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Abstract

In industrial plants and other types of dynamic systems, it is a common situa­
tion that measurements of primary system outputs are 110t available on-line. The
primary outputs may for example be quality properties, that can be determined
only through costly laboratory analyses, i.e. they can be measured only at a low
sampling rate and with a considerable time delay. Since the primary outputs give
vital information on the system performance, and in fact may be the sole purpose
of the system, it is of interest to estimate them continuously or at a high sampling
rate. This can be done by use of a system model utilizing all available information
in both the known system inputs and the secondary system outputs that often are
available at a high sampling rate.

The thesis considers the identification of optimal primary output estimators
for this purpose from experimental data, using known system inputs and sec­
ondary measurements as estimator inputs. The estimators are based on underlying
Kalmanfilters, and the identification can be done by use of an ordinary prediction
error method. However, an optimal utilization of the secondary output informa­
tion may require that an output error (OE) model structure is specified. This is
one of the major new insights provided by the thesis.

With low noise secondary measurements, it is in same cases possible to use
estimators of reduced complexity. This is found from an analysis of perfeet mea­
surement cases, and further developed into a systematie method for finding a
parsimonious estimator with a minimized mean-squared validation error.

The experimental data must include primary output measurements. It is,
however, shown in the thesis that also low and even irregular primary output
sampling rate data may be used for the purpose, provided that the predietion
error method is appropriately modified. This is a direct consequence of the OE
structure used, including the use of secondary measurements as estimator inputs,
and it is considered to be of significant practical and economical importance.

It is also shown in the thesis that the ordinary least squares (LS) estimator
for statie systems is a special case of the general current (a posteriori) OE estima­
tor for dynamic systems. This also forms a link from Kalman filtering to principal
component analysis (PCA), and to the chemometrical principal component regres­
sion (peR) and partial least squares regression (PLSR) methods based on data
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compression into latent variables. These methods make lise of data weighting ma­
trices, and assuming a latent variable data structure, the optimal weighting matrix
is shown to be a transposed Kalman gain. It is further shown that in cases with
a few independent and many dependent and collinear regressor variables, the best
solution may be obtained by lise of a two-step PCA/PLSR+LS solution, where
the independent variables are used only in the second step. .

The static latent variables methods are finally combined with the developed
methods for identification of dynamic primary output estimators, leading to two­
step PCA+OE and PLSR+OE methods, where the known inputs are used only in
the second step.

The theory and methods developed are tested on simulated data. They are
also tested on data from industrial plants and experimental test rigs, primarily
with operator support applications in mind.

Further applications ill e.g. failure detection and feedback control are given a
preliminary discussion.
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Chapter 1

Introduction and overview

This chapter gives an introduction to the problem treated and a fairly
detailed overview over the thesis. The main new insights and other
contributions are summarized.

1.1 Introduction to problem area

1.1.1 Basic industrial problem

In many industrial plants, measurements of primary system outputs are not avail­
able on-line. Such outputs are typically product quality properties, that for practi­
cal and economical reasons are measured only at a fairly low and possibly irregular
sampling rate, often through laboratory analyses of physical samples. For opera­
tor support and other purposes, it is of interest to estimate these primary outputs
more or less continuously, and that can be done by use of the known inputs and a
deterministic model of the plant. Such estimates will fail to capture the infiuence
of unmeasured plant disturbances, and may therefore be far from satisfactory.

In typical cases, however, the plant is equipped with a number of sensors that
give secondary output information at a high sampling rate intended for operator
support and loeal control. In sueh cases the primary outputs may be estimated at
the high sampling rate, utilizing all available information contained in the known
inputs, either manipulated or measured, and ill the secondary plant measurements.
The problem is illustrated in Fig. 1.1.

1
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v

PLANT

ESTIMATOR
MODEL

Yl

Y2

u

Figure 1.1 Basic principle for estimation of primary properties z and primary system

outputs Yl from known inputs u and secondary outputs Y2 in presenee of process noise v
and measurement noise Wl and W2.

Note that the primary properties are denoted z in Fig. 1.1, and aur main
interest is accordingly to determine an estimate z. We will, however, assume that
Wl is white noise, and the best estimate of z will thus in many cases be the best
estimate of Yl (also assuming that W2 is white noise uncorrelated with Wl), i.e.
z= Yl. In the following we will use both the z and the Yl notations.

The insight behind the use of the Y2 measurements as inputs to the estimator
model is that they may carry valuable information about the stationary pro cess
noise v, which it should be possible to utilize when estimating z. The Y2 measure­
ments may ill fact also carry information about plant disturbances that cannot be
modeled as a stationary stochastic proeess. The industrial use of primary prop­
erty/ output estimators may be operator support, failure detection, and feedback
control,

In the special case that the plant in Fig. 1.1 can be adequately modeled by
statie input-output relations, we have a linear regression problem with a straight-
forward least squares solution, assuming a large enough number of observations.
With a limited number of observations and a large number of Y2 variables, it may
then be necessary to lise some form of regularization. We will return to the static
case later.

In the general dynamical case, the estimator model in Fig. 1.1 may be obtained
by mechanistic modeling. The basic aim of the thesis is, however, to develop the
theoretical basis and practical methods for identijication of the optimal estima­
tor from experimental data. This data must then also include Yl measurements,
although not necessarily at a high sampling rate.
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Example 1.1

Consider the continuous-time system in Fig. 1.2, where

• u is a manipulated and known input

• v is an unmeasured white process noise source

• the transfer function with time constant T3 is a proeess noise model, i.e. X3

is the physical noise

• x = [Xl X2 X 3] T is the state vector

• WI, W21, W22 and W23 are white measurement noise sources

• Yl is the primary measurement

• Y21, Y22 and Y23 are secondary measurements.

W23 W22 W21

l X3
Y23 Y22 Y21

T3s+1
+ +: +

WI

l l Z Yl

T2 s + l TIs+ 1 +
X2 Xl

v

U ----------..1

Figure 1.2 Theoretical continuous-time system with second-order plant, first-order
process neise model, known input u, primary measurement Yl and secondary measure-

ments Y2 = [Y21 Y22 Y23] T .

Jf the plant model including the noise covariances were known, the optimal z
estimator would in the present case (with Yl not norrnally available) be a Kalman
filter driven by u and Y2, but not by Yl (see Appendix A for an introduction to
Kalman filtering and further referenees). When the model is not known, we are
left with the opportunity to identify the estimator, or in other words to identify
the underlying Kalman filter. From the figure we can directly see that

• with a low noise output Y21 ~ Xl = z it is possible to use the simple zero­
order estimator Yl = Z = Y21
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• with a low noise output Y22 ~ X2 it is possible to identify a good deterministic
first-order model with Y22 as input and Yl as output

• with a low noise output Y23 ~ X3 it is possible to identify a good deterministic
second-order model with u and Y23 as inputs and Yl as output, i.e. without
use of the noise model.

With noise corrupted Y2 measurements it is theoretically possible to find an
estimator that makes use of all available information in u, Y2l, Y22 and Y23 in an
optimal way. Whether this theoretically optimal estimator or a reduced estimator
as indicated above is to be preferred, depends on the noise levels and the number
of sampled observations in the identification experiment, and has to be decided on
the basis of validation against independent data.

•
1.1.2 Industrial example

Fig. 1.3 shows an experimental twin-screw extruder at the Borealis polyalefine
plant ill Bamble, Norway. In an experiment this extruder was used to produee
hard polypropylene foam, with the measured foam density as the primary quality
output u:» (see Chapter 10 for results). The manipulated Uk inputs were a com­
mon temperature setpoint for some heating zones along the extruder and a gas
injection pressure, while the secondary Y2,k outputs were the outlet pressure and
temperature measurements along the extruder.

Variable

heating Ul

Y24 Y25Gas injec- Y2l Y22 Y23

tion U2

Constant heating

Feeding

Figure 1.3 Experimental extruder with variable heating setpoint Ul [Oe], gas injection

pressure U2 [bar], temperature measurements Y2l to Y24 [De], outlet pressure Y25 [bar]
and foam density Yl [glcm3] .

Industrial example with multivariate data

The system in Fig. 1.3 above has two inputs and five outputs, and it is thus a
multivariable system. The data generated by the system must then be said to be
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multivariate, although the number of variables is not very high. We would have a
more typical multivariate case if a near-infrared (NIR) spectroscopic measurement
was included, with for example 4096 additional variables (frequencies).

Related examples

Although the main focus of the thesis is on the type of industrial problems indicated
above, there may well exist interesting and important examples related to for
example environmental or ecological problems. Such applications are, however,
not further discussed in the thesis.

1.1.3 Terminology

Although the primary property z is directly measured through the output Yl only
at a low sampling rate (except possibly in an experiment), information about z
may to a large extent be contained in the Y2 measurements. The plant itself thus
acts as an instrument for indirect measurement of z, and the process of finding the
relation between Y2 and z can therefore be seen as a form of calibration. Since the
plant generally is dynarnic in nature, and since the available data may be highly
multivariate, it has been considered appropriate to use the terminology dynamic
system multivariate calibration (Ergon and Di Ruscio, 1997, Ergon, 1998a,b,c and
Ergon and Halstensen, 1999).

As indicated by this terminology, the work presented in the thesis has its roots
in two different scientific fields. One is the broad field concerning dynamic systems,
more specifically system identification, while the other is the field of chemometrics,
specifically multivariate calibration. Both system identification and multivariate
calibration have, however, a common root in linear regression and least squares
estimation.

A comment on the use of the terms multivariable and multivariate is also
in place. Inspired by Belsley (1991) and Johansson (1993), we relate the term
multivariable to multiple-input, rnultiple-output systems that may exist either as
abstract concepts without context or as physical real-world entities. The term
multivariate, on the other hand, is used to denote real-life data (or simulations
of real-life data) in a given context with meaning and units and perhaps some
statistical distribution properties. In short, real-world or simulated multivariable
systems generate multivariate data.

1.1.4 General background

A basic background for the present work is the statistical theory of regression re­
lated to statie systems. In the notation of the thesis, linear regression is concerned
with the estimation of primary dependent variables Yl on the basis of information
provided by known independent variables u and measured secondary dependent
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variables Y2. Again using the extruder in Fig. 1.3 as an example, we could make an
attempt to estimate the primary output Yl by use of a static model with Ul and U2

as independent regressor variables and Y21 to Y25 as dependent regressor variables,
and assuming that the feed quality as well as the manipulated inputs Ul and U2 are
slowly varying, a useful estimator could then be found by lise of.the least squares
(L8) method, The discovery of the L8 method is generally attributed to Gauss in
1795 (Grewal and Andrews, 1993), and it has since then been successfully used in
numerous practical cases in a wide field of application areas.

When the number of regressor variables is large and the number of observa­
tions is limited, the ordinary solution to the L8 problem may have very large
variance due to overfitting, and some form of regularization is then called for
(e.g. Tikhonov and Arsenin, 1977). In many such cases, fortunately, the esti­
mator variables are strongly collinear, and most of the information can thus be
compressed into a few latent variables within a subspace of the variable space.
Basic tools for this data compression are singular value decomposition (SVD) and
principal component analysis (PCA), and the regression method directly based on
this is principal component regression (PCR), while partialleast squares regres­
sion (PLSR) combines data compression and regression in an iterative approach.
Detailed presentations of peR and PLSR are given in Martens and Næs (1989)
and Høskuldsson (1996) (see also Appendix C for an introduction and further ref­
erences). The PCA, PCR and PLSR tools for multivariate data analysis are used
in many cases of great practical interest, also when the estimator variables far out­
number the observations at hand. An example is product quality characterization
by use of near infrared spectroscopy, with severaI thousand estimator variables
(frequencies) and often less than one hundred observations.

In parallel with the development of the statie PCR and PLSR methods, the
field of dynamic system identification (SI) has been developed into a sophisticated
set of methods and practical tools. Classical SI is summarized ill comprehensive
books, e.g. Ljung (1987,1999) and Soderstrom and Stoiea (1989), and a short
introduction to the prediction error method (PEM) used throughout the thesis
is given in Appendix B. At present, subspace identification methods attraet a
great deal if interest, see e.g. Van Overschee and De Moor (1996) and Di Ruscio
(1997). A short discussion on the use of direct subspace methods in the present
context is given in Chapter 11. In all forms of SI, one finds that LB estimation
is used as a basic tool. It is, however, refined by use of for example prediction
optimization methods in order to account for the noise infiuence in a proper way.
With overparametrized models, or data that is not informative enough, there may
also in SI be a need for regularization (see e.g. Sjoberg et al., 1993). The need for
this may, however, be reduced by an appropriate model reduction, Le. by use of a
parsimonious model with as few parameters as possible.

Through the use of innovation models, system identification is closely linked to
the Kalman filtering theory (Appendix A). The different proeess and measurement
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noise sources are then replaced by the white innovations in an underlying Kalman
filter.

1.1.5 Preliminary comparison of statie and dynamic estimators

From a system identification and Kalman filtering point of view, it is intuitively
evident that the classical L8 linear regression and the modern PCR and PLSR
multivariate calibration methods may be seen as special static cases of the more
general parametric SI methods for dynamic systems. When th.ese similarities are
to be investigated, four basic facts have to be acknowledgecl:

1. The LS, PCR and PLSR methods are used to find models for estimation of
unknown output variables y from both independent and dependent known
variables x. In SI terminology this means methods for estimation ofunknown
system outputs Yl from both independent system inputs u and dependent
system outputs Y2. The basic observation here is that also dependent out­
puts Y2 ought to be used as inputs in the SI procedure. This is not a new
observation (see e.g. Ljung, 1995), but a theoretical treatment of appropriate

-rnethods for optimal utilization of the Y2 information still appears necessary.

2. When the multivariate calibration models are used for estimation, the Yl
outputs are of course not known, and this will also be the case for the cor­
responding dynamic models found by SI. We are therefore lead to consider
output error (OE) models and not the qualitatively different ARMAX (Au-

.,toRegressive Moving Average with eXogenous inputs) type of models based
on known past Yl outputs. This is necessary since identification of an AR­
MAX model would result in the wrong underlying Kalman filter, considering
that neither past nor present Yl outputs are available. This insight is a
central contribution of the thesis (see also Ergon, 1999).

3. The known input and secondary measurement sampling rate must be high
enough to capture the plant dynamics. However, since the optimal estimators
are based on OE models, they may be identified by use of experimental data
with a low and even irregular primary output sampling rate. This insight is
another main contribution of the thesis (see also Ergon, 1998b).

4. In order to find the optimal Yl estimate at a specific sampling instant, also
current (a posteriori) information must be utilized. The underlying KaIman
filter must therefore be of the predictor-corrector form, which is normally
not the case for innovation models used in system identification.

These basic facts must be refiected in the theoretical analysis of the relations
between SI and LS, peR and PLSR, and this is quite independent of the specific
SI methods considered,



8 CHAPTER 1. INTRODUCTION AND OVERVIEW

1.1.6 Previous work related to inferential control schemes

The primary output estimation problem outlined above has earlier been diseussed
in the context of inferential control schemes. Joseph. and Brosilow (1978) assumed
constant known inputs u(t) to a continuous-time system, and split the estimator
into static and dynamic parts. Assuming known noise covariances and the plant
dynamics known from impulse or step response tests, the KaIman filter based op­
timal dynamic estimator was then developed. However, no atternpt was made
to identify the optimal estimator entirely from recorded plant data. Mejdell and
Skogestad (1989) applied a statie PLSR solution to a distillation column for es­
timation of composition, using tray temperatures as secondary information, but
made no attempt to extend the solution to the dynamical case. Budman et al.
(1992) compared the approaches of Joseph and Mejdell when applied to an ex­
perimental fixed bed methanation reactor, and fOU11d the PLSR approach superior
when the nonlinear system was operated in a wide range of operating points. Wise
(1991) described the theoretical bases for using PCA to model dynamic systems
within a state-space framework, and Harnett et al. (1998) used this approach in
a simulation of an overheads condensor and refiux drum model for a distillation
column, The limitations of this PCA approach is further diseussed in Chapter 9.

1.1.7 Questions raised and answered

The following questions are raised and answered in the thesis:

• How should optimal primary output estimators be designed, assuming a
known and linear plant model?

• How should the optimal estimators be identified, in the case the plant model
is not known?

• How should noise free and low noise secondary measurements be handled?

• How should the optimal estimator structure be determined?

• Can the industrially interesting case with a low and possibly irregular pri­
mary output sampling rate be handled?

• What is the theoretical connection between dynamic estimator solutions and
the statie LS, peR and PLSR methods?

• What should dynamical peR and PLSR methods look like?

The theoretical answers to these questions are supported by simulations through­
out the thesis, and by real data examples presented in Chapter 10.
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1.2 Theoretical prirnary output estimat.ors
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Assuming that areliable deterministic-stochastic linear model of the plant in Fig.
1.1 is known (from mechanistic modeling or system identification), optimal esti­
mators for the primary properties z and outputs Yl can be realized as Kalman
filters driven by the known inputs u and the secondary Y2 measurernents. The
optimal continuous-time estimator as well as optimal discrete-time estirnators are
developed in Chapter 2, which is a basis for the following chapters dealing with
the estimator identification problem. A summary of Chapter 2 is given below.

Basic discrete-time model

The basic discrete-time model used in the thesis is

Xk+l

Yl,k

Y2,k

AXk + BUk + GVk

ClXl,k + Dluk + Wl,k

C2 X 2,k + D2U k + W2,k,

(1.1)

where Xk is the state vector, and where Vk, Wl,k and W2,k are white noise sequences.

Optimal predietion (a priori) estimator

Utilizing the information in past Y2,k values as well as past and present Uk values,

and assuming that Vk and Wk = [W[k W[k] T are independent white noise

sequences uncorrelated with Uk, the theoretically optimal predietion (a priori)
estimator is

;... [ GE ]-1
Yl,klk-l = Cl qI - A + AK2 02

X [(B - AK~ED2) Uk + AK~EY2,k] + DlUk

Fp-
l (q-l) [Bp,l (q-l )Uk + Bp,2(q- 1)Y2,k] , (1.2)

where K~E is the gain in a Kalman filter driven by Uk, and Y2,k, while Fp (q- 1),
Bp,l(q-l), and Bp,2(q- l ) are polynomials in the unit time delay operator «'. The.
estimate zklk-1 is here a linear combination of past estimates, past and present
values of Uk and past values of Y2,k, where the horizon into the past is determined
by the modelorder n.

The notation KrE is used since the estimator corresponds to the output error
(OE) model

(1.3)
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where {)k as explained in Chapter 2 is a none-white noise sequence. The reason
for using this OE model, and not the deterrninistic part (considering Y2,k as an
input) of an ARMAX model, is simply that only the OE model will give the correct
Kalman gain, considering that Yl is not normally available. This is contrary to the
ordinary case with only Uk as input, where the deterministic part of the ARMAX
model is identical with the deterministic part of the OE model. The details of this
is shown in Chapter 2, and also in Ergon (1999).

Optimal current (a posteriori) estimator

When present Y2,k values are used as well, the theoretical current (a posteriori)
estimator becomes

Zklk = ih,klk = Cl (I - K2EC2) [qI - A + AK2EC2]-1

X [(B - AK2ED2) Uk + AK2EY2,k]

+ClK?E (Y2,k - D2Uk ) + D1Uk

F;l(q-l) [Be, 1(q-l)Uk + Be,2(q-l)Y2,k] , (1.4)

corresponding to the OE model

(1.5)

where also 'Øk is a non-white sequence.

1.3 Identification of prlmary output estimators

The OE estimators (1.2) and (1.4) can be consistently identified from input-output
data from a controlled experiment, where Uk, Yl,k and Y2,k for k = 1,2, ... ,N are
available at a sufficiently high sampling rate, with Uk persistently exciting and N
sufficiently large. The theoretical basis for this is developed in Chapter 3, where
also practical identification methods are diseussed, and where examples and Monte
Carlo simulations that support the theoretical results are included.

It follows from the analysis in Chapter 2 that the OE estirnators above may
not be derived by modifying ARMAX estimators, as can be done in the ordinary
case with only Uk used as estimator input. This has important consequences when
it comes to the identification of asymptotically (N ~ 00) optimal estimators,

The main results in Chapter 3 are published in Ergon and Di Ruscio (1997),
Ergon (1998a,c) and Ergon (1999), and a summary is given below.



1.4. PERFECT MEASUREMENT CASES 11

Identification of optimal predietion estimators

The optimal prediction estimator (1.2) can be found by identification of the system
(1.3), with the non-white noise sequence {Jk. The identification can be done by use
of a standard prediction error method (PEM) based on Kalman filtering formalism
(see Appendix B). The basic principle in PEM is to use an OE prediction model in

parallel with the plant itself. The output Zkl:~l (O) = yr:I~-l (O) from this model
is based on past Y2,k values as well as past and present Uk values, and the resulting
prediction error is

(1.6)

where B is the parameter vector used in the prediction model. In Chapter 3 it is
shown that minimization of a scalar criterion function

(1.7)

asymptotically (for N --+ 00) results in the optimal output error prediction (OEP)
estimator (1.2). This means that B -+ B== Bo, where eo is the exact parameter
vector that for the sake of the theoretical analysis is assumed to exist, and at
the same time kEf=l cI,k (B)C[k (()) -? lv Ef=l {)k{)I, which according to the
underlying Kalman filter theory is a minimized expression. In (1.7), the scalar
function may be h [.] == det [.] or h [.] == trace [.]. The minimization is performed by
use of a numerieal Gauss-Newton procedure, and in order to avoid local minima
this normally requires an initial model that basically can be found by ordinary
least squares estimation (Ljung, 1987,1999).

Identification of optimal current estimators

The optimal output error current (OEC) estimator is found in a similar way by
identification of the system (1.5), where the polynomials are defined by (1.4).

1.4 Perfeet rneasurernent cases

From Example 1.1 and Fig. 1.2 it is obvious that simultaneous lise of several per­
feet noise free seeondary measurements theoretically may cause a conflict between
different perfect models. If, for example, both Y22 and Y23 are perfect measure­
ments, we must make a choice between a first-order model using only Y22 and a
second-order model using u and Y23 as inputs, and the natural choice would then
be the more parsimonious first-order model with only Tl as unknown parameter.
We will then find that the rest of the system will be decoupled, and that a, T2 and
T3 cannot be identified by lise of only the Y22 and Yl output data.
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More detailed discussions of an in the context of the thesis interesting theo­
retical perfeet measurement case are given in Chapter 4, where some new perfeet
measurement KaIman filtering results are also presented (see also Ergon a11d Di
Ruscio, 1997). Identification of pure deterministic systems with neither process
nor measurement noise is also diseussed in Chapter 4.

1.5 Deterrnination of estimator structure

As in other practical system identification eases, there is also in the present eontext
a need to find a parsimonious estimator that captures the essential plant eharac­
teristics using as few parameters as possible (Ljung, 1987,1999). The main points
are to determine

• the appropriate modelorder n

• which inputs Uk and secondary measurements Y2,k to use.

The final answers to these questions are found by validation against indepen­
dent experimental data. In many cases with a limited number of observations as
a basis for the estimator identification, the smallest root-mean-square validation
error (RMSE) in the estimation of Yl,k may then very well be obtained by use of
a redueed and asymptotically (N ---1- (0) biased estimator with a parameter vector
()* =I Bo, where Bo is the exact parameter vector that is assumed to exist. To reduce
the bias one basically has to employ larger end more fiexible model struetures, re­
quiring more parameters and possibly increasing the estimation covariance. We
thus want to find a good trade-off between the bias and variance contributions to
the total RMSE. A systematie method for this model structure determination is
presented in Chapter 5 (see also Ergon and Di Ruseio, 1997).

1.6 The low primary output sampling rate case

In many practical cases it is not feasible to perform an experiment with high rate
sampling of the primary system outputs, and there is thus a need for methods
based on low and possibly irregular sampling rate Yl data. This case is studied
in Chapter 6, extending the theory and the methods presented in Chapter 3 (see
also Ergon, 1998b). The basic insight here is that it is not quite necessary to
minimize the criterion function (1.7) as a function of cl,k( B) for all samples at
k = 1, 2, ... ,N. It is in faet sufficient to minimize

(1.8)
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where

{
l , at the time instants k where Yl is sampled

ak = 0, at the time instants k where Yl is not sampled,
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and where thus CI,j (B) are the predietion errors that can be obtained from the
YI,j measurements that are available at a low and possibly also irregular sampling
rate. The minimization will then be based 011 a reduced number, NI < N, of the
predictor outputs z~I~~l = ye;~-l' corresponding in time with the available Yl,j

samplings. The practical and theoretical requirements are only that

• the Uk and Y2,k sampling rate is high enough to capture the plant dynamics

• the plant is persistently excited

• the number NI of available YI,j samples is sufficiently large

• the Yl samples are representative, i.e. that YI,j has the same statistical
distribution as Yl,k would have.

In this case, however, an initial model for the numerical minimization cannot
be found by ordinary least squares estimation, and solutions to this problem are
therefore also presented in Chapter 6, together with Monte Carlo simulations that
verify the feasibility of the proposed methods.

1.7 Ordinary linear regression as special case

As mentioned earlier, we may as a special case have a statie plant in Fig. 1.1. The
model (1.1) is then simplified to

YI,k

Y2,k

= CIXk + DIUk +WI k,

C2 X k + D2U k + W2,k,

(1.9)

where Xk is the vector of latent variables explaining YI,k and Y2,k. The theoretical
current estimator model (1.5) is then simplified to

YI,k CIK~E (Y2,k - D2U k) + Dl uk + ek

EfUk + BrY2,k + ek, (1.10)

where Uk are known independent regressor variables, while Y2,k are known but
dependent and noise corrupted regressor variables and ek is white noise.
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We find the corresponding data based estimator by collecting the observationsur, yrk and yrk for k = 1,2, ... ,N in data matrices U, Yl and }2, and solving the
overd~terminedset of equations

(1.11)

(1.12)

(1.14)

The classical unbiased L8 solution is then

[~t: ]= ([ ~~ ] [U Y2]) -1 [ ~~ ] Yl,

or without known input variables

iJLS = (YlY2) -1 y;TYi. (1.13)

The theoretical relation between the OE model (1.5) and the statie form (1.10),
with the LS solution (1.12) or (1.13), is developed in Chapter 7. As (1.5) is related
to an underlying Kalman filter, this also forms a theoreticallink between Kalman
filtering and ordinary linear regression. The results in Chapter 7 are previously
reported in Ergon (1998a,c).

1.8 Multivariate statie case

In many cases of great practical interest we have a large number of collinear vari­
ables Y2 in (1.10), which for arealistie number of observations may eause very
large variance in the parameter estimates. The solution to this problem is some
form of regularization, e.g. PCR or PLSR, where Uk and Y2,k (or only Y2,k) are
replaeed by a low number of estimated latent variables t». Assuming a data struc­
ture in accordance with the model (1.9), the latent variables Tk are then the state
variables Xk D

The theoretieal connection from Kalman filtering via the optimal current esti­
mator (1.4) and least squares regression to PCR and PLSR is presented in Chapter
8, and part of this is also previously reported in Ergon (1998a,c). An early and
less general attempt to look into these relations were given in Berntsen (1988).

In PCR_. and PLSR the regularization is obtained by use of a weighting matrix
W, and the data based estimator (1.13) is then replaced by

A A (A T TA) -1 ATTB==W W Y2 Y2 W W Y2 Yl,

where WPCR and WPLS are found from the data as shown in Appendix C. However,
as shown in Chapter 8 the optimal weighting matrix is a transposed Kalman gain,
i.e.

(1.15)
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which is considered to be a theoretically interesting result.
Another and more practically interesting result presented in Chapter 8 is re­

lated to problems with a few known inputs Uk and a large number of collinear Y2
measurements. The best regression model may then be obtained by lise of two-step
PCA/PLSR+LS solutions, where the Uk information is used onlyin the second LS
step.

Other forms of regularization, e.g. ridge regression (Hoerl and Kennard, 1970)
or neural networks with restricted training (Sjoberg and Ljung, 1995), are not
treated in the thesis.

1.9 Multivariate dynarnical cases

In Chapter 9, the multivariate static estimators are combined with the dynamic
current estimator (1.4), resulting in PCA+OE and PLSR+OE methods, This
may be practical solutions when some or all of the secondary Y2 measurements are
collinear. The resulting estimators will then become of the type shown in (1.4),
with past and present values of Y2,k partly or altogether replaced by the corre­
sponding estimates Tk of latent variables. Mente Carlo simulations are included
in order to show the feasibility of the proposed methodology. The basic idea in
Chapter 9 is previously presented in Ergon (1998a,c), and an acoustic chemometry
application is presented in Ergon and Halstensen (1999).

1.10 "Real data exarnples

The theory and methods developed ill the thesis are to same extent tested on real
data. These cases include an experimental research extruder at the Borealis poly­
olefine plant in Bamble, Norway, apolyethylene civil engineering pipe production
extruder at the Icopal plant in Drangedal, Norway, a complex industrial plant
run by Norsk Hydro, Norway, and an acoustic chernometrics experimental setup
at Telemark Institute of Technology, Porsgrunn, Norway. These applications are
presented in Chapter 10.

1.11 Furfher research areas

The thesis focuses on the basic problem of estimating primary output properties
that are not normally measured on-line, and the immediate industrial application
of this is in operator support systems. Basic issues related to e.g. closed loop iden­
tification, use of prior knowledge, estimator validation, estimator robustification,
estimator updating and possible applications in fault detection and isolation (FDI)
and closed loop control are briefiy discussed in. Chapter 11, but are otherwise left
for further research.
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1.12 Main contributions of the thesis

The main new insights and results presented in the thesis are the following:

• In order to utilize the information in the secondary output measurements
in an optimal way in primary property estimators, we must use OE struc­
tures and not ARMAX structures (Chapter 2 and Chapter 3). This is also
presented in Ergon and Di Ruscio (1997) and Ergon (199Sa,c), and a more
detailed discussion is given in Ergon (1999).

• T11e optimal OE estimators may be identified also when the primary output
is sampled at a low and possibly also irregular rate (Chapter 6). This was
first presented in Ergon (1998a), and further discussed in Ergon (199Sb).

• Assuming a latent variable data structure, the ordinary LS estimator is a
special static case of the optimal current OE estimator (Chapter 7). Since
peR and PLSR are again special cases of the least squares method (Chap­
ter 8), it readily follows how dynamic PCA+OE and PLSR+OE estimators
should be developed (Chapter 9). These relations are also diseussed in Ergon
(1998a,c).

• The dynamic PCA+OE estimators may be identified also in the low primary
output sampling rate case. An acoustic chemometrics example of that is
given in Chapter 10, and another example is presented in Ergon and Hal­
stensen (1999).

Other contributions are as follows:

• Theoretical development of the optimal OE prediction (a priori) and cur­
rent (a posteriori) primary output estimators in the high Yl sampling rate
case, including asymptotic estimation covariance results (Chapter 2), and a
detailed clarification concerning consistent identification of these estimators
using the secondary measurements as inputs in a predietion error method
(Chapter 3).

• Same new asymptotic perfect measurement Kalman filtering results (Chapter
4 and Ergon and Di Ruscio, 1997).

• A systematic method for selection of modelorder and relevant known inputs
and secondary measurements (Chapter 5 and Ergon and Di Ruscio, 1997 ).

• Methods for finding initial parameter values in the low Yl sampling rate case
(Chapter 6).

• A theoretical result showing that the optimal weighting matrix for the chemo­
metrical PCR/PLSR methods is a transposed Kalman gain (Chapter 8).
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• Proposed two-step PCA+LS and PLSR+LS methods for static problems
with both independent and dependent regressor variables (Chapter 8).

• A proposed fault detection scheme (Chapter 11).

• Same clarifications concerning estimator properties essential for feedback
control applications (Chapter 11).

• Some proposed feedback control structures (Chapter 11).
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Chapter 2

Theoretical primary output
estimators

This chapter serves as an introduction to the discrete-time estimator
identiflcation problem diseussed in the following chapters. Under the
assumption of a reliable plant model from either mechanistic modeling
or system identification, we develop theoretical primary output estima­
tors and estimation covariances, both for the continuous-time and the
discrete-time cases. The main point in the chapter is that in order to
utilize the secondary Y2 measurement information in an optimal way, we
must use OE models. It is also shown that these models cannot be seen
as special cases of ARMAX models, which is contrary to the ordinary
case with only the known independent variables u used as input. The
chapter is based on well known KaIman filtering theory.

2.1 The optimal continuous-tirne estimator

Although we will later focus on identificationof discrete-time estimators, it is
instructive to start with the continuous-time case.

2.1.1 Statement of continuous-time estimator problem

Assume the known continuous-time plant model

dx(t)
dt
z(t)

Yl (t)

Y2(t)

ACx(t) + BCu(t) + GCv(t)

C1x(t ) + DlU(t)

z(t) +Wl(t)

C2x(t ) + D2U(t) + W2(t),

19

(2.1)
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where x(t) is tl1e state vector, and where in the general multivariable case u(t),
v(t), z(t), YI(t), Y2(t), Wl(t) and W2(t) are vectors as well. Here,

• u(t) is a known input signal

• v(t) is a formal zero mean white noise stochastie process' with covariance
function given by the expectation EV(tl)VT(t2) == R~8(tl - t2), where 8(t) is
the Dirac impulse function

• w(t) = [wf(t) wnt) ris a formal zero mean white noise stochastie

proeess with covariance function given by the expectation EW(tl)WT (t2) ==

c ( ) _ [RIl RI2] ~( )Rw8 tI - t2 - RC R C u tI - tz
21 22

• R~ is positive definite (see Chapter 4 for a special perfeet measurement case)

• v(t) and w(t) are uncorrelated, Le. EV(tl)WT(t2) == Ofor all tI and t2 (may
be ralaxed, see 8ubsection 2.2.6)

e both v(t) and w(t) are uncorrelated with the input u(t), i.e. EU(tl)VT(t2) == O
and EU(tl)WT(t2) == Ofor all tI and t2

• only the output Y2(t) is normally available (which may, however, also include
more or less noisy measurements of z(t))

• (C2,AC) is detectable (see Appendix A)

• (Ac,Gc~) is stabilizable (see Appendix A).

These assumptions make it possible to apply the Kalman filtering theory (Ap­
pendix A). Note that noise components that are not white must be modeled as
filtered white noise, with the filter model included in the plant model (2.1). Also
note that some or all of the secondary Y2 measurements may be collinear, and also
collinear with same or all of the known inputs u and/or some or all of the primary
Yl measurements.

The problem is now to determine the optimal linear i(t) estimator based on- . ,

u(t) and Y2(t). With an optimal estimator we here mean an unbiased and minimum
variance estimator.

2.1.2 Continuous-time Kalman filter solution

The optimal solution to the problem stated above is to lise a continuous-time
Kalman filter driven by the known inputs u(t) and the available secondary Y2(t)
measurements. Introducing the state estimate x(t), the Kalman filter is given by
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dx(t)
dt

Y2 (t)
e2(t)

ACx(t) + BCu(t) + K 2e2(t )

C2X(t ) + D2u (t )

Y2 (t) - Y2 (t),

(2.2)

where e2 (t) is the formally white innovations representation.
In order to determine K 2we salve the algebraic Riccati equation

o== ACpc + (Acpc)T + GCR~(Gc)T - pCC!(R22)-IC2PC, (2.3)

where pc == E (x(t) - x(t)) (x(t) - x(t))T is the minimized state estimation covari­
ance rnatrix (Appendix A). We then find

(2.4)

Elimination of Y2(t) and e2(t) from (2.2) and lise of the z and Yl output equa­
tions in (2.1) result in

dx(t)
dt
i(t)

(AC- K 2C2) x(t) + (B C- K2D2) u(t) + K2Y2(t)
Yl (t) == CIx(t) + Dlu(t). (2.5)

This estimator is shown in the block diagram in Fig. 2.1..

v

u
---.------~

z
r--------...-.I+

Y2

Yl

W2 +1---------,

+

+

1---------------...-.1+

Figure 2.1 Block diagram for optimal continuous-time z and Yl estimator.
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The Yl estimation error becomes

(2.6)

which is a colored noise signal (not a white innovations representation, since it is
not an internal feedback signal in the Kalman filter). .

The estimator (2.5) may also be expressed by Laplace transformation assuming
x(O) == 0, and after elimination of X(s) we then find the optimal Z(s) and Yl(s)
estimator

Z(s) Yi(s) == Cl [sl - AC + K2C2]- 1[(BC
- K2D2)U(s) + K2Y2(S)]

+DlU(S), (2.7)

and the optimal z(t) and Yl(t) estimator

z(t) = Y1(t) = L-l {Z(8)}. (2.8)

Remark 1 If the measurement noise sources Wl(t) and W2(t) are correlaied, i.e.
i/EWl(t)w§(t) =I 0, the Kalman filter will not give the optimal Yl (t) estimate. The
Kalman filter unll, however, still give the optimal estimate of the primary property
z(t) == Clx (t) + Dlu(t), and that is the important issue in the context of the thesis.

Continuous estimator covariances

The theoretical z(t) and YI(t) estimation covariances follow directly from (2.6) and
the definition pc == E (x(t) - x(t)) (x(t) - x(t))T as

and
Cov (Yl(t)) == E,(t),T(t) == clpcci + RIl,

where pc is given by (2.3).

(2.9)

(2.10)

The development of tI1e optin1al continuous-time estimator and its covariance
properties are summarized in Proposition 2.1:

Proposition 2.1 - Optimal continuous-time estimator

For the system (2.1), the optimal continuous-time z(t) and Ylet) estimator based
on u(t) and Y2 (t) is given by (2.5) or (2.7) and (2.8). The estimator covariances
are given by (2.9) and (2.10).

•
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Example 2.1

Consider the system in Example 1.1, with Tl == 10, T2 == 0, T3 = 100, a == O and
Y2 == Y23· This might be a stirred-tank heating system with constant holdup as
shown in Fig. 2.2a, with a first-order process noise model. The block diagram is
shown in Fig. 2.2b. Note that the system is not observable from the Y2 output, i.e.
that (02, AC) is only detectable (the non-observable part is asymptotically stable,
as required by the KaIman filtering theory, see Appendix A).

a)

Y2

Figure 2.2 Stirred-tank heating system with constant holdup and variable tempera­
tures, and the corresponding block diagram assuming a first-order noise model.
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With uif m == 0.1, the system is modeled as

Xl -O.lXI + O.lX2 + O.lu

X2 -O.OlX2 + O.Olv

Z Xl

Yl Z+WI

Y2 X2+ W,

(2.11)

where the noise variances are sa far not specified.

h h Ac [-0.1 0.1 ] B C [ 0.1] c: [O] CWe t us ave == O -0.01' == O ' == 0.01 ' l ==

[1 O] and C2 = [O 1], and a straightforward solution of (2.3) then gives

(2.12)

with P22 determined by

(2.13)

From (2.4) we further find

(2.14)

where .Jr) = VI + r~/r22' The estimator (2.7) is then obtained as

Z(8)

A block diagram for the system and the estimator is shown in Fig. 2.3.
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u----. -----.<+

v 1

100s + 1

1

las + 1

z
r----~+ Yl

Figure 2.3 Block diagram for the system in Fig. 2.2 and the corresponding primary

property estimator.

From (2.15) we find two extreme cases with expected results:

• An extremely noisy Y2 measurement, Le. r~/r22 ---1' 0, results in K2 ---1'

[O Or and
A A 1

Z(s) = Yl(S) ~ lOs + 1U(s), (2.16)

while (2.12) and (2.13) with P22/r22 --+ Ogive P22 = O.005r~, and thus from
(2.9)

V ( "'(t)) c 0.lP22 0.0005 c
ar z = PlI --+ ---on = ~rv·

• Aperfeet Y2 measurement, i.e. r~/r~2 ~ 00, results in Kz~ [ 0.1

A '" 1
Z(s) = Yi(s) ~ 10 [U(s) +Y2(S)] ,

8+1
and

Var (z(t)) --+ o.

(2.17)

00 r,
(2.18)

(2.19)

With the assumptions made, we find aperfect deterministic estimator using
u and Y2 as inputs, while the pro cess noise model is decoupled.

•
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2.2 Optimal discrete-tirne estimators

We now develop the discrete-time optimal estimators that we in Chapter 3 will
identify from sampled input-output data. We consider both the predietion (a
priori) estimator based on past and present known inputs Uk and past secondary
measurements Y2,k, and the current (a posteriori) estimator based also on present
Y2,k measurements.

2.2.1 Statement of discrete-time estimator problem

Consider the known discrete-time plant model

AXk + BUk + GVk

C1Xk + D1Uk

Yl,k Zk + Wl,k

Y2,k C2 Xk + D2Uk + W2,k,

(2.20)

where Xk is the state vector, and where in the general multivariable case Uk, Vk,

Zk, Yl,k, Y2,k, Wl,k and W2,k are vectors as well. Here,

• Uk is a known input signal

• Vk is a zero mean white noise sequence, with a covariance matrix determined
by the expectation R; = EVkVr

• Wk = [W[k Wf,k] T is a zero mean white noise sequence, with a covariance

matrix determined by the expectation s: = [~~~ ~~~] = EWkW[

• Rw is positive definite (see Chapter 4 for a special perfeet rneasurement case)

• Vk and Wk are uncorrelated, Le. EVjwI == Ofor all j and k (may be relaxed,
see Subsection 2.2.6)

• both Vk and Wk are uncorrelated with the input Uk, Le. EUjVl == O and
EUjwr == Ofor all j and k

• 0111y the output Y2,k is normally available (which may, however, also include
more or less noisy measurements of Zk)

• (02, A) is detectable (see Appendix A)

• (A, GVJ[;;) is stabilizable (see Appendix A).
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These assumptions make it possible to apply the Kalman filtering theory (Ap­
pendix A). Note that noise components that are not white must be modeled as
filtered white noise, with the filter model included in the system model (2.20).
Also note that some or all of the secondary Y2 measurements may be collinear,
and also collinear with same or all of the known inputs u and/or some or all of
the primary Yl measurements.

Time delays may be included by use of extra state variables in the plant model
(Franklin et al., 1990), or they may be accounted for by appropriately shifting the
input and/or output data.

The problem is now to determine the optimal linear one-step-ahead predietion
(a priori) estimator zklk-l based on past and present Uk and past Y2,k values,
and the optimal linear current (a posteriori) estimator zklk based also on present
Y2,k values. With an optimal estimator we here mean an unbiased and minimum
variance estimator.

Note that it is a part of the problem that neither past nor present Yl,k values
are available as a basis for the Zk estimates. This is a common situation in indus­
trial applications, e.g. in polymer extruding, where product quality measurements
involve costly laboratory analyses. Product samples are then collected at a rather
low sampling rate, and product quality estimates at a higher rate may thus be
valuable for operator support and other applications.

2.2.2 General discussion on ARMAX and DE models

As a background for the development and later identification of optimal discrete­
time estimators, it is suitable ta look at some model alternatives. We will then
find a principal and important difference between the ordinary case using only u

as estimator input, and the present case using also Y2 as input.

The ordinary case

In the ordinary case with Uk as input and Yk as output, the discrete-time predictor
farm Kalman filter driven by Uk and Yk will be given by the equations

Xk+llk

zklk-l

ek

AXklk-l + BUk + AKek

Yklk-l == CXklk-l + DUk

Yk - Yk\k-l,

(2.21 )

where xklk-l is the prediction (a priori) state estimate and ek is the white innova­
ti011S process, while K is the Kalman gain (Appendix A).

Remark 2 The subscript (-)klk-l notation is used to mark variables estimated at
time step k on the basis of Yk data up to time step k - 1.
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From (2.21) follows the innovations model

AXklk-l + BUk + AKek

CXk/k-l + DUk + ei:

GE model From (2.22) we find the OE (Output Error) model

Yk= [C(qI-A)-lB+D]Uk+'TJk'

(2.22)

(2.23)

where TJk = [C(qI - A)-lK + IJ ek is a non-white sequenee. The optimal Zk and
Yk estimator when past values of Yk are not known is thus

(2.24)

The Zk estimation error covariance is then determined by the proeess noise
propagated through the plant, given by the solution of the Lyapunov equation

pOED = ApOEUAT + GRuGT,

where pOEU = E(Xk - X?~)(Xk - x?~)T, and the result is, ,

(2.25)

(2.26)

ARMAX model As an alternative we may eliminate ek from (2.22) and arrive
at the ARMAX (AutoRegressive Moving Average with eXtra inputs) model

Yk = C(qI - A + AKC)-l [(B - AKD)Uk + AKYk] + DUk +ek. (2.27)

This is the basis for optimal Zk and Yk estimation when past Yk measurements are
available.

Comparison of GE and ARMAX models From (2.23) and (2.27) we see
that the deterministic part of the OE model is equal to the deterministic part of
the ARMAX model with K = o. This faet may be utilized when the ordinary OE
model is to be identified from input-output data (see Chapter 3).

The present case

GE model When we use also Y2,k as an input to the estimator, the Kalman
filter driven by Uk and Y2,k (and not Yl,k, since it is assumed not to be available)
will be given by

"'GE
xk+l[k

Y2,klk-l
eOE
2,k

A ", OE B AKo E OExk\k-l + Uk + 2 e2,k

C ",OE D
2Xklk-l + 2Uk

Y2,k - Y2,klk-l·

(2.28)
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From this follows the innovations model

29

A ~ OE B AKo E OE
xklk-l + Uk + 2 e2,k

C "OE D OE
2Xklk-l + 2uk + e2,k ,

(2.29)

(2.30)

which after elimination of j;~~-l and combined with the primary output equations
in (2.20) gives the OE model

Yl,k = Cl [qI - A + AK~EC2rI
x [(E - AK~ED2) Uk + AK~EY2,k] + Dluk + 'l9k,

where
(2.31)

(2.32)

is a non-white sequence (not an innovations representation, since it is not an
internal feedback signal in the Kalman filter).

ARMAX model When we use also Yl,k as an input to the Kalman filter, the
innovations model (2.29) is altered to

... ARMAX Aj;ARMAX + Bu
~k+llk == k[k-l k

+AKARMAXeARMAX + AKARMAXeARMAX
l l,k 2 2,k

C j;ARMAX + D u + eARMAX
YI,k 1 kik-lIk l,k

C ... GE D ARMAX
Y2,k = 2Xklk-l + 2Uk + e2,k ,

which after elimination of e~fMAX and xtt~~tx gives the ARMAX model

Yl,k = Cl [qI - A + AKtRMAXCl + AK~RMAXC2]-1

[
(B - AKtRMAXDl - AK~RMAXD 2 ) Uk ]

X +AKtRMAXYl,k + AK:tRMAXY2,k

+D, Uk- + e~~MAX ......., ..1.,'" (2.33)

Comparison of DE and ARMAX models A comparison of the OE and
ARMAX models above shows that the deterministic part (considering Y2,k as an
input) of the OE model (2.30) has the same structure as the deterministic part
(again considering Y2,k as an input) of the ARMAX model (2.33) with KtRMAX ==
O. Note, however, that the Kalrnan gains K?E and Kt RMAX are not the same,
except for special cases with perfeet Y2,k measurements and/or very noisy Yl,k

measurements. Use of KtR.MAX in (2.28) will thus be the same as using an observer
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with a non-optimal gain instead of the Kalman filter driven by Uk and Y2,k, and
it will therefore generally not give the optimal predietion of Zk and Yl,k' This has
significant importance when it comes to the problem of estimator identification
(see Chapter 3).

2.2.3 Optimal output error predietion (OEP) estimator

It follows from the discussion above, that the optimal predietion (a priori) esti­
mator for Zk and Yl,k when past Yl,k values are not known is derived from (2.30)
as

(2.34)

i.e. based 011 a Kalman filter driven by Uk and Y2,k' The Kalman gain is then
found from the algebraic Riccati equation

and

pOEP _ ApOEPAT + GRvGT

_ApOEPci (C2p OEPci + R22) -1 C2p OEP AT

(2.35)

(2.36)

where pOEP = E(Xk - X~~_l)(Xk - x~~_l)T is the minimized predietion state
estimation covariance (see Appendix A).

This prediction estimator is shown in the block diagram in Fig. 2.4.
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Yl,k

+

Y2,k

Wl,k

~
t----------.<+

+l--,------,

"'DE "DE
Zklk-l = Yl,klk-l

+

f------..I+

Figure 2.4 Block diagram for optimal discrete-time primary property prediction esti­

mator.

Predietion estimator covariances

The theoretical z~tl and yP,~lk-l estimation covariances follow directly from
(2.30), (2.31) and (2.34) and the faet that Zk = Yl,k - Wl,k as

C ( "'OE ) C pOEPCT
av zklk-l = 1 l (2.37)

and
Cov (yP,~lk-l) = E7'J(t)7'JT(t) = CIpOEPCr + Ru,

where pOEP is given by (2.35).

(2.38)

The development of the optimal predietion estimator and its covarianee prop­
erties are summarized in Proposition 2.2:

Proposition 2.2 - Optimal discrete-time predietion estimator

For the system (2.20), the optimal diserete-time prediction Zk and Yl,k estimator
based on past and present Uk and past Y2,k values is given by (2.34). The estimator
eovariances are given by (2.37) and (2.38).

•
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2.2.4 Optimal output error current (OEC) estimator

In the discrete-time Kalman filter given by (2.28), the current (a posteriori) state
estimate is formed by

"GE (1 KOEC) "OE K OE ( D)xklk = - 2 2 Xklk-l + 2 Y2,k - 2Uk·

(see Fig. 2.4 and Appendix A).

(2.39)

Remark 3 The subscript (·)k[k notation is used to mark variables estimated at
time step k on the basis of Y2,k data up to time step k.

From the innovations model (2.29) we obtain

X~~_l = [gl - A + AK~EC2.: [(B - AK~ED2)uk + AK~EY2,k] , (2.40)

and thus from (2.39) and the Z and Yl,k output equations in (2.20) the optimal
current estimator

z~~ = yP,~lk = Cl (I - K~EC2) [gl - A + AK~EC2r1

x [(B - AK~ED2)uk + AK~EY2,k]

+CIK~E(Y2,k - D2Uk) + D1Uk·

(2.41)

The block diagram for this estimator is the same as shown in Fig. 2.4, 011ly that
we now use the output z~~ = yP,~lk = C1x~l~ + Dl uk, Le. based on the current

t ti t AOEsta e es ima e xkl k.
The Yl estimation error then becomes

'1/' .... OE C ( '"-OE)'f/k = Yl,k - Yl,klk = l Xk - Xklk +Wl,k,

which just as fJk in (2.31) is a non-white sequence.

(2.42)

Remark 4 As in the continuous-time case, the Kalman filter will not give the
optimal current estimate yP,~k if the measurement noise sources Wl,k and W2,k are

correlated, i.e. il EWl(k)wf(k) =I O. The Kalman filter will, however, still give
the optimal estimate of the output property Zk = C1Xk + D1Uk.

Current estimator covariances

The theoretical z~~ and yP,~lk estimation covariances follow from (2.42) and the
faet that Zk = Yl,k - Wl,k as

(2.43)
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and
COV(YP,~k) = E'l/Jk'I/J[ = ClPOECd[ + Ru,

with pOEC = E(Xk - x~I~)(Xk - x~~)T determined from

pOEC = (1 _ K?EC2)pOEP (1 _ K~EC2)T .

+K?ER22 (K~E)T,

where pOEP is given by (2.35) (see also Appendix A).

33

(2.44)

(2.45)

The optimal current estimator and its covariance properties are summarized
in Proposition 2.3:

Proposition 2.3 - Optimal discrete-time current estimator

For the system (2.20), the optimal discrete-time current Zk and YI,k estimator
based on past and present Uk and Y2,k values is given by (2.41). The estimator
covariances are given by (2.43) and (2.44).

•
2.2.5 A note on observability

Note that we do not assume that (C2,A) is observable, only that it is detectable
(see Appendix A for definitions). In many practical cases it is quite reasonable to
expect the system structure

YI,k

Y2,k

[ A~l ~~~] [ ~~ ] k + [ ;~ ] Uk + [ g~ ]Vk

CIXI,k + Dl uk

Zk +WI,k

C2 X2,k + D2Uk +W2,k,

(2.46)

wh.ich means that the primary output state Xl,k is not observable from the sec­

ondary Y2,k outputs. As long as the system (An, [A12 Bl]' Cl, Dl) is asymp­
totically stable, however, (02,",,4) is still detectable, and the Kalman filtering for­
malism may thus be applied. A continuous-time example of this is already given
in Example 2.1.

The most extreme case occurs when not even (C2, A22) is observable. This will
result in K?E == 0, and the predietion and current estimators (2.34) and (2.41)
are then reduced to

~OE AGE AGE AGE C (I A)-lB D
zklk-l == zklk == YI,klk-l == Yl,klk == 1 q - Uk + lUka

This is the ordinary deterministic OE estimator (2.24).

(2.47)
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2.2.6 Relaxed noise constraints

In the problem statement in Subsection 2.2.1 it was assumed that the white proeess

and measurement noise sequences Vk and Wk = [Wf,k -s..Tare uncorrelated,

i.e. that EVjwr = Ofor all j and k. We may relax this constraint by still assuming
that Vk and Wk are white sequences, but allowing for EVkW §k = Rvw =j:. o. As given
in Åstrom and Wittenmark (1990), the algebraic Riccati equation (2.35) will then
be replaced by

pOEP
vw AP~wEPAT + Gs;GT

- (AP~PCi +GRvw) (C2P~PCi+R22)-1

X (AP~PCi +GRvw)T. (2.48)

Optimal predietion estimator with relaxed noise constraints

We further find that AK~E is replaced by the predictor Kalman filter gain

and the optimal predietion estimator (2.34) is thus altered to

Z~Ll = yP,~k-l = Cl [q1 - A + K~~C2]-1

X [(B - K~~D2) Uk + K~~Y2,k] + DlUk.

Optimal current estimator with relaxed noise constraints

In this case K~E is replaced by the predictor-corrector KaIman filter gain

l<O~ _ pOEP {"Yr (ri: pOEPrT ...L R .... ro \ -l
.Ll. c,2 -.L vw v2"V~.L vw "-"~ I .L~~~}

(2.49)

(2.50)

i.e. the same expression as (2.36), only that pOEP is replaced by p~EP given by
(2.48). The optimal current estimator (2.41) is thus replaced by

z~~ = yP,~k = Cl (1 - K2~C2) [q1 - A + K~~C2] -1 (2.52)

X [(B - K~~D2) Uk + K~~Y2,k] + ClK2~(Y2,k - D2Uk) + o.«;
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2.2.7 Examples of optimal estimators

Example 2.2

Consider the pure delay system

Xl,k+l X2,k

X2,k+l Uk +Vk

Zk Xl,k

Yl,k Zk +Wl,k

Y21,k = Zk + W21,k

Y22,k = X2,k +W22,k,

35

(2.53)

with A = [~ ~], B = G = [ ~ ], Cl = C 21 = [1 O], C22 = [O 1] and

Dl = D21 = D22 = O. This is a pure delay system as shown in Fig. 2.5, where
(C22,A) is not observable.

Y22,k

Yl,k

Fig. 2.5 Pure delay second-order system.

No Y21 measurement We start by looking at the case when the Y21 measure­
ment is not used. The theoretical predictor for this system can be determined by
first finding AKrE from (2.35) and (2.36). We then obtain

(2.54)

(2.55)

and

(2.56)
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(2.58)
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which inserted into (2.34) and (2.41) result in equal predietion and current esti­
mators (sinee ClK~E == O and thus Cl (I - K~EC22) == Cl)

"'OE "'OE_(l 1)-1(Uk_2 Y22,k-l)
Zklk-l == Zklk - - + - -- +

Tv T22 Tv T22

1 Tv / T22

/
Uk-2 + / Y22 k-l,

1 + Tv T22 1 + Tv T22 '

where Tv and T22 are the variances of Vk and W22,k. Considering that the actual
input to the system is u+v, this shows that the information in u and Y2 is utilized
in an optimal way given the noise levels (according to the generalized form of
Millmans theorem, see Lewis (1986)).

From (2.37) and (2.43) we also find the estimator variances

( "'OE ) ("'OE) COEPOT TvVar Zklk-l = Var Zklk = -P l = 1 + r
v/r22'

Special cases occur when

/ O ltina i "'OE AOE d V (AOE )• Tv T22 ---t ,resu mg In Zklk-l = Zklk ~ Uk-2 an ar Zklk-l

= Var (z~~) ---7 rvo

/ lti . "'DE "DE d 1 T ( ADE )• Tv T22 ---+ 00, resu ing In Zklk-l == Zklk -+ Y22,k-l an var Zklk-l

= Var (z~n ---7 O. Note that this is a reduced estimator, where the inputs

Uk and Vk are decoupled by the use of the perfeet Y22 measurement (see a
further discussion of such cases in Chapter 4).

All measurements used When also the Y21 measurement is used, the predietion
estimator is still the same as in (2.57), while the current estimator is altered to

AOE T21 r22Uk-2 + T21 TvY22 k-l + T22 TvY21 k
zkk == " ,

I T21 r22 + T21Tv + T22 Tv

where T21 is the W21,k variance.
For two special cases we obtain the following results:

= When r v == r21 == r22 we find

(2.59)

(2.60)AOE Uk-2 + Y22,k-l + Y21,k
zklk == 3 '

while the current estimator variance becomes

Var (z~~) = i. (2.61)

Using all information in Uk, Y22,k and Y21,k will thus in this case give only a
third of the estimator variance as compared with use of only Y21,k'
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•
Example 2.3

Consider the second-order system

allXl,k + a12 x2,k + bluk

a2l Xl,k + a22x2,k + b2 uk + Vk

(2.62)

Yl,k Zk + Wl,k

Y2,k X2,k + W2,k·

This will generally lead to the second-order predietion estimator

---OE ---OE ---OE ---OE
zklk-l = Yl,klk-l == -alYl,k-llk-2 - a2Yl,k-2Ik-3

+bl l Uk-l + b12Uk-2 + b2lY2,k-l + b22Y2,k-2.

Two special cases can be easily calculated:

(2.63)

• Very noisy Y2 measurements, i.e. r v/r22 ---t O, will result in KrE = O. With
u as input and Yl as output, we will then obtain the second-order predietion
estimator

---OE
x1,k+llk
",OE
X2,k+llk

"DE
Zklk-l

(2.64)

This is an ordinary OE estimator, and the theoretical Zk predietion variance
will thus be determined by (2.26).

• With perfeet Y2,k measurements ,i.e. r v/r22 ---t 00, the system (2.62) is
reduced to the first-order deterministic system

(2.65)

Le. the state variable X2,k is decoupled from the primary output. The re­
sulting optimal estimator then becomes

---OE ---OE ( )-1 (b )
Zklk-l == Yl,klk-l = q - all 1Uk + a12Y2,k , (2.66)
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while the predietion variance according to (2.37) becomes

Var(z~~_l) == o. (2.67)

The form of estimator reduction due to perfeet Y2,k measurements that we
find in this example, is more generally treated in Chapter 4.

•
2.3 Discrete-tirne ARMAX estirnators

In Subsection 2.2.2 we have shown that primary output estimators based on AR­
MAX models are not optimal in the present case. The reason for this is that they
are based on underlying Kalman filters that make use of past and present Yl,k

measurements, and the gain related to the Y2,k measurements will then not be
optimal when the Yl,k measurements are not available. There are, however, still
same reasons to study this type of estimators, especially since we assume that the
estimators are to be identified from experimental data with a limited number of
samplings:

• With near perfeet Y2 measurements it may be advantageous to use a parsimo­
nious though biased ARMAX estimator with Y2 as ordinary known inputs.
This will then result in the same deterministic estimator as if the parsimo­
nious estimator was determined by lise of an OE model, but the estimation
covariance for the identified estimator will generally be less (e.g. Soderstom
and Stoiea, 1989). Such cases are already diseussed in Example 2.1, 2.2 and
2.3.

• When a direct measurement of the primary property z is included in the Y2
measurements, we may choose to ignore the Yl measurements and use a z
estimator using only u and Y2. Suc11 a case is diseussed in Example 3.5 in
Chapter 3.

• It is of general theoretical interest to studyestimators based on ARMAX
models, especially since the possibility to use the secondary Y2 rneasure­
ments as ordinary inputs to such a model may be tempting. As we found in
Subsection 2.2.2, this will theoretically lead to non-optimal primary output
estimators in the present case with non-available Yl measurements.

2.3.1 Optimal ARMAX estimators with Yl,k available

Optimal ARMAX predietion estimator

The ARMAX rnodel based on a Kalman filter driven by Uk, Yl,k and Y2,k is given
by (2.33), from which follows the optimal predietion estimator
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ZAR.MAX
k]k-l

AARMAX "ARMAX [-]-1
Y1,klk-1 = ClXkl k- 1 + DlUk = Cl qI - A

x [Bu + AKARMAXy + AKAR.MAXy ] + D uk 1 l,k 2 2,k 1 k»

(2.68)

where A A - AKtR.MAXC1 - AK~RMAXC2 and B = B - AKtRMAXDl -

AKtRMAXD2.

The Kalman gain KARMAX = [KtRMAX KtRMAX] is here found from the
algebraic Riccati equation

pAR.MAXP = ApARMAXP AT + GRuGT (2.69)

_ApARMAXPCT(CpARMAXPCT + Rw)-lCpARMAXPAT

and
KARMAX = pARMAXPCT(CpARMAXPCT +Rw)-l, (2.70)

where C = [cf[ cT r, and where pARMAXP = E(Xk-X~~'~IAX)(Xk-X~~~tX)T
is the minimized prediction state estimation covariance.

Assuming that Yl is available, (2.68) is the optimal linear one-step-ahead pre­
dictor ifvk and Wk have arbitrary statistics, and the best of all predictors (including
nonlinear predictors) assuming that Vk and Wk are normally distributed (Lewis,
1986).

Theasymptotic predietion covariances is in this case determined by the expec­
tations .

and
Cov (y"A R MAX ) - C pAR.MAXPCT + R

1,klk-l - 1 1 11·

(2.71)

(2.72)

Optimal ARMAX current estimator

If also current Y1,k and Y2,k measurements are utilized, the optimal current esti­
mator becomes

ZARMAX
k]k Cl (I - KtRMAXCI - KtRMAXC2) [qI _A]-l

X [Bu + AKARMAXy + AKAR.MAXy ]k 1 l,k 2 2,k

+CIKtRMAX(Yl,k - D 1U k )

+ClKtR.MAX(Y2,k - D2uk) + DI U k - (2.73)

With Yl,k available, the best estimate of Yl,k would obviously be yt~~AX = Yl,k,
but such unfiltered measurements would often be of less interest.
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(2.74)Cov (z~~MAX) = CIpARMAXCci,

Assuming that Yl is available, (2.73) is the optimal linear estimator if Vk and
Wk have arbitrary statistics, and the best of all estimators assuming that Vk and
Wk are normally distributed (Lewis, 1986).

The asymptotic covariances for the current estimator is determined by the
expectation

where

pARMAXC (1 _KARMAXC) pARMAXP (1 _KARMAXC)T

+ (KARMAX) s; (KARMAX)T,

with pARMAXP given by (2.69) (see also Appendix A).

(2.75)

2.3.2 Non-optimal ARMAX estimators when Yl,k is not available

In the main case of the thesis, neither past nor present Yl measurements are
available as a basis for the primary output estimate. In the ordinary case with only
one output vector Yk, we would then set K == Oin the optimal ARMAX estimator
and arrive at the optimal OE estimator utilizing only the information in Uk. A
natural choice in the present case is therefore to set KtR.M AX == O in (2.68) and
(2.73). As K~RMAX is not the optimal gain when only the Uk an Y2,k information is
available, this will give non-optimal results. For comparison purposes we develop
these non-optimal primary output estimators and their covariances.

Non-optimal ARMAX predietion estimator

With KtRM AX == Owe find from (2.68) the predietion estimator

(2.77)

(2.76)ZARMAX2
klk-l Y" ARM A X2 _ C [qI _A + AKAR.MAXc]-l

1,klk-l - 1 2 2

X [(B - AKtRMAXD2)Uk + AKtR.MAXY2,k] + Dl uk.

From (2.20) and (2.32) with KtRM AX == O we find that the state estimation
-ARMAX2 - "ARMAX2 . d berror x k1k - l - Xk - X k1k - 1 IS governe y

xAR.MAX2 == (A _ AKARMAXC )xARMAX2 + Gv _ AKAR.MAXw
k+llk 2 2 klk-l k 2 2,k,

and the predietion state estimation covariance

pARMAX2P = Ex~~r:!lX2 (X~~~IAX2)T is thus determined by the Lyapunov equa­

ti011

pARMAX2P = (A _ AKtRMAXC2) pARMAX2P (A _ AKtRMAXC2) T

+GR,;GT +AKtRMAXR22 (AK~R.MAX)T. (2.78)
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.This is the basis for finding

Cov (zAR,MAX2) = G pARMAX2Pc:
kik-Ill ,

and
Gov (y

AARMAX2) - G pAR.MAX2PCT + R
l,k[k-l - 1 1 11·

Non-optimal ARMAX current estimator

With KtRMAX = Owe find from (2.73) the current estimator
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(2.79)

(2.80)

2ARMAX2
kik

yt~~AX2 = Cl (I - K~RMAXC2) [qI - A + AK~RMAXC2] -1

X [(B - AK~RMAXD2) Uk + AK~R.MAXY2,k]

+ClKtRMAX(Y2,k - D2Uk) + DlUk. (2.81)

where pAR,M AX2P is given by (2.78). The estimator covariances then become

and

Example 2.4

COV (zARMAX2) - G pARMAX2CCT
kik - 1 1 , (2.83)

(2.84)

Consider the system

Xk+l = O.8X k + bUk + Vk

Zk Xk (2.85)

Yl,k Zk +Wl,k (2.86)

Y2,k = Zk + W2,k,

with rIl = Ewi k = 0.0001 and r22 = Ew§ k = 0.01. This is a somewhat special
system, in that both Yl,k and Y2,k are direct measurements of the primary property.
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For different process noise variances rv == Ev~, the theoretical primary property
estimation variances Var(zk) are determined by lise of the dlqe.m and dlyap.m
functions in the Control System Toolbox for lise with Matlab (Grace et al., 1992).
The results are given in Table 2.1.

Table 2.1: Primary output estimator variances for different estimators and different

levels of proeess noise.

Estimator type rv == 0.01 rv == 0.1 rv == 1
Direct lise of Zk == Y2,k 0.0100 0.0100 0.0100
OE estimator (2.24) using only Uk as input 0.0156 0.1563 1.5625
Optimal OEP estimator (2.34) 0.0137 0.1058 1.0063
Optimal OEG estimator (2.41) 0.0058 0.0091 0.0099
Non-optimal ARMAX prediction estimator (2.76) 0.0268 0.2684 2.6838
Non-optimal ARMAX current estimator (2.81) 0.0263 0.2631 2.6309

We see from this that the optimal current estimator (2.41) theoretically is
the best choice, although direct use of Y2,k isalmost as good for high process
noise levels, Since Y2,k is a direct measurement of Zk, the OEC estimator is much
better than the OEP estimator. Due to the fact that TIl « T22 we obtain
K~RMAX ~ 0, and this iswhy the non-optimal ARMAX estimators are sa inferior.
These differences may be much less pronounced for more general types of models,
with different state variables measured by Yl and Y2 (see e.g. Example 3.2).

•
Exarnple 2.5

Assume a general system with perfeet YI,k measurements, Le. RIl ~ O. This gives
CIKtRMAX -+ I and CIK~RMAX -+ 0, and the current ARMAX estimator (2.73)
will then as expected be simplified to z~~MAX -+ Yl,k. With Yl,k not available we

will then find z~~MAX = O, Le. very far from optimal.

•
2.4 Disturbanee sensitivity

The assumption that the proeess noise is white or filtered white noise may in
many industrial cases be a rather rough approximation, which also means that R;
in (2.35) and K?E in (2.36) are approximations. The developed estimators (2.34)
and (2.41) will then no longer be optimal, but they may nevertheless give useful
practical results.
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For a discussion of this, we choose the optimal current estimator (2.41). For
this estimator the estimation error due to proeess noise is

where from (2.20)

(2.87)

(2.88)

With
Y2,k == C2 (qI - A)-l GVk

and use of (2.41), we then tind

(2.89)

Zklk Cl (1 - K~EC2) (ql - A + AK~EC2) -l AK~EC2 (ql - A)-l GVk

+CIK~EC2 (qI - A)-l GVk. (2.90)

This results in

Zklk = Cl (1 - KfEC2) (ql - A +AK~EC2) -l GVk. (2.91)

Jf ill addition to vk we also have a constant disturbanee dacting on the plant
via the matrix Cd, we tind the corresponding constant estimation error

(2.92)

This should be compared with the estimation error without lise of the Y2 informa­
tion,

(2.93)

Example 2.6

Assume the system in Example 1.1 with Y2 = Y23, and a = O, Tl = T2 = 1,
T3 = 10, T~ = 0.1 and T22 = 0.01. Further assume discretization by use of a
zero-order hold at the u input and direct sampling of the Yl and Y2 outputs, with
a sampling interval T = 0.1. VIe then find tlle approximate discrete-time noise
variances Tv = T~/T == 1 and T22 = T22 = 0.01 (Franklin et al., 1990). Finally
assume that a constant disturbanee d is acting on the system in the same way
as the proeess noise. Determining K~E by lise of the dlqe.m function in the
Control System Toolbox for lise with Matlab (Grace et al., 1992), we then tind the
following:

• With use of the Y2 information, the statie disturbanee results in the statie
estimation error ~ZIU,Y2 = O.0565d.
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• Without lise of the Y2 information, the statie disturbanee results in the statie
estimation error ~zlu = d.

A considerable reduction in the disturbanee sensitivity is thus obtained.

•



Chapter 3

Identification of primary
output estimators

This chapter deals with the problem of identifying the optimal discrete­
time primary output estimators that were theoretically developed in
Chapter 2. It is a basic assumption that although the primary outputs
normally are sampled and measured only at a low rate, there exists high
sampling rate Yl data from an informative experiment. In Chapter 6
it will be shown that this assumption may be relaxed, i.e, that low
and even irregular sampling rate Yl experimental data is sufficient. The
main point in the present chapter is that the optimal OE estimators
can be consistently identified by lise of the iterative predietion error
method (PEM) summarized in Appendix B.

3.1 Methodological discussion

There are three different approaches to the problem of identifying the discrete-time
optimal z and Yl estimators developed in Section 2.2 from experimental input­
output data:

• Regard C;k = [Uk Yf,k yr,k] T as a joint input-output time series, apply
standard system identification techniques for estimating the parameters in
an appropriately structured model of <;k (see e.g. Soderstrorn and Stoiea,
1989), and finally construet the optimal estimators (2.34) and (2.41) .

• Use Uk as input and Yk = [yf,k yr,k] T as output, apply standard system
identification techniques and finally construet the optimal estimators.

45
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• Use [ur Y[,k ras input an Yl,k as output, and apply standard system
identification techniques in order to find the optimal estimators directly.

We will use the last of these approaches. There are two reasans for doing sa:

• In a typical industrial case there are many secondary Y2 measurements around
the plant, and only one or a few primary Yl outputs. Using only Yl as output
may therefore considerably reduce the difficulties in finding auseful model.

• In many industrial cases it is difficult and therefore costly to perform an
experiment with the same high sampling rate for Yl as for the secondary Y2
outputs. The prirnary properties are typically product qualities, that may be
found only through laboratory analysis of physical samples, and the available
sampling equipment and cost of analysis may limit the sampling rate. At the
same time a high Y2 sampling rate may be needed in order to capture the
plant dynamics. We are therefore aiming at methods that can combine two
different sampling rates (and possibly also an irregular Yl sampling rate),
and the solution to this problem given in Chapter 6 requires the use of only
Yl as output.

In this chapter we will assurne experimental data with both Yl and Y2 sampled
at the same high rate. For the identification, we will make use of the iterative
predietion error method (PEM) presented in Appendix B.

3.2 Identification of optimal OE estirnators

3.2.1 Statement of problem

The basic statement of problem is given in Subsection 2.2.1, anly that we now
must add that

• data records for Uk, Yl,k and Y2,k for k = 1,2,·' . ,N are at hand from an
informative experiment (e.g. Goodwin and Payne, 1977), i.e. with Uk persis­
tently exciting of appropriate order (e.g. Soderstrorn and Stoiea, 1989) and
with a sufficiently large number of samples

• the system operates in open loop (may be relaxed as diseussed in Chapter
11)

• the problem now is to identify the optimal output error predietion and cur­
rent (OEP and OEC) estimators developed in Section 2.2.
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For clarity of presentation, we assume that the pro cess noise vand measure­

ment noise w = [w[ -s T are independent. A theoretical discussion of the case
with correlated process and measurement noise sequences is given in Subsection
2.2.6.

3.2.2 Identffication of ordinary OE estimator

We start the analysis related to the identification of the optimal discrete-time OE
predietion (OEP) and current (GEC) estimators (2.34) and (2.41) by the simpler
case of the ordinary OE estimator using only u as input. It is well known that
we will then obtain unbiased parameter estimates for the deterministic part of the
model (see Soderstrom and Stoiea (1989), p. 205, for the case with the direct
input-output matrix D = O). In the following we will show this by an approach
that is closely related to the optimal solution for use of the Y2 information.

The starting point is now the system

Xk+l

Yk

AXk + BUk + GVk

CXk + DUk +Wk, (3.1)

where Vk and Wk are white noise sequences with covariance matrices R; = EVkV[

and Rw = EWkWk, and where EVjWf = O, EUjv[ = O and EUjWf = O for all j
and k.

Express the output equation in (3.1) as

where

(3.3)

and

With the assumptions made Zk and Wk are uncorrelated, Le. EzkwI = o.
Further assume an estimator

pred _ pred _ G ( -1 e)
Yk - Zk - q, Uk,

sueh that also Ez"kredWk = O. The estimation error is then

(3.4)

(3.5)
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(3.8)

det (.) or 11(.) ==Minimization of the scalar criterion function (with h(·)
tracef-) )

where the three terms are uncorrelated. From this we find

ECk(e)4(e) = E {[G (q-l, eo) - G(q-l, e)] Uk }{[.] Uk}T

+E[H(q-l,eO)Vk] [H (q-l,eo) VkJT +Rw

> E[H(q-l,eO)Vk] [H (q-1,eo) Vk]T +Rw
CpOEUCT -1- Rw, (3.7)

where pOEU is determined by the Lyapunov equation

pOEU = ApOEUAT + GRuGT.

VN (e) = h [~ t,Ck(e)CI(e)] , (3.9)

and assuming a correct parametrization, will thus asymptotically (for N ~ (0)
result in (j -4 (jo, i.e. we will obtain G (q-l,B) ~ G (q-l,Bo) . This gives the

OE estimator (2.24), i.e. Ykred
--7 y~E, with the asymptotic prediction covariance

matrix given by the equality in (3.7).
Note that we here take it for granted that the parameter estimate will converge

sa that the minimum in (3.7) is achieved. This is based on a quite general result
that states that the estimate will converge to the best possible approximation of
the system that is available in the model set (Ljung, 1978,1987,1999).

Initial model

Due to the possible occurrence of undesired local minima in the criterion function
(3.9), it may be essential to use good initial parameter values. Such an initial model
can be determined as an LS estimate of an ARX (AutoRegressive with eXogenious
inputs) model (Ljung, 1995). This is achieved by rewriting the innovation model
(2.22) as the ARMAX model

A(q-l)Yk == B(q-l)Uk + C(q-l)ek, (3.10)

which approximately gives

(3.11)

or

Yk ~ [I-A(q-l)]Yk+B(q-l)Uk+ek

== 'Pr80 + ekG (3.12)

From this we find approximate parameter estimates einit by use of the ordinary
LS method.
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3.2.3 Identification of optimal OEP estimator

We now turn to the present case with also the secondary Y2 measurements used as
inputs, and we thus want to identify the OEP model (2.30) developed in Chapter
2, i.e.

Yl,k

(3.13)

where

(3.14)

with X~I~_l given by (2.40). In order to do sa we lise the predictor in Fig. 3.1,

where we may choose a canonical representation with Cl = [I O] (Kailath,

1980).

+

Yl,k

Y2,k
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Figure 3.1 Identification of OEP estimator by predietion error minimization.
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We thus have

Yl,k CIXk + Dluk + WI,k == Zk + WI,k

pred C pred D pred pred (3 5)
YI,klk-1 IXk1k- 1 + 1 Uk == zklk-l' .1

with both Zk and z~I:~l uncorrelated with wl,k· The estimation error is then

cl,k(O) = (Zk -Z~I:~l) +Wl,k, (3.16)

with the two terms uncorrelated. From this follows

E ( pred ) ( pred )TET
zk - Zklk-l zk - zklk-l + WI,kWl,k

> E (Zk - z~Ll) (Zk - z~Ll)T + Ru

C1POEPcf + RIl, (3.17)

where z~Ll and pOEP are given by (2.34) and (2.35). Asymptotically, the equality
in (3.17) is obtained when the predictor in Fig. 3.1 is tuned into the Kalman filter
in Fig. 2.4. Note that also this is based on the assumption that the parameter
estimate will converge to the best possible approximation of t11e system that is
available in the model set (Ljung, 1978). See Chapter 11 for a brief discussion.

From this follows the optimal predietion estimator

Z~~-l = yP,~k-l = Cl [qI -A+AK?EC2rl

x [(B - AK?ED2) Uk + AK?EY2,k] + Dl Uk,

earlier fOU11d as (2.34).

Covariances for OEP estimator

From (3.14) and (3.15) we obtain the minimized asymptotic covariances

C ( AOE ) C pOEPCT
OV zklk-l == 1 l

and

(3.19)

Cov (yP,~lk-l) = Eih'l9r = CIPOEPC[ + Ru. (3.20)

These are the same as the theoretical covariances (2.37) and (2.38) found earlier.

Remark 5 In order to determine the covariances (3.19) and (3.20), the model
(2.20) must be known, and this is not the case in the present context. We will,
however, obtain an estimate of the covariance (3.20) directly from a standard pre­
dietion error identijication algorithm (Ljung, 1995). Due to overfitting, we will
then underestimate the z~~_l covariance (see e.g. Ansley and Kohn, 1986). A
more reliable covariance estimate is found through validation against independent
data (see Example 3.2 to 3.5).
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Special case without Y2 measurements

51

Without Y2 measurements we would have C2 == O alld K?E == o. We would then
find

(3.21)

where pOEU == E(Xk - x~E)(Xk - x~E)T is determined by the Lyapunov equation
(2.25), Le.

pOED == ApOEUAT + GRvGT . (3.22)

This is the same result as found directly in (3.7) and (3.8), and it will be used for
simulation comparison purposes in 8ection 3.5.

3.2.4 Identification of optimal DEC estimator

The optimal OEC estimator utilizing also current Y2 values is given by (2.41), Le.

yP,~k = Cl (I - K~EC2) [qI - A+ AK~EC2rl

x [(B - AK~ED2) Uk + AK~EY2,k]

+CIK~E(Y2,k - D2U k) + D1Uk,

and the estimatian error was in Chapter 2 found to become

(3.23)

(3.24)

with x~~ given by (2.39).

For the identification we lise the estimator in Fig. 3.2, and also here we may
choose a canonical realization with Cl (I - K2C2) = [lO] .
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Figure 3.2 Identification of OEC estimator by estimation error minimization.

In this case we have

Yl,k
pred

Yl,klk

CIXk + Dluk + Wl k == Zk + Wl k, ,

Cl (1 - K2C2) x~I~~1 + (Dl - CI K 2D 2) p red uk

+ (C1K 2) pred Y2,k

pred
Zklk (3.25)

Since zki:d is correlated with Y2,k and thus with W2,h we must now require that

Rl2 = EWI,kWf,k = O in order to get both Zk and Zkl~d uncorrelated with WI,k.

The estimation error is then

(3.26)

with the two terms uncorrelated, and from this follows
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T E ( pred) ( pred)T E T
ECI,k(B)CI,k(B) Zk - zklk Zk - zk/k + WI,kWI,k

> E (Zk - z~f) (Zk - z~f)T + Rn

CIPOECci + RIl,
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(3.27)

where i~~ and pOEC are given by (2.41) and (2.45). Asymptotically, the equality

in (3.27) is obtained when the estimator in Fig. 3.2 is tuned into the Kalman filter
in Fig. 2.4, modified so that the primary output is taken from x~~ instead of

X~I~_I. Note that we again rely on the parameter estimate convergenee to the best
possible approximation of the system that is available in the model set (Ljung,
1978).

Covariances for OEC estimator

From (3.24) and (3.27) we obtain the minimized asymptotic covariances

Cov (z~f) = C1POECC[

and

(3.28)

Cov (:Q?~lk) = E'ljJk'IjJf = CIPOECC[ +Rn . (3.29)

These are the same as the theoretical covariances (2.43) and (2.44) found earlier.

Remark 6 liflhen Rl2 == Rrl =I 0, the minimization will result in the minimum
mean square error (MSE) for the YI,k estimator. This is not of significant interest,
however, since we are basically interested in an estimate of the primary property
Zk, related to YI,k through YI,k == Zk +Wl,k·

Modification for correlated measurement noise

When R12 == Rrl i= 0, we may introduee common noise components Ve and Wc,

and augment the system equations (2.20) in the following way:

Y2,k

CIIXk + DIUk

Zk + C12W c,k + Wll,k

[C21 C22] [ :c ]k + D2U k + W22,k·

(3.30)
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We now have a system of the general type (2.20), but with uncorrelated mea­
surement noise sources Wll,k and W22,k. This is, however, a problematie solution.
Whether it gives an improved OEC estimator depends on the number of samples
in the data record, and since Zk is not available the result cannot be validated.

3.3 Identification of ARMAX estirnators

In Chapter 2 we have ShOW11 that primary property estimators based on ARMAX
models are not optimal in the present case, i.e. when no primary measurements
are available as basis for the estimation. As pointed out in Chapter 2, there are
still some reasons to study this type of estimators:

• With near perfeet Y2 measurements it may be advantageous to use Y2 as
ordinary known inputs, and identify a parsimonious ARMAX model.

• When a direct measurement of the primary property Z is included in the Y2
measurements, we may choose to ignore the Yl measurements and identify a
z estimator using only u and Y2 (see Example 3.5 in 8ection 3.5).

• Identification of ARMAX models may be convenient means to find initial
parameter values for the identification of the optimal OE estimators (see
Example 3.2).

• It is of general theoretical interest to studyestimators based on ARMAX
models, especially since it may be tempting to use the secondary Y2 mea­
surements as ordinary inputs to such an estimator.

Note, however, that identification of an ARMAX model, making use of past
primary Yl measurements, is not possible in the low Yl sampling rate case diseussed
in Chapter 6.

Innovations form

A convenient starting point is now the innovations form (2.32), Le.

XAR.MAX
k+llk

Yl,k

Y2,k

Axtl~~lAX + BUk + AKAR.MAxetR.MAX

C X" AR.MAX + D U + eARMAX
l kik-lIk I,k

C X" ARMAX + D U + eAR.MAX
2 klk-I 2 k 2,k ,

(3.31)

[

eARMAX ]
where K ARMAX - [KAR.MAX KARMAX ] and eAR.MAX - 1,k

- 1 2 k - eARMAX .
2,k
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(3.33)

Identification with Y2 used as output

Identification with Y2 used as output together with Yl may be attempted using a
standard prediction error or subspace identification method. This might, however,
be a difficult task with a large number of secondary measurements.

The FEM criterion to be minimized is then for example the scalar function

where

== [ cl,k ] == [ Yl,k. - yr:I~-l ]Ck pred .
c2,k Y2,k - Y2,klk-l

Initial parameter values for the minimization may be found by use of an ordinary
least squares method (Ljung, 1995).

Once a model is found, the prediction and current primary output estimators
can be constructed according to (2.68) and (2.73).

Tderrt.iflcat.ion with Y2 used as input

Another and more appealing choice, especially with only one or a few primary Yl
measurements and many Y2 measurements, is to eliminate e~~MAX and reorganize
(3.31) into the partitioned innovations model '

xt!i"l{AX = (A - AK~RMAXC2) X~I~~lAX + (B - AK~RMAXD2) Uk

+AKtR.MAXY2,k + AKtRMAxet~·MAX (3.34)

YI,k == C xARMAX + D u + eAR.MAX
l k[k-l l k l,k

before the identification.
In (3.31) the innovations process etRM AX can be seen as the error in estimating

[
T T ]T.. .. ARMAX .

Yk == YI,k Y2,k using Uj for J ~ kand Yj for J < k., i.e, ek . carries the
new information in Yk not carried by Uk and Yk-l (hence the name innovations).
This means that etfMAX in (3.34) is uncorrelated with Uj an.d Y2,j for j < k, and
we thus have Y - zARMAX + eARMAX with zARMAX and eAR.MAX uncorrelated

l,k - klk-l l,k klk-l l,k .

From this follows that identification of (3.34) results in the optimal predietion
estimator (2.68), just as when (3.31) is identified directly. The difference is only

that a simplified criterion function, e.g. VN ((1) = trace (1 L Cl,k ((1)Cf,k ((1) ), is

used, and that A - AK~RMAXC2 and B - AK~R.MAXD2 are treated as single
matrices.
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Construetion of non-optimal predietion estimator

After the identification of (3.34), we may set Kt R.M A X == O and construct the
predietion estimator

ZARM A X 2
klk-l yt~~!-IX2 = Cl [qI - A + AK~RMAXC2rl (3.35)

x [(B - AK~RMAXD2) Uk + AK~RMAXY2,k] + DlUk,

which is not using Yl information. This estimator is earlier developed as (2.76), and
it is simply the deterministic part of (3.34). The resulting asymptotic (N ..-,. (0)
estimation covariances are then given by the theoretical covariances (2.79) and
(2.80).

Identification of current estimator with Y2 used as input

We may also attempt to identify the optimal current estimator (2.73) using Y2,k

as an input as in (3.34). In this case we will, however, find Yl,k == zklk + et~MAX

with zklk and et~·MAX correlated, and minimization of the criterion function will
therefore not give the correct result. Since identification of ARMAX models in any
case gives non-optimal estimators when the Yl measurements are not available,
this possibility is not further investigated in the thesis, except for some related
simulation results in Example 3.2 in Section 3.5.

3.4 Dynamical errors-in-variables problems

Errors-in-variables problems occur when both the system inputs and the system
outputs are corrupted by noise. In the following we briefiy discuss l10W such
problems are related to the optimal estimator problem.

With Uk not known and with C2 == Oand D2 == I, the model (2.20) is turned
into the dynamic errors-in-variables model

Xk+l

Yl,k

Y2,k

AXk + BUk + GVk

ClXk + DlUk + Wl,k

Uk + W2,k,

(3.36)

see e.g. Anderson (1985) and Chou and Verhaegen (1997). Provided that the
unknown inputs Uk can be modeled as filtered white noise, we thus have the model



3.5. SIMULATION RESULTS

[ :::~] = [~ ~u] [:: ]+ [~ ~u] [ ~~:: ]
YI,k [Cl Dl] [:: ]+WI,k

Y2,k = [O I] [ :: ] + W2,k,
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(3.37)

where Vl,k = Vk and V2,k are white process noise sequences. This is the same type
of system as (2.20), but without known inputs.

It is possible to identify the optimal OEP estimator (2.34) for the system (3.37),
i.e. to identify the system

Yl,k ==

[
x~~_l ]
---OE
u k1k- l

(3.38)

This will give us unbiased estimates of A, B, Au, Cl, Dl, KgE and KgE. It is
also possible to identify the ARMAX model (3.34) using Y2,k as an input, in which
case the full noise model will be found,

Identification of the errors-in variables model (3.36) as indicated above is es­
sentially the same as the joint output approach described inSoderstrom (1981), in
that the information used is contained in the outputs Yl,k and Y2,k. The difference
is that the secondary outputs Y2,k are turned into inputs in the identification stage,
which in cases with many Y2 and few Yl measurements may considerably reduce
the computational burden.

Note that the errors-in-variables problem represented by (3.36) is a simple
one, with white noise errors Wl,k and W2,k. Use of the present approach on more
complex problems is left for further research.

3.5 Sirnulation results

Simulation studies are undertaken, using primarily dlsim. m in the Control System
Toolbox for use with Matlab (Grace et al., 1992), and the prediction error method
implemented in pem.m in the System Identification Toolbox for use with Matlab
(Ljung, 1995). The pem.m function identifies the system matrices and the Kalman
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gain, based on the general ARMAX innovation model (3.31), or the partitioned
ARMAX innovation model (3.34) when the measurements Y2 are also used as input
signals, Provided a proper parametrization, it also identifies the optimal OEP and
OEC estimators (2.34) and (2.41).

Example 3.1 - A pure delay second-order system

The pure delay system in Example 2.2 with no Y21,k measurements was simulated
with Uk as a filtered pseudo random binary sequence (PRBS) with autocovariance
ruu(p) == 0.81p1 (Soderstrom and Stoiea (1989), example 5.11 with Q == 0.8), and
with Vk, WI,k and W22,k as normally distributed white noise sequences with zero
mean and variances r v == 0.04, rIl == 0.0001 and r22 == 0.01. The theoretical
estimator (2.57) is then

(3.39)

with parameters given in Table 3.1.

Identification was performed with Uk and Y22,k as input signals and YI,k as
output signal, using N == 10000 samples and the model (see Appendix B for a
definition of nn)

nn == [O, [1 1]' 0,O, [O O], [2 1]]. (3.40)

The simulation and identification was repeated in M == 100 Mante Carlo rU11S,
resulting in mean values and standard deviations for the twa coefficients and their
sum as given in Table 3.1.

Table 3.1: Theoretical parameter values and identification results for pure delay
system in Example 2.2.

parameter theoretical value mean value

bl 0.2 0.1999 ± 0.0039

b2 0.8 0.8002 ± 0.0037

1.0 I 1.0001 ± 0.0009 I

Note that each of the two parameters bl and b2 are identified with greater
errors than the error in the sum bl + b2 . This is natural, since Uk-2 and Y2,k-1

carry the same information except for noise. With decreasing noise levels (and the
same variance ratio) it will be increasingly difficult to identify the two parameters
separately. With r v == r22 == Owe must expect to encounter numerical problems.

•
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Example 3.2 - A second-order plant with a first-order noise model

The main aim of this example is to confirm that the developed estimators are
consistently identified by use of a prediction error method with both Uk and Y2,k
as inputs. For this purpose we use a simple system and a large number of samples,
and compare the obtained mean-squared validation errors with the theoretical
covariances. Note, however, that the theoretical covariances are based on perfect
model information, which would not be available in a practical situation.

As a starting point, the following continuous-time second-order model with an
additional first-order pro cess noise model was used:

Yl

Y2

[~1 ~2 11] x + [ ~ ] u + [ ~ ] v

[1 O O] x + WI

[O 1 O] x + W2.

(3.41)

This might be a system of interacting mixing tanks or thermal processes, as illus­
trated by the equivalent electrical circuit in Fig. 3.3.

I W2

l l Y2
V Wl

X3

1 X2 1 Xl
U + + Yl

Il Il

Figure 3.3 Equivalent electrical circuit for second-order system with first-order noise

model.

The system was discretized assuming zero-order hold elements on the u and v
inputs and a sampling interval T == O.l, resulting in the discrete-time model

[

0.9092 0.0863 0.0044] [ 0.0045 ] [ 0.0002 ]
Xk+l 0.0863 0.8230 0.0863 Xk + 0.0908 Uk + 0.0045 Vk

O O 0.9048 O 0.0952

Yl,k [1 O O] Xk + WI,k (3.42)

Y2,k [O 1 O] Xk + W2,k·
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Remark 7 Since all state variables have an infiuence onY2, (C2,AC) for a system
as shown in Fig. 3.3 is structurally observable (Appendix AJ. However, with the
specijic parameter values chosen it turns out that (C2, AC) is not observable, and
this is also the case for the discrete-time system (3.42). Since the system in any
case is detectable, the Kalman jiltering theory can still be applied (Appendix Aj,
and that is the requirement in the present context.

The system was then simulated with Uk as a filtered pseudo random binary
sequence (PRES) with autocovariance ruu(p) == 0.951p1 (Soderstrom and Stoiea
(1989), example 5.11 with a == 0.95), i.e. an input that was persistently exciting
of sufficient order. The noise sources Vk, WI,k and W2,k were independent and
normally distributed white noise sequences with zero mean and fixed variances
Tv == 1 and r22 == 0.01, while rIl varied as given in Table 3.2 and Table 3.3 below.

Remark 8 Since the sampling interval is short compared unih. the time constants
in the system, t:» == 1 corresponds to an approximate continuous-time proeess noise
variance r~ ~ rvT == 0.1 (Franklin et al., 1990). Assuming direct sampling we also

have rIl == "ri and r22 == r22·

Typical input-output-data with rIl == 0.0001 are shown in Fig. 3.4.

1.5 .-----,.-----..,.-------,---y---r--..........,....--.,..--------.----y-------,

0.5

o

~0.5

-1

-1.5 o 100 200 300 400 500 600 700 800 900 1000

Figure 3.4 Typical PRBS input Uk and response YI,k.

Non-optimal ARMAX estimators and the optimal OE estimators were iden­
tified from simulated data with Uk and Y2,k as input signals and Yl,k as output
signal, using N == 10000 samples.

The ARMAX partitioned innovation model (3.34) was specified as (see Ap­
pendix B)

nnARMAxp==[3,[3 3],3,0,[0 0],[11]], (3.43)
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i.e. a model

61

with
A(q-l) = 1 + a1q-1 + a2q-2 + a3q-3

B ( - 1) b -1 b -2 + b -31 q = 11q + 12q 13q

B ( - 1) b -1 b -2 + b -32 q = 21q + 22q 23q

C(q-1) = 1 + C1Q-l + C2Q-2 + C3Q-3.

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

The deterministic part of this model was then used in the non-optimal predietion
estimator (3.35).

The state space representation of the ARMAX model (3.44) was also used to
find initial values for a third order state space representation of the OEP estimator
(2.34), Le. for a model

BpEP (q-1 )Uk + B~EP (q-1 )Y2,k
YI,k= AOEP(q-l) +'l9k,

with AOEP(q- 1), BpEP(q-1) and B~EP(q-1) of the same form as in (3.45) to
(3.47). This model was then identified.

An attempt was also made to identify an ARMAX model with (3.43) modified
into

nnAR.MAXC = [3, [3 4], 3,0, [O O], [1 O]],

i.e. a model with

(3.50)

(3.51)

(3.52)

The deterministic part of this model was then used ill a current estimator. As
pointed out in Section 3.3, such a current model with Y2,k used as input cannot
be consistently identified, but the results are nevertheless presented below. How­
ever, the main purpose of this current ARMAX model was to lise its state space
representation as a means for finding initial values for a third-order state space
representation of the OEC estimator (2.41), i.e. for a model

BpEC (q-1 )Uk + B~EC (q-1 )Y2,k
YI,k= AOEC(q-l) +'l/Jk>

with AOEC(q-l), BpEC(q-1) and B~EC(Q-1) of the same form as in (3.45), (3.46)
and (3.51). This model was then identified.

As the main purpose of the simulations was to support the theory, no attempt
was made to find the modelorder and model structure from the data. The model
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order can, however, be found by ordinary lise of one of the several available sub­
space identification methods, e.g. Di Ruscio (1997), and a systematic method for
finding the structure will be presented in Chapter 5.

Each identified model was validated against an independent data set with the
same number of samples and the same noise variances as used for identification.
Validation comparisons between the different identified models were based on the
root mean square error criterion

N

RMSE = ~ .L (YI,k - YI,k)2,
k=l

(3.53)

where YI,k = Yt~~_~Y2 according to (3.35), YI,k = Y?,~k-l according to (2.34) or

YI,k = iJ?'~lk according to (2.41).
As a basis for cornparisons given a specific experimental condition, each model

was identified and validated in M = 100 Mante Carlo runs using independent
data sets. The mean RMSE values and RMSE standard deviations for N = 10000
samples and varying variances TIl are given in Table 3.2 and Table 3.3. The

tables also include theoretical RMSE values V ar (Yt~i~!-IX2) , V ar (Y?'~lk-l)

and Var (Y?'~lk) computed according to (2.80), (2.38) and (2.44).

Table 3.2 also includes results for the non-optimal current estimator using the
deterministic part of the ARMAX model obtained with Y2,k as input, as specified
in (3.50). Since this model cannot be consistently identified, no theoretical. values
are given.

Table 3.2: Validation RMSE mean values with standard deviations and theoretical
RMSE values for ARMAX2 estimators, The number of samples was N = 10000, and the
RMSE values are multiplied by 104 .

rn ARMAX2P ARMAX2Ptheor. ARMAX2C
10-8 1013 ± 95 1007 683 ± 25
10-7 888 ± 80 888 597 ± 37
10-6 699 ± 49 694 475 ± 26
10-5 484 ± 29 478 357 ± 18
10-4 330 ± 16 328 280 ± 13
10-3 399±7 394 386±6
10-:l 1022 ± 8 1022 1025 ± 8
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Table 3.3: Validation RMSE mean values with standard deviations and theoretical
RMSE values for OE estimators. The number of samples was N == 10000, and the RMSE
values are multiplied by 104.

rIl OEP OEPtheor. OEC OECtheor.
10-~ 221 ± 7 219 209± 7 208
10-7 221 ± 6 219 209±6 208
10-0 220 ± 6 219 208± 6 208
10-5 222 ± 5 221 211 ± 5 210
10-4 241 ±5 241 231 ± 5 230
10-;) 387± 5 385 381 ± 5 378
10-~ 1024 ± 8 1024 1022 ± 8 1021

The tables show an obvious agreement between results based on simulation
and theory. In order to visualize this, the RMSE results for the ARMAX2P and
OEP models in Table 3.2 and Table 3.3 are also shown in Fig. 3.5, together with
the theoretical results for the OEU predictor (2.24) based only on the independent
inputs Uk, and for the optimal ARMAXP predictor (2.68) utilizing also past Yl
values.

OEU

O.

ARMAX2P

0.0

w
~o.o
a:

0.0

DEP

.>

ARMAXP
98-·-·~.5·-·~7-·-·~6.5·-'--; -5.5 -5

log(r11)
-4.5 -4 -3.5 -3

Fig. 3.5 Validation RMSE values for identified ARMAX2P (x-markings) and OEP
(o-markings) estimators as function of log(rll) with r v == l, r22 = 0.01 and N == 10000.
These estimators utilize the information in both U and Y2. Theoretical values are shown
as lines, including RMSE values for estimators based only on U (OEU) and on u and past

Yl as well as past Y2 values (ARMAXP).

•
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Example 3.3 - Example 3.2 with Dl =J O and D2 =1= O

As a simple test of the convergenee properties with Dl =1= Oand D2 =1= O, Example
3.2 was repeated with the output equations altered to

Yl

Y2

[1 O O] x + 2u +Wl

[O 1 O] x + 3u + W2. (3.54)

Based on M == 10 Mante Carlo runs, the results in Table 3.3 were then altered as
shown in Table 3.4.

Table 3.4: Validation RMSE mean values with standard deviations and theoretical
RMSE values for OE estimators for a system with Dl =j:. Oand D2 =F O. The number of
samples was N == 10000, and the RMSE values are multiplied by 104 .

rIl OEP OEPtheor. OEC OECtheor.
10-~ 222 ±5 219 211 ±5 208
10-7 221 ± 5 219 209±5 208
10-6 221 ±5 219 209±4 208
10-5 223±5 221 212 ±5 210
10-4 242±5 241 232±5 230
10-3 387±4 385 381 ± 5 378
10-2 1019 ± la 1024 1017 ± 10 1021

The results are very much the same as in Table 3.3.

•
Example 3.4 - Example 3.2 with a reduced number of samples

The results in Example 3.2 were obtained from N == 10000 samples in each iden­
tification experiment. To indicate expected results for a more realistic number of
samples, additional validation results based on }Æ == 100 Mente Carlo runs for
models based on N == 1000 and N == 200 samples and with TIl == 0.0001 are shown
in Table 3.5. In order to secure persistent excitation also for N == 200, the PRBS
filtering parameter a was reduced from 0.95 to 0.8.

In order to limit the infiuence of loeal minima problems, eaeh identification
based on N == 200 samples was repeated R == 5 times with randomized initial
parameter values in the B OEP (q-l) and B OEC (q-l) polynomials (bij,r+l = bij,r(1+
0.05e), where e is a normal random variable with zero mean and variance 1). The
model with the best fit was then validated and kept as the final model.
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Table 3.5 also includes results for the OEU predictor (2.24) with only u used
as input. The model was then specified as (see Appendix B)

i.e.

with

and

nnOEU = [0,3, 0, 0, 3, 1],

B OEU ( -1) b -1 + b -2 + b -3q = Iq 2q 3q

(3.55)

(3.56)

(3.57)

(3.58)

Table 3.5: Validation RMSE mean values with standard deviations and theoretical
RMSE values for GE estimators. The primary output noise variance was rIl = 0.0001,
and the RMSE values are multiplied by 104 .

N
i- OEU OEUtheor. OEP OEPtheor. OEC OECtheor.

10000 - 1159 241 ±5 241 231 ± 5 230
1000 1220 ± 304 1159 250 ± 23 241 238± 20 230
200 1343 ± 920 1159 336 ± 188 241 285 ± 77 230

As expected, Table 3.5 shows increased estimation error as the number of
samplesis reduced from N = 10000 (with RMSE values from Table 3.3) to more
realistie values.

In order to visualize the degree of model misfit behind the RMSE values in
the tables, specific validation responses for models based on N = 200 samples are
shown in Fig. 3.6. This figure also gives a representative picture of the improve­
ment achieved by including Y2 as an input signal.
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Figure 3.6 Segment of primary output validation respanses for the OEP model (3.49)
using both u and Y2 as inputs (dash-dotted, RMSE == 0.0239) and the OEU model
(3.56) using only u as input (dotted, RMSE == 0.1078). The experimental conditions

are given by T» == l, rIl == 0.0001, r22 == 0.01 and N == 200, and the ideal validation
response is shown by solid line.

•
Example 3.5 - Estimator based on noisy primary property measure­
ments

(3.59)

Yl

Y2l

Y22

In some cases there may exist primary property information at a high measure­
ment noise level and a high sampling rate. It is then possible to use an ARMAX
estimator based on these measurements, with aresult that obviously very much
depends on the noise level. This solution may be useful when it is difficult to obtain
a sufficient number of experimentallow noise primary output measurements.

In order to test the outcome in such a case, the output equations in the system
(3.41) in Example 3.2 were altered into

[1 OO] x + Wl

[1 O O] x + W21

[O 1 O] x + W22 l

i.e. an extra output Y21 was added. The system was then discretized in the same
way as in Example 3.2, and noise components were added.

The ARMAX partitioned innovation model (3.34) was specified in the same
way as in Example 3.2, and identified using Uk and Y22,k as inputs and Y21,k as
output, and the predietion estimator (3.35) was then construeted. The excitation
was the same filtered PRES as in Example 302, with Q == 0.8, and the noise
variances were Tv == 1, rIl == 0.0001 and r22 == 0.01, while T21 == EW~l varied as
shown in Table 3.6 below. For each experimental condition, the estimator was
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determined and validated in M == 10 Monte Carlo runs using independent data
sets with N == 1000 samples. The validations were performed against YI,k data
(although considered not available as a basis for estimator identification), with the
RMSE results shown in Table 3.6.

For comparison purposes the OEC estimator (2.41) was identified and validated
in the same way as in Example 3.2, only that the identification was performed using
Y21,k as output instead of YI,k, while YI,k was still used for validatian. The RMSE
results for M == 10 Mante Carlo runs are included in Table 3.6

Table 3.6 also includes the RMSE values for the simple estimator YI,klk == Y21,k,

and the best result for each value of r21 is shown in bold types.

Table 3.6: Validation RMSE mean values with standard deviations, and theoretical
RMSE values, for estimators based on more or less noisy primary property measurements.
The number of samples was N = 1000, and the RMSE values are multiplied by 104 .

T21 ARMAXP ARMAXPthear. OEC OECtheor. Yl klk == Y21,k
10-6 103 ± 2 102 256 ± 36 230 100
10-5 109± 1 108 247± 20 230 105
10-4 137 ± 11 129 239 ± 20 230 141
10-;) 178 ± 13 175 231 ± 14 230 332
10-2 296 ± 131 222 272 ± 26 230 1005
10-1 629 ± 440 238 439 ± 69 230 3164

The simulations were finally repeated with the number of samples reduced to
N = 200.'" As in Example 3.4, each identification was now repeated R = 5 times
with randomized initial parameter values in the A(q-l) and B(q-l) polynomials,
and for the ARMAX models also ill the C(q-l) polynomials (aij,r+l = aij,r +O.Ole,

bij,r+l = bij,r +e and Cij,r+l = Cij,r +O.le, with e as normal random variables with
zero mean and variance 1). The best of the models obtained in this way was
validated and kept as the final model. The results are shown in Table 3.7.
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Table 3.7: Validation RMSE mean values with standard deviations, and theoretical
RMSE values, for estimators based on more or less noisy primary output measurements.

The number of samples was reduced to N = 200, and the RMSE values are multiplied by
104 .

r2l ARMAXP ARMAXPtheor. OEC OECtheor. Yl klk == Y2l,k
10-0 101 ± 6 102 335 ± 184 230 100
10- 5 111 ± 5 108 257 ± 44 230 105
10- 4 135 ±6 129 302 ± 99 230 141
10-;) 205 ± 30 175 253 ± 41 230 332
10- 2 563 ± 295 222 404 ± 39 230 1005
10-1 1829±945 238 1065 ± 488 230 3164

The tables show that the best estimator choice depends on the variance r2l.

For near perfeet Y2l measurements, the best choice is simply to use Yl,klk == Y21,k,

while the ARMAX estimator is the best for medium Y2l measurement noise leveIs.
For high Y2l noise levels, the OEC estimator is to prefer, especially when the
number of samples is small.

•



Chapter 4

Perfeet measurement cases

In this chapter we study special cases that may occur when some or all of
the secondary rneasurements are perfeet in the sense that they are noise
free. When such measurements are used as inputs in an identification
proeedure, it may at least theoretically be required that the model
order is reduced in order to secure identifiability. An analysis of such
cases leads to the discovery of some specific properties of the gain in
KaIman filters. A more important consequence from a practical point
of view is the possibilities to use parsimonious reduced modeIs, which
is further developed in the next chapter. Pure deterministic systems
without any form of noise, and systems with colored measurement noise
are also diseussed in the present chapter.

4.1 The reduced madel case

4.1.1 Continuous-time systems

Model structure for analysis

In order to analyze the asymptotic perfect Y2 measurernent case for a specific and
in the context interesting type of system, we use the model (2.1) partitioned in
the following way (using Dl == D2 == Ofor simplicity and without consequence for
the results that follow):

[:: ]
[~~ ]
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(4.1)
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(4.2)

where we for simplicity also assurne an asymptotically stable system (may be
relaxed to the appropriate detectability requirements). Here X2 is the part of the
state that directly corresponds to the available Y2 measurements, while Xl is the
part that via C l l gives the primary output Yl· We assurne A13 == O and Gl == 0,
which implies that the proeess noise v influences Xl and thus also Yl only through
the state X2, which is rneasured by Y2. More specifically we assurne in (4.1) that

dXl

dt
Yl

Y2

From this we see that noise free Y2 measurements make it possible to use u and Y2
as inputs in a reduced mode1, i.e.

A~lXl + A~2YZ + B1u

CI I X 1 + W1·

(4.3)

The consequence of this is that lise of both u and Y2 as inputs will result in the
reduced model (4.3), while the rest of the system is decoupled. A similar case may
also occur if we only assurne that some Y2 measurements are noise free.

Kalman gain in estimator based on u and Y2

(4.4)

The innovations model corresponding to (4.2) and assuming an underlying Kalman
filter driven by u and Y2 is

dXl
dt
Y2

which after elimination of ez results in

dXl AC " (A C K C )" B C K C ( )dt == 11 Xl + 12 - 12 Xz + 1U + 12 Xz + Wz .

Introducing X == x - X, we find from (4.2) and (4.5)

(4.5)

_1~

aXl AC "" (AC K C )"" K C (dt = 11 Xl + 12 - 12 X2 - 12w2· 4.6)

As the system (A~l' [A~2 Bf], GIl) is assumed to be asymptotically stable, and
also assuming that all state variables in X2 are none-zero, we find that Kf.z == Al2
results in EX1X! --7 O when R22 == Ewzwf ~ O. All state variables in Xz are
non-zero when they are infiuenced by the proeess noise either directly via G2or
via the non-measured states X3 and A23 , and we have thus proved the following
theorem:
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Theorem 4.1

Assurne the asymptotically stable system (4.1) with

• noise free Y2 measurements, i.e. R22 ---t O
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• all state variables in X2 infiuenced by the proeess noise veither through G2or
through the state variables X3, and not only through other X2 state variables.

The optimal gain in a Kalman filter driven by u and Y2 is then given by

(4.7)

•
Kalman gain in estimator based on u, Yl and Y2

The innovation model corresponding to (4.2) and assuming an underlying Kalman
filter driven by u, Yl and Y2 is (with x and e2 different from the x and e2 used in
(4.4) )

A]\ Xl + A~2X2 + B1u + Kflel + Kf2 e2

C11Xl + el

X2 + e2,

(4.8)

which after elimination of e2 results in

= (A~l - KlI Cll)Xl + (A~2 - Kf2)x2 + B1u + K1lYl + K l2Y2

011 X1 + el· (4.9)

With x = x - X, we find from (4.2) and (4.9)

dXl (A C K C C ) - (A C K C
) - K C K C

dt = 11 - 11 11 Xl + 12 - 12 X2 - IlWI - l2W2· (4.10)

Assurne again that all state variables ill X2 are non-zero, i.e. that they are influ­
enced by the proeess noise either directly via G2or via the non-measured states X3

and A23. Also assuming that R22---t O, we must now treat two different situations:

• When RIl =I 0, we will obtain EX1Xf ---t O by choosing Kil = Oand Kf.2 =
AI2, an? these are then optimal Kalrnan gains.
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(4.11)A~lXl + A12Y2+ Bfu - A~2W2

CIIXI + WI·

• When also the Yl measurements are noise free, i.e. when RIl ~ 0, we will
find that Xl ~ Xl and Yl ~ CIIXI· This means that Yl is eliminated from
the state equation in (4.9) , which is therefore simplified to (4.5). Then
Kf.2 == A12 will still be an optimal gain, while KlI in this case will be
determined by the actual RIl and R22 values (though small) on the basis of
the following system derived from (4.2):

dXI

dt
Y

Application of the Kalman filter equations (2.3) and (2.4) now results in

(4.12)

where PlI is given by

We summarize this in the following theorem:

Theorem 4.2

Assurne the asymptotically stable system (4.1) with

• noise free Y2 measurements, Le. R22~ O

• Yl measurements that are not noise free, i.e. RIl =I O

• all state variables in X2 infiuenced by the proeess noise veither through G2or
througb. the state variables X3, and not only through other X2 state variables.

The optimal gain in a KaIman filter driven by u, Yl and Y2 is then given by

r
o A121

K C == x x .

L X X J

(4.14)

When also the Yl measurements are noise free, Le. when also RIl ~ 0, the Kalman
gain is given by

K C = [:h :~2], (4.15)

with KlI determined by (4.12).

•
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Comparison with known result

The results in Theorem 4.1 and Theorem 4.2 may be compared with a known
perfeet measurement Kalman filtering result. For a square plant with the same
number of measurements as number of proeess noise sources and R~ == a I it is
known (Anderson and Moore, 1989) that

(4.16)

where V is same orthogonal matrix. From this follows that with R~ = I and
R~ == I1R~o we have

(4.17)

where Ka is a finite matrix. For systems covered by Theorem 4.1 and Theorem
4.2 above, we will be able to determine certain elements in KB.

Example 4.1

Consider the continuous-time system

-2 l 1 O O
2 -6 2 2 O
l 1 -3 O 1
O 2 O -4 O
O O 1 O -2

Xl O O
X2 O O
X3 + O O
X4 2 O
X5 O 1

(4.18)~ ]o O O
100[~

Xl

X2

X3

X4

Xs

r n O O l n l I~~ l r T4 l r W"l l
lO O O O 1 Jl:: j+W2 = l ~5 J+ l W;2 J ·

Yl

Y2

This might be an interacting stirred-tanks system, as illustrated by the equivalent
electrical circuit in Fig. 4.1.
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VI
0.51: 0.51:

Ul
x2

1 X4 1 l 1

l Xl H
1 Xs 1 l

U2
X3

V2
II II

Figure 4.1 Equivalent electrical circuit for interacting stirred-tanks system.

With perfect secondary measurements Y2 = [X4 X5 ] T , the reduced system

according to (4.3) becomes

We may 110W look at some different Kalman filter results:

(4.19)

• When we choose R~ = I and R22 = j..LI = 10-161, we find by lise of lqe.m
in the Control System Toolbox for use with Matlab (Grace et al., 1992) the
following gain for a Kalman filter driven by u and Y2 (a square plant):

I 0.000000 0.000000 l
I 2~OOOOOO 0.000000 r . ~ l

K2= l0.000000 1.000000 j ~ j..L-~Gc + lA
12 J.

199999996 0.000000 x
0.000000 99999998

This is in accordance with (4.17) and (4.7).

(4.20)

[
10-41 O ]

• With R~ = O 10-16I and a Kaiman filter driven by u, Yl and Y2
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we find (for a non-square plant)

0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 2.000000 0.000000 [ ]

K C = 0.000000 0.000000 0.000000 1.000000 - O A12
~ O X '

0.000000 0.000000 199999996 0.000000
0.000000 0.000000 0.000000 99999998
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(4.21)
which is in accordance with (4.14).

. c [ 10-
16

I O ]• With Rw = O 10-16I and lise of (4.12) and (4.13) we find

[

0.107511 0.114069]
KlI = 0.114069 0.399942 ,

0.113238 0.128998
(4.22)

and with a Kalman filter driven by u, Yl and Y2 we further find (for a non­
square plant)

0.107511 0.114069 0.000000 0.000000

0.114069 0.399942 2.000000 0.000000 [ ]
K C = 0.113238 0.128998 0.000000 1.000000 = ~rl ~~2 ,

0.000000 2.000000 199999996 0.000000
0.000000 0.000000 0.000000 99999998

(4.23)
in accordance with (4.15).

•
4.1.2 Discrete-time systems

Model structure for analysis

We now assume a discrete-time system with the same structure as in (4.1), Le.

[ :~ ] Hl

[~~ t
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or more specifically
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Xl,k+l

Yl,k

Y2,k

A11XI,k + A12X 2,k + Bluk

C I 1Xl,k + WI,k

X2,k + W2,k.

(4.25)

Also here we see that noise free Y2 measurements make it possible to use u and
Y2 as inputs in a reduced model, Le.

XI,k+1 = AIIXI,k + A12Y 2,k + Bl uk

YI,k CIIXI,k + Wl,k·

(4.26)

The consequence of this is that using both u and Y2 as inputs, we can only identify
the reduced model (4.26), while the rest of the system is decoupled. A similar case
may also occur if we only assume that same Y2 measurements are noise free.

KaIman gain in DE type of estimator

Quite analogously to the continuous-time case we find the results given in Theorem
4.3 below. In addition to that we find a specific result by constructing the optimal
Y2 current estimator corresponding to the optimal Yl estimator (2.41),

Y~~k = C2 (I - K?EC2) [q1 - A+ AK?EC2]-1

x [Buk + AK?Ey2,k] + C2K?EY2,ko (4.27)

From this we see that perfeet Y2 measurements give the optimal estimate Y~~lk = Y2

for C2K?E = I, with the consequence given in (4.29) below.

We summarize the results in Theorem 4.3 below. Since it follows that AIIKRE+

A 12 = A12 , it also follows that A I 1K f1E = 0, and we therefore make this a part of
the theorem.

Theorem 4.3

Assume the asymptotically stable system (4.24) with

• noise free Y2,k measurements, i.e. R22 --+ O

• all state variables in X2,k infiuenced by the process noise Vk either through
G2 or through the state variables Xk,3, and not only through other X2,k state
variables.
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The optimal gain in a Kalman filter driven by u and Y2 is then given by

77

and

From this follows that

[

AlZ ]
AK?E = :

K?E = [ ~ ] .

(4.28)

(4.29)

(4.30)

•
Remark 9 As input signals entering the system through B z, E3, G2 or G3 are not
a part of the reduced model in (4.26), these inputs may as well include unknown
time delays, non-linearities, non-stationary noise etc.

Remark 10 With perfect measurements Y2,k = X2,k, the reduced model in (4.26)
is a deterministie model as far as u and Y2 are concerned. If a measured state
variable x; in X2 is then determined purely by other measured state uariables, and
if all yz measurements are used as input signals, we will have a similar collinearity
problem as treated in Section 4.2 below. The solution to this problem follows from
the discussion there.

Remark 11 A theoretical consequence of Theorem 4.3 is that given the system
(4.24) with Al3 = 0, Gl = O and near perfeet noise free Y2 measuremenis, a re­
duced model not utilizing all u and Y2 signals must be used. Otherunse, numerical
problems due to decoupling will theoretically occur when the parameter estimates
are sought. Numerical problems may in theory occur as soon as we have two or
more near perfect Y2 measurements. A more important consequence in practice is
that a parsimonious reduced model may result in less variance in the Yl estimates.
In such a case only part of the model will be identified, and as long as there is
same noise in one or several of the Y2 signals used as inputs, the parameter es­
timates will then be biased (Soderstrom, 1981). In spite of this, the result might
be an overall reduction in the mean squared estimation error, as illustrated in a
simulation example in Chapter 5.

Example 4.2

Discretization of the system in Example 4.1 with a sampling interval T and a
zero-order hold 011 the input, gives an exact deterministic solution with

(4.31)
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o == Cc.

With a short sampling interval T this will approximately give

1 T T O O
2T 1 2T 2T O

A~ T T lOT
O 2T O 1 O
O O T O 1

(4.32)

(4.33)

(4.34)

W11en we choose Cl and 02 as in Example 4.1 and assume R; == I and R22 ==
10-10 I, we find by use of the dlqe.m function in the Control System Toolbox for
use with Matlab (Grace et al., 1992)

o O

2T O [ ]AK~E = O T = Tf.L-~Gc + T A~2 .
199796T O
O 99948T

(4.35)

This is the same as result (4.20) in Example 4.1, only multiplied with T. It should
be mentioned, however, that this result was obtained with the sampling interval
as short as T == 10-8 .

With the Y2 measurement noise reduced even more to R22 := 10-18I, the solu­
tion was altered to

O O
2T O

AK?E == O T (4.36)
0.9975 O
O 0.9902

which follows from (4.30) and the faet that we for this specific system have

•
KaIman gain in ARMAX type of estimator

We also here find results quite analogously to the continuous-tirne ease (see Theo­
rem 4.4 below). In addition we also now find a specific result by constructing the
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optimal Y2 current estimator corresponding to the optimal Y2 estimator (4.27) (see
also (2.73))

Y
" ARM A X
2,kjk C2 (I - KtRMAXC1 - K~RMAXC2 )

x [qI - A + AKtRMAXC1 + AK~RMAXC2]-1

X [Bu + AKARMAXy + AKAR.MAXy ]k 2 2,k 2 2,k

+0 K ARMAX y + C KAR.MAXy
2 1 1,k 2 2 2,k· (4.38)

From this we see that perfeet Y2 measurements give the optimal estimate y~~~AX =

Y2 for C2KtRMAX = Oand C2K~RMAX == I, with the result given in (4.40) below.
We summarize this in the following theorem:

Theorem 4.4

Assume the asymptotically stable system given in (4.24) with

• noise free Y2,k rneasurements, i.e. R22 ---7 O

• Yl,k measurements that are not noise free, i.e. R11 =1= O

• all state variables in X2,k influenced by the process noise Vk either through
G2 or through the state variables X3,k, and not only through other X2,k state
variables.

The optimal gain in a KaIman filter driven by u, Yl and Y2 is then given by

and

From this follows that

[

O A12]
AKARMAX = : :

[oXx lXx].KAR.MAX ==

A K AR.M AX - O
·11 12 -.

(4.39)

(4.40)

(4.41)

When also the Yl measurements are noise free, Le. when also R 11 ---+ 0, the
Kalman gain is given by

[

Ki\RMAX X]
KARMAX = ~ ~' (4.42)
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with KliRMAX given by
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K AR MAX _ pARMAXCT (C pARMAXCT + R ) -1
11 - 11 11 11 11 11 11 ,

where pi\R.MAX is determined by the Riccati equation

(4.43)

pl\RMAX = A11PliR.MAXAr1 + A12R22Af2 (4.44)

A P AR.MA X C T (C pARMAXCT R )-1 C pAR.MAXAT
. - 11 11 11 11 11 11 + 11 11 11 11-

•
4.2 The deterrninistic case

4.2.1 General discussion

Although a nearly noise free system is very unlikely in a practical case, it is of
theoretical interest to study the identification of deterministic systems. It is well
known (e.g. Lewis, 1992), that the Kalman gain cannot be determined in a pure
deterministic case, that is when both the proeess noise Vk al1d the measurement
noise Wk are zero. In the present case, this means that the optimal estimators
utilizing the information in both the known inputs u and the secondary measure­
ments Y2 developed in Chapter 2 cannot be identified when R; = O and R22 = o.
This is most easily demonstrated by examples:

Example 4.3

For the continuous-time system in Example 2.1, we found K C = f(T~/T22) as given
by (2.14). When T; -? O and T22 -+ O, this is an indeterminate expression. From
Fig. 2.2b we see that v = O and W2 = Oresult in Y2 = 0, and the solution is then
obviously to use a first-order model with only u as input.

•
Example 4.4

For the pure delay system in Example 2.2 without Y21 measurements, we found
the estimators (2.57)

(4.45)

When Tv -? O and T22 -? O this is an indeterminate expression. We have two
solutions:
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• Identify a second-order estimator with only u as input, which gives z~~_l =

Uk-2·

• Identify a first-order estimator with only Y22 as input, which gives z~~_l =

Y22,k-l·

•
4.2.2 Special case with reduced models

For systems with the structure given in (4.1) and (4.24) we found that with noise
free Y2 measurements we can only identify the reduced models (4.3) and (4.26).
With more than one Y2 measurement we may have the same type of problem as
mentioned above, i.e. we cannot use all of the Y2 measurements as inputs at the
same time.

Example 4.5

Assume ·the system in Example 1.1, but now with u = O. If both Y22 and Y23

are perfect, we may use Y23 as a known input and identify a second-order model,
We cannot at the same time utilize the information in Y22, because the underlying
Kalman filter will then be indeterminate. The best solution in this case is obviously
to use only Y22 as input and identify a first-order model.

•
4.2.3 General solutions in the deterministic case

The Kalman gain will quite generally for both continuous-time and discrete-time
systems be determined by ratios between pro cess noise variances Tv and measure­
ment noise variances Tw , and we will therefore always find indeterminate Kalman
gains when both R; -7 O and R22 -7 O. Examples 4.3 and 4.4 and the discussion
in Example 1.1 point to some general solutions to the problem:

• Identify a model with only u as input signal,

• Identify an appropriately redueed model with u and Y2 as input signals,

• Identify an appropriately reduced model with only Y2 as input signal.

A systematie method for finding sueh models is proposed in Chapter 5.
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4.3 The colored measurernent noise case

Colored Y2 measurement noise sources must quite generally be modeled as filtered
white noise, and incorporated in the following way (assuming independent process
and measurement noise):

Yl,k [CIO] [ :~ L+ DlUk +Wl,k

Y2,k = [C2l C22 ] [ :~ ] k + D2Uk +W2,k·

(4.46)

Here C22X2 k is the colored Y2 measurement neise, and we may quite realistically
have R22 =' EW2,kW[k = O, in which case we formally have aperfeet measurement
case. Since C22X2,k is not infiuenced by Uk, this will in itself not constitute an
identification problem due to lise of both Uk and Y2,k as inputs.



Chapter 5

Model structure determination

As in other practical system identification cases, there is also in the
present case a need to find parsimonious solutions that give good pri­
mary output estimators using as few parameters as possible. We thus
need a method for finding estimators that give a good compromise be­
tween bias and variance, and such a method is presented in this chapter.

5.1 Introduction

The diseussion in Chapter 4 has shown that numerical identification problems may
occur as a result of perfeet noise free Y2 measurements. This is not a very likely
problem in a practical situation, especially not in an industrial process environ­
ment. If it turns out to be a problem, the solution is to leave some known inputs
or same perfeet measurements out, and use the most parsimonious model.

A more important task seen from a practical point of view is to settle for a
good set of independent inputs and secondary measurements to be used as inputs
in the identification proeedure. This is similar to the problem of finding regressor
variables in ordinary least-squares estimation (Ljung, 1987,1999), only that it is
complieated by the faet that also other aspects of the model structure (model order,
time delays etc.) must be chosen, The inclusion of noisy measurements will in any
case give only a limited eontribution to the estimation of the primary properties,
and at the same time the number of unknown parameters to be identified will
inerease.

As briefly diseussed in Chapter 1, the model structure determination aims
at finding the primary output estimator with the lowest possible mean-squared
estimation error (MSE) when used on an independent validation data set. Several
aspeets of the model strueture must then be determined:

• Which modelorder should be used? If possible, prior knowledge of the
system (physical insight etc.) should be used in order to determine the range

83
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of modelorders to be considered. Note, however, that high noise levels and
limited data records aften make it quite unrealistic to identify anything else
than very low order models.

• Which of the known u inputs and secondary Y2 measurements should be
used? In ordinary system identification, this is normally an issue related to
known inputs that are only measured without being manipulated. In the
present case, hawever, some manipulated as well as only measured inputs
may be effectively replaced by secondary measurements, while some other
secondary measurements may carry very little useful information.

• How should the model be parametrized? In the thesis we use standard
difference equation input-output models and the corresponding observability
canonical form state-space representations. This follows from the lise of the
standard predietion error identification methods in the System Identification
Toolbox for use with Matlab (Ljung, 1995), but this may not be the best
choice seen from a numerical point of view (Moore, 1981).

Finally it must be noted that the optimal choice of model structure can only
be found through proper validation.

5.2 Systernatic rnethod

5.2.1 DE model selection

The following method for identification of the optimal OE primary output estima­
tors (2.34) and (2.41) is proposed:

1. Perform an informative identification experiment with only u as input signal
and Yl and Y2 as output signals (e.g. Goodwin and Payne, 1977). Separate
the data in one part for identification/calibration and ane part for validation.

2. Identify the system with u as input and Yl as output, using different madel
orders n. This may be done by lise of the ordinary OE model (2.23) or the
ordinary ARMAX model (2.27) and a standard predietion error method as
described in Chapter 3, or possibly by lise of a subspace system identification
method (e.g. Di Ruscio, 1997). Validate the models, using for example

the scalar case root mean square error RMSE = Jfy 2:f=l(Yl,k - Yl,k)2 as
a validation criterion. Visual inspection of the validation response is also
recommended. Choose the lowest possible modelorder that gives a good
validatian result (see Example 5.1).

3. Use one of the Y2 measurements at a time as input together with u, identify
the optimal OEC estimator (2.41) (or the optimal OEP estimator (2.34)) by
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use of a predietion error method as deseribed in Chapter 3, and note the
validation improvements for all Y2 signals as expressed by for example the
RMSE value.

4. Inelude the most informative Y2 signals as inputs together with u. Choose
the number of Y2 signals to use through validation.

5. Explore the possibilities to omit some or all of the manipulated u inputs,
using validation as seleetion tool.

6. Explore the possibilities for using a redueed order model, relying on same or
all of the dependent Y2 signals and some of the independent u inputs, and
possibly direet eaupling from same other independent inputs to Yl.

7. Use all available data and the best validated model strueture found, and
identify the final estimator.

5.2.2 ARMAX models

For models without dependent Y2 outputs, ineluding redueed models using Y2 mea­
surements as independent inputs, the best solution is to identify an ARMAX model
and use the deterministic part of that as a basis for the primary property estima­
tor. This will give a redueed estimator covarianee compared with identifieation
of an OE estimator (Soderstrom and Stoiea, 1989). Note, however, that ARMAX
models cannot be identified in the low Yl sampling rate case that will be diseussed
in Chapter 6.

5.2.3 Discussion on validation

It is in order to point to an inherent difficulty in this and similar proeedures that
lise the same validation data set for comparison of different models, Due to the
faet that both the modeling and the validation data sets are randomly sampled,
loeal minima problems and random initial parameter values, same models may
give better validation results than others in a vlay that is not generally justified.
Extensively repeated lise of the same validation set may therefore lead to a model
that is specifieally adjusted to fit that particular data set, whieh then gradually
becomes a part of the total modeling set, and we must therefore look for validation
differenees that can be considered as significant (see also Sjoberg and Ljung, 1995).
The only totally safe way out of this risk of circular reasoning is to use extra
independent validation sets for each new model. The phenomenon is demonstrated
in Example 5.1 below, and a preliminary discussion of the general problem is given
in Chapter 11.
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5.3 Sirnulation results

Simu1ation studies are undertaken, using the prediction error method implemented
in pem.m in the System Identification Toolbox for use with Matlab (Ljung, 1995)
and dlsim.m in the Contro1 System Toolbox for lise with Matlab (Grace et al.,
1992).

Example 5.1 - Primary output estimator for a fifth-order system

T11e systematic method in Section 5.2 was tested by simulations based 011 a
continuous-time system

Xl -2 1 1 O O Xl O O

X2 2 -6 2 2 O X2 O O

[~~ ]X3 1 1 -3 O 1 X3 + O O
X4 O 2 O -4 O X4 2 O
Xs O O 1 O -2 Xs O 1

Yl 1 O O O O

Y22 O 1 O O O x. (5.1)
Y23 O O 1 O O
Y24 O O O 1 O

This is the system used in Example 4.1. It might be an interacting stirred-tanks
system, as illustrated by the equivalent electrical circuit i11 Fig. 5.1.

Vl
o.5I

Ul
x2

1 l l l

l Xl H
1 l 1

U2
X3

V2
II

Figure 5.1 Equivalent electrical circuit for interacting stirred-tanks system.

The system was converted to discrete-time assuming zero-order hold elements
on the inputs, with a sampling interval T = 0.1, and discrete process and measure­
ment noise was added. The process noise sources VI,k and V2,k were independent
and normally distributed zero mean white sequences with variances TVI = 1 and
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r V 2 = 0.1 directly added to the inputs. The measurements Yl, Y22, Y23 and Y24 were
independent and norrnally distributed zero mean white sequences with variances
rIl = 10-4 and r22 = r23 = r24 = 0.01.

The procedure in Section 5.2 was followed, except that each identification and
validation was repeated in M = 10 Mante Carlo rUl1S with independent data sets.
The identification experiment in step 1 was simulated with the controlled inputs
Ul and U2 as independent filtered PRBS with autocovariance ruu(p) = O.81p1 (see
Soderstrom and Stoiea (1989), example 5.11 with a = 0.8). A modeling data set
and a validation data set were recorded, each with N = 1000 samples.

III steps 2 to 6, the optimal OEC estimator (2.41) was specified as

nn = [O, [n,···, n, n + l,'· . n + l], O, O, [n,··· ,nJ, [1,·· ·,1,0,· .. O]], (5.2)

adjusted to the number of u and Y2 inputs used (see Appendix B for definition of
nn). The results are summarized in Table 5.1, with theoretical RMSE values for
modelorder n = 5 included,

Table 5.1: Use of systematie model determination method based on N = 1000 sam­
ples and M = la Monte Carlo runs for each model alternative (RMSE values multiplied
by 104) .

step n ul U2 Y22 Y23 Y24 RMSE RMSEtheor.
2 l x x 990 ± 158 638
2 2 x x 690 ± 88 638
2 3 x x 767 ± 125 638
2 4 x x 726 ± 179 638
2 5 x x 753 ± 276 638
3 2 x x x 242±7 226
3 2 x x x 368 ± 39 353
3 2 x x x 228 ± 17 204
4 2 x x x x 200 ± 13 180
4 2 x x x x x 175 ± 10 158
5 2 x x x x 224 ± 15 -

5 2 x x x x 174 ± 10 -

5 2 x x x 211 ± 6 -

6 1 x x x x 220 ± 10 -

The conclusion from this is that we should use U2, Y22, Y23 and Y24 as inputs
a11d system order n = 2. That would very likely be the result also when using
only one specific data set, bearing in mind that we would look for a parsimonious
model.
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The results in Table 5.1 also illustrate the validation problem diseussed in
Section 5.2. The two best models gave very similar validation results, with one
being better than the other in approximately 50% of the Mante Carlo runs. The
same is also the case when the modelorder is increased to n = 3, and with a single
data set we might thus end up with any ane of four different models as the best
choice. The aim for a parsimonious model would still make the choice indicated
above most likely.

The simulations presented above were repeated with use of only one specific
data set with N == 200 samples, and the results are given in Table 5.2.

Table 5.2: Use of systematie model determination method on a single data set with

N = 200 samples (RMSE values multiplied by 104) .

step n Ul U2 Y22 Y23 Y24 RMSE RMSEtheor.
2 l x x 830 638
2 2 x x 799 638
2 3 x x 1180 638
2 4 x x 1205 638
2 5 x x 1235 638
3 2 x x x 269 226
3 2 x x x 447 353
3 2 x x x 242 204
4 2 x x x x 320 180
4 2 x x x x x 220 158
4 2 x x x x 228 168
5 2 x x x x 274*) -

5 2 x x x x 251*) -

*)best of five identifications with different initial values (when both manipulated inputs
Ul and U2 were used, different initial values had no effect on the result)

With these results, the final choice would be to use modelorder n == 2 and
all the available information ill Ul, U2, Y22, Y23 and Y24. This was also ane of the
tV10 best and equally good results based on Jt[ == 1000 samples, although vre then
found it natural to choose the more parsimonious solution without lise of the Ul

information,
With a short sampling interval, the system in this example will be of the type

considered in Theorem 4.3, and numerical problems should therefore be expected
with near perfeet measurements. However, in order to eneaunter such problems
with N == 1000, all secondary measurement noise levels had to be decreased to
r22 == r23 == T24 == 10-15 at the same time as the sampling interval was reduced to
T == 0.001.
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•
Example 5.2 - Example 5.1 with reduced measurement noise

The Mante Carlo simulations based on N == 1000 samples in Example 5.1 was
repeated with the Y22 and Y23 noise levels reduced to r22 == T23 '== 0.0001. Same
results are shown in Table 5.3.

Table 5.3: Use of systematie model determination method in M == 10 Mante Carlo

runs using N == 1000 samples and reduced Y22 and Y23 noise levels (RMSE values multi­

plied by 104 ) .

n Ul U2 Y22 Y23 Y24 RMSE RMSEtheor.
2 x x x x x 102 ±4 102
1 x x x x x 104±2 102
1 x x 102 ± 3 -

From the table we see that there is no reason to use anything else than a
first-order model with only Y22 and Y23 as inputs. We might then also identify an
ARMAXestimator or use a subspace method,

•
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Chapter 6

The low primary output
sampling rate case

In many practical cases it is not feasible to perform an experiment with
high rate sampling of the primary system outputs, and it is therefore a
need for methods based on low and possibly also irregular sampling rate
Yl data. A simple and general predietion error method that handles this
type of situation is described in the present chapter, as an extension
of the methods presented in Chapter 3. This is made possible by the
faet that the optimal primary output estimators developed in Chapter
2 are of the OE type, with the secondary Y2 outputs used as estimator
inputs. It turns out that the real difficulty of the problem is to find
the initial parameter valnes for the optimization that are neeessary in
order to find the globally optimal predietion and current estimators,
and solutions to that problem are therefore also outlined.

6.1 Staternent of problem

The basic statement of problem is given in Subsection 2.2.1, only that we 110W

must add that

• data records for Uk and Y2,k for k == 1,2, ... ,N2 are at hand from an informa­
tive experiment (e.g. Goodwin and Payne, 1977), i.e. with Uk persistently
exciting of appropriate order (e.g. Soderstrom and Stoiea, 1989) and with a
sufficiently large number of samples

• a data record for YI,j from the same experiment is also available, with j ==
1,2, ... ,NI, where NI :::; N2 is a sufficiently large number and where each
sampling of Yl,j coincides in time with ane of the Uk and Y2,k samplings

91
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• the system operates in open loop (rnay be relaxed as diseussed in Chapter
11)

• the primary property measurernent noise WI,j is white in the outset, i.e. there
is no need to model the noise at the high sampling rate (which would not be
possible from the low sampling rate YI,j data)

• the Yl,j samples that are available at a low and possibly irregular sampling
rate are representative measurements of the primary property Zk, i.e. the
underlying primary property Zj == CIXj + DlUj has the same statistical
distribution as Zk == CI X k + Dluk

• the problem now is to identify the optimal output error predietion and cur­
rent (OEP and OEC) estimators developed in Section 2.2.

For clarity of presentation, we assume that the pro cess noise Vk and mea­
surement noise W2,k are independent. A theoretical discussion of the case with
correlated proeess and measurement noise sequences is given in Subsection 2.2.6.

6.2 Modified criterion function

In the prediction error method used in Chapter 3 for identification of the optimal
primary property OE estimators, we minimize the scalar criterion function

(6.1)

where the scalar function rnay be h [.] == det [.] or h [.] == trace [.]. When YI,k is
not generally available due to a low and possibly also irregular sampling rate, we
rnust give the prediction errors zero weight when Yl,k does not exist. We therefore
rninimize

(6.2)

where

{
l , at the time instants k where Yl is sampled

ak = 0, at the time instants k where Yl is not sampled. (6.3)

Asymptotically (for NI ~ 00) minimization of (6.2) will then give the same result
as minimization of (6.1), provided that the YI,j samples are representative, i.e.
that they have the same statistical distribution as ordinary Yl,k samples would
have had.
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The modified eriterion function (6.2) may in principle be used also when AR­
MAX models are identified, although that would make little sense sinee we for
sueh models anyhow will need all Yl,k samples. For the predietion and current
estimators (2.34) and (2.41), however, cl,j(B) is based on only the present Yl,j

value (in addition to past and present u and Y2 values), and minimization of (6.2)
is then a feasible option,

As in the ordinary case, minimization of (6.2) normally requires good initial
values in order to avoid loeal minima problems. In this case we cannot, however,
use an ARX model obtained by least squares modeling for this purpose, whieh is
otherwise a part of the recommended solution (Ljung, 1987,1999).

Ordinary DE models

Identification of ordinary OE models may also be based on low and irregular sample
rate y data, since Cj (B) in that ease is based on only present Yj values, in addition
to past and present u values. The initial value problem will then be essentially the
same as mentioned above.

6.3 Deterrnination of initial parameters

6.3.1 Initial parameters for ordinary OE model

Identification of ordinary OE model

We start the discussion on methods for initial parameter determination with the
ordinary OE case. We then have a model

Xk+l == AXk + BUk + GVk

Yk CXk + DUk +Wk, (6.4)

where Vk and Wk are independent white noise sequences with covariance matrices
R; == EVkVk and Rw == EWkWf·

Assuming that a true parameter vector Bo exists, the corresponding input­
output OE model is

where

and where

is colored noise.

G(q-l, Bo) == C(qI - A)-lB + D,

(6.5)

(6.6)

(6.7)
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A predietion error identification method will then result in the predietion error

which after minimization of the scalar criterion function (6.1) (with Cl replaced
by c) asymptotically (for N ~ 00) results in e~ B== eo (see Subsection 3.2.2.
for details). We here assume a correct parametrization and an initial parameter
vector of sufficient quality.

When Yk does not exist for all k, we may still identify the model by minimiza­
tion of (6.2) (with Cl replaced by c). As mentioned above, however, we cannot
then find an initial model by least squares estimation. In order to find a solution
to that problem, we make lise of some basic system realization theory.

Realization theory

Assuming that the system (6.4) is of order n, the so-called Hankel matrix of the
system is defined by

hl h2 hn

Hn =
h2 h3 (6.9)

hn h2n - 1

Here, hi are the Markov parameters in the impulse respanse, which we find by
series expansion of (6.5) as

Yk [C(qI - A)-lB+ D] Uk + 'fJk

[D + CBq-1 + CABq-2 + CA2Bq-3 + ...] Uk + 'fJk

00

L hiUk-i + 'TIk,
i=O

(6.10)

i.e.
o for i < O
D , for i = O
CAi-lB ,for i > O.

(6.11)

The dimension of hi is m x T, where T is the number of inputs in the u vector and
m is the number of outputs in the y vector.

Using (6.11) it is straightforward to show that H n can be factored as

(6.12)
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where
C
CA

f n ==

CAn-1

is the observability matrix of the system, while
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(6.13)

(6.14)

is the reachability matrix, For a minimal realization, these two matrices have full
rank (Kailath, 1980).

Initial valnes by identification of FIR model

The series expansion (6.10) gives us a way of finding initial parameter values in
the low output sampling rate case. Assuming that the system is asymptotically
stable, we will find that hi ~ Owhen i --+ 00, and we may therefore use the finite
impulse response (FIR) model

L

Yk ~ L~Uk-i +1Jk = [ho hl .. , hL]
i=O

Uk-L

(6.15)

where'·'L is chosen sufficiently large. We can then determine a Markov matrix

estimate [ho hl ... hL] by a least squares solution of (6.15). This is possible
also when most of the Yk values are missing, in which case we lise only the Yj
samples that are available, together with the corresponding past and present Uk

values. The model found in this way will be biased due to both the truncation and
the lack of noise modeling. Note, however, that with a low Yj sampling rate, the
neise terms TJj will not be consecutive, which means that the correlation from ane
sample to the next is reduced, with reduced bias in the LS parameter estimate as
a consequence.

Once the Markov parameters are determined, we are in a position to recover
the system matrices from ho and the Hankel matrix (6.9). In order to reduce the
effect of errors we lise the extended Hankel matrix

hl h2 hJ4!

iIld1. ==
h2 h3 (6.16)

2

hHl hL
2
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where we assume that L is an odd number. Using an algorithm of Ho and Kalman
(1966) with modifications by Kung (1978), we may do that in the following way:

1. Find b == ho.

2. Perform a singular value decomposition (SVD) of Hldl and decide on the
2

number of significant singular values (see details below). In the ideal noise-
free case only the ti first singular values are nonzero, where n is the model
order (Kailath, 1980).

3. Compute the factorization Hld1. = rb.±1 01dl , where r ldl and 0Hl are
2 2 2 2 2

extended observability and reachability matrices of dimensions m Li1x n

and n x rLi1.

4. Read 6 from the first block row of r .Hl .
2

5. Read B from the first block column of Ob..±l..
2

6. Define the submatrix f 1.b.±1.- 1 by delet ing the last block row in r.b.±l, and
. 2 2

the submatrix t 2:~ by deleting the first block row. Note from (6.13) that

f 2·1dl = r 1·1±l_ l A,
. 2 . 2

(6.17)

and find A from the overdetermined equations (6.17) as the least squares
solution

( )

- 1
A AT A AT A

A = f 1.b±l_ 1f l.ldl_l f 1.1dl _ 1f 2'.b..±l·
. 2 . 2 . 2 . 2

(6.18)

7. Finally transform the result into the canonical form utilized in the prediction
error method used.

Step 2 - Modelorder determination An SYD of the matrix H!d1. in (6.16)
2

results in

A ] r s. O l r AT lHlill. [ Us ~ (6.19)o.-; fl
Snoise

AT
2 V.L ..., J L p noise J

A A ATc.s,~ + noise,

where s. is a diagonal matrix with the significant singular values in descending
order, and where the number of singular values used in S8 determines the model
order ti, The decision on the number of significant singular values is a non-trivial
task, that in the end can only be made through proper validation. This means
that we must make a preliminary decision on the modelorder to use, and possibly
revise this choice after validation of the final result.
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Step 3 - Factorization of iIb.±1 When a preliminary decision on the model
2

order ti is made, the factorization of (6.16) results in

(6.20)

(6.21 )

Following the definitions by Moore (1981), we may now choose f b.±.l and Ob±l in
2 2

three different ways:

A " "1/2 " "1/2 " Tr Hl. == UsSs and nH.l = 5s ~ ,internally balanced form
2 2'
"" '" '" "Tr.b..±.l = Us and 01d:l = 5s~ , output normal form
,,2 "'" "2,,

r.Hl = UsSs and 0ldl = ~T , input normal form.
2 2

After choosing the model form, we proceed in order to find the C, B and A matrices
as described in the steps 4 to 6 above.

6.3.2 Initial parameters for OEP and OEC estimators

Initial parameters for identification of the optimal OEP and OEC estimators (2.34)
and (2.41) may be found in different ways, dependent on the observability of the
system.

Systems with directly observable output state

Consider the system

Xk+1 AXk + BUk + GVk (6.22)

Yl,j [Gn O] Xj + DlUj +Wl,j = GnXl,j + DlUj +Wl,j

Y2,k [G2l O] xk + D2Uk +W2,k = C2l Xl ,k + D2uk + W2,k,

where xl is the part of the state x that directly via GlI determines Yl,j, and where
X1,k is also directly observable through the Y2,k measurements via the invertible
matrix 021.

In this case we may identify the system (A, B, 021, D2) using Y2,k as output
signal, and then find C11 and Dl as a least squares solution of the set of equations
given by

(6.23)

In this way we will obtain all the necessary initial values in the optimal OEP and
OEC estimators (2.34) and (2.41).

The model found may also be used as the final solution, although minimization
of the criterion function (6.2) must be expected to give improved primary property
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estimation results when Yl has a much lower noise level than Y2 (compare with the
results in Example 6.2 in Section 6.4 below). If necessary, the solution of (6.23)
may also be regularized by use of for example principal component regression
(peR) or partialleast squares regression (PLSR). We will return to that subject
in the following chapters.

Systems structurally observable from the Y2 outputs

Consider the system

Xk+l = AXk + BUk + GVk

YI,j CIXj + DlUj + WI,j

Y2,k C2X k + D 2Uk +W2,k,

(6.24)

where (C2,A) is structurally observable (Appendix A). The innovations model
using Uk as input and Y2,k as output is then

(6.25)

(6.26)

which may be identified by use of an ordinary prediction error or subspace method.
When this is done we can reconstruct the innovation model state vector x~I~_l by
use of

X~;:llk = (A - AK~EC2) X~~_l + (B - AK~ED2) Uk + AK~EY2,k.

The remaining matrices in the optimal OE estimators (2.34) and (2.41) will then
be Cl and Dl, and they can be approximately found as a least squares solution of
the set of equations given by

(6.27)

Note that iJj here is a non-white sequence, although the dependenee from ane sam­
ple to the next may be small with a low YI,k sampling rate. The system matrices
found in this manner may then be used to construet initial parameter values in the
optimal estimators, as a starting point for minimization of the criterion function
(6.2).

The model found may also be used as the final solution, although minimization
of the criterion function (6.2) must also here be expected to give improved primary
property estimation results (see simulation results in Example 6.2 in Section 6.4
below).
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Systems only detectable from the Y2 outputs

In this case we have a system of the type

99

YI,j [Cn C12] [ ~~ L+ DIUj + WI,j

Y2,k = [o C22] [ ~~ L+ D2Uk +W2,k,

and the innovations model

(6.28)

Y2,k =

(6.29)

It is then possible to identify the system (A22, B2, 022, D2, A22Kg
E ) by an ordinary

predietion error or subspace method, and reconstruct the innovation model state
"OE b fvector x 2,k lk - l y lise o

X~~+llk = (A22 - A22KgEC22) X~~lk-1 + (B2 - AKg
E

D2) Uk + A22Kg
EY2,k.

(6.30)
When this is done, it remains to find initial values for the dynamic primary

output model (for a moment assuming that all Yl,k samples. exist)

or

AGE
X1,k+llk

Yl,k

A AGE B--
llX1,klk-l + Uk

O AGE D- - ~Q
llX1,klk-l + Uk + 'uk,

(6.31)

YI,k = [Cn (qI - An)-l iJ +.0] Uk + {h, (6.32)

where iJ [ Bl - KD2 A l2 - KC22 K],.o = [Dl Cl2 O] and Uk =

[
~~~Ik-l ], with K = A 11K f1E + A12K~E. This is the same type of system

Y2,k

as the ordinary OE model (6.5), and since Yl,k is not generally available, we may
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find the initial values by use of the FIR modeling method presented in 8ubsection
6.3.1.

In this way we find initial values for (All, B, CI I , iJ), and with the initial values
(A22 , B2, C22, D2,A22Kg

E ) found above, we have all the initial values needed for
identification of the optimal OEP and OEC estimators (2.34) and (2.41). It must
be emphasized that this solution requires a substantial number of primary output
samples. We need a large dimension of the extended Hankel matrix (6.16) in
order to reduce the effect of errors in the estimation of the A matrix, and each
Markov parameter hi will be a matrix with a column dimension determined by
the dimensjon of the il vector above. We may, however, lise simplified solutions as
indicated ill Example 6.3 below.

6.3.3 Initial parameters by resampling of low sample rate estima­
tor

With a sufficiently high YI,j sampling rate, it may be possible to identify an ap­
proximate discrete-time OE estimator using only the corresponding samples Uj

and Y2,j. From this it is straightforward to find an approximate continuous-time
estimator, and finally initial estimator parameter values by resampling at the Uk

and Y2,k sampling rate. We will see an industrial data example of that in Chapter
10.

6.3.4 Initial parameters from filtered data

With a low Yl sampling rate, the primary property Zk may vary a lot in the inter­
sample periods. We must then expect a narrow global minimum of the criterion
function (6.2), and a difficult task to find the optimal estimator without very good
initial values. A solution to the problem may be to filter all signals used in the
identification procedure by equal low-pass filters before the attempt to find an
estimator. This is a well known method in general system identification, where it
may be used in order to enhance the low-frequency fit of the model (e.g. Ljung,
1987,1999). III the present context the aim of the prefiltering is only to facili­
tate initial values for an identification without prefiltering. A preliminary test
on acoustic data presented in Chapter 10 indicates that this method may work
satisfactory.

6.3.5 Iterative search with randomized initial values

Difficult initial value problems with a low primary output sampling rate may be
solved by an iterative search with randomized initial parameter values. This is
demonstrated in the acoustic data example in Chapter 10.
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6.4 Sirnulation examples

101

Simulation studies are undertaken, using a modified version of the prediction er­
ror method implemented in pem.m in the System Identification Toolbox for use
with Matlab (Ljung, 1995). The modifications consist of setting both the primary
output Yl,k == Oand the predietion error ek == Ofor all sampling instants k where a
measurement Yl,k does not exist. In order to compensate for the reduced informa­
tion content in the data due to lack of Yl measurements, the number of iterations
in the optimization procedure was in the examples increased from the default value
10 to 25, while the tolerance limit was reduced from 0.01 to 0.001. In all examples
the systems were simulated with the known input Uk as a filtered PRBS with auto­
covariance Tuu(p) == a lp1, where O~ a < 1 (Soderstrom and Stoica, 1989, example
5.11), Le. inputs that were persistently exciting of sufficient order.

Example 6.1 Identification of ordinary OE estimator

In this example we lise a modified version of the system in Example 3.2, with
the following continuous-time second-order proeess model with an additional first­
order process noise model used as a starting point:

x [~1 ~1 11] x + [ ~ ] u + [ ~ ] v

y = [1 O O] x + w.

(6.33)

The system was discretized assuming zero-order hold elements on the u and v
inputs and a sampling interval T == O.l, and the PRBS input autocovariance was
Tuu(p) == O.Slpl. The scalar noise sources Vk and Wk were independent and normally
distributed white noise sequences with zero mean, variance Tv as given in Table
6.1 below, and Tw == 0.0001.

The number of samples were chosen to N2 == 2000 for the input Uk and NI ==
200 for the output Yj, with equally spaced Yj measurements (Yj == Yk, for j == 1, 2,
3 ... and k - 10 20 30 ...), -",.

Initial parameter values for the OEU model (2.23) were found by lise of the
FIR method in Section 6.3 with the impulse response truncated at L == 99. Typical
singular values in the FIR method were for Tv == 1 in descending order (J == 0.68,
0.50, 0.21, 0.20, 0.19, ... , from which a modelorder n == 2 was a natural choice.
The extended observability and reachability matrices found from SYD factorization
of the extended Hankel matrix (6.16) were defined in the output normal form
in (6.21). The initial state-space model was transformed to the controllability
canonical form using the function canon. m ill the Control System Toolbox for use
with Matlab (Grace et al., 1992), and further to the observability canonical form
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by use of duality relations (Kailath, 1980). A state space representation of the
seeond-order model

(6.34)

was then identified using the modified prediction error method.
Simulations and identifications were repeated in M == 10 Monte Carlo runs,

where each identified model was validated against an independent data set with
the same number of samples and the same noise variances as used for identification.
Validation comparisons between the different identified models were based on the
root mean square error eriterion

RMSE==
1 N2
~ ( "OE)2N L-J Yk - Yk ,

2 k=1

(6.35)

where all the known values of Yk were used (although assumed sampled at a redueed
rate).

In order to limit the infiuenee of loeal minima problems, eaeh identifieation
given speeific data sets was repeated R == 5 times with randomized initial B(q-I)
parameters (bij,r+1 == bij,r . (1+ 0.05e), with e as a zero mean and normal random
variable with variance 1). The best of the five models was then validated and kept
as the final model.

The mean RMSE values and RMSE standard deviations for different numbers
of samples are given in Table 6.1. The table also includes theoretical RMSE values

JCov(f)~E) = JCPOEUCT + Tw , where pOEU is given by (2.25).

Table 6.1: Validation results for ordinary OE estimator based on M == 10 Monte
Carlo runs. The table shows RMSE mean values and standard deviations and theoretical
RMSE mean values for different proeess noise variances and measurement noise variance
r w == 0.0001. The RMSE values are multiplied by 104 .

rv N2 NI Initial FIR estimator OEU OEUtheor.
0.01 2000 200 4027 ± 198 192 ± 37 170
0.1 2000 200 1662 ± 1251 565 ± 210 444
1 2000 200 1655 ± 89 1400 ± 191 1373

The large RMSE value for the initial FIR model with reduced proeess noise
level is due to oscillatory behavior caused by a pole close to the unit circle. It is
not further investigated w11Y this is improved with increased noise level. At all
noise levels the final RMSE results are close to the theoretical values.

•
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Example 6.2 Identification of optimal DEC estimator with (C2, A) struc­
turally observable

This example is basically the same as Example 3.2, only modified with respect to
the Yl sampling rate. The intention is now primarily to verify that the optimal
estimators will be found also in the low Yl sampling rate case, and we choose to
limit the simulations to the OEC estimator (2.41). As a starting point, the fol­
lowing continuous-time second-order proeess model with an additional first-order
process noise model was used (e.g. interacting mixing tanks or thermal processes):

Yl

Y2

[~1 ~2 J
1

] x + [ ~ ] u + [ ~ ] v

[1 O O] x + Wl

[O 1 O] x + W2.

(6.36)

Remark 12 As pointed out in Example 3.2, (02, AC) is here structurally observ­
able, although the specijic parameter values chosen make (02, AC) non-observable.

The system was discretized assuming zero-order hold elements on the u and v
inputs and a sampling interval T == 0.1 (see Example 3.2), and the PRBS input
autocovariance was ruu(p) == O.Slpt. The scalar noise sources Vk, WI,k and W2,k

were independent and normally distributed white noise sequences with zero mean
and variances rv == 1, rIl == 0.0001 and r22 == 0.01. As in Example 6.1, itwas
assumed that Yl,j was recorded at every tenth Uk and Y2,k sampling, resulting in
NI = N2/10 samples.

The initial parameter values for the OEC estimator (2.41) were found by first
identifying an ARMAX model using N 2 samples with Uk as input and Y2,k as output
(see Subsection 6.3.2). The static relation from the state vector x~E to YI,k was
then found as a least squares solution based on the available YI,j measurements
and the corresponding x?E values, Le. by lise of (6.27) with Dl == O. The ARMAX
model was here specified as

with

and

A(q-l) == 1 + alq-l + a2q-2 + a3Q-3,

B(q-l) = bIq-1 + b2q-2 + b3q- 3

(6.37)

(6.38)

(6.39)

(6.40)
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After an appropriate similarity transformation of the initial estimator, the OEC
estimator (2.41) was identified with Uk and Y2,k as input signals and Yl,j as output
signal. The OEC model was specified as an observer canonical form (Kailath,
1980) state space representation of

with

and

B OEC ( -1) b -1 b -2 b -31 q = l1q + 12q + 13q ,

B OEC ( -1) b + b -1 + b -2 b -32 q = 20 21q 22q + 23q

(6.41)

(6.42)

(6.43)

(6.44)

As the main purpose of the simulations was to show the feasibility of the low
sampling rate solution, no attempt was made to find the modelorder and model
structure from the data. The modelorder can, however, be found by ordinary
use of ane of the several available subspace identification methods, e.g. Di Ruscio
(1997), and a systematie method for finding the structure was presented in Chapter
5.

Each identified model was validated against an independent data set with the
same number of samples and the same noise variances as used for identification.
Validation comparisons between the different identified models were based on the
root mean square error criterion

RMSE= (6.45)

where all the known values of Yl,k were used (although Y1,j data sampled at a
reduced rate was used in the identification stage).

As a basis for comparisons given specific numbers of samples NI and N2, each
model was identified and validated in M = 10 Monte Carlo runs using independent
data sets. In order to limit the infiuence of local minima problems, each identifi­
cation given a specific data set was repeated R = 5 times with randomized initial
Bl (q-l) and B2(q-l) parameters (bij,r+l = bij,r· (1+0.05e), with e as a zero mean
and normal random variable with variance l). The best of the five models was
validated and kept as the final model.

The mean RMSE values and RMSE standard deviations for different numbers
of samples are given in Table 6.2. The table also includes theoretical RMSE values

COV(yP,~lk) computed according to (2.44).
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Table 6.2: Validation results for M == 10 Mante Carlo runs for estimator for system
with (C2' A) structurally observable. The table shows RMSE mean values and standard
deviations and theoretical RMSE mean values for different numbers ofsamples and T» == 1,

"i i == 0.0001 and r22 == 0.01. The RMSE values are multiplied by 104 .

N2 NI Initial ARMAX + LS estimator OEC OECtheor.
400 40 1211 ± 343 333 ±48 230
2000 200 969 ± 94 245 ± 12 230
10000 1000 972 ± 37 238± 7 230

Asexpected, Table 6.2 shows reduced estimation error when the number of
samples is increased from realistically small values to N2 == 10000. In all cases,
however, the OEC estimator is considerably better than the initial ARMAX+LSE
estimator. For a large number of samples, the OEC estimation variance approaches
the theoretical value. For NI == 200, the results are clearly better than the corre­
sponding results in the high Yl sampling rate case with N2 == NI given in Example
3.4. It is verified that this is not due to the increased number of iterations or
the reduced tolerance limit, and judged from the RMSE value the initial model in
Example 3.4 is considerably better (RMSE == 313 ± 88). It is not further investi­
gated whether the initial model in Example 3.4 is inferior in other respects, or if
it is the large number of input and secondary measurement samples in the present
example that is beneficial.

In order to visualize the degree of model misfit behind the RMSE values in
Table 6.2, specific validation responses for models based on N2 == 400 samples, are
shown in Fig. 6.1. The figure also gives a representative picture of the improvement
from the initial ARMAX+LS to the final OEC solution. Note that the number of
Yl measurements behind the estimators is only NI == 40.



106 CHAPTER 6. THE LOW PRlMARY OUTPUT SAMPLING RATE CASE

" I "'l1.' I
\
, I

I I

\/

100908070

,
1\

I \
J \

" :''\'0,
I

/-;

/
/

I

\" /
.: \ '. ~ J :

40 50 60
Sample Number

,., ,
I \

/' I \
\ J \fl
\ I \

"\

3020

0.5

0.4

0.3

0.2

0.1

UJ
en

O:2
c:

-0.1

-0.2

-0.3

"-0.4 ,

-0.5 O 10

Figure 6.1. Segment of validation responses for an initial ARMAX+LS estimator
(dashed, RMSE == 0.1295) and the OEC estimator (2.41) (solid, RMSE == 0.0380).
The experimental conditions are given by Tv == 1, TIl == 0.0001, r22 == 0.01, N 2 == 400
and NI = 40, and the ideal validation response is shown by dotted line with o-markings
at the j sampling instants.

•
Example 6.3 Identification of optimal OEC estimator with (C2, A) only
detectable

In this example we lise a modified version of the system in Example 3.2, with
the following continuous-time second-order process model with all additional first­
order pro cess noise model used as a starting point:

Yl

Y2

[~1 ~1 J
1

] x + [ ~ ] u + [ ~ ] v

[1 O O] x + Wl

[O 1 O] x + W2.

(6.46)

(6.47)

This is also the same system as in Example 6.1, only that the Y2 measurement is
added.

The system was discretized assuming zero-order hold elements on the u and
v inputs and a sampling interval T = 0.1 (see Example 3.2). The PRBS input
autocovariance was Tuu(p) == 0.5 Ip1. The scalar noise sources Vk, Wl,k and W2,k
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were independent and normally distributed white noise sequences with zero mean,
and variances Tv == 1, TIl == 0.0001 and T22 as shown in Table 6.3 below.

The number of samples were chosen to N2 == 2000 for the input Uk and the
secondary output Y2,k, and NI == 200 for the primary output YI,j, with equally
spaced Yl,j measurements (Yl,j == YI,k, for j == 1,2,3, ... and k =;: 10,20,30, ... ).

Initial parameter values for the OEC estimator (2.41) can in theory be found
by use of the FIR method in Section 6.3. With the impulse response truncated at
L == 99 and use of a second-order model with Y2 as input, we would then have 594
parameters in the extended Hankel matrix (6.16). Since we would have only 191
equations of the type given in (6.15), and since a considerable reduction of L was
found unacceptable, we were forced to use a simplified approach:

• Identify the second-order system (6.29), i.e. find (A22 , B2, 0 22 , A22KSE ) with

C22 = [1 O].
• Identify a first-order system with Y2,k as input and Yl,j as output by use of

the FIR method in Section 6.3, resulting in the parameters aF1R , bF1R and
c!IR,.

• Assume the following deterministic part of the total model:

YI,j ==

b
F1R

, O ]
A22 - A22Kg

E C 22 xklk-l

[ ~:,k ]
(6.48)

• Transform the model to the observer form (Kailath, 1980) and use the result
as initial model for the modified predietion error method.

A state space representation of the model

(6.49)

with the polynomials given by (6.42) to (6.44) was then identified. The simula­
tions and identifications were repeated in M == 10 Monte Carlo runs, where each
identified model was validated against an independent data set with the same num­
ber of samples and the same noise variances as used for identification. Validation
comparisons between the different identified models were based on the root mean
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square error criterion

RMSE== (6.50)

where all the known values of YI,k were used (although YI,j data sampled at a
reduced rate was used in the identification stage).

In order to limit the infiuenee of loeal minima problems, each identifieation
given specifie data sets was repeated R == 5 times with randomized initial Bl (q-l)
and B2 (q-l) parameters (bij,r+l == bij,r . (1 + O.05e), with e as a zero mean and
normal random variable with variance 1). The best of the five models was then
validated al1d used as the final model.

The mean RMSE values and RMSE standard deviations for different vari­
anees T22 are given in Table 6.3. The table also includes theoretical RMSE values

COV(yP,~lk) computed aecording to (2.44).

Table 6.3: Validation results from M == laMante Carlo runs for estimator for system
with (C2, A) only detectable. The table shows RMSE mean values and standard deviations
and theoretical RMSE mean values for different T22 variances with Tv == l and rIl ==
0.0001. The RMSE values are multiplied by 104 .

r22 N2 NI Initial ARMAX+FIR estimator OEC OECtheor.
0.01 2000 200 2362 ± 150 276 ± 44 233
0.1 2000 200 1931 ± 474 621 ± 34 590

The final results are reasonably elose to the theoretical values, and very much
better than the initial estimator results. One may, however, raise the question
if not a reduced estimator with only Y2,k as input would give comparably good
results. This is investigated in the next example.

•
Example 6.4 Identification of optimal OEC estimator with (02 , A) only
detectable by use of reduced model

Example 6.3 above was repeated, but now using a first-order model with only Y2,k

as input. The initial estimator was found by use of the FIR method in Section
6.3, and the validation results are given in Table 6.4.

In order to verify the need for a dynamie output model, a statie estimator
YI,k == CY2,k was also established through a least squares solution based on the
available YI,j measurements and the corresponding Y2,j values. The RMSE values
for this estimator are also shown ill Table 6.4, and results for the OEC estimator
in Table 6.3 are ineluded for comparison purposes.
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Table 6.4: Validation results from M = 10 Mante Carlo runs for reduced estimator
for a system with (C2,A) only detectable. A first-order model with anly Y2,k as input
was used. The table shows RMSE mean values and standard deviations and theoretical
RMSE mean values for different r22 variances with T-o = 1 and rIl == 0.0001. The RMSE
values are multiplied by 104 .

r22 N2 NI Yl = CY2 Init. est. Red.OEC OEC OEC t h.

0.01 2000 200 2098 ± 59 485 ± 79 245 ± 10 276 ± 44 233
0.1 2000 200 2478 ± 107 905 ± 298 685 ± 45 621 ± 34 590

From Table 6.4 we see that the reduced first-order estimator is to be preferred
when r22 = 0.01, while the effort to find a third-order model with also Uk as input
is somewhat rewarded at the r22 = 0.1 noise level. However, note that a dynamic
output model in any case is needed.

•
Example 6.5 Identification of OEC estimator with (02, A) structurally
observable by lise of reduced model

In a final example in this chapter we repeat Example 6.2, but now using a first­
order model with only Y2,k as input. As in Example 6.4 the initial estimator was
found by "lise of the FIR method in Section 6.3, and the validation results are
given in Table 6.5. The table also includes results for the full OEC model used in
ExampleS.Z. In all cases we chose the excitation parameter Q == 0.5.

In order to verify the need for a dynamic output model also for this system, a
statie estimator YI,k = C:Y2,k was established through a least squares solution based
on the available YI,j measurements and the corresponding Y2,j values. The RMSE
values for this estimator are also shown in Table 6.5.

Table 6.5: Validation results from M = 10 Mante Carlo runs for a reduced estimator
for a system with (02, A) structurally observable. A first-order model with only Y2,k

as input was used. The table shows RMSE mean values and standard deviations and
theoretical RMSE mean values for different r22 variances with T» == 1 and rIl = 0.0001.
The RMSE values are multiplied by 104 .

r22 N2 NI Yi = CY2 Init. est. Red.OEC OEC OECt h.

0.01 2000 200 1650 ± 66 414 ± 54 252 ± 21 245 ± 12 230
0.1 2000 200 2106 ± 157 845 ± 163 682 ± 34 587 ± 38 555
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From Table 6.5 we see that the reduced first-order model is almost as good as
the full model for r22 == 0.01, while the effort to find a third-arder madel with also
Uk as input is more rewarded at the T22 == 0.1 noise level. As in Example 6.4 we
note that a dynamic output model is in any case needed.

•



Chapter 7

Least squares estimation as
special case

A statie least squares estimator may in theory and practice be seen as a
special case of the dynamic and Kalman filter based optimal current (a
posteriori) estimator diseussed in Chapter 2 and Chapter 3. The the­
oretical link between Kalman filtering and linear regression is further
developed in the present chapter, which also forms a link to the prin­
cipal component and partialleast squares regression (PCR and PLSR)
methods treated in the next chapter.

7.1 Introduction

The linear regression model arises in different settings, as described in e.g. Johnson
and Wichern (1992).

Classical model with independent regressor variables

The classical model is concerned with the association between an m x 1 vector of
response variables infiuenced by noise, and a collection of known and independent
regressor variables. Assuming centered data and in the notation used in the thesis,
this model can be expressed as

(7.1)

where Yl is the N x m matrix of primary response variables, U is the N x r matrix
of manipulated and independent regressor variables, Bl is the r x m matrix of
unknown parameters and El is the N x m matrix of independent observation
errors. Jf the data is not centered, this is altered to

(7.2)

111
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where Y10 and Ui, are matrices of mean values.
The well known least square estimate of Bl and its statistical properties are

presented in Section 7.4, as a special case of a more general estimator developed
below.

Model with independent regressor variables

In the other linear regression setting, all variables are dependent and .affected by
noise. Assuming centered data and in the notation used in the thesis, this model
can be expressed as

(7.3)

where Y2 is an N x p matrix of secondary response variables and B 2 is the p x m

matrix of unknown parameters. If the data is 110t centered, this is altered to

(7.4)

where YIO and Y20 are matrices of mean values.
The least squares estimate of B2 and the corresponding statistical results are

also presented in Section 7.4.

General model

In the case of both independent and dependent regressor variables, and assuming
centered data, the model becomes a combination of (7.1) and (7.3) above, i.e.

(7.5)

or with data that is not centered

(7.6)

7.2 Optimal estimator for dynarnic systems

In the following we will s110w that the least squares estimators Bl and B2 intro­
duced above are special cases of the optimal output error current (OEC) estimator
developed in Chapter 2. For clarity of presentation, we summarize this develop­
ment below. Consider the general discrete-time system

Xk+l

YI,k

Y2,k

AXk + BUk + GVk

CIXk + DIUk + Wl k,

C2 X k + D2U k + W2,k,

(7.7)
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with primary measurements YI,k and secondary measurements Y2,k, and assuming
centered data. Here, Xk is the state vector, while Vk, WI,k and W2,k are white,
independent and normally distributed process and measurement noise vectors with
covariance matrices Ru = EVkVf, RIl = EWI,kW[k and R22 = EW2,kW[k. As will
be shown below, we must in this context assume independent measurement noise
sources, Le. R12 == R§I = EWl,kW[k = O. Also assurne that (C2 , A) is detectable
and that (A,G~) is stabilizable.

Next consider a Kalman filter utilizing only the secondary Y2 measurements,
The optimal predietion (a priori) state estimate will then be governed by

x~!lIk = (A - AK~EC2) X~L1 + (B - AK~ED2) Uk

+AK~EY2,k, (7.8)

where KrE is the gain in a Kalman filter driven by Uk and Y2,k (see Appendix A for
Kalman filtering background). The optimal current (a posteriori) state estirnate
will become

or

AOE (1 KOEe) AOE K OE ( D)xklk = - 2 2 Xkl k- l + 2 Y2,k - 2U k ·

From (7.7), (7.8) and (7.9) we find the OEC model

Y1,k = Cl (I - K~EC2) [q1 - A + AK~EC2r1

x [(B - AK~ED2) Uk + AK~EY2,k]

+C1K? E(Y2,k - D2Uk) + DlUk + 'Øk,

(7.9)

(7.10)

(7.11)

where q-l is the unit time delay operator and Bo is the exact parameter vector
assumed to exist, while 'l/Jk is colored noise given by

Here the Kalman gain is determined by

K~E = pOEPCr (C2p OEPCr + R22) -1 ,

(7.12)

(7.13)

where pOEP

equation
E(Xk - X~~_l)(Xk - X~~_l)T is given by the algebraic Riccati

pOEP ApOEPAT + GRuG

- ApOEPCr (C2POEPCr + R22) -1 C2p OEPAT. (7.14)
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The OECmodel (7.10) can be identified by use of a prediction error method
(Appendix B). We would then utilize an estimator

ye;I~(B) = GI(q-l, B)Uk + G2(q-l, B)Y2,k, (7.15)

resulting in an estimation error

cI,k(B) = YI,k-yr:~(B)= [GI(q-l,Bo)-GI(q-l,B)]Uk

+ [G2(q-l,Bo) - G2(q-I,B)] Y2,k +1iJk. (7.16)

Minimization of the scalar loss function

VN(B) = det (~ taCI,k(B)c[k(B)) (7.17)

will then asymptotically (N --;. 00) result in B == e == Bo, i.e. G1(q-l,B) ==
G1(q-l,Bo) and G2(q-l,B) == G2(q-l,()O), when and only when E'Øk'Ør is simul­
taneausly minimized. To find conditions for this to occur, we assume o== Bo and
develop from (7.12) and (7.9)

'ljJk = Cl [Xk - (1 - K?EC2) X~I~_I]

-CIK~E (C2Xk + W2,k) + w:» (7.18)

Cl (1 - K?EC2) (Xk - X~I~-l) - CIK?E w2,k +WI,k

and

Cl (1 - K?EC2) pOEP (1 - K?Ec2)T Cr

+CIK?ERf2 (CIK?E) T + Ru

-CIK?ER21 - Rl2 (CIK?E) T (7.19)

CIPOECci + Ru - CIK?E R21 - Rl2 (CIK?E)T.

Here,

pOEC E(Xk - xklk)(Xk - xklk)T (7.20)

(1 - K?EC2) pOEP (1 - K?Ec2)T + K?E R22 (K?E)T

is the minimized covariance matrix related to the current state estimate, From
this we see that E'Øk'ØIllJ=(}Q represent a true minimum only when R 12 = Rfl = 0,
i.e. the Wl,k and W2,k noise sources must be independent (see Section 3.2 for an
alternative argument).

Fram (7.16) and (7.19) with R12 == R~l == Oit follows that the asymptotic
(N --;. 00) estimation covariance is

Cov (YI,klk) = ECk(Bo)cI (Bo)·= E'ljJk'ljJI = CIPOECci + Ru- (7.21)



7.3. GE]\~ERAL STATIC LINEAR REGRESSIO]\! MODEL

7.3 General statie linear regression model

Theoretical statie estimator

Consider next the special pure delay discrete-time system

115

Xk+l

ui»
Y2,k

Vk

C1Xk + DIUk + Wl k,

C2 Xk + D2Uk + W2,k,

(7.22)

Le. the model (7.7) with A = 0, B == O and G == J. The assumption that R 12 ==
Rfl = Ois in this case no limitation, since common measurement noise components
may be included in Xk.

Remark 13 In the chemometrical terminology (e.g. Manens and Næs, 1989) we
would call the state variables x for latent variables. We will elaborate on that in
the next chapter.

The general input-output-model (7.10) is in this case simplified to

(7.23)

where the Kalman gain according to (7.13) and (7.14) is determined by

(7.24)

From (7.8) we also find that xklk-l == 0, and then from (7.12), (7.9) and (7.22)

(7.25)

which shows that 'Øk == ek is a white noise sequence independent of Uk and Y2,k.

Since (7.23) describes a pure statie system, it is valid also when the u and Y2

information is available only at a slow and possibly irregular sampling rate, and
even when the variables are spatial rather than temporaL The input-output mcdel
can therefore be refarmulated as

(7.26)

Collecting ur, Y[j' Y[j and er for j == 1, 2, ... ,N in data matrices, we find
from (7.26)

(7.27)
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or

(7.28)

(7.29)

(7.30)

This is a general linear regression model, with independent regressors collected in
U and dependent regressors collected in Y2. The theoretical estimator follows as

[
BfF ] = [ (Dl - CIK~ED2)T ]
B~F (CIK?E)T'

where the B K F notation is introduced in order to indicate the relation to the
Kalman filtering theory.

Data based statie estimator

When the theoretical model (7.22) is not known, we may still find estimates Brs

and B~s from experimental data. Since ej is a white noise sequence, we can find
consistent parameter estimates by linear regression, Le. from (7.28)

( [ ~~] [U Y2] ) -1 [ ~; ] II

[~2~g ~;ri] -1 [~2~ ]11.

In order to verify that this asymptotically results in the theoretical estimator
(7.29), we assume that Uk is a stochastie proeess and introduee the expectation

EUju; = Ru. (7.31)

We further construet Yi al1d Y2 from (7.22) as

Yl xc! + UDf + W I

Y2 == xci + UDf + W2·

(7.32)

(7.33)

Utilizing that Xj, WI,j and W2,j are independent white neise sequences with EXjxJ =

R; and EW2,jW[j = R22, we now find

(7.34)
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and
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E~ [ ~~ ] Yl = [ C2RvCr:Db2~Dr ] . (7.35)

By use of the matrix inversion lemma (e.g. Kailath, 1980) and inserting (7.34)
and (7.35) into (7.30) we now readily find

E [ ~~: ] = [ ;~; ] = [ (Dl (C~~~~~f2)T ] , (7.36)

with K~E according to (7.24). Note that~ is eliminated from the final expression,
which makes the expectation (7.36) equal to the theoretical estimator (7.29).

Estimator covariance

In this statie case, the asymptotic (N --+ (0) estimation covariance is found from
(7.14), (7e20), (7.21) and (7.24) as

Cov (Yl,jlj) = Cl (I - K?EC2) n; (I - K?EC2) T Cr

+CIK?ER22(CIK?E)T + Ru

Cl (I - K?EC2) RvCr + Ru. (7.37)

7.4 Standard statistical results

The general results obtained above, may be compared with standard statistical
results for some special cases.

Special case 1: Classical regression

With only independent regressor variables, i.e. Y2 == 0, R; == O and K2 == O, we
obtain from (7.28) the linear regressian model (7.1), Le.

(7.38)

With data that is not centered, this is altered to

(7.39)

This can be reformulated as
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where IN is an N x 1 vector of ones. We will thus be able to determine unbiased
estimates of both b5 and Bl by the least squares method.

The asymptotic estimation covariance ill this case follows from (7.37) as

This is in accordance with the general statistical forecasting result (Johnson and
Wichern, 1992)

COV(Vl,jU) Rn(l+[l uJ]([~~ ][lN U])-l[~j])

u., (1+ ~ [1 -: [~UTIN t~~ ]-1 [~j ])
---+ RIl; N ---+ 00, (7.41)

which follows from the faet that [.]-1 is a constant covariance matrix for large N.

Special case 2: Regression with only dependent variables

With eanstant independent variables Uj == UD, i.e. U == Un, we obtain from (7.28)
the theoretical model

(7.42)

where KrE is given by (7.24).
In order to compare this with theoretical results from a statistical analysis, we

introduee the mean values (see Johnson and Wichern (1992) for notation)

EYI,j == D I U o

EY2,j == D2U O'

Fram (7.26) we then find the optimal prediction

where

and

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)
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From (7.22) we find (with R12 == R§l == O)

~12 == E(Yl,j - J.ll)(Y2,j - J.l2)T == ClRvC'f

and
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(7.48)

~22 == E(Y2,j - J.l2)(Y2,j - J.l2)T == C2RvC! + R22~ (7.49)

From (7.46) and (7.24) we also find

(3 = C1K~E = G1RvG! (G2RvG! + R22) -1 = E12E2l. (7.50)

The asymptotic estimation covariance in (7.37) will in this case become

Gov (Y1,jlj) = ElI - E12E2:lE21? (7.51)

where ~12 and ~22 are found form (7.48) and (7.49), while ~ll and ~2l are found
from (7.22) as

(7.52)

(7.54)

and
~2l == E(Y2,j - J-l2) (Yl,j - I-ll)T == C2RvCf· (7.53)

The results in (7.45), (7.47), (7.50) and (7.51) can also be found by a straightfor­
ward statistical analysis (Johnson and Wichern, 1992).

In order to find data based parameter estimates for the model (7.42) by use of
linear regression, we first note from (7.43) and (7.44) that

N
"T 1 ~ T
UoD1 == IN N L.J Yl,j == Yio

j=l

and
N

"T 1 ~ T
UoD2 == IN N L....J Y2,j = Y20·

j=l

Inserted into (7.42), this results ill

Yl - Ylo = (Y2 - Y2o)B2+ E2,

(7.55)

(7.56)

where E"fF == (C1K~E)T. From this relation between centered Yl and Y2 data, we
find an unbiased estimate B~s by use of the ordinary least squares method,

From the data it is also possible to find an unbiased estimate of the covariance
theoretically given by (7.51) (Johnson and Wichern, 1992).

The connection between KaIman filtering and least squares regression for this
special case was diseussed in Berntsen (1988), but then without basis in the general
dynamic OEC estimator (2.41) or the OEC model (7.10). It was also limited to
the case with Cl == I (or at least an invertible matrix) and Wl,k == 0, Le. the case
with Yl,k as noise free measurements of all state variables in the system (possibly
after a similarity transformation).
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7.5 A statie experirnental setup for dynarnic systems

The statie L8 method may also be used in stationary analyses of dynamic systems.
Consider again the system (7.7) with the optimal Yl current estimator model (7.10),
and let the input Uk be piecewise constant over periods that are much longer
than both the time constants in the underlying continuous-time system and the

discretization sampling time. Also split Uk into two parts as u = [ri[ U'!:t,k]'
where .dk is a vector of unknown offsets or disturbances and where U m k is a known,
vector of manipulated or measured inputs. Assume collinear observations Yj =

[yL -r.. T with a data sampling interval that also is much langer than both
the time constants in the underlying continuous-time system and the discretization
sampling interval, and samples taken at time instants where the system has settled
after the last change of Uk. The experimental setup is illustrated in Fig. 7.1, where
also the samples Uj at the Yj sampling instants are indicated.

6.-------.-------.-------.-------.-------r-----.-------~----.

5 1- -­
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Figure 7.1 Input and output signals with piecewise constant inputs and settling out­
puts. The o-rnarkings indicate the samples used in a least squares solution.

Also assume that dj is a white noise sequence, Le. that the unknown offsets and
disturbances are independent from one observation to the next. With a piecewise
statie input vector Uk and enough time for settlement, it follows from (7.7) that
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the observations will be given by

+ L Vk91,i-k + Wl,j
k=-oo

i

+ L Vk92,i-k + W2,j,
k=-oo

(7.57)

where i is the value of k at the j sampling instants, and where 91 and 92 are the
impulse respanses from v to Yl and Y2. All measurements are thus linear combina­
tions of d and U m plus noise, and since we assurne a stable system with piecewise
constant inputs and a settling time shorter than the data sampling interval, this
noise will be approximately white. Since the noise is partly determined by the
commonprocess noise Vk, the noise components in Yl,j and Y2,j will not be in­
dependent, as required for the optimal estimator model (7.10). For calibration
purposes it is also a normal procedure to use mean values of the measurements
over a certain period of time in order to reduce the noise, but this does not affect
the theoretical analysis.

If both d and U m are completely known, there is no need to utilize the infor­
mation in the Y2 measurements, we can simply solve the first equation in (7.57) as
an ordinary least squares problem. In the present case, however, we consider d as
unknown, and the Y2 measurements may then give valuable information about d
and indirectly also about Yl.

Assume now that Um,j is a persistently exciting stochastie signal, and that all
data are centered, i.e. that dj , Um,j, Y1,j and Y2,j are stochastie variables with
zero mean. Further, model dj as generated by white noise through a pure delay
system, and model also the common noise part ec,j in Yl,j and Y2,j as generated
by a delayed white noise sequence. Expressing Yl and Y2 as linear combinations of

x = [a'T er] T and U m , we then arrive at the dynamic system

[ d] == ej

ec }+1

Y1"j CI Xj + DlUm,j + el,j

Y2,j = C2 X j + D2u m ,j + e2,j,

(7.58)

i.e. a system as given in (7.22). Note that all plant dynamics are lost in this setup.
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7.6 Statie errors-in-variables problems

The pure delay system (7.22) with Dl == D2 == Ogives

Xk+l vk

Yl,k == CIXk + wl,k

Y2,k C2 Xk + wk·

(7.59)

With C2 == I the output equations will represent a statie errors-in-variables prob­
lem.

In order to apply the ordinary L8 method on this problem, we collect the data
in rnatrices l'iand 1'2, and obtain the estimator

(7.60)

The theoretical and asymptotic estimator (7.29) is then

(7.61)

Note that this is the optimal solution when the problem is to find Yl,k estimates
from known Y2,k values. If the goal is to find an estimate of Cl, other methods
should be used. We illustrate this by an example borrowed from Roorda and Heij
(1995) :

Example 7.1

Assume a system

YI,k

Y2,k

aXk +WI,k

Xk + W2,k,

(7.62)

where Xk, Wl,k and W2,k are white and uncorrelated sequences with Ex~ == Tv == 1,
Ewr k == TIl == 0.5 and Ew~ k T22 == 0.5. From (7.61) we find the optimal, ,
estimate

(7.63)

Based on N == 20 observations Roorda and Heij (1995) found the least squares
estimator aLS == O.69a, i.e. fairly close to the optimal result. As a good estimate
of a they found the totalleast squares solution a TLS == O.96a.

•
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7. 7 Sirnulation exarnple

Example 7.2

123

For an application of the least squares estimation above, assume a process stream
with varying but known concentrations Um,l, U m,2 and U m ,3 of three substances A,
B and C, and varying unknown concentrations dl, d2 and d3 of three other sub­
stances D, E and F. Also assume a scalar primary property z measured by Yl and
p == 3 secondary noisy Y2 measurements that all are linear combinations of the six
concentrations. Assuming that the Yl measurements can be obtained only through
delayed laboratory analyses of physical samples, it is of interest find the relation
between the estimator variables U m and Y2 and the z property. A calibration ex­
periment is therefore performed on the system, with a data sampling interval such
that the unknown concentrations are independent white noise sequences. We thus
have a system as given in (7.58) with ec == O.

Y2l Y22 Y23 Yl

z

Figure 7.2 Proeess streams with known and unknown input concentrations u and d,
a concentration dependent primary property z, primary property measurement Yl and
secondary measurements Y2.

Calibration experiments were perforrned in M == 100 Monte Carlo simulations
with Eer == "i i == 0.0001. In each experirnent, d, U m and e2 were generated as
normally distributed random numbers with diagonal covariance matrices Rd, Ru
and R22. The parameters in Rd, Ru, Cl, Dl, C2 and D2 were uniformly distributed
randorn numbers in the interval (0,1), while the parameters in R22 were uniformly
distributed randorn numbers in the interval (0,0.01) The resulting mean parameter
values for the theoretical estimator (7.29) were

bK F = 10-4 . [1675 3048 -1347 -4712 13191 1021]T. (7.64)

Least squares estimation according to (7.30) with N == 10000 samples gave the
corresponding mean parameter values

ALS -4 [ ] TbN=IOOOO == 10 . 1692 3049 -1350 -4720 13186 1030 , (7.65)
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while N == 200 samples gave the mean parameter values

bkt200 = 10-4
. [1863 2658 -880 -4035 12346 840] T . (7.66)

The mean theoretical RMSE value RMS Etheor. = J Cav(Yl,jlj ) with Cav(Yl,jlj)

determined according to (7.37) was

RMSEK F = JCav(Yl,klk) = 0.1136. (7.67)

Least squares estimation according to (7.30) with N == 10000 samples and
validation against an independent data set of the same length gave the mean value

RMSE~~10000 == 0.1134,

while estimation and validation with N == 200 samples gave the mean value

RMSEFv~200= 0.1182.

(7.68)

(7.69)

We notice here that the reduction from N == 10000 to N == 200 gave a 7% to
53% impairment in all entries of the estimated parameter vector, while the overall
RMSE value is increased by only 4%. This shows that the optimum represented
by the theoretical solution is not a very distinet Olle, which explains why regu­
larization methods like principal component regression (peR) and partialleast
squares regression (PLSR) can give good Yl estimates even though the estimated
parameters might have significant errors. We will study such methods in the next
chapter.

•



Chapter 8

Multivariate calibration as
special case

With a large number of secondary output variables and a limited num­
ber of observations, a statie least squares (LS) estimator may give very
large estimation covariance due to overfitting. In the common case with
highly collinear regressor variables, we can then make use of the chemo­
metrical regularization methods principal component regression (P'Cft.)
and partialleast squares regression (PLSR). These methods make use
of estimated latent variables that are linear combinations of all regres­
sor variables, defined by a weighting matrix W. The present chapter
develops theoretical and data based peR and PLSR estimators as ex­
tensions of the least squares estimators in Chapter 7. In this way a
theoretical link back to Kalman filtering is established, and it is shown
that with the assumed latent variable structure the theoretical optimal
weighting matrix is a transposed KaIman gain W == (K~E)T. Seen from
a practical point of view, a more interesting result is that a small num­
ber of known input variables u should not necessarily be included in
the PCR/PLSR solution together with the secondary measurements Y2,
but treated separately in a two-step PCA/PLSR +LS solution.

The present chapter is also a link between the optimal DE estima­
tors diseussed in Chapter 2 and Chapter 3, and the dynamical latent
variables methods presented in the next chapter.

8.1 Latent variable regression rnodels

When the number of regressor variables Y2 is large and the number of observa­
tions is limited, the ordinary solution to the LB problem as presented in Chapter 7
may have very large variance due to overfitting, and some form of regularization is

125
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then called for. In many such cases, fortunately, the estimator variables are highly
collinear, and most of the information can then be compressed into a few esti­
mated latent variables within a subspace of the variable space. Basic tools for this
data compression are singular value decomposition (SVD) and principal compo­
nent analysis (PCA) , and the regression method directly based on this is principal
component regression (peR), while partialleast squares regression (PLSR) com­
bines data compression and regression. Detailed presentations of the peR and
PLSR methods are given in Martens and Næs (1989) and Høskuldsson (1996) (see
also Appendix C for an introduction and further referenees). The peA, PCR and
PLSR tools for multivariate data analysis are used in many cases of great prac­
tical interest, also when the estimator variables far outnumber the observations
at hand. An example is product quality characterization by lise of near-infrared
spectroscopy, with several thousand estimator variables (frequencies) and aften
less than ane hundred observations.

The PCR and PLSR methods are based on latent variable modeling. In the
pure delay model (7.22) the latent variables are the state variables Xk. If we
for simplicity set Uk == 0, and collect the Xk, Yl,k and Y2,k variables in matrices

T= [Xl X2 ... XN r, Yl = [YI,1 YI,2 ... YI,N]T and

Y2 = [Y2,1 Y2,2 ... Y2,N r, the output equations in (7.22) can be written as

(8.1)

In the chemometrical terminology this is called a latent variable regression model,
and it is found useful in multivariate calibration (MC), chemical process modeling
(CPM) and chemical analysis of quantitative structure activity/property relation­
ships (QSAR/QSPR) (Wold, 1993).

III the following we will take a closer look at the PCR and PLSR methods with
the linear regression analysis in Chapter 7 as a starting point. A preliminary work
in this direction was also presented by Berntsen (1988).

8.2 The pure dependent regressor variables case

8.2.1 Introduction

In this section we will assume the data structure in (8.1), i.e. Uk == O. More general
cases with Uk =f O are treated in the following sections.
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Regularized latent variables estimator without known inputs

In the PCR and PLSR methods we compress the data matrix Y2 into a matrix T ==
[h f2 ... fN] T of estimated latent variables f by lise of the factorization

" TY2 == TW +E, (8.2)

with E as a residual matrix. Here Wis an m x a2 weighting matrix W == WPCR == p
or W == WPLS, where m is the number of Y2 variables and a2 is the number of
components used. Since WTW == I, we thushave the LS solution

(8.3)

(see Appendix C for details).
With the matrix Yl of response variables recorded in a11 experiment, and with

the f variables as regressor variables, the ordinary least squares method gives the
estimator

(8.4)

Since fT = y[W and thus yr = TTB~V == yfWB~v, the regularized latent vari­
ables estimator related to the Y2 variables becomes

(8.5)

In the following we will return to this expression in connection with an optimal
estimator using W == (K?E)T, and in connection with PCR and PLSR estimators

using W= P and W == WPLS.

Pure delay dynamic model

We will in the following apply the PCR and PLSR methods to the pure delay model
used in Chapter 7, and we start with the pure dependent regressor variables case.
With Uk = Othe pure delay dynamic system (7.22) is simplified to

Tk+l

Yl,k

Y2,k

Vk

ClTk +Wl,k

C2Tk +W2,k,

(8.6)

where we choose to adopt the chemometrical notation Tk for the latent state vari­
ables. This model is the starting point for the analysis of Kalman filter based
estimators and PCR/PLSR estimators.
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8.2.2 KaIman filter based estimators

As a basis for comparison, we first develop optimal representations of the theo­
retical and data based least squares estimators (7.29) and (7.30). In the present
statie case with A == B == 0, we find from (7.8) that the predietion state estimate
is

Tklk-1 == 0, (8.7)

while (7.9) with Uk == Ogives the current state estimate

Tklk == K~EY2,k, (8.8)

i.e. W in (8.3) is replaced by (K~E)T. Assuming that K~E is known and that
samples are collected at a possibly irregular sampling rate, we can thus reformulate
the model (8.6) into the estimator

Vk

K OE e KOE
2 2T j + 2 W2,j

e1f-j.

(8.9)

Theoretical KaIman filter estimator

With u == Othe theoretical estimator (7.29) is modified into

B K F = (C1K?E)T= (C2RuC! + R22) -1 C2RvC[, (8.10)

where K?E is found from (7.24). With f as regressor instead of Y2, we find from
(8.9) and (8.10)

B!iF = (K~EC2Ru (K?Ec2)T +K?ER22 (K?E)T) -1 K?EC2RvC[, (8.11)

which with y"T . == f~BK F == yT. (KOE)T BK F == yT ·BK F results inl,) J T 2,J 2 T 2,)

B K F B K F+K F (8.12)

= (K?E)T (K?EC2Ru (K?Ec2)T +K?ER22 (K?E)T) -1 K?EC2RuC[.

Remark 14 We use the BI<.F+KF notation because the Kaiman filtering jormalism
is used twice, first to find f according to (8.8) and then to find the estimator.

We thus find two alternative expressions for B K F , and we will find (8.12) to
be more in line with the data based estimators (8.5) above and (8.14) below. The
expression (8.12), with K~E replaced by wlcA == pT or wlLs, will in the following
be used to find asymptotic (N ~ 00) peR and PLSR estimators. However, note
that the expression (8.12) in itself is of purely theoretical interest. Based on
theoretical matrix values, the inversion involved will be very poorly conditioned.
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Data based Kalman filter estimator assuming K?E known

With K~E assumed known, only Cl in (8.10) is unknown. We may, however,

choose to order the state variables in (8.6) such that Cl = [I O], and a known

K?E thus implies a completely known estimator B K F . From a theoretical point
of view it is still of interest to find the data based estimator when KrE is known,
and we therefore pursue this a little further. From (8.3) and (8.8) we find

(8.13)

and the ordinary least squares method thus gives

(8.14)

T11is is the latent variable estimator (8.5) with W == (KfE)T. Since it is based on
an underlying KaIman filter, it is the optimal unbiased estimator with minimized
covariance according to (7.37). This is considered to be an interesting result seen
from a theoretical point of view, and it is therefore summarized in the following
theorem:

Theorem 8.1

Assuming data generated by the latent variable system (8.6), the optimal weighting

matrix in the regularized estimator (8.5) is W == (K?E)T, with K?E given by
(7.24). The resulting estimator (8.14) is the optimal unbiased estimator, with
EBKF+LS == B K F given by (8.10) and the estimation covariance given by (7.37).

Remark 15 This theoretical connection between the regularized least squares so­
lution and Kalman filtering, is a parallel to the connection between a regularized
solution of a convolution integral and Wiener filtering presented by Tikhonov and
Arsenin (1977).

8.2.3 Principal component regression

With principal components as defined in Appendix C, equation (8.13) is replaced
by

(8.15)

where P is the loading matrix, and where flcA TpCA is diagonal. From this follows

AT
Tj == P Y2,j- (8.16)



(8.17)

(8.18)
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Theoretical PCR estimator

Assuming P exactly known and with K~E replaced by pT, the theoretical esti­
mator (8.12) is modified into

B PCR = BPCA+KF = P (pTC2s;cfP + pTR22P ) -1 pTC2RvC[.

Data based PCR estimator

With K~E replaced by pT, the data based estimator (8.14) is modified into

iJPCR = iJPCA+LS = P (PTY1Y2P) -1 PTY1Yi.

This is the general estimator (8.5) with W == WPCR == P. As noted above, this is
a biased estimator, i.e. EiJPCR i= B KF given by (8.10).

Also note that (8.6) asymptotically (N ==+ 00) results in kY{Y2 -==? C2Rv Ci +
R22 and kY2T Y l -+ C2RvCt, i.e. iJPCR.

--+ B PCR. given by (8.17).

Remark 16 The estimator (8.18) is found by a PGA compression of the Y2 data
into TpCA == Y2P, followed by a LB solution. We therefore introduee the notation
iJPCR == iJPCA+LS.

8.2.4 Partialleast squares regression - the Martens algorithm

The aim of partial least squares regression (PLSR) is to improve peR by finding
latent variable estimates f that explain both the Y2 and the Yl data, and there
exist at least two slightly different PLSR algorithms (Appendix C). It is convenient
to start with the PLSRM method of Martens (1987) that makes use of linear
combinations

A " T
TM,k == WPLSY 2,k . (8.19)

This gives the same solution as in the peR case above, only that the load­
ing matrix P is replaced by WPLS. The loading weight matrix WPLS is tra­
ditionally found iteratively (Appendix C), but it can also be found directly by
QR decomposition of a certain Krylov matrix (Di Ruscio, 1998). The matrix

T~TM = [TM,l TM,2 . .. TM,N ] [TM,1 TM,2 ... TM,N] T will in this case
be non-diagonal, and the PLSRM method of Martens is therefore called non­
orthogonal PLSR.
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Theoretical PLSRM estimator

Assuming WPLS exactly known, the result of replacing P with WPLS is that (8.17)
is replaced by the theoretical PLSRM estimator

BPLSR+KF (8.20)

WPLS (wlLsc2RvCiWPLS + wlLsR22WPLS ) -1 wlLsc2Rvcf.

Data based PLSRM estimator

The data based PCR estimator (8.18) is replaced by the PLSRM estimator

(8.21)

This is also a biased estimator, i.e. EBPLSR =j:. B KF given by (8.10), and as for
the PCR estimator we find that BPLSR

--4 B PLSR. when N --4 00.

Remark17 The estimator (8.21) is found by a PLSR compression of the Y2 data
into TM = Y2 WPLS, followed by a LS solution. We therefore iniroduce the notation
BPLSR = BPLSR+LS.

8.2.5 Partialleast squares regression - the Wold algorithm

The PLSR method of Wold et al. (1983) makes lise of linear combinations

(8.22)

with the same WPLS matrix as in the Martens algorithm, and with a specialloading
matrix Pw as defined in Appendix C. The result of this is a diagonal matrix

'i'$'i'w = [TW,l Tw,l ... TW,N] [TW,l Tw,2 ... TW,N ]T, and the Wold
algorithm is therefore called orthogonal PLSR.

Theoretical PLSRw estimator

It is straightforward to show that a factor (W1Lspw ) -1 or any other invertible

factor has 110 effect on the final estimator, which is therefore identical with (8.20).

Data based PLSRw estimator

Since the loading weight matrix WPLS is the same as in the Martens algorithm,
the data based PLSRw estimator will be identical to the estimator (8.21) above.
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8.2.6 Discussion

Equivalence of the Wold and Martens algorithms

The equivalence of the Wold and Martens algorithms in the sense that they use the
same weighting matrix TvVPLS is of course well known (e.g. Martens and Næs, 1989),
although the present treatment by use of Kalrnan filtering formalism appears to
be new.

The regularized LS solution

The general regularized estimator (8.5) can be found in two equivalent though
conceptually different ways:

1. Start with the theoretically optimal estimator BK F according to (8.14), and

end up with (8.5) by replacing (KfE)T with the weighting matrix P or
WPLS that may be found from the data. We may thus see P and WPLS as
approximations of (K~E)T.

2. Compress the data into TpCR y 2P or e.g. TM = Y2 WPLS. Then find
"PCR (AT A )-1 AT "PLSR._(AT")-lA TBT = TpCATpCA TpCAY1 or BT - TMTM TMY1 and end up

with (8.5) by use of BPCA = pB"tCA or BPLSR. = WPLsBtLSR'. Tl1is might
be seen as a PCAjPLSR+LS solution, and we will return to this concept in
Subsection 8.3 below.

Bias

The peR and PLSR methods are often referred to as biased regression (e.g.
Martens and Næs, 1989). Although this is certainly true, it is still important
to notice the meaning of bias related to latent variable modeling. The ordinary

least squares estimator iJLS = (YlY2) -1 Y2Yi is unbiased in the sense that it leads
to unbiased estimates of Yl, but the variance tend to be large when the number of
observations is limited compared to the number of Y2 variables. A solution to this
problem is to lise the regularized estimator (8.5), and with the optimal weighting

matrix W= WKF = (KfE)T as in (8.14) the estimator iJK F is still unbiased at the
same time as the variance is minimized. When K~E is replaced by wlcR. = pT
or wlLs, the resulting estimators will be biased, and that is the price we pay for
a reduction of the variance as compared to the LS solution.

8.3 The general case with Y2 independent of u

In the general case, we have known and independent input variables u as well as
dependent Y2 variables. With the appropriate prior information available, we may
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know that the Y2 measurements are independent of the known inputs u, i.e. that
D2 == 0, and the theoretical Kalman filter based Yl estimate is then from (7.29)
found to be

~KF D C K OE
YI,j== IUj+ l 2 Y2,j· (8.23)

(8.24)

Assuming that the need for regularization is due to a large number of Y2 vari­
ables, we now have the choice between two approaches:

1. We may use a standard PCR or PL8R algorithm (Appendix C) with both u

and Y2 data inc1uded in the X matrix, Le. X = [U Y2]. In that way we

find both Dl and C;I(~E as parts of the regularized solution.

2. With a limited total number of Y2 PCA or PL8R components and known
input variables, Le. a2 + dim(u) « N, the PCR and PL8R regularization
methods can be applied to the Y2 variables separately, while Dl is found by
a L8 solution. Since this will give a better estimate of Dl, it is reasonable to
expect better results with this approach (see Example 8.2 and 8.3 in Section
8.5 below for simulation results).

8.3.1 KaIman filter based estimators

As a basis for comparison, we also now develop optimal representations of the least
squares estimators (7.29) and (7.30).

Theoretical Kalman filter estimator

Wit11 f = KrEY2 as regressor instead of Y2 and with D2 == 0, and using Bf~ from
(8.11), the theoretical estimator (7.29) is modified into '

[
Bf~+KF ]
B KF+KF

2,T

[f!~EC2Rv (K~EC2f + K2R22 (K~E)T) -1 K~EC2RvCr ] .

Since
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this results in

(8.26)

Just as for (8.12) in relation to (8.10), this can be simplified to

(8.27)

We will, however, need (8.26) as it is in the development below.

Data based Kalman filter estimator

Defining tkF = [h f 2 ..• i» r we find from (8.8)

and the ordinary least squares method assuming K~E known thus gives

(8.28)

[

f3KF ]1,T
AKFB 2 T,

(8.29)

From the relation between B~F and B K F in (8.25), we tind the unbiased estimator

(8.30)

Since it is based on an underlying Kalman filter, this is the optimal unbiased
estimator. Note, however, that we cannot find K~E from the data, and we lise
(8.30) only as a starting point for the development of peR and PLSR solutions
below.
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8.3.2 Principal component regression

Theoretical PCA+KF estimator

With principal components as defined in Appendix C, the Kalman gain KrE
is replaced by pT defined by (8.15) (although assumed exactly known). The
theoretical estimator (8.26) is thus replaced by

A two-step PCA+LS solution

Ordinary PCR is a two-step PCA+LS method (Appendix C), but then with all
data used in the first step. We will now introduee a method which uses only part
of the data in the first PCA step, and includes the rest in the L8 step. First find

(8.32)

Le.
(8.33)

with dim(PI ) == m x a2, where m is the number of Y2 measurements and a2 the
number of Y2 components used. Assuming a limited total number of components
and known variables u, i.e. a2+ dim(u)«N, we may include the U data first in
the second step and use the LS solution

where

[

.BPCA+LS ]
B~ PCA+LS - I,T

- A "'PCA+LS ,
PIB2T,

lr ~Bt~~:~: lJ = (lr ~; Jl [u ii,PCA] ')-l fl ~~ lJ Yl·
2,T \ I,PCA 1,PCA

(8.34)

(8.35)

This is (8.30) and (8.29) with K?E replaced by pr, and a comparison with (8.31)
shows that .Bi~A+LS == br.

Note that ~e asymptotically (N ---t 00) with D2 = Oin (7.22) obtain JvUTU ---t

Ru, ]:.; UTY2 ~ 0, ]:.;y2
T Y2 ---* C2RuC'f + R22, JyUTYi ~ RuDI and hylYl ~

c2Ruci. Insertion of this in (8.35) results in .BPCA+LS -7 BPCA+KF given by
(8.31).
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A two-step PCA+PCR solution

With a large total number of components and known variables, the LB solution
(8.35) will give large variance due to overfitting, and assuming collinear u variables
the second step above may be replaced by the peR solution

where

[

.BPCA+PCR ]
BA PCA+PCR _ I,T

- A "PCA+PCR ,
P1B2T,

(8.36)

[
.Br~A+PCR ] [[ UT ] ] -l [ UT ]
.BPCA+PCR = P2 pi TT [u ii,PCA] P2 pi TT Yl,

2,T 1,PCA I,PCA
(8.37)

with P2 = [Pir Pi;]T defined by

[u T1,PCA] [ ;~~ ] = T2,PCA. (8.38)

With the number of components used in the second step a = a2 + dim(u) ,
where a2 is the number of components in Y2 from the first step, the PCA+PCR
=PCA+PCA+LS method will give the same result as the PCA+LS method above.
The reason for this is that the second step uses all available variables, i.e. there is
no data compression ill the second PCA step.

A one-step r-en solution

The result of an ordinary peR as compared with the two-step methods above, will
depend on the number of u variables and the scaling of the u and Y2 variables.
With a small number of u variables, the result must be expected to be poorer than
with the PCA+LS solution above. The reason for this is that bl is determined
after an unnecessary regularization (see Example 8.2 and 8.3 in Section 8.5 below).

8.3.3 Partialleast squares regression

Theoretical PLSR+KF estimator

With loading weights as defined in Appendix C, the Kaiman gain K?E is replaced
by wlLs . The theoretical estimator (8.26) is thus replaced by

[BBt~::::: ]= [~: (W1LsC2RvCi W PLS ) -1 xxr'T C DCT ]. (8.39)
2 vVPLS +TxTT R TXI: vVPLS 2J.Lv 1

vv PLS 22 vv PLS
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A two-step PLSR+LS solution

We may tind also a PLSR solution in two steps. First lise the response variables
Yl and find

(8.40)

i.e.
(8.41)

(8.42)
[

BPLSR.+LS ]
BPLSR+LS _ 1,T- WBPLSR.+LS ,

1 2,T

with dim W1 == m x a2, where m is the number of Y2 measurements and a2 the
number of Y2 components used. Assuming a limited total number of components
and known variables u, i.e. a2 + dim(u)«N, we may in the second step lise the
L8 solution

where

[~tl:::~: ]== ([ r: ][U Tl,PLS ])-1 [~~ ]Yl.
2,T I,PLS I,PLS

(8.43)

A comparison with (8.39) shows that Bi~SR+LS = bro
Notethat N ---* 00 results in .aPLSR+LS ---* BPLSR+KF given by (8.39), just as

BPCA+LS -+ BFCA+KF.

A two-step PLSR+PLSR solution

(8.44)
[

.aPLSR+PLSR. ]
BPLSR+PLSR _ I,T- WBPLSR+PLSR, ,

l 2,T

With a large total number of components and known variables and assuming
collinear u variables, the second step above may be replaced by the PLSR so­
lution

where

r
Bi.~SR+PLSR l "r "TrUT l[ " ]'" l-l ~ TrUT l
BPLSR+PLSR = W2 W 2 TT U Tl,PLS W2 W 2 TT Yl,

L 2,T ..I L. L. 1,PLS..J 1,PLS
~ - (8.45)

with W2 = [W?;: w?;] T defined by

[U Tl,PLS] [ :~~ ] = T2,PLS. (8.46)

With the number of components used in the second step a == a2 + dim(u),
where a2 is the number of components in Y2 from the first step, the PL8R+PLSR
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method will give the same result as the PLSR+LS method above. The reason is
the same as for the two-step PCA+ PCR method, Le. there is no data compression
in the second step.

A one-step PLSR solution

As for an ordinary PCR, the result of an ordinary PLSR as compared with the
two-step methods above, will dep end on the number of u variables and the scaling
of the u and Y2 variables. With a small number of u variables, the result must also
here be expected to be poorer than with the PLSR+LS solution above (sinee Dl
is determined after an unnecessary regularization).

8.4 The general case with correlated u and Y2 data

With the appropriate prior knowledge we may know that Y2 and u are correlated
(see Example 8.2), and without prior knowledge we must assume that they may
be correlated. The model (8.6) is then modified into

Yl,j

Y2,j

C 1Tj +DIU j +Wl,j

C2T j + D2Uj + W2,j c

(8.47)

8.4.1 Kalman filter based estimators

With a known model, the optimal current state estimate would in this case be

while the optimal Yl estimate is

(8.49)

8.4.2 Regularized solutions

Assuming that the problem is a large number of Y2 variables, we may also in this
case choose between

• a total PCR or PLSR based on X= [U Y2]
• a PCA or PLSR based on X == Y2, followed by a LS solution.
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In the case with D 2 = O discussed above, we argued that the PCAjPLSR+LS
approach must be expected to give the best result assuming a2 + dim(u) « N.
The same argument can be used here. However, the relation to the theoretical
Kalman filter solutions is ill this case not straightforward, and two approaches
may be argued for and used in practice:

1. From (8.48) follows that f could be found as f = Pl' [uT yr r or f =

~ T [T T]T [OE OE ]W1,PLS u Y2 , i.e. that - K 2 D2 K 2 could be approximated

by pr or W[PLS' This means that the first PCAjPLSR step could be

based on X=' [U Y2], while Dl and e.g. Cl [ -KrED2 K?E] WI,PLS

would remain to be estimated in the second L8 step (where we may choose

Cl = [I O ]).

2. From (8.49) follows that the problem could be solved by a compression of
only the Y2 data, leaving Dl -ClKrED2 and e.g. C1K ? ETvV2,PLS to be found

in the second L8 step (where we may choose Cl = [I O] ) .

Since the L8 step asymptotically will give the optimal estimator given the
result from the first step, and assuming a sufficient number of observations, the two
approaches must be expected to give very similar results, provided the assumptions
given. This is confirmed by the simulations in Example 8.3, although a more
thorough analysis and more practical testing are needed befare final conclusions
can be drawn,

8.5 Simulation exarnples

Example 8.1

Tests on the pure dependent regressor (Dl = D2 = O) system (8.6) were performed
in M = 100 Monte Carlo simulations with modelorder n == 3. Eac11 element in
the R; matrix was a uniformly distributed random number in the interval (0,1).
Cl was a 1x3 matrix while O2 was a 100 x 3 matrix, both with elements as
normal random variables with variance 1. The prirnary output measurement noise
was normal with variance rIl = 0.0001, while the secondary output measurement
noise was normal with R22 as a diagonal matrix with uniformly distributed random
parameters in the interval (0,0.01).
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Validation RMSE values using independent data sets were determined for the
following cases:

• Theoretical RMSE according to (7.37).

• Theoretical Kaiman filter based estimator B KF == (CIK~E) T according to
(8.10).

• Ordinary LS estimator iJLS = (Y2T }2)-1 Y{Yi.

• peR estimator iJPeR = p (PTY2T y2P) -1 PT Y{ Y1 according to (8.18).

• PLSR estimator iJPLSR = WPLS (W1LsY{Y2 WPLS ) -1 wlLsY{Y1 according

to (8.21).

For different numbers of observations the results were as given in Table 8.1.

Table 8.1: Validation RMSE values for different estimators and different number of
samples N, based on M == 100 Mante Carlo simulations.

N=5 N= 10 N= 100 N = 1000
Theoretical 116 103 118 115
BK!f 124 120 I 128 125

B K F 206 145 126 125

B LS 708 482 4198 132
iJPeR. 334 194 153 154
B PLSR. 331 194 153 153

We see from this that

• the B K F results are close to the theoretical value also for very few observa­
tions

• the iJKF+LS results are poorer than the peR and PLSR results for N = 5 but
otherwise better, and they are approaching the theoretical result for N -+ 00

• The iJLS results show large variance for few observations, and approach the
theoretical result for N -+ 00

• peR and PLSR give better results than LS for few observations, and poorer
results for many observations
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• peR and PLSR give very similar results, which is as expected with the
randomly generated data used.

These results are all in line with the theory diseussed.

Example 8.2

Assume the same system as in Example 7.2, but with two modifications such that
the Y2 measurement

• are moved to the disturbanee stream with unknown concentrations

• has p == 100 variables (e.g. spectrum frequencies).

The system is shown in Fig. 8.1.

Y2
Yl

QT
QT

A Um,l ....;0.

B U m,2

C Um,3

z

Figure 8.1 Main proeess stream with known concentrations u and disturbanee stream

with unknown concentrations d, a concentration dependent primary property z, primary

property measurement Yl and a secondary multivariate measurement Y2 in the disturbanee

stream.

The mean validation RMSE results and standard deviations from M == 100
Mante Carlo runs were determined using the data based least squares estimator
(7.30), and the various regularized estimators developed in the present chapter. In
the first step in the PCA+LS, PLSR+LS, PCA+PCR and PLSR+PLSR methods,
only Y2 data was used, with the number of components a2 == 3, which was easily
found from the eigenvalues of the y 2

TY2 data matrix (for a typical simulation with
N == 100 observations, these were in descending order Ai == 4906, 521, 304, 2, 2,
2, 2, ... ). In the second step, and in the one-step peR and PLSR methods the
number of components were a == 6. The validation RMSE results for the different
methods at different numbers of observations are shown in Table 8.2.
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Table 8.2: Validation RMSE mean values and standard deviations for the system in
Fig. 8.1 for different number of samples and different methods. The results are based on
M == 100 Mante Carlo runs, and the RMSE values are multiplied by 104.

Method N==50 N == 100 N == 1000
LS estimator (7.30) 719 ± 323 1175 ± 660 135 ± 17
PCA+LS estimator (8.34) 167 ± 34 164 ± 32 159 ± 26
PLSR+LS estimator (8.42) 261 ± 216 204 ± 104 ! 162 ± 27
PCA+PCR estimator (8.36) 167 ± 34 164 ± 32 159 ± 26
PLSR+PLSR estimator (8.44) 261 ± 216 204 ± 104 162 ± 27
One-step PCR estimator 365 ± 180 259 ± 150 182 ± 88
One-step PLSR estimator 319 ± 123 226 ± 77 163 ± 27

From Table 8.2 we see the following:

• The LS method gives very poor results for N == 50 and N == 100, which is
as expected since 103 estimator parameters are to be determined.

• The one-step peR and PLSR methods give far better results for N == 50 and
N == 100, but show less improvement for an increased number of samples.

• The two-step methods are clearly better than the one-step methods, which
is as expected since a2+ dim(u) == 6 << N.

• The PCA+LS and PCA+PCR methods give the same results, and the sa do
the PLSR+LS and PLSR+PLSR methods. The reason for this is that no
data compression is performed in the second step.

• With a small number of samples, the PCA+LS estimator is significantly
better than the PLSR+LS estimator. The reason is that the first PLSR step
involves Yi data, which also depends on the U data.

•
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Example 8.3

The system in Example 8.2 was modified such that the multivariate Y2 measure­
ment was applied to the total proeess stream at the outlet (see Fig. 8.2).

Y2

QT

Yl

QT

z

Figure 8.2 Main proeess stream with known concentrations u and disturbanee stream
with unknown concentrations d, a concentration dependent primary property z, primary

property measurement Yl and a secondary multivariate measurement Y2 in the mixed

stream.

The mean validation RMSE results and standard deviations from M = 100
Monte Carlo runs were determined USi11g the data based least squares estimator
(7.30), and the various regularized estimators. For the first step in the PCA+LS,
PLSR+LS, PCA+PCR and PLSR+PLSR methods, only Y2 data was used. The
number of components used in the two-step methods as well as in the ordinary PCR
and PLSR algorithms were a2 = 6, which was easily found from the eigenvalues of
the ylY2 data matrix (for a typical simulation with N = 100 observations, these
were in descending order Ai = 8780, 997, 819, 451, 212, 18, 2, 2, 2, 2, )

and the [U 1'2 r[U Y2] data matrix (typically Ai = 8742, 916, 786, 423,
192, 17,2,2,2,2, ). The validation RMSE results for different numbers of
observations and different methods are given in Table 8.3.
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Table 8.3: Validation RMSE mean values and standard deviations for the system in

Fig. 8.2 for different number of samples and different methods. The results are based on
M = 100 Mante Carlo runs, and the RMSE values are multiplied by 104 .

Method N=50 N= 100 N = 1000
LS estimator (7.30) 810 ± 303 1268 ± 992 133 ± 19
PCA+ L8 estimator 170 ± 36 168 ± 28 156 ± 29
PLSR+LS estimator 177 ± 39 173 ± 28 156 ± 28
peA+ PCR estimator 205 ± 37 201 ± 27 194 ± 30
PLSR+PLSR estimator 207 ± 38 202 ± 28 194 ± 30
One-step peR estimator 205 ± 37 201 ± 27 194 ± 30
One-step PLSR estimator 204 ± 36 201 ± 27 193 ± 29

From the table we see the following:

• As in Table 8.2, the L8 method gives very poor results for N = 50 and
N = 100.

• The POR and PLSR methods give far better results for N == 50 and N = 100,
but show little improvement for an increased number of samples.

• There are no obvious differences between the one-step PCR and PLSR meth­
ods, which is as expected with the data used, and the two-step PCA+PCR
and PLSR+PLSR methods give very similar results.

e The two-step PCA+LS and PLSR+LS methods give clearly improved re­
sults, which is as expected since a2 + dim(u) = 9 << N. The peA+ L8
estimator is somewhat better than the PLSR+LS estimator.

When the number of components used in the second step of the PCA+PCR
and PLSR+PLSR methods was increased to a = 9, the same results as for the
PCA+LS and PLSR+LS were obtained. The reason for this is the same as in
Example 8.2, i.e. that no data compression is then performed in the second step.

•
Example 8.4

Example 8.3 was repeated, but now with the parameters in the diagonal R22

covariance matrix as uniformly distributed random numbers in the interval (0,1)
instead of (0,0.01), i.e. a significant increase in the in measurements noise values.
It was still relatively simple to decide on a2 = 6 components (typical values for the
ylY2 eigenvalues were [770,73,60,49,37,18,12,12,11,11, ...] 104 ) . The results are
given in Table 8.4, showing very much the same type of differences as in Table 8.3
(for N == 1000 the three estimators involving PLSR are somewhat better than the



8.5. SIMULATION EXAMPLES 145

corresponding PCA/PCR estimators, but then the pure L8 estimator is anyhow
the best).

Table 8.4: Validation RMSE mean values and standard deviations for the system in
Fig. 8.2 for different number of samples and different rnethods. The Y2 measurement noise
variances has increased 100 times compared with Example 8.3. The results are based on
M == 100 Mante Carlo runs, and the RMSE values are multiplied by 104 .

Method N=50 N= 100 N = 1000
L8 estimator (7.30) 7490 ± 2934 7981 ± 5405 780±279
PCA+ L8 estimator 1558 ± 531 1229 ± 418 1179±378
PLSR+L8 estimator 1944 ± 509 1424 ± 404 1091±331
peA+ peR estimator 2182 ± 582 1824 ± 499 1638±352

PLSR+PLSR estimator 2039 ± 485 1607 ± 380 1214±286
One-step peR estimator 2175 ± 580 1808 ± 483 1625±338
One-step PLSR estimator 1995 ± 476 1616 ± 388 1266±282

As shown ill Fig. 8.3, the estimators were still reasonably good, also with the
very considerable noise on the secondary measurements.

2
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Sample nurnber

35 40 45 50

Figure 8.3 Validation response for PCA+LS estimator based on N == 50 samples and
p == 100 very noise corrupted Y2 measurements. The ideal validation response is shown
by solid line, while the estimator response is dash-dotted.

•
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Example 8.5

Example 8.3 was repeated, but now with both U and Y2 data used in the first
step in the PCA+LS, PLSR+LS, PCA+PCR and PLSR+PLSR methods. For
the PCA+LS method, the mean difference in RMSE value using 011ly Y2 and both
U and Y2 data and based on M == 100 M011te Carlo runs was 6 ~ 10-8 , while the
corresponding difference for the PLSR+ LS method was 7 . 10-5 . These differences
are negligible.

•
Example 8.6

Example 8.2 was also repeated without known input variables, i.e. with Dl ==
D2 == 0, and the number of components a2 == 3. The results are given in Table 8.5.

Table 8.5: Validation RMSE mean values and standard deviations for the system in
Fig. 8.2 without known inputs, and for different number of samples and different methods.
The RMSE values are multiplied by 104 .

Method N == 50 N == 100 N == 1000
LS estimator (7.30) 630 ± 41 4228 ± 9376 136 ± 19
PCA+ LS estimator 160 ± 32 153 ± 25 162 ± 26
PLSR+LS estimator 160 ± 31 153 ± 25 162 ± 26
PCA+ PCR estimator 160 ± 32 153 ± 25 162 ± 26
PLSR+PLSR estimator 160 ± 31 153 ± 25 162 ± 26
One-step peR estimator 160 ± 32 153 ± 25 162 ± 26
One-step PLSR estimator 160 ± 31 153 ± 25 162 ± 26

Note that without known Uk inputs there are no Dl parameters to estimate in
the second step of the two-step methods, and given N the results are therefore the
same for all the regularized estimators.

•



Chapter 9

Dynamical latent variables
methods

The optimal OE estimators discussed in Chapter 2, 3 and 6 may be com­
bined with t.he latent variable regression methods diseussed in Chapter
8, resulting in PCA+OE and PLSR+OE methods. This is of special in­
terest in-the low primary output sampling rate case diseussed in Chapter
6, where we often have a very limited number of primary output ob....
servations. It is then especially important to use a parsimonious madel
with a minimum of unknown parameters, and methods utilizing a small
number-of estimated latent variables instead of a high number of sec­
ondary-measurernents may then be helpful. Dynamical latent variables
solutions are also of interest in chemometrical frequency spectrum ap­
plications with response variables as time series.

9.1 Introduction

Many industrial plants have a considerable number of secondary Y2 measurements
available as a basis for primary output estimates. At the same time the dynamic
models found by system identification tend to be of a low order, which implies
that the Y2 measurements are more or less collinear. In addition to that, and due
to the experimental cost, the data series will often be fairly short. This situation
calls for some form of regularization, and it is therefore natural to study the use of
the multivariate calibration PCA, peR and PLSR methods also in the dynamical
case.

Special cases occur in chemometrical frequency spectrum applications, where
the calibration of the spectrum against the response variables may be done in a
statie environment, although the response variables to be predicted actually form
time series. In sueh cases an altogether dynamical calibration may be advanta-

147
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geous, and ARMAX as well as OE models may be appropriate, dependent on the
data structure.

9.2 Discussion

9.2.1 FIR models

Same authors have discussed the use of peR and PLSR in order to determine
finite impulse response (FIR) models for dynamic systems. Ricker (1988) discussed
identification of FIR models using PLSR and singular value decomposition (SVD) ,
and applied this to an anaerobic wastewater treatment plant. Wise and Ricker
(1992) discussed identification of FIR models byuse of PCR, and looked especially
at frequency response properties.

As shown in Chapter 6, a FIR model is a truncated form of an impulse response
model, i.e.

00 L

Yk = 2::= hiuk-i + 'rJk ~ 2::= hiUk-i + 17k,
i=O i=O

(9.1)

where hi are the Markov parameters, and where the integer L is chosen sa that
LT is large in comparison with the dominating time constants of the system (the
system is assumed to be asymptotically stable, and T is the sampling interval).
The noise term 'rJk is generally a non-white sequence. The corresponding model
for primary outputs us» with also secondary outputs used as inputs is

(9.2)

Due to both the truncation and the lack of noise modeling, lise of FIR models
will result in biased primary output estimates, and compression of the Uk and
Y2,k information into latent variables adds to this bias. However, same bias is not
necessarily a serious drawback in a practical case. A more important disadvantage
with FIR estimators may be the large number of parameters that often have to be
identified.

Finally note that the FIR model (9.2) may be identified also in the low Yl
sampling rate case discussed in Chapter 6, although the problem with a large
number of parameters to estimate might then be even more pronounced.

9.2.2 ARX models

Several authors have discussed the use of peR and PLSR in order to determine
ARX (AutoRegressive with eXogenous inputs) models for dynamic systems. Wise
(1991) studied the relations between ARX models and peA based on lagged values
of both the system inputs and the system outputs. Qin and McAvoy (1992) used



9.3. DYNAMIC SYSTEM PCA+OE SOLUTIONS 149

PLSR in a similar way to find an ARX model for a catalytic reforming system.
Wise et al. (1995) compared neural networks, PLSR and a genetic algorithm used
for identification of nonlinear FIR and ARX models. Dayal and McGregor (1997)
presented a recursive PLSR algorithm, and used it to identify an ARX model
used for adaptive control of a simulated stirred-tank reactor. Wikstrorn et al.
(1998) used PLSR for time series modeling related to an electrolysis process (they
had no known inputs, and were thus identifying an AR model). Harnett et al.
(1998) extended the work of Wise (1991) in order to facilitate the development
of a predictive model of the overheads condensor and reflux drum system for a
distillation column.

ARX models are generally equivalent to L8 models applied to lagged input­
output data, and due to the lack of noise modeling they will give biased results also
without data compression (with all PCR/PLSR components used). In addition we
must in the present context consider the fact that an ARX estimator makes use of
past Yl values that are not available as the present problem is formulated in Seetion
3.1. Just as for the ARMAX estimator (2.76), an ARX estimator would therefore
not utilize seeondary Y2 information in an optimal way. One obvious effect of this
would.be that noisy Y2 measurements callinear with Yl would be effectively ignored
when the identification experiment gives low noise Yl information (compare with
Example 2.4).

Finally note that ARX models cannot be identified in the low primary output
sampling rate case diseussed in Chapter 6.

9.3 Dynarnic system PCA+OE solutions

The faet that FIR and ARX least squares solutions are not asymptotically optimal
does not mean, of course, that the PCR and PL8R solutions referred to above may
not give useful results in same realistie eases with a limited number of observations.
In the following we will, however, study latent variables solutions based on the
optimal OE estimators presented ill Chapter 2, 3 and 6. As mentioned above,
though, also ARMAX models using estimated latent variables may be used (see
an acoustic chemometry example in Chapter 10).

The most generally useful dynamic system application of the multivariate cali­
bration methods is to lise dynamical equivalents to the two-step PCA+LS methods
presented in Chapter 8, for example a two-step PCA+OE method. We will then
in the first step perform a peA on the secondary Y2 measurements, just as in the
static case. In the second stage we identify the dynamic OE estimator (OEP or
OEC) using the estimated latent variables Tk from the first step as inputs together
with the known inputs Uk. Note that this PCA+OE method can be applied also
in the low Yl sampling rate case.
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The principal components of Y2 are found by factorizing the Y2 matrix as

1'2 = [Y2,1 Y2,2 ... Y2,N r = TpT + E, (9.3)

where E is a matrix of residuals (see Appendix C). Since pTP =='1, the estimated
latent variables then become

AT
Tk == P Y2,k· (9.4)

The equation for the secondary outputs from the dynamic system is thus altered
from

(9.5)

to
(9.6)

(9.8)

(9.10)

Theoretical PCA+OEC estimator

The estimated latent variables rnay be used directly in e.g. the OEC estimator
(2.41), resulting in the primary output estimator

Y1,klk = C1(I-K~EpTC2) (qI-A+AK~EpTC2)-1. (9.7)

[(B - AK~EpTD2) Uk +AK~Eh] + C1K~E(Tk - pTD2Uk) + D1Uk,

where the Kalman gain is given by appropriately modified versions of (2.35) and
(2.36), i.e.

K~E = pj?EPc[Pv:C2Pj?EPC[P+ pTR22P)-1 ,

with p~EP determined by the algebraic Riccati equation

p~EP = AP~EPAT + GRvGT (9.9)

- APj?EPC[P (pTC2pj?EP C[P+ pTR22P) -1 pTC2Pj?EP AT.

In (9.7) we assurne that the total number of estimated latent variables f and
known inputs u is small compared to the number N of observations available (the
same assurnption as for the PCA+LS method in Chapter 8). With many collinear
known inputs from for example measured plant disturbances, we may compress
also this information into principal components.

With Uk == 0, the estimator (9.7) is simplified to

'" (OE"T )( OE .... T )-1 OE ....Yl,klk = Cl 1 - K p P O2 qI - A + AKp P O2 AKp t»

eKOE ....+ 1 P Tk,

showing the dynamical relation between the collinear time series Y2,k represented
by Tk and the time series Yl,k'
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Data based PCA+OEC estimator

The estimators (9.7) and (9.10) may be identified by specification of an OEG madel
in a standard prediction error rnethod, as described in Chapter 3, using Uk and i»
as inputs. In the low primary output sampling rate case, it can also be identified
by use of a modified predietion error method as described in Chapter 6.

9.4 Dynarnic system PLSR-i-OE solutions

In cases where there exist a pure statie (although normally noise corrupted) rela­
tion between the secondary Y2 and the primary Yl measurements, it is possible to
apply a two-step PLSR+OE method (PLSR+OEP or PLSR+OEC).

Consider for example the system

Xk+l AXk + BUk + GVk

Yl,k [CIO] Xk + DlUk +Wl,k = ClXl,k + DlUk +Wl,k (9.11)

Y2,k [C2 O] Xk + D2Uk + W2,k, = C2Xl,k + D2Uk +W2,k,

where all state variables in Xl,k that directly infiuences Yl,k via Cl, also directly
infiuences Y2,k via O2 .

PLSR

The PLSR method with Yl as response variables and Y2 as collinear regress or
variables, will in the first step result in e.g.

(9.12)

(choosing the Martens algorithm, see Appendix C). This may be done also in the
low Yl sampling rate case, although the quality of the model may be poor with a
limited number of Yl samples.

In the second step we use the dynamic estimator (9.7) with the loading matrix P
replaced by the loading weight matrix WPLS, i.e.

Yl,klk = Cl (1 - Ki?,EW1LsC2) (q1 - A + AKi?,EW1LsC2)-1

X [(B - AKi?,EW1LsD2) Uk + AKi?,Efk]
OE A T

+C1Kw (fk - WPLsD2Uk) + DlUk, (9.13)
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with the KaIman gain given by

(9.14)

where p{?rEP is determined by the algebraic Riccati equation

p{?rEP == AP{?rEP AT + GRvCT (9.15)

ApOEP C T TXl' (W1LsC2P&EPCfWPLs) -1 w"T C p,0EPAT
- W 2 vVPLS +w"T R TXl' PLS 2 W .

PLS 22 vVPLS

Data based PLSR+OEC estimator

The estimator (9.13) may be identified by specifying an OEC model with Uk and
7k as inputs in a prediction error method. If necessary the known input data may
also here be compressed into principal components by use of PCA.

9.5 Combined PCA+PLSR+OE solution

In some cases there may exist a pure static relation between same secondary mea­
surements Y21 and the primary Yl measurements, while there is a dynamical re­
lation between other secondary measurements Y22 and Yl. It is then possible to
combine the PCA+OE and PLSR+OE methods above, Le. the Y2l data is com­
pressed into Tl by use of PLSR, while the Y22 data is compressed into 72 by use of
PCA, and U, Tl and 72 are then used as inputs when the OE estimator is identified.
We may also lise same additional measurements Y23 as inputs.

9.6 Sirnulation example

Mante Carlo simulation studies are undertaken by use of the dlsim. m function
in the Control System Toolbox for use with Matlab (Grace et aL, 1992), and
the prediction error method implemented in the pem. m function i11 the System
Identification Toolbox for lise with Matlab (Ljung, 1995). With an appropriate OE
model specified, the petn, TTi function identifies the dynamic PCA+OE estimator
(9.7) or (9.10), or the dynamic PLSR+OE estimator (9.13), where Uk and the
estimated latent variables Tk are used as input signala.

Example 9.1

For an application of the dynamical PCA+OE and PLSR+OE solutions, three in­
dependent filtered white noise sequences were generated. The following continuous­
time system consisting of three independent second-order systems was used as a
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starting point:

-1 O O 1 O O O O O
O -1 O O 1 O O O O

X
O O -1 O O 1 O O O

(9.16)
O O O -1 O O

x+
1 O ·0 v

O O O O -1 O O l O
O O O O O -1 O O 1

Yl [ 1 1 1 O O O ] X+W1

Y2 [ C21 O ] X+W2-

The system is shown in Fig. 9.1.

VI l

S + 28 + l
Wl

V2 1 Yl

S + 28 + l
+ +

V3 1

S + 28 + 1

Figure 9.1 Three second-order latent variable generating systems, with scalar primary

output and multivariate secondary output.

Here, 021 was a 200 x 3 matrix with uniformly distributed random parameters
in the interval (O, 1). The system was discretized assuming zero-order hold elements
on the inputs and a sampling interval T = 0.1. The system was then simulated
with v, WI and W2 as independent and normally distributed zero mean white noise
sequences. The Rv and R22 covariance matrices were diagonal, with uniformly
distributed random parameters in the intervals (O, l) and (O, r22) respectively, while
the Yl variance was rIl == 0.0001. Different values of r22 were used as described
below.
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The simulations started with r22 == 0.01, and the ordinary statie PCR and
PLSR estimators (8.18) and (8.21) based on N == 200 samples were first determined
for different numbers of Y2 components a2. In addition the dynamic PCA+OE and
PLSR+OE estimators according to (9.7) and (9.13) were identified using the OEC
model (see Appendix B for the definition of nn)

nn == [O, [2, ... , 2] , O, O, [2, ... , 2] , [O, ... ,O]] . (9.17)

Each estimator was determined in M = 10 Monte Carlo runs using N = 200, with
validation against independent data sets with the same number of samples. The
resulting mean validation RMSE values are plotted in Fig. 9.2.
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Figure 9.2 Validation RMSE mean values as function of number of components used

in PCR, PLSR, PCA+OE and PLSR+OE estimators for r22 = 0.01, based on 10 Monte
Carlo runs with N = 200 samples.

From Fig. 9.2 we find the optimal number of components a2 == 3, which is
not surprising since the system has three independent noise sources, The figure
also indicates that PLSR is slightly better than peR, and that the dynamical
PCA+OE and PLSR+OE solutions are better than the statie anes.

The models for a2 = 2, 3 and 4 were also determined using M = 100 Monte
Carlo runs, with mean validation results and standard deviations as shown iI1
Table 9.1. The results clearly indicate the improvement obtained by lise of the
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dynamical solutions. Table 9.1 also includes the proportion of the Y2 sample vari­
ance explained by the peR components used. This proportion is a function of the
sample eigenvalues ~1 ~ ~2 2:: ... ~ ~p in a principal component analysis (see e.g.
Johnson and Wichern, 1992), defined as

explained proportion of sample variance = Lf~l ~i ,

Lf=l Ai
(9.18)

where p is the number of Y2 variables and a2 the number of components used.

Table 9.1: Validation RMSE mean values and standard deviations for data based peR,
PCA+OEC, PLSR and PLSR+OEC estimators with r22 = 0.01, based on N = 200
samples and with different numbers of components. The explained proportions of Y2

sample variance are included. The RMSE values are multiplied by 104 .

a peR PCA+OEC PLSR PLSR+OEC expl. var. (%)
2 124 ± 44 121 ± 59 103 ± 15 95±20 67
3 100 ± 9 91 ± 17 97±6 86±7 69
4 100 ± 9 91 ± 11 99±8 89±8 70

The PLSR and PLSR+OEC simulations were finally repeated using also T22 =
0.001 and r22 = 0.1. Mean validation RMSE results based 011 M = 100 Monte
Carlo runs with a2 = 3 are given in Table 9.2, indicating that the improvement
obtained by use of the dynamic estimator increases with increasing Y2 noise level.
At the same time the explained proportion of sample variance related to the cor­
responding PCR components decreases. For T22 = 0.1 the optimal number of
components is in fact a2 = 2, with slightly reduced validation RMSE values as
compared with lise of a2 = 3.

Table 9.2: Validation RMSE mean values and standard deviations for data based PCR,
PCA+OE, PLSR and PLSR+OE estimators with various r22 values, based on N = 200
samples and with a2 = 3 components. The explained proportions of Y2 sample variance
are included. The RMSE values are multiplied by 104 .

!CJ1 \
'1'22 .r Lo r.l.JO VD RM,c;'RPLSR expl. var. \/0)

0.001 30±3 31 ±2 0.99 95
OmOI 97±6 86±7 Oe89 69
0.1 318 ± 35 257 ± 54 0.81 19

•
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Chapter 10

Real data examples

The methods for identification of primary output estimators developed
in the thesis are tested on data from laboratory experiments and in­
dustrial plants. These cases make use of data from an experimental
extruder at the Borealis polyolefine plant in Bamble, Norway, a civil en­
gineering polyethylene pipe extruder at the Icopal plant in Drangedal,
Norway, a complex industrial plant run by Norsk Hydro, Norway, and
an acoustic chemometrics experimental setup at Telemark Institute of
Technology, Porsgrunn, Norway.

10.1 Introduction

The intention with the following examples is to show that the estimator identifi­
cation methods developed and discussed in the theoretical part of the thesis work
also on data sampled from physical plants. The main theoretical points to be
supported are the following:

• With the main data structure assumed in the thesis, OE estimators should
theoretically perform better than ARMAX estimators, assuming that past
primary Yl,k measurements are not available as a basis for present Yl,k es­
timates. As pointed out in Chapter 2, this is due to the fact that the OE
estimators will thell be based on all underlyillg Kalman filter, while tlle AR­
MAX estimators will be non-optimal. However, note that the theoretical
difference may be small when the Yl,k noise level is high (see Fig. 3.5) .

• The OE estimators can be identified also when the primary Yl,k data is
sampled at a low and irregular rate. As pointed out in Chapter 6, this is
sa because the criterion function used in a prediction error identification
method is then basically the same as in the high Yl,k sampling rate case.
This possibility does not exist for ARMAX estimators.

157
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• Dynamic PCA+OE and PLSR+OE estimators may perform better than
static PCR=PCA+LS and PLSR=PLSR+LS estimators in cases where the
predicted primary Yl,k output is a time series that can be modeled as a re­
sponse to known inputs Uk and/or white process noise Vk. With a latent
variable data structure, the OE estimators will also here theoretically per­
form better than the ARMAX estimators.

Since the emphasis is on the system identification and multivariate calibration
principles and methods involved, the physical plants are given only very brief
descriptions. To some extent the full background for the data is in fact confidentia1.
In some of the data sets the manipulated inputs have a low degree of excitation,
and the data sets are in some cases rather short. Better results may thus be
obtained with more careful experimental designs.

All estimator identifications were performed by use of the pem. m function in the
System Identification Toolbox for use with Matlab (Ljung, 1995), when necessary
modified to handle low sampling rate Yl data.

10.2 Experirnental extruder

Fig. 10.1 shows an experimental twin-screw extruder at the Borealis polyolefine
plant in Bamble, Norway. In a student project, this extruder was used to produce
hard polypropylene foam, with the foam density as the primary quality output Yl,k

(Faanes, Gjermundbo, Gundersen and Tvedt, 1997). The manipulated Uk inputs
were the common temperature setpoint for some of the heating zones along the
extruder and the gas injection pressure, while the secondary Y2,k outputs were four
temperature measurements along the extruder and the outlet pressure.

heating Ul

Y24 Y25

Variable

Gas injec- Y21 Y22 Y23

tion U2

Constant heating

Feeding

Figure 10.1. Experimental extruder with variable heating setpoint Ul [OC], gas in­

jection pressure U2 [bar], temperature measurements Y21 to Y24 [OCJ, outlet pressure Y25
[bar] and foam density Yl [g/cm3] . The totallength of the extruder without motor unit

is 120 cm.

The manipulated inputs for the entire experirnent with a total of 230 samples
with a sampling interval T = 30 sec. is shown in Fig. 10.2. As indicated in the
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figure, the data is divided into two parts, the first 115 samples used for modeling
and the remaining 115 samples used for validation. Note that the gas pressure was
constant in the modeling set.
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Figure 10.2 Manipulated inputs for experimental extruder, the first part of the data
used for modeling and the last part used for validation.

The corresponding secondary outputs are shown in Fig. 10.3.

180E =~ 160

1400- ~~ 200

~;:: L ~j
140 o 50 100 150 200

~;:: ~

~:::F 5:~ 1:0 =- 1
140 o 50 100 150 200

~ ~:
00 50 100 150 200

SampleNumber

Figure 10.3 Secondary outputs for experimental extruder, the first part of the data
used for modeling and the last part used for validation.

The primary Yl,k outputs were determined by laboratory density measurements
of physical samples of the product, with a considerable variance in the obtained
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values. The Yl sampling rate was the same as for u and Y2. The result is shown
in Fig. 10.4 below, together with estimated primary output values.

Both ARMAX and GE estimators were identified, and mean-centered data
from the first 115 samples were used as the modeling sete The last 115 samples
were used for validation, and the best results were obtained with all Uk and Y2,k

variables used as inputs, Since the gas injection pressure was constant in the
modeling set, nothing but zero-order and first-order estimators could be identified.
The estimators were specified as general polynomial models, in which different
delays of the input signals are easily tested. Initial values were found by the L8
and instrumental variable algorithm that is a part of the pem. m Matlab function.
Repeated identifications using randomized initial values gave no improvement.

The best ARMAX estimator was found with the specification (see Appendix
B)

nn == [1, [1,1,1,1,1, 1,2] ,1,0, [O, O, 0,0,0,0, O] , [1,1,2,2,1, 1, O]] , (10.1)

The RMSE validation result was then

RMSEARMAX ==
1 230 2

- '" (Y k - y"AR.MAX) == 0.0144.115 c: 1, l,k
k=116

(10.3)

The best OE estimator was found with the specification (see Appendix B)

nn == [O, [1,1,1,1,1,1,2] ,0,0, [1,1,1,1,1,1,1] , [1,1,2,2,1,1, O]] ,

corresponding to the estimator structure

b -1 b -1 b -2 b-2
Ilq" Ul,k + l2Q" U2,k + 2lQ" Y2l,k + 22Q" Y22,k

1 + fllq-l 1 + f12Q-l 1 + f2lq-l 1 + f22Q-l

;- - 1 ;- _ 1 (~,.. -L hn sri-l" rJ 1.-._ ~
023Q "'Y23,k 024Q "'Y24,k \ vu I vz '1. ) :J"L.b,1\;

+ A + A + "
1 + f23Q-l 1 + f24Q-l 1 + f25q-l

The RMSE validation result was then

(10.4)

(10.5)

RMSEOE ==
1 230 2

115 L (Yl,k - yP,~) = 0.0130,
k=116

(10.6)

Le. clearly better than the ARMAX result.
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The results from the laboratory determination of the Yl,k values are shown in
Fig. 10.4 as rather noisy signals, while the estimated yt~MAX and i)P~ values give
the less noisy signals. The validation RMSE values may also be used as estimated
standard deviation limits, resulting in the dotted curves in Fig. 10.4.
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~
:;:
~ 0.1

50 100
SampleNumber

150 200

0.2 r------r------,------r----,-------r------,

0.15

w
~ 0.1
>-

50 100
SampleNumber

150 200

Figure 10.4 Measured primary output (noisy signals) and estimated primary output
(less noisy signals) using ARMAX and GE estimators. The first part of the measured data
was used for modeling and the last part for validation, resulting in RMSEAR.MAX =
0.0144 and RMSEOE == 0.0130. The validation standard deviation limits (RMSE

limits) are shown as dotted lines.

In the RMSE values obtained and illustrated as standard deviation limits in
Fig. 10.4 are also included the Yl measurement error. This means that the er­
ror in the estimated product quality (foam density) is smaller than given by the
RMSE value, and the figure indicates that for the major part of the samples the
estimation error may be quite overestimated. On the other hand it appears to be
underestimated for the samples between k = 180 and k == 200, when there is a
drap in the gas injection pressure.

In order to check if the estimation residual (predietion errar) Ck is a white noise
sequence, the autocorrelation function of Ck for the OE estimator is computed by
lise of the resid. m function in the System Identification Toolbox for use with
Matlab (Ljung, 1995). The result is shown in Fig. 10.5, together with the 99%
confidenee intervals plotted as dotted lines, under the assumption that Ck is white
and independent of Uk and Y2,k.
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Figure 10.5 Autocorrelation function for the OE estimator residuals.

Fig. 10.5 clearly indicates that €k for the OE estimator is white noise, although
it theoretically and according to (2.31) and (2.42) should be colored. This also in­
dicates that the estimation error to a large extent is due to a white Yl measurement
error.

In order to compare the results in Fig. 10.4 with other alternatives, the vali­
dation results with only Ul and U2 used as inputs, and the results with only the
Y2 measurements used as inputs are given in Table 10.1.

Table 10.1: Validation RMSE results for estimators using different inputs.

Inputs RMSEAH.MAX RMSEO~

Ul and U2 0.0159 0.0182

Y2l to Y25 0.0201 0.0185
Ul, U2 and Y2l to Y25 (see Fig. 10.4) 0.0144 0.0130

From the table we see that both the known U inputs and the secondary Y2

measurements play significant roles for the result in Fig. 10.4.

10.3 Industrial extruder

Fig. 10.6 shows a production line for civil engineering polyethylene pipe extruding
at the Icopal plant in Drangedal, Norway. The pipe diameter Yl is essentially
determined by a calibration die, and the pipe is radially pulled towards this die
by an external vacuum force. From the extruder outlet to the pipe diameter
measurement at the pipe cut-up position, there is a time delay of approximately 5
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min ., and an estimate of Yl without this delay is thus of interest for an improved
control system design .

Transportsystem forplaslråstoH

Vakuum
pumpe

,,
J,

I Siloermedplastråstoff l
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Figure 10.6 Production line for civil engineering polyethylene pip e extruding at Icopal
plant, with silos, transport system, mixing unit, extruder with INOEX contral system,
vacuum/cooling/calibration unit, additional cooling unit , and haul-off and cut-up/coiling

units (from Wilhelmsen, 1998).

The available known inputs, secondary measurement and primary measure­
ment are

• the pipe haul-off speed Ul

• the extruder rotational sp eed U2

• the external vacuum pressure U3

• the internal extruder pressure Y2

• the resulting outer pipe diameter Yl at the extruder outlet , determined after
correction for the known time delay from the outlet to the physical measure­
ment at the pipe cut-up position.

An identification experiment on the extruder was part of the M.Se. thesis work
of Wilhelmsen (1998). The sampling interval for Uk and Y 2,k was then T2 = 2 sec,
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while the sampling interval for the diameter YI,j for practical reasons was Tl == 12
sec. Wilhelmsen found that a first-order model gave a good result, and since Tl
is short cornpared with the time constant in the system, a fairly good estimator
can then be identified by use of the low sampling rate data only, although use of
all sampled Uk and Y2,k data gives a significant improvement. A further search for
a good estimator reveals that a second-order estimator gives poorer results when
only the low sampling rate data is used, while the results with lise also of the high
sampling rate data are improved. The results are summarized in Table 10.2.

Since the low sampling rate used for the primary Yl output is constant and
sufficiently high, the initial values for the high Uk and Y2,k sampling rate estimators
were obtained by identification of the corresponding low sampling rate estimators,
followed by a recomputation of the high sampling rate initial estimator from the
underlying continuous-time model.

Table 10.2: Validation RMSE values for different Yl estimators for industrial extruder.

RMSEARMAX RMSE~~~ate RMSE~~~raten Ul U2 U3 Y2 low rate

1 X - - 0.280
1 X - - 0.228
1 X - - 0.094

1 X - - 0.211
1 X X X - - 0.063
1 X X X X 0.065 0.070 0.062
1 X X X - - -

1 X X X - - -
1 X X - - 0.081
2 X - - 0.288
2 X - - 0.207
2 X - - 0.092
2 X - - 0.208
2 X X X - - 0.059
2 X X X X 0.093 0.089 0.059
2 X X X - - 0.059

0.072
0.070tE=EfHEf---------+----------+-------

The results for second-order ARMAX and OEC estimators obtained by use of
only the low sampling rate data are visualized in Fig. 10.7, where the first part
of the data set from j == 1 to 83 was used for modeling and the last part from
j == 84 to 155 for validation. Note that first-order estimators gave somewhat better
results.
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Figure 10.7 Measured primary output (diameter in mm) marked by x and esti­
mated primary output as solid lines, using ARMAX (RMSEAR.MAX == 0.093) and OE

(RMSEoE == 0.089) second-order estimators based only on low sampling rate data. The
first part '''of the data was used for modeling and the last part for validation.

The results for second-order OEC estimators obtained by lise of also the high
sampling rate data are visualized in Fig. 10.8, where the first part of the data set
from k ==:. l to 504 was used for modeling and the last part from k == 505 to 930
for validation. Note that a first-order estimator in this case gave poorer results.
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Figure 10.8 Measured primary output (diameter in mm) marked by x and estimated
primary output as solid lines, using OEC second-order estimators based also on high
sampling rate data. The first part of the data was used for modeling and the last part for
validation. The validation RMSE values were RMSE = 0.092 (U3 as input), RMSE ==
0.070 ( U3 and Y2 as input) and RMSE == 0.059 ( Ul, U2, U2 and Y2 as input).
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10.4 Cornplex industrial plant

Product quality measurements from a complex industrial plant were obtained in
two separate periods of ordinary production (Karstang, 1997)." Each data set
consists of around 1000 samples of altogether 14 manipulated inputs, measured
disturbances and secondary outputs, with a sampling interval of 10 minutes. Four
primary quality variables were sampled and measured at a low and irregular rate,
38 samples in the first data set used for modeling and 26 samples in the second
data set used for validation.

Karstang (1997) identified statie estimators for the primary outputs, using four
of the secondary outputs as regressor variables, and this was found to be auseful
set of inputs also in the dynamical case. These variables in the modeling set are
shown in Fig. 10.9, while the corresponding primary outputs are shown in Fig.
10.10.
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oo 100 200 300 400 500 600 700 800 900 1000

200

~ 100
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~1::~ :" ' : : : :,-3
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SampleNumber

Figure 10.9 Secondary measurements used as estimator modeling inputs.
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Figure 10.10 Primary measurements used as estimator modeling outputs.

As evident from the figures, the modeling data is characterized by

• a fairly low degree of dynamic excitation, especially for Y21 and Y22

• trends in the primary output data, especially for Y13 and Y14

• same outliers.

Remark 18 It is not obvious how to handle the apparent outliers in the input data
in Fig. 10.9. Since we intend to identify a dynamic system, the outlier data cannot
simply be removed from the time series. lf the outliers were due to measurement or
data handling errors, a simple solution would be to use interpolated values. In this
case we know, however, that the outliers correspond to actual physical conditions
in the plant (Karstang, 1999), and that therefore also the system outputs must be
affected. In lack of detailed plant information, and since the present aim is only
to demonstrate the feasibility of the methods developed in the thesis, the input data
is used without any form for outlier correction.

(10.7)

The validation data set has the same low degree of excitation and same outliers,
but no apparent trends.

The Y2 data was standardized, i.e.

Y2i,k - Y2i . l 2 3 d 4
Y2i,k +- . / ( )' ~ = , , an ,

v var Y2i

where
l N2

Y2i = No L Y2i,k
2 k=l

(10.8)
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and
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1 N2

var(Y2d = N _ 1 L (Y2i,k - Y2i)2 .
2 k=l

The Yl data was only mean-centered, Le.

Ylm,j +- Ylm,j - Ylm, m = 1,2,3 and 4.

(10.9)

(10.10)

(10.11)

The four primary outputs were modeled separately, Ordinary statie L8 esti­
mators b~s corresponding to the models

Ylm = [Y2I Y22 Y23 Y24] b~ + Cm

were obtained as a basis for comparison.
First-order state space representations of OEC estimators

Ylm,k = CLmYlm,k-l + bl m Y 2l ,k - l + b2mY22,k-l + b3m Y 23,k - l + b4m Y 24,k - l

+dlmY21,k + d2mY22,k + d3mY23,k + d4mY24,k (10.12)

were also identified, using the method described in Chapter 6. Due to the very
limited number of primary output samples, initial values were found ill an ad hoc
manner using

and

am == 0.9,

[bIm b2m b3m b4m] = O.Oler

(10.13)

(10.14)

[dIm d2m d3m d4m] = (b~) T + O.leI (10.15)

as a first try, with eb and ed as random vectors with independent and normal zero
mean elements with variance 1. The identification of each model was repeated
in several runs with the band dparameters modified from one run to the next
by adding zero mean random and normal noise with variance 0.0004, while the a
parameter from ane run was used as initial value in the next run. When a "best
possible" estimator was found using only the modeling set, it was validated against
the validation sete

In the validations it was assumed that the mean values of the Yl variables are
known. In practice the mean values may be estimated separately from the mean
values of the u and Y2 variables, although this gives a substantial error in the
present case. They may also be found and updated by sampling of Yl at time
instants and intervals found necessary. This problem is, however, the same for
the LB and the OEC estimators, and it is therefore not further considered in the
present estimator comparison.

The validation results for the primary output Yl1 is shown in Fig. 10.11, which
shows a significant improvement from the LB to the OEC estimator.
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Figure 10.11 Validation Y11 responses with L8 (RMSE = 0.66) and OEC (RMSE =
0.48) estimators shown by solid lines. The o-markings show the ideal validation values.

The validation results for the primary outputs Y12, Y13 and Y14 are shown in
Fig. 10.12, 10.13 and 10.14 below.
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Figure 10.12 Validation Y12 responses with L8 (RMSE = 0.78) and OEC (RMSE =
0.68) estimators shown by solid lines. The o-markings show the ideal validation values.
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Figure 10.13 Validation1713 responseswithLS (RMSE = 1.15) and OEC (RMSE =
1.27) estimators shown by solid lines. The o-markings show the ideal validation values.
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Figure 10.14 Validation 1714 responses for L8 (RMSE = 1.50) and OEC (RMSE =

2.33) estimators shown by solid lines. The o-markings show the ideal validation values.

The validation root mean square errors are summarized in Table 10.3. The
RMSE values are computed as

RMSE= (10.16)
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where NI == 26 is the number of Yl samples in the validation sete As a basis for
comparison with earlier results (Karstang, 1997), the mean absolute error

is also given.

1 NI

MAE= N :LIYlm,j-Ylm,jl
l j=l

(10.17)

Table 10.3: Validation root mean square and mean absolute errors for statie L8 and
dynamic OEC estimators for a complex industrial plant (best results in bold).

MAEL S RMSEL S MAEo EC RMSEu~c

YII 0.59 0.66 0.39 0.48

Y12 0.62 0.78 0.53 0.68

Y13 0.83 1.15 0.94 1.27

Y14 1.06 1.50 1.88 2.32

Thetable shows a clear improvement from the L8 to the OEC estimator for the
Yll estimator and same improvement for the Yl2 estimator, while the LB estimators
give the best results for Yl3 and Y14. It is possible that the failure of the OEC
estimator for Y13 and Y14 is due to the trend in the modeling data shown in Fig.
10.10. However, a simple removal of these trends gave no improvements. The
generalsolution in such cases is to obtain modeling data from a production period
without general trends, although with dynamic excitation.

10.5 Acoustic flow meter

Acoustic chemometrics is based 011 signals from an acoustic sensor (accelerometer)
placed for example on, or slightly downstream of, a standard orifice plate. Ob­
servations of the power spectrum of the sensor signal is collected in the X == Y2
matrix, and calibrated against physical Yl primary quantities like multi-component
mixture concentrations, density etc., using for example a standard PLSR method
(Esbensen et al., 1999).

III an experiment on a test rig at Telemark Institute of Technology, Porsgrunn,
Norway, the flow rate of ordinary drinking water was measured by use of an orifice
plate. More precisely, the differential pressure across the orifice was measured and
used as the response variable Yl, while the acoustic power spectral density at 1024
frequencies were used as Y2 variables, The sampling interval was 5.3 sec.

The response variable had a considerable content of high frequency compo­
nents, as shown in Fig. 10.15.
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Figure 10.15 Differential pressure across orifice plate.

10.5.1 High primary output sampling rate case

The observations were .separated into one part for modeling and one part for val­
idation, as indicated in Fig. 10.15. Six outliers in the acoustic power spectrum
results were corrected by use of interpolated values (in a time series analysis, out­
liers cannot simply be removed). Ordinary static PLSR using mean centered data
consisting of all Yl and Y2 samples and. the optimal six components then gave the
validation results shown in Fig. 10.16, i.e. rather small differences between Yl and

Yl·

0.5

00 10 20 30 40 50 60 70 80 90 100
samplenumber

Figure 10.16 Validation result for standard statie PLSR estimator.
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As can be seen from Fig. 10.15, the measured responses give a time series,
with clearly autocorrelated observations. According to the theory in Chapter 9,
a dynamic PLSR+OEC estimator must then be expected to give improved per­
formance. A dynamic estimator according to (9.13) was therefore identified, and
the results for different numbers of PLSR components were compared with the
corresponding results for a statie PLSR estimator. The best results were obtained
by use of a state-space first-order model. Initial parameter values were chosen at
random, with occasional difficulties to obtain a stable predictor. However, when a
minimum was found it was always the same minimum for a given number of PLSR
components used. As can be seen in Fig. 10.17, the first-order dynamic estimator
gave an approximate 30% reduction of the validation RMSE value at the opti­
mal number of PLSR components for the two methods. Corresponding first-order
PLSR+ARMAX estimators were also identified, with very much the same results
as for the PLSR+OEC estimators. The optimal dynamic alternatives also used
only four PLSR components, as compared to six components in the static estima­
tor. A statie PLSR estimator with the six outliers completely removed from the
data (instead of using interpolated values) gave results that were almost identical
with the PLSR results in the figure. Full standardization gave slightly inferior
results. Note that the improvement obtained by use of the dynamic estimator is
quite comparable with the improvements found by the simulations in Example 9.1,
as illustrated in Fig. 9.2.

...... ' ·x.
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x PLSR
o PLS+OE
* PLS+ARM

2 3 4 5 6 7
Number of cornponents

8 9 10

Figure 10.17 Validation RMSE values for different methods as functions of the number
of components. The estimators are based on high primary output sampling rate data.
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The results in Fig. 10.17 clearly indicate the benefits that may be obtained by
the use of dynamic modeling of multivariate time series data, as compared to use
of purely statie chemometrical methods. A further discussion of the PLSR+OE
estimator versus the PLSR+ARMAX estimator requires a detailed analysis of the
vibration generating phenomena, which is beyond the scope of the present thesis.

The PLSR+OE estimator obtained with a == 4 components was

(
(0.98 + O.42q-l) Tl + (2.1 + 0.8q-l) T2 )

" + (2.5 + 1.2q-l) T3 + (2.3 + O.9q-l) f 4 -3

Yl = 1 + 0.26q-l · 10 . (10.18)

Note that the estimator has its pole at z == -0.26 in the z-plane, which means an
oscillatory step response with a relative damping coefficient ( == 0.5 and a natural
frequency W n == 2~ == 0.0943 sec. (see e.g. Franklin et al., 1990).

For the corresponding statie estimator derived from (8.21) we find

b" PL SR (T"XTT "l/T"l/ TXl )-1 T"XTT "l/T"l/
T == vv PLS.l 2 .l 2 vvPLS vv PLS .l 2 .lI ==

1.3
2.8
5.4
2.5

(10.19)

Note that the b~LSR parameters most naturally should be compared with the sum
of the corresponding numerator coefficients in the dynamic estimator.

10.5.2 Low primary output sampling rate case

In order to test a combination of the methods developed in Chapter 6 and 9,
statie PLSR=PLSR+LS and dynamic PCA+OEC estimators were identified using
only every 5th of the primary outputs in the modeling data (20 samples). These
estimators were validated against the complete validation set, using all 100 primary
output samples. Note that the PLSR+OEC estimator (9.13) identified above, now
had to be replaced by the PCA+OEC estimator (9.7), with the result that a = 6
components was found to be the optimal choice for both the statie and dynamical
solutions.

Remark 19 The use of every 5th sampling from high sampling rate data is of
course not optimal. However, if the primary property had been for example a con­
centration of a certain component in a multi-component mixture, and the measure­
ments had to be done through laboratory analyses, the primary property sampling
rate would very likely for practical end economical reasons have been lower than
the obtainable acoustic data sampling rate. Also the validation would in such a
case have to be done against low sampling rate data.
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As must be expected with the significant high frequency content in the primary
output signal, it turned out to be difficult to find useful initial values for the
PCA+OEC estimators, and lise of random values did not work. Instead, the initial
parameters in a state space realization corresponding to (10.18) were chosen as

A = 0.5, B = ~ (b~LSR.)T, C = 1 (canonical representation) and D = ~ (b~LSR.)T,
where b~LSR. was determined as given as in (10.19) from a low sampling rate PLSR.
This gave a first minimization result that was useful as a starting point for an
iterative search for an optimal solution. In each of the iteration steps for i == 2,
3, ... with separate minimizations, the initial parameters were then chosen as
Ai == A i - 1 + O.0002cteA , Bi = Bi-l + O.OOOlCieB and Di == Di-l + O.0002CieD,
with eA, ee and eo as normal zero mean random variables with variance 1. The
coefficient c; was chosen as

Gi 1 for RMSEPLSR < RMSEPCA+OEC(i - 1)

Gi 0.5 for 0.9· RMSEPLSR < RMSEPCA+OEC(i - 1) < RMSEPLSR.

ei 0.25 for 0.8· RMSEPLSR. < RMSEPCA+OEC(i - 1) < 0.9· RMSEPLSR.

Gi 0.125 for 0.7· RMSEPLSR. < RMSEPCA+OEC(i - 1) < 0.8· RMSEPLSR

Gi 0.0625 for RMSEPCA+OEC(i -1) < 0.7· RMSEPLSR,.

A typical iteration result for the optimal a == 6 number of components is shown
in Fig. 10.18, together with the low sampling rate RMSEPLSR. result.

O.:~------,-------,----_r-----..,...-----.,

o.

IJ.J

~O.1
eI:

0.1

0.0

5 10 15
Number of iterations

PLSR

PCA+O.eC

20 25

Figure 10.18 Result of low sampling rate PLSR and of iterative search for optimal
PCA+OEC estimator, both solutions using a == 6 components.
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The best dynamical solution obtained in severai repeated simulations gave in
this case 33% reduction of the validation RMSE value. This result demonstrates
the feasibility of the dynamical PCA+OE approach also in the low primary output
sampling rate case.

Remark 20 As mentioned in Chapter 5 and further diseussed in Chapter 11, the
repeated use of the same validation set opens for the possibility that the validation
set gradually becomes a part of the modeling set. In this case good validation results
were always accompanied by good results for tests against the modeling sei, and we
would thus have selected a very similar model by testing only against the modeling
set.

A typical validation result is shown in Fig. 10.19. Note that the estimated
output follows the (in this case) measured output well also between the sampled
values. This is also the case for the low sampling rate PLSR estimator, although
the dynamic estimator gave a lower validation RMSE value.

2.~---r---..,...-_r---..,...----r----.---.,...-_r----..,..----,

9

2

10 20 30

o

40 50 60
Sample Number

70 80 90 100

Fig. 10.19 Valid at ion result for dynamic PCA+OEC estimator based on low sampling
rate data. The low sampling rate validation data is o-marked, while the (in this case)
known intermediate validation values are shown by dotted curve. The estimated values

are shown by solid line.



Chapter 11

Further research topics

The theory and methods presented in t he thesis raise questions about
further methodological developments and possible application areas.
Such questions are briefiy diseussed and to some extent clarified in
the present chapter, but are otherwise left for further research.

11.1 Convergenee

The predietion error identification method used throughout the thesis rely on the
convergenee of the estimated parameter vector to the best possible approximation
of the theoretical estimator that is available in the model set. This is quite gener­
ally true (Ljung, 1978, 1987, 1999), but a specific analysis of the present case with
Y2 used as estimator input is not performed. There are, however, no indications in
the simulations or in the real data examples that this in itself represents a problem.
The problems encountered are related to short data records, which in many cases
makes it difficult to find good initial values for the numerical minimization. This
is a well known general problem, especially for OE models (Ljung, 1999).

11.2 Multiple-output systems with low prirnary out­
put sampling rate

Theoretically, the low Yl sampling rate identification method for OE estimators
presented in Chapter 6 will work also for multiple-output systems, although it is
tested only for single-output simulation and real data cases. Some work has been
done also on predietion error minimization algorithms for the multiple-output case,
but so far without entirely satisfactory results, and more work in that direction is
thus needed.

177
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11.3 Estimator covariance with low prirnary output
sampling rate

The covariance results in Example 6.2 as compared with results in Example 3.4
indicate that the acceptable number of Yl samples may be lower in the low sampling
rate case than in the ordinary case. Whether the extra u and Y2 samples at a high
rate in fact are beneficial, is a question for further investigation.

11.4 Closed loop estimator identification

In Chapter 3 we assumed that identification of the optimal OE estimators was
performed with the plant operating in open loop. Due to safety and other plant
operation requirements this is often not feasible, and ane is then left with the
opportunity to use data from the plant operating in closed loop. The basic block
diagram is then given by Fig. 11.1, where the controller may be realized by use of
more or less sophisticated algorithms. The input r is the vector of setpoint values
for all or some of the measured Y2 outputs, while we assume that the Yl output is
not generally available.

r
Controller r--.....,...---..t

v

Yl

Figure 11.1 General structure for estimator identification with plant operating in a

closed feedback loop.

Ordinary identification of systems operating in closed loop by use of prediction
error methods is possible, although some difficulties must be circumvented, see
e.g. Soderstrom and Stoica (1989). In general identifiability will be obtained by
use of external excitation, such as a time-varying setpoint rk with sufficient order
of persistent excitation.
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As illustrated in Fig. 3.1 and Fig. 3.2, identification of one of the optimal OE
estimators is obtained by minimization of the predictionjestimation errors with
Kl ~ 0, where Kl is the gain related to the Yl measurements. It appears that this
should not imply any identifiability problems in the closed loop case, although
this ought to be verified by a more detailed theoretical study .and appropriate
simulations,

11.5 Use of prior knowledge

In system identification of state-space models by use of a prediction error method,
it is quite straightforward to make use of prior knowledge based on physicallaws
etc. (Ljung, 1995). The least known parts of the model are often the noise covari­
ances Rv and Rw, and the corresponding covariance A~ EekeI of the innovation
form, and a common solution is therefore to use a directly parametrized innovation
form with all entries in the Kalman gain considered as unknown. Since the optimal
OEP and OEC estimators developed in Chapter 2 make use of A-AK~EC2 instead
of only J!, direct parametrization of KrE complicates the use of prior knowledge
concerning A and 02. It is, however, generally possible also to make use of known
links between the parameters, in this case between KfE and A - AK?EC2. The
details of this are left for further work.

11.6 Validation

In Chapter 5 we pointed to the inherent difficulty in the proposed procedure for
model selection based on validation and comparison of different models. Due to the
fact that both the modeling and the validation data sets are realizations of random
proeesses, same models may give better validation results than others in away that
is not generally justified. Extensively repeated lise of the same validation set may
therefore lead to a model that is specifically adjusted to fit that particular data set,
which then gradually becomes a part of the total modeling set (see also Sjoberg
and Ljung, 1995). We must therefore look for validation differences that can be
considered as significant, alternatively use extra validation sets. The phenomenon
was demonstrated in Example 5.1.

It is interesting to compare this validation difficulty to the corresponding prob­
lem related to validation of statie models:

• In ordinary least squares (LS) regression, inclusion of extra regressor vari­
ables will reduce the criterion function also when they explain nothing in
the predicted variable Yk. The improved fit is then spurious and can be seen
as an overfit to the particular realization of the modeling set. Whether the
inclusion of an extra regressor variable is useful or not can in this case be
decided by statistical methods (Ljung, 1987,1999).
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• When the regressors are chosen through validat ion , there is always a risk
that same regressor variables are included because the specific realizations
used give some explanation of the specific validation realization of Yk, also
if this is not generally true. If we use a validation set actively in order to
find the best set of regressor variables, we will therefore gradually make the
validation set a part of the modeling set, and in the end we may not validate
at all.

• In principal component regression (PCR) and partialleast squares regression
(PLSR) the essential choice is the number of principal components to use (see
Appendix C). We then have the inherent validation problem that we have
to choose the number of components that fits the specific realization in the
validation set the best, and the validation set may thus infiuence the choice.
This is, however, done only once, and the problem is therefore limited to an
unavoidable law level.

• In peR and PLSR we may alsa make a chaice of variables to use as a basis
for the principal component determination. In such cases we will experience
the above mentioned problem of making the validation set a part of the
modeling seta

• In the dynamical case, we do 110t only choose which estimator variables to
use, but we alsa have to choose modelorder and other details of the madel
structure. The tendency to make the validation set a part of the modeling
set is then an issue of importance.

A tentative conclusion to the problem appears to be the fallowing:

• At each level ofmodel complexity (model order, number ofvariables, number
of principal components etc.), choose the model that fits the modeling set
the best.

• Find the level of camplexity to use through validation against independent
data.

However, this must be studied more carefully befare final conclusions can be
drawn.

11.7 Estimator robustification

There may be a need for estimators that are robust with respect to unforeseen pro­
cess noise and disturbances as well as modeling errors. This may be accomplished
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by use of increased process noise variances and covariances in the R; matrix, as­
suming that R; is known. We will then "cover" the uncertainties in noise, as
sometimes practiced in control system design (Friedland, 1986).

When the estimator is identified by use of the secondary Y2 measurernents as
inputs, the same effect might be accomplished by manipulation of .the KSjE matrix.
With increased elements ill some or all of the KrE columns, the estimator will
rely more on the corresponding Y2 measurements, and thus become less sensitive
to increased pro cess noise (assuming that the pro cess noise is well reflected in the
Y2 measurements), This is illustrated in Fig. 11.2.

nominal
prosess
noise

nominal robust
design design

Figure 11.2 Estimator robustification by gain adjustment.

K20~
,'tJ

III order to find appropriate K~E gain changes to make, we could in theory
decrease the Y2 measurement noise levels, which of course is not possible in practice.
It may, however, be possible to find the gain sensitivity to the Y2 noise levels by
use of added artificial noise, and it may then be possible to find the effect of
decreased noise levels by extrapolation. However, it remains to verify that this
robustification approach is feasible, and to develop a practical implementation.

11.8 Est.imator updating

In practical applications it is very likely that the identified estimators lose same
of their validity over time, and estimator updating based on new plant data may
then be necessary. This may also be the first step in a fault detection and isolation
(FDI) scheme, detecting unacceptable estimator parameter variations.
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U pdating of statie part of estimator

In cases with drift of primary property mean values it may be sufficient to recali­
brate those values by use of a small number of Yl measurements. The number of
Yl samples to lise will depend on the variances of the Yl measurements and the
mean value accuracy needed.

Dynamic estimator updating

In cases with parameter drift the entire estimator may have to be updated. A
straightforward solution is then to use samples of u, Yl and Y2 in a moving window
with a sufficient although not toa lang horizon into the past, and identify new
estimator parameters as aften as necessary. Both high and low Yl sampling rate
data may then be used, and the window may have rectangular, saw-tooth or ap­
proximately exponential form. The past prediction errors in the criterion function
may thus be weighted, Le.

where

{
l , at the time instants i where Yl i is sampled

ai = O, at the time instants i where Yl,~ is not sampled,

(11.1)

(11.2)

and where {3k-i defines the form of the window. Since the estimator is identified off­
line at each Yl sampling instant, this is a computer demanding approach. However,
in the most interesting industrial case with low Yl sampling rate, the computation
time is likely to be sufficient.

A more elegant and less computer demanding solution would be to use recursive
updating of the estimator parameters. Recursive identification methods for the
high Yl sampling rate case are diseussed in e.g. Soderstrom and Stoica (1989),
while the details in methods for the low and irregular Yl sampling rate cases
remain to be worked out.

11 CD9 Identification by lise of subspace methods

Since the optimal primary property OE estimators developed in Chapter 2 rely
on past primary output estimates, they must be found by iterative methods as
for example the predietion error method used in Chapter 3 and Chapter 6. This
means that the direct and non-iterative subspace identification methods cannot be
directly used for this purpose.
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A possibility might be to use direct subspace methods iteratively, such that
initial estimates of past outputs are successively refined. That would be similar to
a known iterative L8 method for OE model identification (Johansson, 1993), and
a similar bootstrap method was used by Isaksen (1993) in order to reconstruct
missing data. This possibility is left for further research.

11.10 Operator rnodeling and support

The basic principle for primary property estimation is illustrated in Fig. 1.1.
By simply replacing the estimator model block with an operator block we arrive
at the basic though limited operator functioning illustration ill Fig. 11.3. In
words, the operator uses all available information from known inputs and measured
secondary outputs in order to estimate the primary output. This estimate may
be a binary decision "process in control" or "process out of control" ,or a more
qualified estimate.

v

PLANT

OPERATOR

Yl

z=y

Y2

u

Figure 11.3 Basic principle for part of the operator function.

Fig. 11.3 could possibly be used as a starting point ill an attempt to identify
and model human skills in this specific situation, in line with the ideas in Rouse et
al., (1988). Parts of the developments in the thesis could then form a theoretical
basis.

It should be emphasized that the figure depicts only a minor part of the opera­
tor function, at what Rasmussen (1983) defines as the skill- and rule-based levels.
This part of the operator function may be automated by lise of the estimators
diseussed in the thesis, and there are basically two reasons for doing so:
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• In a typical industrial situation with a large number of manipulated inputs,
measured disturbances and secandary measurements, the task of primary
output estimation may be quite demanding. A compression of the multivari­
ate and dynamic information into primary output estimates may thus give
valuable operator support.

• A primary output estimation system will relieve the operator from the te­
dious low-level task of monitoring a number of pro cess values, and give room
for more focus on higher level knowledge-based tasks related to primary out­
put trend evaluation, product quality optimization and plant control func­
tions.

11.11 Fault detection and isolation

Fault detection and isolation (FDI) methods using Kalman filters or non-optimal
observers are reported by a number of authors, e.g. Tylee (1983), Patten et al.
(1989) and Frank (1990). Such methods are based on use of analytical or func­
tional redundancy contained in the relationships between system inputs and mea­
sured outputs, and they thus require a mathematical model of the actual dynamic
system. This model may be found through mechanistic modeling or by system
identification.

A closer look at same of the FDI methods reveals that it is not quite necessary
to use complete system models, it is in many cases sufficient to have good estima­
tors for the different system outputs, and the optimal OE estimators discussed in
the thesis may then come to use. The advantage of this approach is that it is' eas­
ier to identify such estimators using all other system outputs as estimator inputs,
than it would be first to identify the system model as such and then construct the
different estimators. We illustrate this by a straightforward example, and leave
the important question concerning obtainable performance in practice for further
research.

Example 11.1

Assume the system in Example 3~2 with an extra output measurement and some
offset actuator and instrument errors ~u, t6.Yl, ~Y2 and ~Y3 added:

Xk+l
[

0.9092 0.0863 0.0044]
0.0863 0.8230 0.0863 Xk

O O 0.9048

[

0.0045 ] [ 0.0002 ]
+ 0.0908 (Uk + ~u) + 0.0045 Vk

O 0.0952
(11.3)
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Yl [ 1 O O ] x +Wl,k + !:i.Yl

Y2 = [ 2 O O ] x +W2,k + !:i.Y2

Y3 == [ O 1 O ] x +WS,k + !:i.ys.

As ~u etc. may have both positive and negative sign, there are eight possible
faults to consider (see Table 11.1). Note that the actuator offset ~u might also be
a drift in a plant disturbanee that is modeled as constant.

The system was simulated with Uk as a filtered pseudo random binary sequence
(PRBS) with aotocovariance ruu(p) == 0.81pl (Soderstrorn and Stoiea, 1989, example
5.11). and independent and normal white noise sources with variances Tv == 1,
rIl == 0.01, r22 == 0.02 and r33 == 0.01.

Optimal OEC estimators for each of the three outputs were identified as de­
scribed in Example 3.2 with Uk and the other two system outputs as estimator
inputs, and using N == 1000 samples of input-output data without offset errors.
The three estimators were then used in a generalized observer scheme (Frank,
1990) as shown in Fig. 11.4.

Yl
U ----r----..~ Dynamic system f-----+----r------ Y2

r----+--+--....,.....--- Y3
L.--- ----I

..... +
f--',...----i~-._t"" _ ." Cl

r----t--~~ Estimator 1 -----=.o ~--.L.--- ----I

Decision

logic

....
L.--- --"

Figure 11.4 Estimator fault detection and isolation (FDI) sch.erne.
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Assuming only Olle offset error at a time, the expected relations between the
errors and the estimator residuals are shown in Table 11.1.

Table 11.1: Expected residual responses for different added statie errors.

~u ~Yl ~Y2 ~Y3 cl e2 e3

+ O O O - - -

O O O + - - +
O O + O - + -

O - O O - + +
O + O O + - -

O O - O + - +
O O O - + + -

- O O O + + +

We notice that the residual responses in the table form a standard truth table
for three binary variables, and the eight different faults may thus be isolated by
use of a simple decision logic.

The truth table in Table 11.1 is verified by the simulation results shown in Fig.
11.5 to 11.8, where b..u == l, b..Yl = 1, D..Y2 == l and D..Y3 == 1 for samples number
201 to 400 and ~u= -l, ~Yl == -1, ~Y2 == -1 and ~Y3 == -1 for samples number
601 to 800 (with only one offset error at a time).

i.:~·
2 o 100 200 300 400 500 600 700 800 900 1000

~ 0.2

! o

-0.2 o 100 200 300 400 500 600 700 800 900 1000
~ 0.2

l o

-0.2 o 100 200 300 400 500 600 700 800 900 1000
~ 0.5

i o

-0.5 o 100 200 300 400 500 600 700 800 900 1000
SampleNumber

Fig. 11.5 Residuals with added offset error ~u == 1 for samples number 201-400 and
~u = -1 for samples number 601-800.
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! ~
-2 O 100 200 300 400 500 600 700 800 900 1000

I:1
-2

0
- - ---L...-- - l.....-- ...........--"'--------'---"'--------'----'------'---

I f+qf ' ~q··lqF l I
100 200 300 400 500 600 700 800 900 1000

~ 1

1o

-1 O 100 200 300 400 500 600 700 800 900 1000
~ 0.5

1o

-0.5 O 100 200 300 400 500 600 700 800 900 1000
SampleNumber

Fig. 11.6 Residuals with added offset error !:lYl == 1 for samples number 201-400 and
f:1Yl == -1 for samples number 601-800.

~ 5

~ ~ ~ : : : : : : :

! o

-5 o 100 200 300 400 500 600 700 800 900 1000
~ 0.5! o

-0.5 o 100 200 300 400 500 600 700 800 900 1000

l :E' ?··q-j·E I
-2 o 100 200 300 400 500 600 700 800 900 1000

~1E8 i'~ : ~ : : : : : : :so~.q.:qq.,.~
~ : :~:::::

-1 o 100 200 300 400 500 600 700 800 900 1000
SampleNumber

Fig. 11.7 Residuals with added offset error !:lY2 == l for samples number 201-400 and
f1Y2 = -1 for samples number 601-800.
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... 5
g : : : : : : : : :

i o

-5 O 100 200 300 400 500 600 700 800 900 1000

{: I Eli~' j
-1 O 100 200 300 400 500 600 700 800 900 1000

l.:: t Cl3T' fqlqf: f j
2 O 100 200 300 400 500 600 700 800 900 1000

1.:EI F··q·lq·E 1 g;=t 1-=1
2 O 100 200 300 400 500 600 700 800 900 1000

SampleNumber

Fig. 11.8 Residuals with added offset error ~Y3 == 1 for samples number 201-400 and

~Y3 == -1 for samples number 601-800.

Note that with only two outputs we would not have sufficient information to
isolate the different faults (6 faults and only 4 combinations in the truth table),
while four or more outputs would give us extra degrees of freedom which might
be used in order to isolate simultaneous faults (10 faults and 16 combinations for
4outputs).

•
11.12 Feedback control

It is natural to consider use of estimated primary outputs yP,~lk-l or yP,~k and

estimated states X~~_l or x~~ for feedback contral purposes. In the following we
briefiy discuss the fundamental reachability question and possible control struc­
tures.

11.12.1 Reachability

Assume that the plant defined by (2.20) is state reachable, i.e. that

n= [B AB ... An-lB ] (11.4)

has Rank(O) == n, where n is the modelorder. Also assume that the primary
property Zk in Fig. 2.4 is output reachable, Le. that the Cl output matrix has
linearly independent rows or that Dl =I O (see Appendix A for definitions). Since
the estimator in Fig. 2.4 is assumed to be a true model of the plant, the estimator
will then be state reachable and the estimates z~~_l and z~~ output reachable as
well..
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11.12.2 General feedback control structure
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It follows from the discussion above that both the state and output reachability of
the estimator ill Fig. 11.1 are determined by the state and output reachability of
the plant. The same is true for the observability that is a necessary requirement
for feedback control, Le. if control through feedback from Yl,k is possible then also
control through feedback from y~Ll or y~~ is possible. We may thus make use
of all available controller designs for the general feedback structure in Fig. 11.9,
where we again assume that the primary Yl output is not generally available.

v
r

u
Controller f---......---al

r--------.t
Plant Yl

Yl,klk-l or YI,klk
Estimator 1----........---

Fig. 11.9 General feedback structure for plant with state and primary output estima­

tor.

The quality of the state and primary output estimates is certainly poorer than
with Yl measurements available, but the estimates may still be useful for feedback
control. However, the questions of detailed designs and expected performances for
different controller realizations are left for further research.

11.12.3 Modified Smith predictor

An interesting option utilizing secondary measurement information in a modified
Smith predictor may be the control structure outlined in Fig. 11.10. It is here
assumed that the dead-time in the system is located at the output, only affecting
the primary Yl measurements, and that the primary output is sampled at the same
rate as u and Y2. This is basically an ordinary Smith predictor (e.g. Seborg et al.,
1989), modified by use of the secondary Y2 information in the inner loop.
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v

Fig. 11.10 Modified Smith predictor control structure with high primary output

sampling rate.

When the primary output is measured at a low sampling rate, the outer feed­
back loop may be altered as shown in Fig. 11.11, where I is an extra regulator
with integral action.

r

j-------------------------------------------------------------------------,
-. !

. I

1r I ir------'O---- i
I I
I I
I l
I I
I I
I I
I I
I I
I I

! + : Yl

2

Fig. 11.11 Modified Smith predictor control structure with low primary output sam­

pling rate.

11.13 Dynarnical errors-in-variables problems

A simple dynamical errors-in-variables problem was diseussed in Section 3.4. T11e
possibilities to lise the methods developed in the theses on more complicated prob­
lems of this type is left for further research.
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11.14 Non-linear applications
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The basic concepts and methods of the thesis might be applied also in non-linear
cases, both industrial and e.g. bialogicaljecologicaljenvironmental. This repre­
sents interesting though demanding challenges for future research.
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Chapter 12

Conclusions

The conclusions are presented in form of

• a block diagram showing the structure of the thesis and the inter­
relations between the issues discussed

• a list of the major conelusions

• a list of real data examples

• a list of further research issues.
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Structure

CHAPTER 12. CONCLUSIONS

Fig. 12.1 shows the structure of the thesis and the interrelations between the issues
diseussed. The conelusions concerning the different aspects of the primary output
estimation problem are supported by simulations and other examples throughout
the thesis. Real data examples are presented separately in Chapter 10.

·1 Ch. 1 - Introduction I

Ch. 2 - Optimal OE estimators I

Ch.3 - Identification of optimal OE estimators with Y2 used as input 1

l
Ch. 4 - Perfeet

measurement cases

Ch. 6 - Low Yl sample rate

case with modified PEM

l
Ch. 7 - L8 as

special case

I

Ch. 4 - Reduced

estimators

"
Ch.4 I
- KF theorems

l 1

l
Ch. 8
- PCRjPLSR
as special cases

l
Ch. 9 - Dynamic system

PCA+OE and

PLSR+OE methods

Ch. 5

- Model structure
determination

l ,,. ,r

Validation Operator Support FDI Feedback Control etc.

Figure 12.1 Structure of thesis (real data examples come in addition).
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Conelusions

The conclusions drawn in the thesis are the following:

1. Primary output estimators for linear systems utilizing the information in
known inputs and secondary outputs in an optimal way, are to be based on
Kalman filters (Chapter 2).

2. When past as well as present primary outputs are not measured, the optimal
estimators are based on output error (OE) models, in the sense that the
Kalman gain related to the primary outputs is set to Kl == O (Chapter 2).

3. The optimal primary output estimators can be identified from experimental
data by use of both the known system inputs and the secondary measure­
ments as estimator inputs (Chapter 3).

4. When perfect noise free secondary measurements are used as estimator in­
puts, it may theoretically be necessary to use reduced models, where same
of the known inputs or some other secondary measurements are decoupled
from infiuencing the estimator output (Chapters 3 a11d 4).

5. Reduced models may be the best practical choice also when the secondary
measurements are not perfect, especially ill cases with short experimental
data series (Chapter 3).

6. When reduced estimators are identified, the best choice may be to use AR­
MAX models (Chapter 3).

7. The best estimator to lise in a practical case can be found by a system­
atie search using different combinations of model order and sets of estimator
inputs (Chapter 5). The model structure determination is then based on val­
idation, with the inherent problem that the validation set gradually becomes
a part of the total modeling set.

8. The faet that the optimal estimators are based on OE models with sec­
ondary measurements used as inputs, makes it possible to find them froll1
experimental data with low or even irregular primary output sampling rate
(Chapter 6). In industrial applications this may be of considerable practical
and economical importance.

9. Ordinary linear regression with a combination of deterministic and random
regresser variables, using a least squares (L8) solution, can be seen as a
special case of the identification of dynamic optimal output error current
(OEC) estimators (Chapter 7).
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10. Principal component regression based on principal eomponent analysis (PCA)
and a least squares solution (PCR==PCA+LS), and partialleast squares re­
gression (PLSR==PLSR+LS), are regularized solutions of the ordinary linear
regression problem with random regressor variables. Also these methods can
thus be seen as speeial cases of the dynamieal OEC solution (Chapter 8).

11. PCR uses a weighting matrix W == P found by principal component analysis
and validation, while PLSR uses W == WPLS normally found by al1 itera­
tive proeedure. Assuming a latent variable data strueture, the theoretically
optimal weighting matrix is in faet a Kalman gain related to the secondary
measurements, i.e. Wopt . == (K~E)T (Chapter 8).

12. It is common ehemometrical practiee to eolleet both independent and depen­
dent regressor variables in the X matrix, and use a one-step PCR or PLSR
solution. However, with a combination of a large number of dependent and
random regressor variables (secondary measurements) and a few indepen­
dent and deterministie regressor variables (known inputs), it may well be
that the best solution is obtained by a two-step PCA+LS or PLSR+LS so­
lution, where the known inputs are used only in the second step (Chapter
8).

13. The optimal OE estimators for dynamie systems may be combined with the
static PCA/PLSR methods. This will result in PCA+OE and PLSR+OE es­
timators that are optimal exeept for the error introduced by the PCAjPLSR
data compression. This is contrary to known methods based on ARX (Au­
toRegressive with eXtra input) or FIR (Finite Impulse Response) models,
that are biased already before the data compression (Chapter 9).

14. The PCAjPLSR+OE methods are more parsimonious (fewer parameters)
than the FIR method, and thus require less experimental data (Chapter 9).

15. The PCA/PLSR+OE methods can be used in the low primary output sam­
pling rate case, as contrary to the ARX method (Chapter 9).

16. For time series data generated by a latent variables structure, the dynam­
ieal PCA+OE and PLS+OE methods must be expeeted to give improved
performance as compared to statie peR and PLSR solutions (Chapter 9).

The above conclusions are supported by a number of simulation experiments
throughout the thesis. They are also substantiated by the real data applications
presented ill Chapter 10.
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Real data examples

The real data examples presented ill Chapter 10 are the following:

1. An experimental extruder at the Borealis polyolefine plant in Bamble, Nor­
way. This example shows that the product quality from the extruder (poly­
propylene foam density) may be estimated from known inputs (gas injection
pressure and heating temperature setpoint) and secondary measurements
(temperatures along the extruder and outlet pressure). A dynamic first or­
der estimator is in this example identified from high sampling rate product
quality data. The practical usefulness of the estimator is in this case due to
the complexity and time delay of the primary output measurem~nt/ analysis.

2. An industrial extruder for civil engineering polyethylene pipe production
at the Icopal plant in Drangedal, Norway. The product quality in form of
pipe diameter is in this example estimated from three known inputs (haul­
off speed, rotational speed and external vacuum pressure) an one secondary
measurement (internal extruder pressure). A dynamic second order estima­
tor was here identified from low sampling rate product quality data. Al­
though the pipe diameter measurement is easy to perform the way it is now
done, the estimator is still useful due to the fact that physical measurements
for .practical reasons are delayed.

3. A cornplex industrial plant, where four product qualities are estimated on
thebasis of four secondary measurements. Four dynamic first order estima­
tors (each with four inputs) were here identified from 38 low sampling rate
observations of each product quality, while each secondary measurement in
the modeling set had ca. 1000 samples. One of the dynamic estimators
gave clearly improved performance compared with a statie least squares es­
timator, for two other product qualities the dynamic and static estimators
had approximately the same performance, while a statie estimator gave the
best result for the fourth product quality. Static quality estimators for this
plant are now in use, and possibilities for improvements by use of dynamic
estimators ought to be interesting.

4. Acoustic flow measurements on an acoustic chemometrics test rig at Tele­
mark Institute of Technology in Porsgrunn, Norway, where the flow was a
rather rapidly varying time series and where the secondary measurements
were the acoustic power spectrum at 1024 frequencies. A dynamic estimator
based on high sampling rate flow data, gave in this example a significant im­
provement as compared with static peR and PLSR estimators. This demon­
strates the feasibility of the proposed methods also for highly collinear time
series data.
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5. Acoustic flow measurements as described above, but now with use of only
low sampling rate flow data. The improvement compared with statie peR
and PLSR estimators was similar to that in the experiment described above,
although the initial value problem turned out to be somewhat difficult. This
demonstrates the feasibility of the proposed methods for. problems where
ARX models cannot be used, and where FIR solutions may be far from
satisfactory.

Further research issues

The following additional issues concerning the optimal dynamic and statie primary
output estimators are raised in the thesis:

1. Convergenee properties with secondary measurements used as estimator in­
puts

2. Multiple-output systems with low primary output sampling rate

3. Estimator covariance with low primary output sampling rate

4. Closed loop optimal identification

5. Use of prior knowledge

6. Validation and choice of input variables and complexity for dynamic systems

7. Estimator robustification

8. Estimator updating in the case of time-variant systems

9. Identification by lise of subspace methods

10. Operator modeling and support

11. Estimators in fault detection and isolation

12. Estimators in feedback control

13. Applications on general errors-in-variables problems

14. Non-linear applications.

These issues are briefly diseussed in Chapter 11, but are otherwise left for
further investigation and research.



Appendix A

KaIman filtering

The optimal primary output estimators discussed in the thesis are based
on KaIman filtering theory. A summary of the essential parts of this
theory used in the thesis is given in the present appendix. The intention
is that readers that are not familiar with KaIman filtering shall be given
same basic knowledge, and find suggestions for further reading.

A.l Staternent of problem

Consider the known discrete-time plant model

where

Xk+l

Yk

AXk + BUk + GVk

CXk + DUk + Wk,

(A.l)

• Xk is the n x 1 state vector, where n is the madelorder

• Uk is the vectar of known inputs

• Vk is a stationary zero mean white noise vector sequence, with a covariance
matrix determined by the expectation R; = EVkVk

.. ...rr

• Wk = l W[k Wf,k J~ is a stationary zero mean white noise vector sequence,

with a covariance matrix determined by the expectatian Rw = EWkWf

• Rw is positive definite (results for the difficult perfeet measurernent cases are
given in Doyle and Stein (1979), Shaked (1983), Shaked (1985) and Anderson
and Moore (1989), and a special case is also diseussed ill Chapter 4)

• Vk and Wk are uncorrelated, Le. EVjWk = Ofor all j and k (may be relaxed,
see e.g. Åstrorn and Wittenmark (1990) and Grewal and Andrews (1993))

199



200 APPENDIX A. KALMAN FILTERING

• both Vk and Wk are uncorrelated with the input Uk, i.e. EUjVf == O and
EUjWI == Ofor all j and k

• (C2, A) is detectable, which implies that the unobservable part of the system
is asymptotically stable (see explanation of observability and detectability
below) .

• (A, G.JJ{:;) is stabilizable, which implies that the unreachable part of the
system is asymptotically stable (see explanation of reachability and stabiliz­
ability below).

For simplicity and without consequences for the result we will in the following
set D == o.

A.2 Detectability and stabilizability

It is possible to design a KaIman filter for the system (A.l) only if (C,A) is
detectable and (A,GJI[;) is stabilizable.

A.2.1 Observability and detectability

The system (A.l) is observable if and only if the observability matrix

has full rank, i.e. if and only if

C
CA

f=

rank (I') == n.

(A.2)

(A.3)

This implies that assuming both Uk == O and Vk == O for k 2 j, it is possible to
determine the state Xj of the system by observing Yk for k == j,j +1,··· .i +n-l.

Detectability is a weaker condition than observability, essentially equivalent to
the observability of all unstable modes of the system (Lewis, 1992).

A.2.2 Reachabilityand stabilizability

The system (A.l) is state reachable if and only if it with Vk == Ois possible to find
a sequence of inputs Uk to drive the system from xk == Oto any desired state in n

time steps. The requirement is that

rank(n) == n, (A.4)
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where n is the reachability matrix
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(A.5)

The system (A.l) is output reachable if the C matrix has linearly independent
rows or if D =I O (Ogata, 1987). .

Stabilizability is a weaker condition than state reachability, essentially equiva­
lent to the reachability of all unstable modes of the system (Lewis, 1992).

Structural reachability and observability

Systems may be non-reachable (or non-observable) due to some specific parameter
values chosen, although they with other parameter values are reachable (or ob­
servable). They are then called structurally reachable (or structurally observable),
see e.g. Lunze (1992) for details.

Å.2.3 KaIman filter requirements

The assumptions of detectability of (0, A) and stabilizability of (A,G~) make
it possible to apply the Kalman filtering theory. This means that all the unstable
state variables must be corrupted by the process noise Vk, and that all unstable
state variables must be influencing the measurements. In addition we normally
assume that Rw is positive definite, i.e. that all measurements are corrupted by
noise. Also note that process and measurement noise components that are not
white must be modeled as filtered white noise, with the filter model included in
the system madel (A.l).

A.3 State observer

Fig. A.l shows the system (A.l) with a state observer (assuming D = O for
simplicity). The observer makes it possible to find predietion (a priori) estimates
xklk-l and current (a posteriori) estimates xklk of the system state. We willlater
see how to find an optimal value of the observer gain K, which will turn the
observer into a steady-state Kalman filter (optimal observer).
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+

Figure A.l Discrete-time system with in general non-optimal observer.

The observer is governed by

AXklk-l + BUk + AK (Yk - Yklk-l)

AXklk-l + BUk + AKCXk + AKwk - AKCXklk-l, (A.6)

a11d defining the predietion (a priori) state estimation error xklk-l = Xk - xklk-l
we find from (A.l) and (A.6)

Xk+llk = (A - AKC)Xklk-l + GVk - AKwk. (A.7)

From this we see that

• the state estimation error is not affected by the known input Uk

• an initial error will decay if the estimator is asymptotically stable (and the
stability is in faet always obtained, also if the system (A.l) is unstable)

• after the decay of the initial error, the state estimation error is driven by the
process noise Vk and the measurement noise Wk.

Somewhat loosely we can now make the following observations:

• With a large estimator gain K the initial state estimation error will decay
rapidly. At the same time the error due to Vk will be small, while the error
due to Wk will be large.

• With a small estimator gain K the errors due to Vk will be more prominent,
while the errors due to Wk will be small.

This indicates that there exists an optimal value of K, in some way dependent
on the ratio between proeess and measurement noise covariances.
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A.4 Optimal state observer - KaIman filter
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Definition of optimal gain

We will now assume a variable gain K k and determine the optimal gain to use in
the state observer in Fig. A.l. III order to define an optimization criterion function
we introduee also the current (a posteriori) state estimation error xklk == Xk - xklk
and the state estimation covariances expectations

and

(A.8)

(A.9)P c E- -Tk == xklkXklk·

The optimal gain K k is now defined as the gain that minimizes pl and P~.

Relation between pl and pf

From Fig. A.l we find that

xklk == (1 - KkC)Xklk-l + KkCXk + KkWk,

and thus
Xklk == Xk - xklk == (1 - KkC)Xklk-l - KkWk-

Since xklk-l and Wk according to (A.7) are uncorrelated, this results in

P~ == (1 - KkC)P[ (1 - KkC)T + KkRwK[.

(A.IO)

(A.II)

(A.12)

Optimal choice of Kk

Assurne now that pl is minimized by an optimal choice of K j for all j < k, and
determine the value of Kk that minimizes the criterion function

Jk = trace (P,f) . (A.13)

III order to find the value of Kk which provides a minimum, we take the partial
derivatives of Jk with respect to K k and equate the result to zero. We may then
use the following relation, valid when H is symmetric (Gelb, 1974):

(A.14)

The result is

(A.15)

and thus

(A.16)
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Riccati equation
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With the optimal Ki; in (A.16) inserted into (A.12) we find

pF = p! - p!CT (CP! eT + u;)-1 Cp! .

From Fig. A.l we further find

which combined with (A.l) results in

and thus
pf+l = AP~AT + GRuCT

.

Inserting (A.17) into (A.20) we finally find the Riccati equation

P!+1 = AP!AT + GRuGT - AP!CT (CP! CT +»:)-1 CP! AT.

(A.17)

(A.I8)

(A.I9)

(A.20)

(A.21)

When Pd is known from assumption or prior knowledge, (A.21) makes it possible
to compute Pk as far into the future as found necessary, and the sequence of
optimal Kalman gains (A.16) can then also be computed.

Steady-state KaIman filter

Assuming that the system (A.l) including the noise covariances is time-invariant,
the Kalman gain Kk will stabilize into a constant gain K oo . This gain can be
determined by solving the algebraic Riccati equation

(A.22)

which results i11
«; = P!oCT (CP!oCT + s;) -1 . (A.23)

This is the gain that turns the state observer in Fig. A.l into an optimal steady­
state Kalman filter.

Innovations

It is an essential part of the Kalman filter theory that the predietion error Ck in
Fig. A.l becomes is a white noise sequence, i.e. Ck --* ek when K ---+ K oo , with
Eeje[ = Ofor all j =1= k. This signal thus carries the new information in Yk that is
not carried in Yk-l, and it is therefore called the innovations proeess.
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A.5 Innovations form

From Fig. A.l with K ----+ K oo follows

AXklk-l + BUk + AKek

CXklk-l + ek,
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(A.24)

where ek is a white noise sequence. This is an innovations form of the state-space
description, and it may be used as a model of the plant itself. The advantage will
then be that the two white noise sources Vk and Wk in (A.l) are replaced by the
single white noise source ek.

A.6 Continuous-tirne Kalman filter

Dynamical continuous-time solution

For a continuous-time system corresponding to (A.l) the Riccati equation (A.21)
is altered into

while the Kalman gain (A.16) is altered into

(A.26)

Steady-state solution

At statistical steady-state the algebraic Riccati equation becomes

while the Kalman gain becomes

(A.28)
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Appendix B

Predietion error identification
method

The optimal primary property estimators diseussed in the thesis are
identified by use of a predietion error method.. The essential features
of this method are presented below, and some suggestions for further
reading are given.

B.1 Basic principle

The predietion error method used is based on the Kalman filtering theory presented
in Appendix A. A predictor with the structure of a Kalman filter is used, as
illustrated in Fig. B.1. With a given parameter vector e, the prediction Ykl:~l

results in a predietion error Ck (B). A scalar criterion function

(B.I)

is computed, with h [.] = det [o] or h [o] = trace [o]' and based on the N experirnental
Uk and Yk data assumed available.

The parameter vector is then successively modified by an iterative numerical
minimization algorithm, and asymptotically (N ---+ 00) it is possible to tune the
predictor into a Kalman filter by minimization of VN(B). We will then obtain
() --+ Bo, where Bo is the exact parameter vector assumed to exist. We will also
obtain that ck(B) --+ ck(()O) = ek, where ek is the innovations process in the Kalman
filter.

In Fig. B.I the output matrix C is not tuned. This is because we choose a
canonical model representation with C = [I O] (e.g. Kailath, 1980).
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+

~:~ Ek(B)
;' (

I I I

·--------------------------"-------------r:::::--:~nllZati on

algorithm

Figure B.I Basic principle for prediction error identification method.

See e.g. Ljung (1987,1999) and Soderstrom and Stoiea (1989) for more detailed
theoretical treatments of this predietion error method.

B.2 Madel specification

In the thesis we make use of the pem. m function in the System Identification
Toolbox for use with Matlab, and in the following we give some information on
the model specification. For details see Ljung (1995).

Innovation form

The system is assumed to be represented by the innovations form (A.24), i.e.

AXklk-l + BUk + AKek

= CXklk-l + ek,

where K is the steady-state Kalrnan gain.

(B.2)



B.2. MODEL SPECIFICATION 209

State-space models

The model can be specified by the structure of the matrices A, Band K in Fig.
B.1, together with the initial state xo. Same of the parameters may be fixed,
based on prior knowledge, and coupled parameters may be specified. Also the
direct input-output matrix D can be specified. With K = O we obtain output
error (OE) models.

Specification of state-space models is the main method used in the thesis. Time
delays in the inputs or outputs can be handled by data vector shifting.

Polynomial black-box models

The model can also be specified by use of the general input-output form

where in the single input single output (SI80) case

(B.3)

A(q-l)

B(q-l)

F(q-l)

C(q-l)

D(q-l)

1 + alq-l + a2q-2 + + anaq-na

bo + blq-l + b2q-2 + + bnbq-nb

1 + !lq-l + !2q-2 + + !nfq-nf

= 1 + clq-l + c2q-2 + + cncq-nc

1 + dlq-l + d2q-2 + + dndq-nd, (B.4)

and where nk is the number of extra unit time delays.
With multiple inputs (MI80) we must specify different B(q-l) and F(q-l)

polynomials for each input, and this will lead to a model order that is higher than
theoretically necessary. On the ather hand it is quite simple to test out different
delays for the different inputs by lise of nk.

For a SI80 system we specify the number of parameters to identify by

nn = [na,nb,nc,nd,n!,nk] ,

while a MISO system with for example three inputs is specified by

(B.5)

nn = [na, [nbI, nb2, nbs] ,ne, nd, [nil, ni2, nis] , [nkl, nk2, nkg]] . (B.6)

In order to specify an OE model we set na = nc = nd = O.
See Ljung (1995) for details of this, and for the general multiple input multiple

output (MIMO) case.
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Appendix C

Statie multivariate calibration

As shown in Chapter 8 and Chapter 9, the optimal primary property
estimators may utilize the data compression techniques used in statie
multivariate calibration, as it is known from the field of chemometrics.
'The basic features of these methods are summarized in this appendix,
and basic references are given.

C.l Principal cornponent analysis

Principal components

Principal component analysis (PCA) is concerned with the problem of summarizing
the variation in Nmeasurements on p variables with a few judiciously chosen linear
combinations (Johnson and Wichern, 1992).

Assume the data matrix

XII Xl2 Xlp ~r
X21 X22 X2p

= [ Xl X p ] =
~r

(C.l)X= X2 ...

XNI XN2 XNp ~h

The sample principal components are now defined in the following way:

• The first component is the linear combinations PI~j which maximizes the

variance of pr~j = ~JPl for j = 1,2, ... , N, subject to prPl = 1.

• The second component is the linear combinations pr~j which maximizes

the variance of p§~j = ~JP2 for j = 1, 2, ... , N, subject to P§P2 = 1 and
prp2 = o.
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• The ith component is the linear combinations pr~j which maxirnizes the

variance of pr~j = ~JPi for j == 1,2,. o., N, subject to prPi == 1 and PkPi = O
for all k < i.

The matrix of loadings

The Pi loading vectors defined above may be collected ill the matrix of loadings

p = [Pl P2 ... Pa], (C.2)

where a is the number of components that one decides to use. It follows from the
definition above that

pTp = J. (C.3)

The matrix of scores

The maximum variance of p;~j referred to above, and assuming centered X data,
implies the maximizing of p;X T X Pi = t[ti, where ti is the general score vector.
From X Pi = ti follows

(C.4)

where

(C.5)

---TT n

In order to find an expression for Tlc ATpCA we apply a spectral decomposition
(e.g. Johnson and Wichern, 1992) of the symmetric sample covariance matrix
N=-1 X T X, resulting in

_l_XT X ~lPlpr -1- ~2P2pr + ... + ~PPPpJ (C.6)
N-l

°o1r~}1P2 --- ~ ~T
. . == PpApPp ,

ipJlftiJ
where ~1 2: ~2 ~ ••• ~ ~P are the eigenvalues of the N=-l X T X matrix. From this
follows
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Le.
(C.8)

A factor model

The basic aim of PCA is normally to summarize the useful information in X ~

TpCApT and leave the noise in a matrix of residuals E, Assuming an underlying

latent variable vector 7 = [71 72 o. o 7 a ] T, we may thus introduce the factor

model

x +E

t "T t ",T t "'T E== lPl + 2P2 + ... + aPa + , (e.g)

where 1 ~ a ::; p is the number of principal components that ane decides to use.
An ordinary L8 solution will now result in (C.4) above.

Singular value decomposition

We can also find estimates TpCA and P by a singular value decomposition of X as

X SVT [TT TT] [ Ssignal O ] [ p
T

]U == Usignal vnoise OS. v:T .
neise noise

"'T T" "T '"
UsignalSsignalP + UnoiseSnoiseVnoise == TpCAP + E. (C.IO)

(C.12)
)..k

:=-------
~1 + ~2 + ... + ~p •

The number of components

The decision on the number of components a to use may be done on the basis of
the eigenvalues ~i introduced above. The total sample variance is equal to

E N~ 1 trace (XT X) = trace (ppApPJ)

trace (ApPJ pp) = trace (Ap) = ).1 +).2 + . o0+ ).p, (Coll)

and consequently the proportion of total variance due to (explained by) the kth
principal component is

proportion of total
sample variance
due to the kth

principal component
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When PCA is used in principal component regression (peR), the number of com­
ponents can be found through validation against an independent data set (see
below).

C.2 Principal component regression

Ordinary linear regression

Ordinary linear regression is the statistical methodology for estimating values of
one or more response variables Yl, Y2, ... , Ym from a collection of regressor vari­
ables Xl, X2, ... , Xp . Assuming centered data, we thus want to find the parameter
matrix B in

or with the variables collected in Y and X matrices in

Y=XB+w,

(C.13)

(C.14)

and the well known least squares solution is (e.g. Johnson and Wichern, 1992)

(C.15)

Principal component regression

With a large number of variables in X and a limited number of samples, we
will experience a large variance in BLS determined by the ordinary LS solution.
In many cases, however, the X variables are highly collinear, and the principal
components of X may then be used to obtain a regularized solution. We thus lise
that X ~ TpCApT and obtain

with the L8 solution

APCR. (AT A ,-l AT
BT == \Tp CA TpCA ) Tp CA Y.

(C.16)

(C.17)

Since pTP == I and TpCA == X P, we have gT == TTB~CR. == ~TPB~CR., and we
thus finally find the principal component regression (peR) estimator

BPCR. = P(pTXTxp)-l pTXTy' (C.18)

The number of components to lise in peR can be found through validation,
preferably against an independent data sete
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C.3 Partialleast squares regression

Introduction

In PCR we form estimates of the score vectors in TpCA according to (C.4) as
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(C.19)

etc., and we then use the scores as regressor variables. However, it may well
be that principal components that explain a lot of the variation in the X data,
explain little of the Y data, and in that case the corresponding parameters in BPCR.

will be small. The inclusion of such principal components will contribute little to
the solution of the regression problem, and since also the small !3PCR parameters
must be determined, they may in fact do more harm than good by increasing the
variance in BPCR . This is a well known problem also in the ordinary L8 case (e.g.
Ljung, 1987,1999).

Wolds iterative PLSR algorithm for one y-variable

The iterative partialleast squares regression (PL8R) algorithm for one y-variable
was originally developed by Wold et al. (1983). The score variables il, i 2 , ... , ia

are also here weighted sums of the x-variables, but with other weights then in the
peR solution. We thus have

il == XVI = XlVII + X2 V21 + ... + XpVpl,

etc., arid in sum (C.4) is replaced by

Tw == XV.

(C.20)

(C.21)

As in peR we find the number of eomponents to be used through validation.
Assuming centered data, we will find that the loadings matrix P in (C.18) is

replaced by a weighting matrix WPLS. In the Wold algorithm WPLs for centered
data is found as follows (essentially following Martens and Næs (1989)):

1. Use the "local model" X == yw[ + Ew and find the scaled L8 solution

h h "T" 1·sue t at wl Wl == ,I.e.

" X T
WI == Cl y, (C.22)

(C.23)

(As we will find below, tVI plays the same role as the first loading veetor Pl
in the peR method, only that this choice of tVI maximizes the covariance
between the linear combination X tVI and y).
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2. Use the "Ioeal model" X == tIw[+Et and find the L8 solution (sinee w[WI ==
l)

(C.24)

3. Estimate the loadings Pl using the "Ioeal madel" X == tlpf +Ep , whieh gives
the L8 solution

(C.25)

(C.26)

4. Estimate the loading ql using the "local model" y == tlq1 + eq , whieh gives
the LS solution

gl = (tri1)-1 yTi1= cl 1 (yT XXTXXTy) -1 yTXXTy.

5. Create new data residuals

(C.27)

and

(C.28)

6. Repeat step 1 to 5 using Xl and Yl, and determine t2' P2 and Q2, and repeat
again until a faetors il, t2' ... , ta etc. have been found. The number of
faetors to be used must be determined through validation.

7. The final estimator is

(C.29)

where

WPLS = [ tVI W2 Ula ] ,

r
P2 Pa ]Pw = l Pl

(C.30)

(C.31)

and

(C.32)

It can be shown (Helland, 1988) that V in (C.21) is expressed in WPLS and
Pw sa that

(C.33)



C.3. PARTIAL LEAST SQUARES REGRESSION 217

From this follows that P in the PCR estimator is replaced by vVPLS (P$ WPLS ) -1 ,

and the PCR estimator (C.18) is therefore replaced by

hP LSR. WPLS O-l (O-T wlLsxTXWPLS 0-1)-1 (-)-T WfLSXTy

WPLS (WfLSXTXWPLS)-lWfLSXTy, (C.34)

i.e. the final estimator can be expressed by use of only the WPSL matrix in addition
to the X and y data.

Remark 21 The scaling factor Cl is not quite necessary (Helland, 1988), but it
is a part of the Wold algorithm.

Remark 22 It is also possible to use the same y vector for all [actors, and deier­
mine only new data matrices Xl, X2, ... , X a- 1 (e.g. Manne, 1987).

Remark 23 The score vectors in the Wold algorithm are orthogonal, i.e. f[tj = O
for all j =I- i.

Remark 24 The scores ti and loadings Pi do not appear in the final estimator
(C. 33). They are, houieoer, valuable interpretation tools used in the chemometrical
practice (e.g. Esbensen et al., 1994).

Remark 25 There exist also a PLSR algorithm for seoeral y-vectors, see e.g.
Martens and Næs (1989) and Høskuldsson (1996).

Martens iterative PLSR algorithm for one y-variable

Martens (1987) has developed an alternative PLSR algorithm, with non-orthogonal
score vectors. The resulting weighting matrix WPLS is, however, the same as in
the Wold algorithm, and it also plays the role of 11 in (C.21). This means that
(C.33) is replaced by

TM =XWPLS,

while the PLSR estimator is the same as given in (C.34).

(C.35)

Non-iterative PLSR algorithm for one y-variable

Di Ruscio (1998) has shown that the PLSR estimator (C.34) can be determined
non-iteratively as

(C.36)
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where Ka is a Krylov matrix (e.g. Golub and Loan, 1983) for the pair (XT X, X T y),

(C.38)Ka == WPLsRI,

where RI is an upper triangular a x a matrix.

He further showed that the weight matrix WPLS in (C.34) is given by the QR
decomposition



Bibliography

Anderson B.D.O. (1985), Identijicaiion of scalar errors-in variables models wiih
dynamics, Automatica, Vol. 21, No. 6, pp. 709-716

Anderson B.D.O. and J.B. Moore (1989), Optimal Control: Linear Quadratic
Methods, Prentice-Hall, New Jersey

Ansley C.F. and' R. Kohn (1986), Prediction mean squared error for state space
models with estimated parameters, Biometrika, 73, 2, pp. 476-473

Åstrom and Wittenmark (1990), Computer-Controlled Systems: Theory and De­
sign, Prentice-Hall, New Jersey.

Belsley, D.A. (1991), Conditioning Diagnostics: Collinearity and Weak Data in
Regression, Jo11n Wiley & Sons, New York

Berntsen, H. (1988), Utvidet Kalmanfilter og multivariabel kalibrering, Report
STF48 A88019, SINTEF, Trondheim, Norway

Budman, H.M., C. Webb, T.R. Holcomb and M. Morari (1992), Robust inferential
control for a packed-bed reactor, lnd. Eng. Chem. Res., 31, pp. 1665-1679

Chou C.T. and M. Verhaegen (1997), Subspace algorithms for the identijication
of multivariable dynamic errors-in-variables models, Automatiea, Vol. 33,
No. 10, pp. 1857-1869

Dayal S. and J.F. MacGregor (1997), Recursive exponentially weighted PLS and
its applications to adaptive control and predietion, J. Proc. Contr., Vol. 7
No. 3, pp. 169-179

Di Ruscio, D. (1997), A method for identification of combined deterministic­
stochastie systems, in Applications of Computer Aided Time Series Modeling,
M. Aoki and A.M. Havenner, Eds., Springer- Verlag, New York

219



220 BIBLIOGRAPHY

Di Ruscio (1998), The partialleast squares algorithm: A truncated Cayley-Hamilton
series approximation used to solve the regression problem, Modeling, Identi­
fieation and Control, Vol. 19, No. 3, pp. 117-140

Doyle J.C. and G. Stein (1979), Robustness with observers, IEEE Transactions
on Automatie Control, Vol. AC-24, No. 4, pp. 607-611 .

Ergon R. and D. Di Ruscio (1997), Dynamic system calioraiion by system iden­
tijication methods, Proc. Fourth European Control Conferenee (EEC'97),
Brussels, Belgium, CD-ROM

Ergon, R. (1998a), Dynamic system multivariate calibration by system identifi­
cation methods, Modeling , Identification and Control, Vol. 19, No. 2, pp
77-97

Ergon, R. (1998b), Dynamic system calibration: The low primary output sam­
pling rate case, Modeling, Identijication and Control, Vol. 19, No. 2, pp.
99-107

Ergon, R. (1998c), Dynamic system multivariate calibration, Chemometrics and
Intelligent Laboratory Systems, Vol. 44, pp. 135-146

Ergon, R. (1999), On primary output estimation by use of secondary measure­
ments as input signals in system identification, IEEE Transactions on Auto­
matic Control, Vol. 44, No. 4, pp. 821-825

Ergon, R. and M. Halstensen (1999), Dynamic system multivariate calibration
applied on acoustic data with low Y sampling rate, 6th Scandinavian Sym­
posium on Chemometrics: SSC6, Porsgrunn, Norway

Esbensen K., S. Schonkopf, T. Midtgaard and D. Guyot (1994), Multivariate
Analysis in Practice, Camo ASA, Trondheim, Norway

Esbensen K., B. Hope, T.T. Lied, M. Halstensen, T. Gravermoen and K. Sund­
berg (1999), Acoustic chemometrics for fluid fiow quantifications-II: A small
constriction will go a long way, Journal of Chemometries, 13, pp. 1-29

Faanes H., Co Gjermllndbo, V. Gundersen and K. Tvedt (1997), Statisk og dy­
namisk modell for jorsøksekstruder ved Borealis, student project under su­
pervision by R. Ergon, Høgskolen i Telemark, Porsgrunn, Norway

Frank P.M. (1990), Fault Diagnosis in Dynamic Systems Using Analytical and
Knowledge-based Redundancy - A Survey and Some New Results, Automat­
iea, Vol. 26, No. 3, pp. 459-474

Franklin, G.F., J.D. Powell and M.L. Workman (1990), Digital Control of Dy­
namic Systems, Addison-Wesley, Masse



BIBLIOGRAPHY 221

Friedland, B. (1986), Control System Design: An Introduction to State-Space
Methods, McGraw-Hill, New York

Gelb A., Ed. (1974), Applied Optimal Estimation, MIT Press, Mass.

Golub G.H., and C.F. Loan (1983), Matrix Computations, The John Hopkins
University Press, Maryland

Goodwin G.C. and R.L. Payne (1977), Dynamic System Identification: Experi­
ment Design and Data Analysis, Academic Press, New York

Grace A., A.J. Laub, J.N. Little and C.M. Thompson, Control System Toolbox
for use with Matlab, The MathWorks Inc., Mass.

Grewal, M.S. and A.P. Andrews (1993), Kaiman Filtering: Theory and Practice,
Prentice Hall, New Jersey

Harnett, M.K., G. Lightbody and G.W. Irwin (1998), Dynamic inferential es­
timation using principal components regression (PCR), Chemometric and
Intelligent Laboratory Systems 40, pp. 215-224

Harnett, M.K., G. Lightbody and G.W. Irwin (1999), Identification of state mod­
els usi,ng principal components analysis, Chemometric and Intelligent Labo­
ratorySystems 46, pp. 181-196

Helland l.S. (1988), On the structure of partial least squares regression, Commu­
nications in statistics, 17(2), pp. 581-607

Ho B. and R. Kalman (1966), Efficient construetion of linear state variable models
from input/output functions, Regelungstechnik, 14, pp. 545-548

Hoerl A.E. and R.W. Kennard (1970), Ridge regression: Biased estimation for
nonorthogonal problems, Technometrics, Vol. 12, No. 1, pp. 55-67

Høskuldsson, A. (1996), Predietion Methods in Science and Technology, Thor
Publishing, Copenhagen

Isaksen A. (1993), Identification of ARX-models subject to missing data, IEEE
Transactions on Automatic Control, Vol. 38, I~o. 5, pp. 813-819

Johansson R. (1993), System Modeling and Identification, Prentiee Hall, New
Jersey

Johnson R.A. and D.W. Wichern (1992), Applied Multivariate Statistical Analy­
sis, Prentice-Hall, New Jersey

Joseph, B. and C.B. Brosilow (1978), Inferential control of proeesses, AIChE
Journal, Vol. 24, No. 3, pp. 485-509



222 BIBLIOGRAPHY

Kailath T. (1980), Linear Systems, Prentice-Hall, New Jersey

Karstang T. (1997), Report DSR-RES.DOC, Norsk Hydro, Forskningssenteret,
Porsgrunn, Norway

Karstang T. (1999), Personal comment

Kung S. (1978), A new identijication and model reduetion algorithm via singular
value deeomposition, Proc. 12th Asilomar Conf. on Circuits, Systems and
Computers, Pacific Grove, Ca. pp. 705-714

Lewis, F.L. (1986), Optimal Estimation: With an Introduetion to Stochastie Con­
trol Theory, Wiley, New York

Lewis, F.L. (1992), Applied Optimal Control &J Estimation: Digital Design and
Implementation, Prentice Hall, New Jersey

Ljung, L. (1978), Convergenee analysis of parametric identifieation methods, IEEE
Transactions on Automatic Control, Vol. AC-23, pp. 770-783

Ljung L. (1987), System Ideniification: Theory for the User, Prentice Hall, New
Jersey

Ljung L. (1995), System Identification Toolbox for use witk Matlab, The Math­
Works Inc., Mass.

Ljung L. (1995), System Identification, Technical Report LiTH-ISY-R-1763, Linkoping
University, Sweden

Ljung L. (1999), System Identification: Theory for the User, Second Edition,
Prentiee Hall, New Jersey

Lunze J. (1992), Feedback eontrol of large-seale systems, Prentice Hall Interna­
tional (UK), Hemel Hempstead

Manne R. (1987), Analysis of tuio partial-Ieast-squares algorithms for multivariate
calibration, Chemornetrics and Intelligent Laboratory Systems, 2, pp. 187­
197

Martens H. (1987), A general partial least squares ealibration algorithm, NCC
Note STAT/35/87, The Norwegian Computer Center, Oslo

Martens H. and Tormod Næs (1989), Multivariate Calibration, John Wiley &
Sons, New York

Mejdell T. and S. Skogestad (1989), Estimate of proeess output from multiple
seeondary measurements, Proc. American Control Conference, pp. 2112­
2121



BIBLIOGRAPHY 223

Moore B.C. (1981), Principal component analysis in linear systems: Controlla­
bility, observability and model reduction, IEEE Transactions on Automatic
Control, Vol. AC-26, pp. 17-31

Ogata K. (1987), Discrete-Time Control Systems, Prentice-Hall, Englewood Cliffs,
New Jersey

Patton R.J., P.M. Frank and R.N. Clark (1989), Fault Diagnosis in Dynamic
Systems: Theory and Application, Prentiee Hall International, Hertfordshire,
Great Britain

Qin S.J. and T.J. McAvoy (1992), A data-based proeess modeling approach and
its applications, IFAC Dynamics and Control of Chemical Reactors (DY­
CORD+92), Maryland

Rasmussen J. (1983), Skiils, rules, and knowledge; Signals, signs, and symbols,
and other distinetions in human performance models, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-13, No. 3, pp. 257-266

Ricker N.L. (1988), The use of biased least-squares estimators for parameters in
discrete-time pulse-response models, Ind. Eng. Chem. Res., 27, pp. 343-350

RoordaB. and C. Heij (1995), Global totalleast squares modeling of multivariable
time series, IEEE Transactions on Automatic Control, Vol. 40, No.1, pp.
50-63

Rouse W.B., J.M. Hammer and C.M. Lewis (1988), On capturing human skills
and knowledge: Algorithmic approaches to model identijication, IEEE Trans­
actions on Systems, Man, and Cybernetics, Vol. 91, No. 3, pp. 558-573

Seborg D.E., T.F. Edgar and D.A. Mellichamp (1989), Process Dynamics and
Control, John Wiley & Sans, New York

Shaked U. (1983), Optimal nearly singular estimation of continuous linear sta­
tionary uniform rank systems, International Journal of Control, Vol. 38, pp.
275-317

Shaked U. (1985), Explicit solution to the singular discrete-time stationary linear
filtering problem, IEEE Transactions on Automatic Control, Vol. AC-3D, No.
1, pp. 34-47

Sjoberg J., T. McKelvey and L. Ljung (1993), On the use of regularization in sys­
tem identijication, IFAC 12th Triennial World Congress, Sidney, Australia,
pp. 75-80



224 BIBLIOGP~PHY

Sjoberg J., and L. Ljung (1995), Overtraining, regularization and searching for
a minimum, with application to neural networks, International Journal of
Control, Vol. 62, No. 6, 1391-1407

Soderstrom T. and Petre Stoiea (1989), System Identification, Prentiee Hall, Cam­
bridge

Soderstrom (1981), Identification of stochastie linear systems in presenee of input
noise, Automatiea, Vol. 17, No. 5, pp. 713-725

Tikhonov, A.N. and V.Y. Arsenin (1977), Solutions of Ill-Posed Problems, V.H.
Winston & Sons, Washington, D.C.

Tylee J.L. (1983), On-line failure detection in nuclear power plant instrumenta­
tion, IEEE Transactions on Automatic Control, Vol. AC-28, pp. 406-415

Van Overshee P. and B. De Moor (1996), Subspace Identijication for Linear Sys­
tems, Kluwer Academic Publishers, Dordrecht, The Netherlands

Wikstom C, C. Albano, L. Eriksson, H. Friden, E. Johansson, Å. Nordahl, S.
Rannar, M. Sandberg, N. Kettaneh-Wold and S. Wold (1998), Multivariate
proeess and quality monitoring applied to an electrolysis proeess. Part Il.
Multivariate time-series analysis of lagged latent variables, Chemometries
and Intelligent Laboratory Systems, 42, pp. 233-240

Wilhelmsen J.G. (1998), Styring og overvåking av plastrørproduksjon, M.Se. the­
sis under supervision by R. Ergon, Høgskolen i Telemark, Porsgrunn, Norway

Wise B.M. (1991), Adapting Multivariate Analysis for Monitoring and Modeling
Dynamic Systems, Ph.D. dissertation, University of Washington, Washing­
ton

Wise B.M. and N.L. Rieker (1992), Identijication of finite response models by prin­
cipal components regression: Frequency-response properties, Proeess Control
and Quality, 4, pp. 77-86

Wise B.lVI., B.R. Holt, I~.B. Gallagher and S. Lee (1995), A comparison of neural
networks, non-linear biased regression and agenetie algorithm for dynamic
model identification, Chemometries and Intelligent Laboratory Systems, 30,
pp. 81-89

Wold S., H. Martens and H. Wold (1983), The multivariate calibration problem in
ehemistry solved by the PLS method, Proc. Conf. Matrix Pencils (A. Ruhe,
B. Kågstom, eds.), Mareh 1982, Lecture Notes in Mathematies, Springer
Verlag, Heidelberg, pp. 286-293



BIBLIOGRAPHY 225

Wold S. (1993), Discussion: PLS in chemical practice, Technometrics, Vol. 35,
No. 2, pp. 136-139


	Avhandling_final.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245




