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Men’s Artistic Gymnastics: Anew high bar - gymnast model with 
sensitivity analysis 

 

S Linge, Telemark University College 

 
Abstract 

The purpose of this work1 was to develop a new 2D gymnast - high bar model with horizontal bar 

endpoint dynamics included. To this end, a three-spring high bar model was extended with a 5 

segment gymnast model followed by validation and sensitivity analysis. Validation over a complete 

giant swing was favourable (bar position rms errors m017.0< , centre of mass angular position rms 

error °<11 ). Single parameter perturbations ( %10 ) caused little deterioration in model performance 

(lower half of giant swing, - bar position rms errors m006.0< , arms' angle rms error °< 9.0 ). 

Combinations of parameter perturbations gave bar position rms errors m008.0<  and arms' angle rms 

error °< 8.1 . Model performance was most sensitive to errors in high bar stiffness values. 

 

 

 

 

 

1 Introduction 

 

Modeling and simulation has previously been used to study several interesting issues in high bar 

gymnastics. Arampatzis and Brüggemann [1] analysed the energy exchange between bar and gymnast 

using a three-dimensional 15 segment gymnast body model coupled to a high bar with 12 inter-

connected rigid elements. Yeadon and Hiley [2] used a much simpler planar model to investigate the 

fundamental mechanics of the backward giant circle, with a damped linear spring connected to a four 

                                                      
1 Experimental data and a preliminary version of the high bar - gymnast model presented herein were 
part of the author’s unpublished Dr. Scient. Thesis “Modelling and Analysing the high bar – gymnast 
system”, The Norwegian School of Sport Sciences, 2001. 
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segment gymnast body model. They later used this model to examine the margin for error in timing 

the release for high bar dismounts [3], and a similar model [4] to elaborate on triple somersault 

dismounts [5], [6]. Some aspects of their model were recently improved somewhat by Begon et al. [7], 

who presented a 3D model with an extra rotational joint between the torso and the pelvis to study the 

estimation of high bar kinematics when the number of skin markers is limited. Their model also 

included a personalised behaviour of the scapular girdle elevation as a function of arm flexion. Sheets 

and Hubbard [8] also used a four segment (female) gymnast model attached to a damped linear spring 

when they modeled swinging on the uneven parallel bars. 

 In these previous works, the high bar part of the model was designed to capture bar bending. 

However, as was shown by Linge and Hallingstad [9], horizontal movement of bar endpoints add 

substantially to the dynamics of the system. In fact, the absolute horizontal movement of the bar 

midpoint is composed of bar bending and another 30% due to endpoint movement. Also, previous 

works have been less concerned about robustness of model performance to errors in parameter values. 

Yet, measurement and parameter estimation errors represent a common challenge to mathematical 

modeling, being problematic if a model is too sensitive in this respect. 

 In this paper, a gymnast - high bar model that includes the horizontal dynamics of bar 

endpoints is presented. The planar three-spring high bar model of Linge and Hallingstad [9] is 

extended with a 5 segment gymnast body model and the sensitivity of model performance to 

perturbations in model parameter values is elaborated on. 

 

 

2 Methods 

 

2.1 Data collection and data processing 

 

A gymnast from the Norwegian Men's Senior Gymnastics Squad gave informed consent to perform 

giant swings on the high bar while his movements were recorded (frequency Hz240 ) with a 



 3

ProReflex reflective marker recording system [10]. A total of four giant swings were recorded with 7  

cameras that were placed evenly around the bar at a distance of m6  from the bar midpoint. One giant 

swing was used for estimation and one for validation. Reflective markers (diameter mm12 ) were 

attached to the bar and to the body, giving symmetry in marker location to each side of the vertical 

plane through the bar midpoint. Body markers were attached on each side of the body, wrist ( m05.0  

proximal to the Processus styloideus ulnae), elbow (Lateral epicondyle), shoulder (Deltoideus 

posterior), lowest rib (lateral 10 th  Costa), hip (trocanter major), knee (Lateral epicondyle) and ankle 

(Lateral malleolus). Reflective markers were placed also on each end of the bar (on top of each 

vertical post) and on the bar midpoint between the hands of the gymnast. The bar markers allowed the 

absolute movement of bar endpoints to be measured, as well as the motion of bar midpoint relative to 

the endpoints.  

 Collected marker data was filtered with the generalized cross validation algorithm of Woltring 

[11], choosing a cut-off frequency of Hz12 . Pair wise corresponding positions, velocities and 

accelerations of markers from the left and right side of the body (and bar) were averaged after 

projection into the vertical sagittal plane through the midpoint marker on the bar. Kinematics of body 

joints was derived from the averaged data in the symmetry plane. Data processing and parameter 

estimation were done in Matlab [12]. 

  

 

2.2 High bar - gymnast model 

 

The 2D high bar model of Linge and Hallingstad [9] was extended with a planar 5 segment gymnast 

body model, generating the dynamic equations for the total model (Figure 1) with ROBMAT  [13]. In 

the high bar model of Linge and Hallingstad [9], the horizontal motion of bar endpoints is included so 

that three damped linear springs are used to model bar dynamics, two springs horizontally and one 

vertically. In this way, bar midpoint motion can be represented relative to the moving endpoints of the 



 4

bar. Each of the three high bar springs has a stiffness, damping and mass parameter, giving 9 

parameters in total for the high bar part of the model.  

 Regarding the gymnast part of the model, each body segment (arms, torso, lower back, thighs 

and shanks) was assumed to be rigid and defined by its mass, length, inertia and center of mass 

location on the segment axis. The length of the arms was designed as a joint variable (as part of 

modeling the shoulder joint, see below); however, so 19 parameters define the five body segments.  

Segment mass (marker) positions were projected into the sagittal plane, and each segment had markers 

at each end. Body kinematics could then be derived from segment markers. Angles between segments 

were used as body joint variables. The shoulder joint, however, is more complicated, and was modeled 

by two degrees of freedom, both being actively controlled by the gymnast. This might be motivated as 

follows. An individual holding his arms straight out in front of him is able to change the effective 

length of the arms purely by shoulder activity while maintaining a fixed shoulder angle. It may be 

done at any shoulder angle and justifies modeling shoulder configuration with two degrees of freedom, 

one translatory ( 5q  in Figure 1) and one rotational ( 6q  in Figure 1). This differs from Yeadon and 

Hiley (2000) and Sheets and Hubbard (2008), who modeled translatory shoulder action (corresponding 

to 5q  here) with a passive spring – damper. The distance between the bar midpoint marker and the 

shoulder marker corresponded to this translatory shoulder motion component. To avoid complicating 

the model, the variable length of the arms was combined with fixed parameter values for the mass, 

center of mass position and inertia of the arms. This approximation was based on the assumption that 

the cm105 −  length change of the arms would not affect these parameters significantly. Body joint 

kinematics was used as input to the model while the position of the gymnast was given by the angle of 

his arms relative to the vertical. Zero friction was assumed between the bar and the hands of the 

gymnast. 
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2.3 Parameter estimation and model validation  

 

Body segment parameter values were estimated by the method of Yeadon [14], using the body density 

values of Dempster [15]. The high bar used in the present study, was the same as the one of Linge and 

Hallingstad [9]. However, even if they identified optimal bar parameters, they did so by use of a freely 

oscillating bar, i.e. without an interacting gymnast. Since other bar dynamics effects might come into 

play with a performing gymnast, bar parameters were estimated anew with the Nelder-Mead simplex 

method [16] in Matlab. Keeping body segment parameter values fixed, high bar parameter values were 

estimated by fitting (minimizing rms errors) bar positions and arms angle of the model to 

corresponding measurements while the gymnast swung through the lower half (horizontal to 

horizontal) of a regular giant swing. rms errors from bar endpoint and midpoint positions, and arm's 

angle position, were made to give approximately equal contributions during estimation. To avoid local 

minima, the estimation was initiated from different places in the parameter search space, distributing 

starting values around the reference values naturally chosen as the original bar parameter estimates 

(Table 1) of Linge and Hallingstad [9]. After having estimated bar parameters, validation was carried 

out with another recording of a giant swing, but now using (more than) a complete giant swing. This 

swing was defined to start °40  before the vertical, go full circle, and end °20  after the vertical. 

Simulated and measured angular positions of the centre of mass (relative to neutral bar position) were 

compared, and the rms error of bar position was found. Raw measurement data were used for 

comparison both during estimation and validation.  

 

 

 

2.4 Sensitivity analysis 

 

The sensitivity of bar endpoint and midpoint positions, and arms' angle with the vertical, was 

investigated for the lower half (horizontal to horizontal) of a regular giant swing by perturbing single 

parameter values and combinations of parameter values. For each of the parameter perturbation trials, 
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the rms errors of bar positions and arms' angle were calculated, using a simulation for the lower half of 

the giant swing as a reference. Use of rms errors was preferred over sensitivity functions since it is a 

compact measure, and the investigations of sensitivity to combinations of parameter perturbations 

became much simpler.  

 Matlab scripts were designed for three sets of sensitivity studies. First, the rms error sensitivity 

to single parameter perturbations ( %10+ ) was investigated for each of the 28 high bar and body 

segment parameters given in Table 2. The order of perturbations followed the lines of this table, i.e. 

with 1k  being the first parameter modified, 2k  the second, and so on, until 5I  was changed as the last 

one. In the second set of sensitivity tests, all combinations of the 9 high bar parameters were tested, 

keeping body parameters fixed. Each parameter value was allowed to take on three values, either no 

change from the optimal value, or a %10±  change. This gave 6831939 =  combinations in all, 

corresponding to equally many simulation trials, with the order of perturbations chosen as follows. All 

high bar parameters were started at optimal values, and perturbations started with the last parameter 

(Table 2), i.e. 3m . This was followed by all combinations of 2m  and 3m , and so on. This scheme 

implied for example that 656138 =  simulation trials were run for each value of 1k , 218737 =  trials 

were run for each value of 2k  and that  72936 =  trials were run for each value of 3k . Finally, in the 

third set of sensitivity tests, combinations of both high bar and body parameter values were analysed. 

Since the total problem would have been too large ( 283  parameter value combinations), it was reduced 

by selecting a subset of combinations only. In the first set of sensitivity studies, it was seen that of the 

high bar parameters; bar position sensitivity was noticeably higher for the three stiffness values than 

for damping and mass parameters. The three bar stiffness parameters were therefore used in 

combination with segment parameters from the arm, torso and thigh segments, taking these segments 

to be representative for the influence of perturbed body segment parameters. In addition, each 

parameter was allowed to take on just two values, either no change or a %10+  change. The number 

of combinations was such reduced to 16384214 = . With reference to Table 2, the parameters 

involved in this set of sensitivity testes were then 3,2,1, =iki , from the bar parameters, and all body 
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segment parameters (capital letters) except those with indices 3 and 5, which corresponds to not 

perturbing the lower back and shaft segment parameters. Again, for the order given, perturbations 

were started at the end of the (subset) list, i.e. first with 4I  only, then 2I  and 4I , and so on, changing 

1k  as the last one. This means that, e.g., 8192213 =  simulation trials were run for each value of 1k , 

4096212 =  trials for each value of 2k  and  2048211 =  trials for each value of 3k . By plotting rms 

errors as a function of trial number, the known permutation order allowed jumps in rms errors to be 

coupled with changes in certain parameters. 

 

 

3 Results 

 

Parameter estimation caused some tuning of high bar parameters, but only for the stiffness and 

damping parameters of the horizontal direction (Table 1). Damping parameters changed the most, with 

endpoint damping ( 1c ) and midpoint damping ( 2c ) being reduced by %50  and %30 , respectively. 

Horizontal endpoint stiffness ( 1k ) was reduced by %2  and midpoint stiffness ( 2k ) by %13 . rms 

errors during estimation were m004.0 , m013.0 , m013.0  and °7.5 , for horizontal bar endpoint 

position, horizontal bar midpoint position (relative endpoints), vertical bar midpoint position and, 

finally, arms' angle with the vertical, respectively. Note that the high bar used for the present studies 

was only used for training sessions, and vertical stiffness values (Table 1) were above the range 

( 12398019620 −− Nm ) used in competitions. Note also the somewhat counter-intuitive stiffness 

values of Table 1, particularly for the freely oscillating bar, having substantially higher stiffness 

horizontally as compared to vertically. One would reasonably expect the stiffness values to be more 

equal since the bar itself is homogeneous with the same circular cross-section all along its length. 

However, the bar itself does not stretch, and can only bend because endpoints move towards each 

other. Furthermore, because of the apparatus design, bar endpoints move differently when the bar 
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bends horizontally as compared to vertically (Linge and Hallingstad [9]). As a result, stiffness values 

may differ considerably with direction. 

 Model validation (Figure 2) demonstrated that the simulated angular position of the centre of 

mass with respect to neutral bar position remained close (rms difference °< 11 ) to measurements for 

almost the entire inverval. After about s5.1 , model prediction deteriorated as the model began to 

rotate too fast. The rms errors for the horizontal ( 1q + 2q ) and vertical ( 3q ) bar positions were 

m017.0  and m015.0 , respectively. It was confirmed (not shown) that the vertical deviation of bar 

endpoints was negligibly small ( mm1< ). The good match between simulation and measurement 

demonstrated that simulated angular momentum and centre of mass velocity were in close agreement 

with measurements.  

 The reference simulation (Figure 3) of the sensitivity analysis showed in more detail how well 

bar kinematics and arm angle were predicted by the model over the reference interval when estimated 

parameters were used. Rms errors were m004.0 , m011.0 , m011.0  and °6.4 , for 1q , 2q , 3q  and 

4q  (Figure 3a – d), respectively. The horizontal contribution (Figure 3a) of bar endpoints added 

almost %30  to the horizontal position component caused by bar bending (Figure 3b). It was noted 

that as the gymnast passed the lowest position under the bar, model prediction of bar midpoint 

positions (Figures 3b and 3c) had the largest errors. 

 Single parameter perturbations (Figure 4) illustrated that bar position variables were most 

negatively influenced (rms errors m006.0< ) by modifications in spring constants ( 1k , 2k , 3k ), and 

that segment length ( 2L , 3L , 4L , 5L ) adjustments had the greatest impact on the arms' angle (rms error 

°< 9.0 ). When combining high bar parameter perturbations (Figure 5), the rms error for 1q  (Figure 

5a) was still found to be small ( m002.0< ) for all trials, but slightly elevated when 1k  was modifed 

by %10± , i.e. during the last ( =× 832 ) 65612×  trials. The rms errors for  2q  ( m007.0< ), 3q  

( m008.0< ) and 4q  ( °< 2.1 ) were also small, with patterns that were more or less repeated for each 

value of 1k , but with distinct  changes as 2k  and 3k  were modified, i.e. with every ( =73 ) 2187  and 
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( =63 ) 729  trials, respectively. rms errors for 4q  were larger for combinations of high bar parameter 

value perturbations (Figure 5d) than for isolated perturbations of segment lengths (Figure 4d). For 

combinations of high bar and body segment parameter perturbations (Figure 6), rms errors for bar 

positions ( m006.0< ) and arms' angle ( °< 8.1 ) were still small. Again, patterns in rms errors 

matched shifts in 1k , 2k  and 3k , which took place for every ( =132 ) 8192 , ( =122 ) 4096  and 

( =112 ) 2048  trial, respectively. 

 

 

 

 

4 Discussion 

 

In this paper, a new 2D gymnast - high bar model that includes horizontal bar endpoint dynamics was 

presented. A three-spring high bar model [9] was extended with a 5 segment gymnast model followed 

by validation and sensitivity analysis. The total model was able to predict high bar kinematics and 

gymnast angular position with good accuracy. It was found that for minor errors ( %10 ) in parameter 

values, model performance was most sensitive to high bar stiffness values, but the model still 

performed well, even for combinations of parameter errors. 

 Our model is planar like the one of Hiley and Yeadon [4], but has an extra rotational joint 

between the torso and pelvis, as Begon et al. [7] included in their 3D high bar - gymnast model. The 

present model differs from the models of Hiley and Yeadon [4] and Begon et al. [7] in the way the 

high bar and the shoulder joint are represented. The shoulder joint is complicated, and Hiley and 

Yeadon [4] showed that its translatory component might be captured well by use of a damped linear 

spring. Begon et al. [7] handled it somewhat differently, by letting the scapular girdle elevation be a 

personalised function of arm flexion. Here, it has been shown that the translatory and rotational 

properties of the shoulder also might be treated as two independent joint variables. The accuracy of the 

present model was comparable to that achieved by Yeadon and Hiley (2000) for the angular position 
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of the centre of mass. They evaluated their model for a giant swing covering an inverval of °450 , i.e. 

about the same as the °440  used here (Figure 2). In their case, they got an rms difference between 

simulated and measured time histories of °9 , compared to °11  with the present alternative ( %5.2  of 

the total rotation angle). As in the present work, their model predicted the angular position very well 

for the first s5.1 , after which the simulated rotation became too fast. When predicting horizontal and 

vertical bar positions over the interval, Yeadon and Hiley (2000) achieved rms errors of m009.0  and 

m007.0 , respectively, which is better than the corresponding figures m017.0  and m015.0  of the 

present study. Sheets and Hubbard (2008), who developed a model similar to the one of Yeadon and 

Hiley (2000) for female swings on the uneven parallel bars, also achieved a better rms error 

( m006.0 ), though for a smaller angular interval of °270 . Even if the bar position rms errors are 

larger in the present work, they are still small, considering the high bar diameter of m03.0 . Why the 

present model produced higher bar position rms errors than previous models is not clear. Some of the 

explanation might be found in different equipment and procedures of the studies. The kind of exercise 

being modelled is another thing, since different exercises might favorise different aspects of a model. 

More degrees of freedom might be required to model more violent moves like, e.g., release-regrasp 

exercises. None of the previously presented models have been subject to sensitivity analysis, so how 

well they perform with non-optimal parameters is not yet clear. 

High bar endpoints added another %30  to the horizontal displacement component of the bar 

midpoint obtained from bar bending alone, just as Linge and Hallingstad [9] reported for free high bar 

oscillations. Linge and Hallingstad [9] validated the high bar model for free oscillations in the 

horizontal and vertical directions separately. Here, it has been shown that the high bar part of the 

model also performs well with a swinging load, i.e. when a performing gymnast imposes simultaneous 

horizontal and vertical high bar motion. However, some tuning of high bar parameters was necessary, 

suggesting that high bar dynamics differ somewhat when a gymnast is performing in it, compared to 

the situation when oscillations are free. It was noted that high bar kinematics predicted by the model 

differed the most from measurements (Figure 3) as the gymnast passed through the lowest part of the 
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giant swing. This is at the time when bar bending and endpoint movement is at its largest, suggesting 

that some unmodeled effects remain in the 3D system.  

 The rms error was used as a sensitivity measure even though such a number does not convey 

as much detail as the whole time series of a sensitivity function. However, some compact measure like 

the average or maximum absolute value would still have to be extracted from each sensitivity function 

time series to compare the impacts of different parameter perturbations. The rms error is a compact 

measure and convenient to use when combinations of parameter errors are investigated.  

 Sensitivities to combinations of parameter value perturbations should preferably have been 

studied by considering all parameter value combinations, rather than just subsets of combinations as 

done in this work. However, changing each of the 28 parameters by 0, %10−  or %10+  gives 283  

possibilities, and even a one-sided perturbation by %10+  gives 282  possibilities, which is still very 

big for practical analysis. In the final set of sensitivity tests, damping and mass parameters of the high 

bar were left out, and also parameters for the lower back and shaft segments. This gave rms errors 

m008.0<  for bar positions and an rms error °< 8.1  for the arms' angle, which is acceptable for most 

purposes. The rms errors for the complete problem, i.e. with all 28 parameters, are likely to be 

somewhat higher. However, they are still expected to be acceptable, since, e.g., a doubling of rms 

errors would still be tolerable for most model applications. In our results, the influence of leaving out 

bar damping and mass parameters can be seen by comparing rms errors for vertical bar position in the 

two final sensitivity tests (Figures 5c and 6c). Assuming for a moment that all high bar parameters had 

been kept while including body segment parameter perturbations, the rms errors in the final sensitivity 

test (Figure 6c) should have been at least as high as before (Figure 5c). In our case, however, they are 

slightly reduced. The choice of %10±  perturbations was made, but it is realized that other choices 

(e.g. %5  or %15 ) might have influenced the results, first and foremost the relative importance of 

parameters, not the overall robustness of the model.  

 Sheets and Hubbard (2008) reported that active shoulder modeling and an extra torso joint 

could have improved their model. The present model includes both these aspects, as well as a more 
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detailed model of the apparatus dynamics. Furthermore, as has yet to be shown for the previously 

presented models, it is robust to changes in parameter values.  

 

5 Conclusion 

 

A new 2D gymnast - high bar model was developed. As opposed to previous models, this model 

includes the substantial horizontal movement of bar endpoints that adds to motion from pure bar 

bending. Model performance was found most sensitive to errors in high bar stiffness values, but is still 

robust to minor errors ( %10 ) in its parameter values. 
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Table 1 High bar parameter values estimated in the high bar - gymnast model. Reference values are 

the ones estimated for a freely oscillating bar (Linge and Hallingstad, 2002). 

 
 k1  

(N/m) 
c1  

(Ns/m) 
m1 

(kg) 
k2  

(N/m) 
c2  

(Ns/m) 
m2  

(kg) 
k3  

(N/m) 
c3  

(Ns/m) 
m3 

(kg) 
Reference 0.606122 0.207  2.15  0.32452  0.21  1.2  0.66527  0.14  7.5  
Estimate 0.000120 0.100  2.15  0.20028 0.15  1.2  0.66527  0.14  7.5  
 
 
 
 
 
 
Table 2 Parameter matrix where ik ,  ic  im , 3,2,1=i , denote the nine high bar parameters (see 

Figure 1). Capital letters are used for body segment parameters, with iiji IRLM ,,, , 5,...,1=i , 

5,...,2=j , denoting mass, length, center of mass position along segment axis and inertia, 

respectively. The arms, torso, lower back, thighs and shafts body segments are numbered 

consecutively from 1 to 5, corresponding to the sub indices of body parameters. There is no 1L  

parameter since the length of the arms is a model variable. 

 

1k  2k  3k  1c  2c  3c  1m  

2m  3m  1M  2M  3M  4M  5M  

2L  3L  4L  5L  1R  2R  3R  

4R  5R  1I  2I  3I  4I  5I  

 
  
 



 
 
 
 
 

 
Figure 1 The planar high bar - gymnast model with 9 degrees of freedom 9,...,2,1, =iqi . Variable 1q  

represents the absolute horizontal position of bar endpoints, 2q  is the horizontal position of bar 

midpoint relative endpoints, 3q  denotes the vertical position of bar midpoint, 4q  is the angle of the 

arms with the vertical, 5q  is the length of the arms (which changes because of translatory shoulder 

motion), 6q  is the angle between arms and trunk segment, 7q  is the angle between trunk and lower 

back segments, 8q  is the hip angle, and, finally, 9q  is the knee angle. Variables 1q , 2q  and 3q  

represent the positions of the three damped linear springs that make up the high bar part of the model, 
having mass-components indicated with filled circles here.  
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
Figure 2 Angular position of the centre of mass during (more than) a complete giant swing started 

°40  before the vertical (handstand) and ended °20  after.  
 
 
 
 



 

 
 
Figure 3 Bar position and arm angle for the lower half (horizontal to horizontal) of a simulated giant 
swing used as reference for the sensitivity analysis, a) variable 1q  represents horizontal position of bar 

endpoints, b)  2q  is horizontal position of bar midpoint relative endpoints, c)  3q  denotes vertical 

position of bar midpoint and d)  4q  is the angle of the arms with the vertical. Corresponding 
measurements are shown for comparison.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
Figure 4 RMS error, a) - d), as a function of parameter number using the validation simulation run as 
a reference. All 28 bar and body parameters values (Table 2) were numbered consequtively from the 
bar towards the feet and only one pararameter values was changed ( %10+ ) at a time. Variable 1q  

represents horizontal position of bar endpoints, 2q  is horizontal position of bar midpoint relative 

endpoints, 3q  denotes vertical position of bar midpoint and 4q  is the angle of the arms with the 

vertical. Note the difference in scaling for the vertical axis of a) compared to b) and c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
Figure 5 RMS error, a) - d), as a function of trial number where one trial represents one particular 
combination of high bar parameter values. Body parameter values were kept fixed. The validation 
simulation run was used as a reference. Each of the 9 high bar spring parameters could take on three 
values, the estimated value and %10± , giving a total of 6831939 =  combinations, i.e. trials. 

Variable 1q  represents horizontal position of bar endpoints, 2q  is horizontal position of bar midpoint 

relative endpoints, 3q  denotes vertical position of bar midpoint and 4q  is the angle of the arms with 

the vertical. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
Figure 6 RMS error, a) - d), as a function of trial number where one trial represents one particular 
combination of high bar and gymnast body parameter values. The validation simulation run was used 
as a reference. Selected bar and body segment (arms, torso and thighs) parameters were allowed to 
take on two values, the estimated one and + 10%, giving 16384214 =  combinations in all. Variable 

1q  represents horizontal position of bar endpoints, 2q  is horizontal position of bar midpoint relative 

endpoints, 3q  denotes vertical position of bar midpoint and 4q  is the angle of the arms with the 

vertical.  
 
 
 
 
 


