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Abstract:  In our master degree program in process automation, traditional modeling and control 
courses are supplemented by courses in experimental design and chemometrics. A corresponding 
inter-disciplinary research program supports this innovation in curricular structure. The 
background for all this is the recent developments in chemometrics and the strong stand this 
discipline has in the Scandinavian process engineering and industrial communities. The program 
curriculum and related research results are presented, together with a summary of student and 
industrial feedback. 
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1.  Introduction 

The M.Sc. degree in process automation at Telemark University College is based on a two years program on top of 
an undergraduate degree in automation, electronics, mechatronics or electrical power engineering. Due to the recent 
developments in chemometrics and the strong stand this discipline has acquired in the Scandinavian process 
engineering and industrial communities, the traditional modeling and control courses are supplemented by courses in 
experimental design and chemometrics. A corresponding inter-disciplinary research program supports this 
innovation in curricular structure. In the present paper we will first give a short outline of the program, and then 
focus on subjects in the areas of estimation, system identification and chemometrics with experimental design 
(ESIC). Our research activities in these areas will also be presented.  

The total of 40 Norwegian credits in our M.Sc. program are at present represented by the courses in Table 1.  

Table 1. Courses in Master degree program in Process Automation (o = optional) 

Applied numerical analysis 2 Structures of industrial control systems  2o 

Process control  2 Advanced chemometrics  2o 
Process modeling I (mechanistic) 3 Advanced control topics 2o 
Modern sensors in systems 2 Case studies in sensors and systems 2o 
Process data technology 3 Operational reliability and safety 2 
State and parameter estimation 2 Project administration 1 
Process modeling II (mechanistic) 2 Project (group assignment) 3 
Chemometrics and experimental design 2 Technology in society  1 
System identification and predictive control 2 Master thesis 9 

In the table we have italicized the subjects in the ESIC area: 5 compulsory credits, 2 optional credits, 3 credits of 
project assignment (more or less ESIC) and 9 credits of master thesis assignment (more or less ESIC). The interested 
student might thus use close to one full year studying these subjects. 

The central theme in the State and parameter estimation course is Kalman filtering. This is applied on problems 
concerning state estimation, parameter estimation by use of augmented and extended Kalman filters, identification 
of ARX models by use of recursive least squares (LS) Kalman filter algorithms, and identification of ARMAX 
models by use of innovations representation and the prediction error method. The essential subject of persistent 
excitation and its relation to statistical experimental design is also discussed. Our recent research results in this area 
are related to the identification of product quality estimators based on secondary plant measurements [1-7]. This also 
includes the handling of highly multivariate data by use of chemometrical methods.  

A main subject in the Chemometrics with experimental design course is multivariate calibration by use of partial 
least squares regression (PLSR). As a basis for this, standard methods for statistical experimental design are 



included. Special process related applications and advanced PLSR methods are presented in the optional Advanced 
chemometrics course. Our research in the area is focused on utilization of acoustic plant information [8-10]. 

The System identification course focuses on the modern subspace identification methods, that just as the 
chemometrical methods utilizes projection of multivariate data onto various subspaces. This is related to 
chemometrics by the use of PLSR as a factorization method, and by a discussion of the important plant excitation 
issue. Our recent research results are related to system identification as such and to the PLSR algorithm [11-14].  

It is an essential part of our program that the responsibilities of teaching the estimation and system identification 
courses are combined with active research on the relations between these classical control subjects and 
chemometrics, including industrial applications. The ESIC subjects presented above are also to various degrees 
applied in project and master thesis assignments based on problems from industrial partners as Norsk Hydro, 
Borealis, Norske Skog and Norcem, that are all major Norwegian process industry companies. A typical example is 
presented below. 

2.  Multivariate calibration 

2.1 The basic problem 

The central problem in the compulsory chemometrics course is the static multivariate calibration problem [15,16]. 

Assuming a static system with a scalar primary output or response variable 1y  and multivariate secondary 2y  

outputs, the calibration problem is to find an estimator b̂  from experimental data that may be used to estimate non-

measured primary outputs according to byy T ˆˆ 21 = . 

A typical example is the estimation of protein content in whole wheat kernels based on near infrared (NIR) 

spectroscopy [17]. Here, the protein content is the primary output 1y , while the NIR reflectance at a large number 

of frequencies gives rise to the 2y variables. A process related example is the estimation of distillation product 
composition from a number of temperature measurements along the distillation tower [18]. The fundamental 

problem in such cases is that the number of 2y  variables may be much larger then the number of observations in the 
experimental data.  

Assuming experimental data from independent observations, [ ]T
Nyyyy 112111 L= and 

[ ]T
NyyyY 222212 L= , and independent observation errors, we find the LS solution  
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With a large number of 2y  variables, this solution will be very noise sensitive, an in practical applications the LS 
method will work satisfactorily only when the number of variables is much smaller than the number of observations. 

2.2 The chemometrical solutions 

In many practical situations, fortunately, the 2y  variables are highly collinear, and the information in a large 

number of 2y  variables may then be compressed into a much smaller number a  of estimated latent variables 

[ ]Taττττ ˆˆˆˆ 21 L= . The model underlying such data compression is the latent variables (LV) model  
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where 1e  and 2e are independent observation errors. 

In the chemometrical PLSR and principal component regression (PCR) methods, the 2Y  data matrix is compressed 

into a score matrix T̂  by use of the factorization 
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where E  is a residual matrix. Here aa
T

a IWW =ˆˆ , where a  is the number of principal components one decides to 

use, and the least squares solution of (3) is thus aWYT ˆˆ
2= . The 2Y  data is thus projected onto a low dimensional 

subspace defined by aŴ , and the data compression results in the regularized latent variables estimator [2,19] 
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The alternative regularization method ridge regression [20] may give quite similar end results. The advantage with 
the chemometrical methods is, however, the interpretability of the latent variables involved [21], and this is an 
important part of our compulsory chemometrics course. 

2.3 Optimal regularization 

The static model (2) may after a similarity transformation be represented by the dynamic model 
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where kv , ke ,1  and ke ,2  are white noise sequences with covariances vR , 11r  and 22R . 

Standard Kalman filtering theory [22] then results in the optimal estimator  
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where  
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The optimal weighting matrix in (4) is thus QKW T
a =ˆ , where a  is equal to the number of state variables in (5), 

and where Q  is an invertible matrix. However, an implementation of the optimal estimator would require a detailed 
knowledge of the data generating system, including the process and measurement noise covariances, which 

especially in multivariate cases may be quite unrealistic. In practice we must thus be content with QKW T
a ≈ˆ . 

After the singular value decomposition [ ] [ ] TTT VUSVVSUUSVK 11211 0 =⋅== , and since 1US is 
invertible, we find that the optimal estimator (6) may be written as  

   ( ) 12112211
ˆ yYVVYYVVb TTTT

KF = .                   (8) 

Since a
T IVV =11  this estimator is quite similar to (4), and it is in fact possible to show that the columns of aŴ  are 

rotated and noise corrupted versions of the 1V  columns [7]. 

2.4 Non-iterative PLSR algorithm 

The well established PLSR algorithm is iterative in the sense that aŴ  is computed from the data column by column 
[15]. It can be shown, however, that the controllability (Krylov) matrix  
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may replace aŴ  in (4), resulting in a non-iterative PLSR algorithm [13,14]. This may furthermore be extended to a 

novel non-iterative and optimal PLSR algorithm that incorporates multivariate 1y  data [13,14]. 

3.  Dynamic system multivariate calibration 

The dynamic model (5) is a special case of the more general dynamic model  
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where ku  are known system inputs, while kv , kw ,1  and kw ,2  are white noise sequences. A Kalman filter with ku  

and ky ,2  used as inputs, will in this dynamic case result in the optimal primary output estimate 

   ( )( ) ( )[ ] ( ) kkkkkkk uDuDyKCAKyuAKDBAKCAqIKCICy 12,21,22
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where 1−q  is the unit time delay operator, and where the subscript in kky |,1̂  indicates that data up to and including 

time step k  is used. The optimal estimator (11) may be identified from sampled data by use of a prediction error 
method [23,1], and this may be done also in the many practical multirate sampling cases where the experimental 

data has 1y  values sampled only at a low and possibly irregular rate [3,6]. The requirement is that u  and 2y  are 
sampled at a high enough rate to capture the dynamics of the system. 

In cases where 2y  is multivariate and collinear, 2y  in (11) may be replaced by 2
ˆˆ yW T=τ  [6]. 

4. Subspace identification 

Subspace system identification (4SID) algorithms make use of projections of experimental data onto low 
dimensional subspaces, and thus have an important feature in common with the chemometrical multivariate 
calibration methods for static systems. The basic problem is in this case to identify the dynamic system (10) as such, 

with a common ky  output. 

In the best-known 4SID methods [24], the first step is to identify the extended observability matrix  

   ( ) ( )[ ]TTrTT
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and after the appropriate projections this can be done by LS methods. When an estimate rÔ  is determined, Ĉ  is 

obtained as the first block row, while Â  easily follows form the shift property of rÔ , i.e. the fact that 
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− = . With Â  and Ĉ  in place, it is an easy LS problem to find B̂  and D̂  
from  
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By use of rÔ  it is also possible to reconstruct the states kx  in (10), and the statistical noise properties can then be 
established. 

In the DSR algorithm of Di Ruscio [11,12] the first step is to eliminate kx  from the equations, and also here the 

shift property of rO  plays a vital role. After appropriate projections, estimates Â , B̂ , Ĉ  and D̂  may then be 
found by LS methods, although QR factorization plays a vital role in the practical implementation of the algorithm. 



The noise properties, i.e. the innovations covariance Λ  and the gain K  in an underlying Kalman filter, are then 
also estimated. 

5. Master thesis example 

The quality control of polymer production processes is a quite active research area [25]. In a present master thesis 
assignment related to the Borealis polyolefine plant in Bamble, Norway, the problem is to identify melting index 
estimators from plant data. The task includes data reconciliation, static PLSR modeling and validation, dynamic 
multirate estimator identification, and discussions of estimator updating and feedback control schemes. 

6. Course program evaluation 

The course program in Table 1 is evaluated each semester. This has the form of discussions in the classes, followed 
by a formal meeting between student representatives and all teaching personnel involved. Our experiences with this 
form of oral evaluation are quite good, and the student response to the program is overall positive. The response in 
the industrial community is also quite favorable, as illustrated by the fact that around 90% of all master thesis 
assignments are given in close cooperation with industrial partners. Many of those are in the ESIC area. Post-
graduation feedback also indicates that the inclusion of experimental design and chemometrics in the curriculum is 
well motivated. 

References 
[1]   R. Ergon and D. Di Ruscio, "Dynamic system calibration by system identification methods",  
        Proc. Fourth European Control Conference (EEC'97), Brussels, Belgium, CD-ROM, 1997 
[2]   R. Ergon , "Dynamic system multivariate calibration by system identification methods", Modeling,  
        Identification and Control, Vol. 19, No. 2, pp 77-97, 1998 
[3]   R. Ergon, "Dynamic system calibration: The low primary output sampling rate case", Modeling, 
        Identification and Control, Vol. 19, No. 2, pp. 99-107, 1998 
[4]   R. Ergon, "Dynamic system multivariate calibration", Chemometrics and Intelligent Laboratory  
        Systems, Vol. 44, pp. 135-146, 1998 
[5]   R. Ergon, "On primary output estimation by use of secondary measurements as input signals in  
        system identification", IEEE Transactions on Automatic Control, Vol. 44, No. 4, pp. 821-825, 1999 
[6]   R. Ergon, "Dynamic System Multivariate Calibration for Optimal Primary Output Estimation", Ph.D. thesis, The Norwegian  
        University of Science and Technology/Telemark University College, Trondheim/Porsgrunn, Norway, 1999 
[7]   R. Ergon, "Multivariate calibration in a Kalman filtering perspective", submitted to Journal of Chemometrics, 2000 
[8]   K. Esbensen, B. Hope, T.T. Lied, M. Halstensen, T. Gravermoen and K. Sundberg, "Acoustic chemometrics for fluid flow  
        quantifications-II: A small constriction will go a long way", Journal of Chemometrics, 13, pp. 1-29, 1999 
[9]   M. Halstensen and K. Esbensen, "New developments in acoustic chemometric prediction of particle size distribution 
         - 'The problem is the solution'", accepted for publication in Journal of Chemometrics, 2000 
[10]  R. Ergon and M. Halstensen, "Dynamic system multivariate calibration with low sampling rate y data", accepted for publication  
         in Journal of Chemometrics, 2000 
[11] D. Di Ruscio, "A method for identification of combined deterministic-stochastic systems", in "Applications of Computer Aided  
       Time Series Modeling", M. Aoki and A.M. Havenner, Eds., Springer- Verlag, New York, 1997 
[12] D. Di Ruscio, "On Subspace Identification of the Extended Observability Matrix", Proc. of the 36th IEEE CDC, San Diego, 1997 
[13] D. Di Ruscio, "The partial least squares algorithm: A truncated Cayley-Hamilton series approximation used to solve the  
        regression problem", Modeling, Identification and Control, Vol. 19, No. 3, pp. 117-1408, 1998 
[14] D. Di Ruscio, "A weighted view on the partial least-squares algorithm", Automatica, Vol. 36, pp. 831-850, 2000 
[15] H. Martens and T. Næs, "Multivariate Calibration", John Wiley & Sons, New York, 1989 
[16] K. Esbensen, "Multivariate Data Analysis - in practice", Camo ASA, Trondheim, Norway, 2000  
[17] K.H. Norris, "Extracting information from spectrophotometric curves. Predicting chemical composition from visible and near-infrared  
        spectra", Proc. IUFost Symp. Food Research and Data Analysis, Sept. 1982, Oslo, Norway (Martens and Russworm, eds.), Applied  
        Science Publ., 95-113, 1993 
[18] T. Mejdell and S. Skogestad, "Estimate of process output from multiple secondary measurements", Proc. American Control Conference,  
        2112-2121, 1989 
[19] D. Di Ruscio, "Subspace System Identification: Theory and applications", Lecture notes, Telemark University College, 
        Porsgrunn, Norway, 1997  
[20] A.E. Hoerl and R.W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems", Technometrics, Vol. 12, No. 1,  
        Pp. 55-67, 1970 
[21] S. World, "Discussion: PLSR in chemical practice", Techno metrics, Vol. 35, No. 2, pp. 136-139, 1993 
[22] M.S. Growl and ASP. Andrews, "Kalman Filtering: Theory and Practice", Prentice Hall, New Jersey, 1993 
[23] L. Lung, "System Identification: Theory for the user", Prentice-Hall, New Jersey, 1999 
[24] P. Van Overshoe and B. De Moor, "Subspace Identification for Linear Systems", Lower Academic Publishers, Correct, 
        The Netherlands, 1996 
[25] M. Ohshima and M. Tanoak, "Quality control of polymer production processes", Journal of Process Control, Vol. 10, pp. 135-148, 2000 
 
 
 


