter. Since 

the kalman gain should be a theoretical representation of the system, it is important that the 

measurements given to the model for linearization is correct. As shown in Chapter 3.2.3, 

some of the measurement is probably incorrect, thus basing the theoretical model on these 

measurements used by the kalman filter can give wrong results. 
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Figure 3-7: Shows the states when using a time varying kalman filter with respect to time 

[days] 

The result shows that α stabilizes around 0.3 from 0.05, but CD decreases throughout the 

whole simulation. The CD parameter represents a coefficient factor on the floodgates, as 

anything below 0.8 is probably wrong, the results in Figure 3-7 shows that the change on CD 

was too unrealistic to be considered. The parameter change is tested in Chapter 3.2.3.  

3.2.2.3 Steady state kalman filter 

A steady state kalman filter was used to create a more stable kalman filter gain since the 

measurements can create an incorrect kalman gain in a time varying kalman filter. The steady 

state Kalman Filter algorithm is presented below: 

 Deciding initial matrices and parameters 

o 

 
 
 )101(

)0001.00001.0101(

)1111(

diagV

diagW

diagG







 

 Linearizing the model around steady states values defined in the step above and use it to 

find the kalman gain 
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o 

2.3

5.3

%5

24

50

2

1











h

h

hg

V

V

t

in





 

 

o 

CC

GG

AA













 

 

o dlqeK   

 

Loop         

 Simulation using an ordinary differential equation solver: 

o )(
111 


kkkk

fsimulationy  

 Finding the corrected state estimate: 

o 
11 


kkkkkk

Kexx  

 Transition up one time step: k=k-1 

 

As shown in Figure 3-8, the filter finds obvious measurement errors which were not found by 

the time varying kalman filter at around sample 200. In Figure 3-8 the initial values of α = 

0.05 and CD = 1 is used. Because the kalman filter in Chapter 3.2.2.2 suggested an α of 0.3, 

this was tested, giving the result in Figure 3-9. 
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Figure 3-8: Shows the states when using a steady state kalman filter with respect to time 

[days]                α       5 
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Figure 3-9: Shows the states when using a steady state kalman filter with respect to time 

[days]                α      3 

3.2.3 Results of the parameter estimation on the Lake Toke 

model 

It is shown that the parameter the parameters α, β, λ has not enough impact on the model to 

form its dynamics sufficiently. The effect is presented in Figure 3-10, Figure 3-11 and Figure 

3-12. The parameter CD is too unstable to make any conclusion from other then that it has a 

noticeable effect on the model. The parameters are given an overly excessive change and are 

simulated over 500 days, the goal is to see if there is actually possible to estimate parameters 

that can have a noticeably effect on the model. The change on the parameters is not noticeable 

in any of the figures below as the lines are on top of each other. The code used to test the 

parameters is given in Appendix 9. 
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Figure 3-10: Shows the effect on the model changing the parameter α from 0.05 to 0.7 

 

Figure 3-11: Shows the effect on the model changing the parameter β from 0.02 to 0.7 
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Figure 3-12: Shows the effect on the model changing the parameter λ from 800 to 8000 

3.3 Turbine flow model 

In order to estimate the flow   t, there is assumed a relationship between energy produced, 

 e, and the difference in water level between h2 and XQ. The flow is calculated at Skagerak 

using soft sensor, the same approach should therefore be looked at to calculate Vt. Figure 3-13 

shows a spatial description of the turbine system and its respective variables which is used to 

derive the model for   t. 

 

Figure 3-13: Sketch of the turbine system 

 

In order to estimate a flow   t, some assumption has been made because of lack of information 

in the data that is logged from Skagerak. E.g. there is not logged how much the flood gates 

have been opened, nor if it’s being opened at all. 
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3.3.1 Evaluating the data used to design the turbine flow model 

In the data, it is not given if the floodgates have been opened or not. Since the maximum 

capacity of the turbines is 36 m
3
/s, there is assumed that all flows over 36 m

3
/s are a result of 

a floodgate being opened. As a result water flow below 36 m
3
 s is   t and the remaining flow 

over 36 m
3
 s is considered as   g. There are two different sensors below Dalsfos that measures 

the level. Figure 3-14 shows the two separate measurements. They should measure 

approximately the same level, but for unknown reasons there is a sudden drop of 2 meters. 

Since there is no apparent reason for the level to drop by 2 meters, XQ is used instead of XU. 

The code used to plot Figure 3-14 is given in Appendix 5. 

 

Figure 3-14: Plot showing the difference between XU and XQ 

There was also some data which is lacking measurements of the level h2 in 2008, as a result 

will be excluded from the model. The missing samples are circled in Figure 3-15. The cause 

of the missing samples may be due to a lot of construction at Dalsfos in the later years. 

 

Figure 3-15: Plot of h2 data samples for 2008 

3.3.2 Estimated model 

The MATLAB code used to create the turbine flow model is given in Appendix 5. To 

estimate the model, only the available parameters can be used to estimate the   t flow: 

 h2 – Level above Dalsfos [m] 

  e – Power production [kWh] 

   g – Flow through the flood gate [m
3
/s] 
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A least square method approach is used create the model, instead of choosing a random 

combination of the above parameters, the method will take into consideration the following 

general equation for power production: 

 

  QtE XhVKW  2
  (3-11) 

Since XQ is not available in the model, XQ will have to be substituted with another correlated 

variable.   correlation between   O and XQ is plotted in Figure 3-16 and examined. There has 

been used a cubic fit on   O to see the correlation between   O and XQ
2
. 

 

Figure 3-16: Correlation           O and XQ 

In order to solve this explicitly,   t should be a first order or second order. As a third order or 

higher equation can give quite a complex answer to the explicit solution. To have a reliable 

model, an explicit solution is preferred to have control over which roots that should be 

chosen. The equation to be fitted is: 

 

 

 

)( 2 Q

e
t

Xh

W
V





  

(3-12) 

 

Replacing XQ with a fitted equation XQ(  t): 

 
21 * cVcX tQ    (3-13) 

 lthough the flow is correlated in the whole range of   O, the equation is fitted in the range on 

the flow from 0 to 36.5 m
3
/s. This corresponds to a range on XQ from 37.3 to 39.3 m. This 

                                                 

 

2
 The cubic fit was noticed from Bernt Lie in an informal meeting, he mentioned that this information could be 

exploited to create the turbine flow model. 
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choice give some error at higher total flow, but the error in flow is a necessary compromise to 

get an e act   t when   O is lower. 

By using Equation (3-12) and (3-13) one gets: 

 

 
etDt WVXcVc   *)(* 2

2

1  (3-14) 

The equation is solved for   t which gives: 

 

4

1

1

2

22

3
2

4)()(
* c

c

WcXcXc
cV

eDD

t 





  

(3-15) 

The least squared method is applied to both roots in Equation (3-15) to calculate the 

parameters c3 and c4, using the data from 2008. Then the model is then validated against the 

data from 2009. The result from using the “+ root” is displayed in Figure 3-17, and “-     ” 

is displayed in Figure 3-18. 

 

Figure 3-17: Validating the data on samples from 2009, using LSM on equation (3-15),+ root 
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Figure 3-18: Validating the data on samples from 2009, using LSM on equation (3-15),- root 

When comparing Figure 3-17 and Figure 3-18, one can see that using the “-     ”, as shown 

in Figure 3-18, that this gives a better result. Generally, the model used in Figure 3-18 follows 

the validation data with some exceptions. Around sample number 8000 there is a sudden drop 

in the model, while the true value is shown to be 36 m^3/s. The reason for this is probably 

because one of the turbines where turned off for maintains, as can be seen in the lower plot in 

Figure 3-18, where the KWh production is lower. 

3.3.3 Overview of the turbine flow model 

Using the knowledge gained from Chapter 3.3.1 and 3.3.2, one can summarize the model as 

Equation (3-16) with the parameters defined in Table 3.4. 

 

 

4

1

1

2

2222

3
2

4)()(
* c

c

Wchchc
cV

e

t 





  

(3-16) 
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Table 3.4: Parameter description of Equation (3-16) 

Variable Value Unit Comment 

2h  
k

h2  m The water level h2 

eW  
keW  kWh The output of the turbine generator 

1c  0.0211 ~ Parameter found with the LSM 

2c  37.1891 ~ Parameter found with the LSM 

3c  132.0238 ~ Parameter found with the LSM 

4c  2.8241 ~ Parameter found with the LSM 

 

 

3.3.4 Linearization and simulation of the turbine flow model 

The code used to validate the turbine flow model is given in Appendix 4. Skagerak gives a list 

of  e, hence the level h2 is the unknown variable to linearize around. As the definition of 

linearizing a function F(a,b) is F(a,b) ≈ F( , ) + Δf(a,b) where Δf(a,b) is the linearized 

function found using the method explained in Chapter 3.1. When applying this to the turbine 

flow model one gets where only an initial value of h2 is know: 

 

  )()0(*))(),0(()0()( 222 khhkWhVVkV ettt     (3-17) 

   

In Figure 3-19 the linearize model at h2 = 3 m the level is linearized at 1 m. The nonlinear 

model at h2 = 1 m shows the error the   t model would have without the knowledge of the 

height h2. From the figure one can see that there will be an error of  4 m
3
/s  if the level 

increases from  1 to 3 m  and  e increases from  0 to 5.6 kWh For comparison the nonlinear 

model at h2 = 3 m shows that the model is nearly linear. 
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Figure 3-19: Simulated turbine flow to compare the effect the water level h2 
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4 Model Predictive Controller 

Since solving a QP or LP problem is the core of an MPC, MATLAB is used as this provides 

the necessary functions as well as being a matrix based programmable language. The 

MATLAB code for the MPC program is given in Appendix 3. To solve the QP equations, a 

function called quadprog is used to find a feasible solution. Before one can use quadprog on a 

model defined and keep the solution within the constraints, one needs to be redefined the 

problem as a QP problem. Since quadprog uses the equations listen below, the system needs 

to be redefined so that they fit into the Equations (4-1), (4-2) and (4-3). 

 
),

2

1
min( xxcHxx TT   

(4-1) 

 
ee bxA   (4-2) 

 
ieie bxA   (4-3) 

 

To solve the QP problem, Equation (4-1) is minimizes by manipulating the x variables. The 

solution needs to be within Equation (4-3) and on Equation (4-2).The solution is considered 

unfeasible if the quadprog cannot find value for an x-variable which doesn’t fulfill the 

constraints. The order which the variables are defined in the MPC program is defined in 

Equation (4-4) with their respective explanation listed in Table 4.1. 

In general there are strict lower and upper limits to h1, the goal is to see that the controller can 

keep the system within its constraints without and without becoming unstable. 

The performance index I needs uses Equation (4-1). Since performance index used by this 

controller only consists of quadratic terms, the c in Equation (4-1) can be ignored. 

The soft constraints are explained more detailed in Chapter 4.2.2.1. The variables are chosen 

inside sometimes to simplify the code, e.g. the y variable is exactly the same as the h1 

variable.  

To define the variables used to solve the QP problem, and horizon length N must be defined. 

By Skagerak, the available input data is 10 days, thereby giving a horizon length of N = 10 

days. The data is presumed to be available on an hourly basis, thus giving 240 steps over 10 

days.   

 

),...,,,...,,,...,,,...,,...,,...,,,,...,,,,...,(
01111 maxmaxminmin11212110 NNNN tt

T

N

TTTT

N

TT

N

TTTTTT

N

TT VVSSSSyyeehhhhuux 
  (4-4) 
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Table 4.1: The variables used in the MPC 

Variable Unit Comment 

u m The u represent hg 

h m The height h1 and h2 

e m The error from a reference point from h1 

y m The output of the system, represents h1 directly 

Smin ~ Used as a soft constraint on the lower regulated level 

Smax ~ Used as a soft constraint on the higher regulated level 

  t m
3
/s The turbine flow 

 

4.1 Performance index 

There is expected some knowledge about MPC, consequently there is only a brief description 

of the structure of the program, more detailed code shown in Appendix 3. A performance 

index used by the MPC is defined in Equation (4-1), only the variables which have a weight 

other than 0 will be used by the MPC. Although all of the weights are listed in Table 4.2, not 

all of them will have value given (i.e. some variables in the performance index can be 

disabled during a simulation) at every test that is performed in Chapter 4.3. Since the weights 

have no given or predefined value, they are chosen experimentally through the simulations. 
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H
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


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2

1
 (4-5) 

 

 

The reason why there is a weight on the e variable is to perform simulation where one can test 

the precision of controller (i.e. no integral error) and to see how well the controller can 

converge the height to a specified reference point. 
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Table 4.2: Lists the notations given to the respective weights 

Variables Weight Hxx Comment 

T

N

T uu 10 ,...,   10 ,..., NPP  H11 Weight to minimize the flood gate opening 

T

N

T ee ,...,1  NQQ ,...,1  H33 Weight to minimize an error kkk yre   

TT

N
SS minmin ,...,

1
 

N
QQ minmin ,...,

1
 H55 Weight to keep the level h1 below hrv 

T

N

T SS maxmax ,...,
1

 
N

QQ maxmax ,...,
1

 H66 Weight to keep the level h1 above lrv 

 

4.2 Constraints 

To solve a QP problem there must exist a feasible solution that fulfill the constraints 

described in Equations (4-2) and (4-3). The QP problem exists of equalities which defines 

what “plane” the solution must exist on. In this MPC program, the equality constraints are 

used to express model dynamics, e.g. the Lake Toke model and turbine flow model as well as 

some other variables. The inequality constraints are used the express the boundaries of the 

system, e.g. upper boundary of the level, or limits on the gate opening hg. Chapter 4.2.1 and 

4.2.2 are simplified explanations which show the structure of the program, the detailed code is 

in Appendix 3. 

4.2.1 Equality constraints 

The equations listed in Table 4.3 define the equality constraint used in the MPC algorithm. 

The Equation numbers are used to represent their respective position in the matrix Ae. 

Table 4.3: Equations that define the equality constraints used by the MPC program 

Equations Comment Equation number 

k

k

t

in

kkk
V

V
MBuAxx 


1  

Linearized and discretized state space 

model of Lake Toke system 
(1) 

kk Cxy   Outoput h1 (2) 

kkk yre   The error based on a reference point (3) 

00
*)( 22 t

para

tt VVhhV
kNk

   Linearized model of the Turbine flow (4) 

 

The equality constraints have is ordered in a specific system which is described below.  
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Table 4.4: The variables used in the MPC 

Matrix Ae Matrix be Equation number 























t

t

t

t

VeSeSeyeeeheue

VeSeSeyeeeheue

VeSeSeyeeeheue

VeSeSeyeeeheue

e

AAAAAAA

AAAAAAA

AAAAAAA

AAAAAAA

A









4,4,4,4,4,4,4,

3,3,3,3,3,3,3,

2,2,2,2,2,2,2,

1,1,1,1,1,1,1,

maxmin

maxmin

maxmin

maxmin

, 

4,

3,

2,

1,

e

e

e

e

e

b

b

b

b

b  , 

)4(

)3(

)2(

)1(

 

 

4.2.2 Inequality constraints 

Inequality constraints are also called hard constraints, compared to the soft constraints in 

Chapter 4.2.2.1, hard constraints can’t be broken. This is important to keep in mind when 

using hard constraints on variables that the MPC doesn’t have full control over, if one is not 

fully aware of the region which the variable can reach, the solution can become infeasible. A 

list of the inequality constraints are listed below: 

Table 4.5: Equations that define the equality constraints used by the MPC program 

Equations Comment Equation number 

2hhg   
The gate opening is at the same or lower 

level as h2 
(1) 

0hg  The gate opening is always over 0 m (2) 

min

1min1 hSh   Defines the lower limit of the level (3) 

max

1max1 hSh   Defines the upper limit of the level (4) 

4 tg VV   
                 O has to be higher than 4 

m
3
/s 

(5) 

max
~~

Otg VVV    
                              O  cannot 

exceed a threshold 
(6) 
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Table 4.6: The variables used in the MPC 

Matrix Ae Matrix be Equation number 









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
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uie

VieSieSieyieeiehieuie

VieSieSieyieeiehieuie

VieSieSieyieeiehieuie

ie

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
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3,
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The reason why the upper and lower limit needs to be a soft constraint in Table 4.5 is because 

one it is a goal to keep the level under the hrv, but in extreme circumstances the level might 

flow over. E.g. if   in was underestimated causing a sudden flood, the level can go over hrv. 

In general in this system, if the constraint is controlled directly through the flood gate hg, there 

can be used a hard constraint 

The constraints are discussed in Chapter 2.3.1. Above the constraints are represented in a way 

which is applicable into MPC.  

4.2.2.1 Soft constraints 

Soft constraints are the same and inequality constraints except that they can be broken without 

giving an infeasible solution. The general definition for a soft constraint for a lower boundary 

is Equation (4-6), and for the upper boundary Equation (4-7). 

 

 
kySy

k
 minmin  (4-6) 

 

 
kySy

k
 maxmax  (4-7) 

   

 

 

4.3 Simulation of the MPC 

The simulations are based on fictitious values for   in and  e and are 60 days simulations 

each. The disturbances are divided into 8 steps which are equally divided over those 70 days, 

60 days with 10 extra days since the horizon is 10 days. The disturbances in between the 8 
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steps are calculated using a spline function in MATLAB which creates a quadratic function 

between the 8 steps. To separate the simulations from each other, they are presented in 

separate subchapters where there is an explanation to purpose of each test as well as 

interesting observations is pointed out. Each simulation is presented with graph of both the 

control output plotted with the water level at Dalsfos h2 and a plot of the water levels h1 and 

h2. There is also a plot of the disturbances   in and  e. Most simulations are simulations where 

there are similar conditions as the simulation in Chapter 4.3.1, this is to see how controller 

reacts to either extreme situations or how some parameters or weights affect the controller. 

 

4.3.1 Observation of a realistic flood outcome 

There is performed a simulation to observe a realistic response, the result is shown in Figure 

4-1 with the initial water level of h1 = 1m and h2 = 0.8m. There is up both upper and lower 

boundary as well as including the flood gate hg to the performance index. The initial values 

are chosen out the statistic data given by Skagerak, it shows that before the flood season h1 is 

normally 1 m above lrv. The   in is also chosen with its amplitude and gradient according to 

the data from Skagerak. The disturbance is shown in Figure 4-2. The result shows that it is 

able converge itself to hrv with a slight overshoot. One can observe that the boundary of the 

  O     O
max

 constraint is quickly reached, as this the value of   O
max

 is not given by Skagerak or 

the supervisor the an value is chosen such that the effect of the constraint is visible. 

 

Figure 4-1: Simulation performed to observe a flood season with the following initial states 

and parameters: h1(0) = 1 m and h2(0) = 0.8m, Qmin = 10, Qmax = 10, P = 1,   O
max

 =0.7m
3
/s.

2
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Figure 4-2: Disturbances used in the simulation presented in Figure 4-1. 

4.3.2 Large weight on the hg variable in the performance index 

If the ratio of weight on the control output hg and the upper and lower boundary lrv and hrv is 

around 1, e.g. the weights in this simulation is set to 10 for both P, Qmin and Qmax, the 

controller will create a relatively large overshot. The overshot is unnecessary as the conditions 

for the simulations are exactly the same except for the weights. The result is shown in Figure 

4-3 and the disturbances in Figure 4-4. 
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Figure 4-3: Simulation performed to observe a flood season with the following initial states 

and parameters: h1(0) = 1 m and h2(0) = 0.8m, Qmin = 10, Qmax     ,       ,   O
max

 

=0.7m
3
/s.

2 

 

Figure 4-4: Disturbances used in the simulation presented in Figure 4-3. 

4.3.3 Disabling the   O     O
max

 constraint and/or the weight P 

This simulation was primarily done to see how the weight P affects the response from the 

controller, see let the controller choose the optimal hg the constraint   O     O
max

 was also 
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disabled. The result from this is shown in Figure 4-5 with the disturbances Figure 4-7. From 

the figure one can see that the controller chooses keep the level in the middle of lrv and hrv. 

 

Figure 4-5: Simulation performed to observe a flood season with the following initial states 

and parameters: h1(0) = 1 m and h2(0) = 0.8m, Qmin = 10, Qmax = 10, P = 0, 

  O
max

 =1000 m
3
/s.

2
 

 

Comparing the results from Figure 4-5 and Figure 4-6 where the constraint   O
max

 is set to  

0.7 m
3
/s.

2
, the result shows a slight overshot. The level h1 will stabilizes in both simulations in 

the middle of lrv and hrv. A reason why the level stabilizes in the middle of lrv and hrv might 

be because the soft constraint variables Smin and Smax are given very small values (e.g. 10
-9

 

values) even though they are within the constraints, the values are increased slightly when 

nearing the boundaries. 
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Figure 4-6: Simulation performed to observe a flood season with the following initial states 

and parameters: h1(0) = 1 m and h2(0) = 0.8m, Qmin = 10, Qmax = 10, P = 0, 

  O
max

 =0.7 m
3
/s.

2
 

 

 

Figure 4-7: Disturbances used in the simulation presented in Figure 4-8. 
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4.3.4 Disabling the   O     O
max

 constraint 

Since the   O
max

 might be larger than what was used in the simulation in Chapter 4.3.1. When 

practically turning the constraint off by increasing   O
max

 to 1000m
3
/s

2
 the controller increases 

faster as expected, but as shown in the simulation in Chapter 4.3.3 the weight P is causing the 

difference on the effect from  

 

 

Figure 4-8: Simulation performed to observe a flood season with the following initial states 

and parameters: h1(0) = 1m and h2(0) = 0.8m, Qmin = 10, Qmax = 10, P = 1, 

  O
max

 =1000 m
3
/s

2
. 

 



 44 

 

Figure 4-9: Disturbances used in the simulation presented in Figure 4-8. 

 

4.3.5 Disabling the lower boundary lrv 

To disable the lower boundary lrv the boundary is set to 0 m. What is shown in Figure 4-10 is 

that the controller handles an overshoot better when there the level is under lrv. This makes 

sense since the weight Qmin and Qmax is both 10, and the level starts at 3 m below lrv, the level 

needs to reach the lower limit because fast which also creates an overshoot. The weight Qmin 

can be used as an adjustment based on what Skagerak sees as most important, e.g. is it more 

important to reach the level lrv faster or is it more important to keep the level below hrv.  
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Figure 4-10: Simulation performed to observe a flood season with the following initial states 

and parameters: h1(0) = 1m and h2(0) = 0.8m, Qmin = 10, Qmax = 10, P = 0, 

  O
max

 =0.7 m
3
/s

2
(lrv is set to 0 m). 

 

 

Figure 4-11: Disturbances used in the simulation presented in Figure 4-10. 

4.3.6 Using the results from the other simulations 

Using the results from the previous simulations, and with assumptions about what Skagerak 

emphasizes. As mentioned in Chapter 2.3.2, they probably emphasizes the ability to handle a 
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flooding situation as addition to using as little water as possible from the Lake Toke reservoir. 

In all of the simulations below, the weight on Qmin is adjusted to 1, Qmax is still 10. 

 

4.3.6.1 Using a low Qmin and disabling the weight P 

The level should probably be in between lrv and hrv to keep a healthy safety margin such that 

the controller has time to react to a sudden rainfall outside the flood season. There should also 

be a focus on avoiding an overshoot if possible, the importance of reaching lrv is probably 

less vital. Though the water flow through the gate is important to keep as low as possible, the 

weight P on hg is removed in the simulation showed in Figure 4-12 with the disturbances in 

Figure 4-13.  

 

Figure 4-12: Simulation performed to observe a flood season with the following initial states 

and parameters: h1(0) = 1m and h2(0) = 0.8m, Qmin = 1, Qmax = 10, P = 0, 

  O
max

 =0.7 m
3
/s

2
. 
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Figure 4-13: Disturbances used in the simulation presented in Figure 4-12. 

4.3.6.2 Simulations with a sudden rainfall after the flood season 

To see how the controller handles a sudden rainfall after the flooding season, there is added a 

secondary peak in   in shown in Figure 4-16. The goal of this simulation is to prevent an 

overshoot after the simulated rainfall. There are done two simulations, one with a weight P of 

0 shown in Figure 4-14 and one with a weight P of 1. 

The Figure 4-14 showed a slight overshoot, the controller applies its maximum control output 

within the constraints but cannot prevent an overshot. 
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Figure 4-14: Simulation performed to observe a flood season with the following initial states 

and parameters: h1(0) = 1m and h2(0) = 0.8m, Qmin = 1, Qmax = 10, P = 0, 

  O
max

 =0.7 m
3
/s

2
. 

To comparison the simulation with and without a weight on P, the result with a P of 1 is 

shown in Figure 4-15. This result shows no overshoot after the rainfall. What can be observed 

from the control output hg is that the hg is more stable compared to not having a weight on P. 

The controller should in theory be more effective at releasing less water through the flood 

gate, the fact that there was no overshoot in Figure 4-15 might be because the gate was 

already closed in Figure 4-14 before the rainfall, when in Figure 4-15 the flood gate had a 

slight opening. 
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Figure 4-15: Simulation performed to observe a flood season with the following initial states 

and parameters: h1(0) = 1m and h2(0) = 0.8m, Qmin = 1, Qmax = 10, P = 1, 

  O
max

 =0.7 m
3
/s

2
. 

 

 

 

Figure 4-16: Disturbances used in the simulation presented in Figure 4-14 and Figure 4-15. 
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5 Discussion 

This chapter includes discussions about problems that occurred and what might be the cause 

of these problems. There will also be suggestions for future work, i.e. obvious improvements 

after the MPC program was designed and tested. 

5.1 Parameter estimation and Kalman Filter 

In Chapter 3.2.2 there was attempt at adjusting the parameters to create a better model to 

increase the precision of the control system. It was discovered that the several of the 

parameters had very little impact on the model, and that the inflow   in and the outflow   g was 

influencing the model substantially more than the other parameters. To create a model it is 

essential for a parameter estimation that the flow measurement, level measurement and 

estimated inflow is correct. There should also be a log of how much the gate is opened, not 

just the total outflow   O. It is also shown in Chapter 3.2.2.3 that there are a lot of obvious 

measurement errors. The level seems to stagnate, when in fact the Kalman Filter showed that 

the level should continue decreasing. In order to estimate a better model, better samples has to 

be made such, and perhaps to have enough adjustment options, design a new model or 

introduce new parameters. 

Another application of a more precise model is that this can be used in a Kalman Filter to give 

a warning whenever the level diverges away from its natural path. 

 

5.2 Suggestions for the MPC 

It is a possibility to use only compute hourly controller output for the first day, and then 

compute a single controller output for the remaining 9 days. This could be used as a tuning 

option to force the MPC to reach a steady state faster. This could also cause a problem as the 

controller output’s amplitude is a function of the height h2, thus the controller will only be 

able to give a control output that is the lowest of the modeled level h2 during these 9 days. 

During the simulations done in Chapter 4.3.6.2 the control output hg seemed more stable and 

prevented an overshot better than the other simulations when there was a weight on hg 

variable in the performance index. The only problem with this was that it only kept the level 

h1 stable on the upper level hrv. One way to counter this can be to introduce another upper 

limit lower than hrv, this limit should have a lower weight than the weight on hrv. Doing this 

might create some margin rather than having the level right on the boundary at all time. 

It showed that controller gave less overshot when disabling the lrv, this lower limit should 

maybe be disabled until the level reaches higher than lrv to give better result.  
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There hard constraint   O     O
max

 should maybe be a soft constraint since there is no control 

over the   t, in this thesis there is assumed that Skagerak will adjust the   t according to their 

regulations on   O
max

. 
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6 Conclusion 

The objective of this thesis is to study the possibility of a deterministic flood control to 

control the water level at Lake Toke using MPC. 

A 2 state nonlinear model designed by Bjørn Glemmestad has undergone a parameter 

estimation to further improve the model in Chapter 3.2.2. The parameters α, β, CD and λ was 

found intuitively when the model was designed. A sensitivity analysis showed that the 

dynamics of the model was dominated by the influx   in and the outflow   g, still a parameter 

estimation was performed using a Kalman Filter. The time varying Kalman filter showed in 

effective as the Kalman Gain was based on the measurements used in the linearization, this 

cause the Kalman Filter to receive errors as the model was unreliable. The steady state 

Kalman Filter proved more effective, but the results showed that there is no change in any of 

the parameters α, β, CD and λ that will improve the model.  

To implement the nonlinear model into MPC the model was linearized around operation 

points. To assess the linearized models, simulations were performed in Chapter 3.2.1. 

Simulations where performed with both ascending water level as well as descending water 

level using steady states at initial value to see how precise the linearized model predicts the 

water level over 5 days, the linearization was validated against the nonlinear model of Lake 

Toke. The simulation will start with an initial value of 1 m and end at 3 m when ascending or 

vice versa when descending. When the linearized model was simulated with an ascending 

slope the level hit approximately 0.5 m higher, and when simulating with a descending slope 

the linearized model proved to be relatively accurate. The fact that the linearization hit higher 

when ascending can be concluded as a healthy safety margin to prevent a flood during the 

flooding season, as the controller will foresee the flood to happen before it actually happens. 

The turbine flow was also modelled as a function of the level at Dalsfos h2 and the generated 

electricity  e. The level h2 proved to influence the model by 4 m
3
/s when the level 

differentiated by 2 m. 

To evaluate the controller several simulations was performed with a disturbances similar to a 

realistic flooding scenario. A fixed horizon of 10 days was used. To test the limits of the 

controllers as well as tuning it there was performed tests by varying the upper and lower 

limits weights Qmin and Qmax as well as the weight on the flood gate P. The simulations proved 

that the Qmin should be smaller than Qmax and that a weight on P not only preserves the 

reservoir at Lake Toke more, but also created a more stable control output and less overshoot. 

One issue that the P weight was causing was that the level tends to stagnate around the upper 

limit. To counter this there could be added several upper limits like a hierarchy to fine tune 

the controller to stabilize between lrv and hrv.
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Appendix 3 
This program which runs the MPC on model of Lake Toke consists of 8 scripts: 

 

Script 1: runMPC.m 

Script 2: build_matrices.m 

Script 3: Vinsimulator.m 

Script 4: Wesimulator.m 

Script 5: Vtnsimulator.m 

Script 6: linearize_model_imag.m 

Script 7: MPCmodel.m 

Script 8: nonlinmodel.m 

Script 9: plotwithh2inhgplot.m 

Script10: plotwref0.m 

 

Script 1(runMPC.m): 
 
clc 

  
% Initial states 
x0 = [2.5,2.41]'; 

  
%maximum opening of the gate 
hgmax=5.6; 

  
% Horizon 
N=24*10; 

  
%Lowest and highest regulated level 
lrv=55.75; 
hrv=59; 

  
% Number of sample points, timestep is set to 1 hour 
n = 24*60; 

  
%weight of variable e 
Q=1; 

  
%Weight of variable u 
P=1; 

  
%Weight on Smin 
Qmin = eps; 
%Weight on Smax 
Qmax = 10; 

  
%Highest allowed change in flow 
Vmax=25; 

  
%reference point for the height i h1 
r0 = 2.3; 

  
%reference for upper and lower limit in h1 
Ymin=0; 
Ymax=3; 

  
%configurating options for quadprog 
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opts = optimset('Algorithm','interior-point-convex', 'Display', 'off'); 

  
%initializing matrices for plots 
yplot=zeros(1,n); 
uplot=zeros(1,n); 
x2plot=zeros(1,n); 
Vinplot=zeros(1,n); 
eplot=zeros(1,n); 

  
%initialize time step for non linear model update 
tspan=[1 60*60]; 

  
% Initial u and Vt 
u0 = 0; 
Vt0 = 5; 

  
%Prepare disturbance matrices 
Vin=Vinsimulator(); 

  
% Vt=ones(1,length(Vin))*24; 
We=Wesimulator(); 

  
%Defining sizes of system matrices 
nx=2; 
nu=1; 
ny=1; 

     
for i = 1:n 
    i 

     
    if(i==10) 
       i;  
    end 
    %Steady states 
    hss=[x0(1); x0(2)]; 
    hgss=0.05*5.6; 
    Vinss=40; 
    Vtss=10; 

     
    %System matrices used by the controller 
    [A,B,C,D,M]=linearize_model_imag(60*60, [hss(1) 

hss(2)]',hgss,Vinss,Vtss); 
  k=1;      
  %Creating matrice with Vin and Vt 
  for(j=i:i+N-1) 
      dmat(k:k+1)=M*[Vin(j);0]; 
      k=k+2; 
  end 

   
  %The Vin at time t 
  Vint=Vin[5]; 

   
  %Finding the parameters to calculate the flow Vt 
  Vtpara=linearize_Vt_imag(x0(2)+lrv,We(i+1:i+N-1)); 

   
    %calculate area 
    Ah1=max(28*1000000*x0(1)^(1/10),1000); 
    Ah2=max(28*1000000*x0(2)^(1/10),1000); 

     
    % Present state and measurements  
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  x = x0; 
  y = C*x0; 

  
    [H, f, Ae, Aineq] = build_matrices(A,B,C,M,P,Q,N,nx,ny,nu,Qmin,Qmax, 

Vtpara,x0(2)); 

   

    
  % Calculate present u 
  rN = r0*ones(N,1);  

     
  %Building the b on the equality matrix 
  b1=[A*x0+dmat(1:2)';zeros(nx*(N-1),1)+dmat(3:N*2)']; 
  b2=[zeros(ny*N,1)]; 
  b3=[rN]; 
  b4=[[Vtmodel(x0(2)+lrv,We[5])],[-Vtpara.*x0(2)+Vtmodel(x0(2)+lrv, 

We(i+1:i+N-1))]]'; 

  
  be=[b1;b2;b3;b4]; 
  bineq = [x0(2),zeros(1,N*2*nu-1), ones(1,N)*-Ymin, ones(1,N)*Ymax, (-

4)*ones(1,N), [Vmax+Vt0+u0*(11.2*sqrt(2*9.81*x0(2))), Vmax*ones(1,N-1)]]; 
  U0 = quadprog(H,f,Aineq,bineq,Ae,be,[],[],[],opts); 
  u0 = U0(1:nu); 
  u = u0; 

   
  %Saving Vt0 for next iteration 
  Vt0=Vtmodel(x0(2)+lrv,We[5]); 

   
  %update the non linear model to simulate a real step 
  mymodel = @(t,x) MPCmodel(t,x,Vtmodel(x0(2)+lrv,We[5]), Vint,u); 
  [time,xlist]=ode45(mymodel,tspan,x); 

   
x0=[xlist(length(xlist(:,1)),1),xlist(length(xlist(:,1)),2)]'; 
%filling plot 
% Vinplot(1,i)=Vin; 
x2plot(1,i)=x0(2); 
x1plot(1,i)=x0(1); 
hgplot(1,i)=u; 
eplot(1,i)=U0(N*3+1); 

   
end 

  

  
ref=r0*ones(1,n); 
t=[0:1:n-1]; 
figure(1) 
subplot(2,1,1) 
plot(t,x1plot,t,x2plot,t,ref); 
subplot(2,1,2) 
plot(t,hgplot); 

  

  

 

Script 2(build_matrices.m): 
 
function [H,f, Ae, Aineq] = build_matrices(A,B,C,M,P,Q,N, nx, ny, nu, 

Qmin,Qmax, Vtpara,h2) 

  
%number of vt variables and high and low soft limit 
nvt=1; 
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ns=2; 

  
%Quadratic cost function  
H1 = diag(P*ones(1,N)); 
H2 = zeros(N*nx,N*nx); 
H3 = zeros(N,N); 
% H3 = diag(Q*ones(1,N)); %This part is for the Q 
H4 = zeros(N,N); 
H5 = diag(Qmin*ones(1,N)); 
H6 = diag(Qmax*ones(1,N)); 
H7 = zeros(N*nvt,N*nvt); 
H = blkdiag(H1,H2,H3,H4,H5,H6,H7); 

  
f = zeros(1,(nu+nx+ny+ny+ns+nvt)*N); 

  
%Equality constraints  
Ae11 = -kron(eye(N,N),B); 
Ae12 = kron(eye(N,N),eye(nx,nx)) - kron(diag(ones(N-1,1),-1),A); 
Ae16 = kron(eye(N,N),-M(:,2)); 
Ae22 = -kron(eye(N,N),C); 
Ae24 = eye(N*ny,N*ny); 
Ae33 = eye(N*ny,N*ny); 
Ae34 = eye(N*ny,N*ny); 
Ae42 = kron(diag(Vtpara'.*ones(N-1,1),-1),[0 -1]); 
Ae46 = eye(N*nvt,N*nvt); 

  

  
Ae = [Ae11,Ae12,zeros(nx*N,ny*N),zeros(nx*N,ny*N), zeros(nx*N,2*N), Ae16  

%x(k+1)=Ax[3]+Bu[3]+M[3] 
    zeros(ny*N,nu*N),Ae22,zeros(ny*N,ny*N),Ae24, zeros(N,ns*N), 

zeros(nvt*N,nvt*N)     %y[3]=Cx[3] 
    zeros(ny*N,nu*N),zeros(ny*N,nx*N),Ae33,Ae34, zeros(N,ns*N), 

zeros(nvt*N,nvt*N)     %e[3]=r[3]-y[3] 
    zeros(ny*N,nu*N),Ae42, zeros(ny*N,ny*N), zeros(ny*N,ny*N), 

zeros(N,ns*N), Ae46];   %Vt[3]=(h2(N)-h2(0))*Vtpara + Vtmodel 

  

  
% Inequality constraints  
Aineq11= eye(N,N); 
Aineq12= -kron(diag(ones(N-1,1),-1),[0 1]); 
Aineq21= -eye(N,N); 
Aineq34= -eye(N,N); 
Aineq35= -eye(N,N); 
Aineq44= eye(N,N); 
Aineq46= -eye(N,N); 
Aineq51= -1*(11.2*sqrt(2*9.81*h2))*eye(N,N); 
Aineq56= -eye(N,N); 
Aineq61= 11.2*sqrt(2*9.81*h2)*eye(N,N) - 11.2*sqrt(2*9.81*h2)*diag(ones(N-

1,1),-1); 
Aineq66= eye(N,N) - diag(ones(N-1,1),-1); 

  

  

  
Aineq = [Aineq11, Aineq12, zeros(N,ny*N),zeros(N,ny*N), zeros(N,2*N), 

zeros(nvt*N,nvt*N)             %hg-h2<=0 
        Aineq21, zeros(N,nx*N),zeros(N,ny*N),zeros(N,ny*N), zeros(N,2*N), 

zeros(nvt*N,nvt*N)         %-hg<=0 
        zeros(N,N), zeros(N,nx*N), zeros(N,ny*N),Aineq34, Aineq35, 

zeros(N,N), zeros(nvt*N,nvt*N)    %-y-Smin<=-ymin 
        zeros(N,N), zeros(N,nx*N), zeros(N,ny*N),Aineq44, zeros(N,N), 

Aineq46, zeros(nvt*N,nvt*N)    %y-Smax<=-Ymax 
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        Aineq51, zeros(N,nx*N), zeros(N,ny*N), zeros(N,ny*N), zeros(N,2*N), 

Aineq56                  %-hg<=(-4+Vt)/(w*sqrt(2*g*h2)) 
        Aineq61, zeros(N,nx*N), zeros(N,ny*N), zeros(N,ny*N), zeros(N,2*N), 

Aineq66];                %Vg(k+1)-Vg[3]+Vt(k+1)-Vt[3]<=Vomax 

  
End 

 

 

Script 3(Vinsimulator.m): 

 
function [ Vin ] = Vinsimulator() 

  
y(1)=30; 
y(2)=50; 
y(3)=150; 
y(4)=200; 
y(5)=210; 
y(6)=150; 
y(7)=80; 
y(8)=80; 

  
x=1:240:60*24+10*24+1; 
Y=y; 
xx=1:1:60*24+10*24+1; 

  
yy = spline(x,Y,xx); 

  
Vin=yy; 
end 

 

 

Script 4(Wesimulator.m): 
 
function [ Vt ] = Wesimulator() 

  
XQpara(1)=0.0211; 
XQpara(2)=37.1891; 

  
Vtpara(1)=132.0238; 
Vtpara(2)=2.8241; 

  

  

  
y(1)=3.5; 
y(2)=3.5; 
y(3)=4.5; 
y(4)=5.5; 
y(5)=3.3; 
y(6)=1; 
y(7)=1; 
y(8)=0; 

  
x=1:240:60*24+10*24+1; 
Y=y; 
xx=1:1:60*24+10*24+1; 

  
yy = spline(x,Y,xx); 
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Vt=yy; 

  
end 

 

 

Script 5(Vtnsimulator.m): 

 
function [ yVt ] = Vtmodel(XD, We ) 

  
XQpara(1)=0.0211; 
XQpara(2)=37.1891; 

  
Vtpara(1)=132.0238; 
Vtpara(2)=2.8241; 

  
yVt = Vtpara(1).*(-(XQpara(2)-XD)-sqrt((XQpara(2)-XD).^2-

4*XQpara(1).*We))./(2.*XQpara(1)) + Vtpara(2); 

  

  
end 

 

 

Script 6(linearize_model_imag.m): 
 
function [A,B,C,D,M] = linearize_model_imag(Ts, xss, hgss, Vinss, Vtss) 

  
nx = length(xss); 

  
Ix = eye(nx,nx); 

  
h = sqrt(eps); 

  
A = zeros(nx,nx); 
i = sqrt(-1); 

  
for k = 1:nx 
A(:,k) = (1/h)* imag(nonlinmodel(xss+h*i*Ix(:,k),hgss,Vinss, Vtss)); 
end 

  
Btemp = zeros(nx,1); 
Btemp(:,1) = (1/h)*imag(nonlinmodel(xss,hgss+h*i,Vinss, Vtss)); 
Btemp(:,2) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss+i*h, Vtss)); 
Btemp(:,3) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss, Vtss+i*h)); 

  
% M = zeros(nx,1); 
% M(:,1) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss+i*h, Vtss)); 
% M(:,2) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss, Vtss+i*h)); 

  
C = [1 0]; 

  
D = 0; 

  
sys=ss(A,Btemp,C,D); 
disc_sys=c2d(sys,Ts); 

  
A=disc_sys.a; 
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Btemp=disc_sys.b; 
C=disc_sys.c; 
D=disc_sys.d; 

  
%Separating know disturubance from input 
B=Btemp(:,1); 
M=[Btemp(:,2) Btemp(:,3)]; 

  
End 

 

Script 7(MPCmodel.m): 
 
function [dx_dt]= MPCmodel(t,x,Vt, Vin, hg)  
dx_dt=zeros(length(x),1); 

  
a=0.05; 
B=0.02; 
w=11.2; 
g=9.81; 
A1=max(28*1000000*x(1)^(1/10),1000); 
A2=max(28*1000000*x(2)^(1/10),1000); 
V12=800*(x(1)-x(2))*sqrt(abs(x(1)-x(2))); 

  
if(x(2)>=hg) 
    Vg=hg*w*sqrt(2*g*x(2)); 
elseif(hg>=x(2) && x(2)>=0) 
    Vg=x(2)*w*sqrt(2*g*x(2));  
elseif(x(2)<0) 
    Vg=0; 
end 

  

  
dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12); 
dx_dt(2) = 1/[3]*(V12-Vt-Vg); 

  
%transpose dx_dt so it is a column vector 
% dx_dt = dx_dt';  
return 

 

 

Script 8(nonlinmodel.m): 
 
function [dx_dt]= nonlinmodel(x,hg, Vin,Vt) 

  
dx_dt=zeros(length(x),1); 

  
omega=11.2; 
a=0.05; 
B=0.02; 
w=11.2; 
g=9.81; 
Cd=1; 
A1=max(28*1000000*x(1)^(1/10),1000); 
A2=max(28*1000000*x(2)^(1/10),1000); 

  
V12=800*(x(1)-x(2))*sqrt(abs(x(1)-x(2))); 

  
%The flow Vg is replaced with 
Vg=Cd*hg*omega*sqrt(2*g*x(2)); 
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% if(x(2)>=hg) 
%     Vg=hg*w*sqrt(2*g*x(2)); 
% elseif(hg>=x(2) && x(2)>=0) 
%     Vg=x(2)*w*sqrt(2*g*x(2));  
% elseif(x(2)<0) 
%     Vg=0; 
% end 

  
dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12); 
dx_dt(2) = 1/[3]*(V12-Vt-Vg+B*Vin); 

  
end 

 

Script 9(plotwithh2inhgplot.m): 

 
function plotwithh2inhgplot(X1, YMatrix1, YMatrix2) 
%CREATEFIGURE(X1, YMATRIX1, YMATRIX2) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  YMATRIX2:  matrix of y data 

  
%  Auto-generated by MATLAB on 28-May-2014 22:35:33 

  
% Create figure 
figure1 = figure('PaperType','<custom>','PaperSize',[29.7 15],... 
    'InvertHardcopy','off',... 
    'Color',[1 1 1]); 

  
% Create subplot 
subplot1 = 

subplot(2,1,1,'Parent',figure1,'FontWeight','light','YGrid','on','XGrid','o

n',... 
    'FontSize',13); 
ylim(subplot1,[0 5]); 
box(subplot1,'on'); 
hold(subplot1,'all'); 

  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',subplot1,'LineWidth',2); 
set(plot1(1),'LineStyle','--','DisplayName','h_1'); 
set(plot1(2),'LineStyle',':','DisplayName','h_2','Color',[0 0 0]); 
set(plot1(3),'DisplayName','hrv'); 
set(plot1(4),'Color',[1 0 0],'DisplayName','lrv'); 

  
% Create xlabel 
xlabel('Time [h]','FontWeight','light','FontSize',13); 

  
% Create ylabel 
ylabel('Water level [m]','FontWeight','light','FontSize',13); 

  
% Create subplot 
subplot2 = 

subplot(2,1,2,'Parent',figure1,'FontWeight','light','YGrid','on','XGrid','o

n',... 
    'FontSize',13); 
ylim(subplot2,[0 5]); 
box(subplot2,'on'); 
hold(subplot2,'all'); 
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% Create multiple lines using matrix input to plot 
plot2 = plot(X1,YMatrix2,'Parent',subplot2,'LineWidth',2); 
set(plot2(1),'DisplayName','h_g'); 
set(plot2(2),'LineStyle',':','DisplayName','h_2','Color',[0 0 0]); 

  
% Create xlabel 
xlabel('Time [h]','FontWeight','light','FontSize',13); 

  
% Create ylabel 
ylabel('Flood gate [m]','FontWeight','light','FontSize',13); 

  
% Create legend 
legend1 = legend(subplot1,'show'); 
set(legend1,... 
    'Position',[0.147783473615092 0.757862341626222 0.06484375 

0.123188405797101]); 

  
% Create legend 
legend2 = legend(subplot2,'show'); 
set(legend2,... 
    'Position',[0.818229166666667 0.351449275362319 0.05859375 

0.0717391304347826]); 

  

 

Script 10(plotwref0.m): 
 
function plotwref0(X1, YMatrix1, Y1) 
%CREATEFIGURE(X1, YMATRIX1, Y1) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  Y1:  vector of y data 

  
%  Auto-generated by MATLAB on 28-May-2014 22:14:39 

  
% Create figure 
figure1 = figure('PaperType','<custom>','PaperSize',[29.7 15],... 
    'InvertHardcopy','off',... 
    'Color',[1 1 1]); 

  
% Create subplot 
subplot1 = subplot(2,1,1,'Parent',figure1,'FontWeight','light',... 
    'FontSize',13); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(subplot1,[0 1500]); 
% Uncomment the following line to preserve the Y-limits of the axes 
ylim(subplot1,[0 5]); 
%% Uncomment the following line to preserve the Z-limits of the axes 
% zlim(subplot1,[-1 1]); 
box(subplot1,'on'); 
hold(subplot1,'all'); 

  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',subplot1,'LineWidth',2); 
set(plot1(1),'LineStyle','--','DisplayName','h_1'); 
set(plot1(2),'LineStyle',':','DisplayName','h_2','Color',[0 0 0]); 
set(plot1(3),'DisplayName','hrv'); 
set(plot1(4),'Color',[1 0 0],'DisplayName','lrv'); 

  
% Create xlabel 
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xlabel('Time [h]','FontWeight','light','FontSize',13); 

  
% Create ylabel 
ylabel('Water level [m]','FontWeight','light','FontSize',13); 

  
% Create subplot 
subplot2 = subplot(2,1,2,'Parent',figure1,'FontWeight','light',... 
    'FontSize',13); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(subplot2,[0 1500]); 
% Uncomment the following line to preserve the Y-limits of the axes 
ylim(subplot2,[0 5]); 
%% Uncomment the following line to preserve the Z-limits of the axes 
% zlim(subplot2,[-1 1]); 
box(subplot2,'on'); 
hold(subplot2,'all'); 

  
% Create plot 
plot(X1,Y1,'Parent',subplot2,'LineWidth',2,'DisplayName','h_g'); 

  
% Create xlabel 
xlabel('Time [h]','FontWeight','light','FontSize',13); 

  
% Create ylabel 
ylabel('Flood gate [m]','FontWeight','light','FontSize',13); 

  
% Create legend 
legend1 = legend(subplot2,'show'); 
set(legend1,... 
    'Position',[0.160416666666667 0.383852691218131 0.05859375 

0.0500472143531634]); 

  
% Create legend 
legend2 = legend(subplot1,'show'); 
set(legend2,... 
    'Position',[0.159244791666668 0.767705382436265 0.06484375 

0.16052880075543]); 
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Appendix 4 
 

This appendix consists of the MATLAB code which run the test of the turbine flow model, 

the code consists of 4 scripts. 

 

Script 1: TestVtlin.m 

Script 2: linearize_Vt_imag.m 

Script 3: Vtmodel.m 

Script 4: simuplot.m 

 

 

 

Script 1(TestVtlin.m): 
 

 
lrv=55.75; 

  
x2=1; 
XD=x2+lrv; 
n=20; 
We=linspace(0,5.6,10); 

  
%Since the level is not expected to be less then the lrv, the model is 
%linearized with a x2 from 0 to 2 if the level is lower then 1 

  

  
Vtpara=linearize_Vt_imag(XD,We); 

  
Vtlin = @(XDdt, Wedt, XD, We)  Vtpara*XDdt + Vtmodel(XD,We); 
% Vtlin = @(XDdt, Wedt, XD, We)  Vtmodel(XD,We); 

  
y1=Vtmodel(XD+2,We)'; 
y2=Vtlin(2,0,XD, We)'; 
y3=Vtmodel(XD,We)'; 
x=0:1:length(y1)-1; 

  
% plot(We,y1,We,y2,We,y3) 

  
simuplot(We, [y1 y2 y3]) 

  
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 10;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
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set(gcf, 'PaperOrientation','portrait') 
iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 

 

 

Script 2(linearize_Vt_imag.m): 

 
function [Vtpara] = linearize_Vt_imag(XD,We) 

  
h = sqrt(eps); 

  
i = sqrt(-1); 

  
Vtpara = (1/h)* imag(Vtmodel(XD+h*i,We)); 

  

  
end 

 

 

Script 3(Vtmodel.m): 
 
function [ yVt ] = Vtmodel(XD, We ) 

  
XQpara(1)=0.0211; 
XQpara(2)=37.1891; 

  
Vtpara(1)=132.0238; 
Vtpara(2)=2.8241; 

  
yVt = Vtpara(1).*(-(XQpara(2)-XD)-sqrt((XQpara(2)-XD).^2-

4*XQpara(1).*We))./(2.*XQpara(1)) + Vtpara(2); 

  

  
end 

 

Script 4(simuplot.m): 
 

 
function simuplot(X1, YMatrix1) 
%CREATEFIGURE(X1, YMATRIX1) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 

  
%  Auto-generated by MATLAB on 27-May-2014 11:03:46 

  
% Create figure 
figure1 = figure('PaperType','<custom>','PaperSize',[29.7 10],... 
    'InvertHardcopy','off',... 
    'Color',[1 1 1]); 

  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
    'FontWeight','light',... 
    'FontSize',13); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(axes1,[0 9]); 
%% Uncomment the following line to preserve the Y-limits of the axes 
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% ylim(axes1,[0 45]); 
%% Uncomment the following line to preserve the Z-limits of the axes 
% zlim(axes1,[-1 1]); 
box(axes1,'on'); 
hold(axes1,'all'); 

  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',axes1,'LineWidth',2); 
set(plot1(1),'DisplayName','Nonlinear model at h_2 = 3m'); 
set(plot1(2),'DisplayName','Linearized model at h_2 = 3 m'); 
set(plot1(3),'DisplayName','Nonlinear model at h_2 = 1 m','LineWidth',0.5); 

  
% Create xlabel 
xlabel('Generated elecetricity [kWh]','FontWeight','light','FontSize',13); 

  
% Create ylabel 
ylabel('Turbine flow dV/dt [m^3/s]','FontWeight','light','FontSize',13); 

  
% Create legend 
legend(axes1,'show'); 
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Appendix 5 
 

This MATLAB code creates the turbine flow model, the code consists of 5 scripts which. 

Script 1 needs to be executed before script 2. 

 

Script 1: LSM1.m 

Script 2: LSM2.m 

Script 3: plotcode.m 

Script 4: remove_flow_to_XQ.m 

Script 5: removeNaN.m 

Script 6: split_vt_vg.m 

Script 7: VovsXQ.m 

Script 8: plotVovsXQ.m 

 

Script 1(LSM1.m): 

 
clear all 
close all 
clc 

  
load Vo08 
load Vo09 
load We08 
load We09 
load XQ08 
load XQ09 
load XD08 
load XD09 

  
removeNaN; 

  
Outlier=6870; 
Vo08(Outlier) = []; 
XD08(Outlier) = []; 
We08(Outlier) = []; 
XQ08(Outlier) = []; 

  
Outlier=6492; 
Vo09(Outlier) = []; 
XD09(Outlier) = []; 
We09(Outlier) = []; 
XQ09(Outlier) = []; 

  
split_vt_vg; 
remove_flow_to_XQ; 

  

  

  
%========================================================================== 
%Using XQ = Vt + K 
Als = [Votemp ones(1,length(Votemp))']; 
yls = XQtemp'; 

  
xls=inv(Als'*Als)*Als'*yls'; 
XQpara=xls; 
yXQ = @(Vo) xls(1).*Vo + xls(2); 
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figure 
plot(Vt09,yXQ(Vt09),'x',Votemp,XQtemp,'x') 
xlim([0 40]) 
ylim([37 38]) 

  
Vttest=(-(XQpara(2)-XD09)-sqrt((XQpara(2)-XD09).^2-

4*XQpara(1).*We09))/(2*XQpara(1)); 
figure 
plot(We09,Vo09,'x',We09,Vttest,'x') 
ylim([0.017 0.26]) 

 

 

Script 2(LSM2.m): 

 
 

  
close all 

  
% 

%========================================================================== 
% %Using Vt = We + K 
Als = [(-(XQpara(2)-XD08)-sqrt((XQpara(2)-XD08).^2-

4*XQpara(1).*We08))/(2*XQpara(1)) ones(1,length(We08))']; 
yls = Vt08'; 

  
xls=inv(Als'*Als)*Als'*yls'; 
yVt = @(XD, We, Vg)  xls(1)*(-(XQpara(2)-XD)-sqrt((XQpara(2)-XD).^2-

4*XQpara(1).*We))/(2*XQpara(1)) + xls(2); 

  
% plot(Vo08,XQ08,'x'); 
figure 
plot(We09,yVt(XD09,We09, Vg09),'x',We09,Vt09,'x') 
% xlim([]) 
% ylim([0 300]) 
x=0:1:length(We09)-1; 

  
plotcode(x,[yVt(XD09,We09,Vg09) Vt09],We09) 

  
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 15;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 
% set(gca,'position',[0 0 1 1],'units','normalized') 

  
% figure 
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% subplot(2,1,1) 
% plot(x,yVt(XD09,We09,Vg09),x,Vt09) 
% subplot(2,1,2) 
% plot(x,We09) 

 

 

Script 3(plotcode.m): 

 
function plotcode(X1, YMatrix1, Y1) 
%CREATEFIGURE(X1, YMATRIX1, Y1) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  Y1:  vector of y data 

  
%  Auto-generated by MATLAB on 03-Mar-2014 14:13:57 

  
% Create figure 
figure1 = figure; 

  
% Create subplot 
subplot1 = subplot(2,1,1,'Parent',figure1); 
box(subplot1,'on'); 
hold(subplot1,'all'); 

  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',subplot1,'LineWidth',2); 
set(plot1(1),'DisplayName','Estimated dV_t/dt'); 
set(plot1(2),'DisplayName','dV_t/dt 2009'); 

  
% Create xlabel 
xlabel('Sample'); 

  
% Create ylabel 
ylabel('dV_t/dt [m^3/s]'); 

  
% Create subplot 
subplot2 = subplot(2,1,2,'Parent',figure1); 
box(subplot2,'on'); 
hold(subplot2,'all'); 

  
% Create plot 
plot(X1,Y1,'Parent',subplot2,'LineWidth',2); 

  
% Create xlabel 
xlabel('Sample'); 

  
% Create ylabel 
ylabel('Power production [KWh]'); 

  
% % Create legend 
% legend1 = legend(subplot1,'show'); 
% set(legend1,... 
%     'Position',[0.289299536373768 0.657752401779758 0.127029608404967 

0.178807947019868]); 

  

 

Script 4(remove_flow_to_XQ.m): 
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% rows_to_remove09 = any(Vo09>=36, 2); 
% XQ09(rows_to_remove09,:) = []; 
% XD09(rows_to_remove09,:) = []; 
% Vo09(rows_to_remove09,:) = []; 
% We09(rows_to_remove09,:) = []; 

  

  
rows_to_remove08 = any(Vo08>=36.5, 2); 
XQtemp=XQ08; 
XQtemp(rows_to_remove08,:) = []; 
Votemp=Vo08; 
Votemp(rows_to_remove08,:) = []; 

 

Script 5(removeNaN.m): 
 
rows_to_remove = any(isnan(XD08), 2); 
XD08(rows_to_remove,:) = []; 
Vo08(rows_to_remove,:) = []; 
We08(rows_to_remove,:) = []; 
XQ08(rows_to_remove,:) = []; 

 

Script 6(split_vt_vg.m): 
 

Vt08=Vo08; 
Vt09=Vo09; 

  
Vg08=zeros(length(Vo08),1); 
Vg09=zeros(length(Vo09),1); 

  
rows = any(Vo08>=36.5, 2); 
Vt08(rows,:) = 36.5; 

  
rows = any(Vo09>=36.5, 2); 
Vt09(rows,:) = 36.5; 

  
rows = any(Vo08>36.5, 2); 
Vg08(rows,:) = Vo08(rows)-Vt08(rows); 

  
rows = any(Vo09>36.5, 2); 
Vg09(rows,:) = Vo09(rows)-Vt09(rows); 

 

 

Script 7(VovsXQ.m): 

 
close all 
%========================================================================== 
%Using XQ = V0^3 + Vo.^2 + Vo + K 
Als = [Vo08.^3 Vo08.^2 Vo08 ones(1,length(Vo08))']; 
yls = XQ08'; 

  
xls=inv(Als'*Als)*Als'*yls'; 
XQpara=xls; 
yXQ = @(Vo) xls(1).*Vo.^3 + xls(2).*Vo.^2 + xls(3)*Vo + xls(4); 

  
% testplot(Vo09,[XQ09 yXQ(Vo09)]) 
plotVovsXQ(Vo09,[yXQ(Vo09) XQ09]) 
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Script 8(plotVovsXQ.m): 
 
function plotVovsXQ(X1, YMatrix1) 
%CREATEFIGURE(X1, YMATRIX1) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 

  
%  Auto-generated by MATLAB on 05-Mar-2014 19:21:50 

  
% Create figure 
figure1 = figure(); 

  
% Create axes 
axes1 = axes('Parent',figure1,'FontSize',14); 
box(axes1,'on'); 
hold(axes1,'all'); 

  
% Create multiple lines using matrix input to plot 
plot1 = 

plot(X1,YMatrix1,'Parent',axes1,'Marker','x','LineStyle','none','Linewidth'

,2); 
set(plot1(1),'DisplayName','X_Q 2009'); 
set(plot1(2),'DisplayName','Cubic fit of dV_O/dt'); 

  
% Create xlabel 
xlabel('dV_O/dt','FontSize',14); 

  
% Create ylabel 
ylabel('X_Q','FontSize',14); 
legend(axes1,'show'); 

  
xlim([0 220]); 
ylim([36 41]) 

  
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 10;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPositionMode', 'manual') 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
% iptsetpref('ImshowBorder','tight'); 
% set(gca,'LooseInset',get(gca,'TightInset')) 
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Appendix 6 

 
This MATLAB code runs the both the steady state kalman filter (sskalmanfilter.m) and the 

time varying kalman filter (tvkalmanfilter.m). 

 

Script 1: sskalmanfilter.m 

Script 2: tvkalmanfilter.m 

Script 3: auglinearization.m 

Script 4: fig1.m 

Script 5: fig2.m 

 
Script 1(sskalmanfilter.m): 

 
close all 
clear all 
load Data 

  
%Gain matrix for the estimated noise 
G=diag([0 0 1 1]); 
H=diag([1 1]); 
W=diag([10 100 0.0001 0.001]); 
V=diag([100 100]); 

  
%Timestep on the nonlinear model [s] 
tode=0:60:60*60*24; 

  
%Parameters 
hgmax=5.6; 
Tslin=60*60*24; 
hgmin=0.01*hgmax; 
lrv=55.75; 

  

  
%initializing matrices 
yk=zeros(2,1); 
xkk_1=zeros(4,1); 
xk_1k_1=zeros(4,1); 
xkk=zeros(4,1); 

  
%Defining data length 
tstart=1000; 
tend=length(Data(:,1)); 
% tend=1000; 
deltat=tend-tstart; 
newdata=Data(tstart:tend,:); 

  
%Initial steady state values 
h1=newdata(1,3)-lrv; 
h2=newdata(1,2)-lrv; 
% if(h1<=0) 
%     h1=0.01; 
% end 
% if(h2<=0) 
%     h2=0.01; 
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% end 
% if(newdata(1,4)*hgmax<hgmin) 
%    hgss=hgmin; 
% else 
%     hgss=newdata(1,4)*hgmax; 
% end 
hgss=newdata(1,4)*hgmax; 
Vinss=newdata(1,1); 
Vtss=newdata(1,5); 

  
%Choosing initial value for parameters of interest 
x3=0.05; 
x4=1; 

  
x0=[h1 h2 x3 x4]'; 
xk_1k_1=x0; 

  
yk(1)=newdata(1,3)-lrv; 
yk(2)=newdata(1,2)-lrv; 

  
%Plot newdata 
xplot=0:1:deltat-1; 
xkkplot(:,1)=x0; 
ekkplot=zeros(4,deltat); 
ekplot=zeros(2,deltat); 

  
%Log the sum of error change 
xec=zeros(4,1); 

  
%Calculate steady state kalman gain 

  
xssaug=[3.5 3.2 x3 x4]'; 
Vinssaug=50; 
Vtssaug=24; 
hgssaug=0.05*hgmax; 

  
[A, B, C, D]=auglinearization(Tslin, xssaug, hgssaug, Vinssaug, Vtssaug, G, 

H); 
[Kk,Pp,Pc,E]=dlqe(A,G,C,W,V); 

  
% for(i=2:length(newdata(:,1))) 
for(i=2:deltat) 

  
    if(i==412) 
       i;  
    end 

     
%Progagation step: 
%Predicting measurment estimate for k+1 
pred_model=@(t,x) augnonlinmodel(t,x, hgss, Vinss, Vtss); 
[t,ynonlin]=ode45(pred_model,tode,[xk_1k_1(1) xk_1k_1(2) xk_1k_1(3) 

xk_1k_1(4)]); 
% [t,ynonlin]=ode45(pred_model,t,xc); 
xkk_1(1)=real(ynonlin(length(ynonlin(:,1)),1)); 
xkk_1(2)=real(ynonlin(length(ynonlin(:,1)),2)); 
xkk_1(3)=real(ynonlin(length(ynonlin(:,1)),3)); 
xkk_1(4)=real(ynonlin(length(ynonlin(:,1)),4)); 

  

  
%Measurment update: 
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ykk_1=C*xkk_1; 
ekk_1=yk-ykk_1; 

  
%Logging the error 
ekplot(:,i-1)=ekk_1; 

  
%Corrected measurment estimate 
xkk=xkk_1+Kk*ekk_1; 

  
%Logging kalman change effect 
ekkplot(:,i-1)=Kk*ekk_1; 
xec=xec+Kk*ekk_1; 

  
% if(xkk(3)<0.8) 
%    xkk(3)=0.8;  
% end 

  
%plots 
xkkplot(:,i)=xkk; 

  
%=============================== 
%Shifting up one time instance 
yk(1)=newdata(i,3)-lrv; 
yk(2)=newdata(i,2)-lrv; 
Vtss=newdata(i,5); 
% if(newdata(i,4)*hgmax<hgmin) 
%    hgss=hgmin; 
% else 
%     hgss=newdata(i,4)*hgmax; 
% end 
hgss=newdata(i,4)*hgmax; 
Vinss=newdata(i,1); 

  
xk_1k_1=xkk; 
if(xk_1k_1(1)<=0) 
   xk_1k_1(1)=0.01;  
elseif(xk_1k_1(2)<=0) 
   xk_1k_1(2)=0.01; 
end 

  
i 

  
end 

  

  

  
% figure(1) 
% subplot(4,1,1) 
% plot(xplot,xkkplot(1,:),xplot,newdata(1:deltat,3)-lrv) 
% grid on 
%  
% subplot(4,1,2) 
% plot(xplot,xkkplot(2,:),xplot,newdata(1:deltat,2)-lrv) 
% grid on 
%  
% subplot(4,1,3) 
% plot(xplot,xkkplot(3,:)) 
% grid on 
% % ylim([-0.5 2]) 
%  
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% subplot(4,1,4) 
% plot(xplot,xkkplot(4,:)) 
% grid on 

  
fig1(xplot,[xkkplot(1,:)' (newdata(1:deltat,3)-lrv)], [xkkplot(2,:)' 

newdata(1:deltat,2)-lrv], xkkplot(3,:), xkkplot(4,:)); 

  
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 20;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 

  
% figure(2) 
% subplot(4,1,1) 
% plot(xplot,ekkplot(1,:)) 
% grid on 
%  
% subplot(4,1,2) 
% plot(xplot,ekkplot(2,:)) 
% grid on 
%  
% subplot(4,1,3) 
% plot(xplot,ekkplot(3,:)) 
% grid on 
%  
% subplot(4,1,4) 
% plot(xplot,ekkplot(4,:)) 
% grid on 

  
fig2(xplot, ekkplot(1,:), ekkplot(2,:), ekkplot(3,:), ekkplot(4,:)) 

  
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 20;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
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iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 

  
figure(3) 
subplot(2,1,1) 
plot(xplot,ekplot(1,:)) 
grid on 

  
subplot(2,1,2) 
plot(xplot,ekplot(2,:)) 
grid on 
 

xec 

  

Script 2(tvkalmanfilter.m): 

 
clear all 
load Data 

  
%Gain matrix for the estimated noise 
G=diag([1 1 1 1]); 
H=diag([1 1]); 
W=diag([1 10 0.0001 0.0001]); 
V=diag([1 10]); 

  
%Timestep on the nonlinear model [s] 
t=0:60:60*60*24; 

  
%Parameters 
hgmax=5.6; 
Tslin=60*60*24; 
hgmin=0.001*hgmax; 
lrv=55.75; 

  

  
%initializing matrices 
yk=zeros(2,1); 
xkk_1=zeros(4,1); 
xk_1k_1=zeros(4,1); 
xkk=zeros(4,1); 

  
%Defining data length 
tstart=1000; 
tend=length(Data(:,1)); 
% tend=100; 
deltat=tend-tstart; 
newdata=Data(tstart:tend,:); 

  
%Initial steady state values 
h1=newdata(1,3)-lrv; 
h2=newdata(1,2)-lrv; 
if(h1<=0) 
    h1=0.01; 
end 
if(h2<=0) 
    h2=0.01; 
end 
if(newdata(1,4)*hgmax<hgmin) 
   hgss=hgmin; 
else 
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    hgss=newdata(1,4)*hgmax; 
end 
Vinss=newdata(1,1); 
Vtss=newdata(1,5); 

  

  
x0=[h1,h2,0.05,1]'; 
xk_1k_1=x0; 

  
yk(1)=newdata(1,3)-lrv; 
yk(2)=newdata(1,2)-lrv; 

  
%Defining initial value of the autocovariance matrix 
P0=diag([1 10 0.001 0.0001]); 
Pk_1k_1=P0; 

  
%Plot newdata 
xplot=0:1:deltat-1; 
xkkplot(:,1)=x0; 
ekkplot=zeros(4,deltat); 
ekplot=zeros(2,deltat); 

  
%Log the sum of error change 
xec=zeros(4,1); 

  

  
% for(i=2:length(newdata(:,1))) 
for(i=2:deltat) 

    
%Progagation step: 
%Predicting measurment estimate for k+1 
pred_model=@(t,x) augnonlinmodel(t,x, hgss, Vinss, Vtss); 
[t,ynonlin]=ode45(pred_model,t,[xk_1k_1(1) xk_1k_1(2) xk_1k_1(3) 

xk_1k_1(4)]); 
% [t,ynonlin]=ode45(pred_model,t,xc); 
xkk_1(1)=real(ynonlin(length(ynonlin(:,1)),1)); 
xkk_1(2)=real(ynonlin(length(ynonlin(:,1)),2)); 
xkk_1(3)=real(ynonlin(length(ynonlin(:,1)),3)); 
xkk_1(4)=real(ynonlin(length(ynonlin(:,1)),4)); 

     
%Find linearized model 
[A, B, C, D]=auglinearization(Tslin, xk_1k_1, hgss, Vinss, Vtss, G, H); 

  

  

  
%Calculate predicted autocovariance for k+1 
Pkk_1=A*Pk_1k_1*A' + B*W*B'; 

  
%Measurment update: 
ykk_1=C*xkk_1; 
ekk_1=yk-ykk_1; 
Zkk_1=Pkk_1*C'; 
Ekk_1=C*Pkk_1*C' + D*V*D'; 

  
%Logging the error 
ekplot(:,i-1)=ekk_1; 

  

  
%Find Kalman gain 
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Kk=Zkk_1/(Ekk_1); 

  
%Corrected measurment estimate 
xkk=xkk_1+Kk*ekk_1; 

  
%Logging kalman change effect 
ekkplot(:,i-1)=Kk*ekk_1; 
xec=xec+Kk*ekk_1; 

  
% if(xkk(3)<0.8) 
%    xkk(3)=0.8;  
% end 
Pkk=Pkk_1 - Kk*Ekk_1*Kk'; 

  

  
% %Test if observable 
% Ob = obsv(A,C); 
% if(rank(obsv(A,C))<4) 
%     rank(obsv(A,C)) 
%     pause; 
% end 

  
%Check for positive definitness 
if(~all(eig(Pkk) > 0)) 
    Pkk 
    pause; 
end 

  
if(~all(eig(Pkk_1) > 0)) 
    Pkk_1 
    pause; 
end 

  
%plots 
xkkplot(:,i)=xkk; 

  
%=============================== 
%Shifting up one time instance 
yk(1)=newdata(i,3)-lrv; 
yk(2)=newdata(i,2)-lrv; 
Vtss=newdata(i,5); 
if(newdata(i,4)*hgmax<hgmin) 
   hgss=hgmin; 
else 
    hgss=newdata(i,4)*hgmax; 
end 
Vinss=newdata(i,1); 

  
xk_1k_1=xkk; 
% if(xk_1k_1(1)<=0) 
%    xk_1k_1(1)=0.01;  
% elseif(xk_1k_1(2)<=0) 
%    xk_1k_1(2)=0.01; 
% end 
Pk_1k_1=Pkk; 

  
i 

  
end 
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% figure(1) 
% subplot(4,1,1) 
% plot(xplot,xkkplot(1,:),xplot,newdata(1:deltat,3)-lrv) 
% grid on 
%  
% subplot(4,1,2) 
% plot(xplot,xkkplot(2,:),xplot,newdata(1:deltat,2)-lrv) 
% grid on 
%  
% subplot(4,1,3) 
% plot(xplot,xkkplot(3,:)) 
% grid on 
% % ylim([-0.5 2]) 
%  
% subplot(4,1,4) 
% plot(xplot,xkkplot(4,:)) 
% grid on 

  
fig1(xplot,[xkkplot(1,:)' (newdata(1:deltat,3)-lrv)], [xkkplot(2,:)' 

newdata(1:deltat,2)-lrv], xkkplot(3,:), xkkplot(4,:)); 

  
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 20;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 

  
% figure(2) 
% subplot(4,1,1) 
% plot(xplot,ekkplot(1,:)) 
% grid on 
%  
% subplot(4,1,2) 
% plot(xplot,ekkplot(2,:)) 
% grid on 
%  
% subplot(4,1,3) 
% plot(xplot,ekkplot(3,:)) 
% grid on 
%  
% subplot(4,1,4) 
% plot(xplot,ekkplot(4,:)) 
% grid on 

  
fig2(xplot, ekkplot(1,:), ekkplot(2,:), ekkplot(3,:), ekkplot(4,:)) 
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%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 20;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 

  
figure(3) 
subplot(2,1,1) 
plot(xplot,ekplot(1,:)) 
grid on 

  
subplot(2,1,2) 
plot(xplot,ekplot(2,:)) 
grid on 

  
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 20;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 

  
xec 

  

Script 3(auglinearization.m): 
 
function [A,B,C,D] = auglinearization(Ts, xss, hgss, Vinss, Vtss, G, H) 

  
nx = length(xss); 

  
Ix = eye(nx,nx); 
t = 0; 

  
h = sqrt(eps); 
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A = zeros(nx,nx); 
i = sqrt(-1); 

  
for k = 1:nx 
A(:,k) = (1/h)* imag(augnonlinmodel(t,xss+h*i*Ix(:,k),hgss,Vinss, Vtss)); 
end 

  
% B = zeros(nx,1); 
% B(:,1) = (1/h)*imag(augnonlinmodel(t,xss,hgss+h*i,Vinss, Vtss)); 
% B(:,2) = (1/h)*imag(augnonlinmodel(t,xss,hgss,Vinss+h*i, Vtss)); 

  
C = [1 0 0 0;0 1 0 0]; 

  
d=0; 

  
sys=ss(A,G,C,d); 
disc_sys=c2d(sys,Ts); 

  
A=disc_sys.a; 
B=disc_sys.b; 
C=disc_sys.c; 
D=H; 

  

  
end 

  

Script 3(fig1.m): 

 
function fig1(X1, YMatrix1, YMatrix2, Y1, Y2) 
%CREATEFIGURE(X1, YMATRIX1, YMATRIX2, Y1, Y2) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  YMATRIX2:  matrix of y data 
%  Y1:  vector of y data 
%  Y2:  vector of y data 

  
%  Auto-generated by MATLAB on 05-May-2014 14:34:52 

  
% Create figure 
figure1 = figure('PaperType','<custom>','PaperSize',[29.7 20]); 

  
% Create subplot 
subplot1 = subplot(4,1,1,'Parent',figure1); 
box(subplot1,'on'); 
grid(subplot1,'on'); 
hold(subplot1,'all'); 

  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',subplot1); 
set(plot1(2),'LineWidth',2,'LineStyle',':'); 

  
% % Create xlabel 
% xlabel('Sample number'); 

  
% Create ylabel 
ylabel('Height [m]'); 
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% Create title 
title('Height h_1'); 

  
% Create subplot 
subplot2 = subplot(4,1,2,'Parent',figure1); 
box(subplot2,'on'); 
grid(subplot2,'on'); 
hold(subplot2,'all'); 

  
% Create multiple lines using matrix input to plot 
plot2 = plot(X1,YMatrix2,'Parent',subplot2); 
set(plot2(2),'LineWidth',2,'LineStyle',':'); 

  
% % Create xlabel 
% xlabel('Sample number'); 

  
% Create ylabel 
ylabel('Height [m]'); 

  
% Create title 
title('Height h_2'); 

  
% Create subplot 
subplot3 = subplot(4,1,3,'Parent',figure1); 
box(subplot3,'on'); 
grid(subplot3,'on'); 
hold(subplot3,'all'); 

  
% Create plot 
plot(X1,Y1,'Parent',subplot3,'LineWidth',2); 

  
% % Create xlabel 
% xlabel('Sample number'); 

  
% Create title 
title('Parameter \alpha'); 

  
% Create subplot 
subplot4 = subplot(4,1,4,'Parent',figure1); 
box(subplot4,'on'); 
grid(subplot4,'on'); 
hold(subplot4,'all'); 

  
% Create plot 
plot(X1,Y2,'Parent',subplot4,'LineWidth',2); 

  
% % Create xlabel 
% xlabel('Sample number'); 

  
% Create title 
title('Parameter C_D'); 

  

Script 3(fig2.m): 
 
function fig2(X1, Y1, Y2, Y3, Y4) 
%CREATEFIGURE(X1, Y1, Y2, Y3, Y4) 
%  X1:  vector of x data 
%  Y1:  vector of y data 
%  Y2:  vector of y data 
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%  Y3:  vector of y data 
%  Y4:  vector of y data 

  
%  Auto-generated by MATLAB on 05-May-2014 15:03:05 

  
% Create figure 
figure1 = figure; 

  
% Create subplot 
subplot1 = subplot(4,1,1,'Parent',figure1); 
box(subplot1,'on'); 
grid(subplot1,'on'); 
hold(subplot1,'all'); 

  
% Create plot 
plot(X1,Y1,'Parent',subplot1,'LineWidth',1); 

  
% Create title 
title('Height h_1'); 

  
% Create subplot 
subplot2 = subplot(4,1,2,'Parent',figure1); 
box(subplot2,'on'); 
grid(subplot2,'on'); 
hold(subplot2,'all'); 

  
% Create plot 
plot(X1,Y2,'Parent',subplot2,'LineWidth',1); 

  
% Create title 
title('Height h_1'); 

  
% Create subplot 
subplot3 = subplot(4,1,3,'Parent',figure1); 
box(subplot3,'on'); 
grid(subplot3,'on'); 
hold(subplot3,'all'); 

  
% Create plot 
plot(X1,Y3,'Parent',subplot3,'LineWidth',1); 

  
% Create title 
title('Parameter \alpha'); 

  
% Create subplot 
subplot4 = subplot(4,1,4,'Parent',figure1); 
box(subplot4,'on'); 
grid(subplot4,'on'); 
hold(subplot4,'all'); 

  
% Create plot 
plot(X1,Y4,'Parent',subplot4,'LineWidth',1); 

  
% Create title 
title('Parameter C_D'); 
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Appendix 7 
 

This is the MATLAB code which run simulations of the linearized model on Lake Toke. The 

code consists of 5 scripts. 

 

Script 1: simulation.m 

Script 2: ssmodel.m 

Script 3: linearized_model_imag.m 

Script 4: modelusedforlin.m 

Script 5: plotsime.m 

 
 

Script 1(simulation.m): 

 

 
close all; 

  
hgmax=5.6; 
t=[0 10*24*60*60]; 
x0=[3,2.7]'; 
Vin1=50; 
Vin2=150; 
Vint12=2*24*60*60; 
hg1=0.02*hgmax; 
hg2=0.5*hgmax; 
hgt12=5*24*60*60; 

  
[A,B,C,D,M]=linearize_model_imag(x0, 0.01*hgmax, 50,15); 

  
statespacemodel = @(t,x) ssmodel(t,x,Vin1,Vint12,Vin2,hg1,hgt12,hg2,A,B,M); 

  
origmodel = @(t,x) nonlinmodel(t,x,Vin1,Vint12,Vin2,hg1,hgt12,hg2); 

  
[time1,hss]=ode45(statespacemodel,t,x0); 

  
[time2,horig]=ode45(origmodel,t,x0); 

  

  
plotsimu(time2,[horig(:,1) horig(:,2)],time1, [hss(:,1) hss(:,2)]); 

  
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 15;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
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iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 

 

Script 2(ssmodel.m): 

 
function [ dxdt ] = ssmodel(t,x,Vin1,Vint12,Vin2,hg1,hgt12,hg2, A, B, M ) 
dx_dt=zeros(length(x),1); 

  
if(t<=Vint12) 
   Vin=Vin1; 
else 
    Vin=Vin2; 
end 

  
if(t<=hgt12) 
hg=hg1; 
else 
    hg=hg2; 
end 

  
dxdt=A*x+B*hg+M*Vin; 

  

  
end 

  

 

Script 3(linearize_model_imag.m): 

 
function [A,B,C,D,M] = linearize_model_imag(xss, hgss, Vinss, Vtss) 

  
nx = length(xss); 

  
Ix = eye(nx,nx); 

  
h = sqrt(eps); 

  
A = zeros(nx,nx); 
i = sqrt(-1); 

  
for k = 1:nx 
A(:,k) = (1/h)* imag(modelusedforlin(xss+h*i*Ix(:,k),hgss,Vinss, Vtss)); 
end 

  
Btemp = zeros(nx,1); 
Btemp(:,1) = (1/h)*imag(modelusedforlin(xss,hgss+h*i,Vinss, Vtss)); 
Btemp(:,2) = (1/h)*imag(modelusedforlin(xss,hgss,Vinss+i*h, Vtss)); 

  
% M = zeros(nx,1); 
% M(:,1) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss+i*h, Vtss)); 
% M(:,2) = (1/h)*imag(nonlinmodel(xss,hgss,Vinss, Vtss+i*h)); 

  
C = [1 0]; 

  
D = 0; 

  

  
%Separating know disturubance from input 
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B=Btemp(:,1); 
M=Btemp(:,2); 

  
end 

 

 

Script 4(modelusedforlin.m): 

 
function [dx_dt]= modelusedforlin(x,hg,Vin,Vt)  
dx_dt=zeros(length(x),1); 

  
a=0.05; 
B=0.02; 
w=11.2; 
g=9.81; 
A1=max(28*1000000*x(1)^(1/10),1000); 
A2=max(28*1000000*x(2)^(1/10),1000); 
V12=800*(x(1)-x(2))*sqrt(abs(x(1)-x(2))); 

  
if(x(2)>=hg) 
    Vg=hg*w*sqrt(2*g*x(2)); 
elseif(hg>=x(2) && x(2)>=0) 
    Vg=x(2)*w*sqrt(2*g*x(2));  
elseif(x(2)<0) 
    Vg=0; 
end 

  

  
dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12); 
dx_dt(2) = 1/(a*A2)*(V12-Vt-Vg); 

  
%transpose dx_dt so it is a column vector 
% dx_dt = dx_dt';  
return 

 

 

Script 5(plotsimu.m): 

 
function plotsimu(X1, YMatrix1, X2, YMatrix2) 
%CREATEFIGURE(X1, YMATRIX1, X2, YMATRIX2) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  X2:  vector of x data 
%  YMATRIX2:  matrix of y data 

  
%  Auto-generated by MATLAB on 21-May-2014 23:27:00 

  
% Create figure 
figure1 = figure('PaperType','<custom>','PaperSize',[29.7 15],... 
    'InvertHardcopy','off',... 
    'Color',[1 1 1]); 

  
% Create subplot 
subplot1 = subplot(2,1,1,'Parent',figure1,'YGrid','on','XGrid','on',... 
    'FontWeight','light',... 
    'FontSize',13); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(subplot1,[0 450000]); 
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% Uncomment the following line to preserve the Y-limits of the axes 
ylim(subplot1,[2 4.5]); 
%% Uncomment the following line to preserve the Z-limits of the axes 
% zlim(subplot1,[-1 1]); 
box(subplot1,'on'); 
hold(subplot1,'all'); 

  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',subplot1,'LineWidth',2); 
set(plot1(1),'DisplayName','h_1'); 
set(plot1(2),'LineStyle','--','DisplayName','h_2'); 

  
% Create xlabel 
xlabel('Time [s]','FontWeight','light','FontSize',13); 

  
% Create ylabel 
ylabel('Height h_1 [m]','FontWeight','light','FontSize',13); 

  
% Create title 
title('Nonlinear model','FontWeight','light','FontSize',13); 

  
% Create subplot 
subplot2 = subplot(2,1,2,'Parent',figure1,'YGrid','on','XGrid','on',... 
    'FontWeight','light',... 
    'FontSize',13); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(subplot2,[0 450000]); 
% Uncomment the following line to preserve the Y-limits of the axes 
ylim(subplot2,[2 4.5]); 
%% Uncomment the following line to preserve the Z-limits of the axes 
% zlim(subplot2,[-1 1]); 
box(subplot2,'on'); 
hold(subplot2,'all'); 

  
% Create multiple lines using matrix input to plot 
plot2 = plot(X2,YMatrix2,'Parent',subplot2,'LineWidth',2); 
set(plot2(1),'DisplayName','h_1'); 
set(plot2(2),'LineStyle','--','DisplayName','h_2'); 

  
% Create xlabel 
xlabel('Times [s]','FontWeight','light','FontSize',13); 

  
% Create ylabel 
ylabel('Height h_2 [m]','FontWeight','light','FontSize',13); 

  
% Create title 
title('Linearized model','FontWeight','light','FontSize',13); 

  
% Create legend 
legend1 = legend(subplot1,'show'); 
set(legend1,... 
    'Position',[0.849913194444444 0.828743961352657 0.0390625 

0.0956521739130435]); 

  
% Create legend 
legend(subplot2,'show'); 
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Appendix 8 
 
This MATLAB code runs the sensitivity test on the parameters in the nonlinear Lake Toke 

model. The code consists of 4 scripts. 

 
Script 1: simulation.m 

Script 2: nonlinmodel.m 

Script 3: h1plot.m 

Script 4: h2plot.m 

 

 

 

Script 1(simulation.m): 

 
close all; 

  
hgmax=5.6; 
tmaks=60*60*24*10; 
t=[1:10:tmaks]; 
x0=[2.7,2.5]'; 
Vt=24; 
Vin=20; 
u=1; 
hg=60/100*hgmax; 
V12para=800; 
a=0.05; 
B=0.02; 
Cd=1; 

  

  
%Calculating the sensitivity of V12para 
mymodel1 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a, B, Cd); 
mymodel2 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para+V12para*0.05, a, B, 

Cd); 

  
[time,h1]=ode45(mymodel1,t,x0); 
[time2,h2]=ode45(mymodel2,t,x0); 

  
h1SV12para=(h2(:,1)-h1(:,1))/(V12para*0.05); 
h2SV12para=(h2(:,2)-h1(:,2))/(V12para*0.05); 

  
%Calculating the sensitivity of a 
mymodel1 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a, B, Cd); 
mymodel2 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a+a*0.05, B, Cd); 

  
[time,h1]=ode45(mymodel1,t,x0); 
[time2,h2]=ode45(mymodel2,t,x0); 

  
h1Sa=(h2(:,1)-h1(:,1))/(a*0.05); 
h2Sa=(h2(:,2)-h1(:,2))/(a*0.05); 

  
%Calculating the sensitivity of B 
mymodel1 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a, B, Cd); 
mymodel2 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a, B+B*0.05, Cd); 

  
[time,h1]=ode45(mymodel1,t,x0); 
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[time2,h2]=ode45(mymodel2,t,x0); 

  
h1SB=(h2(:,1)-h1(:,1))/(B*0.05); 
h2SB=(h2(:,2)-h1(:,2))/(B*0.05); 

  
%Calculating the sensitivity of Cd 
mymodel1 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para, a, B, Cd); 
mymodel2 = @(t,x) nonlinmodel(t,x,Vt,Vin, hg, V12para+V12para*0.05, a, B, 

Cd+Cd*0.05); 

  
[time,h1]=ode45(mymodel1,t,x0); 
[time2,h2]=ode45(mymodel2,t,x0); 

  
h1SCd=(h2(:,1)-h1(:,1))/(Cd*0.05); 
h2SCd=(h2(:,2)-h1(:,2))/(Cd*0.05); 

  
h1plot(t, h1SV12para,h1Sa,h1SB,h1SCd) 
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 20;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 

  
h2plot(t, h2SV12para,h2Sa,h2SB,h2SCd) 
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 20;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 

 

 

Script 2(nonlinmodel.m): 
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function [dx_dt]= nonlinmodel(t,x,Vt, Vin,hg, V12para, a, B, Cd)  
dx_dt=zeros(length(x),1); 
%a function which returns a rate of change vector 
% if(t<=Vint12) 
%    Vin=Vin1; 
% else 
%     Vin=Vin2; 
% end 

  
% if(t<=hgt12) 
% hg=hg1; 
% else 
%     hg=hg2; 
% end 
% Vt=24; 

  
% a=0.05; 
% B=0.02; 
w=11.2; 
g=9.81; 
A1=max(28*1000000*x(1)^(1/10),1000); 
A2=max(28*1000000*x(2)^(1/10),1000); 
V12=V12para*(x(1)-x(2))*sqrt(abs(x(1)-x(2))); 

  
if(x(2)>=hg) 
    Vg=Cd*hg*w*sqrt(2*g*x(2)); 
elseif(hg>=x(2) && x(2)>=0) 
    Vg=Cd*x(2)*w*sqrt(2*g*x(2));  
elseif(x(2)<0) 
    Vg=0; 
end 

  

  
dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12); 
dx_dt(2) = 1/(a*A2)*(B*Vin+V12-Vt-Vg); 

  
%transpose dx_dt so it is a column vector 
% dx_dt = dx_dt';  
return 

 

 

Script 3(h1plot.m): 

 
function h1plot(X1, Y1, Y2, Y3, Y4) 
%CREATEFIGURE(X1, Y1, Y2, Y3, Y4) 
%  X1:  vector of x data 
%  Y1:  vector of y data 
%  Y2:  vector of y data 
%  Y3:  vector of y data 
%  Y4:  vector of y data 

  
%  Auto-generated by MATLAB on 30-Apr-2014 15:14:50 

  
% Create figure 
figure1 = figure; 

  
% Create subplot 
subplot1 = subplot(4,1,1,'Parent',figure1,'YGrid','on','XGrid','on'); 
box(subplot1,'on'); 
hold(subplot1,'all'); 
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% Create plot 
plot(X1,Y1,'Parent',subplot1,'LineWidth',2); 

  
% Create xlabel 
xlabel('Sample time [s]'); 

  
% Create ylabel 
ylabel('Sensitivity'); 

  
% Create title 
title('Sensitivity of parameter \lambda'); 

  
% Create subplot 
subplot2 = subplot(4,1,2,'Parent',figure1,'YGrid','on','XGrid','on'); 
box(subplot2,'on'); 
hold(subplot2,'all'); 

  
% Create plot 
plot(X1,Y2,'Parent',subplot2,'LineWidth',2); 

  
% Create xlabel 
xlabel('Sample time [s]'); 

  
% Create ylabel 
ylabel('Sensitivity'); 

  
% Create title 
title('Sensitivity of parameter \alpha'); 

  
% Create subplot 
subplot3 = subplot(4,1,3,'Parent',figure1,'YGrid','on','XGrid','on'); 
box(subplot3,'on'); 
hold(subplot3,'all'); 

  
% Create plot 
plot(X1,Y3,'Parent',subplot3,'LineWidth',2); 

  
% Create xlabel 
xlabel('Sample time [s]'); 

  
% Create ylabel 
ylabel('Sensitivity'); 

  
% Create title 
title('Sensitivity of parameter \beta'); 

  
% Create subplot 
subplot4 = subplot(4,1,4,'Parent',figure1,'YGrid','on','XGrid','on'); 
box(subplot4,'on'); 
hold(subplot4,'all'); 

  
% Create plot 
plot(X1,Y4,'Parent',subplot4,'LineWidth',2); 

  
% Create xlabel 
xlabel('Sample time [s]'); 

  
% Create ylabel 
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ylabel('Sensitivity'); 

  
% Create title 
title('Sensitivity of parameter C_D'); 

  

 

 

Script 4(h2plot.m): 

 
 
function h2plot(X1, Y1, Y2, Y3, Y4) 
%CREATEFIGURE(X1, Y1, Y2, Y3, Y4) 
%  X1:  vector of x data 
%  Y1:  vector of y data 
%  Y2:  vector of y data 
%  Y3:  vector of y data 
%  Y4:  vector of y data 

  
%  Auto-generated by MATLAB on 30-Apr-2014 14:53:28 

  
% Create figure 
figure1 = figure; 

  
% Create subplot 
subplot1 = subplot(4,1,4,'Parent',figure1,'YGrid','on','XGrid','on'); 
box(subplot1,'on'); 
hold(subplot1,'all'); 

  
% Create plot 
plot(X1,Y1,'Parent',subplot1,'LineWidth',2); 

  
% Create xlabel 
xlabel('Sample time [s]'); 

  
% Create ylabel 
ylabel('Sensitivity'); 

  
% Create title 
title('Sensitivity of the parameter C_D'); 

  
% Create subplot 
subplot2 = subplot(4,1,3,'Parent',figure1,'YGrid','on','XGrid','on'); 
box(subplot2,'on'); 
hold(subplot2,'all'); 

  
% Create plot 
plot(X1,Y2,'Parent',subplot2,'LineWidth',2); 

  
% Create xlabel 
xlabel('Sample time [s]'); 

  
% Create ylabel 
ylabel('Sensitivity'); 

  
% Create title 
title('Sensitivity of the parameter \beta'); 

  
% Create subplot 
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subplot3 = subplot(4,1,2,'Parent',figure1,'YGrid','on','XGrid','on'); 
box(subplot3,'on'); 
hold(subplot3,'all'); 

  
% Create plot 
plot(X1,Y3,'Parent',subplot3,'LineWidth',2); 

  
% Create xlabel 
xlabel('Sample time [s]'); 

  
% Create ylabel 
ylabel('Sensitivity'); 

  
% Create title 
title('Sensitivity of the parameter \alpha'); 

  
% Create subplot 
subplot4 = subplot(4,1,1,'Parent',figure1,'YGrid','on','XGrid','on'); 
box(subplot4,'on'); 
hold(subplot4,'all'); 

  
% Create plot 
plot(X1,Y4,'Parent',subplot4,'LineWidth',2); 

  
% Create xlabel 
xlabel('Sample time [s]'); 

  
% Create ylabel 
ylabel('Sensitivity'); 

  
% Create title 
title('Sensitivity of the parameter \lambda'); 
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Appendix 9 

 
This MATLAB code runs a simulation to see if the effect of changing the parameters. The 

code consists of 4 scripts. 

 

Script 1: testpara2.m 

Script 2: originalmodel.m 

Script 3: nonlinmodel.m 

Script 4: testparaplot.m 

 
 

Script 1(testpara2.m): 
 
close all 
clear all 
load Data 

  
hgmax=5.6; 
lrv=55.75; 

  
tspan=[0 60*60*24] 
x=zeros(2,1); 

  
%defining timespan 
tstart=1000; 
% tend=length(Data(:,1)); 
tend=1500; 
newdata=Data(tstart:tend,:); 
deltat=tend-tstart; 

  
x0=[newdata(1,3)-lrv newdata(1,2)-lrv]'; 

  

  
for(i=1:length(newdata(:,1))) 

     
    i 

     
    %testing new parameters 
    if(i<2) 
        x=x0; 
    else 
        x(1)=h1kp1; 
        x(2)=h2kp1; 
    end 
    xplot(i,1)=x(1); 
    xplot(i,2)=x(2); 

     
    hg=newdata(i,4)*hgmax; 
    Vin=newdata(i,1); 
    Vt=newdata(i,5); 
    model=@(t,x) nonlinmodel(t,x, hg, Vin, Vt); 
    [t,y]=ode45(model,tspan,x); 

     
    h1kp1=y(length(y(:,1)),1); 
    h2kp1=y(length(y(:,1)),2); 
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end 
for(i=1:length(newdata(:,1))) 
    i 
%using original parameters as a comparison 
    if(i<2) 
        xorig=x0; 
    else 
        xorig(1)=h1origkp1; 
        xorig(2)=h2origkp1; 
    end 
    xorigplot(i,1)=xorig(1); 
    xorigplot(i,2)=xorig(2); 

     
    hg=newdata(i,4)*hgmax; 
    Vin=newdata(i,1); 
    Vt=newdata(i,5); 
    model=@(t,x) originalmodel(t,x, hg, Vin, Vt); 
    [t,y]=ode45(model,tspan,xorig); 

     
    h1origkp1=y(length(y(:,1)),1); 
    h2origkp1=y(length(y(:,1)),2); 

     
end   

  
%Logging the error 
xerrortest=xplot-[newdata(:,3) newdata(:,2)]; 
MSEtest1=mean(abs(xerrortest(:,1))) 
MSEtest2=mean(abs(xerrortest(:,2))) 

  
xerrororig=xorigplot-[newdata(:,3) newdata(:,2)]; 
MSEorig1=mean(abs(xerrororig(:,1))) 
MSEorig2=mean(abs(xerrororig(:,2))) 

  
tplot=0:1:deltat; 

  
testparplot(tplot,[xplot(:,1) newdata(:,3)-lrv xorigplot(:,1)],[xplot(:,2) 

newdata(:,2)-lrv xorigplot(:,2)]); 

  
%# centimeters units 
X = 29.7;                  %# A4 paper size 
Y = 15;                  %# A4 paper size 
xMargin = 1;               %# left/right margins from page borders 
yMargin = 1;               %# bottom/top margins from page borders 
xSize = X - 2*xMargin;     %# figure size on paper (widht & hieght) 
ySize = Y - 2*yMargin;     %# figure size on paper (widht & hieght) 

  
%# figure size on screen (50% scaled, but same aspect ratio) 
set(gcf, 'Units','centimeters', 'Position',[5 5 xSize ySize]) 

  
%# figure size printed on paper 
set(gcf, 'PaperUnits','centimeters') 
set(gcf, 'PaperSize',[X Y]) 
set(gcf, 'PaperPosition',[xMargin yMargin xSize ySize]) 
set(gcf, 'PaperOrientation','portrait') 
iptsetpref('ImshowBorder','tight'); 
set(gca,'LooseInset',get(gca,'TightInset')) 
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Script 2(originalmodel.m): 

 
function [dx_dt]= originalmodel(t,x,hg, Vin,Vt) 
% tstep=60*60; 
% hg=hgv((t+tstep)/tstep); 
% Vin=Vinv((t+tstep)/tstep); 
% Vt=Vtv((t+tstep)/tstep); 
dx_dt=zeros(length(x),1); 

  
omega=11.2; 
% %new parameters 
% a=0.18; 
% B=0.4; 

  
%old parameters 
a=0.05; 
B=0.02; 

  
w=11.2; 
g=9.81; 
Cd=1; 
A1=max(28*1000000*x(1)^(1/10),1000); 
A2=max(28*1000000*x(2)^(1/10),1000); 

  
% A1=2.8e7*1.1* x(1)^0.1; 
% A2=2.8e7*1.1* x(2)^0.1; 

  
V12=800*(x(1)-x(2))*sqrt(abs(x(1)-x(2))); 
Vg=Cd*hg*omega*sqrt(2*g*x(2)); 

  
% if(x(2)>=hg) 
%     Vg=hg*w*sqrt(2*g*x(2)); 
% elseif(hg>=x(2) && x(2)>=0) 
%     Vg=x(2)*w*sqrt(2*g*x(2));  
% elseif(x(2)<0) 
%     Vg=0; 
% end 

  
dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12); 
dx_dt(2) = 1/(a*A2)*(V12-Vt-Vg+B*Vin); 

  
end 

 

 

Script 3(nonlinmodel.m): 

 
function [dx_dt]= nonlinmodel(t,x,hg, Vin,Vt) 
% tstep=60*60; 
% hg=hgv((t+tstep)/tstep); 
% Vin=Vinv((t+tstep)/tstep); 
% Vt=Vtv((t+tstep)/tstep); 
dx_dt=zeros(length(x),1); 

  
omega=11.2; 
% %new parameters 
% a=0.18; 
% B=0.4; 
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%old parameters 
a=0.05; 
B=0.7; 
w=11.2; 
g=9.81; 
Cd=1; 
A1=max(28*1000000*x(1)^(1/10),1000); 
A2=max(28*1000000*x(2)^(1/10),1000); 

  
% A1=2.8e7*1.1* x(1)^0.1; 
% A2=2.8e7*1.1* x(2)^0.1; 

  
V12=800*(x(1)-x(2))*sqrt(abs(x(1)-x(2))); 
Vg=Cd*hg*omega*sqrt(2*g*x(2)); 

  
% if(x(2)>=hg) 
%     Vg=hg*w*sqrt(2*g*x(2)); 
% elseif(hg>=x(2) && x(2)>=0) 
%     Vg=x(2)*w*sqrt(2*g*x(2));  
% elseif(x(2)<0) 
%     Vg=0; 
% end 

  
dx_dt(1) = 1/((1-a)*A1)*((1-B)*Vin-V12); 
dx_dt(2) = 1/(a*A2)*(V12-Vt-Vg+B*Vin); 

  
end 

 

Script 3(testparplot.m): 

 
function testparplot(X1, YMatrix1, YMatrix2) 
%CREATEFIGURE(X1, YMATRIX1, YMATRIX2) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  YMATRIX2:  matrix of y data 

  
%  Auto-generated by MATLAB on 06-May-2014 16:45:33 

  
% Create figure 
figure1 = figure; 

  
% Create subplot 
subplot1 = subplot(2,1,1,'Parent',figure1); 
box(subplot1,'on'); 
grid(subplot1,'on'); 
hold(subplot1,'all'); 

  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',subplot1,'LineWidth',2); 
set(plot1(1),'LineStyle',':','DisplayName','Using test parameter'); 
set(plot1(2),'DisplayName','Real measuments'); 
set(plot1(3),'LineStyle','--','DisplayName','Using original parameters'); 

  
% Create xlabel 
xlabel('Time [Days]'); 

  
% Create ylabel 
ylabel('Height [m]'); 
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% Create title 
title('Plot of the height h_1'); 

  
% Create subplot 
subplot2 = subplot(2,1,2,'Parent',figure1); 
box(subplot2,'on'); 
grid(subplot2,'on'); 
hold(subplot2,'all'); 

  
% Create multiple lines using matrix input to plot 
plot2 = plot(X1,YMatrix2,'Parent',subplot2,'LineWidth',2); 
set(plot2(1),'LineStyle',':','DisplayName','Using test parameter'); 
set(plot2(2),'DisplayName','Real measuments'); 
set(plot2(3),'LineStyle','--','DisplayName','Using original parameters'); 

  
% Create xlabel 
xlabel('Time [days]'); 

  
% Create ylabel 
ylabel('Heigh [m]'); 

  
% Create title 
title('Plot of the height h_2'); 

  
% Create legend 
legend1 = legend(subplot1,'hide'); 
set(legend1,'Location','SouthEast'); 

  
% Create legend 
legend2 = legend(subplot2,'hide'); 
set(legend2,'Location','SouthEast'); 

  

  

 

 


