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Abstract

Simplified models are developed for a 3-phase well-pipeline-riser and tested together with a high fidelity
dynamic model built in K-Spice and LedaFlow. These models are developed from a subspace algorithm,
i.e. Deterministic and Stochastic system identification and Realization (DSR), and implemented in a
Linear Quadratic optimal Regulator (LQR) for stabilizing the slugging regime. We are comparing LQR
with PI controller using different performance measures.

Keywords: optimal controller, integral action, PI controller, Kalman filter, system identification, anti-
slug, well-pipeline-riser

1 Introduction

In the offshore industry, multiphase transportation
pipelines, which parts may consist of one or several
risers, can introduce a set of different flow patterns,
in particular; ‘Severe slugging’. The signature of
‘Severe slugging’ phenomenon is large pressure and
flow oscillations, and it is of great interest to stabilize
this flow regime since it may endanger personnel and
equipment, as well to reduce production rate.

A subset of papers proposing different anti-slug con-
trol solutions, is bulleted below:

• Introduced gaslift at riser base as control input,
controlling riser base pressure, in
Alvarez and Al-Malki (2003).

• Feedback PID control strategy of a pipeline-riser,
controlling the riser base pressure with the topside
choke as control input, in Ogazi AI (2010), Jahan-
shahi and Skogestad (2015), Storkaas and Skoges-
tad (2007), Storkaas et al. (2001) and Skogestad
(2009).

• Cascade control strategies of a well-subsea-riser,
controlling riser base pressure with topside- and
subsea choke, in Godhavn et al. (2005)

In this paper we will not use any models developed
from mechanistic rules, actually, since the controlling
results presented in this paper evolve only from a col-
lection of data we may refer to this solution as Model-
Free Control (MFC), a concept contained in Di Ruscio
(2012). The previous mentioned paper demonstrates
MFC on a lab-scale quadruple tank process using an
LQR optimal controller. The proposed controller used
is optimal in the sense that a standard linear quadratic
performance index is minimized. The essential prob-
lem in this paper will be to identify system matrices for
a linear state space model, using a subspace algorithm,
i.e. DSR (Di Ruscio (1996)). The DSR algorithm has
shown good performance over other algorithms, com-
pared on an activated sludge process (Sotomayor et al.
(2003)).
The main contributions of this paper are itemized as
follows:

• System identification approach on the well-
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pipeline-riser example, using a subspace algo-
rithm.

• Model-free optimal anti-slug control of 3 different
cases, each described in Section 4.

A most valuable tool for investigating such slugging
behavior, has been to use the ‘state-of-art’, modelling
tools; LedaFlow multiphase flow simulator (LedaFlow)
integrated with a K-Spice dynamic process simulator
(K-Spice), developed and used by Kongsberg Oil & Gas
Technologies for the last 30 years in the oil and gas in-
dustry. K-Spice and LedaFlow are high fidelity simula-
tors and are well suited to investigate the real offshore
well, pipeline, riser and topside process integrated in
one dynamic model. LedaFlow is an independent and
open simulator that is the first to provide slug captur-
ing and the only solution that predicts hydrodynamic
slugs.

Enumerated as in sections, the paper is organized as
follows:

1. In the introduction we present the anti-slug prob-
lem, past solutions and our contributions.

2. In the process description we describe the well-
pipeline-riser.

3. In the theory section we define the system model,
the problem and the functions which the results of
this paper rest upon.

4. In the simulations section we identify models and
implement them in a model-free optimal anti slug
control for three different cases.

5. Some concluding remarks.

2 Process Description

A 3-phase well-pipeline-riser example integrated in the
K-Spice/LedaFlow simulator is studied in this paper.
This example has 3 manipulative inputs of interest for
controlling flow/pressure; Topside choke, Subsea choke
and Gaslift. Together with the sentences itemized be-
low, the pipeline profile; Fig. 1 gives a brief description
of the process example.

• Outputs

{
y1: Outlet flow, FT100, [kg/s]

y2: Riser pressure, PT006, [bara]

where y1 ∈ [0, 100] and y2 ∈ [0, 200]. Note
that y2: Riser pressure is the pressure in the
bottom of the riser as illustrated in Fig. 1.
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Figure 1: Illustration of the 3-phase well-pipeline-riser
process integrated in the K-Spice/LedaFlow
simulator.

• Inputs


u1: Topside choke, HC001, [%]

u2: Subsea choke, V-HCV1, [%]

u3: Gaslift choke, FIC001, [%]

where ui ∈ [0, 100] ∀ i = 1, 2, 3.

• Stream-constrains


A: 25 [bara]

B: 500 [bara], 100[◦C]

C: 120 [bara], 30[◦C]

Note that bara is the absolute pressure expressed
in bar, where 0 bara is associated with total vac-
cum.

• Gaslift stabilize the production flow rate by de-
creasing the density and increasing the flow rate.

3 Theory

Definition 3.1 (System model)
We assume that the underlying system can be described
by a Linear discrete Time-Invariant (LTI) State Space
Model (SSM) of following form
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x̄k+1 = Ax̄k + Buk + Cek

{
Initial predicted state

x̄0

,

yk = Dx̄k + Euk + Fek,

(1)

where k ∈ N is the discrete time, x̄k ∈ Rn is the
predicted state vector, uk ∈ Rr is the input vector, yk ∈
Rm is the output vector and ek ∈ Rm is white noise
with unit covariance matrix, i.e. E(eke

T
k ) = I. We

may have the model in a traditional way by writing the
common Kalman filter on innovations form, i.e.

x̄k+1 = Ax̄k + Buk + Kεk

{
Initial predicted state

x̄0

,

yk = Dx̄k + Euk + εk,

(2)

where εk = Fek is the innovations process, K = CF−1

is the Kalman filter gain matrix and E(εkε
T
k ) = FFT

is the the innovations covariance matrix. Note that
in this paper we have forced the feed-through matrix,
E = 0, by setting g = 0 which is shown in Eq. 8.

Definition 3.2 (System Identification Problem)
From known input and output time series, the problem
is to identify a state space model, i.e the following
system matrices (A,B,C,D,E, F ) in Eq. 1 and the
initial state x̄0. The time series

uk

yk

}
∀ k = 1, . . . , N,

are organized as output and input matrices, respec-
tively

Y =


yT1
yT2
...
yTN

 ∈ RN×m, U =


uT
1

uT
2
...

uT
N

 ∈ RN×r. (3)

It is important to note that we are using centered
data, i.e. uk := uk − u0 and yk := yk − y0, where

y0 =
1

N

N∑
k=1

yk, (4)

u0 =
1

N

N∑
k=1

uk. (5)

The removing of trends from the data will often in-
crease the accuracy of the estimated model.

Definition 3.3 (Functions)
A set of functions are itemized below, essentially, the

problems considered in this paper are solved, in MAT-
LAB, by combining members from this set, structured
inside (nested) for-loop(s). We may associate the
MATLAB scripts with the function diagrams/block di-
agrams shown in Figs. 2, 3 and 4.

• Pseudo Random Binary Sequence (PRBS), a
MATLAB function designed as

U = prbs1(N,Tmin, Tmax), (6)

where U is as defined in Eq. 3 and uk ∈
{−1, 1} ∀ k = 1, . . . , N . The signal uk is PRBS
such as the constant intervals Ti are random in
the interval Tmin ≤ Ti ≤ Tmax. See e.g. Fig. 6.
The reason for using a PRBS excitation signal is
that we want to be able to identify a model with
sufficiently high order n. Notice, that a pure step
signal only is persistently exciting of order n = 1,
Söderström and Stoica (1989).

• Deterministic and Stochastic system identification
and Realization, (DSR) Di Ruscio (1996). The
model matrices in Eqs.1,2 are identified using the
following MATLAB function:

[A,B,D,E,C, F, x̄0]

= dsr(Y,U, L, g, J,M, n)
(7)

where



L : 1 ≤ L : Future horizon

g : Structure parameter

Note that g = 0 gives E = 0.

J : L ≤ J : Past horizon

n : 0 < n ≤ Lm : Number of states

M : M = 1 is default, a dummy parameter

(8)

• Mean Square Error (MSE):

MSE =
1

N

N∑
k=1

(yk − ŷdk)2 , (9)

where ŷdk is the output of the deterministic part of
the model

x̄d
k+1 = Ax̄d

k + Buk,

ŷdk = Dx̄d
k,

(10)

and with initial state x̄d
1 = x̄0.

• Linear Quadratic Regulator (LQR), Di Ruscio
(2012):

uk = uk−1 + G1∆x̄k + G2(yk−1 − rk), (11)
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where the state deviation ∆x̄k = x̄k − x̄k−1 and
rk ∈ Rm is the reference for the output y. A MAT-
LAB script calculates the optimal feedback matri-
ces: [G1, G2] = dlqdu pi(A,B,D,Q, P ), where Q
and P are the weighting matrices for respectively
reference tracking and control deviation.

• State observer for state deviation, Di Ruscio
(2012), evolved from Eq. 2, are

∆x̄k+1 = A∆x̄k + B∆uk

+ K(yk − yk−1 −D∆x̄k),


Initial state

deviation

∆x̄1 = 0

(12)

where ∆uk = uk − uk−1. The model matrices
(A,B,D,K) are identified from DSR, i.e. from
Eq. 7 with K = CF−1.

• Integrated Absolute Error (IAE):

IAE =

∫ ∞
0

|r − y|dt (13)

We may calculate the IAE recursively, as shown
in Di Ruscio (2010), in discrete time: IAEk+1 =
IAEk + ∆t|rk − yk|, where ∆t is the sampling
time.

• Total Value (TV):

TV =

∞∑
k=1

|∆uk|, (14)

where, ∆uk = uk − uk−1, is the control rate of
change.

PRBS Process
uk yk

Figure 2: Block diagram of the proposed members
working together through iterations of k,
bounded as 1 ≤ k ≤ N , to produce the input
and output data, uk and yk, which is to be
organized in matrices, Y and U as in Eq. 3.
The PRBS block is as Eq. 6.

Definition 3.4 (Notation)
Because of some untraditional linguistics used through
this paper, it is convenient, for not confusing the
reader, to give some additional definitions.

DSR

Simulate

U

MSE

Y

Is minimum

L, n, J, Y, U A,B,C,D,E, F, x̄0

Ys

MSE

Figure 3: Block diagram of the proposed mem-
bers working together through iterations of
L, n, J , each bounded as described in Eq. 8.
The optimal model, meaning the model giv-
ing the lowest MSE, is choosen. The ‘DSR’
block is as Eq. 7 and the ‘MSE’ block is as
Eq. 9.

LQR Process
uk

State observer

rk yk−

yk−1 ∆x̄k xk

Figure 4: Block diagram of the proposed members
working together through iterations of k,
bounded as 1 ≤ k ≤ N , to control yk. The
‘LQR’ block is as Eq. 11 and the ‘State esti-
mator’ block is as Eq. 12.
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• Real process := K-Spice/LedaFlow simulator

• Model := model identified from the DSR subspace
algorithm

• @ := around or working point

4 Simulation Results

4.1 Introduction

We present three cases for which we have applied
MFC, where our goal is to control/stabilize the out-
let flow. The sampling time is ∆t = 1 sec., how-
ever different simulation speeds may be used in the
K-Spice/LedaFlow simulator. The steps performed in
each case is enumerated below.

1. Identify an interesting operating point, i.e. a point
where severe slugging is present.

2. Collect datasets from an input experiment, Fig. 2.

3. Identify model, Fig. 3.

4. Control process, Fig. 4.

4.2 Case A: Topside choke and introduced
Gas lift

Introducing gaslift is said to to be the most effective
way of stabilizing the slugging regime. Considering the
open-loop simulation (Fig. 5), we see that introducing
gaslift is stabilizing the flow.
We define the case as

y ∈ R :=
{
y1: Outlet flow [kg/s] ,

u ∈ R2 :=

{
u1: Topside choke @ 25 [%]

u3: Gaslift choke @ 1.5 [%]
.

Inputs and outputs were collected into U ∈ RN×2

and Y ∈ RN (Fig. 6), where N = 3600 samples. The
first 125 samples was removed, thereafter the set
was divided into 2/3 for identification and 1/3 for
validation.

It was observed that using both inputs u1 and
u3 gave a higher order model, and worse prediction
error than if we just used u3, hence we will assume a
single-input and single-output (SISO) model with u3

as input and set u1 = 25.25. The model is identified
with DSR-parameters; L = 7, J = 12, n = 5.
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6
u

3
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Figure 5: Open-loop simulations in K-Spice. Introduc-
ing the Gaslift choke at Time = 1000 Sam-
ples. Topside choke was kept constant at
u1 = 25. Case A
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Figure 6: When stepping the topside choke and gaslift
valve, the input and output series were col-
lected from the K-Spice model, with a length
of N = 3600 samples. These inputs are from
an experimental design, i.e. PRBS as in Eq.
6 where Tmin = 20 and Tmax = 120. These
results are from a MATLAB script associated
with the block diagram in Fig. 2. The sim-
ulation speed in K-Spice was 30 times real
time. Case A
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Time [Samples]
0 500 1000 1500 2000 2500

y
1

-10

-5

0

5
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15
y

1
: Outlet flow, FT100 [kg/s]

Real
Model

Figure 7: Model (L = 7, J = 12, n = 5) simulated
and compared to the identification set, giving
MSE = 1.0777. Results from a MATLAB
script associated with Fig. 3. Case A

A =

Identified SISO model︷ ︸︸ ︷
0.9900 −0.4930 −0.0260 −0.1033 −0.0769
0.0162 0.9907 0.7521 −0.2880 0.5406
−0.0005 −0.0006 0.6030 0.7346 0.1834
−0.0002 0.0012 −0.3761 0.0323 0.9153
−0.0001 0.0003 0.1408 −0.5039 −0.1200



B =


−0.5783
0.2534
−0.0918
−0.1306
0.0198


D =

[
−0.3773 −0.5658 0.5351 −0.3387 0.3175

]

K =


−3.8226
0.6193
−0.1150
−0.1107
−0.0488


The steady state gain is approximately 1.8 and the poles

are less than one in magnitude, hence the process is stable.

The model looks to have a good fit to the datasets, see
Figs. (Fig. 7) and (Fig. 8), moreover, the model is per-
forming better over the validation set (MSE = 0.9330),
than the identification set (MSE = 1.0777). Fig. 9 shows
a successful implementation of the LQR, where the weights
are tuned (Q = 1 and P = 1000) using the identified model.
We observe that the control input is moving on towards a
constant value after a given time. We are not surprised by
the good performance, since the model is proven good in
both identification and validation.
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Figure 8: Model (L = 7, J = 12, n = 5) simulated
and compared to the validation set, giving
MSE = 0.9330. Results from a MATLAB
script associated with Fig. 3. Case A
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Figure 9: Implementation in K-Spice of the optimal
controller, LQR, controlling outlet flow, y1,
with Gaslift choke u3. The weights are Q = 1
and P = 1000. Results from a MATLAB
script associated with Fig. 4. Case A
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4.3 Case B: Topside choke and Subsea
choke

Two manipulative input variables are chosen; Topside
choke, u1, and Subsea choke, u2. Considering the open-
loop simulations in Fig. 10 and some additional observa-
tions, we will assume that the process is marginally stable
at 22 < u1 ≤ 100 and 30 ≤ u2 ≤ 45. Hence, we define
following case as

y ∈ R :=
{
y1: Outlet flow [kg/s] ,

u ∈ R2 :=

{
u1: Topside choke @ 25 [%]

u2: Subsea choke @ 40 [%]
.

Input and output time-series were collected from an in-
put experiment, (Fig. 11), and we identified a 5th order
model (Fig. 11), from the first 5000 samples, with DSR-
parameters; L = 20, J = 23, n = 5, which gave minimum
MSE = 2.4207 (Fig. 12).

A =

Identified MISO model︷ ︸︸ ︷
0.9967 −0.1703 0.1552 −0.0712 −0.0325
0.0151 0.9997 0.3479 0.0511 0.2430
−0.0005 0.0001 0.3659 0.6785 −0.4122
0.0000 −0.0002 −0.1975 0.7618 0.4638
0.0000 −0.0001 −0.0277 0.0477 0.7958



B =


−0.0713 −0.0501
−0.1594 0.0326
0.3942 −0.0019
−0.0033 0.0055
0.0304 −0.0087


D =

[
−0.2114 −0.3619 0.8160 −0.1015 0.2399

]

K =


−5.3680
0.1029
−0.4218
−0.1336
0.0763


Fig. 13 shows the controlling results of the LQR, tuned

from trial-and-error methods. The LQR is introduced at
T ime = 1000 and is in fact able to stabilize the outlet flow
in the region which we assumed marginally stable. Note
that we have set the controller limits equal to this region.
Despite how awful the model fits the identification set (Fig.
12) we are actually achieving seemingly good controlling
results with the LQR.

4.4 Case C: Topside choke

We choose to investigate a case with only the topside choke
as input variable. Considering the open-loop simulations
Fig. 14 and some additional observations, we will assume
that the process is marginally stable at 22 < u1 ≤ 100.
Hence, a case was constructed as
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y
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y

1
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Figure 10: Open-loop simulations in K-Spice. Subsea
choke looks to have a much higher steady
state gain than the topside choke. Case B

y ∈ R2 :=

{
y1: Outlet flow [kg/s]

y2: Riser pressure [bara]
,

u ∈ R :=
{
u1: Topside choke @ 25 [%] .

A 4th order SISO model, with only output y2, was iden-
tified from the time-series (Fig. 15) with DSR-parameters;
L = 5, J = 5, n = 4, with minimum MSE = 0.560 (Fig.
16).

A =

Identified SISO model︷ ︸︸ ︷
0.9984 −0.7044 0.4806 −0.5121
0.0039 0.9944 0.2759 0.8613
0.0000 −0.0026 −0.2460 1.1076
−0.0001 0.0035 −0.6999 0.4946



B =


−0.0373
−0.0010
−0.0194
−0.0080


D =

[
−0.4462 −0.6336 0.6047 0.0857

]
K =


−2.4289
0.6259
0.1498
−0.1096


Fig. 17 shows successful implementations of two differ-

ent control strategies; LQR and PI. Both controllers are
tuned using the identified model. The controllers are in-
troduced at 500 Samples and are both able to stabilize the
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Figure 11: When stepping the topside choke and sub-
sea choke, the input and output series were
collected from the K-Spice model, with a
length of N = 6000 samples. These in-
puts are from an experimental design, i.e.
PRBS as in Eq. 6 where Tmin = 150 and
Tmax = 500. These results are from a MAT-
LAB script associated with the block dia-
gram in Fig. 2. The simulation speed in
K-Spice was 20 times real time. Case B
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Figure 12: Model (L = 20, J = 23, n = 5) simulated
over the identification set. MSE = 2.4207.
Case B
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Figure 13: LQR controlling the identified 5th order
model with Q = 1 and P = 500I2×2. LQR
introduced at Time = 1000 Samples. For
Time > 5000, the Subsea choke, u2, satu-
rates, because of the bound 22 < u2 ≤ 45,
as specified. Case B
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Figure 14: Open-loop simulations in K-Spice. We ob-
serve how the amplitudes are increasing as
the topside choke is increasing. Note that
2000 ≤ Time ≤ 4000 is a marginally stable
region. Case C
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Figure 15: When stepping the topside choke, the input
and output series were collected from the
K-Spice model, with a length of N = 6000
samples. These inputs are from an experi-
mental design, i.e. PRBS as in Eq. 6 where
Tmin = 300 and Tmax = 700. These results
are from a MATLAB script associated with
the block diagram in Fig. 2. The simu-
lation speed in K-Spice was 10 times real
time. Case C
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Figure 16: The model (L = 5, J = 5, n = 4) is simu-
lated and compared to the identification set,
giving MSE = 0.5760. Case C

undesired slugging regime in the region assumed to have
marginal stability, i.e. 22 < u1 ≤ 100. The LQR shows
better reference tracking (IAE = 177.5) than the PI con-
troller (IAE = 268.0). Small oscillations are shown to be-
gin after 2500 Samples with the PI controller, however the
LQR shows more promising results. It is important to note
that the PI controller could probably be tuned better.

Table 1: Comparing PI vs LQR control strategy using
measures: Integrated Absolute Error (IAE)
and Total Value (TV). See Fig. 17

Controller Tuning parameters IAE TV

PI Kp = −10, Ti = 60 267.961 196.027
LQR Q = 1, P = 10 177.496 306.086
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Figure 17: Comparing closed loop controllers: PI
(Kp = −10, Ti = 60, Td = 0) and LQR
(Q = 1, P = 10). The controllers are in-
troduced at Time = 500 Samples. Case
C

5 Concluding Remarks

Practical implementations of Model-free optimal anti-slug
control was successfully demonstrated on three different
cases on the 3-phase well-pipeline-riser example in the K-
Spice/LedaFlow simulator. Linearized reduced order SSM
was identified from a subspace algorithm, i.e. DSR, based
on time-series, collected using an input experiment, i.e.
PRBS. In each case we where able to stabilize the outlet
flow, using the LQR and PI controllers.
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