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Abstract

Ukraine is an energy-dependent country and directing its
efforts into economical use of its own energy resources.
One relevant available energy source is peat briquette.
During its production it is necessary not only to improve
the quality of briquettes, but also to reduce the total
expenses of energy required for their production, par-
ticularly in the drying process. For this, a mathemati-
cal model of peat drying is developed using the GMDH
(Group Method of Data Handle). Next, with measured
disturbances, optimal input variables for the drying pro-
cess are found using mathematical optimization and ANN
(artificial neural network). To avoid fast changing of
the operational conditions while avoiding over drying or
under drying of the peat, the operational conditions are
classified into a number of classes. Finally, an iterative
procedure for changing the input parameters from the past
values to new values is introduced to ensure improved
quality and energy efficiency.
Keywords: Group Method of Data Handling, peat drying,

energy efficient process, regimes map, steam tube dryer

1 Introduction

A high increase in the price for Russian gas and further
reducing of its consumption in the Ukrainian energy sector
requires Ukraine to find other energy resources. One of the
solutions is to use peat briquettes instead of gas because
the price of 1 GJ net energy produced from peat briquette
is less than half the price of that of gas.
Some of the advantages of using peat briquettes over other
fuels in Ukraine are (Hnyeushev, 2008):

1. high calorific value, 16-18 MJ/kg,
2. environmentally safe fuel during combustion,
3. considerable reserves of peat in Ukraine,
4. after peat extraction, the bogs can be re-cultivated

and transferred to the domestic uses.
One of the most important processes of peat briquettes
production that determines its quality and is the most

energy-intensive on the peat plant, is the process of dry-
ing peat. There is a lack of information and mathe-
matical description associated with drying peat in steam
tube dryers. Precise description of factors such as adjust-
ment of fuel and air ratio during combustion and many
significant perturbations that affect the process, are not
readily available. This will lead to the production of poor
quality peat, increases the cost of drying the peat and may
give rise to emergency situations during the peat produc-
tion.
For the development of methods for improving the
operation of the drying process in the steam tube dryers,
several investigations as described in (Korol’ and Lisht-
van, 2008) have been performed. Mathematical descrip-
tion, simulation and optimization of the production of peat
briquettes and the drying process can be found in (Boha-
tov, 1976; Naumovich, 1984; Gatih and Genshaft, 1980).
Research into the modelling and control of a rotary dryer
have been carried out by (Yliniemi, 1999; Forsman and
Slätteke, 2002; Slätteke and Åström, 2005).
A mathematical model of a physical system can be used
for identification of the system, forecasting, and for
optimization and control. For complex systems, various
methods can be used for system identification and they
have been studied actively in recent years. Among them
the identification method known as Group Method of Data
Handling (GMDH) — developed by A.I. Ivakhnenko, is
well known (Ivakhnenko, 1970). The conceptual ba-
sis for the structure of the GMDH is based on heuristic
self-organization, and the resulting polynomial equation
obtained from its identification procedures is dependent
on the Kolmogorov-Gabor polynomial. The development
of the algorithm of GMDH that provide robust linear and
nonlinear polynomial regression models can be found in
(Aksyonova and Tetko, 2003). An inductive method that
permits the choice of a model with least error and least
bias and self-organizing data mining has been studied by
(Ivakhnenko and Rogov, 2005).
In Section 2, the peat drying process, its basic condi-
tions and disadvantages in the Ukrainian briquette plants
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is described. Basic physical and mechanical properties of
peat, the operational conditions of the drying process that
affect the quality of dry peat, and the indicators for energy
consumption are described. The feasibility of using the
Group Method of Data Handling for creating a mathemati-
cal model of drying peat and the use of neural networks for
determining the optimal input variables of the peat drying
is shown with a brief description of the basic of GMDH.
In section 3, the development of a mathematical model
of the peat drying process by using the experimental
data obtained from the industrial plant is discussed. The
implementation of the model and the selection of structure
and parameters of the neural network that allows to find
the best energy saving parameters of the drying process
is described. This forms the main feature of classifying
and recognizing the industrial situations that is described
in section 4.
In section 5 the procedure of finding the optimal ope-
rational value for varying measurements is discussed.
In section 6 and 7 discussions and conclusions of the
approaches used for optimal operation of the drying pro-
cess are given, respectively.

2 System description

Optimum drying regimes provide the most effective ope-
rations of dryers that satisfy modern requirements: quality
of produced products, the minimum cost price (thermal
and electrical energy consumption) and fire safety. The
process of peat drying should be carried out with the aim
of reducing costs for heat and electricity. The cost of elec-
tricity consist of the cost for electricity consumption by the
electric drive of drum dryers, the electric drive of blowers
(which determines the amount of air that passes through
the dryer), and the electric drive of bootable units of dryer
(auger and boot sleeves). Thermal energy is consumed as
a heat carrier (saturated vapor) to heat the peat inside the
dryer. As for the quality of peat, characteristics such as
bulk density of peat and its temperature should be consi-
dered.
The main purpose of drying the peat is to produce dried
peat with necessary moisture regardless of the fluctua-
tions in the moisture content of the peat that enters into
the dryer. According to various investigations the quality
of peat depends on the duration and conditions of drying,
temperature, primary moisture variation, average moisture
content and the maximum particle size of the peat (Ku-
lakovskyi and Rosen, 2013a).
A functional block diagram describing the process of dry-
ing the peat in the steam tube dryer is shown in Figure 1.

Variables Y1, Y2, . . . ,Y8 are the outputs of the system
which should be optimized and controlled. The input vari-
ables that are manipulated to obtain the desired outputs are
denoted by X1, X2, . . . ,X4. The disturbances that act on the
system are represented by F1, F2, . . . ,F8. The description
of the inputs, outputs and the disturbances are presented

Figure 1. Functional description of peat drying process.

in Table 1. When the values of F1, F2, . . . ,F8 change, the
outputs variables Y1, Y2,. . . ,Y8 will also change. To adjust
the outputs to the desired values (quality and energy con-
sumption), optimal values of inputs X1, X2, . . . ,X4 should
be calculated and used.

Table 1. Description of variables and parameters in the peat
drying process.

Var. Description Unit

X1 auger rotational speed rev/min

X2 drum rotation speed rev/min

X3 steam temperature ◦C

X4 fan flow rate m3/h

F1 peat moisture %
F2 peat bulk density kg/m3

F3 peat ash content %
F4 peat temperature ◦C

F5 air temperature ◦C

F6 peat flowability ◦

F7 peat fractional composition mm

F8 peat moisture variation %
Y1 dried peat moisture content %
Y2 dried peat moisture variation %
Y3 dried peat temperature ◦C

Y4 electrical energy consumption kWt

Y5 drying agent exit temperature ◦C

Y8 thermal energy consumption kJ·h·103

Operation of the peat drying process with steam tube
dryer is carried out according to a regimes map. Regimes
map is a diagram of input variables and certain distur-
bances according for which the operator must set neces-
sary regime of drying. A feature of the regimes map is
that it helps to achieve the necessary moisture content and
temperature of the dried peat in the drying process using
input variables whose values depend on the characteris-
tics of peat arriving at the plant. However, the operational
regimes are not necessarily energy efficient, because the
expediency of the adjustment of the drying process for a
certain operational regime is not substantiated according
to the influences due to disturbances in which the energy
consumption for the drying would otherwise have been
minimal (Hnyeushev, 2008). When using the regimes,
there are often situations when briquettes are produced
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with degraded quality. This is mainly due to the fact that
the peat drying process in plants is continuous and a piece
of peat remains in the drum dryer for about 15 minutes
(from the moment it enters into the drum until the mo-
ment it is leaves to the conveyor that takes away the dried
peat to the press). In every 25-40 minutes (depending on
the workload of trolleys, screw speed, the time required to
prepare peat at preparatory department etc.) a new trolley
with peat to be dried enters into the dryer. The physical
properties of these new peat can differ significantly from
the peat in the previous trolleys. It is too complicated to
determine the exact moment when the peat from the new
trolley enters into the dryer: the time of incoming peat
with different properties can only be determined approxi-
mately. In addition, when a new trolley with peat having
different physical properties is charged into the dryer, the
peat from previous trolley content may still be inside the
dryer. If the input variables are quickly modified based
on the regime maps for the new incoming peat trolley,
the peat from the previous trolley (which is still inside the
dryer) may be over/under dried and the quality of the peat
may be poor (defective products).
In order to develop optimal operating regimes it is neces-
sary to:

1. Collect information of peat drying regimes used in a
real plant.

2. Develop a mathematical model of the drying process.
3. Optimize the values of the input variables for ener-

gy efficient performance and for necessary quality of
dried peat.

4. Develop a procedure for implementing the optimal
operational conditions for the peat drying process.

Getting accurate information for the construction of a
mathematical model of peat drying is possible after plan-
ning and conducting the experiments of a peat drying pro-
cess in a real dryer. During the investigation of a peat
drying process with steam tube dryer, it was found that
there are some features that can rise the playback error
of some output functions. So at first, it is necessary to re-
solve the problem of features selection. For every model it
is necessary to include input variables and parameters that
have influence on the output variables. This allows to filter
separate features and reduce the overall error of the model
(because each feature has a measurement error and we find
a model of optimal complexity in which the error is mi-
nimal). This task can easily be solved by Group Method
of Data Handling. GMDH possesses an advantage when
there is no (or almost no) a priori information about the
structure and distribution of model parameters and when
experimental data is extremely small (even when the num-
ber of the model parameters are smaller than the number
of observations). (Ivakhnenko and Yurachkovskij).
The idea is to construct a model of optimal complexity
based only on data, i.e. by knowing only simple input-
output relations of the system; GMDH will construct a
self-organizing model (a higher-order polynomial of the

input variables).
The GMDH approach for the construction of a mathema-
tical model can be useful because (Ivakhnenko, 1970):

1. The optimal complexity of the model structure that
is adequate to the level of noise in the data can be
found. For real problems, with noisy or insufficient
data, a simplified optimal model is more accurate.

2. It guarantees that the most accurate or unbiased mo-
dels will be found, i.e. the method does not miss the
best solution during exhaustive search (in the given
class of functions).

3. Any non-linear functions or features, which can in-
fluence to the output variable can be used.

4. The method gets information directly from data and
minimizes the influence of apriori assumptions about
the model outputs.

Among the most well-known parametric algorithms are
the combinatorial (COMBI) algorithm and the multiple
iterative algorithm (MIA). The idea of all GMDH-type
algorithms is to gradually generate complicated models
and selecting a set of models that show a higher forecas-
ting accuracy using data outside of the training set. These
data outside of the training set are usually denoted a vali-
dation or testing set, and the top-ranked model is claimed
to be optimally-complex.
The main idea of the COMBI algorithm is not miss any
of the possible models (Ivakhnenko, 1971). Therefore, at
each connection level, the COMBI algorithm:

1. covers all models;
2. conducts the selection of the best combinations of the

variables.
The basic ideas of MIA is (Cheberkus and Ivakhnenko,
1980) to:

1. reduce the number of models considered in each row
of the selection;

2. reduce the number of rows, and thus to accelerate the
access to the best level of connection.

Therefore, for each row (in the MIA algorithm):
1. a fixed number of best transformation of a signals

(each transformation of a signal is considered as a
signal) is selected;

2. every combination of best variables creates a new
signal in the transition to the next level.

For carrying out the identification it is possible to use an
intelligent technology based on artificial immune systems
(de Castro and Zuben, 1999), which allows to select the
parameters of the mathematical model in accordance with
the real signals. This approach is of particular relevance if
the model has a large number of parameters.
According to Table 1, there are 15 design parameters in
the model of the peat drying process and it is necessary to
calculate 4 values of optimal input variables. For this rea-
son development and installation of on-line optimization
codes in programmable logic controllers (PLCs) for deter-
mining the optimal values of the input variables of the peat
drying process will be more difficult than the hardware im-
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plementation of neural networks in neurochips and neu-
rosignal processors. Therefore, it is more appropriate to
create a selection (data) for optimizing parameters and
variables of the model under certain industrial operational
situations for training, testing and construction of a neural
network. For capturing the dynamics of the drying peat
process, the most expedient action is to use a multilayer
perceptron as a high-performance model after learning. A
model with good extrapolation possibilities that allows to
build functions of any complexity and is in sensitive to an
increase in the number of input actions, is important for
building a multivariate model (Yurachkovskij and Zaent-
sev, 1987). A multilayer perceptron model that is trained
by experimental data allows to realize "input-output" cha-
racteristics of the system. This means that when new va-
lues of perturbations appear in the drying process, the per-
ceptron model allows to calculate the optimal control ac-
tions.
There are cases when input variables are found to change
by a large value. For example, let us consider that the tem-
perature of the steam should be increased from 100◦C to
130◦C according to optimal value of X3. This is done by
burning an increased amount of peat for producing steam
in the boilers. A significant amount of time is needed for
changing the temperature (moving to the necessary ope-
rating conditions). It will be quite difficult to control the
required amount of the peat needed for combustion in the
boiler and the temperature of the drying agent (steam).
To overcome major inconvenience in the operation of the
drying process caused primarily by the inertia of the pro-
cess, it is advisable to carry out a classification and recog-
nition of industrial situations. It means that for a certain
set of values of the disturbances acting on the system, a
range of values of control actions or input variables for
which the energy consumption is lowest and the quality of
dried peat is satisfactory, is selected. This facilitates the
task of adjusting the drying process, reduces the possibi-
lity of a quick change of the values of input variables in
the process of drying and increases the intervals where the
peat gets dried with the required quality.

3 Modeling of peat dryer

In order to develop mathematical dependencies of the
changes in the target or output variables Yj due to changes
in the input variables Xi, active experiments were con-
ducted. For conducting experiments, it is first necessary
to plan the experiment.
For planning the experiment, regime maps of steam tube
dryers are used. The experiments were carried out in the
peat plant "Soyne" in Ukraine, where the inputs variables
were changed in a well planned manner within the allowed
range of the operation conditions. An increase in the mois-
ture content of the incoming peat necessitates an increased
temperature of the steam in the dryer or a reduced speed
of the feeder (auger) (drying speed) or, in rare cases, redu-

cing the fan flow rate. The input variable X3 interacts with
X2. If the feeding rate of the peat in the dryer is increased,
then with a constant temperature of the steam, the time
that the peat stays in the dryer should be increased. How-
ever, with a constant drying time, the temperature of the
heat carrier should be increased (Kulakovskyi and Rosen,
2013b).
The input variable X4 in the peat plant is practically not
regulated (although it is a possible by using the elec-
tric drive present in the plant). The range within which
employees can (in accordance with "Exploitation instruc-
tions") change the fan flow rate varies from 1370 to 1400
rev/min. This is due to the fact that in the existing regime
maps this variable is ignored.
A plan of the active industrial experiments is shown in
Table 2, where (-1) indicates the minimum, (+1) the maxi-
mum, and (0) indicates the average value of the input vari-
ables for certain values of the disturbances acting on the
process.

Table 2. Plan of active experiments of drying in steam tube peat
dryer.

Input variables
Experiment X1 X2 X3

1 0 0 0
2 +1 0 +1
3 +1 -1 0
4 -1 0 -1
5 -1 +1 0
6 0 +1 -1
7 0 -1 +1

Two series of industrial experiments using the plan of ac-
tive experiments of drying with steam tube peat dryer (Ta-
ble 2) were conducted. Results of the experiments are
shown in Table 3.

It is necessary to relate the outputs Yj to the inputs Xi.
One possible way to model this relationship is to postulate
an empirical model of type

Y m
j =

N

∑
k=1

β jkφk(X1, . . . ,X4;F1, . . . ,F8), (1)

where β jk is an unknown parameter (constant) while φk(·)
is a chosen set of basis functions. In the simplest case,
N=12 and k ∈ {1, . . . ,4} : φk=Xk, or φk=Fk−4 —in other
words, a linear model in the manipulatable inputs X j and
disturbances Fj.
The error of the model on the training set is the sum of the
errors of the individual training vectors, root-mean-square
error (RMS).

E =
m

∑
j=0

(Yj −d j)
2, (2)

where Yj – output variable of learning vector; d j – the cor-
responding target output value system.
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Table 3. Experimental data set.

No. F1 F2 F3 F4 F5 F6 F7 F8 X1 X2 X3 X4 Y1 Y2 Y3 Y4 Y5 Y8

[%] [kg/m3] [%] [◦C] [◦C] [◦] [mm] [%] [ rev
min

] [ rev
min

] [◦C] [m3/h] [%] [%] [◦C] [kWt] [◦C] [kJ]
1 43.6 417 23 24.7 28 41.1 1.49 3.5 3.81 9.63 27.6 128 14.7 5 72.6 67.3 96.7 15685
2 42.6 385 22 26.6 28.5 41.4 1.58 5.82 3.76 9.58 27.58 129 17.9 7.2 70.4 66.61 102.8 16600
3 41.9 377 16.9 24.7 27 42.9 1.58 4.39 3.72 9.5 27.62 123 15.8 5.1 59.4 66.82 97.2 20500
4 41.4 341 17.1 27.6 27 42 1.74 3.49 3.7 9.4 27.8 124 14.7 8.5 57.2 67.17 94.8 19920
5 40.9 305 16.8 28 26 43.8 1.66 2.53 3.71 9.32 27.8 119 14 4.2 55 66.68 93.7 22010
6 41.2 333 16.1 26.1 26 43.7 1.54 2.66 3.73 9.33 27.84 126 14.6 3.1 58.9 66.93 96 20800
7 45.4 358 15.5 26.6 26 43.9 1.61 1.95 3.77 9.3 27.84 112 16.1 4.6 55 66.83 88.5 22600
8 44.9 367 15.3 24.7 25 43.5 1.45 2.69 3.77 9.1 28.16 118 17.6 6.1 57.2 68.89 91.5 21435
9 45.2 369 15.7 26.1 25 43.3 1.44 2.52 3.7 10.1 28.02 117 16.4 4.8 60.5 73.82 91 19835
10 45 399 15.9 27.1 25.5 41.4 1.52 2.12 4.1 10 28 124 16.3 4.9 63.8 75.03 96.5 20390
11 45.1 407 16 28 26 40.5 1.6 1.67 4.03 10.1 27.9 128 17.1 5.1 63.3 73.27 100 28015
12 42.9 425 15.9 26.6 26 39 1.54 2.09 3.2 8.7 27.94 130 16.6 2.9 61.6 65.37 103.1 16930
13 47.1 376 18 28 25.5 43.4 1.55 4.19 4.3 10 27.82 132 19.8 6.2 63.8 71.29 102.5 15585
14 43.5 372 17.1 26.4 26.2 42.3 1.56 3.01 3.8 9.4 27.53 119 17.6 6.1 60.1 68.45 98.7 15105

Table 4. Values of Root-mean-square (RMS) error of objective functions.

Objective function
learning algorithm Y1 Y2 Y3 Y4 Y5 Y8

COMBI 0.053298 0.057419 0.062413 0.054312 0.038591 0.065312
MIA 0.013399 0.019476 0.044706 0.043124 0.036048 0.048965

The value of the root-mean square error of the peat drying
process for outputs using COMBI and MIA algorithms are
shown in Table 4. As an example, the models for calcu-
lating the output Y8 (thermal energy consumption) created
with MIA and COMBI algorithms are presented in Figure
2 and Figure 3 respectively.

Figure 2. Graph of comparison of experimental data and model
prediction of heat consumption (Y8) using MIA GMDH algo-
rithm.

From the plots of these figures and values of RMS
error in Table 4 it can be concluded that the model con-

Figure 3. Graph of comparison of experimental data and model
prediction of heat consumption (Y8) using COMBI GMDH al-
gorithm.

structed using GMDH with combinatorial algorithm has
much higher RMS error than with MIA GMDH algorithm.
The execution time of the COMBI algorithm is more than
3 times larger than that of the MIA algorithm because at
each stage the best models that satisfy the necessary crite-
ria are selected.
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The main purpose of the work in this paper is to reduce the
energy consumption for drying peat and to produce dried
peat of required quality from the steam tube dryer. In other
words, we consider two output functions to be minimized
— consumption of heat and electricity. To solve the prob-
lem of the multi criteria which has two objective functions,
the concessions method is applied (Gavrilov and Podi-
novskij, 1975). In order to minimize the energy consump-
tion for the drying process, it is necessary to determine
the amount of heat (in kJ) required for drying the peat at
various physical properties. For this the required pressure
and temperature of the saturated vapour (source of heat)
should be determined. The minimum required values of
the heat energy consumption for a series of experiments
can be denoted by the symbol Zk.
According to the factor analysis conducted in (Altuhov
and Kulakovskyi, 2014) and the technical documentation
of the peat briquette plant "Soyne":

1. the moisture content of dried peat (Y1) should not ex-
ceed 20%,

2. differences in moisture content of the dried peat sam-
ples (Y2) less than 6%,

3. temperature of the drying agent at the exit of the
dryer (Y5) should not exceed 120◦C,

4. steam temperature (X3) should not exceed 150◦C,
5. temperature of dried peat (Y3) should be in the range

30◦C to 90◦C,
6. speed of feeder/auger (X1) — between 3 and 7

rev/min,
7. the frequency of rotation of the drum dryers (X2)

should be between 5 and 12 rev/min,
8. the air flow through the dryer (X4) should not be more

than 40 ·103 m3/h.
So, the conditions for minimizing the energy consump-
tion of drying process in the peat steam dryer to obtain
required qualitative characteristics of the dried peat and to
maintain the safety of the briquettes production, the fol-
lowing objective function with constraints is considered.
The models were obtained by using the GMDH method:

minimize

Y4 =−315.781−0,2288F1 +0.0193F2

+1.004F7 −0,0624F8 +0.4966X1

+0,7834X2 +11.4723X4

(3)

subject to

0.6146F1 −0.4517F3+0.6422F4 +0.4832F5

−0.2333F6 −10.26F7 +1.186F8

+1.57X1 −1.693X2 ≤ 20

(4)

64,21+1.571F1 −0.1532F2 −2.137F4 −3.06F7

+17.09F8 +1,084F12 +1.124X1

+1.679X2 +2.356X4 ≤ 6

(5)

30 ≤ 608,2+1.235F1 −0.1552F2 +2.823F5

−4.354F7 −59.09F8 +7.84X1 −13.29X4 ≤ 80
(6)

−1,148F1 −0.1294F2 +1.961F4 −1.502F5

+1.074F6 +1.78F8 −1.782X2 +0.4177X3 ≤ 120
(7)

−364.4F4 −1022F6 +4107X1 −105X3 +2417X4 = Zk

(8)

3 ≤ X1 ≤ 7 (9)

5 ≤ X2 ≤ 12 (10)

X3 ≤ 150 (11)

X4 ≤ 40 (12)

It is not always advisable to adjust the plant opera-
tion for maximum productivity because the production
volumes for a certain period is dictated by market con-
ditions, in particular the demand for products. The most
effective way of regulating the productivity of a dryer is
by regulating the amount of peat that fills the tube (speed
of auger rotation), i.e. input variable X1. In addition, it is
clear that the lowest electrical consumption will be during
the minimum loading of the dryer and consequently
during its lowest productivity. Therefore, in order to sim-
plify further calculations and for considering the model’s
requirements, the possible values of the productivity must
be divided into some levels of the auger rotational speed.
For the "Soyne" peat plant where industrial experiments
were carried out, it was divided into 3 levels — X1min=2.5
rev/min, X1average=3.5 rev/min, X1max=4.5 rev/min.
Let the optimal input values be denoted by X∗

k , where
k ∈ {1,2,3,4} denotes the k−t h variables which cor-
responds to the optimal output value Y m∗

4. With the
known values of Fk it is possible to find inputs X∗

k , where
now k ∈ {2,3,4}, such that the output Y4 is minimized.
For every new values of the disturbances F1, . . . ,F8, the
optimization code must be re-run (e.g. using the simplex
method) and new optimal value X∗

2 , X∗
3 , X∗

4 should be
calculated.
Because of a limited number of experiments, there are few
data for getting good prediction models for calculating
Xm∗

j . So synthetic data are created and used. Some of
the disturbances Fk are correlated with each other. It is
possible to find new values of the correlated disturbances
using the Monte Carlo method (Vojtishek, 1999). From
correlation analysis, it was found that parameter F2
correlates with F6, F3 with F5, F3 with F8 and F7 with F4
with a correlation coefficient of more than 50%. Some
random numbers were used to compute the independent
disturbances F1, F2, F3, F7 while the remaining distur-
bances were computed by using the correlation models
and the Monte Carlo method.
By using an algorithm for searching the random values
for the two factors, 86 observations were generated. In
addition to 14 data series obtained from the experiments,
a dataset of 100 inputs and 100 outputs for building a
neural network was obtained.
The model that relates F1, . . . ,F8 to optimal values of
input variables X∗

k where k ∈ {2,3,4} could have a
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structure as,

Xm∗
j =

N

∑
k=1

γ jkϕk(F1, . . . ,F8), (13)

where γ jk — is an unknown parameter (constant) and ϕk

is the basis function, e.g. artificial neural network (ANN).
For ANN, it is necessary to select and formulate a learn-
ing procedure of the neural networks. Input vectors for
the neural network are the values of the eight disturbances
F1i, F2i, F3i, F4i, F5i, F6i, F7i, F8i, and outputs of the ANN
are the optimal values of the input variables X∗

2i, X∗
3i, X∗

4i,
where i — denotes the number of samples (experiment and
synthetic data).
The required number of hidden neurons and the activa-
tion function of hidden and output neurons were optimized
by using automated strategies for creating neural network
model in the Statistica Neural Network (Borovikov, 2008)
package.
Using ANN, the three best models with the lowest Root
mean square (RMS) error of the input variables were cre-
ated (Table 5). According to Table 5, the network MLP
8-4-3 has the lowest training and test errors compared to
other two neural networks. MLP 8-8-3 has the best train-
ing performance and MLP 8-15-3 has the best test perfor-
mance and the smallest training and test errors.
Since the network MLP 8-15-3 has negligible amount of
residuals and a good results on training performance this
network is chosen.

4 Classification and recognition of in-

dustrial regimes

Using the experimental data, extended with synthetic data,
we use a classification algorithm and classify the data into
a number Nr of operational regimes. The production of
dried peat is split into different classes with respect to the
consumption of electrical energy in the process of drying
peat under certain disturbances. A total of four classes are
formed. Each class is formed by assigning a maximum,
minimum and an average value of Y ∗

4 to the class. For
each class there is a given range of the values of the in-
put variables X∗

2 , X∗
3 , X∗

4 , when X∗
k — is fixed to a known

value as presented in Table 6.
To solve the problem of classifying the operational
regimes, the training samples (F1i, . . . ,F8i, X∗

2i, X∗
3i, X∗

4i;
Y4i) for i=1,2, . . . ,N are needed to calculate unknown
function f (F1, . . . ,F8, X2, ...,X4), if f (F1i, . . . ,F8i, X∗

2i,X
∗
3i,

X∗
4i)=Y4i ε K=1,2, . . . ,k. The data set F1i, . . . ,F8i, X∗

2i, X∗
3i,

X∗
4i is divided into K=4 classes, such that the kth class

represents the situation with input disturbances for which
f (F1i, . . . ,F8i, X∗

2i, X∗
3i, X∗

4i)=K. Then using discriminant
analysis, new operating regimes can be recognized and
assigned to the appropriate class. The aim of discrimi-
nant analysis is to develop methods for solving problems

Table 6. Classification of industrial regimes for X1=2.5.

Value X2 X3 X4 Y4 Class
minimum 7.42 119.00 26.1 43.54 1
maximum 9.3 139.00 26.65 49.67 1
average 8.19 126.00 26.4 47.08 1

minimum 8.31 113.67 26.6 50.05 2
maximum 9.5 127.67 26.83 52.94 2
average 8.89 119.21 26.73 51.77 2

minimum 8.97 104.67 26.82 53.1 3
maximum 9.8 133.26 26.94 54.17 3
average 9.16 118.3 26.89 53.73 3

minimum 9.10 95.55 27.02 55.01 4
maximum 9.70 118.43 27.60 60.30 4
average 9.43 107.65 27.26 57.64 4

of recognition (discrimination) of new objects by compa-
ring the magnitude of their attributes with those clusters
that are already created. Such a comparison allows us to
classify new objects (situations) and include them in one
group (class). The equation for canonical discriminant
function can be written as (Mueller and Cozad, 1988):

Skm=u0+u1X2km+u2X3km+...+u11F8km, (14)

where, Skm is the value (score) on the canonical discri-
minant function for case m in group k; Xikm is the value of
input variable Xi for case m in group k, Fikm is the value of
disturbances Fi for case m in group k and ui are coefficients
which produce the desired characteristics of the function.
Using the Mahalanobis distance (Jouan-Rimbaud and
Maesschalck, 2000) for classification, a measure of the
difference between two random vectors (Xi,Xi+1) with
equal distributions is calculated as,

d(Xi,Xi+1)=
√

(Xi−Xi+1)S−1(Xi−Xi+1)T ), (15)

with the probability that the sample belongs to data that is
needed.
The Mahalanobis distance is the smallest distance for the
class function to which the regimes belongs.
Since each sample is calculated using a priori knowledge
of the model variables, the probabilities are called poste-
rior probabilities. Also, the accuracy of classification of
industrial regimes is assessed using a classification matrix
that indicates the percentage of classification accuracy of
the regime to the required class.
As an example, the classification matrix that indicates the
accuracy of classifying the production regime to the re-
quired class in the steam tube dryer for X1=2.5 is shown
in Table 7. P1, P2, P3, P4 are the amount of data set that
belongs to class K ∈ {1,2,3,4}. The results of the dis-
criminant analysis of the peat drying regimes in the steam
tube dryer showed that the data set which corresponds to a
certain class, accurately belongs to a specific operational
regime. The values of the coefficients for the classification
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Table 5. The results of constructing the best neural networks for finding optimal parameters X2, X3, X4 when X1=2.5 using Statistica
Neural Network package.

Net. name Training
perfor-
mance

Test
perfor-
mance

Validation
perfor-
mance

Training
error

Test er-
ror

Validation
error

Hidden
activation

Output
activa-
tion

1 MLP-8-4-3 0.6702 0.0337 0.82123 5.8844 1.85121 2.0113 Logistic Logistic
2 MLP 8-8-3 0.9924 0.2589 0.84325 0.2769 6.38024 3.7267 Exponent. Tanh
3 MLP 8-15-3 0.9899 0.3994 0.85092 0.1908 0.18109 4.0310 Logistic Identity

Table 7. The classification matrix for indicating the accuracy of
classifying the regimes for X1=2.5.

Class percent P1=7 P2=9 P3=42 P4=42
1 100 7 0 0 0
1 100 0 9 0 0
3 97.619 0 0 41 1
4 100 0 0 0 42

Total 99 7 9 41 43

functions obtained from the results of discriminant analy-
sis are presented in Table 8. The classification’s functions

Table 8. Values of the coefficients ui5 for X1=2.5 obtained from
the discriminant analysis.

Coeff. P1=7 P2=9 P3=42 P4=42
u0 -87196 -88996 -89339 -89273
u1 3837.273 3676.194 3609.626 3607.79
u2 349.0444 334.67 328.4349 328.0761
u3 1640.103 1816.024 1877.824 1885.447
u4 -682.357 -590.207 -573.424 -576.659
u5 70.75283 66.05498 65.16128 65.2285
u6 -347.997 -435.43 -440.25 -434.504
u7 83.16267 130.5181 133.0582 128.128
u8 530.0742 723.6801 733.9228 720.617
u9 1302.379 1200.007 1187.654 1190.253
u10 -3403.97 -5044.25 -5121.24 -5005.24
u11 -664.441 -592.096 -578.54 -580.824

allow with sufficient accuracy to classify a sample to the
required class.

5 Optimal operation of peat dryer

After classifying and recognizing industrial regimes it is
necessary to develop an algorithm for operating the dry-
ing process of peat and to create a procedure for selecting
input variables belonging to the relevant class. This is ne-
cessary to find a data set X∗∗

k which is the optimal value
for a given value of disturbance Fk that would correspond
to a certain class {X∗∗

k ;Fk} ε kn, where n ∈ {1, . . . ,4}.
The algorithm for optimal operation of the peat drying

process in steam tube dryers given below:

1 Before starting the dryer, the physical properties of
peat are defined (N=1, where N is the number of
measurement perturbations; F1i, F2i, F3i, F4i, F5i, F6i,
F7i, F8i, i — is the number of iteration of the al-
gorithm for setting the optimal values of industrial
regime parameters). Then the operator sets the re-
quired value of productivity by using the given value
of input variable X1i. Next, new optimal values
X∗

2i, X∗
3i, X∗

4i will be calculated using the neural net-
work. These values must be set on the drying sys-
tem. The nearest discriminant function which ap-
proximates the given industrial regime and therefore
the class situation K∗

i , is defined by using discrimi-
nant analysis.

2 For the next measurements, N=2 (F1i+1, F2i+1,
F3i+1, F4i+1, F5i+1, F6i+1, F7i+1, F8i+1), the opti-
mum energy-efficient value of input variables (X∗

2i,
X∗

3i, X∗
4i) are determined by using the neural network.

After this, the class of production situation is deter-
mined using discriminant analysis. If the new class
K∗

i+1 lies in the same class as before (K∗
i ), then no

changes in the drying regime should be done. Thus
the peat drying process is continues with values X2i,
X3i, X4i. If the new class Ki+1 does not lie in the
same class as before, then it is necessary to find new
optimal values for the input variables. These values
should belong to an appropriately defined new class
of industrial regime.

3 At first, the value of X4i+1 must be set. This value
should belong to a required class. Much of the elec-
trical energy needed by the peat drying process is
consumed by the fan. So we set the value of X4i+1,
which is closest to the area of the required class K∗

i+1
(X4,i+1 ∈ K∗

i+1).

4 Change of value for X4i+1 leads to a change in the
specific consumption of dry air ℓ. So it is necessary
to determine a reasonable value of specific heat ener-
gy required to heat the drying agent due to change
in the specific consumption of dry air ℓ. The specific
consumption of heat for heating the drying agent (q2,

Optimal Operation of the Peat Drying Process in Steam Tube Dryers

38 Proceedings of the 56th SIMS
October 07-09, 2015, Linköping, Sweden

DOI
10.3384/ecp1511931



kJ/kg of evaporated moisture) from the initial Θ1
temperature to the final Θ2 is written as,

q2 = l · cd.a · (Θ2 −Θ1), (16)

where cd.a is a specific heat capacity of the drying
agent; ℓ is specific consumption of dry air required
to evaporate 1 kg of water.
According to equation (16), it is necessary to define
specific consumption of heat for heating the drying
agent from the initial to the final temperature. Then
according to equation (17) minimum acceptable va-
lues of specific consumption of heat for evaporation
(q). Specific consumption of heat, which is removed
from the peat (Hnyeushev, 2008), is written as

q = q1 +q2 +q3 +q4, (17)

where q1 is specific consumption of heat for evapo-
ration of peat; q3 is specific consumption of heat for
heating the drying agent; q4 is specific consumption
of heat losses to the environment.

For calculating the minimum value of q for the peat
drying process, it is necessary to know the variables
F5, F4, F3, F1, X4, Y1, Y3, Y5. The values of distur-
bances are measured for each trolley. Variable X4
has value corresponding to X4i+1. The values of Y1 is
set to the maximal allowable; Y5, Y3 are minimally-
acceptable levels of the requirements for the produc-
tion of dried peat by the minimum value of q for
the process of drying peat. The values must be such
that they allow to obtain the dried peat with required
quality and require fire safety of drying with a mini-
mum value of q for the process of drying peat.

So for determining the minimum available value of
specific consumption of heat per of water, which
is removed from the peat (qmin), the values F1i+1,
F3i+1, F4i+1, F5i+1, X4i+1, Y1max=20%, Y3min=30◦C,
Y5min=90◦C are used. The minimum value of steam
consumption (Y8) for the industrial regime (F1i+1,
F2i+1, F3i+1, F4i+1, F5i+1, F6i+1, F7i+1, F8i+1, X2i, X3i,
X4i+1) is found by the formula Q=q·W (where W is
the dryer productivity on evaporated moisture kg/h).

5 From a mathematical model of heat consumption ob-
tained using GMDH, the value of X3 can be found as

X3 =−3.47048F4 −9.73333F6 +39.11429X1

+23.01905X4 −0.00952Y8
(18)

So the optimal value of X3 can be determined from
the function of disturbances F4, F6, X4, Y8 that is de-
termined previously (F4+1, F6+1, X4i+1, Y8).

6 The nearest discriminant function which approxi-
mates the given industrial regime (F1i+1, F2i+1, F3i+1,
F4i+1, F5i+1, F6i+1, F7i+1, F8i+1, X2i, X3i+1, X4i+1) is

set. Then a new class of the industrial regime Ki+2 is
defined. The class Ki+2 must be compared with K∗

i+1.
The value X2i, X3i+1, X4i+1 must be set if class Ki+2
corresponds to the class K∗

i+1. If not, the value of X2
must be changed.

The value of input variable X2 can be found by a
mathematical relation X2= f (Fk;X∗

3 ,X
∗
4 ) as,

X2 = 18.0457+0.58F3 +0.1455F4

+0.1438F8−0.1011X3
(19)

This function was found using algorithm MIA of
GMDH. Thus, the new value Xi+2 can be found.

7 Next, for industrial regime {F1i+1, F2i+1, F3i+1,
F4i+1, F5i+1, F6i+1, F7i+1, F8i+1, X2i+1, X3i+1, X4i+1}
the new meaning of class Ki+2 is determined. If new
class Ki+2 meets the required class K∗

i+1, then the
value of the input variables are the following: X2i+1,
X3i+1 and X4i+1. If not, the algorithm of searching
the energy-efficient values of input variables should
be continued.

8 Then new value X4i+1 must be found. The change of
value will be carried out with the relevant step from
the average value of the necessary class (see Table
6). The change of the value of X4 must not be very
large. So it is possible to choose a small step, e.g.
±0.001.

9 Further, according to steps 4–8, the necessary values
X∗∗

2, X∗∗
3, X∗∗

4, that would meet the desired class K∗
i+1

are determined.

This searching algorithm will smoothly change the ope-
rating condition of drying peat. The algorithm allows to
obtain the dried peat in a certain acceptable range, it meats
the fire safety of the drying process, and the process will
take place in energy-saving drying regimes.

6 Discussion

The use of GMDH allows to solve the problem of features
selection of the mathematical model. In particular, only
7 input parameters out of 12 that describe the peat dry-
ing process were included into the electrical energy con-
sumption function. The linear model of drying peat was
created using experimental data. In this model, an objec-
tive function for minimizing energy consumption of the
drying process and fulfilling quality requirements of dried
peat and fire safety was chosen. Then, optimization of
the value of input variables was carried out. After that,
the structure of neural networks were found. The train-
ing of neural networks was completed with the best qual-
ity of reproduction the data on training and testing sam-
ples of drying peat process models by optimal energy sav-
ing control variables. In this model the values of distur-
bance influences were considered as inputs, and optimal
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energy efficient values of input variables were obtained as
outputs. For neural networks, exponential basis function
was chosen and for hidden layers, logistics functions were
chosen. The classification of industrial regimes and dis-
criminant analysis were conducted. Regimes were clas-
sified with respect to minimum electric energy consump-
tion. So classification was carried out in situations with
optimum energy saving regimes. Also for every class, the
boundaries of adjustment of each input variables were de-
termined. A discriminant function was found from the
experimental and synthetic data. The discriminant func-
tion allowed to determine the required class situation of
energy consumption with high accuracy. An iterative al-
gorithm for searching the values of input variables with
the least change was developed. Each of these values will
belong to the appropriate class of industrial regime. Ad-
justment of the value of input variables according to the
class of necessary regime allowed to reduce the impact of
sudden changes in the conditions of the process of peat
drying in the dryer. This reduces the probability of obtain-
ing dried peat that does not satisfied the quality require-
ments. The procedure of finding and setting values of in-
put variables allowed to move smoothly from one class of
industrial regime to another. For further improvement it is
necessary to develop a control system. Input variables of
drying process in this system should be obtained by using
the operation procedure of peat drying process. Thus, sys-
tem may be represented as two procedures — procedure
for adjustment of the heat energy consumption (consisting
of airflow adjustment (X4) and expenses of drying agent
(X3)), and procedure for adjustment of the drum rotational
speed (X2).

7 Conclusions

An optimal procedure for the operation of a drying peat
process was developed. This procedure consist of defi-
ning the class of industrial regimes that depends on energy
consumption, and selection of necessary values of input
variables corresponding to a given class. The operation
procedure allows to reduce the consumption of energy for
9% for production 1 ton of briquettes compare with ope-
ration according to the regime’s map , and to obtain the
required quality of dried peat. For further improvement it
is necessary to develop an automatic control system to fa-
cilitate the implementation of operation of the drying pro-
cess.
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