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Abstract

In industrial plants and other types of dynamic systems, it is a common situa-
tion that measurements of primary system outputs are not available on-line. The
primary outputs may for example be quality properties, that can be determined
only through costly laboratory analyses, i.e. they can be measured only at a low
sampling rate and with a considerable time delay. Since the primary outputs give
vital information on the system performance, and in fact may be the sole purpose
of the system, it is of interest to estimate them continuously or at a high sampling
rate. This can be done by use of a system model utilizing all available information
in both the known system inputs and the secondary system outputs that often are
available at a high sampling rate.

The thesis considers the identification of optimal primary output estimators
for this purpose from experimental data, using known system inputs and sec-
ondary measurements as estimator inputs. The estimators are based on underlying
Kalman filters, and the identification can be done by use of an ordinary prediction
error method. However, an optimal utilization of the secondary output informa-
tion may require that an output error (OE) model structure is specified. This is
one of the major new insights provided by the thesis.

With low noise secondary measurements, it is in some cases possible to use
estimators of reduced complexity. This is found from an analysis of perfect mea-
surement cases, and further developed into a systematic method for finding a
parsimonious estimator with a minimized mean-squared validation error.

The experimental data must include primary output measurements. It is,
however, shown in the thesis that also low and even irregular primary output
sampling rate data may be used for the purpose, provided that the prediction
error method is appropriately modified. This is a direct consequence of the OE
structure used, including the use of secondary measurements as estimator inputs,
and it is considered to be of significant practical and economical importance.

It is also shown in the thesis that the ordinary least squares (LS) estimator
for static systems is a special case of the general current (a posteriori) OE estima-
tor for dynamic systems. This also forms a link from Kalman filtering to principal
component analysis (PCA), and to the chemometrical principal component regres-
sion (PCR) and partial least squares regression (PLSR) methods based on data
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compression into latent variables. These methods make use of data weighting ma-
trices, and assuming a latent variable data structure, the optimal weighting matrix
is shown to be a transposed Kalman gain. It is further shown that in cases with
a few independent and many dependent and collinear regressor variables, the best
solution may be obtained by use of a two-step PCA/PLSR+LS solution, where
the independent variables are used only in the second step. '

The static latent variables methods are finally combined with the developed
methods for identification of dynamic primary output estimators, leading to two-
step PCA4+OE and PLSR+OE methods, where the known inputs are used only in
the second step.

The theory and methods developed are tested on simulated data. They are
also tested on data from industrial plants and experimental test rigs, primarily
with operator support applications in mind.

Further applications in e.g. failure detection and feedback control are given a
preliminary discussion.
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Chapter 1

Introduction and overview

This chapter gives an introduction to the problem treated and a fairly
detailed overview over the thesis. The main new insights and other
contributions are summarized.

1.1 Introduction to problem area

1.1.1 Basic industrial problem

In many industrial plants, measurements of primary system outputs are not avail-
able on-line. Such outputs are typically product quality properties, that for practi-
cal and economical reasons are measured only at a fairly low and possibly irregular
sampling rate, often through laboratory analyses of physical samples. For opera-
tor support and other purposes, it is of interest to estimate these primary outputs
more or less continuously, and that can be done by use of the known inputs and a
deterministic model of the plant. Such estimates will fail to capture the influence
of unmeasured plant disturbances, and may therefore be far from satisfactory.

In typical cases, however, the plant is equipped with a number of sensors that
give secondary output information at a high sampling rate intended for operator
support and local control. In such cases the primary outputs may be estimated at
the high sampling rate, utilizing all available information contained in the known
inputs, either manipulated or measured, and in the secondary plant measurements.
The problem is illustrated in Fig. 1.1.
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Figure 1.1 Basic principle for estimation of primary properties z and primary system
outputs 4; from known inputs « and secondary outputs Y2 in presence of process noise v
and measurement noise w1 and ws.

Note that the primary properties are denoted z in Fig. 1.1, and our main
interest is accordingly to determine an estimate 2. We will, however, assume that
w; is white noise, and the best estimate of z will thus in many cases be the best
estimate of y; (also assuming that wg is white noise uncorrelated with w-), i.e.
2 = ¢j1. In the following we will use both the Z and the §; notations.

The insight behind the use of the y, measurements as inputs to the estimator
model is that they may carry valuable information about the stationary process
noise v, which it should be possible to utilize when estimating z. The y, measure-
ments may in fact also carry information about plant disturbances that cannot be
modeled as a stationary stochastic process. The industrial use of primary prop-
erty/output estimators may be operator support, failure detection, and feedback
control.

In the special case that the plant in Fig. 1.1 can be adequately modeled by
static input-output relations, we have a linear regression problem with a straight-
forward least squares solution, assuming a large enough number of observations.
With a limited number of observations and a large number of y, variables, it may
then be necessary to use some form of regularization. We will return to the static
case later.

In the general dynamical case, the estimator model in Fig. 1.1 may be obtained
by mechanistic modeling. The basic aim of the thesis is, however, to develop the
theoretical basis and practical methods for identification of the optimal estima-
tor from experimental data. This data must then also include y; measurements,
although not necessarily at a high sampling rate.
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Example 1.1

Consider the continuous-time system in Fig. 1.2, where

e 7 is a manipulated and known input

e v is an unmeasured white process noise source

the transfer function with time constant T3 is a process noise model, i.e. 3
is the physical noise

T
T = [ I1 Ty X3 } is the state vector

w1, wo1, woo and wse3 are white measurement noise sources

Y1 is the primary measurement

Yo1, Y22 and yo3 are secondary measurements.

Wa3 Wa2 Wo1
vo__, T331—|- - x3 ‘Cl\-_b Yo3 Yo2 Y21
wy
' X
“ EB_’ T251+ 1| T151+ 1 azsl o— ¥
a

Figure 1.2 Theoretical continuous-time system with second-order plant, first-order
process noise model, known input u, primary measurement y; and secondary measure-

T
ments Y2 = [ Y21 Y22 Y23 ] -

If the plant model including the noise covariances were known, the optimal 2
estimator would in the present case (with y; not normally available) be a Kalman
filter driven by u and y2, but not by y; (see Appendix A for an introduction to
Kalman filtering and further references). When the model is not known, we are
left with the opportunity to identify the estimator, or in other words to identify
the underlying Kalman filter. From the figure we can directly see that

e with a low noise output y91 = z1 = z it is possible to use the simple zero-
order estimator §; = 2 = yo;
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e with a low noise output y22 = s it is possible to identify a good deterministic
first-order model with y99 as input and y; as output

e with a low noise output ye3 = 3 it is possible to identify a good deterministic
second-order model with u and ys3 as inputs and y; as output, i.e. without
use of the noise model.

With noise corrupted y2 measurements it is theoretically possible to find an
estimator that makes use of all available information in w, y21, y22 and yo3 in an
optimal way. Whether this theoretically optimal estimator or a reduced estimator
as indicated above is to be preferred, depends on the noise levels and the number
of sampled observations in the identification experiment, and has to be decided on
the basis of validation against independent data.

|

1.1.2 Industrial example

Fig. 1.3 shows an experimental twin-screw extruder at the Borealis polyolefine
plant in Bamble, Norway. In an experiment this extruder was used to produce
hard polypropylene foam, with the measured foam density as the primary quality
output y; x (see Chapter 10 for results). The manipulated uy inputs were a com-
mon temperature setpoint for some heating zones along the extruder and a gas
injection pressure, while the secondary y2 x outputs were the outlet pressure and
temperature measurements along the extruder.

Feeding  Gas injec-  y91 yoo

0 "[ese se

| Variable \
heating u;

Motor
unit

Constant heating

Figure 1.3 Experimental extruder with variable heating setpoint u; [°C], gas injection
pressure up [bar|, temperature measurements 21 to y24 [°C], outlet pressure yo5 [bar]
and foam density 1 [g/cm®].

Industrial example with multivariate data

The system in Fig. 1.3 above has two inputs and five outputs, and it is thus a
multivariable system. The data generated by the system must then be said to be
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multivariate, although the number of variables is not very high. We would have a
more typical multivariate case if a near-infrared (NIR) spectroscopic measurement
was included, with for example 4096 additional variables (frequencies).

Related examples

Although the main focus of the thesis is on the type of industrial problems indicated
above, there may well exist interesting and important examples related to for
example environmental or ecological problems. Such applications are, however,
not further discussed in the thesis.

1.1.3 Terminology

Although the primary property z is directly measured through the output y; only
at a low sampling rate (except possibly in an experiment), information about z
may to a large extent be contained in the yo measurements. The plant itself thus
acts as an instrument for indirect measurement of z, and the process of finding the
relation between y» and z can therefore be seen as a form of calibration. Since the
plant generally is dynamic in nature, and since the available data may be highly
multivariate, it has been considered appropriate to use the terminology dynamic
system multivariate calibration (Ergon and Di Ruscio, 1997, Ergon, 1998a,b,c and
Ergon and Halstensen, 1999).

As indicated by this terminology, the work presented in the thesis has its roots
in two different scientific fields. One is the broad field concerning dynamic systems,
more specifically system identification, while the other is the field of chemometrics,
specifically multivariate calibration. Both system identification and multivariate
calibration have, however, a common root in linear regression and least squares
estimation.

A comment on the use of the terms multivariable and multivariate is also
in place. Inspired by Belsley (1991) and Johansson (1993), we relate the term
multivariable to multiple-input, multiple-output systems that may exist either as
abstract concepts without context or as physical real-world entities. The term
multivariate, on the other hand, is used to denote real-life data (or simulations
of real-life data) in a given context with meaning and units and perhaps some
statistical distribution properties. In short, real-world or simulated multivariable
systems generate multivariate data.

1.1.4 General background

A basic background for the present work is the statistical theory of regression re-
lated to static systems. In the notation of the thesis, linear regression is concerned
with the estimation of primary dependent variables y; on the basis of information
provided by known independent variables w and measured secondary dependent
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variables ys. Again using the extruder in Fig. 1.3 as an example, we could make an
attempt to estimate the primary output y; by use of a static model with u; and us
as independent regressor variables and y2; to yo5 as dependent regressor variables,
and assuming that the feed quality as well as the manipulated inputs u; and us are
slowly varying, a useful estimator could then be found by use of the least squares
(LS) method. The discovery of the LS method is generally attributed to Gauss in
1795 (Grewal and Andrews, 1993), and it has since then been successfully used in
numerous practical cases in a wide field of application areas.

When the number of regressor variables is large and the number of observa-
tions is limited, the ordinary solution to the LS problem may have very large
variance due to overfitting, and some form of regularization is then called for
(e.g. Tikhonov and Arsenin, 1977). In many such cases, fortunately, the esti-
mator variables are strongly collinear, and most of the information can thus be
compressed into a few latent variables within a subspace of the variable space.
Basic tools for this data compression are singular value decomposition (SVD) and
principal component analysis (PCA), and the regression method directly based on
this is principal component regression (PCR), while partial least squares regres-
sion (PLSR) combines data compression and regression in an iterative approach.
Detailed presentations of PCR and PLSR are given in Martens and Nees (1989)
and Hgskuldsson (1996) (see also Appendix C for an introduction and further ref-
erences). The PCA, PCR and PLSR tools for multivariate data analysis are used
in many cases of great practical interest, also when the estimator variables far out-
number the observations at hand. An example is product quality characterization
by use of near infrared spectroscopy, with several thousand estimator variables
(frequencies) and often less than one hundred observations.

In parallel with the development of the static PCR and PLSR methods, the
field of dynamic system identification (SI) has been developed into a sophisticated
set of methods and practical tools. Classical SI is summarized in comprehensive
books, e.g. Ljung (1987,1999) and Soderstrom and Stoica (1989), and a short
introduction to the prediction error method (PEM) used throughout the thesis
is given in Appendix B. At present, subspace identification methods attract a
great deal if interest, see e.g. Van Overschee and De Moor (1996) and Di Ruscio
(1997). A short discussion on the use of direct subspace methods in the present
context is given in Chapter 11. In all forms of SI, one finds that LS estimation
is used as a basic tool. It is, however, refined by use of for example prediction
optimization methods in order to account for the noise influence in a proper way.
With overparametrized models, or data that is not informative enough, there may
also in SI be a need for regularization (see e.g. Sjoberg et al., 1993). The need for
this may, however, be reduced by an appropriate model reduction, i.e. by use of a
parsimonious model with as few parameters as possible.

Through the use of innovation models, system identification is closely linked to
the Kalman filtering theory (Appendix A). The different process and measurement
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noise sources are then replaced by the white innovations in an underlying Kalman
filter.

1.1.5 Preliminary comparison of static and dynamic estimators

From a system identification and Kalman filtering point of view, it is intuitively
evident that the classical LS linear regression and the modern PCR and PLSR
multivariate calibration methods may be seen as special static cases of the more
general parametric SI methods for dynamic systems. When these similarities are
to be investigated, four basic facts have to be acknowledged:

1. The LS, PCR and PLSR methods are used to find models for estimation of
unknown output variables y from both independent and dependent known
variables z. In SI terminology this means methods for estimation of unknown
system outputs y; from both independent system inputs w and dependent
system outputs yp. The basic observation here is that also dependent out-
puts y2 ought to be used as inputs in the SI procedure. This is not a new
observation (see e.g. Ljung, 1995), but a theoretical treatment of appropriate

~methods for optimal utilization of the y2 information still appears necessary.

2. When the multivariate calibration models are used for estimation, the y;
outputs are of course not known, and this will also be the case for the cor-
responding dynamic models found by SI. We are therefore lead to consider
output error (OE) models and not the qualitatively different ARMAX (Au-
toRegressive Moving Average with eXogenous inputs) type of models based
on known past y; outputs. This is necessary since identification of an AR-
MAX model would result in the wrong underlying Kalman filter, considering
that neither past nor present y; outputs are available. This insight is a
central contribution of the thesis (see also Ergon, 1999).

3. The known input and secondary measurement sampling rate must be high
enough to capture the plant dynamics. However, since the optimal estimators
are based on OE models, they may be identified by use of experimental data
with a low and even irregular primary output sampling rate. This insight is
another main contribution of the thesis (see also Ergon, 1998b).

4. In order to find the optimal y; estimate at a specific sampling instant, also
current (a posteriori) information must be utilized. The underlying Kalman
filter must therefore be of the predictor-corrector form, which is normally
not the case for innovation models used in system identification.

These basic facts must be reflected in the theoretical analysis of the relations
between SI and LS, PCR and PLSR, and this is quite independent of the specific
ST methods considered.
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1.1.6 Previous work related to inferential control schemes

The primary output estimation problem outlined above has earlier been discussed
in the context of inferential control schemes. Joseph and Brosilow (1978) assumed
constant known inputs u(t) to a continuous-time system, and split the estimator
into static and dynamic parts. Assuming known noise covariances and the plant
dynamics known from impulse or step response tests, the Kalman filter based op-
timal dynamic estimator was then developed. However, no attempt was made
to identify the optimal estimator entirely from recorded plant data. Mejdell and
Skogestad (1989) applied a static PLSR solution to a distillation column for es-
timation of composition, using tray temperatures as secondary information, but
made no attempt to extend the solution to the dynamical case. Budman et al.
(1992) compared the approaches of Joseph and Mejdell when applied to an ex-
perimental fixed bed methanation reactor, and found the PLSR approach superior
when the nonlinear system was operated in a wide range of operating points. Wise
(1991) described the theoretical bases for using PCA to model dynamic systems
within a state-space framework, and Harnett et al. (1998) used this approach in
a simulation of an overheads condensor and reflux drum model for a distillation
column. The limitations of this PCA approach is further discussed in Chapter 9.

1.1.7 Questions raised and answered

The following questions are raised and answered in the thesis:

e How should optimal primary output estimators be designed, assuming a
known and linear plant model?

e How should the optimal estimators be identified, in the case the plant model
is not known?

e How should noise free and low noise secondary measurements be handled?
e How should the optimal estimator structure be determined?

e Can the industrially interesting case with a low and possibly irregular pri-
mary output sampling rate be handled?

e What is the theoretical connection between dynamic estimator solutions and
the static LS, PCR and PLSR methods?

e What should dynamical PCR and PLSR methods look like?

The theoretical answers to these questions are supported by simulations through-
out the thesis, and by real data examples presented in Chapter 10.
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1.2 Theoretical primary output estimators

Assuming that a reliable deterministic-stochastic linear model of the plant in Fig.
1.1 is known (from mechanistic modeling or system identification), optimal esti-
mators for the primary properties z and outputs y; can be realized as Kalman
filters driven by the known inputs v and the secondary yo measurements. The
optimal continuous-time estimator as well as optimal discrete-time estimators are
developed in Chapter 2, which is a basis for the following chapters dealing with
the estimator identification problem. A summary of Chapter 2 is given below.

Basic discrete-time model

The basic discrete-time model used in the thesis is

Tp41 = AIE}C -+ Buk + G’Uk (1.1)
g = Crxp+ Diug +wik
Yor = Coxoy -+ Doug +wap,

where zj, is the state vector, and where vy, wy x and wa  are white noise sequences.

Optimal prediction (a priori) estimator
Utilizing the information in past y2 1 values as well as past and present uy values,

T
and assuming that vy and wg = [ w{k wg:k } are independent white noise
sequences uncorrelated with ug, the theoretically optimal prediction (a priori)
estimator is

Ze—1 = Grkk-1=C1 [qf —A+ AKQOEcz}_l
X [(B — AK?EDQ) up + AKQOEyg,k] + Diug

= FpNa ™) [Beala ™ us+ Bpala e (1.2)

where K9F is the gain in a Kalman filter driven by uj and ys 5, while F,(g71),
B,1(q7Y), and Bpa(g~?) are polynomials in the unit time delay operator g~*. The
estimate Zyj;_; is here a linear combination of past estimates, past and present
values of uy, and past values of ¥ 5, where the horizon into the past is determined
by the model order n.

The notation K9F is used since the estimator corresponds to the output error

(OE) model

yik = Fy (@) [Bpa(a ™ ue + Bpa(a ™ )yk] + O, (1.3)
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where 9 as explained in Chapter 2 is a none-white noise sequence. The reason
for using this OE model, and not the deterministic part (considering y, x as an
input) of an ARMAX model, is simply that only the OE model will give the correct
Kalman gain, considering that y; is not normally available. This is contrary to the
ordinary case with only uy as input, where the deterministic part of the ARMAX
model is identical with the deterministic part of the OE model. The details of this
is shown in Chapter 2, and also in Ergon (1999).

Optimal current (a posteriori) estimator

When present ys 1 values are used as well, the theoretical current (a posteriori)
estimator becomes

b = dhw =1 (- K9BCy) [al — A+ AKPPC,| ™
X [(B - AK?EDQ) U, + AK?Eyg,k]
+C1KD® (yox — Daug) + D1y
= F;Yq™) [Bc,l(q—l)uk +Bc,2(q—1)y2,lc] , (1.4)

corresponding to the OE model

ik =F g™ [Bc,l(q_l)uk + Bc,2(q_l)y2,k] + Yk, (1.5)

where also 9, is a non-white sequence.

1.3 Identification of primary output estimators

The OE estimators (1.2) and (1.4) can be consistently identified from input-output
data from a controlled experiment, where ug, y1 , and yo i for £ =1,2,..., N are
available at a sufficiently high sampling rate, with uy persistently exciting and N
sufficiently large. The theoretical basis for this is developed in Chapter 3, where
also practical identification methods are discussed, and where examples and Monte
Carlo simulations that support the theoretical results are included.

It follows from the analysis in Chapter 2 that the OE estimators above may
not be derived by modifying ARMAX estimators, as can be done in the ordinary
case with only uy used as estimator input. This has important consequences when
it comes to the identification of asymptotically (N — oo) optimal estimators.

The main results in Chapter 3 are published in Ergon and Di Ruscio (1997),
Ergon (1998a,c) and Ergon (1999), and a summary is given below.
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Identification of optimal prediction estimators

The optimal prediction estimator (1.2) can be found by identification of the system
(1.3), with the non-white noise sequence ¥;. The identification can be done by use
of a standard prediction error method (PEM) based on Kalman filtering formalism
(see Appendix B). The basic principle in PEM is to use an OE prediction model in
parallel with the plant itself. The output zglrkedl(é) = yffﬁc 1(6) from this model
is based on past yo ;, values as well as past and present uy, values, and the resulting

prediction error is
4
e1,(0) =16 — yir;:‘k_l(g)» (1.6)

where 6 is the parameter vector used in the prediction model. In Chapter 3 it is
shown that minimization of a scalar criterion function

Vi Z e1k(0)er, k(9 (1.7)

asymptotically (for N — oo) results in the optimal output error prediction (OEP)
estimator (1.2). This means that § — 0 = 0o, where 0y is the exact parameter
vector that for the sake of the theoretical analysis is assumed to exist, and at
the same time %Eszl 617;@(9)5{,9(0) — ‘]172sz1 9x9%, which according to the
underlying Kalman filter theory is a minimized expression. In (1.7), the scalar
function may be h[-] = det[-] or h[] = trace[-]. The minimization is performed by
use of a numerical Gauss-Newton procedure, and in order to avoid local minima
this normally requires an initial model that basically can be found by ordinary
least squares estimation (Ljung, 1987,1999).

Identification of optimal current estimators

The optimal output error current (OEC) estimator is found in a similar way by
identification of the system (1.5), where the polynomials are defined by (1.4).

1.4 Perfect measurement cases

From Example 1.1 and Fig. 1.2 it is obvious that simultaneous use of several per-
fect noise free secondary measurements theoretically may cause a conflict between
different perfect models. If, for example, both ys2 and yo3 are perfect measure-
ments, we must make a choice between a first-order model using only y22 and a
second-order model using v and y23 as inputs, and the natural choice would then
be the more parsimonious first-order model with only 77 as unknown parameter.
We will then find that the rest of the system will be decoupled, and that a, Tb and
T3 cannot be identified by use of only the y22 and y; output data.
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More detailed discussions of an in the context of the thesis interesting theo-
retical perfect measurement case are given in Chapter 4, where some new perfect
measurement Kalman filtering results are also presented (see also Ergon and Di
Ruscio, 1997). Identification of pure deterministic systems with neither process
nor measurement noise is also discussed in Chapter 4.

1.5 Determination of estimator structure

As in other practical system identification cases, there is also in the present context
a need to find a parsimonious estimator that captures the essential plant charac-
teristics using as few parameters as possible (Ljung, 1987,1999). The main points
are to determine

e the appropriate model order n

e which inputs u; and secondary measurements ys 1 to use.

The final answers to these questions are found by validation against indepen-
dent experimental data. In many cases with a limited number of observations as
a basis for the estimator identification, the smallest root-mean-square validation
error (RMSE) in the estimation of y; x may then very well be obtained by use of
a reduced and asymptotically (N — co) biased estimator with a parameter vector
0™ £ g, where 0 is the exact parameter vector that is assumed to exist. To reduce
the bias one basically has to employ larger end more flexible model structures, re-
quiring more parameters and possibly increasing the estimation covariance. We
thus want to find a good trade-off between the bias and variance contributions to
the total RMSE. A systematic method for this model structure determination is
presented in Chapter 5 (see also Ergon and Di Ruscio, 1997).

1.6 The low primary output sampling rate case

In many practical cases it is not feasible to perform an experiment with high rate
sampling of the primary system outputs, and there is thus a need for methods
based on low and possibly irregular sampling rate y; data. This case is studied
in Chapter 6, extending the theory and the methods presented in Chapter 3 (see
also Ergon, 1998b). The basic insight here is that it is not quite necessary to
minimize the criterion function (1.7) as a function of €7 4(0) for all samples at
k=1,2,...,N. It is in fact sufficient to minimize

Vn, () = Zakelk slk ] [ ZELJ e1; ( }, (1.8)
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where

o — 1, at the time instants & where y; is sampled
¥~ 0, at the time instants k where y; is not sampled,

and where thus ¢ ;(f) are the prediction errors that can be obtained from the
y1,; measurements that are available at a low and possibly also irregular sampling

rate. The minimization will then be based on a reduced number, N; < N, of the

predictor outputs z}:'r;:il = yll)r,:i_l, corresponding in time with the available y; ;

samplings. The practical and theoretical requirements are only that

e the u; and y; ; sampling rate is high enough to capture the plant dynamics
e the plant is persistently excited
e the number N; of available y; ; samples is sufficiently large

e the y; samples are representative, i.e. that y;; has the same statistical
distribution as y; x would have.

In this case, however, an initial model for the numerical minimization cannot
be found by ordinary least squares estimation, and solutions to this problem are
therefore also presented in Chapter 6, together with Monte Carlo simulations that
verify the feasibility of the proposed methods.

1.7 Ordinary linear regression as special case

As mentioned earlier, we may as a special case have a static plant in Fig. 1.1. The
model (1.1) is then simplified to

Tr+1 = Vg (19)
yig = Cizg+ Diug +wig
Yok = Coxp+ Doug +woy,

where zj, is the vector of latent variables explaining y;  and yg . The theoretical
current estimator model (1.5) is then simplified to

yieg = C1EE (yor — Doug) + Diug + e
= Blur+Bjva + ek, (1.10)

where uy are known independent regressor variables, while yo; are known but
dependent and noise corrupted regressor variables and ey is white noise.
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We find the corresponding data based estimator by collecting the observations
uf, y{k and y%jk for k =1,2,...,N in data matrices U, Y7 and Y2, and solving the
overdetermined set of equations

B

v-v %) g

} +E. . (1.11)

The classical unbiased LS solution is then

BLS T . —
[Z§S}=<{%MU Y2]> [%T:lyl, (1.12)

or without known input variables
. -1
BLS — (Y'QTYVQ) Y'QTY']. (113)

The theoretical relation between the OE model (1.5) and the static form (1.10),
with the LS solution (1.12) or (1.13), is developed in Chapter 7. As (1.5) is related
to an underlying Kalman filter, this also forms a theoretical link between Kalman
filtering and ordinary linear regression. The results in Chapter 7 are previously
reported in Ergon (1998a,c).

1.8 Multivariate static case

In many cases of great practical interest we have a large number of collinear vari-
ables y2 in (1.10), which for a realistic number of observations may cause very
large variance in the parameter estimates. The solution to this problem is some
form of regularization, e.g. PCR or PLSR, where u; and yox (or only ysx) are
replaced by a low number of estimated latent variables 74. Assuming a data struc-
ture in accordance with the model (1.9), the latent variables 74 are then the state
variables .

The theoretical connection from Kalman filtering via the optimal current esti-
mator (1.4) and least squares regression to PCR and PLSR is presented in Chapter
8, and part of this is also previously reported in Ergon (1998a,c). An early and
less general attempt to look into these relations were given in Berntsen (1988).

In PCR and PLSR the regularization is obtained by use of a weighting matrix
W, and the data based estimator (1.13) is then replaced by

~ a ~ A N—1 _~
B=Ww (W'YfvaW) W'vjvi, (1.14)

where Wpcgr and Wprg are found from the data as shown in Appendix C. However,
as shown in Chapter 8 the optimal weighting matrix is a transposed Kalman gain,
ie.

. T ™ !
Bopt.=(K§’E) (KSEYgTYg (K?E) ) KOEYI vy, (1.15)
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which is considered to be a theoretically interesting result.

Another and more practically interesting result presented in Chapter 8 is re-
lated to problems with a few known inputs ux and a large number of collinear y»
measurements. The best regression model may then be obtained by use of two-step
PCA/PLSR+LS solutions, where the u;, information is used only in the second LS
step.

Other forms of regularization, e.g. ridge regression (Hoerl and Kennard, 1970)
or neural networks with restricted training (Sjoberg and Ljung, 1995), are not
treated in the thesis.

1.9 Multivariate dynamical cases

In Chapter 9, the multivariate static estimators are combined with the dynamic
current estimator (1.4), resulting in PCA+OE and PLSR+OE methods. This
may be practical solutions when some or all of the secondary y, measurements are
collinear. The resulting estimators will then become of the type shown in (1.4),
with past and present values of yo partly or altogether replaced by the corre-
sponding estimates 7 of latent variables. Monte Carlo simulations are included
in order to show the feasibility of the proposed methodology. The basic idea in
Chapter 9 is previously presented in Ergon (1998a,c), and an acoustic chemometry
application is presented in Ergon and Halstensen (1999).

1.10 Real data examples

The theory and methods developed in the thesis are to some extent tested on real
data. These cases include an experimental research extruder at the Borealis poly-
olefine plant in Bamble, Norway, a polyethylene civil engineering pipe production
extruder at the Icopal plant in Drangedal, Norway, a complex industrial plant
run by Norsk Hydro, Norway, and an acoustic chemometrics experimental setup
at Telemark Institute of Technology, Porsgrunn, Norway. These applications are
presented in Chapter 10.

1.11 Further research areas

The thesis focuses on the basic problem of estimating primary output properties
that are not normally measured on-line, and the immediate industrial application
of this is in operator support systems. Basic issues related to e.g. closed loop iden-
tification, use of prior knowledge, estimator validation, estimator robustification,
estimator updating and possible applications in fault detection and isolation (FDI)
and closed loop control are briefly discussed in Chapter 11, but are otherwise left
for further research.
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1.12 Main contributions of the thesis

The main new insights and results presented in the thesis are the following:

In order to utilize the information in the secondary output measurements
in an optimal way in primary property estimators, we must use OE struc-
tures and not ARMAX structures (Chapter 2 and Chapter 3). This is also
presented in Ergon and Di Ruscio (1997) and Ergon (1998a,c), and a more
detailed discussion is given in Ergon (1999).

The optimal OE estimators may be identified also when the primary output
is sampled at a low and possibly also irregular rate (Chapter 6). This was
first presented in Ergon (1998a), and further discussed in Ergon (1998b).

Assuming a latent variable data structure, the ordinary LS estimator is a
special static case of the optimal current OE estimator (Chapter 7). Since
PCR and PLSR are again special cases of the least squares method (Chap-
ter 8), it readily follows how dynamic PCA+OE and PLSR+OE estimators
should be developed (Chapter 9). These relations are also discussed in Ergon
(1998a,c).

The dynamic PCA+OE estimators may be identified also in the low primary
output sampling rate case. An acoustic chemometrics example of that is
given in Chapter 10, and another example is presented in Ergon and Hal-
stensen (1999).

Other contributions are as follows:

Theoretical development of the optimal OE prediction (a priori) and cur-
rent (a posteriori) primary output estimators in the high y; sampling rate
case, including asymptotic estimation covariance results (Chapter 2), and a
detailed clarification concerning consistent identification of these estimators
using the secondary measurements as inputs in a prediction error method
(Chapter 3).

Some new asymptotic perfect measurement Kalman filtering results (Chapter
4 and Ergon and Di Ruscio, 1997).

A systematic method for selection of model order and relevant known inputs
and secondary measurements (Chapter 5 and Ergon and Di Ruscio, 1997 ).

Methods for finding initial parameter values in the low y; sampling rate case
(Chapter 6).

A theoretical result showing that the optimal weighting matrix for the chemo-
metrical PCR/PLSR methods is a transposed Kalman gain (Chapter 8).
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e Proposed two-step PCA+LS and PLSR+LS methods for static problems
with both independent and dependent regressor variables (Chapter 8).

e A proposed fault detection scheme (Chapter 11).

e Some clarifications concerning estimator properties essential for feedback
control applications (Chapter 11).

e Some proposed feedback control structures (Chapter 11).
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Chapter 2

Theoretical primary output
estimators

This chapter serves as an introduction to the discrete-time estimator
identification problem discussed in the following chapters. Under the
assumption of a reliable plant model from either mechanistic modeling
or system identification, we develop theoretical primary output estima-
tors and estimation covariances, both for the continuous-time and the
discrete-time cases. The main point in the chapter is that in order to
utilize the secondary y; measurement information in an optimal way, we
must use OE models. It is also shown that these models cannot be seen
as special cases of ARMAX models, which is contrary to the ordinary
case with only the known independent variables v used as input. The
chapter is based on well known Kalman filtering theory.

2.1 The optimal continuous-time estimator

Although we will later focus on identification of discrete-time estimators, it is
instructive to start with the continuous-time case.

o -

2.1.1 Statement of continuous-time estimator problem
Assume the known continuous-time plant model

dx(t) —_ C C C
i Ax(t) + Bu(t) + Gv(t)

z(t) = Ciz(t) + Diu(t) (2.1)
v1(t) 2(t) + wi(?)
y2(t) = Coz(t) + Dou(t) + wa(t),

19
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where z(t) is the state vector, and where in the general multivariable case u(¢),
v(t), 2(t), y1(t), y2(t), wi(t) and wo(t) are vectors as well. Here,

e u(t) is a known input signal

e v(t) is a formal zero mean white noise stochastic process with covariance
function given by the expectation Ev(t1)vT (to) = RE8(t1 — t2), where §(t) is
the Dirac impulse function

T
o w(t) = [ wl(t) wl(t) ] is a formal zero mean white noise stochastic

process with covariance function given by the expectation Ew(t1)w” (t5) =

R$; Rf
rsta =)= | i 7 oo

e RS is positive definite (see Chapter 4 for a special perfect measurement case)

e v(t) and w(t) are uncorrelated, i.e. Ev(t1)wT (t2) = 0 for all ¢; and 5 (may
be ralaxed, see Subsection 2.2.6)

e both v(t) and w(t) are uncorrelated with the input u(t), i.e. Bu(t1)v7T (t2) =0
and Eu(t;)w? (t3) = 0 for all ¢; and to

e only the output ya(t) is normally available (which may, however, also include
more or less noisy measurements of z(t))

o (Cy, A°) is detectable (see Appendix A)
e (A, G°\/RS) is stabilizable (see Appendix A).

These assumptions make it possible to apply the Kalman filtering theory (Ap-
pendix A). Note that noise components that are not white must be modeled as
filtered white noise, with the filter model included in the plant model (2.1). Also
note that some or all of the secondary y, measurements may be collinear, and also
collinear with some or all of the known inputs v and/or some or all of the primary
Y1 measurements.

The problem is now to determine the optimal linear 2(t) estimator based on
u(t) and yo(t). With an optimal estimator we here mean an unbiased and minimum
variance estimator.

2.1.2 Continuous-time Kalman filter solution

The optimal solution to the problem stated above is to use a continuous-time
Kalman filter driven by the known inputs u(t) and the available secondary ys(t)
measurements. Introducing the state estimate £(t), the Kalman filter is given by
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di(t

Jo(t
€2 (t)

<~
~—

A3 (t) + Beu(t) + Kea(t)
0257(25) + Dgu(t)

Y2(t) — 9a(t),

where es(t) is the formally white innovations representation.
In order to determine K5 we solve the algebraic Riccati equation

0 = A°P° + (A°P¥)T + G°R5(G%)T — P°CY (Rgy)CaP",

21

(2.2)

(2.3)

where P¢ = E (z(t) — (t)) (z(t) — £(t))” is the minimized state estimation covari-

ance matrix (Appendix A). We then find

K = P*CY (By) ™

(2.4)

Elimination of §2(t) and ea(t) from (2.2) and use of the 2 and y; output equa-
tions in (2.1) result in

(A° = K3C) &(t) + (B® — K5D2) u(t) + K3ya(t)

31 (t) = C12(t) + Dyu(t).

This estimator is shown in the block diagram in Fig. 2.1.

v

!

y

D,

PLANT

%—yl

BC

» D

"

+

K;

4 T B
'q; / > Oy
A |« o

2=371
&

Figure 2.1 Block diagram for optimal continuous-time 2 and y; estimator.

(2.5)
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The y; estimation error becomes

Y(t) = y1(t) = (t) = Cr[z(t) — 2(8)] + wr (2), (2.6)

which is a colored noise signal (not a white innovations representation, since it is
not an internal feedback signal in the Kalman filter). '

The estimator (2.5) may also be expressed by Laplace transformation assuming
#(0) = 0, and after elimination of X(s) we then find the optimal Z(s) and Y;(s)
estimator

Z(s) = Yi(s)=Ci[sI — A°+ K5Co] " [(B® — K5D2) U(s) + K5Ya(s)]
+D1U(s), (2.7)

and the optimal z(¢) and y;(¢) estimator
Bt =g:(t) = £7{Z(s)}- (2.8)

Remark 1 If the measurement noise sources wi(t) and wa(t) are correlated, i.e.
if Bw (t)wd'(t) # 0, the Kalman filter will not give the optimal y1(t) estimate. The
Kalman filter will, however, still give the optimal estimate of the primary property
z(t) = C1z (t)+ Dyu(t), and that is the important issue in the context of the thesis.

Continuous estimator covariances

The theoretical 2(t) and ¢1(¢) estimation covariances follow directly from (2.6) and
the definition P¢ = E ((t) — &(t)) (z(t) — 2())T as

Cov (£(t)) = CP°CT (2.9)
and
Cov (§1(t)) = En(t)y" (t) = CLP°CT + Rf;, (2.10)
where P° is given by (2.3).

N e A

The development of the optimal continuous-time estimator and its covariance
properties are summarized in Proposition 2.1:

Proposition 2.1 - Optimal continuous-time estimator

For the system (2.1), the optimal continuous-time z(t) and y;(¢) estimator based
on u(t) and yz (t) is given by (2.5) or (2.7) and (2.8). The estimator covariances
are given by (2.9) and (2.10).

|
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Example 2.1

Consider the system in Example 1.1, with 77 = 10, T = 0, 73 = 100, a = 0 and
yo = Yyo3. This might be a stirred-tank heating system with constant holdup as
shown in Fig. 2.2a, with a first-order process noise model. The block diagram is
shown in Fig. 2.2b. Note that the system is not observable from the y, output, i.e.
that (Ca, A°) is only detectable (the non-observable part is asymptotically stable,
as required by the Kalman filtering theory, see Appendix A).

a)
Y2

w [ke/s] @ ) "

¢ [J/kgK]
2 [K] > m [ke] Db

c
4ol
b)
C%)
v__,l __1__ L2 Yo
100s + 1 wi
u nl 1 isé__ 1
T ].08 + 1 T .

Figure 2.2 Stirred-tank heating system with constant holdup and variable tempera-
tures, and the corresponding block diagram assuming a first-order noise model.
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With w/m = 0.1, the system is modeled as

1 = —0.1z1+0.1224+0.1u
g = —=0.01lze +0.01v
z = 1 ‘ (2.11)
Y1 = z+w
Y2 = Zptw,

where the noise variances are so far not specified.

. [-01 o1 . o1l . T o B
WethushaveA—{ 0 _0-01},3—[0},6’—[0.011,01—

[ 10 ] and Cp = [ 01 }, and a straightforward solution of (2.3) then gives

O(i-llrcﬁzp"zzc ( ~ 5 0~5CP§2 _ ) 00'1T§2P§zc
c __ 11r5,+p! 1175, +p 11rS,+p
P¢ = 2P \ . s 221tP22 262 22 (2.12)
01175, 495, P2
with p§, determined by
(955)? + 002555, — 10~ 4r5yrS = 0. (2.13)

From (2.4) we further find

¢ 0101
KS = [ 12 } — V()+10 7 (2.14)
2 |~ | 001 (V3T -1)

where 1/(-) = /1 4+ 75/rSy. The estimator (2.7) is then obtained as

. [s+01 k& -01 |70
2(s) = Vi) =1 OH 0 s+k5+001 |

y (l o } U(s) + [ Zg } Yz(s)) (2.15)

01175y + Mo (s + K8y +001) + k5(0.1 — k)
s+0.1 (s +0.1)(s + k$, 4+ 0.01)

Ya(s).

A block diagram for the system and the estimator is shown in Fig. 2.3.
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10s+1 | gz,
’U___’ 1 SCQT
100s + 1
Wo
+ ¢ Y2

kS, [ \]

> kS,

Z=1
J » 0.1 J
1—0.01« —-0.1
0.1

Figure 2.3 Block diagram for the system in Fig. 2.2 and the corresponding primary
property estimator.

From (2.15) we find two extreme cases with expected results:

e An extremely noisy y, measurement, i.e. 75/r§, — 0, results in K§ —

T
[ 00 ] and
A~ A 1
2(s) =Y1(s) = 157U (); (2.16)
while (2.12) and (2.13) with p§,/r§y — 0 give pS, = 0.0057¢, and thus from
(2.9)

0.1p5, _ 0.0005
011 011 ¥

Var (2(t)) = p§; — (2.17)

T
e A perfect y, measurement, i.e. r5/r$y — oo, results in K§ — [ 0.1 o ] ,

Z(s) = Ya(s) = [U(s) +Ya(s)], (2.18)

10s+1

and
Var (2(¢)) — 0. (2.19)

With the assumptions made, we find a perfect deterministic estimator using
u and y, as inputs, while the process noise model is decoupled.
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2.2 Optimal discrete-time estimators

We now develop the discrete-time optimal estimators that we in Chapter 3 will
identify from sampled input-output data. We consider both the prediction (a
priori) estimator based on past and present known inputs u; and past secondary
measurements ys x, and the current (a posteriori) estimator based also on present
Y9,k measurements.

2.2.1 Statement of discrete-time estimator problem

Consider the known discrete-time plant model

T+l = Axg+ Bug+ Gug
- zr = Cizp + Diug (2.20)
Y,k = 2k tWik

Yok = Coxp+ Doug +wo,

where xj is the state vector, and where in the general multivariable case ug, v,
Zk, Y1.k» Y2,k, W1,k and we i are vectors as well. Here,

e uy is a known input signal

e vy is a zero mean white noise sequence, with a covariance matrix determined
by the expectation R, = Evgvl

T
o wi = [ wlT’k sz’ k ] is a zero mean white noise sequence, with a covariance

Ri1 Rpo

_ T
Ry1 Rao ] = Bugwy

matrix determined by the expectation R,, = [

e R, is positive definite (see Chapter 4 for a special perfect measurement case)

e v, and wy are uncorrelated, i.e. E'ujw,{ =0 for all j and k (may be relaxed,
see Subsection 2.2.6)

e both vr and wy are uncorrelated with the input wug, i.e. Eujvg = 0 and
Eujwl =0 for all j and k

e only the output ys  is normally available (which may, however, also include
more or less noisy measurements of zj)

(Cy, A) is detectable (see Appendix A)

(A, GV/R,) is stabilizable (see Appendix A).
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These assumptions make it possible to apply the Kalman filtering theory (Ap-
pendix A). Note that noise components that are not white must be modeled as
filtered white noise, with the filter model included in the system model (2.20).
Also note that some or all of the secondary y, measurements may be collinear,
and also collinear with some or all of the known inputs « and/or some or all of
the primary y; measurements.

Time delays may be included by use of extra state variables in the plant model
(Franklin et al., 1990), or they may be accounted for by appropriately shifting the
input and/or output data.

The problem is now to determine the optimal linear one-step-ahead prediction
(a priori) estimator Zg_; based on past and present uy and past yp; values,
and the optimal linear current (a posteriori) estimator 2y, based also on present
Yo,k values. With an optimal estimator we here mean an unbiased and minimum
variance estimator.

Note that it is a part of the problem that neither past nor present y; j values
are available as a basis for the z; estimates. This is a common situation in indus-
trial applications, e.g. in polymer extruding, where product quality measurements
involve costly laboratory analyses. Product samples are then collected at a rather
low sampling rate, and product quality estimates at a higher rate may thus be
valuable for operator support and other applications.

2.2.2 General discussion on ARMAX and OFE models

As a background for the development and later identification of optimal discrete-
time estimators, it is suitable to look at some model alternatives. We will then
find a principal and important difference between the ordinary case using only u
as estimator input, and the present case using also yo as input.

The ordinary case

In the ordinary case with uy as input and y as output, the discrete-time predictor
form Kalman filter driven by ug and yx will be given by the equations

Tpyip = A1 + Bug + AKeg
Zek—1 = Urk—1 = CZgjp—1 + Dug (2.21)

ek = Yk — Uklk—1»

where 2,1 is the prediction (a priori) state estimate and ey, is the white innova-
tions process, while K is the Kalman gain (Appendix A).

Remark 2 The subscript (')k|k_1 notation is used to mark variables estimated at
time step k on the basis of yx data up to time step k — 1.
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From (2.21) follows the innovations model

Tppae = AZgp—1 + Bug + AKey (2.22)
Y = Cﬁ?k|k,_1 + Duy, + eg.

OE model From (2.22) we find the OE (Output Error) model
Y = [O(qf ~A)B+ D} Uk + Mg, (2.23)

where n;, = [C(qf — A)™'K + I] e, is a non-white sequence. The optimal z; and
Yk estimator when past values of y; are not known is thus

5% = g% = [Clal — 4)'B+ D] uy. (2.24)

The z; estimation error covariance is then determined by the process noise
propagated through the plant, given by the solution of the Lyapunov equation

PYEU = APOEUAT 4 GR,GT, (2.25)
where POFV = E(z — :?:?E)(:ck — :Zr?l“k] T and the result is

Cov(20F) = CPOPEUCT. (2.26)

ARMAX model As an alternative we may eliminate e, from (2.22) and arrive
at the ARMAX (AutoRegressive Moving Average with eXtra inputs) model

yr = Clql — A+ AKC)™[(B — AKD)uy, + AKyy) + Dug + ep. (2.27)

This is the basis for optimal 2z and yx estimation when past y; measurements are
available.

Comparison of OE and ARMAX models From (2.23) and (2.27) we see
that the deterministic part of the OE model is equal to the deterministic part of
the ARMAX model with K = 0. This fact may be utilized when the ordinary OE
model is to be identified from input-output data (see Chapter 3).

The present case

OE model When we use also yo; as an input to the estimator, the Kalman
filter driven by u and y2; (and not y; x, since it is assumed not to be available)
will be given by

- OE L OE OE _OF
Tpie = AZgg_q + Bug+ AKg “esy
o k-1 = 0256;?@_1 + Douy, (2.28)

OE _ .
€k = Y2k~ Y2kk—1-
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From this follows the innovations model

Yo, = C2xk|k_1 + Doug + ez,k 5

which after elimination of 33,?'%_ ; and combined with the primary output equations
in (2.20) gives the OFE model
-1
ye = Cilal— A+ AKSPG)|
X [(B - AKZOEDQ) up + AKZOEka] + Diug + U, (2.30)
where
O = Ci(zk — 295_1) + w1k (2.31)

is a non-white sequence (not an innovations representation, since it is not an
internal feedback signal in the Kalman filter).

ARMAX model When we use also y;  as an input to the Kalman filter, the
innovations model (2.29) is altered to

A = AP+ B,
L ARARMAX ARMAX g ARMAX (ARMAX (2.32)
Yk = Cl.'%fkﬁl;MAX + Dluk + eARMAX
Yok = C2$k|k 1+ Do + eARMAX

which after elimination of eARMAX and :cAIRMAX gives the ARMAX model

-1
e = C1 {qI —A+A K{’xRMAXC1 + A KQARMAX Cg}
(B—A KARMAX D), _ ARARMAXD Yy,
+AKARMAXy, | 4 ARPRMAXy,

Dy + e FVAX, (233)

Comparison of OE and ARMAX models A comparison of the OE and
ARMAX models above shows that the deterministic part (considering ¥y x as an
input) of the OE model (2.30) has the same structure as the deterministic part
(again considering ys x as an input) of the ARMAX model (2.33) with K{fRMAX —
0. Note, however, that the Kalman gains K9F and K5RMAX are not the same,
except for special cases with perfect ys; measurements and/or very noisy yi
measurements. Use of K4#FMAX in (2.28) will thus be the same as using an observer
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with a non-optimal gain instead of the Kalman filter driven by uy and yo, and
it will therefore generally not give the optimal prediction of z; and y; . This has
significant importance when it comes to the problem of estimator identification
(see Chapter 3).

2.2.3 Optimal output error prediction (OEP) estimator

It follows from the discussion above, that the optimal prediction (a priori) esti-
mator for zy and y; x when past y; x values are not known is derived from (2.30)
as

-1
2k = Bk =1 [qI — A+ AK?ECZJ
x| (B~ AKS® Do) ue + AKS®ya + Drug,  (234)

i.e. based on a Kalman filter driven by uy and yo . The Kalman gain is then
found from the algebraic Riccati equation

POEP —  gpOFPAT L GR,GT (2.35)
-1
—APOPPCY (CuPOFFCT + Rya) CPORP AT

and

-1
K = POPPCT (CoPORPCT + Ryp) (2.36)

where POFF = E(z) — :Z',?'E_l)(a:k - iaE_I)T is the minimized prediction state
estimation covariance (see Appendix A).

This prediction estimator is shown in the block diagram in Fig. 2.4.
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Uk
l W1,k
2k l
Ug Y Y1,k
> PLANT > ’
W, Y2,k
+
» D, >
~OF +
N Tilk—1 —
B + q- Cs »(_
z
klk /L
A e KPP
30E __ ~OFE
. Zlk—1 = Y1 kk—1
—> 01 7‘&(

D,

Figure 2.4 Block diagram for optimal discrete-time primary property prediction esti-
mator.

Prediction estimator covariances
The theoretical 213%—1 and Q?’E'k_l estimation covariances follow directly from
(2.30), (2.31) and (2.34) and the fact that 2z = y1 5 — w1k as
Cov (208 1) = CLPOPPCf (2.37)
and
Cov (§9Fk1) = BSOS (t) = CLPPFCT + Ruy, (2.38)
where POEP is given by (2.35).

The development of the optimal prediction estimator and its covariance prop-
erties are summarized in Proposition 2.2:

Proposition 2.2 - Optimal discrete-time prediction estimator

For the system (2.20), the optimal discrete-time prediction z, and y;  estimator
based on past and present uy and past ya ; values is given by (2.34). The estimator
covariances are given by (2.37) and (2.38).

|
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2.2.4 Optimal output error current (OEC) estimator

In the discrete-time Kalman filter given by (2.28), the current (a posteriori) state
estimate is formed by

30k = (I - K9PCo)a0h_1 + K9 (ya — Dyur) (2.39)
(see Fig. 2.4 and Appendix A).

Remark 3 The subscript (-)y, notation is used to mark variables estimated at
time step k on the basis of ya 1 data up to time step k.

From the innovations model (2.29) we obtain
-1
38 = [qf — A+ AKSECQ] [(B — AKQE Do)y, + AKQEyQ,k} . (2.40)

and thus from (2.39) and the z and y; ; output equations in (2.20) the optimal
current estimator

R -1

5% = 998 =CiI - K§BCy) [al - A+ AKSC)]
x [(B — AKQEDy)uy + AKgEyM] (2.41)
+C1 K98 (y2 5 — Doug) + Dyug.

The block diagram for this estimator is the same as shown in Fig. 2.4, only that
we now use the output é,?l,];: = gj?’,}ak = Clria% + Djug, i.e. based on the current

state estimate :Eg%

The y; estimation error then becomes
by, = Y1k — Ik = C1 (:ck - mﬁ%) + w1k, (2.42)
which just as Jx in (2.31) is a non-white sequence.

Remark 4 As in the continuous-time case, the Kalman filter will not give the
optimal current estimate ylo ,f' i if the measurement noise sources wy x and woyy, are

correlated, i.e. if Bwy(k)wi (k) # 0. The Kalman filter will, however, still give
the optimal estimate of the output property zx = Cixx + Dyuy.
Current estimator covariances

The theoretical Z5F and gy, estimation covariances follow from (2.42) and the
fact that zx = y1 v — w1k as

Cov (207) = €1 PORCCT (2.43)
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and
Cov(iOkx) = Evyuf = C1POECCT + Ry, (2.44)

with POEC = E(z; — :%%Pk:)(mk — i%E)T determined from
T
POEC  _ (I- KZOECQ)POEP (I_Ké)ECQ) :
T
+K§Ron (KS®) (2.45)
where POEP is given by (2.35) (see also Appendix A).

The optimal current estimator and its covariance properties are summarized
in Proposition 2.3:

Proposition 2.3 - Optimal discrete-time current estimator

For the system (2.20), the optimal discrete-time current z; and y;j estimator
based on past and present uy and ypx values is given by (2.41). The estimator
covariances are given by (2.43) and (2.44).

]

2.2.5 A note on observability

Note that we do not assume that (Cq, A) is observable, only that it is detectable
(see Appendix A for definitions). In many practical cases it is quite reasonable to
expect the system structure

T _ | An 4 || = B G
R IR

2z = Ciz1x+ Diug (2.46)
Yg = 2+ Wik
Yo, = Cozop + Doug + wog,

which means that the primary output state z; x is not observable from the sec-
ondary yax outputs. As long as the system (Au, [ Ap B } ,Ch, Dl) is asymp-
totically stable, however, (Cs, A) is still detectable, and the Kalman filtering for-
malism may thus be applied. A continuous-time example of this is already given
in Example 2.1.

The most extreme case occurs when not even (Ca, Agz) is observable. This will
result in KP® = 0, and the prediction and current estimators (2.34) and (2.41)

are then reduced to
2b_1 = Zk = 981 = 9k = Cu(gI — A)™ Buy, + Diuy. (2.47)

This is the ordinary deterministic OE estimator (2.24).
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2.2.6 Relaxed noise constraints

In the problem statement in Subsection 2.2.1 it was assumed that the white process
T
and measurement noise sequences vy and wg = { wfk w%:k } are uncorrelated,

i.e. that Fvjwf = 0 for all j and k. We may relax this constraint by still assuming
that v, and wy, are white sequences, but allowing for Evkwa = Ryw # 0. As given
in Astrom and Wittenmark (1990), the algebraic Riccati equation (2.35) will then
be replaced by

PoyY = APQFAT + GR,GT
-1
— (APSFPCF + GRuw ) (CoPOEPCT + 322)
T
x (APSFPCT + GRuw) - (2.48)

Optimal prediction estimator with relaxed noise constraints

We further find that AKPF is replaced by the predictor Kalman filter gain
-1
K5 = (APOSTCY + GRyw) (CoPTCY + Rn) (2.49)
and the optimal prediction estimator (2.34) is thus altered to

-1
5 ~OB 0
ZI?|E—1 = Yiklk-1~ G [qI -A+ Kp,ZEC2:|

x (B~ KSFDz) we + K95ya | + Drug. (2.50)

Optimal current estimator with relaxed noise constraints
In this case K§F is replaced by the predictor-corrector Kalman filter gain

-1
OE __ pOEP AT OQEP ~T
‘re2 T "D’Uw CZ (C2va 02 —+ JD"’ZZ) . (251)

i.e. the same expression as (2.36), only that POEF is replaced by POEP given by

(2.48). The optimal current estimator (2.41) is thus replaced by

~ -1
208 = 908k =01 (I-KCy) [al - A+ KPFCh| (2.52)

X [(B - KI?’;EDQ) U + Kgg’yg,k} + ClKS;D (Y2, — Daug) + Diug.
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2.2.7 Examples of optimal estimators
Example 2.2

Consider the pure delay system

Tik+l = T2k
Tok+1l = Ug T Uk
ZE = Z1,k (2.53)
Yk = 2t Wik
Y216 = Rk +W2ak
Y22k = Lok + W2k,
with A = lg H,B:G: Yl oi=Cn=[10],0n=[01]end

D1 = D3y = D9y = 0. This is a pure delay system as shown in Fig. 2.5, where
(Co2, A) is not observable.

Y22,k Y21,k

Vk W22 k W21,k W1

Uk o |1 -1 . Y1,k
T2k Z =Tk

Fig. 2.5 Pure delay second-order system.

No y91 measurement We start by looking at the case when the yo; measure-
ment is not used. The theoretical predictor for this system can be determined by
first finding AKSE from (2.35) and (2.36). We then obtain

POEP _ [ 7‘1;7‘22/(7(")1; +722) O } , (2.54)
T'U
OE _ 0
K™= [ 7o/ (Ty + T22) } (2.55)

and
AKGE = [ ro/(ro +r22) } , (2.56)
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which inserted into (2.34) and (2.41) result in equal prediction and current esti-
mators (since C1 K9E = 0 and thus C; (I — KPECo) = C1)

1 1 L _
~OE sOE k=2 |, Y22.k—1
Zk:|k = zlc|k (__ + _) <_ + —.)

Tw 799 Tv T22
1 To/T22 '
S SR L. A TRV 2.57
1+7y/7o2 k-2 l—i—7"1)/7‘22y22’lC ! (2:57)

where 7, and rg2 are the variances of vy and wag k. Considering that the actual
input to the system is w4+ v, this shows that the information in v and ys is utilized
in an optimal way given the noise levels (according to the generalized form of
Millmans theorem, see Lewis (1986)).

From (2.37) and (2.43) we also find the estimator variances
Ty

—_— 2.
14+ 'I‘U/'r'gg ( 58)

Var (zkik. 1) Var (zklk) C,POEPCT =
Special cases occur when
o ry/ry — 0, resulting in Z0F | = Z0¥ — up_o and Var (2,?'%_1)
= Var (zk[k) — Ty

o 7y/ro2 — 00, resulting in 208 | = 208 — yap -1 and Var (z,?IE 1)

= Var (zkl k) — 0. Note that this is a reduced estimator, where the inputs

uy, and vg are decoupled by the use of the perfect 22 measurement (see a
further discussion of such cases in Chapter 4).

All measurements used When also the y2; measurement is used, the prediction
estimator is still the same as in (2.57), while the current estimator is altered to

$OB _ T21722UK—2 + T21TvY22, k—1 + T22TvY21 &k (2.59)
2k = .
| T1792 + T21Ty + T22Ty ’
where 79; is the woy  variance.
For two special cases we obtain the following results:
e When r, = 791 = 192 we find
$O0E _ Uk—2 + Y22 k—1 T Y21k
Zgk = 3 , (2.60)
while the current estimator variance becomes
T
Var (zk]k) 3 (2.61)

Using all information in ug, Y22,k and yo1  will thus in this case give only a
third of the estimator variance as compared with use of only 21 k.



2.2. OPTIMAL DISCRETE-TIME ESTIMATORS 37

e When ro1 /7, — 0 and ro3 /reg — 0 we find é,?'E — Y21, and Var (2,?'%) — To1.

|
Example 2.3
Consider the second-order system
Tig4l = G11T1k +Q12T2k + Dr1ug
Toptl = G21T1k + G22T2k + boug + vk
2, = Tk (262)
YLk = 2k T WLk
Y2, = Dok + Wok.
This will generally lead to the second-order prediction estimator
sOE _ A~OE  _ ~OF ~OE
Zhlk—1 = YL kjk—1 = TO1Y1 k—1|k—2 — 0291 k—2|k—3
+b11uk—1 + b1ouk—2 + b21Yo k1 + b22y2 k—2- (2.63)

Two special cases can be easily calculated:

e Very noisy y» measurements, i.e. 7,/res — 0, will result in Kg)E = 0. With
1 as input and y; as output, we will then obtain the second-order prediction

estimator
~OE _ ~OE ~OE
Tiprie = 0@y g1 T 01285 k1 + D1uk
~OFE _ ~OE ~OF
$2,k+1|k - azlxl’k'k_l + a22127k|k_1 + b2Uk; (2.64)
~OE _ ~0E _ 4»0E
ZRlk—1 = Yikk—1 = T1klk—1"

This is an ordinary OFE estimator, and the theoretical z; prediction variance
will thus be determined by (2.26).

o With perfect yo; measurements , i.e. 7,/roa — oo, the system (2.62) is
reduced to the first-order deterministic system

Tikrl = Q11T1k +a12Y2k + brug (2.65)
2k = Tk
i.e. the state variable x5 is decoupled from the primary output. The re-
sulting optimal estimator then becomes

»’3;?|E_1 = :01075“(:—1 = (g — a11) "' (bruk + a12y2.x), (2.66)
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while the prediction variance according to (2.37) becomes
Var(3g_1) = 0. (2.67)

The form of estimator reduction due to perfect ys ; measurements that we
find in this example, is more generally treated in Chapter 4.

2.3 Discrete-time ARMAX estimators

In Subsection 2.2.2 we have shown that primary output estimators based on AR-
MAX models are not optimal in the present case. The reason for this is that they
are based on underlying Kalman filters that make use of past and present y; x
measurements, and the gain related to the y; measurements will then not be
optimal when the y; r measurements are not available. There are, however, still
some reasons to study this type of estimators, especially since we assume that the
estimators are to be identified from experimental data with a limited number of
samplings:

e With near perfect y; measurements it may be advantageous to use a parsimo-
nious though biased ARMAX estimator with y2 as ordinary known inputs.
This will then result in the same deterministic estimator as if the parsimo-
nious estimator was determined by use of an OE model, but the estimation
covariance for the identified estimator will generally be less (e.g. Soderstém
and Stoica, 1989). Such cases are already discussed in Example 2.1, 2.2 and
2.3.

e When a direct measurement of the primary property z is included in the y,
measurements, we may choose to ignore the y; measurements and use a z
estimator using only v and ys. Such a case is discussed in Example 3.5 in
Chapter 3.

e It is of general theoretical interest to study estimators based on ARMAX
models, especially since the possibility to use the secondary ys measure-
ments as ordinary inputs to such a model may be tempting. As we found in
Subsection 2.2.2, this will theoretically lead to non-optimal primary output
estimators in the present case with non-available y; measurements.

2.3.1 Optimal ARMAX estimators with y, ; available
Optimal ARMAX prediction estimator

The ARMAX model based on a Kalman filter driven by wug, y1x and ya i is given
by (2.33), from which follows the optimal prediction estimator
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) ) X -1
AN = gRAX AR L D =01 g7 - AT 269)

[Buk 4 AKARMAX Yik + AKARMAXyQ,k] + Diug,

where A = A — AKPRMAXC) — AKARMAXCy and B = B — AKPRMAX D, _
AKSRMAXD,,

The Kalman gain K ARMAX — [ K f‘RMAX KQA‘RMAX } is here found from the
algebraic Riccati equation

PARMAXP — APARMAXPAT + GRUGT (269)
—APARMAXPCT(CPARMAXPCT + Rqﬂ)—lcpARMAXPAT

and
KARMAX — PARMAXPcT(CPARMAXPcT + .R/w)—l, (270)

where C = [ ct ¢ ]T, and where PARMAXP — p(z, a:k|RMAX (z— mAﬁz“MAX)T
is the minimized prediction state estimation covariance.

Assuming that y; is available, (2.68) is the optimal linear one-step-ahead pre-
dictor if vg and wy, have arbitrary statistics, and the best of all predictors (including
nonlinear predictors) assuming that vy and wy are normally distributed (Lewis,

1986).
The asymptotic prediction covariances is in this case determined by the expec-

tations
Cov (2FMAX) = oy pARMAXP T (2.71)
and
Cov (gi&%llxc/mf() = C,PARMAXPCT | b (2.72)
Optimal ARMAX current estimator

If also current yi1 x and yo measurements are utilized, the optimal current esti-
mator becomes

2 ~7—1
?I;CLMAX = ( I— KARMAxcl _ K2ARMAXCZ) [q I— A}
[Buk + A I{ARMAX yre+ A K?R.MAXyQ)k}
+Cy K{RMAX (y1,5 — D1ug)
+C1 KAEMAX (4o 1 — Dowy) + Dy (2.73)

With y; x available, the best estimate of y; x would obviously be y‘f‘}:“lll\fAX = YLk,
but such unfiltered measurements would often be of less interest.
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Assuming that y; is available, (2.73) is the optimal linear estimator if v and
wy, have arbitrary statistics, and the best of all estimators assuming that vy and
wy, are normally distributed (Lewis, 1986).

The asymptotic covariances for the current estimator is determined by the
expectation

Cov (#RMAX) = oy PARMAXCCT, | (2.74)
where
PARMAXC ( I— KARMAXg) PARMAXP ( I— KARMAXC>T
i (KARMAX> Ry (KARMAX>T7 (2.75)

with PARMAXP given by (2.69) (see also Appendix A).

2.3.2 Non-optimal ARMAX estimators when y; ; is not available

In the main case of the thesis, neither past nor present y; measurements are
available as a basis for the primary output estimate. In the ordinary case with only
one output vector yi, we would then set K = 0 in the optimal ARMAX estimator
and arrive at the optimal OE estimator utilizing only the information in uz. A
natural choice in the present case is therefore to set KFMAX — ( in (2.68) and
(2.73). As K{BMAX ig not the optimal gain when only the uy an ys x information is
available, this will give non-optimal results. For comparison purposes we develop
these non-optimal primary output estimators and their covariances.

Non-optimal ARMAX prediction estimator
With K{AEMAX — 0 we find from (2.68) the prediction estimator

LARMAX - ARMAX : -1
Zk|5¥1 = e =G0 [q_[ —A+ AKéL\LRMAxcz} (2.76)

x [(B — AKFRMAX D)y + AKQARMAXyQ,k] + Dyug.

From (2.20) and (2.32) with K{*BMAX — ( we find that the state estimation

~ARMAXs _ .. _ ~ARMAX, ;
error Tyt = ok — Ty g I8 governed by

Bt X2 = (A — AKPFVAXC) M2 & Guy — ARSFM ARy (2.77)

and the prediction state estimation covariance
T
PARMAXoP — Eiﬁ%}dﬁh (:Eﬁ]}ﬂdf*xz) is thus determined by the Lyapunov equa-

tion
PARMAXoP ( A—A KZARMAXCZ) PARMAX.P ( A—A KéARMAX CZ)T

T
+GR,GT + AKSTMAX Ryy (ARHTMAX)" (2.78)
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This is the basis for finding
Cou (ZARUAX2) — ; pARMAXaF T (2.79)

and .
Cov (JPAA"2) = CLPARMAXPCT 4y, (2.80)

Non-optimal ARMAX current estimator

With K{#EMAX = 0 we find from (2.73) the current estimator

. . -1
GARMAX: . gAMAK 0y (I KERMARCy) [of — A+ AKSRMAXC|
x[(B — AKSRMAX Dy ) g + AKFRMAXy, )
+C1ES M (yo . — Daug) + D (2.81)
T
Defining iﬁ%MAX? = xk—iﬁ;‘MAX"’ and PARMAX2C — Eiﬁ%MAX? (iﬁ]‘;‘MAXz) :
we find -
T
PARMAXQC — (I _ KZARMAXCQ) PARMAXQP (I _ K?RMAXCQ)
- T
+KRMAX oy (KHRMAX)T (2.82)

where PARMAX2F is oiven by (2.78). The estimator covariances then become

Cov (24RMAX2) = ¢ pARMAXCCT, (2.83)
and
Cov (Z)ﬁ?ll]\fAX2) = C1PARMAX2001“F + Rll- (2.84)
Example 2.4
Consider the system
Tp+r1 = 0.8z +bug + vg
2k = Tg (2.85)
Y1k = 2Zp+wWik (2.86)
Yok = Zp+ Wk,

with r11 = Ew%’k = 0.0001 and 7g2 = Ew%k = 0.01. This is a somewhat special
system, in that both y; x and yo 1, are direct measurements of the primary property.
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For different process noise variances r, = EvZ, the theoretical primary property
estimation variances Var(%;) are determined by use of the dige.m and dlyap.m
functions in the Control System Toolbox for use with Matlab (Grace et al., 1992).
The results are given in Table 2.1.

Table 2.1: Primary output estimator variances for different estimators and different
levels of process noise.

Estimator type Ty =001 |7,=01|7r,=1
Direct use of 25 = yo 0.0100 0.0100 0.0100
OE estimator (2.24) using only uy as input 0.0156 0.1563 1.5625
Optimal OEP estimator (2.34) 0.0137 0.1058 | 1.0063
Optimal OEC estimator (2.41) 0.0058 0.0091 | 0.0099
Non-optimal ARMAX prediction estimator (2.76) | 0.0268 0.2684 | 2.6838
Non-optimal ARMAX current estimator (2.81) 0.0263 0.2631 | 2.6309

We see from this that the optimal current estimator (2.41) theoretically is
the best choice, although direct use of yox is almost as good for high process
noise levels. Since ya x is a direct measurement of zz, the OEC estimator is much
better than the OEP estimator. Due to the fact that ri; << r99 we obtain
K4{RMAX ~ 0, and this is why the non-optimal ARMAX estimators are so inferior.
These differences may be much less pronounced for more general types of models,
with different state variables measured by y; and y; (see e.g. Example 3.2).

Example 2.5

Assume a general system with perfect y; » measurements, i.e. Ry; — 0. This gives
C1 KARMAX _, T and Cy K4RMAX 5 0, and the current ARMAX estimator (2.73)

will then as expected be simplified to EIQEMAX — Y1,k With y; x not available we
will then find éﬁ}jMAX =0, i.e. very far from optimal.

2.4 Disturbance sensitivity

The assumption that the process noise is white or filtered white noise may in
many industrial cases be a rather rough approximation, which also means that R,
in (2.35) and K9F in (2.36) are approximations. The developed estimators (2.34)
and (2.41) will then no longer be optimal, but they may nevertheless give useful
practical results.
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For a discussion of this, we choose the optimal current estimator (2.41). For
this estimator the estimation error due to process noise is

2k = 2k — Ze> (2.87)
where from (2.20)
20 = Cy (gI — A)! Guy. (2.88)
With
Y3 = Ca(gl — A)7 G (2.89)

and use of (2.41), we then find

s = O (I-KQPCy) (of - A+ AKQ®C,) ™ AKSPCy (ol — A)™' Gy
+C1K9ECy (g — A)7! Gug. (2.90)

This results in

£ = 1 (I - K§Cy) (of - A+ AKSPCh)” G (2.91)

If in addition to vy we also have a constant disturbance d acting on the plant
via the matrix Gy, we find the corresponding constant estimation error

Azluy, = C1 (I~ KQPC) (I~ A+ AKQ®Ch) ™ Gud. (2.92)

This should be compared with the estimation error without use of the ys informa-
tion,
Az|, =Cy (I - A7 Gyd. (2.93)

Example 2.6

Assume the system in Example 1.1 with yo = y93, and a = 0, T1 = Ty = 1,
T3 = 10, ¢ = 0.1 and 7§, = 0.01. Further assume discretization by use of a
zero-order hold at the u input and direct sampling of the y; and ys outputs, with
a sampling interval 7' = 0.1. We then find the approximate discrete-time noise
variances 7, = 7$/T = 1 and r9s = r§y = 0.01 (Franklin et al., 1990). Finally
assume that a constant disturbance d is acting on the system in the same way
as the process noise. Determining K9F by use of the dlge.m function in the
Control System Toolbox for use with Matlab (Grace et al., 1992), we then find the
following:

e With use of the ys information, the static disturbance results in the static
estimation error Az|yy, = 0.0565d.
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o Without use of the ys information, the static disturbance results in the static
estimation error Az|, = d.

A considerable reduction in the disturbance sensitivity is thus obtained.
[ |



Chapter 3

Identification of primary
output estimators

This chapter deals with the problem of identifying the optimal discrete-
time primary output estimators that were theoretically developed in
Chapter 2. It is a basic assumption that although the primary outputs
normally are sampled and measured only at a low rate, there exists high
sampling rate y; data from an informative experiment. In Chapter 6
it will be shown that this assumption may be relaxed, i.e. that low
and even irregular sampling rate y; experimental data is sufficient. The
main point in the present chapter is that the optimal OE estimators
can be consistently identified by use of the iterative prediction error
method (PEM) summarized in Appendix B.

3.1 Methodological discussion

There are three different approaches to the problem of identifying the discrete-time
optimal z and y; estimators developed in Section 2.2 from experimental input-
output data:

T
e Regard ¢ = [ uf le’k ygj & ] as a joint input-output time series, apply

standard system identification techniques for estimating the parameters in
an appropriately structured model of ¢ (see e.g. Soderstrom and Stoica,
1989), and finally construct the optimal estimators (2.34) and (2.41).

T
o Use uy as input and yx = [ yflp,k yg: k } as output, apply standard system
identification techniques and finally construct the optimal estimators.

45
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T
e Use [ u{ y%:k ] as input an y; x as output, and apply standard system

identification techniques in order to find the optimal estimators directly.
We will use the last of these approaches. There are two reasons for doing so:

e In a typical industrial case there are many secondary yo measurements around
the plant, and only one or a few primary y; outputs. Using only ¥, as output
may therefore considerably reduce the difficulties in finding a useful model.

e In many industrial cases it is difficult and therefore costly to perform an
experiment with the same high sampling rate for y; as for the secondary y»
outputs. The primary properties are typically product qualities, that may be
found only through laboratory analysis of physical samples, and the available
sampling equipment and cost of analysis may limit the sampling rate. At the
same time a high ys sampling rate may be needed in order to capture the
plant dynamics. We are therefore aiming at methods that can combine two
different sampling rates (and possibly also an irregular y; sampling rate),
and the solution to this problem given in Chapter 6 requires the use of only
11 as output.

In this chapter we will assume experimental data with both y; and y, sampled
at the same high rate. For the identification, we will make use of the iterative
prediction error method (PEM) presented in Appendix B.

3.2 Identification of optimal OE estimators

3.2.1 Statement of problem

The basic statement of problem is given in Subsection 2.2.1, only that we now
must add that

e data records for ug, y1% and yo for k = 1,2,---, N are at hand from an
informative experiment (e.g. Goodwin and Payne, 1977), i.e. with uy persis-
tently exciting of appropriate order (e.g. Soderstrém and Stoica, 1989) and
with a sufficiently large number of samples

e the system operates in open loop (may be relaxed as discussed in Chapter
11)

e the problem now is to identify the optimal output error prediction and cur-
rent (OEP and OEC) estimators developed in Section 2.2.
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For clarity of presentation, we assume that the process noise v and measure-

T
ment noise w = [ wl  wl } are independent. A theoretical discussion of the case

with correlated process and measurement noise sequences is given in Subsection
2.2.6.

3.2.2 Identification of ordinary OE estimator

We start the analysis related to the identification of the optimal discrete-time OE
prediction (OEP) and current (OEC) estimators (2.34) and (2.41) by the simpler
case of the ordinary OE estimator using only v as input. It is well known that
we will then obtain unbiased parameter estimates for the deterministic part of the
model (see Soderstrom and Stoica (1989), p. 205, for the case with the direct
input-output matrix D = 0). In the following we will show this by an approach
that is closely related to the optimal solution for use of the ys information.
The starting point is now the system

Tpt1 = Az + Bug + Gug
yr = Cz+ Dug + wy, (3.1)

where v and wy are white noise sequences with covariance matrices R, = Evkva
and Ry, = Ewkwg, and where Evng =0, Eujv{ = 0 and EujwkT =0 for all j
and k.

Express the output equation in (3.1) as

Y = 2k + wg = G (q—1790) ug, + H (q—17 90) Vg + Wk, (32)
where
G (a7, 90) =C(qI — A 'B+D (3.3)
and
H(q7%,60) =Clal - A)7'G. (3.4)

With the assumptions made 2z and wy are uncorrelated, i.e. Ezkw}: = 0.
Further assume an estimator

up =2 =G (¢7,0) u, (3.5)
such that also Ezl™w! = 0. The estimation error is then

ex(9) = yr — y,‘;red = [G (q"l, 90) -G (q_l,ﬁ)] ug + H (q_1,00> Vg + wg, (3.6)
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where the three terms are uncorrelated. From this we find
Bar0)ef ) = E{[C (a7 00) =G (a0 ue} ({1 w)
+E [H (a7 0) we] [H (7,60) vk}T

> E [H (q‘1,90> 'Uk] [H (q— ,90) ’Uk:} + Ry
CPOEVCT L R, (3.7)
where POEU is determined by the Lyapunov equation
POEU = APOBUAT L GR,GT. (3.8)

Minimization of the scalar criterion function (with h(-) = det(-) or h()
trace(-))

Vv (6) = [ Z ex(0 } (3.9)

and assuming a correct parametrlzatlon, W111 thus asymptotically (for N — o0)
result in § — 6p, i.e. we will obtain G (¢71,0) — G (¢g7',68p). This gives the
OE estimator (2.24), i.e. yzred — §9F with the asymptotic prediction covariance
matrix given by the equality in (3.7).

Note that we here take it for granted that the parameter estimate will converge
so that the minimum in (3.7) is achieved. This is based on a quite general result
that states that the estimate will converge to the best possible approximation of
the system that is available in the model set (Ljung, 1978,1987,1999).

Initial model

Due to the possible occurrence of undesired local minima in the criterion function
(3.9), it may be essential to use good initial parameter values. Such an initial model
can be determined as an LS estimate of an ARX (AutoRegressive with eXogenious
inputs) model (Ljung, 1995). This is achieved by rewriting the innovation model
(2.22) as the ARMAX model

Alg Nk = Blg  ur + Clg ™ Vex, (3.10)
which approximately gives
Alg Myr ~ B(g™ uk + ek, (3.11)
or
e & [T—A(™)] v+ Blg ™ ur +ex
= b0+ e (3.12)

From this we find approximate parameter estimates #™* by use of the ordinary
LS method.
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3.2.3 Identification of optimal OEP estimator

We now turn to the present case with also the secondary yo measurements used as
inputs, and we thus want to identify the OEP model (2.30) developed in Chapter
2, i.e.
0B~ 171
ng = O [q[ — A+ AK; CQ]
x| (B~ AKS®Dy) ug + AKS®ys | + Drug + 9, (3.13)

where
Ok = Cr(zk — Ei_r) + Wik, (3.14)

with i:g,l;f"l given by (2.40). In order to do so we use the predictor in Fig. 3.1,

where we may choose a canonical representation with C; = [ I 0 ] (Kailath,
1980).

v
g L W1,k
CUp 2k Y1,k
PLANT >
W k % Yok
' +
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/' J
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\A —,AK 2 CQ ) pre

4

A

"
o
.

Minimization . e1,k(0)
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Figure 3.1 Identification of OEP estimator by prediction error minimization.
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‘We thus have

yip = Cizg+ Diug +wip = 2, + w1k
pred _ pred pred __ _pred
Yigp—1 = C1%pp_q + D1 wk = 24, (3.15)

with both z; and 2y kd_l uncorrelated with wy ;. The estimation error is then

e1k(0) = (2 = 2Bty +wr, (3.16)
with the two terms uncorrelated. From this follows
Ee1x(0)eli(6) = E (Zk - z};‘rﬁl) (zk z}zlr,jdl) + Bwy pwi,
> E (zk - 2,?@_1) (zk - zk|k_1) + Ry
= C\POPPCT + Ruy, (3.17)

where Z zk| v_q and POEP are given by (2.34) and (2.35). Asymptotically, the equality
in (3.17) is obtained when the predictor in Fig. 3.1 is tuned into the Kalman filter
in Fig. 2.4. Note that also this is based on the assumption that the parameter
estimate will converge to the best possible approximation of the system that is
available in the model set (Ljung, 1978). See Chapter 11 for a brief discussion.

From this follows the optimal prediction estimator

. -1
ZI?|E——1 = y?’,];:ik_l = (] [qI —-A+ AK20E02:|

x [(B = AK§EDz) g + AKS®ys | + Diuy, (3.18)

earlier found as (2.34).

Covariances for OEP estimator
From (3.14) and (3.15) we obtain the minimized asymptotic covariances
Cov (2,9,5_1) = C, POEPCT (3.19)

and
Cov (Q?ﬁk_l) E99f = C1POPPCT + Ryy, (3.20)

These are the same as the theoretical covariances (2.37) and (2.38) found earlier.

Remark 5 In order to determine the covariances (3.19) and (8.20), the model
(2.20) must be known, and this is not the case in the present context. We will,
however, obtain an estimate of the covariance (8.20) directly from a standard pre-
diction error identification algorithm (Ljung, 1995). Due to overfitting, we will
then underestimate the 5135-1 covariance (see e.g. Ansley and Kohn, 1986). A
more reliable covariance estimate is found through validation against independent
data (see Ezample 3.2 to 3.5).
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Special case without y» measurements

Without yo measurements we would have Cy = 0 and K?E = 0. We would then
find

Cov (ZJ?,E) = ClPOEUCiT + Ry, (3.21)

where POFV = E(z), — £0F)(z; — £0F)7 is determined by the Lyapunov equation
(2.25), i.e.

POEU = APOEUAT L GR,GT. (3.22)

This is the same result as found directly in (3.7) and (3.8), and it will be used for
simulation comparison purposes in Section 3.5.

3.2.4 Identification of optimal OEC estimator

The optimal OEC estimator utilizing also current ys values is given by (2.41), i.e.

] -1
He = Pee=C (I - KSE@) [qI - A+ AKgEcz]

X [(B - AK?ED?) Uk + AK?Eyz,k]

+C1 K% (yo,x — Daug) + Dy, (3.23)

and the estimation error was in Chapter 2 found to become
¥y, = Cu(zk — 2R5) + wig, (3.24)

with 237 given by (2.39).
For the identification we use the estimator in Fig. 3.2, and also here we may
choose a canonical realization with C; (I — K2Cs) = [ I 0 ] .
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Figure 3.2 Identification of OEC estimator by estimation error minimization.

In this case we have

yig = Ciz+ Diug +wig = 2p + wig
W = O (I KaCo) el + (D — CLEa D)™
+(C1E2)" yoyx
= & (3.25)

. d . . . .

Since 2277 is correlated with o, and thus with ws , we must now require that
l'\/| n = + 7 - d -

Ris = Ewl,kw%:k = 0 in order to get both 2, and z,‘ir,: uncorrelated with wy .

The estimation error is then
e1(8) = (2 — 2B5e) +wig, (3.26)

with the two terms uncorrelated, and from this follows
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T
Eﬂ,k(@efk(@) = FE (zk - z,‘zlr:d) (zk z,f,’kd) + Ewl,kwfk

> F (Zk — 2]?[%) (zk - 2k]k) + R11 _

= CPOPCT + R, (3.27)

where 2 zk| 5 and POEC are given by (2.41) and (2.45). Asymptotically, the equality
in (3.27) is obtained when the estimator in Fig. 3.2 is tuned into the Kalman filter
in Flg 2.4, modified so that the primary output is taken from :ck|k instead of

#9 k|k_1. Note that we again rely on the parameter estimate convergence to the best
possible approximation of the system that is available in the model set (Ljung,

1978).
Covariances for OEC estimator

From (3.24) and (3.27) we obtain the minimized asymptotic covariances
Cov (zk| k) C,POECCT (3.28)
and
Cov (99%x) = Edxwk = CLPO"CCT + Ry (3.29)

These are the same as the theoretical covariances (2.43) and (2.44) found earlier.

Remark 6 When R = Rgl # 0, the minimization will result in the minimum
mean square error (MSE) for the yy i estimator. This is not of significant interest,
however, since we are basically interested in an estimate of the primary property
2k, related to Yy g through y1 = 2x + w1 k-

Modification for correlated measurement noise

When Ris = R% # 0, we may introduce common noise components v, and w,
and augment the system equations (2.20) in the following way:

RN R M)

zr = Chrizi + Diug
Y10 = 2+ CroWer + w1k (3.30)

X
Yok = [021 Cao ] [w } + Douy, + wag k-
C
k
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We now have a system of the general type (2.20), but with uncorrelated mea-
surement noise sources wy x and wo k. This is, however, a problematic solution.
Whether it gives an improved OEC estimator depends on the number of samples
in the data record, and since 2z is not available the result cannot be validated.

3.3 Identification of ARMAX estimators

In Chapter 2 we have shown that primary property estimators based on ARMAX
models are not optimal in the present case, i.e. when no primary measurements
are available as basis for the estimation. As pointed out in Chapter 2, there are
still some reasons to study this type of estimators:

e With near perfect yo measurements it may be advantageous to use y; as
ordinary known inputs, and identify a parsimonious ARMAX model.

e When a direct measurement of the primary property z is included in the y;
measurements, we may choose to ignore the y; measurements and identify a
z estimator using only u and y (see Example 3.5 in Section 3.5).

e Identification of ARMAX models may be convenient means to find initial
parameter values for the identification of the optimal OE estimators (see
Example 3.2).

e It is of general theoretical interest to study estimators based on ARMAX
models, especially since it may be tempting to use the secondary ys mea-
surements as ordinary inputs to such an estimator.

Note, however, that identification of an ARMAX model, making use of past
primary y; measurements, is not possible in the low y; sampling rate case discussed
in Chapter 6.

Innovations form

A convenient starting point is now the innovations form (2.32), i.e.

~ARMAX ~ARMAX ARMAX ARMAX
:Ek+1|k = Awk|k_1 -+ Bu,lc + AK €L
~ARMAX ARMAX
Yyig = Cifye—i  +Diuk tery (3.31)
~ARMAX ARMAX
Yor = CoZyp’i + Doug +epp™ 00,

cARMAX
where KARMAX _ [ KARMAX  fCARMAX ] and eARMAX — e}zx,%MAX



3.3. IDENTIFICATION OF ARMAX ESTIMATORS 59

Identification with y; used as output

Identification with yo used as output together with y; may be attempted using a
standard prediction error or subspace identification method. This might, however,
be a difficult task with a large number of secondary measurements.

The PEM criterion to be minimized is then for example the scalar function

In(8) =tr ( 25k5k> =tr (N Zsl k€1 k) +tr (N ZEQ k€L k) (3.32)

k=1 =1

y ypred
sk:[sl’ﬂ:{ e 1’“'“] (3.33)

€2,k Yok — yQ,k[k—l

where

Initial parameter values for the minimization may be found by use of an ordinary
least squares method (Ljung, 1995).

Once a model is found, the prediction and current primary output estimators
can be constructed according to (2.68) and (2.73).

Identification with y, used as input

Another and more appealing choice, especially with only one or a few primary y;
measurements and many yo measurements, is to eliminate eARMAX and reorganize
(3.31) into the partitioned innovations model

AARMAX ARMAX ARMAX A
HEMAX = (A- AK} Cy) A + (B — AKSMAX D, )
+AKAR'MAXy2k +AKARMAX A}C?.MAX (334)
yip = ClAzkxlIk{MlA + Dy + eARMAX

before the identification.
In (3.31) the innovations process ef*MAX can be seen as the error in estimating

T
Yk = [ y{k y%jk } using u; for j <k and y; for j < k., i.e. e‘,i‘RMAX carries the
new information in yi not carried by ug and yg—; (hence the name innovations).

This means that eARMAX in (3.34) is uncorrelated with u; and ys ; for j < k, and
we thus have y; = zﬁ"ngAX + eﬁc‘MAX with zA|RMAX ARMAX uncorrelated.
From this follows that identification of (3.34) results in the optimal prediction
estimator (2.68), just as when (3.31) is identified directly. The difference is only
that a simplified criterion function, e.g. Vn(8) = trace (% Zst(Q)&t{k(G)), is
used, and that A — AKARMAX(Cy and B — AKSRMAX Dy are treated as single
madtrices.

and ej
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Construction of non-optimal prediction estimator

After the identification of (3.34), we may set K{RMAX — (0 and construct the
prediction estimator

~ -1 :
FARMAXe - gARMAX: — €y [g — A+ AKSRAXG] (3.35)

X [(B - AKQARMAXDz) ug + AKS RMAXQM] + Diug,

which is not using y; information. This estimator is earlier developed as (2.76), and
it is simply the deterministic part of (3.34). The resulting asymptotic (N — co)
estimation covariances are then given by the theoretical covariances (2.79) and
(2.80).

Identification of current estimator with y» used as input

We may also attempt to identify the optimal current estimator (2.73) using yo

as an input as in (3.34). In this case we will, however, find y x = 2y + epRMAX
with 2, and efRMAX correlated, and minimization of the criterion function will

therefore not give the correct result. Since identification of ARMAX models in any
case gives non-optimal estimators when the y; measurements are not available,
this possibility is not further investigated in the thesis, except for some related
simulation results in Example 3.2 in Section 3.5.

3.4 Dynamical errors-in-variables problems

Errors-in-variables problems occur when both the system inputs and the system
outputs are corrupted by noise. In the following we briefly discuss how such
problems are related to the optimal estimator problem.

With uy, not known and with Co = 0 and Dy = I, the model (2.20) is turned
into the dynamic errors-in-variables model

Tpr1 = Azg + Bug + Guyg
1k = Cizk + Diug + w1k (3.36)
Yo,k = Uk + Wk,

see e.g. Anderson (1985) and Chou and Verhaegen (1997). Provided that the
unknown inputs ug can be modeled as filtered white noise, we thus have the model
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Tr+1 _ [ A B T + G 0 U1,k

Uk+1 i 0 Au Uk 0 Gu 'U2,k
Y1k = C. D ] [ zz ] +wik ' (3.37)
Yo = |0 I} [Z: + Wk,

where vy = vk and vg, are white process noise sequences. This is the same type
of system as (2.20), but without known inputs.

It is possible to identify the optimal OEP estimator (2.34) for the system (3.37),
i.e. to identify the system

doaw | _ [ A B-AKXF - BKOP | [ =0k
Uk 0 Au— AKYF Uk
AKOQF + BKOF
+ 120]3 2 Y2,k (338)
A K

~OE
xT
Yk = {01 D, ] l KlE-1

Uke|k—1

This will give us unbiased estimates of A, B, A,, Ci, Dy, K%E and K%E. It is
also possible to identify the ARMAX model (3.34) using y2 x as an input, in which
case the full noise model will be found.

Identification of the errors-in variables model (3.36) as indicated above is es-
sentially the same as the joint output approach described in Séderstrém (1981), in
that the information used is contained in the outputs y; x and yg ;. The difference
is that the secondary outputs ys x are turned into inputs in the identification stage,
which in cases with many y, and few y; measurements may considerably reduce
the computational burden.

Note that the errors-in-variables problem represented by (3.36) is a simple
one, with white noise errors wj x and wyx. Use of the present approach on more
complex problems is left for further research.

3.5 Simulation results

Simulation studies are undertaken, using primarily disim.m in the Control System
Toolbox for use with Matlab (Grace et al., 1992), and the prediction error method
implemented in pem.m in the System Identification Toolbox for use with Matlab
(Ljung, 1995). The pem.m function identifies the system matrices and the Kalman
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gain, based on the general ARMAX innovation model (3.31), or the partitioned
ARMAX innovation model (3.34) when the measurements y; are also used as input

signals. Provided a proper parametrization, it also identifies the optimal OEP and
OEC estimators (2.34) and (2.41).

Example 3.1 - A pure delay second-order system

The pure delay system in Example 2.2 with no y; » measurements was simulated
with ux as a filtered pseudo random binary sequence (PRBS) with autocovariance
Tuu(p) = 0.8/P1 (Soderstrém and Stoica (1989), example 5.11 with o = 0.8), and
with vk, wyr and wogx as normally distributed white noise sequences with zero
mean and variances 7, = 0.04, r;; = 0.0001 and 792 = 0.01. The theoretical
estimator (2.57) is then

2k|£ = 513%-1 = byug-2 + bay2, k-1, (3.39)

with parameters given in Table 3.1.

Identification was performed with ugx and ygx as input signals and y; x as
output signal, using N = 10000 samples and the model (see Appendix B for a
definition of nn)

am=[0,[1 11,0,0,[0 0],[2 1]. (3.40)

The simulation and identification was repeated in M = 100 Monte Carlo runs,
resulting in mean values and standard deviations for the two coefficients and their
sum as given in Table 3.1.

Table 3.1: Theoretical parameter values and identification results for pure delay
system in Example 2.2.

parameter | theoretical value mean value
b1 0.2 0.1999 + 0.0039
ba 0.8 0.8002 £ 0.0037
by + by 1.0 1.0001 £ 0.0009

Note that each of the two parameters b; and by are identified with greater
errors than the error in the sum b; + by. This is natural, since ug_s and ygx—1
carry the same information except for noise. With decreasing noise levels (and the
same variance ratio) it will be increasingly difficult to identify the two parameters
separately. With r, = r92 = 0 we must expect to encounter numerical problems.
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Example 3.2 - A second-order plant with a first-order noise model

The main aim of this example is to confirm that the developed estimators are
consistently identified by use of a prediction error method with both u; and yo
as inputs. For this purpose we use a simple system and a large number of samples,
and compare the obtained mean-squared validation errors with the theoretical
covariances. Note, however, that the theoretical covariances are based on perfect
model information, which would not be available in a practical situation.

As a starting point, the following continuous-time second-order model with an
additional first-order process noise model was used:

1 1 0 0 0
i = | 1 =2 1 |z+|1]u+]|0]o

0 0 -1 0 1
no=[100]z+wm (3.41)
wo= [0 10]|ztus

This might be a system of interacting mixing tanks or thermal processes, as illus-
trated by the equivalent electrical circuit in Fig. 3.3.

Figure 3.3 Equivalent electrical circuit for second-order system with first-order noise
model.

The system was discretized assuming zero-order hold elements on the u and v
inputs and a sampling interval 7" = 0.1, resulting in the discrete-time model

0.9092 0.0863 0.0044 0.0045 0.0002
T+l = 0.0863 0.8230 0.0863 | zx + | 0.0908 | ug + | 0.0045 | vy
0 0 0.9048 0 0.0952
Yie = [ 100 } Tk + Wik (3.42)

Yo = [0 1 o]xk+w2,k_
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Remark 7 Since all state variables have an influence on ya, (Ca, A°) for a system
as shown in Fig. 3.3 is structurally observable (Appendiz A). However, with the
specific parameter values chosen it turns out that (Ca, A®) is not observable, and
this is also the case for the discrete-time system (3.42). Since the system in any
case is detectable, the Kalman filtering theory can still be applied (Appendiz A),
and that is the requirement in the present context.

The system was then simulated with u; as a filtered pseudo random binary
sequence (PRBS) with autocovariance ry,(p) = 0.95/P! (Soderstrém and Stoica
(1989), example 5.11 with a = 0.95), i.e. an input that was persistently exciting
of sufficient order. The noise sources vy, wy and wg were independent and
normally distributed white noise sequences with zero mean and fixed variances
7y = 1 and 199 = 0.01, while r;; varied as given in Table 3.2 and Table 3.3 below.

Remark 8 Since the sampling interval is short compared with the time constants
in the system, r, = 1 corresponds to an approzimate continuous-time process noise
variance s = r,T = 0.1 (Franklin et al., 1990). Assuming direct sampling we also
have r$; =711 and 5y = To3.

Typical input-output-data with 71; = 0.0001 are shown in Fig. 3.4.

15
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Figure 3.4 Typical PRBS input ux and response y1 k-

Non-optimal ARMAX estimators and the optimal OE estimators were iden-
tified from simulated data with ux and ys as input signals and y; x as output
signal, using N = 10000 samples.

The ARMAX partitioned innovation model (3.34) was specified as (see Ap-
pendix B)

nnarMaxe = [3,[ 3 31,3,0,[0 0],[1 1], (3.43)
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i.e. a model

A(g Yy1e = Bi(g " )ug + Ba(g Hyae + Clg Her (3.44)
with
AlgY =1+ag +ag 2 +asg™® (3.45)
By(g7") =bug ! + brag Tt + biag (3.46)
Ba(q™") =bo1q™" + boag + basq™° (3.47)
Clg)=1+cqg ' + g ? +c3q™’. (3.48)

The deterministic part of this model was then used in the non-optimal prediction
estimator (3.35).

The state space representation of the ARMAX model (3.44) was also used to
find initial values for a third order state space representation of the OEP estimator
(2.34), i.e. for a model

_ BPPP (g ue + BPEF (g yak
Y1 = AOEP (g1

+ Vg, (3.49)

with AOFP(g~1), BPFP(g7!) and BOEF(q~!) of the same form as in (3.45) to
(3.47). This model was then identified.
An attempt was also made to identify an ARMAX model with (3.43) modified
into
nnarmaxc = [3,[ 3 41,3,0,[0 0],[1 0]], (3.50)

i.e. a model with
Ba(q") = bao + borg ™! + baog ™2 + bazg 2. (3.51)

The deterministic part of this model was then used in a current estimator. As
pointed out in Section 3.3, such a current model with y x used as input cannot
be consistently identified, but the results are nevertheless presented below. How-
ever, the main purpose of this current ARMAX model was to use its state space
representation as a means for finding initial values for a third-order state space
representation of the OEC estimator (2.41), i.e. for a model

BPEC (g~ Yy, + BYEC (g )ya
k= : "AOEC (qfl) =+ Yy, (352)

with A9FC(g1), BOEC(¢~1) and BYFC(g7?) of the same form as in (3.45), (3.46)
and (3.51). This model was then identified.

As the main purpose of the simulations was to support the theory, no attempt
was made to find the model order and model structure from the data. The model
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order can, however, be found by ordinary use of one of the several available sub-
space identification methods, e.g. Di Ruscio (1997), and a systematic method for
finding the structure will be presented in Chapter 5.

Each identified model was validated against an independent data set with the
same number of samples and the same noise variances as used for identification.
Validation comparisons between the different identified models were based on the
root mean square error criterion

1 I .
RMSE = | = (g1 — 916)° (3.53)
N k=1

where 15 = gfﬁl}ﬁx? according to (3.35), g1k = g??lk——l according to (2.34) or

U1k = gjgﬁk according to (2.41).

As a basis for comparisons given a specific experimental condition, each model
was identified and validated in M = 100 Monte Carlo runs using independent
data sets. The mean RMSE values and RMSE standard deviations for N = 10000
samples and varying variances 71; are given in Table 3.2 and Table 3.3. The

tables also include theoretical RMSE values \/ Var (AARMAXQ) ) \/ Var (Q?,E' k_1>

Y1 klk—1

and 4/Var (Q?gk) computed according to (2.80), (2.38) and (2.44).

Table 3.2 also includes results for the non-optimal current estimator using the
deterministic part of the ARMAX model obtained with 3 as input, as specified
in (3.50). Since this model cannot be consistently identified, no theoretical values
are given. '

Table 3.2: Validation RMSE mean values with standard deviations and theoretical
RMSE values for ARMAX3 estimators. The number of samples was N = 10000, and the
RMSE values are multiplied by 10%.

11 | ARMAX,P | ARMAX,P eor | ARMAX,C
10-% | 1013 +95 1007 683 = 25
107 | 888+£80 888 597 £ 37
10-° | 699 +49 694 475 £ 26
105 | 484 +29 478 357 + 18
10-%] 33016 328 280 £ 13
1073 | 3997 394 386 % 6
10-2 | 1022+8 1022 1025 £ 8
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Table 3.3: Validation RMSE mean values with standard deviations and theoretical
RMSE values for OE estimators. The number of samples was [N = 10000, and the RMSE
values are multiplied by 10%.

11 OEP | OEPiheor. | OEC | OECipeor.
1078 ] 221 +7 219 209 + 7 208
1077 ] 221£6 219 209 £ 6 208
107°] 220+6 219 208 + 6 208
1075 ] 22245 221 211+5 210
1074 ] 241+5 241 231+5 230
1073 | 387+5 385 381+5 378
1072 1024 + 8 1024 1022 + 8 1021

The tables show an obvious agreement between results based on simulation
and theory. In order to visualize this, the RMSE results for the ARMAX,P and
OEP models in Table 3.2 and Table 3.3 are also shown in Fig. 3.5, together with
the theoretical results for the OEU predictor (2.24) based only on the independent
inputs wug, and for the optimal ARMAXP predictor (2.68) utilizing also past y1
values.

0.12 . . ; . . ; . : —
OEU
0.1 |
ARMAX2P
0.08
7]
= 0.06-
o
0.04
0.0%
ARMAXP  _ _mm T '
olemiciom o ARMAX P - - ] K
8 75 7 65 6 5% 3% 3

-5.5 -5
log(r11)

Fig. 3.5 Validation RMSE values for identified ARMAXoP (x-markings) and OEP
(o-markings) estimators as function of log(r11) with 7, = 1, ro2 = 0.01 and N = 10000.
These estimators utilize the information in both © and y2. Theoretical values are shown
as lines, including RMSE values for estimators based only on © (OEU) and on u and past
y1 as well as past 2 values (ARMAXP).

||
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Example 3.3 - Example 3.2 with D; #0 and D; # 0

As a simple test of the convergence properties with D; # 0 and D5 # 0, Example
3.2 was repeated with the output equations altered to

o= [100]z+2u+w
Yy = [0 1 O}x+3u+w2- (3.54)

Based on M = 10 Monte Carlo runs, the results in Table 3.3 were then altered as
shown in Table 3.4.

Table 3.4: Validation RMSE mean values with standard deviations and theoretical
RMSE values for OE estimators for a system with D1 # 0 and Dy # 0. The number of
samples was N = 10000, and the RMSE values are multiplied by 10%.

T11 OEP OEPipeor. OEC OECiheor.
1078 | 22245 219 21145 208
1077 ] 22145 219 209+5 208
107 | 22145 219 209 +4 208
1075 | 22345 221 21245 210
1074 | 24245 241 232+5 230
1073 | 3874 385 381+5 378
10~2 | 10194+10 1024 1017 £ 10 1021

The results are very much the same as in Table 3.3.

Example 3.4 - Example 3.2 with a reduced number of samples

The results in Example 3.2 were obtained from N = 10000 samples in each iden-
tification experiment. To indicate expected results for a more realistic number of
samples, additional validation results based on M = 100 Monte Carlo runs for
models based on NV = 1000 and N = 200 samples and with 717 = 0.0001 are shown
in Table 3.5. In order to secure persistent excitation also for N = 200, the PRBS
filtering parameter o was reduced from 0.95 to 0.8.

In order to limit the influence of local minima problems, each identification
based on N = 200 samples was repeated R = 5 times with randomized initial
parameter values in the BOEF (g~1) and BO®C(¢~1) polynomials (b;j 41 = bijr(1+
0.05e), where e is a normal random variable with zero mean and variance 1). The
model with the best fit was then validated and kept as the final model.
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Table 3.5 also includes results for the OEU predictor (2.24) with only u used
as input. The model was then specified as (see Appendix B)

nnogu = [0,3,0,0,3,1], (3.55)
ie. BOEU(q—l
Yk = A()T(q_l)uk + Ngs (3.56)
with
BOPY(g™!) = big ! + byg % + bag (3.57)
and
A%EU(g Ny =14 a1q7 +aq? +asqg . (3.58)

Table 3.5: Validation RMSE mean values with standard deviations and theoretical
RMSE values for OE estimators. The primary output noise variance was r1; = 0.0001,
and the RMSE values are multiplied by 10%.

N | OEU | OEUsmeor | OEP | OEPipeor. | OEC | OECuneor
10000 _ 1159 241 £ 5 941 231+5 230
1000 | 1220 =304 | 1150 | 250=23 241 | 238+20 | 230

200 | 1343+£920 | 1150 | 336 £ 188 | 241 | 285+77] 230

As expected, Table 3.5 shows increased estimation error as the number of
samples is reduced from N = 10000 (with RMSE values from Table 3.3) to more
realistic values.

In order to visualize the degree of model misfit behind the RMSE values in
the tables, specific validation responses for models based on IV = 200 samples are
shown in Fig. 3.6. This figure also gives a representative picture of the improve-
ment achieved by including yo as an input signal.
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Figure 3.6 Segment of primary output validation responses for the OEP model (3.49)
using both % and y2 as inputs (dash-dotted, RMSE = 0.0239) and the OEU model
(3.56) using only u as input (dotted, RMSE = 0.1078). The experimental conditions
are given by 7, = 1, r11 = 0.0001, r92 = 0.01 and N = 200, and the ideal validation
response is shown by solid line.

Example 3.5 - Estimator based on noisy primary property measure-
ments

In some cases there may exist primary property information at a high measure-
ment noise level and a high sampling rate. It is then possible to use an ARMAX
estimator based on these measurements, with a result that obviously very much
depends on the noise level. This solution may be useful when it is difficult to obtain
a sufficient number of experimental low noise primary output measurements.

In order to test the outcome in such a case, the output equations in the system
(3.41) in Example 3.2 were altered into

o= [1 0 OJx—i—wl
Y21 = [1 0 0}x+w21 (3.59)
Yoo = [0 1 0]$+w22,

i.e. an extra output ys; was added. The system was then discretized in the same
way as in Example 3.2, and noise components were added.

The ARMAX partitioned innovation model (3.34) was specified in the same
way as in Example 3.2, and identified using ux and yso ) as inputs and yp; 1 as
output, and the prediction estimator (3.35) was then constructed. The excitation
was the same filtered PRBS as in Example 3.2, with a = 0.8, and the noise
variances were 7, = 1, 711 = 0.0001 and r9s = 0.01, while ro; = Ew%l varied as
shown in Table 3.6 below. For each experimental condition, the estimator was
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determined and validated in M = 10 Monte Carlo runs using independent data
sets with N = 1000 samples. The validations were performed against y; 5 data
(although considered not available as a basis for estimator identification), with the
RMSE results shown in Table 3.6.

For comparison purposes the OEC estimator (2.41) was identified and validated
in the same way as in Example 3.2, only that the identification was performed using
Y21,k as output instead of y; g, while y;  was still used for validation. The RMSE
results for M = 10 Monte Carlo runs are included in Table 3.6

Table 3.6 also includes the RMSE values for the simple estimator 9y g, = Y21k,
and the best result for each value of r9; is shown in bold types.

Table 3.6: Validation RMSE mean values with standard deviations, and theoretical
RMSE values, for estimators based on more or less noisy primary property measurements.
The number of samples was N = 1000, and the RMSE values are multiplied by 10%.

721 ARMAXP | ARMAXPpeor. OEC OECiheor. yl,k!k = Y21k
1076 | 103+2 102 256 + 36 230 100
1075 | 109+1 108 247 £20 230 105
1074 ] 137+11 129 239 + 20 230 141
1073 | 178 +13 175 231+ 14 230 332
1072 | 296 + 131 222 272 + 26 230 1005
1071 | 629 £ 440 238 439 + 69 230 3164

The simulations were finally repeated with the number of samples reduced to
N = 200. As in Example 3.4, each identification was now repeated R = 5 times
with randomized initial parameter values in the A(¢~*) and B(g™") polynomials,
and for the ARMAX models also in the C(g™!) polynomials (a;jr+1 = asj,+0.01e,
bijr+1 = bijr+e and cijry1 = Cijr +0.1e, with e as normal random variables with
zero mean and variance 1). The best of the models obtained in this way was
validated and kept as the final model. The results are shown in Table 3.7.
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Table 3.7: Validation RMSE mean values with standard deviations, and theoretical
RMSE values, for estimators based on more or less noisy primary output measurements.
The number of samples was reduced to N = 200, and the RMSE values are multiplied by

10%.
r91 | ARMAXP | ARMAXP heor. OEC OECiheor. gl,k}k = Y21,k
1075 | 101+6 102 335 + 184 230 100
1075 | 11145 108 257 + 44 230 105
1074 | 135+6 129 302 + 99 230 141
1073 | 205+ 30 175 253 + 41 230 332
1072 | 563 & 295 222 404 + 39 230 1005
10-1 | 18294945 238 1065 + 488 230 3164

The tables show that the best estimator choice depends on the variance 79;.
For near perfect y; measurements, the best choice is simply to use gy xx = yo1x,
while the ARMAX estimator is the best for medium y9; measurement noise levels.
For high y91 noise levels, the OEC estimator is to prefer, especially when the
number of samples is small.



Chapter 4

Perfect measurement cases

In this chapter we study special cases that may occur when some or all of
the secondary measurements are perfect in the sense that they are noise
free. When such measurements are used as inputs in an identification
procedure, it may at least theoretically be required that the model
order is reduced in order to secure identifiability. An analysis of such
cases leads to the discovery of some specific properties of the gain in
Kalman filters. A more important consequence from a practical point
of view is the possibilities to use parsimonious reduced models, which
is further developed in the next chapter. Pure deterministic systems
without any form of noise, and systems with colored measurement noise
are also discussed in the present chapter.

4.1 The reduced model case

4.1.1 Continuous-time systems
Model structure for analysis

In order to analyze the asymptotic perfect y2 measurement case for a specific and
in the context interesting type of system, we use the model (2.1) partitioned in
the following way (using D1 = D2 = 0 for simplicity and without consequence for
the results that follow):

& A5, AS, O T B¢ 0
Ty | = 51 Asx Afs x|+ | By |ut | G5 |v
T3 | A5 A3y As z3 Bs 3
_ 1
v _ | Cn 00 wy
HE I EIN M =
L 3
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where we for simplicity also assume an asymptotically stable system (may be
relaxed to the appropriate detectability requirements). Here zs is the part of the
state that directly corresponds to the available ys measurements, while z; is the
part that via C1; gives the primary output y;. We assume A3 = 0 and G§ = 0,
which implies that the process noise v influences z; and thus also y; only through
the state x9, which is measured by y2. More specifically we assume in (4.1) that

dz

d_tl ASqz1 + ASoze + Biu
1 = Cuzri+w (4.2)
Yo = Tg+ wa.

From this we see that noise free yo measurements make it possible to use u and s
as inputs in a reduced model, i.e.

dxl

dt

1 = Cuz +wi.

= A$yx; + ASoys + BSu (4.3)

The consequence of this is that use of both v and ys as inputs will result in the
reduced model (4.3), while the rest of the system is decoupled. A similar case may
also occur if we only assume that some y2 measurements are noise free.

Kalman gain in estimator based on u and y3

The innovations model corresponding to (4.2) and assuming an underlying Kalman
filter driven by u and y; is

dz . R
d_tl = Af 81 + AfyZs + Biu + Kfzeo (4.4)
Y2 = Ip+eg,

which after elimination of eg results in

dz . .
Sk = Aoy + (4% — Kfp)ia + Bfu+ Ky(zz + ws) (45)
Introducing Z = z — &, we find from (4.2) and (4.5)
dZ; c A c c\x c
Ft— = An:l:l + (A12 - Ku)xg - K12w2. (4.6)

As the system (A‘{l, [ Ay Bf |, Cn) is assumed to be asymptotically stable, and
also assuming that all state variables in Zo are none-zero, we find that Kf, = A,
results in E#1Z7 — 0 when RS, = Ewowl — 0. All state variables in Z are
non-zero when they are influenced by the process noise either directly via G§ or
via the non-measured states z3 and A$s, and we have thus proved the following

theorem:
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Theorem 4.1

Assume the asymptotically stable system (4.1) with

e noise free yp measurements, i.e. Ry — 0

e all state variables in z; influenced by the process noise v either through G§ or
through the state variables x3, and not only through other x5 state variables.

The optimal gain in a Kalman filter driven by w and y7 is then given by

12
Ks=| x |. (4.7)
X

Kalman gain in estimator based on u, y; and ¥

The innovation model corresponding to (4.2) and assuming an underlying Kalman
filter driven by w, y1 and yy is (with & and ey different from the £ and es used in

(4.4))

dz . .

d—tl = Af %1 + AfeZ2 + Biu + KT e1 + K{sea
y1 = Cnzi+e (4.8)
y2 = Z2+ey,

which after elimination of ey results in

dz A N c
d_tl = (Af; — K11C011)21 + (A2 — Kip)22 + Bfu + Kf1y1 + Kioyo
y1 = Cuii+er. (4.9)

With Z = z — %, we find from (4.2) and (4.9)

dz; - ~
— = (Af — K110n)%1 + (Afp — Kip)Z2 — Kfywi — Kfpws. (4.10)
Assume again that all state variables in Zo are non-zero, i.e. that they are influ-
enced by the process noise either directly via G§ or via the non-measured states z3
and A§s. Also assuming that RS, — 0, we must now treat two different situations:

e When R, # 0, we will obtain E%1%7 — 0 by choosing K§; = 0 and K§, =
Af,, and these are then optimal Kalman gains.
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e When also the y; measurements are noise free, i.e. when R§; — 0, we will
find that £; — z; and y; — Ci1z7. This means that y; is eliminated from
the state equation in (4.9) , which is therefore simplified to (4.5). Then
Ky = A§, will still be an optimal gain, while K{; in this case will be
determined by the actual Rf; and R§, values (though small) on the basis of
the following system derived from (4.2):

dz
— = Afz+ Ay + Biu — Afus (4.11)
y = Cnzr +w.

Application of the Kalman filter equations (2.3) and (2.4) now results in
Ki = Plc101T1 (Rfjl)_l ) (4.12)
where Pfj is given by
0= A$Pf + (AL, PRy)T + Af RS, (A%,)T — PRCT (RS) ™ O P (4.13)
We summarize this in the following theorem:
Theorem 4.2
Assume the asymptotically stable system (4.1) with

e noise free yo measurements, i.e. R5; — 0
e y; measurements that are not noise free, i.e. R{; #0

e all state variables in x5 influenced by the process noise v either through G§ or
through the state variables z3, and not only through other zs state variables.

The optimal gain in a Kalman filter driven by u, y1 and ys is then given by

0 Af,
K¢=| x x (4.14)
L X X

When also the y; measurements are noise free, i.e. when also Rf{; — 0, the Kalman
gain is given by

K1 Afp
K'=| x x , (4.15)
X X

with K¢, determined by (4.12).
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Comparison with known result

The results in Theorem 4.1 and Theorem 4.2 may be compared with a known
perfect measurement Kalman filtering result. For a square plant with the same
number of measurements as number of process noise sources and RS = ol it is
known (Anderson and Moore, 1989) that

lim
o — o0

oTV2Ke (RE)V? = g (4.16)
where V' is some orthogonal matrix. From this follows that with RS = I and
RS, = uRS, we have

I _ _
:fi o Ko = w6V (Rig) ™ + K, (4.17)

where K§ is a finite matrix. For systems covered by Theorem 4.1 and Theorem
4.2 above, we will be able to determine certain elements in K§.

Example 4.1

Consider the continuous-time system

i1 (=21 1 0 0 1 0 0
i 2 62 2 0 o 00 N
is | = |1 1 =30 1 x3+00[“1 ”1}
4 0 2 0 —40 %4 9 0| LuzTv
jls _O 0 1 0 -2 Ty 01
[ 21 ]
i s
_ 1 00 0O I w1
u = 0100 0} T3 +wl*[m2:|+[wl2 (418)
L x4
L 5 ]
o
flo0o010]]|% [ 24 [ wsy |
B I _ 1z 21
2 = [00001 s +w2'[x5}+[w22J'
Z4
L 5 |

This might be an interacting stirred-tanks system, as illustrated by the equivalent
electrical circuit in Fig. 4.1.
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" o5l o5l
U14>@g—4:$l4

e
1 1 1 1
” 1 g 1 1
2 4?—:}—’: g
1 1=
(%) :7[' :»[

Figure 4.1 Equivalent electrical circuit for interacting stirred-tanks system.

T
With perfect secondary measurements y; = { Ty s ] , the reduced system
according to (4.3) becomes

I -2 1 1 [z, 00
T = 2 —6 2 z2 |+ 2 0 |y (4.19)
s 1 1 =3 T3 0 1
(1 0 0] 1
Y1 = 010 Z9 | +wi.
x3

We may now look at some different Kalman filter results:

e When we choose RS = I and R, = ul = 107161, we find by use of lge.m
in the Control System Toolbox for use with Matlab (Grace et al., 1992) the
following gain for a Kalman filter driven by u and y2 (a square plant):

[ 0.000000 0000000

2.000000  0.000000 con

KS= | 0.000000  1.000000 zp—%Gu—[Al?J. (4.20)
109999996  0.000000 X
0.000000 99999998

This is in accordance with (4.17) and (4.7).

—4
.WithRgsllo Lo

0 107167

] and a Kalman filter driven by u, y; and ys
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we find (for a non-square plant)
0.000000 0.000000 0.000000  0.000000
0.000000 0.000000 2.000000  0.000000 0 Ac
K°¢= 0.000000 0.000000 0.000000 1.000000 | = [ 0 ><12 } ,
0.000000 0.000000 199999996 0.000000
0.000000 0.000000 0.000000 99999998
(4.21)
which is in accordance with (4.14).
: 1071 0
With R = 0 10-167 and use of (4.12) and (4.13) we find
0.107511 0.114069
K¢S = | 0114069 0.399942 |, (4.22)

0.113238 0.128998

and with a Kalman filter driven by u, y1 and ys we further find (for a non-

square plant)

0.107511 0.114069 0.000000  0.000000
0.114069 0.399942 2.000000  0.000000 Ko, A¢
K°= 0.113238 0.128998 0.000000  1.000000 | = { 0 1 ><12 ] ,
0.000000 2.000000 199999996 0.000000
0.000000 0.000000 0.000000 99999998
(4.23)
in accordance with (4.15).
|

4.1.2 Discrete-time systems

Model structure for analysis

We now assume a discrete-time system with the same structure as in (4.1), i.e.

I i A11 Alg 0 Z ] Bl 0
T = | Ay Ay A z2 | +| B2 |up+ | Go | v
T3 | pia | As1 Ay Asz | | z3 |, | Bs Gs
_ 1 _
yl = Cll O 0 IL'2 + U)l 9 (4'24)
v |, L 0 I 0 s w |,
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or more specifically

Tig+1 = Anzip + Aaxor + Brug
vig = CuZip+wig (4.25)
Yok = Tokt+Wok

Also here we see that noise free yo measurements make it possible to use v and
Yo as inputs in a reduced model, i.e.

Tik+1 = AnzZig + Awyzx + Biuk (4.26)
Y1 = Cuzik+wik

The consequence of this is that using both u and ys as inputs, we can only identify
the reduced model (4.26), while the rest of the system is decoupled. A similar case
may also occur if we only assume that some yo measurements are noise free.

Kalman gain in OE type of estimator

Quite analogously to the continuous-time case we find the results given in Theorem
4.3 below. In addition to that we find a specific result by constructing the optimal
1o current estimator corresponding to the optimal y; estimator (2.41),

-1
ioge = Co(I- K9®Cy) [qf — A+ AK?ECZ]
x |Buk + APy | + CoKSPya . (4.27)

From this we see that perfect yo measurements give the optimal estimate g}? EI = Y2
for CoKQF = I, with the consequence given in (4.29) below.

‘We summarize the results in Theorem 4.3 below. Since it follows that A1 K %E-l-
A1g = Ajo, it also follows that AanE = 0, and we therefore make this a part of
the theorem.

Theorem 4.3

Assume the asymptotically stable system (4.24) with

e noise free yo  measurements, i.e. Rgos — 0

e all state variables in x5 ; influenced by the process noise vy either through
G2 or through the state variables zx 3, and not only through other zj x state
variables.
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The optimal gain in a Kalman filter driven by u and ys is then given by

Arp
AKDE = | x (4.28)
X
and
X
K= |1 (4.29)
X
From this follows that
AnKQF =o. (4.30)
|

Remark 9 As input signals entering the system through By B3, Ga or G3 are not
a part of the reduced model in (4.26), these inputs may as well include unknown
time delays, non-linearities, non-stationary noise etc.

Remark 10 With perfect measurements yo = Tk, the reduced model in (4.26)
is a deterministic model as far as w and y2 are concerned. If a measured state
variable x; in xo is then determined purely by other measured state variables, and
if all yo measurements are used as input signals, we will have a similar collinearity
problem as treated in Section 4.2 below. The solution to this problem follows from
the discussion there.

Remark 11 A theoretical consequence of Theorem 4.3 is that given the system
(4.24) with A;3 = 0, G1 = 0 and near perfect noise free yo measurements, a re-
duced model not utilizing all w and yo signals must be used. Otherwise, numerical
problems due to decoupling will theoretically occur when the parameter estimates
are sought. Numerical problems may in theory occur as soon as we have two or
more near perfect ya measurements. A more important consequence in practice is
that a parsimonious reduced model may result in less variance in the y; estimates.
In such a case only part of the model will be identified, and as long as there is
some noise in one or several of the yo signals used as inputs, the parameter es-
timates will then be biased (Sdderstrom, 1981). In spite of this, the result might
be an overall reduction in the mean squared estimation error, as illustrated in a
simulation example in Chapter 5.

Example 4.2

Discretization of the system in Example 4.1 with a sampling interval T and a
zero-order hold on the input, gives an exact deterministic solution with

A= eACT, (431)
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T
B= / eAdnB° (4.32)
0

and
C=C-". (4.33)

With a short sampling interval T this will approximately givé

1 T T 0 0
T 1 2T 2T 0

A=|T T 1 0 T]|. (4.34)
0 2 0 1 0
0 0 T 0 1

When we choose C; and C5 as in Example 4.1 and assume R, = I and Ry =
107197, we find by use of the dlge.m function in the Control System Toolbox for
use with Matlab (Grace et al., 1992)

0 0
2T 0 .

AKPE = | 0 T =Tu 3G +T | 12 } . (4.35)
1997967 0 x
0 99948T

This is the same as result (4.20) in Example 4.1, only multiplied with T'. It should
be mentioned, however, that this result was obtained with the sampling interval
as short as T = 1078,

With the 5 measurement noise reduced even more to Rgs = 107187, the solu-
tion was altered to

0 0
2T 0

AK9E =0 T : (4.36)
0.9975 0
0 0.9902

which follows from (4.30) and the fact that we for this specific system have
AmK%E + Aoy = A21A1_11A11K102E + Agp = Agy = 1. (4.37)
[

Kalman gain in ARMAX type of estimator

We also here find results quite analogously to the continuous-time case (see Theo-
rem 4.4 below). In addition we also now find a specific result by constructing the
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optimal y2 current estimator corresponding to the optimal y estimator (4.27) (see
also (2.73))

gé’l&l}c/mx = O ( I— KIARMAxcrl . KQARMAXCZ)

-1
x [al — A+ AKFRMAXCy 4 ARSRMAX G|
X [Buk -+ AKQARMAXQZ,IC —+ AK?RMAXyQ’k}
+Co TRy, )+ Co KTy . (4.38)

From this we see that perfect yo measurements give the optimal estimate gf*g‘l}c/mx =

yo for Co KPEMAX — 0 and Co KARMAX — T with the result given in (4.40) below.
We summarize this in the following theorem:

Theorem 4.4

Assume the asymptotically stable system given in (4.24) with
e noise free ys r measurements, i.e. Rgs — 0
e Y1, Mmeasurements that are not noise free, i.e. Ry; # 0

e all state variables in x5 influenced by the process noise vy either through
G> or through the state variables x5k, and not only through other xj state
variables.

The optimal gain in a Kalman filter driven by u, y; and y, is then given by

0 A
ARARMAX _ | o o (4.39)
X X
and
X X
JCARMAX 0 I (4.40)
X X
From this follows that
A KARMAX — (4.41)

When also the y; measurements are noise free, i.e. when also Rj; — 0, the
Kalman gain is given by

KﬁRMAX X

KARMAX _ | g ian (4.49)

X X
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with K{EMAX given by
-1
KﬁRMAX ARMAXOH (CIIPﬁRMAXCE + Rl]) : (443)

where PARMAX is determined by the Riccati equation

PARMAX  — A, PARMAX AT & A1 Ryp AT, (4.44)

-1
. — Ay PARMAX CT (C’nPﬁRMAXC’ﬂ + R11> Cyy PARMAX 4T

4.2 The deterministic case

4.2.1 General discussion

Although a nearly noise free system is very unlikely in a practical case, it is of
theoretical interest to study the identification of deterministic systems. It is well
known (e.g. Lewis, 1992), that the Kalman gain cannot be determined in a pure
deterministic case, that is when both the process noise vy and the measurement
noise wy, are zero. In the present case, this means that the optimal estimators
utilizing the information in both the known inputs v and the secondary measure-
ments y2 developed in Chapter 2 cannot be identified when R, = 0 and Ry = 0.
This is most easily demonstrated by examples:

Example 4.3

For the continuous-time system in Example 2.1, we found K¢ = f(rS/r$,) as given
by (2.14). When r{ — 0 and 75, — 0, this is an indeterminate expression. From
Fig. 2.2b we see that v = 0 and wy = 0 result in yo = 0, and the solution is then
obviously to use a first-order model with only u as input.

[ |

Example 4.4

For the pure delay system in Example 2.2 without yo; measurements, we found
the estimators (2.57)

1 Ty /7'22

—_—u _ _1- 4.45
1+7"1,/'r'22 - 1+ v/r Y22,k-1 ( )

sOE _ ;0B _
Zlk—1 = 2Kk =

When 7, — 0 and 792 — 0 this is an indeterminate expression. We have two
solutions:
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e Identify a second-order estimator with only u as input, which gives 28%_1 =
Uk—9-

e Identify a first-order estimator with only y29 as input, which gives 2,?'5_1 =
Y22,k—1-

4.2.2 Special case with reduced models

For systems with the structure given in (4.1) and (4.24) we found that with noise
free yo measurements we can only identify the reduced models (4.3) and (4.26).
With more than one y2 measurement we may have the same type of problem as
mentioned above, i.e. we cannot use all of the y, measurements as inputs at the
same time.

Examplé 4.5

Assume the system in Example 1.1, but now with v = 0. If both y99 and yo3
are perfect, we may use y23 as a known input and identify a second-order model.
We cannot at the same time utilize the information in y22, because the underlying
Kalman filter will then be indeterminate. The best solution in this case is obviously
to use only y22 as input and identify a first-order model.

|

4.2.3 General solutions in the deterministic case

The Kalman gain will quite generally for both continuous-time and discrete-time
systems be determined by ratios between process noise variances r, and measure-
ment noise variances 7, and we will therefore always find indeterminate Kalman
gains when both R, — 0 and Rg2 — 0. Examples 4.3 and 4.4 and the discussion
in Example 1.1 point to some general solutions to the problem:

e Identify a model with only u as input signal.
e Identify an appropriately reduced model with u and ys as input signals.

e Identify an appropriately reduced model with only ys as input signal.

A systematic method for finding such models is proposed in Chapter 5.
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4.3 The colored measurement noise case

Colored ys measurement noise sources must quite generally be modeled as filtered
white noise, and incorporated in the following way (assuming independent process
and measurement noise):

HR S I E R A
X2 k1 i 2 x2 & 2 V2 A
] o
vk = | O1 0} {:@] + Diug + w1k (4.46)
) k
] -
yok = | Cau Coxo ] [CCQJ + Douy, + wo k.
) k

Here Cozo ), is the colored y; measurement noise, and we may quite realistically
have Rgo = Ewg,kwg:k = 0, in which case we formally have a perfect measurement
case. Since Cooxoy is not influenced by wug, this will in itself not constitute an
identification problem due to use of both u and ys i as inputs.



Chapter 5

Model structure determination

As in other practical system identification cases, there is also in the
present case a need to find parsimonious solutions that give good pri-
mary output estimators using as few parameters as possible. We thus
need a method for finding estimators that give a good compromise be-
tween bias and variance, and such a method is presented in this chapter.

5.1 Imtroduction

The discussion in Chapter 4 has shown that numerical identification problems may
occur as a result of perfect noise free y, measurements. This is not a very likely
problem in a practical situation, especially not in an industrial process environ-
ment. If it turns out to be a problem, the solution is to leave some known inputs
or some perfect measurements out, and use the most parsimonious model.

A more important task seen from a practical point of view is to settle for a
good set of independent inputs and secondary measurements to be used as inputs
in the identification procedure. This is similar to the problem of finding regressor
variables in ordinary least-squares estimation (Ljung, 1987,1999), only that it is
complicated by the fact that also other aspects of the model structure (model order,
time delays etc.) must be chosen. The inclusion of noisy measurements will in any
case give only a limited contribution to the estimation of the primary properties,
and at the same time the number of unknown parameters to be identified will
increase.

As briefly discussed in Chapter 1, the model structure determination aims
at finding the primary output estimator with the lowest possible mean-squared
estimation error (MSE) when used on an independent validation data set. Several
aspects of the model structure must then be determined:

e Which model order should be used? If possible, prior knowledge of the
system (physical insight etc.) should be used in order to determine the range

83
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of model orders to be considered. Note, however, that high noise levels and
limited data records often make it quite unrealistic to identify anything else
than very low order models.

e Which of the known u inputs and secondary y, measurements should be
used? In ordinary system identification, this is normally an issue related to
known inputs that are only measured without being manipulated. In the
present case, however, some manipulated as well as only measured inputs
may be effectively replaced by secondary measurements, while some other
secondary measurements may carry very little useful information.

e How should the model be parametrized? In the thesis we use standard
difference equation input-output models and the corresponding observability
canonical form state-space representations. This follows from the use of the
standard prediction error identification methods in the System Identification
Toolbox for use with Matlab (Ljung, 1995), but this may not be the best
choice seen from a numerical point of view (Moore, 1981).

Finally it must be noted that the optimal choice of model structure can only
be found through proper validation.

5.2 Systematic method

5.2.1 OE model selection

The following method for identification of the optimal OE primary output estima-
tors (2.34) and (2.41) is proposed:

1. Perform an informative identification experiment with only u as input signal
and y; and yo as output signals (e.g. Goodwin and Payne, 1977). Separate
the data in one part for identification/calibration and one part for validation.

2. Identify the system with v as input and y; as output, using different model
orders n. This may be done by use of the ordinary OE model (2.23) or the
ordinary ARMAX model (2.27) and a standard prediction error method as
described in Chapter 3, or possibly by use of a subspace system identification

method (e.g. Di Ruscio, 1997). Validate the models, using for example

the scalar case root mean square error RMSE = \/ ¥ S (e — U1,k)? as
a validation criterion. Visual inspection of the validation response is also
recommended. Choose the lowest possible model order that gives a good
validation result (see Example 5.1).

3. Use one of the yo measurements at a time as input together with wu, identify
the optimal OEC estimator (2.41) (or the optimal OEP estimator (2.34)) by



5.2. SYSTEMATIC METHOD 85

use of a prediction error method as described in Chapter 3, and note the
validation improvements for all y; signals as expressed by for example the

RMSE value.

4. Include the most informative ys signals as inputs together with u. Choose
the number of ys signals to use through validation.

5. Explore the possibilities to omit some or all of the manipulated u inputs,
using validation as selection tool.

6. Explore the possibilities for using a reduced order model, relying on some or
all of the dependent ys signals and some of the independent u inputs, and
possibly direct coupling from some other independent inputs to y;.

7. Use all available data and the best validated model structure found, and
identify the final estimator.

5.2.2 ARMAX models

For models without dependent yo outputs, including reduced models using y, mea-
surements as independent inputs, the best solution is to identify an ARMAX model
and use the deterministic part of that as a basis for the primary property estima-
tor. This will give a reduced estimator covariance compared with identification
of an OE estimator (Séderstrém and Stoica, 1989). Note, however, that ARMAX
models cannot be identified in the low y; sampling rate case that will be discussed
in Chapter 6.

5.2.83 Discussion on validation

It is in order to point to an inherent difficulty in this and similar procedures that
use the same validation data set for comparison of different models. Due to the
fact that both the modeling and the validation data sets are randomly sampled,
local minima problems and random initial parameter values, some models may
give better validation results than others in a way that is not generally justified.
Extensively repeated use of the same validation set may therefore lead to a model
that is specifically adjusted to fit that particular data set, which then gradually
becomes a part of the total modeling set, and we must therefore look for validation
differences that can be considered as significant (see also Sjoberg and Ljung, 1995).
The only totally safe way out of this risk of circular reasoning is to use extra
independent validation sets for each new model. The phenomenon is demonstrated
in Example 5.1 below, and a preliminary discussion of the general problem is given
in Chapter 11.
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5.3 Simulation results

Simulation studies are undertaken, using the prediction error method implemented
in pem.m in the System Identification Toolbox for use with Matlab (Ljung, 1995)
and disim.m in the Control System Toolbox for use with Matlab (Grace et al.,
1992).

Example 5.1 - Primary output estimator for a fifth-order system

The systematic method in Section 5.2 was tested by simulations based on a
continuous-time system

u1

U2

x. (5.1)
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This is the system used in Example 4.1. It might be an interacting stirred-tanks
system, as illustrated by the equivalent electrical circuit in Fig. 5.1.

S o5l o5l
Y S

-
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1 4 1 1 1
o a
“ 1 g5 1 1
i
V2

Figure 5.1 Equivalent electrical circuit for interacting stirred-tanks system.

The system was converted to discrete-time assuming zero-order hold elements
on the inputs, with a sampling interval T = 0.1, and discrete process and measure-
ment noise was added. The process noise sources v 3 and va; were independent
and normally distributed zero mean white sequences with variances 7,, = 1 and
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T4, = 0.1 directly added to the inputs. The measurements y1, Y22, Y23 and yo4 were
independent and normally distributed zero mean white sequences with variances
r11 = 107% and rog = 7193 = 794 = 0.01.

The procedure in Section 5.2 was followed, except that each identification and
validation was repeated in M = 10 Monte Carlo runs with independent data sets.
The identification experiment in step 1 was simulated with the controlled inputs
u1 and ug as independent filtered PRBS with autocovariance 7y, (p) = 0.8/7! (see
Soderstrom and Stoica (1989), example 5.11 with a = 0.8). A modeling data set
and a validation data set were recorded, each with NV = 1000 samples.

In steps 2 to 6, the optimal OEC estimator (2.41) was specified as

nn=[0,[n,---,n,n+1,---n+1],0,0,[n,---,n],[1,---,1,0,---0]], (5.2)

adjusted to the number of v and ys inputs used (see Appendix B for definition of
nn). The results are summarized in Table 5.1, with theoretical RMSE values for
model order n = 5 included.

Table 5.1: Use of systematic model determination method based on NV = 1000 sam-
ples and M = 10 Monte Carlo runs for each model alternative (RMSE values multiplied
by 10%).

step | n | u1 | U2 | Y22 | Yo3 | You | RMSE | RMSEipeo.

2 1| x| x 990 £ 158 638
2 2| x| x 690 £ 88 638
2 3| x| x 767 £ 125 638
2 4| x | x 726 £ 179 638
2 51 x| x 753 £ 276 638
3 2 x| x| x 242 +7 226
3 2| x | x X 368 £ 39 353
3 21 x| x x | 2284+17 204
4 2 x| x| x x | 200£13 180
4 2| x| x| x X X 175+ 10 158
) 2| x X X X 224415 —

5 2 x| x X x | 174£10 -

5 2 X X X 211+6 —

6 1 x| x X x | 220£10 -

The conclusion from this is that we should use us, y22, y23 and yo24 as inputs
and system order n = 2. That would very likely be the result also when using
only one specific data set, bearing in mind that we would look for a parsimonious
model.
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The results in Table 5.1 also illustrate the validation problem discussed in
Section 5.2. The two best models gave very similar validation results, with one
being better than the other in approximately 50% of the Monte Carlo runs. The
same is also the case when the model order is increased to n = 3, and with a single
data set we might thus end up with any one of four different models as the best
choice. The aim for a parsimonious model would still make the choice indicated
above most likely.

The simulations presented above were repeated with use of only one specific
data set with N = 200 samples, and the results are given in Table 5.2.

Table 5.2: Use of systematic model determination method on a single data set with
N = 200 samples (RMSE values multiplied by 10%).

step | n | up | ug | Yoo | Yo3 | y2u | RMSE | RMSEheor.

2 1| x| x 830 638
2 21 x| x 799 638
2 3| x| x 1180 638
2 4 x| x 1205 638
2 51 x| x 1235 638
3 21 x| x| x 269 226
3 21 x| x X 447 353
3 2|1 x| x X 242 204
4 2| x| x| x X 320 180
4 21 x| x| x X X 220 158
4 2| x| x X X 228 168
5 2| x X b X 274*) -

5 2 x | x X X 251%) —

*)best of five identifications with different initial values (when both manipulated inputs
u1 and ug were used, different initial values had no effect on the result)

With these results, the final choice would be to use model order n = 2 and
all the available information in uy, us, Yoo, ¥23 and yoq. This was also one of the
two best and equally good results based on N = 1000 samples, although we then
found it natural to choose the more parsimonious solution without use of the uy
information.

With a short sampling interval, the system in this example will be of the type
considered in Theorem 4.3, and numerical problems should therefore be expected
with near perfect measurements. However, in order to encounter such problems
with N = 1000, all secondary measurement noise levels had to be decreased to

Tog = ro3 = roq = 10715 at the same time as the sampling interval was reduced to
7 = 0.001.
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Example 5.2 - Example 5.1 with reduced measurement noise

The Monte Carlo simulations based on N = 1000 samples in Example 5.1 was
repeated with the y22 and ya3 noise levels reduced to rga = re3 = 0.0001. Some
results are shown in Table 5.3.

Table 5.3: Use of systematic model determination method in M = 10 Monte Carlo
runs using N = 1000 samples and reduced y92 and y23 noise levels (RMSE values multi-
plied by 10%).

n|up | ug | Y22 | Y23 | Y24 | RMSE | RMSEiyeor.
2 x| x b'd X x | 102+4 102

1 x| x X X x | 104+2 102

1 X X 102+ 3 —

From the table we see that there is no reason to use anything else than a
first-order model with only y22 and yo3 as inputs. We might then also identify an
ARMAX estimator or use a subspace method.

|
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Chapter 6

The low primary output
sampling rate case

In many practical cases it is not feasible to perform an experiment with
high rate sampling of the primary system outputs, and it is therefore a
need for methods based on low and possibly also irregular sampling rate
y1 data. A simple and general prediction error method that handles this
type of situation is described in the present chapter, as an extension
of the methods presented in Chapter 3. This is made possible by the
fact that the optimal primary output estimators developed in Chapter
2 are of the OE type, with the secondary y2 outputs used as estimator
inputs. It turns out that the real difficulty of the problem is to find
the initial parameter values for the optimization that are necessary in
order to find the globally optimal prediction and current estimators,
and solutions to that problem are therefore also outlined.

6.1 Statement of problem

The basic statement of problem is given in Subsection 2.2.1, only that we now
must add that

e data records for uy and ya for k = 1,2,---, N3 are at hand from an informa-
tive experiment (e.g. Goodwin and Payne, 1977), i.e. with uy persistently
exciting of appropriate order (e.g. Stderstrém and Stoica, 1989) and with a
sufficiently large number of samples

e a data record for y; ; from the same experiment is also available, with j =
1,2,---, Ny, where N1 < Ny is a sufficiently large number and where each
sampling of y; ; coincides in time with one of the uj and y ; samplings

91
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e the system operates in open loop (may be relaxed as discussed in Chapter
11)

e the primary property measurement noise wy ; is white in the outset, i.e. there
is no need to model the noise at the high sampling rate (which would not be
possible from the low sampling rate y; ; data) ’

e the y; ; samples that are available at a low and possibly irregular sampling
rate are representative measurements of the primary property 2, i.e. the
underlying primary property z; = Ciz; + Diu; has the same statistical
distribution as zp = Cizg + Diug

e the problem now is to identify the optimal output error prediction and cur-
rent (OEP and OEC) estimators developed in Section 2.2.

For clarity of presentation, we assume that the process noise v and mea-
surement noise wsj are independent. A theoretical discussion of the case with
correlated process and measurement noise sequences is given in Subsection 2.2.6.

6.2 Modified criterion function

In the prediction error method used in Chapter 3 for identification of the optimal
primary property OE estimators, we minimize the scalar criterion function

N
Viv(6) =h [% > el,kw)e{k(e)} , (61)
k=1

where the scalar function may be h[] = det[] or h[] = trace[]. When y; is
not generally available due to a low and possibly also irregular sampling rate, we
must give the prediction errors zero weight when y; 5 does not exist. We therefore
minimize

k=1

1 No 1 Ny
VN, (6) =h {Fl > akal,k(e)sik(e)} =h [ﬁl Zsl,j(e)“:{j(g)} ; (6.2)
j=1

where
o = 1, at the time instants k where y; is sampled (6.3)
¥~ 0, at the time instants k where y; is not sampled. :

Asymptotically (for N1 — oo) minimization of (6.2) will then give the same result
as minimization of (6.1), provided that the y;; samples are representative, i.e.
that they have the same statistical distribution as ordinary y; ; samples would
have had.



6.3. DETERMINATION OF INITIAL PARAMETERS 93

The modified criterion function (6.2) may in principle be used also when AR-
MAX models are identified, although that would make little sense since we for
such models anyhow will need all y; ; samples. For the prediction and current
estimators (2.34) and (2.41), however, € ;(f) is based on only the present y;
value (in addition to past and present u and y, values), and minimization of (6.2)
is then a feasible option.

As in the ordinary case, minimization of (6.2) normally requires good initial
values in order to avoid local minima problems. In this case we cannot, however,
use an ARX model obtained by least squares modeling for this purpose, which is
otherwise a part of the recommended solution (Ljung, 1987,1999).

Ordinary OE models

Identification of ordinary OE models may also be based on low and irregular sample
rate y data, since ¢;(6) in that case is based on only present y; values, in addition
to past and present u values. The initial value problem will then be essentially the
same as mentioned above.

6.3 Determination of initial parameters

6.3.1 Initial parameters for ordinary OE model
Identification of ordinary OE model

We start the discussion on methods for initial parameter determination with the
ordinary OFE case. We then have a model

T+1 = Aik + B’U;k + G’Uk
yr = Czp+ Dug + wg, (6.4)

where v and wy are independent white noise sequences with covariance matrices
R, = Eviv and Ry, = Bwgwy.

Assuming that a true parameter vector 6y exists, the corresponding input-
output OE model is

yr = Glg™*, fo)ux + g, (6.5)
where
G(q7',60) = C(qI — A)™'B + D, (6.6)
and where
M = O(gI — A) ™' Gug + wy, (6.7)

is colored noise.
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A prediction error identification method will then result in the prediction error
ex(8) = e — Y™ (0) = [G(a™, 80) — G(g ™", 6)] we + 1, (6.8)

which after minimization of the scalar criterion function (6.1) (with e; replaced
by €) asymptotically (for N — o0) results in § — 8 = 6y (see Subsection 3.2.2.
for details). We here assume a correct parametrization and an initial parameter
vector of sufficient quality.

When y; does not exist for all k, we may still identify the model by minimiza-
tion of (6.2) (with &; replaced by €). As mentioned above, however, we cannot
then find an initial model by least squares estimation. In order to find a solution
to that problem, we make use of some basic system realization theory.

Realization theory

Assuming that the system (6.4) is of order n, the so-called Hankel matrix of the
system is defined by

hiy hy --- hy
By o+ o0 hop1

Here, h; are the Markov parameters in the impulse response, which we find by
series expansion of (6.5) as

[C(aI = A)7'B+ D] uy +n,
- [D +CBq '+ CABq™ 2+ CA*Bq3 + | ug +n,

Yk

o0
= > hiup_; + 7, (6.10)
=0
1.e.
(0 , fori <0
hi={ D , fori=0 (6.11)
CA™1B | fori>0.

The dimension of h; is m X r, where r is the number of inputs in the u vector and
m is the number of outputs in the y vector.
Using (6.11) it is straightforward to show that H, can be factored as

.Hn == I‘nQn, (6.12)
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where

C

CA

CAn-tL

is the observability matrix of the system, while
Qu=|B AB .- A'B (6.14)

is the reachability matrix. For a minimal realization, these two matrices have full
rank (Kailath, 1980).

Initial values by identification of FIR model

The series expansion (6.10) gives us a way of finding initial parameter values in
the low output sampling rate case. Assuming that the system is asymptotically
stable, we will find that h; — O when ¢ — oo, and we may therefore use the finite
impulse response (FIR) model

ug
L Uk—1
Yo & Y hiug—i + 15 = [ ho h1 --- hp } : + T, (6.15)
i=0 :
Up—L

where L is chosen sufficiently large. We can then determine a Markov matrix
estimate [ ho hi -+ hg ] by a least squares solution of (6.15). This is possible
also when most of the yi values are missing, in which case we use only the y;
samples that are available, together with the corresponding past and present wuyg
values. The model found in this way will be biased due to both the truncation and
the lack of noise modeling. Note, however, that with a low y; sampling rate, the
noise terms 7; will not be consecutive, which means that the correlation from one
sample to the next is reduced, with reduced bias in the LS parameter estimate as
a consequence.

Once the Markov parameters are determined, we are in a
the system matrices from kg and the Hankel matrix (6.9). In order to reduce the
effect of errors we use the extended Hankel matrix

Hpn=|' : , (6.16)
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where we assume that L is an odd number. Using an algorithm of Ho and Kalman
(1966) with modifications by Kung (1978), we may do that in the following way:

1.
2.

Find D = ilo.
Perform a singular value decomposition (SVD) of Hr.1 and decide on the

2
number of significant singular values (see details below). In the ideal noise-
free case only the n first singular values are nonzero, where n is the model
order (Kailath, 1980).

. Compute the factorization Hr+1 = I'n41Qr41, where T'ry and Qpyy are
2 2 2 2 2

extended observability and reachability matrices of dimensions mi’zi1 X n

and n x 7'%['-1-.

. Read € from the first block row of fl}il.
2
. Read B from the first block column of QLil.
2

. Define the submatrix f‘l.ﬂ-_l_l by deleting the last block row in I"z11, and
T2 2

the submatrix f‘Q: Lo by deleting the first block row. Note from (6.13) that
Fz;% = Tl:%i—lA7 (6.17)

and find A from the overdetermined equations (6.17) as the least squares
solution

-1
A= (Pi%d—lflz%ﬂ—l) e (6.18)

Finally transform the result into the canonical form utilized in the prediction
error method used.

Step 2 - Model order determination An SVD of the matrix Hr. in (6.16)
2
results in

. N S, 14
Hrpn = [ Us Unoise J " ° Q‘ -‘ '*sT —l (619)
2 - L 0 Sroise 1 L Vnoise |
= 0S§ST7ST ~+ noise,

where S, is a diagonal matrix with the significant singular values in descending
order, and where the number of singular values used in S; determines the model
order n. The decision on the number of significant singular values is a non-trivial
task, that in the end can only be made through proper validation. This means
that we must make a preliminary decision on the model order to use, and possibly
revise this choice after validation of the final result.
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Step 3 - Factorization of H L+1 When a preliminary decision on the model
2
order n is made, the factorization of (6.16) results in

H—L_;Q ~ f L1 Q%i = 0555‘75T. (6.20)

Ll
2

Following the definitions by Moore (1981), we may now choose I'z+1 and Qr41 in
2 2
three different ways:

f‘kﬂ =T, Ge 2 and L+l = 5’31 / 2‘7ST , internally balanced form
. 2 n A 2 A A
Ty =Us and Qru = S V7T , output normal form (6.21)
.2 [ L2 .
Iip =UsSs  and Qpe =V , input normal form.
2 2

After choosing the model form, we proceed in order to find the C, B and 4 matrices
as described in the steps 4 to 6 above.
6.3.2 Initial parameters for OEP and OEC estimators

Initial parameters for identification of the optimal OEP and OEC estimators (2.34)
and (2.41) may be found in different ways, dependent on the observability of the
system.

Systems with directly observable output state

Consider the system

Tpr1 = Azp+ Bug+ e (6.22)
Y15 = [ Ci 0 } i+ Dlu]' +wy; = 011931,]' + Dluj + w1 ;
Yok = { Cy O } Ty + Doug +wa g = Co171 x + Doug + wo g,

where z; is the part of the state z that directly via C1; determines ¥, ;, and where
x1k is also directly observable through the y3x measurements via the invertible
matrix Co1.

In this case we may identify the system (A, B,Ca1, D) using 2 as output
signal, and then find C1; and D; as a least squares solution of the set of equations
given by

Y1, = C’llCz"llyz,j + (Dl - 01102_11D2)Uj +wy;— 01102—11102,]'. (6.23)

In this way we will obtain all the necessary initial values in the optimal OEP and
OEC estimators (2.34) and (2.41).

The model found may also be used as the final solution, although minimization
of the criterion function (6.2) must be expected to give improved primary property
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estimation results when y; has a much lower noise level than y» (compare with the
results in Example 6.2 in Section 6.4 below). If necessary, the solution of (6.23)
may also be regularized by use of for example principal component regression
(PCR) or partial least squares regression (PLSR). We will return to that subject
in the following chapters.

Systems structurally observable from the vy, outputs

Consider the system

Tl = Az + Bug + Gug (624)
vy1;, = Cizj+ Diuj +wy
yor = Chxp+ Doup +wag,

where (C2, A) is structurally observable (Appendix A). The innovations model
using uy as input and y; ; as output is then

Eppir = AZQh_; + Bug + ARy e} (6.25)

y2,k; szklk—l + DQUk + 62,]{:7

which may be identified by use of an ordinary prediction error or subspace method.
When this is done we can reconstruct the innovation model state vector 5’%2—1 by
use of

308 = (A — AKSRC,) 208, + (B~ AKS®D2) e + AKS®yor.  (6.26)

The remaining matrices in the optimal OE estimators (2.34) and (2.41) will then
be C; and D1, and they can be approximately found as a least squares solution of
the set of equations given by

y1,; = C125" + D1u; + 9. (6.27)

- 2alll

ple to the next may be small with a low y1 . sampling rate. The system matrices
found in this manner may then be used to construct initial parameter values in the
optimal estimators, as a starting point for minimization of the criterion function
(6.2).

The model found may also be used as the final solution, although minimization
of the criterion function (6.2) must also here be expected to give improved primary
property estimation results (see simulation results in Example 6.2 in Section 6.4
below).

Note that ¥; here is a non-white sequence, although the dependence from one sam-
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Systems only detectable from the y; outputs

In this case we have a system of the type

x1 [ A A z1 By G1
= +
[MLH | 0 A”]lm}k [B2 uk+[G2]ﬂk

i o

yi = | Cun Cr2 } s + Dyuj 4wy j (6.28)

J

yar = | 0 Co ] l 2 + Dauy + wa,

i k

and the innovations model

- OF = OE
27 etk 0 Axn || % e L D2

AllK%E + A12K202E OE
+ e 6.29
|: A22K§)2E 2,k ( )
~s0E
xT
yZ,k = [ O 022 :l |: j%)E :l + DZUIC —l" 6(2)’%.
2 Jkk-1

It is then possible to identify the system (Aszg, B2, Ca2, D2, A22K§)2E) by an ordinary
prediction error or subspace method, and reconstruct the innovation model state
vector §:2O]“k3| x—1 Dy use of

a‘cgﬁrl]k = (A22 - A22K%E022) igak_l + (32 - AK%EDz) U + A22K§2Eyz,k-

(6.30)
When this is done, it remains to find initial values for the dynamic primary
output model (for a moment assuming that all y; 5 samples exist)

8 ae = Andfhi_, + Bi (6.31)
yie = Cndfhi i + Dix + Y,
or . _
yik = [Cu1 (af — An) ™' B+ D)y + 9y, (6.32)

WhereB= [Bl—R-Dg Alg—f(ng R],D= [Dl 012 0] and ﬁk=
Uk
fgﬂk_l , with K = A K9P + A1oK9F. This is the same type of system

Y2,k
as the ordinary OE model (6.5), and since y; ; is not generally available, we may
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find the initial values by use of the FIR modeling method presented in Subsection
6.3.1.

In this way we find initial values for (A1, B ,Ch1, l~7), and with the initial values
(A22, B2, Cag, D, A KOF) found above, we have all the initial values needed for
identification of the optimal OEP and OEC estimators (2.34) and (2.41). It must
be emphasized that this solution requires a substantial number of primary output
samples. We need a large dimension of the extended Hankel matrix (6.16) in
order to reduce the effect of errors in the estimation of the A matrix, and each
Markov parameter h; will be a matrix with a column dimension determined by
the dimension of the 4 vector above. We may, however, use simplified solutions as
indicated in Example 6.3 below.

6.3.3 Initial parameters by resampling of low sample rate estima-
tor

With a sufficiently high y; ; sampling rate, it may be possible to identify an ap-
proximate discrete-time OE estimator using only the corresponding samples u;
and yo ;. From this it is straightforward to find an approximate continuous-time
estimator, and finally initial estimator parameter values by resampling at the u
and ys ; sampling rate. We will see an industrial data example of that in Chapter
10.

6.3.4 Initial parameters from filtered data

With a low y; sampling rate, the primary property zx may vary a lot in the inter-
sample periods. We must then expect a narrow global minimum of the criterion
function (6.2), and a difficult task to find the optimal estimator without very good
initial values. A solution to the problem may be to filter all signals used in the
identification procedure by equal low-pass filters before the attempt to find an
estimator. This is a well known method in general system identification, where it
may be used in order to enhance the low-frequency fit of the model (e.g. Ljung,
1987,1999). In the present context the aim of the prefiltering is only to facili-
tate initial values for an identification without prefiltering. A preliminary test
on acoustic data presented in Chapter 10 indicates that this method may work
satisfactory.

6.3.5 Iterative search with randomized initial values

Difficult initial value problems with a low primary output sampling rate may be
solved by an iterative search with randomized initial parameter values. This is
demonstrated in the acoustic data example in Chapter 10.
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6.4 Simulation examples

Simulation studies are undertaken, using a modified version of the prediction er-
ror method implemented in pem.m in the System Identification Toolbox for use
with Matlab (Ljung, 1995). The modifications consist of setting both the primary
output y; r = 0 and the prediction error e; = 0 for all sampling instants k where a
measurement y;  does not exist. In order to compensate for the reduced informa-
tion content in the data due to lack of y; measurements, the number of iterations
in the optimization procedure was in the examples increased from the default value
10 to 25, while the tolerance limit was reduced from 0.01 to 0.001. In all examples
the systems were simulated with the known input uy as a filtered PRBS with auto-
covariance Tyy(p) = ol where 0 < o < 1 (Soderstrom and Stoica, 1989, example
5.11), i.e. inputs that were persistently exciting of sufficient order.

Example 6.1 Identification of ordinary OE estimator

In this example we use a modified version of the system in Example 3.2, with
the following continuous-time second-order process model with an additional first-
order process noise model used as a starting point:

-1 1 0 0 0
z = 0 -1 1 |z+ |1 |u+|0 |v (6.33)
0 0 -1 0 1

y [1 00]x+w.

The system was discretized assuming zero-order hold elements on the v and v
inputs and a sampling interval T' = 0.1, and the PRBS input autocovariance was
Tuu(p) = 0.5/Pl. The scalar noise sources v, and wy were independent and normally
distributed white noise sequences with zero mean, variance 7, as given in Table
6.1 below, and r,, = 0.0001.

The number of samples were chosen to No = 2000 for the input u; and N; =
200 for the output y;, with equally spaced y; measurements (y; = yk, for j = 1, 2,
3, ---and k = 10, 20, 30, ---).

Initial parameter values for the OEU model (2.23) were found by use of the
FIR method in Section 6.3 with the impulse response truncated at L = 99. Typical
singular values in the FIR method were for 7, = 1 in descending order ¢ = 0.68,
0.50, 0.21, 0.20, 0.19, ..., from which a model order n = 2 was a natural choice.
The extended observability and reachability matrices found from SVD factorization
of the extended Hankel matrix (6.16) were defined in the output normal form
in (6.21). The initial state-space model was transformed to the controllability
canonical form using the function canon.m in the Control System Toolbox for use
with Matlab (Grace et al., 1992), and further to the observability canonical form
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by use of duality relations (Kailath, 1980). A state space representation of the
second-order model

B(g™) big! +b;°
= — -+ =
Yk A(q—l)u’c Me =7 +a1q~ ! +asq

—3 Uk + M (634)

was then identified using the modified prediction error method.

Simulations and identifications were repeated in M = 10 Monte Carlo runs,
where each identified model was validated against an independent data set with
the same number of samples and the same noise variances as used for identification.
Validation comparisons between the different identified models were based on the
root mean square error criterion

No

1
RMSE = J =3 - 995 (6.35)
2 k=1

where all the known values of y;, were used (although assumed sampled at a reduced
rate).

In order to limit the influence of local minima problems, each identification
given specific data sets was repeated R = 5 times with randomized initial B(q™?)
parameters (b;;r+1 = bijr - (1 +0.05e), with e as a zero mean and normal random
variable with variance 1). The best of the five models was then validated and kept
as the final model.

The mean RMSE values and RMSE standard deviations for different numbers
of samples are given in Table 6.1. The table also includes theoretical RMSE values

/Cou(§9F) = /CPOEUCT +r,,, where POBU is given by (2.25).

Table 6.1: Validation results for ordinary OE estimator based on M = 10 Monte
Carlo runs. The table shows RMSE mean values and standard deviations and theoretical

RMSE mean values for different process noise variances and measurement noise variance
74 = 0.0001. The RMSE values are multiplied by 10%.

Ty Ny | Ni | Initial FIR estimator OEU OEUtheor.
0.01 | 2000 | 200 4027 +198 192 + 37 170
0.1 | 2000 | 200 1662 + 1251 565 + 210 444

1 | 2000 | 200 1655 £ 89 1400 £ 191 1373

The large RMSE value for the initial FIR model with reduced process noise
level is due to oscillatory behavior caused by a pole close to the unit circle. It is
not further investigated why this is improved with increased noise level. At all
noise levels the final RMSE results are close to the theoretical values.

[ |
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Example 6.2 Identification of optimal OEC estimator with (Cs, A) struc-
turally observable

This example is basically the same as Example 3.2, only modified with respect to
the 7; sampling rate. The intention is now primarily to verify that the optimal
estimators will be found also in the low y; sampling rate case, and we choose to
limit the simulations to the OEC estimator (2.41). As a starting point, the fol-
lowing continuous-time second-order process model with an additional first-order
process noise model was used (e.g. interacting mixing tanks or thermal processes):

-1 1 0 0 0
T = 1 -2 1 |z+ |1 |u+]|0|w
| 0 0 -1 0 1
o= (10 0]e+ruw (6.36)
Yy2 = [0 1 O}xﬂ—wg.

Remark 12 As pointed out in Example 3.2, (Ca, A®) is here structurally observ-
able, although the specific parameter values chosen make (Ca, A®) non-observable.

The system was discretized assuming zero-order hold elements on the v and v
inputs and a sampling interval T' = 0.1 (see Example 3.2), and the PRBS input
autocovariance was Tyy(p) = 0.8/Pl. The scalar noise sources Vg, W1k and wok
were independent and normally distributed white noise sequences with zero mean
and variances r, = 1, 711 = 0.0001 and 792 = 0.01. As in Example 6.1, it was
assumed that y; ; was recorded at every tenth uy and y; x sampling, resulting in
N; = N3/10 samples.

The initial parameter values for the OEC estimator (2.41) were found by first
identifying an ARMAX model using N, samples with uy as input and ys § as output
(see Subsection 6.3.2). The static relation from the state vector 9% to y; 5 was
then found as a least squares solution based on the available y; ; measurements
and the corresponding :E?E values, i.e. by use of (6.27) with D; = 0. The ARMAX
model was here specified as

A(g N yak = Blg Huk + Clg ex, (6.37)
with
Alg ) =1+ag " +ag* +a3q?, (6.38)
B(g™") =bigt +bag P +b3g™° (6.39)
and )

Clgh) =1+c1g " + g ® + g™, (6.40)
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After an appropriate similarity transformation of the initial estimator, the OEC
estimator (2.41) was identified with uz and yo x as input signals and y; ; as output
signal. The OEC model was specified as an observer canonical form (Kailath,
1980) state space representation of

_ BOEC(g 1wy + BOEC (g Vo

Y1,k = ACEC(g-1) + I, (6.41)
with
BYFC(g™") = bug™" +b12g ™ + bizg (6.42)
BPEC(q™1) = bao + ba1q™ " + baag > + bosq (6.43)
and
APFC(g™H) =1+ a1g7" +aaq* + azg ™. (6.44)

As the main purpose of the simulations was to show the feasibility of the low
sampling rate solution, no attempt was made to find the model order and model
structure from the data. The model order can, however, be found by ordinary
use of one of the several available subspace identification methods, e.g. Di Ruscio
(1997), and a systematic method for finding the structure was presented in Chapter
5.

Each identified model was validated against an independent data set with the
same number of samples and the same noise variances as used for identification.
Validation comparisons between the different identified models were based on the
root mean square error criterion

N2

1 . 2
RMSE = \] A ’; (yl,k - yg,ﬁk) , (6.45)

where all the known values of y;; were used (although y;; data sampled at a
reduced rate was used in the identification stage).

As a basis for comparisons given specific numbers of samples N; and Ny, each
model was identified and validated in M = 10 Monte Carlo runs using independent
data sets. In order to limit the influence of local minima problems, each identifi-
cation given a specific data set was repeated R = 5 times with randomized initial
Bi1(g¢™!) and Ba(g?!) parameters (b rt1 = bijr - (1+0.05¢), with e as a zero mean
and normal random variable with variance 1). The best of the five models was
validated and kept as the final model.

The mean RMSE values and RMSE standard deviations for different numbers
of samples are given in Table 6.2. The table also includes theoretical RMSE values

,/C’ov(gjg%| ) computed according to (2.44).
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Table 6.2: Validation results for M = 10 Monte Carlo runs for estimator for system
with (Ca, A) structurally observable. The table shows RMSE mean values and standard
deviaticns and theoretical RMSE mean values for different numbers of samples and 1, = 1,
r17 = 0.0001 and 799 = 0.01. The RMSE values are multiplied by 10%.

Ny Ny | Initial ARMAX+LS estimator OEC OEC;yeor.

400 40 1211 &+ 343 333 £ 48 230
2000 | 200 969 + 94 245 +12 230
10000 | 1000 972 + 37 238+ 7 230

As expected, Table 6.2 shows reduced estimation error when the number of
samples is increased from realistically small values to No = 10000. In all cases,
however, the OEC estimator is considerably better than the initial ARMAX+LSE
estimator. For a large number of samples, the OEC estimation variance approaches
the theoretical value. For N7 = 200, the results are clearly better than the corre-
sponding results in the high y; sampling rate case with Ny = IV} given in Example
3.4. It is verified that this is not due to the increased number of iterations or
the reduced tolerance limit, and judged from the RMSE value the initial model in
Example 3.4 is considerably better (RMSE = 313 & 88). It is not further investi-
gated whether the initial model in Example 3.4 is inferior in other respects, or if
it is the large number of input and secondary measurement samples in the present
example that is beneficial.

In order to visualize the degree of model misfit behind the RMSE values in
Table 6.2, specific validation responses for models based on Ny = 400 samples, are
shown in Fig. 6.1. The figure also gives a representative picture of the improvement
from the initial ARMAX+LS to the final OEC solution. Note that the number of
11 measurements behind the estimators is only N; = 40.
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Figure 6.1. Segment of validation responses for an initial ARMAX+LS estimator
(dashed, RMSE = 0.1295) and the OEC estimator (2.41) (solid, RMSE = 0.0380).
The experimental conditions are given by r, = 1, 711 = 0.0001, 792 = 0.01, Ny = 400
and N7 = 40, and the ideal validation response is shown by dotted line with o-markings
at the j sampling instants.

|

Example 6.3 Identification of optimal OEC estimator with (Cs, A) only
detectable

In this example we use a modified version of the system in Example 3.2, with
the following continuous-time second-order process model with an additional first-
order process noise model used as a starting point:

-1 1 0 0 0

T = 0 -1 1 |z+|1]u+|0|o (6.46)
0 0 -1 0 1

o= [10 0]x+w1

Yo = [0 1 O}m—l-wQ. (6.47)

This is also the same system as in Example 6.1, only that the y measurement is
added.

The system was discretized assuming zero-order hold elements on the v and
v inputs and a sampling interval T = 0.1 (see Example 3.2). The PRBS input
autocovariance was Ty, (p) = 0.5/PI. The scalar noise sources Vg, Wik and wok
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were independent and normally distributed white noise sequences with zero mean,
and variances 7, = 1, 11 = 0.0001 and 799 as shown in Table 6.3 below.

The number of samples were chosen to No = 2000 for the input ug and the
secondary output yor, and N3 = 200 for the primary output y; ;, with equally
spaced y1 j measurements (y1; =y1x, for j =1, 2, 3, --- and k = 10, 20, 30, ---).

Initial parameter values for the OEC estimator (2.41) can in theory be found
by use of the FIR method in Section 6.3. With the impulse response truncated at
L = 99 and use of a second-order model with y, as input, we would then have 594
parameters in the extended Hankel matrix (6.16). Since we would have only 191
equations of the type given in (6.15), and since a considerable reduction of L was
found unacceptable, we were forced to use a simplified approach:

o Identify the second-order system (6.29), i.e. find (Aag, Ba, Caa, A2 KOF) with
Coo = [ 10 ]

e Identify a first-order system with y ; as input and y; ; as output by use of
the FIR method in Section 6.3, resulting in the parameters aF'F, sFIR and

FR.

e Assume the following deterministic part of the total model:

oFIR PFIR
Tetlle = 8 Agy — Agg KQF g | “HlE—1
0 bFIR uk
+ 6.48
[ By AgpKQE Yo,k (6.48)

mj = [F® 0 0]

e Transform the model to the observer form (Kailath, 1980) and use the result
as initial model for the modified prediction error method.

A state space representation of the model

BPEC (g Huk + BREC (g yak
Y1k = AOEC (1) + U (6.49)

with the polynomials given by (6.42) to (6.44) was then identified. The simula-
tions and identifications were repeated in M = 10 Monte Carlo runs, where each
identified model was validated against an independent data set with the same num-
ber of samples and the same noise variances as used for identification. Validation
comparisons between the different identified models were based on the root mean
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square error criterion

Na

1 . 2
RMSE = J o k; (yl,k - y?ﬁk) : (6.50)

where all the known values of y;  were used (although y;; data sampled at a
reduced rate was used in the identification stage).

In order to limit the influence of local minima problems, each identification
given specific data sets was repeated R = 5 times with randomized initial By(g7!)
and B(g~!) parameters (b;jr+1 = bsjr - (1 4+ 0.05€), with e as a zero mean and
normal random variable with variance 1). The best of the five models was then
validated and used as the final model.

The mean RMSE values and RMSE standard deviations for different vari-
ances 792 are given in Table 6.3. The table also includes theoretical RMSE values

1/C’ov('g?E| ,) computed according to (2.44).

Table 6.3: Validation results from M = 10 Monte Carlo runs for estimator for system
with (Cy, A) only detectable. The table shows RMSE mean values and standard deviations
and theoretical RMSE mean values for different r92 variances with v, = 1 and r1; =
0.0001. The RMSE values are multiplied by 104,

ros | No | N1 | Initial ARMAX+FIR estimator | OEC | OECipeor.
0.01 | 2000 | 200 2362 + 150 276 £ 44 233
0.1 | 2000 | 200 1931 £ 474 621 + 34 590

The final results are reasonably close to the theoretical values, and very much
better than the initial estimator results. One may, however, raise the question
if not a reduced estimator with only ysx as input would give comparably good
results. This is investigated in the next example.

|

Example 6.4 Identification of optimal OEC estimator with (Cs, A) only
detectable by use of reduced model

Example 6.3 above was repeated, but now using a first-order model with only y &
as input. The initial estimator was found by use of the FIR method in Section
6.3, and the validation results are given in Table 6.4.

In order to verify the need for a dynamic output model, a static estimator
U1,k = cyo,r Was also established through a least squares solution based on the
available y; ; measurements and the corresponding y2 ; values. The RMSE values
for this estimator are also shown in Table 6.4, and results for the OEC estimator
in Table 6.3 are included for comparison purposes.
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Table 6.4: Validation results from M = 10 Monte Carlo runs for reduced estimator
for a system with (C3, A) only detectable. A first-order model with only ¥z as input
was used. The table shows RMSE mean values and standard deviations and theoretical
RMSE mean values for different r99 variances with 7, = 1 and 777 = 0.0001. The RMSE
values are multiplied by 10%.

rog | No | N1 | §1=cys | Init. est. | Red. OEC OEC | OECy,,
0.01 | 2000 | 200 | 2098 £59 | 485+ 79 245+10 | 276 44 233
0.1 | 2000 | 200 | 2478 £107 | 905 +298 | 685+45 | 62134 | 590

From Table 6.4 we see that the reduced first-order estimator is to be preferred
when r99 = 0.01, while the effort to find a third-order model with also uy as input
is somewhat rewarded at the 795 = 0.1 noise level. However, note that a dynamic
output model in any case is needed.

[ |

Example 6.5 Identification of OEC estimator with (Cy, A) structurally
observable by use of reduced model

In a final example in this chapter we repeat Example 6.2, but now using a first-
order model with only y2 1 as input. As in Example 6.4 the initial estimator was
found by use of the FIR method in Section 6.3, and the validation results are
given in Table 6.5. The table also includes results for the full OEC model used in
Example.6.2. In all cases we chose the excitation parameter a = 0.5.

In order to verify the need for a dynamic output model also for this system, a
static estimator ¢ x = cya r Was established through a least squares solution based
on the available y; ; measurements and the corresponding y2 ; values. The RMSE
values for this estimator are also shown in Table 6.5.

Table 6.5: Validation results from M = 10 Monte Carlo runs for a reduced estimator
for a system with (C3, A) structurally observable. A first-order model with only y2 x
as input was used. The table shows RMSE mean values and standard deviations and
theoretical RMSE mean values for different 799 variances with 7, = 1 and 777 = 0.0001.
The RMSE values are multiplied by 10%.

ro9g | Nog | Ny U1 = cyo Init. est. | Red. OEC OEC OEC;iy.
0.01 | 2000 | 200 | 1650 £66 | 414454 2524+21 | 245412 230
0.1 | 2000 | 200 | 2106 =157 | 845+ 163 | 682+34 | 587 438 555
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From Table 6.5 we see that the reduced first-order model is almost as good as
the full model for r99 = 0.01, while the effort to find a third-order model with also
u as input is more rewarded at the 792 = 0.1 noise level. As in Example 6.4 we

note that a dynamic output model is in any case needed.
|



Chapter 7

Least squares estimation as
special case

A static least squares estimator may in theory and practice be seen as a
special case of the dynamic and Kalman filter based optimal current (a
posteriori) estimator discussed in Chapter 2 and Chapter 3. The the-
oretical link between Kalman filtering and linear regression is further
developed in the present chapter, which also forms a link to the prin-
cipal component and partial least squares regression (PCR and PLSR)
methods treated in the next chapter.

7.1 Introduction

The linear regression model arises in different settings, as described in e.g. Johnson
and Wichern (1992). ‘

Classical model with independent regressor variables

The classical model is concerned with the association between an m x 1 vector of
response variables influenced by noise, and a collection of known and independent
regressor variables. Assuming centered data and in the notation used in the thesis,

AT TN T OO

this model can be expressed as
Y1 =UB; + Ej, (7.1)

where Y7 is the N x m matrix of primary response variables, U is the N X r matrix
of manipulated and independent regressor variables, Bj is the » X m matrix of
unknown parameters and Fj is the N x m matrix of independent observation
errors. If the data is not centered, this is altered to

Y1 —Yio= (U —-Up)B1 + Ey, (7.2)

111



112 CHAPTER 7. LEAST SQUARES ESTIMATION AS SPECIAL CASE

where Yjg and Uy are matrices of mean values.

The well known least square estimate of B; and its statistical properties are
presented in Section 7.4, as a special case of a more general estimator developed
below.

Model with independent regressor variables

In the other linear regression setting, all variables are dependent and affected by
noise. Assuming centered data and in the notation used in the thesis, this model

can be expressed as
Y1 =YoBy + Es, (7.3)

where Y3 is an N X p matrix of secondary response variables and Bs is the p x m
matrix of unknown parameters. If the data is not centered, this is altered to

Y1 — Y10 = (Y2 — Y20)Bs + Es, (7.4)

where Y1g and Y39 are matrices of mean values.
The least squares estimate of By and the corresponding statistical results are
also presented in Section 7.4.

General model

In the case of both independent and dependent regressor variables, and assuming
centered data, the model becomes a combination of (7.1) and (7.3) above, i.e.

B
Yi=|U Y5 + E, 7.5
! [ 2 ] [ By ] (7.5)
or with data that is not centered
B,
Yi-Yio=[U-Up Yo—Y | B |TE (7.6)

7.2 Optimal estimator for dynamic systems

In the following we will show that the least squares estimators B; and Bs intro-
duced above are special cases of the optimal output error current (OEC) estimator
developed in Chapter 2. For clarity of presentation, we summarize this develop-
ment below. Consider the general discrete-time system

Tpy1 = Axg+ Bug + Gug
Y16 = Ci12k + Diug +wik (7.7)
yak = Comg + Douy + wo,
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with primary measurements y; x and secondary measurements s i, and assuming
centered data. Here, z is the state vector, while vg, w1 and wp are white,
independent and normally distributed process and measurement noise vectors with
covariance matrices R, = Evkvg, Ry = Ewl,kw{k and Rgy = sz,kw%jk. As will
be shown below, we must in this context assume independent measurement noise
sources, i.e. Ryp = R} = Ewl,kwg:k = 0. Also assume that (Cs, A) is detectable
and that (4, Gy/R,) is stabilizable.

Next consider a Kalman filter utilizing only the secondary ys measurements.
The optimal prediction (a priori) state estimate will then be governed by

308, = (A — AK9RCy) &0 | + (B — AKJ®D;) w
+AKD Py i, (7.8)

where K9F is the gain in a Kalman filter driven by uy and ys 5 (see Appendix A for
Kalman filtering background). The optimal current (a posteriori) state estimate
will become

398 = (I - K9BCy) 2%, + KP® (yo — Dow). (79)
From (7.7), (7.8) and (7.9) we find the OEC model

-1
Y1k = Cl(I — KQECQ) [qI — A+ AKQOECQ]
x [(B - AKEEDQ) ug + AK?Eyg,k]
+01K20E(y2,k — Dguk) + Dyug + Y, (7.10)

or
Y1k = G1(q7", 0o)ug + Ga(g™, 00)ya. ks + Ui, (7.11)

where ¢g~1 is the unit time delay operator and 6y is the exact parameter vector
assumed to exist, while v}, is colored noise given by

e = Cr(zk — 20%) + Wik (7.12)
Here the Kalman gain is determined by

-1
K§® = POPPCT (CoPO"PCF + Ra) (7.13)

where POFP = E(z) — :%g'%_l)(mk - i%%_l)T is given by the algebraic Riccati
equation

POEP = APOEPAT | GR,G
-1
— APOEPCT (CQPOEPCg + R22) CoPOEP 4T (7.14)
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The OEC model (7.10) can be identified by use of a prediction error method
(Appendix B). We would then utilize an estimator

yff&( ) =G1(qg7 !, 0)u + Ga(g ™, 0)yak, (7.15)

resulting in an estimation error

erk(0) = yie—yien(6) = [Ga(a™",60) — Ga(g 7!, 6) we

+[Galg™,00) = Galg™%,6)] ok + v (7.16)
Minimization of the scalar loss function
Vn(6) = det ( Zsl k(0)er k(@ ) (7.17)

will then asymptotically (N — oo) result in § = 6 = 6, i.e. Gi1(q7L,6) =
G1(g™1,6p) and Ga(g71,8) = Ga(g™1,80), when and only when E,L is simul-
taneously minimized. To find conditions for this to occur, we assume 6= 8y and
develop from (7.12) and (7.9)

¢k = Cl |:.’L'k — (I KSE02> xk|k 1i|
—C1K3® (Comy +wa k) + w1k (7.18)
= G (I - KQOEcz) (zx — :i',%%_l) — O K9Bwq y, +wy g

and
Byl = G (I-K9BCo) PO™ (1-K§°Cy)" T
+C1K9ERT) (OlKQOE)T +Rp
~C1K§PRar — Ry (CLES®)" (7.19)
= CPOPOCT + Ry — CLE9%Roy — Ry (CLES®)
Here,

POEC = B(zy — &) (zk — Tp)” (7.20)
T T
= (I-K§BC,) PP (1 - K§®Cy) + K§® Ry (KS™)

is the minimized covariance matrix related to the current state estimate. From
this we see that Ezpk¢{| p=p, TePresent a true minimum only when Rj» = R%} =0,
i.e. the wy; and wgy noise sources must be independent (see Section 3.2 for an
alternative argument).

From (7.16) and (7.19) with Rj2 = R3, = 0 it follows that the asymptotic
(N — o0) estimation covariance is

Cov (?31,k|1c) = Eei(60)et (60) = Epypi = CLPORCCT + Ryy. (7.21)
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7.3 General static linear regression model
Theoretical static estimator

Consider next the special pure delay discrete-time system

T+l = Ui
Y10 = Cizp+ Diug +wik (7.22)
yox = Cozk+ Doug +wo,

i.e. the model (7.7) with A =0, B = 0 and G = I. The assumption that Rjs =
RZ, = 0is in this case no limitation, since common measurement noise components
may be included in z.

Remark 13 In the chemometrical terminology (e.g. Martens and Nes, 1989) we
would call the state variables x for latent variables. We will elaborate on that in
the next chapter.

The general input-output-model (7.10) is in this case simplified to
Y1k = C1KPE (ya 5 — Dyur) + Dyug + ¥y, (7.23)

where the Kalman gain according to (7.13) and (7.14) is determined by
-1
K§® = R,C] (CoR.CY + Raz) - (7.24)
From (7.8) we also find that 23y, = 0, and then from (7.12), (7.9) and (7.22)

Yy = C1ug—1 — C1KSECoup_1 — C1KSPwa g + wy g, (7.25)

which shows that 9, = e; is a white noise sequence independent of u; and ysa k.
Since (7.23) describes a pure static system, it is valid also when the u and ys
information is available only at a slow and possibly irregular sampling rate, and
even when the variables are spatial rather than temporal. The input-output model
can therefore be reformulated as

Y15 = C]_K?E(yzd' — Dgu]') -+ Dl’LLj + e;. (7.26)

Collecting u?, yfj, y%j ; and e? for 5 = 1,2,..., N in data matrices, we find
from (7.26)

¥i =Y (CES®) +U (Dy — OES®D,) +E, (7.27)
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or
v = [U Yz][g;}+E
T
Lo e o

This is a general linear regression model, with independent regressors collected in
U and dependent regressors collected in Y3. The theoretical estimator follows as

[B{ﬂ*“ ] _ { (Dy — CLK9ED,)T } 7

7.29

where the BXF notation is introduced in order to indicate the relation to the
Kalman filtering theory.

Data based static estimator

When the theoretical model (7.22) is not known, we may still find estimates B{‘S
and B%s from experimental data. Since e; is a white noise sequence, we can find
consistent parameter estimates by linear regression, i.e. from (7.28)

(%] - ([3] 1o s1) T3z
_ [UU UYQ] [U }Yl_

Y2TU }/QTYZ Y'QT (730)

In order to verify that this asymptotically results in the theoretical estimator
(7.29), we assume that uy is a stochastic process and introduce the expectation

Eujul = R,. (7.31)

We further construct Y7 and Y3 from (7.22) as
Vi = xCf+uDT +w, (7.32)
Y: = XCF+UDT +ws,. (7.33)

Utilizing that z;, w1 ; and wo ; are independent white noise sequences with Ex;z] =

3
R, and Ewgij%jj = Ra9, we now find

ey ] (v ]

— R, RuDg (7 34)
D3R, C3R,CY + DoR,DY + Ry |’ '
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and
1| UT N R.DY
e[ o= loncThnor | 0

By use of the matrix inversion lemma (e.g. Kailath, 1980) and inserting (7.34)
and (7.35) into (7.30) we now readily find

LS KF _ OF T
4 [F]- [ o

with K9F according to (7.24). Note that R, is eliminated from the final expression,
which makes the expectation (7.36) equal to the theoretical estimator (7.29).

Estimator covariance

In this static case, the asymptotic (N — oo) estimation covariance is found from
(7.14), (7.20), (7.21) and (7.24) as

Cov (4r5) = Cr(I—KPCo) Ry (I~ KQPCo)" Cf
+01K§)ER22 (01K9E>T + R11
= 1 (I- K§5C3) RyCT + Run. (7.37)

7.4 Standard statistical results

The general results obtained above, may be compared with standard statistical
results for some special cases.

Special case 1: Classical regression

With only independent regressor variables, i.e. Yo =0, R, = 0 and Ky = 0, we
obtain from (7.28) the linear regression model (7.1), i.e

Yi=UB +E=UD¥ + E;. (7.38)
With data that is not centered, this is altered to
- Y0 = (U — U())Bl + F = (U — Uo)Dr‘lr + F1. (7.39)

This can be reformulated as

=Y10—UoB1 +UB; + E1 = [ 1y U } [ + Eq, (7.40)
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where 1y is an N x 1 vector of ones. We will thus be able to determine unbiased
estimates of both b and B; by the least squares method.
The asymptotic estimation covariance in this case follows from (7.37) as

Cov <Q1,j\j> = Rll-

This is in accordance with the general statistical forecasting result (Johnson and
Wichern, 1992)

i) = ([0 ([ ] (20 0])[)])

-1
_ 1 711 13U 1
= fu <1+N[1 E M%UTlN *UTU uj
— Ry1; N — oo, (7.41)

which follows from the fact that []™* is a constant covariance matrix for large N.

Special case 2: Regression with only dependent variables

With constant independent variables u; = ug, i.e. U = Up, we obtain from (7.28)
the theoretical model

Y1 = UpB1+YeBy+E=By+Y:Bs+ FE (7.42)
T T
= Uy (Dl —ClKgEDz) + Y (ClKé)E) + E,
where K9F is given by (7.24).

In order to compare this with theoretical results from a statistical analysis, we
introduce the mean values (see Johnson and Wichern (1992) for notation)

p1 = Eyi; = Diug (7.43)
Hy = Eys; = Daug. (7.44)

From (7.26) we then find the optimal prediction

U1,515 = Bo + By2,5» (7.45)

where
B=C1KE (7.46)

and ,
Bo = k1 — Bpa- (7.47)
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From (7.22) we find (with Ry> = RZ; = 0)

Ti2 = Bly1j — i) (2 — k)T = C1R.CS (7.48)
and

Tog = E(y2 — ta) (Y25 — pta)” = CaRyC5 + Rao. (7.49)

From (7.46) and (7.24) we also find

-1
B=CiK® = CiR,CY (CoR,CS + Rz) =S¥ (7.50)
The asymptotic estimation covariance in (7.37) will in this case become

Cov (Q1,j|j) =31 - 21222_21221, (7.51)

where 319 and X9 are found form (7.48) and (7.49), while £1; and X9 are found
from (7.22) as

Su =By —m)w; —m)" = CiRCY + Ru (7.52)

and
So1 = E(ya,j — pa)(y1, — p1)” = CoRoCT . (7.53)
The results in (7.45), (7.47), (7.50) and (7.51) can also be found by a straightfor-
ward statistical analysis (Johnson and Wichern, 1992).
In order to find data based parameter estimates for the model (7.42) by use of
linear regression, we first note from (7.43) and (7.44) that

. 1 Y
UoDl =1n%: 3 ui;=Yio (7.54)
=1
and
. 1,
UoDj = 1NN > ys; =Y. (7.55)
=1

Inserted into (7.42), this results in
Y1 — Y10 = (Y2 — Y20) B2 + En, (7.56)

where BKY = (ClKgE)T. From this relation between centered y; and y- data, we
find an unbiased estimate B%S by use of the ordinary least squares method.

From the data it is also possible to find an unbiased estimate of the covariance
theoretically given by (7.51) (Johnson and Wichern, 1992).

The connection between Kalman filtering and least squares regression for this
special case was discussed in Berntsen (1988), but then without basis in the general
dynamic OEC estimator (2.41) or the OEC model (7.10). It was also limited to
the case with Cy = I (or at least an invertible matrix) and w; ; = 0, i.e. the case
with 1 & as noise free measurements of all state variables in the system (possibly
after a similarity transformation).
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7.5 A static experimental setup for dynamic systems

The static LS method may also be used in stationary analyses of dynamic systems.
Consider again the system (7.7) with the optimal y; current estimator model (7.10),
and let the input ug be piecewise constant over periods that are much longer
than both the time constants in the underlying continuous-time system and the
discretization sampling time. Also split ux into two parts as u = [ df uz;’k ],
where dy, is a vector of unknown offsets or disturbances and where up, t, is a known
vector of manipulated or measured inputs. Assume collinear observations y; =

[ y{j y%? j ]T with a data sampling interval that also is much longer than both
the time constants in the underlying continuous-time system and the discretization
sampling interval, and samples taken at time instants where the system has settled
after the last change of u;. The experimental setup is illustrated in Fig. 7.1, where
also the samples u; at the y; sampling instants are indicated.
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Figure 7.1 Input and output signals with piecewise constant inputs and settling out-
puts. The o-markings indicate the samples used in a least squares solution.

Also assume that d; is a white noise sequence, i.e. that the unknown offsets and
disturbances are independent from one observation to the next. With a piecewise
static input vector uz and enough time for settlement, it follows from (7.7) that
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the observations will be given by

Y15 = [Cl(I—A>_lB+D1] l ud :| ‘

+ Z Ukg1i—k T W15 (7.57)
k=—o00
-1 d
Y2,; = [02(1—44) B+D2} "
m .
J

7
+ Z Vk92i—k + W25,

k=—0c0

where 7 is the value of £ at the j sampling instants, and where g; and g9 are the
impulse responses from v to y; and yo. All measurements are thus linear combina-
tions of d and up, plus noise, and since we assume a stable system with piecewise
constant inputs and a settling time shorter than the data sampling interval, this
noise will be approximately white. Since the noise is partly determined by the
common process noise vx, the noise components in y; ; and yo ; will not be in-
dependent, as required for the optimal estimator model (7.10). For calibration
purposes it is also a normal procedure to use mean values of the measurements
over a certain period of time in order to reduce the noise, but this does not affect
the theoretical analysis.

If both d and u,, are completely known, there is no need to utilize the infor-
mation in the y; measurements, we can simply solve the first equation in (7.57) as
an ordinary least squares problem. In the present case, however, we consider d as
unknown, and the y; measurements may then give valuable information about d
and indirectly also about ;.

Assume now that u,, ; is a persistently exciting stochastic signal, and that all
data are centered, i.e. that dj, um j, ¥1,; and yo ; are stochastic variables with
zero mean. Further, model d; as generated by white noise through a pure delay
system, and model also the common noise part e.; in y1,; and ys ; as generated
by a delayed white noise sequence. Expressing y1 and y2 as linear combinations of

[ .7 1T .
z=|d e ] and U, we then arrive at the dynamic system

X4 = d = €;
e I
Ji+1
V1,5 = C1.’L’j + Dlum,j -+ €1,5 (7.58)
yo; = Coz;+ Dot ; + e 5,

i.e. a system as given in (7.22). Note that all plant dynamics are lost in this setup.
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7.6 Static errors-in-variables problems

The pure delay system (7.22) with Dy = Dy = 0 gives

T+l = Vg .
Yk = Cizp+wig (7.59)
yor = Cozp+ wg.

With Cs = I the output equations will represent a static errors-in-variables prob-
lem.

In order to apply the ordinary LS method on this problem, we collect the data
in matrices Yiand Y5, and obtain the estimator

. -1 .
il =of (YY) YIYi=yfB™S. (7.60)
The theoretical and asymptotic estimator (7.29) is then

EBY = (CLE§®)" = (R, + Ra) 7 R,CT. (7.61)

Note that this is the optimal solution when the problem is to find §; ; estimates
from known ys 5, values. If the goal is to find an estimate of Cy, other methods
should be used. We illustrate this by an example borrowed from Roorda and Heij
(1995):

Example 7.1

Assume a system

Yk = QTk Tt Wik (7.62)

Y2k = Tk + Wk,

where z, w1k and wg are white and uncorrelated sequences with Ezi =1, =1,
Ewi,c = 11 = 0.5 and Ewj, = 792 = 0.5. From (7.61) we find the optimal
estimate

Y1,k = mayz,k = 0.6667ays k. (7.63)
Based on N = 20 observations Roorda and Heij (1995) found the least squares
estimator a5 = 0.69a, i.e. fairly close to the optimal result. As a good estimate
of a they found the total least squares solution aT5 = 0.96a.
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7.7 Simulation example

Example 7.2

For an application of the least squares estimation above, assume a process stream
with varying but known concentrations wm, 1, Um2 and um 3 of three substances A,
B and C, and varying unknown concentrations d;, da and dz of three other sub-
stances D, E and F. Also assume a scalar primary property z measured by y; and
p = 3 secondary noisy y measurements that all are linear combinations of the six
concentrations. Assuming that the y; measurements can be obtained only through
delayed laboratory analyses of physical samples, it is of interest find the relation
between the estimator variables u,, and yo and the z property. A calibration ex-
periment is therefore performed on the system, with a data sampling interval such
that the unknown concentrations are independent white noise sequences. We thus
have a system as given in (7.58) with e, = 0.

D d;
E d,
F ds

\

B upy; ———»
C Um,3

Figure 7.2 Process streams with known and unknown input concentrations u and d,
a concentration dependent primary property 2z, primary property measurement y; and
secondary measurements 2.

Calibration experiments were performed in M = 100 Monte Carlo simulations
with Ee"f = r;; = 0.0001. In each experiment, d, u,, and e; were generated as
normally distributed random numbers with diagonal covariance matrices Ry, Ry,
and Rgz. The parameters in R4, Ry, C1, D1, C2 and Dy were uniformly distributed
random numbers in the interval (0,1), while the parameters in Rgo were uniformls

distributed random numbers in the interval (0, 0.01) The resulting mean parameter
values for the theoretical estimator (7.29) were

KF _ 1n—4. _ — d
b =10 1675 3048 -—1347 —4712 13191 1021 | . (7.64)

Least squares estimation according to (7.30) with N = 10000 samples gave the
corresponding mean parameter values

8%\?:10000:10—4-[1692 3049 —1350 —4720 13186 1030]T, (7.65)
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while N = 200 samples gave the mean parameter values

bLs —10—4.[1863 2658 —880 —4035 12346 840]T (7.66)
N=200 — - .

The mean theoretical RMSE value RM S Eiheor. = 1/Cov ({1 j5) with Cov(gy ;)
determined according to (7.37) was

RMSEXF =, /Cov(fy y) = 0.1136. (7.67)

Least squares estimation according to (7.30) with N = 10000 samples and
validation against an independent data set of the same length gave the mean value

RMSEX 15000 = 0.1134, (7.68)
while estimation and validation with NV = 200 samples gave the mean value
RMSEX 500 = 0.1182. (7.69)

We notice here that the reduction from N = 10000 to N = 200 gave a 7% to
53% impairment in all entries of the estimated parameter vector, while the overall
RMSE value is increased by only 4%. This shows that the optimum represented
by the theoretical solution is not a very distinct one, which explains why regu-
larization methods like principal component regression (PCR) and partial least
squares regression (PLSR) can give good y; estimates even though the estimated
parameters might have significant errors. We will study such methods in the next
chapter.

|



Chapter 8

Multivariate calibration as
special case

With a large number of secondary output variables and a limited num-
ber of observations, a static least squares (LS) estimator may give very
large estimation covariance due to overfitting. In the common case with
highly collinear regressor variables, we can then make use of the chemo-
metrical regularization methods principal component regression (PCR)
and partial least squares regression (PLSR). These methods make use
of estimated latent variables that are linear combinations of all regres-
sor variables, defined by a weighting matrix W. The present chapter
develops theoretical and data based PCR and PLSR estimators as ex-
tensions of the least squares estimators in Chapter 7. In this way a
theoretical link back to Kalman filtering is established, and it is shown
that with the assumed latent variable structure the theoretical optimal
weighting matrix is a transposed Kalman gain W = (Kg)E)T. Seen from
a practical point of view, a more interesting result is that a small num-
ber of known input variables v should not necessarily be included in
the PCR/PLSR solution together with the secondary measurements ys,
but treated separately in a two-step PCA /PLSR +LS solution.

The present chapter is also a link between the optimal OE estima-
tors discussed in Chapter 2 and Chapter 3, and the dynamical latent
variables methods presented in the next chapter.

8.1 Latent variable regression models

When the number of regressor variables yo is large and the number of observa-
tions is limited, the ordinary solution to the LS problem as presented in Chapter 7
may have very large variance due to overfitting, and some form of regularization is

125
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then called for. In many such cases, fortunately, the estimator variables are highly
collinear, and most of the information can then be compressed into a few esti-
mated latent variables within a subspace of the variable space. Basic tools for this
data compression are singular value decomposition (SVD) and principal compo-
nent analysis (PCA), and the regression method directly based on this is principal
component regression (PCR), while partial least squares regression (PLSR) com-
bines data compression and regression. Detailed presentations of the PCR and
PLSR methods are given in Martens and Nees (1989) and Hgskuldsson (1996) (see
also Appendix C for an introduction and further references). The PCA, PCR and
PLSR tools for multivariate data analysis are used in many cases of great prac-
tical interest, also when the estimator variables far outnumber the observations
at hand. An example is product quality characterization by use of near-infrared
spectroscopy, with several thousand estimator variables (frequencies) and often
less than one hundred observations.

The PCR and PLSR methods are based on latent variable modeling. In the
pure delay model (7.22) the latent variables are the state variables zp. If we
for simplicity set ur = 0, and collect the x, y1 ; and yg ; variables in matrices

T T
T=[$1 Ty - mN] ,Y1=[Z/1,1 Y2 - yl,N} and
Yy = [ Y21 Y22 0 YN ] , the output equations in (7.22) can be written as
i = TCYf +w; (8.1)

Ys = TCF +wa.

In the chemometrical terminology this is called a latent variable regression model,
and it is found useful in multivariate calibration (MC), chemical process modeling
(CPM) and chemical analysis of quantitative structure activity/property relation-
ships (QSAR/QSPR) (Wold, 1993).

In the following we will take a closer look at the PCR and PLSR methods with
the linear regression analysis in Chapter 7 as a starting point. A preliminary work
in this direction was also presented by Berntsen (1988).

8.2 The pure dependent regressor variables case

8.2.1 Introduction

In this section we will assume the data structure in (8.1), i.e. ux = 0. More general
cases with ug # 0 are treated in the following sections.
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Regularized latent variables estimator without known inputs

In the PCR and PLSR methods we compress the data matrix Y5 into a matrix 7' =

T
[ 71 To -+ TN of estimated latent variables 7 by use of the factorization
Yo =TWT +E, (8.2)

with E as a residual matrix. Here W is an mxas weighting matrix W = Wpcg = P
or W = Whprs, where m is the number of y» variables and ay is the number of
components used. Since WTW = I, we thus have the LS solution

T =YW (8.3)

(see Appendix C for details).

With the matrix Y7 of response variables recorded in an experiment, and with
the 7 variables as regressor variables, the ordinary least squares method gives the
estimator

. A e\ =1 o ~ RN A
BY = (171) 17y = (WTXTXW) WTXTy. (8.4)
Since 7T = y¥'W and thus 97 = TTB%V = ngE%V, the regularized latent vari-
ables estimator related to the y, variables becomes
. . /o N B
BY =W (WTXTXW) " WTXTY. (8.5)

In the following we will return to this expression in connection with an optimal
estimator using W = (K r?E)T, and in connection with PCR and PLSR estimators
using W = P and W = Wpigs.

Pure delay dynamic model

We will in the following apply the PCR and PLSR methods to the pure delay model
used in Chapter 7, and we start with the pure dependent regressor variables case.
With u = 0 the pure delay dynamic system (7.22) is simplified to

Tk+1 = Uk
Vg = CiTp +wik (8.6)
Yo = CoTp+wap,

where we choose to adopt the chemometrical notation 7 for the latent state vari-
ables. This model is the starting point for the analysis of Kalman filter based
estimators and PCR/PLSR estimators.
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8.2.2 Kalman filter based estimators

As a basis for comparison, we first develop optimal representations of the theo-
retical and data based least squares estimators (7.29) and (7.30). In the present
static case with A = B = 0, we find from (7.8) that the prediction state estimate
is ’

Trjk—1=0, (8.7)
while (7.9) with uj = 0 gives the current state estimate
Pk = K5 T yok, (8.8)

i.e. W in (8.3) is replaced by (KQE)T. Assuming that K9F is known and that
samples are collected at a possibly irregular sampling rate, we can thus reformulate

the model (8.6) into the estimator

T+l = Uk
’f’j = KSECQTJ' -+ KQOEUJQ’J' (8.9)
1 = CiF;.

Theoretical Kalman filter estimator

With u = 0 the theoretical estimator (7.29) is modified into
T -1
BXF = (C1K§®) = (CoR,CT + Rez)  CoRuCY, (8.10)

where K9F is found from (7.24). With # as regressor instead of y2, we find from
(8.9) and (8.10)

T ™ 1
B¥F=(K§E02Ru (KSPCy) + K9® Ry (KSE)) EK§EC,R,CT,  (8.11)

which with 97 ; = #] BEF = ¢ ; (KEE)T BEF = y7 . BXF results in

- (KQE)T <K§’E02m (KSE@)T + K9F Ry (KSE)T)  KOEC,R,CT.

Remark 14 We use the BEXF*+KF notation because the Kalman filtering formalism
is used twice, first to find 7 according to (8.8) and then to find the estimator.

We thus find two alternative expressions for BX¥, and we will find (8.12) to
be more in line with the data based estimators (8.5) above and (8.14) below. The
expression (8.12), with K9F replaced by Wi, = PT or Wi g, will in the following
be used to find asymptotic (N — oo) PCR and PLSR estimators. However, note
that the expression (8.12) in itself is of purely theoretical interest. Based on
theoretical matrix values, the inversion involved will be very poorly conditioned.
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Data based Kalman filter estimator assuming K$¥ known

With K9F assumed known, only Cj in (8.10) is unknown. We may, however,
choose to order the state variables in (8.6) such that C; = [ I 0 ], and a known
K$F thus implies a completely known estimator BXF. From a theoretical point

of view it is still of interest to find the data based estimator when K9 is known,
and we therefore pursue this a little further. From (8.3) and (8.8) we find

Tie = Y (K9P) (8.13)

and the ordinary least squares method thus gives
. T T\ !
BKF+LS — (K8E> <K§)EY2TY2 (KEE) ) K2OEY2TY1 ) (814)

This is the latent variable estimator (8.5) with W = (K?E)T. Since it is based on
an underlying Kalman filter, it is the optimal unbiased estimator with minimized
covariance according to (7.37). This is considered to be an interesting result seen
from a theoretical point of view, and it is therefore summarized in the following
theorem:

Theorem 8.1

Assuming data generated by the latent variable system (8.6), the optimal weighting
matrix in the regularized estimator (8.5) is W = (KQOE)T, with KPF given by
(7.24). The resulting estimator (8.14) is the optimal unbiased estimator, with
EBXF+LS — BKF given by (8.10) and the estimation covariance given by (7.37).

Remark 15 This theoretical connection between the reqularized least squares so-
lution and Kalman filtering, is a parallel to the connection between a regularized
solution of a convolution integral and Wiener filtering presented by Tikhonov and
Arsenin (1977).

8.2.3 Principal component regression

With principal components as defined in Appendix C, equation (8.13) is replaced
by
Ipca =YoP, (8.15)

where P is the loading matrix, and where Tgc ATpca is diagonal. From this follows

75 = Plya;. (8.16)
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Theoretical PCR estimator

Assuming P exactly known and with K9P replaced by PT, the theoretical esti-
mator (8.12) is modified into -

BFCR — pPCA+KF _ p (pTczRucg“P + PTRQZP)_I PTcoR,CT. (817

Data based PCR estimator
With K9F replaced by PT, the data based estimator (8.14) is modified into

A ~ ~ [ oA A\—1 A
BPCR — BPCA+LS =P (PTY'2TY'2P> PTYQTYi. (818)

This is the general estimator (8.5) with W = Wper = P. As noted above, this is
a biased estimator, i.e. EBPCR = BKF given by (8.10).

Also note that (8.6) asymptotically (N — oo) results in &YF Yy — CoR,Cf +
Ry and £Y5'Y: — CoR,CY, i.e. BECR — BFCE given by (8.17).

Remark 16 The estimator (8. 18) is found by a PCA compression of the Ys data

into Tpoa = YQP followed by a LS solution. We therefore introduce the notation
BPCR _ RPCA+LS.

8.2.4 Partial least squares regression - the Martens algorithm

The aim of partial least squares regression (PLSR) is to improve PCR by finding
latent variable estimates 7 that explain both the Y> and the Y7 data, and there
exist at least two slightly different PLSR algorithms (Appendix C). It is convenient
to start with the PLSRy method of Martens (1987) that makes use of linear
combinations )

%M,k = WgLsyg’k. (819)

This gives the same solution as in the PCR case above, only that the load-
ing matrix P is replaced by Wers. The loading weight matrix Wprs is tra-
ditionally found iteratively (Appendix C), but it can also be found directly by
QR decomposition of a certain Krylov matrix (Di Ruscio, 1998). The matrix
ToT = [ M1 Tmz 0 M } [ i w2 0 TMN }T will in this case
be non-diagonal, and the PLSRy method of Martens is therefore called non-
orthogonal PLSR.
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Theoretical PLSR,; estimator

Assuming Wprs exactly known, the result of replacing P with Wprg is that (8.17)
is replaced by the theoretical PLSRy; estimator

BPLSR — BPLSR+KF . (820)

—1
= Wris (WgLsczRuCg Wers + WgLsRmWPLs) WiLsCaR,CL.

Data based PLSR ), estimator
The data based PCR estimator (8.18) is replaced by the PLSRj, estimator

~ ~ ~ ~ a -1 .
BFLSR — BPLSRALS — i1 g (WgLsYQTY2WPLS) WipsYs Yi. (8.21)

This is also a biased estimator, i.e. EBPLSR £ BKF given by (8.10), and as for
the PCR estimator we find that BPLS® — BPLSE when N — co.

Remark 17 The estimator (8.21) is found by a PLSR compression of the Y data
into Ty = YoWprs, followed by a LS solution. We therefore introduce the notation

BPLSE _ BPLSR+LS.
8.2.5 Partial least squares regression - the Wold algorithm

The PLSR method of Wold et al. (1983) makes use of linear combinations
- (WT P W
Twr = (WpLs Pw PLSY2,k> (8.22)

with the same Wprg matrix as in the Martens algorithm, and with a special loading
matrix Pw as defined in Appendix C. The result of this is a diagonal matrix

PN . . ) . ) ) T

TETw = [ Twi Twi 0 TWN ] [ Tw,i Twe - TW,N ] , and the Wold
algorithm is therefore called orthogonal PLSR.

Theoretical PLSRy estimator

-1
It is straightforward to show that a factor (WgLSPw> or any other invertible
factor has no effect on the final estimator, which is therefore identical with (8.20).

Data based PLSRy estimator

Since the loading weight matrix WPLS is the same as in the Martens algorithm,
the data based PLSRw estimator will be identical to the estimator (8.21) above.
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8.2.6 Discussion
Equivalence of the Wold and Martens algorithms

The equivalence of the Wold and Martens algorithms in the sense that they use the
same weighting matrix Wprs is of course well known (e.g. Martens and Nees, 1989),
although the present treatment by use of Kalman filtering formalism appears to
be new.

The regularized LS solution

The general regularized estimator (8.5) can be found in two equivalent though
conceptually different ways:

1. Start with the theoretically optimal estlmator BXF according to (8.14), and
end up with (8.5) by replacing (K ) with the welghtmg matrix P or
Wprs that may be found from the data. We may thus see P and WpLg as
approximations of (K9 ) .

9. Compress the data into Tpcr = YoP or eg. Ty = YoWprs. Then find
-1 . - PO It

BEOR = (TfouTroa)  TcaYi or BELS® = (T%7w)  TEYs and end up

with (8.5) by use of BFCA = PBRCA or BPLSR — 1i/p; s BRLSE This might

be seen as a PCA/PLSR+LS solution, and we will return to this concept in
Subsection 8.3 below.

Bias

The PCR and PLSR methods are often referred to as biased regression (e.g.
Martens and Nas, 1989). Although this is certainly true, it is still important
to notice the meaning of bias related to latent variable modeling. The ordinary
least squares estimator BLS = (Y2TY2> ! Y>2Y1 is unbiased in the sense that it leads
to unbiased estimates of y1, but the variance tend to be large when the number of
observations is limited compared to the number of Y5 variables. A solution to this
problem is to use the regularized estimator (8.5), and with the optimal weighting
matrix W = Wkr = (K QE)T as in (8.14) the estimator By is still unbiased at the
same time as the variance is minimized. When K9F is replaced by Wiog = PT
or Wi g, the resulting estimators will be biased, and that is the price we pay for
a reduction of the variance as compared to the LS solution.

8.3 The general case with 3, independent of u

In the general case, we have known and independent input variables u as well as
dependent y, variables. With the appropriate prior information available, we may
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know that the y, measurements are independent of the known inputs u, i.e. that
Dy = 0, and the theoretical Kalman filter based y; estimate is then from (7.29)
found to be

958 = Dyuj + C1ES By, ;. (8.23)

Assuming that the need for regularization is due to a large number of Yo vari-
ables, we now have the choice between two approaches:

1. We may use a standard PCR or PLSR algorithm (Appendix C) with both u
and yo data included in the X matrix, i.e. X = [ U Y, ] In that way we

find both ﬁl and CJ(;OE as parts of the regularized solution.

2. With a limited total number of yo PCA or PLSR components and known
input variables, i.e. ag + dim(u) << N, the PCR and PLSR regularization
methods can be applied to the ys variables separately, while Dy is found by
a LS solution. Since this will give a better estimate of Dy, it is reasonable to
expect better results with this approach (see Example 8.2 and 8.3 in Section
8.5 below for simulation results).

8.3.1 Kalman filter based estimators

As a basis for comparison, we also now develop optimal representations of the least
squares estimators (7.29) and (7.30).

Theoretical Kalman filter estimator

With 7 = K9Py, as regressor instead of y; and with Dy = 0, and using B{g_l; from
(8.11), the theoretical estimator (7.29) is modified into

BK¥+KF
[ pbsr ] (524

Df
| (KSECaR, (KPECo)" + KoRa (KSF)

Since
BKF
AT AT 1T
Y15 = [uf J ] [ng 1 (8.25)

BKE BKF
_ T T 1T _[.,T T 1
= [U'J Y2,5 ] [ (KQE)TB% } [ Ui Y2 ] [ BKF ] ;
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this results in

BKF [ gKF+KF
[ Biﬂ? J = Bi(F-l—KF (8.26)
[ oF
-1
= KSECyR, (K9EC,)T
KOENT 2 L2 2 2 K9EC,R. CT
I ( 2 ) < +K§)ER22 (K?E)T 2 2Ry 1
Just as for (8.12) in relation to (8.10), this can be simplified to
BXF DT
= . 2
lBgF ‘| l (C1K20E)T (8.27)
We will, however, need (8.26) as it is in the development below.
Data based Kalman filter estimator
. T
Defining Tkr = [ 1 To - TN } we find from (8.8)
R oE\T
Tkr = Y2 (Kz ) , (8.28)
and the ordinary least squares method assuming K9F known thus gives
A A -1
BKE UTU  UTTkr Ut
2L = " o - Y 8.29
E U Tl | | T " (529
-1
[ UTu UTY, (K9E)T ] [ uT v
1.
KSEYFU K§PYFY, (K9F)" | | K2FYS

From the relation between BXF and BXF in (8.25), we find the unbiased estimator

B ] _[ BI
[BgF}—[(KgE)ngg . (8.30)

Since it is based on an underlying Kalman filter, this is the optimal unbiased
estimator. Note, however, that we cannot find K9F from the data, and we use
(8.30) only as a starting point for the development of PCR and PLSR. solutions
below.
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8.3.2 Principal component regression
Theoretical PCA+KF estimator

With principal components as defined in Appendix C, the Kalman gain KZOE
is replaced by P7T defined by (8.15) (although assumed exactly known). The
theoretical estimator (8.26) is thus replaced by

Df
P (PTCR,CFP + PTRnP) " PYCaR,CT
(8.31)

BPCA+KF _ BPCA+KF
- BPCA+KF

A two-step PCA—+LS solution

Ordinary PCR is a two-step PCA+LS method (Appendix C), but then with all
data used in the first step. We will now introduce a method which uses only part
of the data in the first PCA step, and includes the rest in the LS step. First find

Tipca = YaP, (8.32)
i.e.
1 =y3. P, (8.33)

with dim(]—:’l) = m X az, where m is the number of yo measurements and as the
number of y9 components used. Assuming a limited total number of components
and known variables u, i.e. ag + dim(u)<<N, we may include the U data first in
the second step and use the LS solution

PCALLS BPEA-+LS
B = (8.34)

T
P BPCA+LS

where

g (g
l. (.;A-H_.b J \|_ Tl PCA J

This is (8.30) and (8.29) with K9P replaced by P, and a comparison with (8.31)
shows that BPCAH‘S ﬁT

Note that we asymptotlcally (N — o0) with Dy = 01in (7.22) obtain #UTU —
Ry, +UTY; — 0, £Y{Ys — C2R,CY + Ry, £UTY: — RyD; and YTY1 —
CyR,CT. Insertion of this in (8.35) results in BPCA+LS BPCA““KF given by
(8.31).
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PCA ]) [ 