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A state estimator and various model-based control systems have been designed for a real anaerobic digestion (AD) pilot reactor
fed with dairy manure. The model used is a modified Hill model which is a relatively simple dynamical AD process model. The
state estimator is an Unscented Kalman Filter (UKF) which uses only methane gas flow measurement to update its states. The
model and the state estimates are used in different control systems. One of the control systems aims at controlling the methane gas
flow to a setpoint. Simulations indicate that the setpoint tracking performance of a predictive control system is considerably better
comparing with PI control, while disturbance compensation is not much better. Consequently, assuming the setpoint is constant,
the PI controller competes well with the predictive controller. A successful application of predictive control of the real reactor is
presented. Also, three different control systems aiming at retaining the reactor at an operating point where the volatile fatty acids
(VFA) concentration has a maximum, safe value are designed. A simulation study indicates that the best control solution among
the three alternatives is PI control based on feedback from estimated VFA.

1. Introduction

Anaerobic digestion (AD) of organic substrates can produce
biogas which consists mainly ofmethane and carbon dioxide,
[1–3]. In a well-operated AD reactor, the methane content
is sufficiently large to make the biogas combustible; that is,
the AD process produces applicable energy. Moreover, the
reactor digestate is often high in nutrients and can be used
in fertilization. Animal waste, in many cases combined with,
for example, food waste, is a typical feedstock of AD reactors.
A presentation of AD of animal wastes, from dairy, beef,
poultry, and swine, is provided, for example, in [4].

UASB (upflow anaerobic sludge blanket) type reactors are
effective AD reactors as they allow for relatively high load
rates (feed rates) and/or small reactor volumes, [1, 5]. The
effectiveness is due to relatively large solids retention time
(SRT), which is the retention time of the microorganisms
which degrades the substrate and generates, for example,
methane, compared with the hydraulic retention time (HRT)
of the reactor. The AD reactor studied in the present paper is
a UASB reactor.

Anaerobic digestion is a complex and nonlinear dynamic
process and most plants suffer from a lack of robust online-
measurement systems for online process monitoring [3].
Therefore, automatic plant control is a challenging task. The
present paper presents an attempt to use a mathematical
dynamic model to estimate online, nonmeasured AD state
variables and to use these estimates in a model-based control
system. Results of the application of state estimation and
model-based control to a real pilot AD reactor using dairy
waste as feedstock are shown. The reactor is situated at Foss
Farm, Skien, Norway. The results from the pilot reactor are
assumed to be transferable to a planned full-scale reactor at
the farm.

In this paper, state estimates are used both in industry-
standard PI controllers and in predictive controllers.The only
online measurement used by the estimator, and thus by the
controllers, is the methane gas flow. The reactor temperature
is retained at a constant setpoint by means of a temperature
control system [6].

Several control systems are designed and applied to the
reactor. One aims at retaining the produced methane flow at
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a setpoint which can stem from a specified power production.
Another control system aims at retaining the reactor at a safe
operating point, where the concentration of the VFA (volatile
fatty acids) is not above a certain value.

Themodel-based design and the simulations are based on
the modified Hill model adapted to the pilot reactor [7]. This
model is summarized in Section 3.3.

This paper is organized as follows. Section 2 gives a
literature review. Section 3 provides a system description,
including the mathematical reactor model used as the basis
for state estimation and model-based control. In Section 4,
safe reactor operation conditions are defined in terms of
an acceptable range of VFA (volatile fatty acids). Section 3.2
presents a general structure of a model-based optimization
and control system, applicable to the reactor. Application
of the Unscented Kalman Filter (UKF) to estimate the state
variables of the reactor and itsmain disturbance, namely, 𝑆vsin ,
is described in Section 5.These estimates are used for control
of 𝐹meth, which is described in Section 6, which includes
both simulated and real results. The estimates are also used
for control of 𝑆vfa, which is described in Section 7, which is
simulation study. Conclusions are given in Section 8.

Matlab and Simulink (MathWorks, Inc.) are used for
numerical computations and simulations. The real control
system is implemented in LabVIEW (National Instruments,
Inc.) running on a laptop PC. In the LabVIEW program,
the algorithms of the UKF and the predictive controller are
implemented in a Matlab Script Node.

2. Literature Review

2.1. State Estimators for AD Reactors. Literature about state
estimators applied to AD reactors fed specifically with dairy
manure has not been found. Below are references to state esti-
mators applied to reactors fed with other types of substrates,
assumed to be also relevant for the present application.

In a simulation study, Jones et al. [8] apply an Extended
Kalman Filter (EKF) to estimate four states of a simplified
version of the AD model by Hill and Barth [9], using five
online measurements.

Bernard et al. [10] estimate the six states of a real AD
reactor fed with effluents from a wood processing plant
using an asymptotic observer [11]. Available online mea-
surements were CH

4
gas flow and CO

2
gas flow. Influent

concentrations are assumed to be known. The estimator is
based on a state variable transformation leading to a model
having auxiliary state variables where the reaction rates are
eliminated. These rates are then estimated from the state
estimates. The estimator is designed so that the estimation
errors converge towards zero with dynamics of the mass
balances of the model, determined by, for example, the feed
rate. The asymptotic observer is an open-loop estimator and
has no tuning parameters, contrary to a Luenberger observer
and a Kalman Filter which are closed loop, or feedback
estimators with parameters which can readily be used for
performance adjustment.

Alcaraz-González et al. [12] estimate four out of six
states of a real AD reactor fed with industrial wine distillery

vinasses, namely, the methanogens and acidogens concen-
trations, COD (chemical oxygen demand), and alkalinity, by
using online measurements of CO

2
gas flow, VFA, and TIC

(total inorganic carbon). The AD process model is as in [10].
The estimator is an interval observer based on the structure of
an asymptotic observer. An important property of an interval
observer is that the estimates are guaranteed to be within
bounds given by uncertainty bounds of model parameters
and AD process inputs.

In a study based on real data, Theilliol et al. [13] estimate
the six state variables and three unknown inflow concen-
trations, namely, COD, VFA, and TIC, of an AD reactor
fed with industrial wine distillery vinasses, using five online
measurements: COD, VFA, alkalinity, CH

4
gas flow, and CO

2

gas flow. The estimator is based on manipulating the original
state space model using SVD (singular value decomposition)
to find an observable subsystem insensitive to unmeasured
inputs. Then, a Luenberger observer based on this subsystem
is used to estimate the state and the unmeasured inputs.

In a simulation study based on a full-scale agricultural
biogas plant, Gaida et al. [14] use discriminant analysis and
classification-based pattern recognition methods to find the
static mapping function between the measurement data,
which are biogas flow, CH

4
and CO

2
gas concentrations, pH

in the reactor, the amount of each substrate, and the state of
the AD process. The state variables are those of the ADM1
model (Anaerobic Digestion Model No. 1) [15]. The various
substrates considered are maize silage, grass, manure, and
manure solids.

Dochain [16] and Bogaerts and Vande Wouwer [17] give
an overview of various state estimators suitable for biopro-
cesses, including the estimators applied in the references
above.

In the applications referred to above, the estimators use
two or more online measurements. In the present paper,
only one measurement is used, namely, 𝐹meth (CH4 gas flow).
Furthermore, in the present paper the Unscented Kalman
Filter (UKF) is used. The UKF can be used without any
linearization or model manipulation; that is, it uses the
nonlinear state space model directly in the algorithm. We
have not found literature on application of the UKF to AD
reactors.

2.2. Model-Based Control of AD Reactors. We have not found
literature on model-based control systems of AD reactors
fed specifically with dairy waste. Below are references to
model-based control systems of reactors fed with other types
of substrates, assumed to be also relevant for the present
application.

Bernard et al. [10] have implemented a model-based
adaptive linearizing controller and a fuzzy controller
designed to maintain the intermediate alkalinity (VFA,
volatile fatty acids) and the total alkalinity within specified
limits to ensure stable process conditions and to avoid
VFA accumulation despite organic load disturbances. The
so-called AM2model, [18], is used for design and simulation.

Puñal et al. [19] have designed an automatic fuzzy logic-
based control system to maintain the online-measured VFA
concentration at a proper setpoint.
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Méndez-Acosta et al. [20] have designed a model-
based controller for maintaining the COD (chemical oxygen
demand) of the reactor effluent at its setpoint, using the AM2
model, [18].

Méndez-Acosta et al. [21] have designed a multivariable
control system for controlling the concentration ofVFA in the
reactor to its setpoint using the feed rate and controlling the
total alkalinity to its setpoint using the addition of an alkali
solution.

Strömberg et al. [22] have identified, using simulations,
three controllers for AD processes to be the most suitable
ones for maximizing gas production, while being able to
react properly to process disturbances due to variations in
pH, ammonia, and concentration in the reactor feed. The
simulations use the ADM1 model [15]. All of the controllers
have the feed rate as control variable (controller output).
The controllers resemble an expert system, with logics (if-
clauses) in the control function. The three controllers are (1)
the extremum-seeking variable gain controller by Liu et al.
[23], (2) the disturbance monitoring controller by Steyer et
al. [24], and (3) the hydrogen-based variable gain controller
by Rodŕıguez et al. [25]. Strömberg et al. [22] note that no
uniform tuning method could be derived to tune the three
controllers. Instead, trial-and-error procedures are used.

In a simulation study, Gaida et al. [26] have implemented
a nonlinear predictive controller to control a simulated
ADM1, assuming all states are available, and, therefore, a
state estimator is not used. The controller allows alternative
optimization criteria, for example, economical optimization
and minimum methane concentration of the biogas. The
plant is the same as in [14], compared with the above section
about state estimation.

In a simulation study,Ordace et al. [27] have implemented
a predictive controller based on transfer functions adapted
to the ADM1 model to control the ADM1. The optimization
criterion of the controller contains the square of the control
error, while the control signal usage is not included; that is, it
has no cost in the criterion.

3. System Description

3.1. AD Reactor with Control System. Figure 1 depicts the AD
reactor with its control system. The reactor type is UASB
(upflow anaerobic sludge blanket). The reactor is part of a
pilot biological plant for nutrient and energy recovery named
Foss Biolab, situated at Foss Farm, Skien, Norway. Input to
the plant is dairy manure diluted with 25% water and filtered
with a sieve, and outputs are fertilizer and biogas consisting
of approximately 70% methane. The reactor’s temperature
is kept fixed at its setpoint with an automatic temperature
control system.

In Figure 1, the block denoted “Model-based controller”
may comprise a state estimator and alternative controller
functions (predictive controller and PI controller with feed-
back from state estimates). The model-based controller uses
an online measurement of 𝐹meth which is provided by sensor
FT. This measurement is obtained by multiplying the online
biogas flowmeasurement from a thermal gas flow sensor and
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(with microorganisms)
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(with suspended sludge)
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Figure 1: Control system of the AD reactor.

the online methane concentration measurement from an IR-
based sensor. The raw measurement signals are smoothed
using software filters.

𝐹feed is used as control variable. The demanded flow is
obtained with a peristaltic feed pump operated with PWM
(Pulse width modulation) with a cycle time of 700 sec.

In principle, 𝑇reac is also a candidate as control variable
since it has a clear impact on 𝐹meth, but in [28] we argue why
𝑇reac is not considered a usable control variable.

An online measurement of 𝑇reac is used by the controller,
since 𝑇reac is an important model variable. 𝑇reac is retained
at its (fixed) setpoint with a separate temperature control
system, where the controller is a PI (proportional plus
integral) controller [6].

In this paper, 𝑇reac is kept at 35
∘C because this is a typical

temperature at which AD reactors are operated (mesophilic
conditions). However, this temperature is not necessarily
optimal. In [29] we show how the temperature can be
specified using model-based optimization.

3.2. Control System Structure. Figure 2 shows the structure of
the control system.

In the block diagram: 𝑢 = 𝐹feed, and 𝑑 = 𝑆vsin . 𝑥 comprises
here the four state variables of the modified Hill model,
compared with Section 3.3: 𝑥 = [𝑆bvs, 𝑆vfa, 𝑋acid, 𝑋meth]

𝑇.
Depending on the applications in this paper, 𝑦 = 𝐹meth,
compared with Section 6, or 𝑦 = 𝑆vfa, compared with
Section 7. Furthermore, the Process is the reactor. The Con-
troller implements predictive control, PI control, or manual
control.The Estimator is an Unscented Kalman Filter (UKF).
The Control Designer is the algorithm or strategy used
to transform the specifications of the optimal operation
into (optimal) setpoints and/or control signals. The Control
Designer may also set parameters for controller tuning,
for example, cost factors in the optimization criterion of
a predictive controller, or itmay be an optimization algorithm
to calculate optimal setpoints.
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Figure 2: Block diagram of model-based optimization and control system. (Terms and variables are defined in the text.)

The symbol 𝑀
𝑎
in various blocks in Figure 2 represents

the assumed mathematical model used in the block. The𝑀
𝑟

symbol in the Process block is themodel representing the real
system (process). Only ifmodel errors are assumed to be zero,
𝑀
𝑎
and𝑀

𝑟
will be identical.

The connections from 𝑑 and/or 𝑑est to the Control
Designer are due to 𝑑 being an input to the process, and the
value of𝑑 or𝑑est is included in themodel-based optimization.
For example, the value of 𝑆vsin in the feed of the reactor has
an impact on the specific value of 𝐹feed needed to produce a
specified 𝐹meth which in turn is closely related to the power
production in the reactor.

In general, the operational objectives, which are the
inputs to the Control Designer in Figure 2, may be adjusted
based on results of an evaluation of the factual process
operation, but this possible adjustment is not depicted in
Figure 2.

A large number of model-based controllers exist [30]. In
this paper, a predictive controller [31, 32] is selected (a pre-
dictive controller is also denoted as model-based predictive
controller (MPC)). The selection of a predictive controller is
due to its popularity (as model-based controller) in the pro-
cess industry [33] anddue to our view that it implementsmost
of the important controller features which would otherwise
require a number of special solutions, that is, feedback, feed
forward, integrator antiwindup, constraints handling, and
time-delay compensation.Whennonlinear predictive control
is used, as in this paper, process nonlinearities are taken into
account naturally and without approximations. Furthermore,
a predictive controller is relatively easy to tune, if the process
model is accurate.

3.3. AD Process Model. The mathematical model of the AD
processes in the reactor is a modification of the Hill model
[34] adapted to the pilot reactor [7]. The model is based
on material balances of biodegradable volatile solids, volatile
fatty acids, acidogens and methanogens, and a calculation of
the produced methane gas flow. The model is summarized
below:

material balances:

̇𝑆bvs = (𝐵0𝑆vsin − 𝑆bvs)
𝐹feed
𝑉

− 𝜇𝑘
1
𝑋acid

̇𝑆vfa = (𝐴𝑓𝐵0𝑆vsin − 𝑆vfa)
𝐹feed
𝑉

+ 𝜇𝑘
2
𝑋acid − 𝜇𝑐𝑘3𝑋meth

𝑋̇acid = (𝜇 − 𝐾𝑑 −
𝐹feed/𝑏

𝑉
)𝑋acid

𝑋̇meth = (𝜇𝑐 − 𝐾𝑑𝑐 −
𝐹feed/𝑏

𝑉
)𝑋meth;

(1)

methane gas production:

𝐹meth = 𝑉𝜇𝑐𝑘5𝑋meth; (2)

reaction rates:

𝜇 = 𝜇
𝑚

𝑆bvs
𝐾
𝑠
+ 𝑆bvs

𝜇
𝑐
= 𝜇
𝑚𝑐

𝑆vfa
𝐾
𝑠𝑐
+ 𝑆vfa

𝜇
𝑚
= 𝜇
𝑚𝑐
= 0.013𝑇reac − 0.129 for 20∘C < 𝑇reac < 60

∘C.
(3)

Table 1 shows model parameter values as adapted to AD
reactor at Foss Farm, [7].

One example of a set of steady-state values of the AD
process variables is given in Table 2.

4. Safe Operation Condition

The various control systems proposed in this paper are
designed to retain the reactor at a safe reactor operation
condition, defined below. Hill et al. [35] have found, from a
comprehensive study of literature reporting operational data
for reactors fed with swine and beef manure and confirmed
by their own laboratory experiments, that 𝑆vfa > 0.8 g/L
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Table 1: Parameters in the modified Hill model adapted to the AD
reactor at Foss Farm.

Parameter Value Unit
𝐴
𝑓

0.69 (gVFA/L)/(g BVS/L)
𝑏 2.90 d/d
𝐵
0

0.25 (g BVS/L)/(gVS/L)
𝑘
1

3.89 g BVS/(g acidogens/L)
𝑘
2

1.76 gVFA/(g acidogens/L)
𝑘
3

31.7 gVFA/(gmethanogens/L)
𝑘
5

26.3 L/g methanogens
𝐾
𝑑

0.02 d−1

𝐾
𝑑𝑐

0.02 d−1

𝐾
𝑠

15.5 g BVS/L
𝐾
𝑠𝑐

3 gVFA/L
𝑉 250 L

Table 2: The ultimate safe steady-state operating point.

Variable Value Unit
𝑆vfa 0.8 g/L
𝐹feed 35.3 L/d
𝐹feed/𝑉 = 𝐷 0.14 (L/d)/L
𝑉/𝐹feed =HRT 7.1 d
𝐹meth 174.2 LCH

4
/d

𝐹meth/𝑉 0.70 (LCH
4
/d)/L

𝑆bvs 4.14 g/L
𝑋acid 1.80 g/L
𝑋meth 0.39 g/L
𝑆vsin 30.2 g/L
𝑇reac 35 ∘C

indicates an impending reactor failure, causing a reduction
of methane production. Hence, it is here stated that

𝑆vfa ≤ 0.8 g/L = 𝑆
max
vfa (4)

defines safe operation conditions for the reactor. For practical
reasons, we have not been able to conduct our own experi-
ments to verify inequality (4) or to identify a different 𝑆max

vfa .
However, a new value of 𝑆max

vfa will not change the principal
results of this paper.

Hill et al. [35] found that also the propionic to acetic acid
(P/A) ratio is a good indicator of health. However, this ratio
cannot be calculated from the mathematical model used in
this paper, and, therefore, the analysis here is not based on
this ratio.

Hill et al. [35] did not use dairy manure in their analysis
since reliable data for such manure were not available.
Nevertheless, it is here assumed that the aforementioned safe
range of 𝑆vfa also applies approximately for reactors fed dairy
manure. A support for this assumption is that the validated
AD reactor model by Hill [34] has the same parameters
describing the AD process for dairy, swine, poultry, and beef
manure, except for parameters expressing the fraction of the
organic feed that is degradable, but the AD process dynamics
are independent of the latter parameters.

Figure 3 shows simulated static (steady-state) responses
in a number of variables to a range of constant feed rates
(𝐹feed). The cyan horizontal line in the 𝑆vfa plot represents
𝑆vfa = 0.8 g/L. The green intervals on the abscissas indicate
safe reactor operation, and, conversely, the red interval
indicates unsafe operation.

Table 2 shows the values of several variables at the
ultimate safe steady-state operating point. The set of three
corresponding values (𝑆vfa, 𝐹feed, and 𝐹meth) constitutes the
ultimate safe steady state operating point of the reactor.
Table 2 also shows, for completeness, values of other model
parameters and variables than those discussed here.

One question arises about the applicability of the modi-
fiedHill model to predict safe/unsafe operation of the reactor.
Is it necessary to include 𝑆max

vfa = 0.8 g/L explicitly to find
the ultimate (maximum) safe operating point? Assuming the
reactor model is accurate, safe operating points should be
implicit in the model; that is, they can be calculated from
the model, for example, by simulations. The modified Hill
model used in the present paper is relatively simple. It is
not clear to what extent the model is able to predict unsafe
operation of the real reactor due 10 to high concentration
of VFA. Therefore, as long as this simple model is chosen, it
will be safer to define 𝑆max

vfa explicitly instead of relying on the
model alone to predict a possible failure.

Defining explicit limits on model variables for safe oper-
ation is consistent with the approaches in, for example, [10,
21], where limits on VFA and TA (total alkalinity) are set
explicitly.

5. State Estimation

State estimation is used in the control systems described in
Sections 6 and 7. State estimators can also be useful solely for
monitoring purposes, that is, for estimation of state variables
in the lack of sensors. The state estimator used in the present
paper is a Kalman Filter [36] algorithmbased on themodified
Hill model presented in Section 3.3. While there exist several
state estimation algorithms (cf. Section 2), we select here
the Kalman Filter because it has a relatively simple and
straightforward structure and because it can be easily fine-
tuned.

The modified Hill model is a nonlinear model. The
Extended Kalman Filter (EKF) is a commonly used extension
of the basic Kalman Filter for nonlinear models. The EKF
involves linearization of the process model. An alternative
to the EKF is the Unscented Kalman Filter (UKF) [36].
Two benefits of the UKF, compared to the EKF, are that no
linearization is necessary and that the estimates are more
accurate as the propagation of the estimation covariances,
needed to calculate the optimal state estimates, are calculated
more accurately. Because of these two benefits, the UKF is
selected as state estimator in this paper.

5.1. Variables and Parameters of theModel. The state variables
of themodifiedHill model are (cf. Section 3.3) 𝑆bvs, 𝑆vfa,𝑋acid,
and 𝑋meth. They are estimated with the UKF. It is decided
to also estimate 𝑆vsin with the UKF since it is assumed that
its value may vary, though slowly. As is common, 𝑆vsin is
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Figure 3: Simulated static (steady-state) values of a number of variables versus 𝐹feed (constant) at 𝑇reac = 35
∘C. The green intervals on the

abscissas indicate safe reactor operation as defined inequality (4). Conversely, the red intervals represent unsafe reactor operation.

modeled as a “random walk”: ̇𝑆vsin = 𝑤, where 𝑤 is a random
disturbance.Thus, the augmented state vector to be estimated
by the UKF is

𝑥 = [𝑆bvs, 𝑆vfa, 𝑋acid, 𝑋meth, 𝑆vsin]
𝑇

. (5)

𝐹feed is regarded as an input variable to the UKF. 𝐹feed is
the control variable, which is always known.

Themodel parameters are known frommodel adaptation
[7]. 𝑇reac may vary but is always known as it is measured
continuously.

The process measurement, 𝑦, used by the UKF is 𝐹meth
available from sensor FT in Figure 1. Hence, 𝑦 = 𝐹meth in the
UKF.

5.2. Observability. The linearized reactor model, augmented
with 𝑆vsin , is found observable at a number of typical operating
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points using the obsv function of the Matlab Control System
Toolbox (further details are not shown here).

5.3. Tuning of the UKF. The tuning parameters of the UKF
are as follows: 𝑥(𝑡

0
| 𝑡
0
) (initial estimated state; the initial

a posteriori estimate), 𝑃̂(𝑡
0
| 𝑡
0
) (initial state estimation

error covariance), 𝑅 (measurement noise covariance), and 𝑄
(process noise covariance). Ideally, these parameters are set
equal to their known values, but some of them may not be
available. Good tuning guidelines are actually hard to find.
Even an otherwise thorough book as [36] gives little advice.
In this paper the tuning is done as follows.

(i) 𝑥(𝑡
0
| 𝑡
0
) is set equal to the values from laboratory

analysis at the start of the pertinent time interval.
This applies ideally to 𝑆bvs, 𝑆vfa, and 𝑆vsin . However, for
𝑆vsin , we impose, for the purpose of demonstration,
a large initial estimation error, by setting the initial
estimate of 𝑆vsin equal to 20% of the value known from
laboratory analysis.
𝑋acid and𝑋meth are not known, but their initial values
are calculated from the model assuming steady state
(details of the calculation can be found in [7]).

(ii) 𝑃̂(𝑡
0
| 𝑡
0
) is set as a diagonal matrix as follows:

𝑃̂
𝑖𝑖
(𝑡
0
𝑡
0
) = [𝑘

𝑃
𝑥
𝑖
(𝑡
0
𝑡
0
)]
2

, (6)

with 𝑘
𝑃
= 0.01.

(iii) 𝑅 is a diagonal matrix, which, since the number of
measurements is one (𝐹meth), is reduced to a scalar—
themeasurement variance. From a representative real
time series,

var (𝐹meth) = 1.44 = 𝑅. (7)

(iv) 𝑄 is typically set as a constant matrix (diagonal).
Assuming that 𝑥(𝑡

0
| 𝑡
0
), 𝑃̂(𝑡
0
| 𝑡
0
), and 𝑅 are set,

𝑄 can be used as final tuning parameter.

(a) Increasing𝑄
𝑖,𝑖
makes the estimate for state vari-

able𝑥
𝑖
converge faster to the assumed true value,

but with the drawback that the estimate for 𝑥
𝑖

becomes more noisy (caused by the increased
propagation of the measurement noise, via the
Kalman Filter gain(s)).

(b) Reducing 𝑄
𝑖,𝑖
has the opposite effects.

It is proposed to relate the diagonal element (i.e.,
the process noise variance) to the magnitude of the
pertinent state variable:

𝑄
𝑖,𝑖
= [𝑘
𝑄
𝑚
𝑖
𝑥
𝑖
(𝑡
0
| 𝑡
0
)]
2

. (8)

With the initial setting of 𝑚
𝑖
= 1, it is found that

𝑘
𝑄
= 0.0005 is a proper value. Then the ultimate

tuning is made by adjusting 𝑚
𝑖
. By trial-and-error,

{𝑚
𝑖
} = {10, 1, 1, 1, 10}.

5.4. Results and Discussion. Figure 4 shows estimates with
the UKF together with real data from online sensors and
laboratory analysis over a time interval of 85 days. (This
time interval includes the interval where the UKF is applied
to the real reactor as part of the predictive controller, cf.
Section 6.5.) The process measurement used by the UKF is
𝐹meth.

Overall, the UKF gives reasonably good estimates (real
values of𝑋acid and𝑋meth are not known).

The large initial estimation error 𝑆vsin imposed on purpose
is effectively reduced during approximately 15 days.

From 𝑡 = 150 d, there is a noticeable difference between
the estimate and the laboratory analysis of 𝑆vfa. It is not clear
what the cause of this difference is. If the model is trusted,
the difference may indicate an inaccuracy of the laboratory
analysis.

6. Control of Methane Gas Production

6.1. The Effect of Feedback Control. To demonstrate the effect
of feedback (or automatic or closed-loop) control of 𝐹meth,
Figure 5 shows, for the real pilot reactor, experimental time-
series of 𝐹meth and 𝐹feed (and 𝑇reac) with feedback control and
without control. It is clear that 𝐹meth varies less with control
than without control. 𝐹meth remains close to 𝐹methsp even after
the setpoint is changed. The variations are due to inevitable
disturbances. In the case of feedback control,𝐹feed is of course
varying, while it is constant in the case of no control (i.e.,
open-loop control). 𝑇reac is actually different in the two cases,
but it is assumed that the difference between the two cases is
independent of the temperature difference.

Whether the variation in 𝐹meth in open-loop control is
acceptable or notmust be decided in each specific application.
A comparison of the performance of closed-loop control and
open-loop control when disturbances are assumed can be
made using simulations with the AD model presented in
Section 3.3.

6.2. Operational Objective and Control Strategy. It is here
assumed that a sufficient rationale for feedback control of
𝐹meth exists. The operational objective is stated as producing
a demanded methane gas flow. A specific value of 𝐹meth
is related to the power, 𝑃 (kW), as the energy content of
methane gas is 9.95 kWh/m3 at NTP.

The methane gas flow setpoint must be feasible. The
feasibility can be checkedwith steady-state simulations.More
specifically, it can be checked using the upper-left plot in
Figure 3.

Furthermore, safe reactor operation must be ensured,
which here means that inequality (4) is satisfied.

Relating to Figure 2, the above specifications concerning
𝐹meth, the limitation of variations of 𝐹feed, and the condition
inequality (4) are inputs to the Control Designer. Outputs
from the Control Designer are 𝐹spmeth and 𝐶

𝑑𝑢
. The latter is

the cost factor of the control signal variations of a predictive
controller.

6.3. Control Functions. In control system design, the PI(D)
controller should normally be taken into account when
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Figure 4: Estimates and real data from laboratory analysis with UKF. Standard deviations of estimation errors: 𝑆bvs: 0.62 g/L; 𝑆vfa: 0.32 g/L;
𝑆vsin : 1.02 g/L. (For 𝑆vsin , the standard deviation is calculated from 𝑡 = 120 d, since a relatively large initial estimation error is imposed on
purpose.)

different controllers are evaluated. If oscillations can be
tolerated, even the on-off controller should be considered.
Using on-off controllers and PI controllers for 𝐹meth control
of the pilot reactor is discussed in detail in [28].

In many cases, advanced controllers can give improved
control compared with the simple PI(D) controller and
the on-off controller, but typically the implementation is
considerably more demanding. As argued in Section 3.2, a
predictive controller is used as advanced controller in this

paper. A predictive controller to retain 𝐹meth at its setpoint
is implemented both on a simulator of the reactor and
on the real reactor. The model is the modified Hill model
(cf. Section 3.3). A time-delay of 𝜏

𝑑
= 0.2 d is included at the

control input of the model:

𝐹feed (𝑡) = 𝑢 (𝑡 − 𝜏𝑑) , (9)

where 𝐹feed is the feed rate of the modified Hill model and 𝑢
is the control signal. This time-delay accounts approximately
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Figure 5: 𝐹meth and 𝐹feed and 𝑇reac, for the real reactor, with (automatic) control and without control. (The length of each of the time intervals
for these two cases is different.) (Reprinted from [28] by permission.)

for the dynamics not included in the modified Hill model
presented in Section 3.3. The optimization objective of the
predictive controller is

min
𝑢
𝑓obj, (10)

where

𝑓obj = ∫
𝑡+𝜏ℎ

𝑡

[𝑒
2
(𝜃) + 𝐶

𝑑𝑢
𝑢̇
2
(𝜃)] 𝑑𝜃 (11)

with constraint 𝑢min ≤ 𝑢(𝑡) ≤ 𝑢max which is included in
the optimization problem formulation; that is, it is an input
argument in the fmincon function call in Matlab. 𝑡 is the
present time instance. 𝑒 is the control error, 𝑒 = 𝐹spmeth −𝐹meth.
The time derivative, 𝑢̇, represents the control signal changes.
The larger the 𝐶

𝑑𝑢
, the smoother the control actions.

In implementations, the discretized version of 𝑓obj is
minimized, giving an optimal control sequence, {𝑢}opt, over



10 Journal of Control Science and Engineering

Setpoint
ySP

Controller

−

u ΔK

Adjustable
gain

Adjustable
time-delay

(t − Δ𝜏)

d

Disturbance

Process
w/actuator
and sensor
and filter

Process
measurement

ymf

Figure 6: An adjustable gain and time-delay are inserted into the loop to find the stability margins (gain margin and phase margin)
experimentally.

the prediction horizon. The first element of this sequence,
that is, (𝑡

0
)opt, is applied as control signal at the present time

point. The prediction horizon is receding and the procedure
of obtaining {𝑢}opt and 𝑢(𝑡0)opt is repeated as time evolves.

The prediction made by the controller is based on the
modified Hill model discretized with the Euler explicit
(forward) method. {𝑢}opt is calculated with the nonlinear
optimization function fmincon in the Optimization toolbox
of Matlab. The present state, 𝑥(𝑡), needed for the prediction,
is calculated with the augmented Unscented Kalman Filter
presented in Section 5.

6.4. Simulations

6.4.1. Controller Settings. The settings of the predictive con-
troller in the simulations are as follows.

A time-step of 𝜏
𝑠
= 0.025 d is used in the discrete-time

version of themodifiedHill model used for prediction.This is
also the time-step of the discretization of 𝑓obj. 𝜏ℎ corresponds
to 1/0.025 = 40 time-steps, which is then the prediction
horizon in number of time-steps.

𝐶du = 0.01 in (11) is found by trial-and-error on a
simulator. A proper value of the prediction horizon is found
as 𝜏
ℎ
= 1 d (with 𝜏

ℎ
< 0.5 d, a change in performance can be

observed).
In the simulations, the predictive controller is compared

with the PI controller. The PI controller is tuned at the
operating point shown inTable 2 using the Skogestadmethod
[37], with the modification of the 𝜏

𝑖
setting as proposed in

[38]. The PI settings are 𝐾
𝑐
= 0.89 [(L CH

4
/d)/(L feed/d)]

and 𝜏
𝑖
= 0.8 d.

6.4.2. Performance and Robustness Measures. The control
system performance and robustness measures applied in the
simulations are described in the following.

(1) IAE (Performance). The IAE index (Integral of Absolute
Error) is a commonly used measure of control system
performance. IAE

𝑠
measures the setpoint tracking:

IAE
𝑠
= ∫

𝑡𝑓𝑠

𝑡𝑖𝑠

|𝑒| 𝑑𝑡. (12)

The IAE
𝑑
measures the disturbance compensation:

IAE
𝑑
= ∫

𝑡𝑓𝑑

𝑡𝑖𝑑

|𝑒| 𝑑𝑡. (13)

(2) Control Signal Variations (Performance). As measures
of the variation of the control signal, both the standard
deviation, 𝜎

𝑢
, and the mean of the absolute value of the rate

of changes, 𝜇
|𝑢̇|
, are calculated.

(3) Stability Margins (Robustness). The traditional measures
for robustness of linear control systems are the gain margin
(GM) and the phase margin (PM). The predictive controller
is a nonlinear controller, and the (reactor) is a nonlinear
process. Thus, the predictive control system and the PI
control system are nonlinear systems. We propose here to
expand the use of GM and PM as stability margins also for
these nonlinear systems, as explained in the following.

An adjustable gain,Δ𝐾, is inserted into the loop (between
the controller and the process); see Figure 6. Normally, Δ𝐾 =
1. The (ultimate) value Δ𝐾

𝑢
that brings the (simulated) con-

trol system to the stability limit, with sustained oscillations, is
found by trials. Then,

GM = Δ𝐾
𝑢
. (14)

To calculate the PM, an adjustable time-delay, Δ𝜏delay,
is inserted into the loop; see Figure 6. Normally, Δ𝜏delay =
0. The value Δ𝜏delay

𝑢
that brings the control system to the

stability limit, that is, causing a sustained oscillation, is found
experimentally on the simulator. Denote the period of the
oscillation as 𝑃

𝑢
[s]. As shown in [39] (Appendix 1),

PM [deg] = 360∘
Δ𝜏delay

𝑢

𝑃
𝑢

. (15)

Seborg et al. [40] propose the following ranges for appropriate
values of the stability margins: 1.7 = 4.6 dB ≤ GM ≤ 4.0 =

12.0 dB and 30∘ ≤ PM ≤ 45
∘.

Relating to Figure 2, Δ𝐾 and Δ𝜏delay are included before
the Process block, after the branch from 𝑢 to the Estimator.

6.4.3. Simulations. Figure 7 shows simulated time-serieswith
predictive control and, for comparison, PI control.The initial
operating point of the reactor is as shown in Table 2, which
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Figure 7: Simulated responses with predictive control and PI control.

is the ultimate (maximum) safe steady-state operating point.
The setpoint 𝐹spmeth is varied as a sequence of two ramps of
slope±2 (LCH

4
/d)/d each lasting for 1 d.The disturbance 𝑆vsin

is varied as a ramp of slope 2 (g/L)/d during 1 d which is a
realistic variation [28].

The simulations shown in Figure 7 are without mea-
surement noise. To measure the control signal variations,
simulations have been run with measurement noise in the
form of a normally distributed random signal with zeromean
and standard deviations 𝜎

𝑛
= 1.2 L CH

4
/d, which is realistic
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Table 3: Performance and robustness measures for predictive
control and PI control.

Predictive PI Ratio Pred./PI
IAE
𝑠

0.093 0.72 0.13
IAE
𝑑

1.46 2.20 0.66
𝜎
𝑢

0.69 1.29 0.67
𝜇
|𝑢̇|

7.07 25.2 0.28
GM ≈∞ 2.6 N/A
PM 63.9∘ 47.6∘ 1.34

for the present reactor.The simulations are run over 10 d with
a constant setpoint and a constant disturbance (simulations
are not shown here).

6.4.4. Results andDiscussion. Table 3 shows performance and
robustness measures with predictive control and with PI
control. The IAE indexes, (12) and (13), are calculated with
𝑡
𝑖𝑠
= 1 d, 𝑡

𝑓𝑠
= 7 d, 𝑡

𝑖𝑑
= 7 d, and 𝑡

𝑓𝑑
= 14 d.

Comments on the results shown in Table 3 are the
following.

(i) IAE
𝑠
with predictive control is 13% of IAE

𝑠
with PI

control. Hence, predictive control is clearly the best.
(ii) IAE

𝑑
with predictive control is 66% of IAE

𝑑
with PI

control. Again, predictive control is the best, but the
improvement compared with PI control is not large.

(iii) 𝜎
𝑢
with predictive control is approximately 67% of

the value with PI control, while 𝜇
|𝑢̇|

with predictive
control is approximately 28% of the value with PI
control. These numbers vary with the realization of
the randomprocesses generated in the simulation, but
they are representative.
By detuning the PI controller for more relaxed con-
trol (reducing 𝐾

𝑐
and increasing 𝜏

𝑖
according to

Skogestad’s formulas), both 𝜎
𝑢
and 𝜇

|𝑢̇|
are reduced.

By a proper retuning, either of them can become
approximately equal to the value with predictive
control. The consequence of such a retuning is that
the IAEmeasures with PI control will increase. In one
simulated example, the PI controller was retuned so
that 𝜇

|𝑢̇|
with predictive control and PI control was

approximately equal. The IAE
𝑑
with PI control then

increased 4.5 times; that is, the control performance
became radically worse.
The smoother control action with predictive control
compared with PI control has been observed from
experiments on the real reactor.

(iv) GM is acceptable with PI control. With predictive
control the notion of GM is questionable, since the
simulated control system does not actually become
unstable for any gain increase at the process input.
Rather, the gain increase is seen by the UKF as a
change in the disturbance, or, more specifically, as an
increase in 𝑆vsin . Consequently, the estimate of 𝑆vsin is
increased, which in turn is used in the prediction by
the predictive controller, causing a large overshoot or

undershoot in 𝐹meth before it eventually reaches 𝐹
sp
meth

(plots of simulations not shown). From simulations it
is found that 𝐹spmeth is back at its setpoint during 1-2 d
for 0.5 ≤ Δ𝐾

𝑢
≤ 4.

(v) PM is larger with predictive control (63.9∘) compared
with PI control (47.6∘).

6.4.5. Concluding Remarks. Above, the predictive controller
has been compared with the PI controller tuned using
a standard method, namely, the Skogestad method [37].
Simulations indicate that predictive control has better perfor-
mance and better robustness than the PI controller. It can also
be claimed that the predictive controller, here including the
state estimator, is more intuitive to adjust since its parameters
have a direct relation to practical factors such asmeasurement
noise and control signal variation. The drawbacks with pre-
dictive control are that a mathematical model of the reactor
is required and that it is more complicated to implement.

The setpoint tracking performance of the predictive
controller is considerably better than that of the PI controller,
while the improvement in disturbance compensation is not
large. Taking into account that the PI controller ismuch easier
to implement, it may be claimed that the PI controller is the
preferred controller if the setpoint is constant.

6.5. Experiments on the Real Reactor. Predictive control has
been applied to the real reactor. Some of the settings in the
practical experiment differ from those used in the simulation
study presented in Section 6.4, which has been accomplished
approximately one year after the practical experiment. (How-
ever, simulations were used to test the control system before
the practical implementation.) The differences in settings are
shown below.

(i) In the practical experiments, 𝜏
𝑠
= 0.05 d and 𝜏

𝑝
=

2 d. In the simulations in Section 6.4, 𝜏
𝑠
= 0.025 d and

𝜏
𝑝
= 1 d. 𝜏

𝑠
= 0.05 d has been tested in simulations,

giving a slight change in performance, probably due
to less accurate numerical integration (explicit Euler
is used). 𝑁

𝑝
= 𝜏
𝑝
/𝜏
𝑠
= 40 is the same both in the

practical experiments and in the simulations.
(ii) 𝐹feed is limited to 40 L/d, which is also used in

the simulations in Section 6.4. This limit is reached
in the practical experiment but is not reached in
the simulations since the perturbations are relatively
small there.

(iii) No time-delay term is included in the model used by
the predictive controller in the practical experiment,
while it is found appropriate to include a time-delay
in the simulation study as the model analysis in [7]
indicates that a time-delay is present.

(iv) The cost factor𝐶
𝑑𝑢
in (11) was set to 0.8 in the practical

experiment, while 0.01 was found appropriate in the
simulation study (cf. Section 6.4). The smaller 𝐶

𝑑𝑢
in

the simulations may be due to dynamic phenomena
of the real reactor not encapsulated by the model. In
any case, 𝐶

𝑑𝑢
is typically a tuning parameter.
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6.5.1. Results and Discussion. Figure 8 shows the time-series
of the practical experiments. Below are comments on this
figure.

(i) At 𝑡 = 99.8 d, 𝐹spmeth was reduced instantly from
190 to 150 L/d. Since the reduction was instant, the
predictive controller could not take any control action
in advance. The response in the gas flow is stable and
shows acceptable stability, but the stability is reduced
compared with the simulated response. The control
error is less than 3 L/d after approximately 1 d.
A possible explanation of the damping of the real
response being less than in the simulated response
is that the predictive controller does not include any
processmodel time-delay while, as pointed out above,
there is actually a time-delay in the real process.

(ii) At 𝑡 = 102.3 d, a preset-ramped setpoint profile
started. The predictive controller adjusts 𝐹feed before
𝐹
sp
meth starts increasing. The tracking is accurate. The

upper bound of 𝐹feed of 40 L/d is eventually reached,
causing the rate of change of𝐹meth to become less than
the rate of change of 𝐹spmeth.

(iii) At 𝑡 = 102.8 d, the rate of change of 𝐹spmeth is instantly
adjusted from +20 (L CH

4
/d)/d to −20 (L CH

4
/d)/d.

The observed lag in 𝐹meth can be explained with the
instant change of 𝐹spmeth which prevents predictive
control action.

(iv) At 𝑡 = 104.1 d, a preset step change of 𝐹spmeth from 150
to 155 L CH

4
/d is applied. The predictive adjustment

of 𝐹feed is obvious. 𝐹meth shows a clear overshoot, but
it is expected that the response will stabilize.

(v) At 𝑡 = 104.4 d, the predictive control experiment had
to be stopped as other experiments were scheduled to
start at this point of time. The controller was actually
set to manual mode. The saved future control signal
sequence generated by the predictive control shows
a declining behavior, indicating that 𝐹meth eventually
would have been brought back to its setpoint.

As pointed out earlier, themethane gas flow setpointmust
be feasible. For the above experiments, the feasibility can be
checked using the upper-left plot in Figure 3. According to
this plot, the setpoint values used in the experiments (cf.
Figure 8) are actually feasible.

7. Control for Safe Reactor Operation

7.1. Objective and Control Strategies. Here, the operational
objective of the reactor is defined as retaining the reactor
at the ultimate safe steady-state operating point given in
Table 2 (this is the input to the Control Designer in Figure 2).
To this end, the following three alternative control strategies
are tested (they comprise the “output” from the Control
Designer in Figure 2).

(1) 𝐹feed is controlled to a setpoint of 𝐹spfeed, which
is 35.3 L/d, assuming the operating point shown
in Table 2. This control strategy is described in
Section 7.2.

Table 4: Performance measures for three control strategies for
controlling 𝑆vfa.

Measure Const. 𝐹feed Predictive PI
IAE
𝑑

1.52 0.20 0.090
GM N/A ≈∞ 5.5
PM N/A ≈∞ 71.0∘

(2) 𝑆vfa is controlled to a setpoint of 𝑆spvfa, which is
0.8 g/L according to Table 2. In principle, this control
requires feedback from themeasurement of 𝑆vfa. Such
sensors do exist [41, 42], but they are not in use on the
present reactor. Instead, the estimate of 𝑆vfa calculated
continuously with a state estimator (Kalman Filter) is
used (cf. Section 5). This control strategy is described
in Section 7.3.

(3) 𝐹meth is controlled to a setpoint of 𝐹spmeth, which
is 174 L CH

4
/d according to Table 2. This control

requires feedback from the measurement of 𝐹meth.
This control strategy is described in Section 7.4, where
also PI control is applied for comparison.

In each of the control strategies, the feed rate is used as
control variable, 𝑢 = 𝐹feed (cf. Section 3.2).

The applicability of the three control strategies described
above is demonstrated with simulations in the following
subsections. In each of the simulations, a disturbance in 𝑆vsin
is applied.

7.2. Control of 𝐹feed. 𝐹feed is held constant at 35.3 L/d (cf.
Table 2). On the real reactor, this can be implemented easily
since the feed pump is a peristaltic pump which gives the
demanded flow without feedback (flow) control.

Figure 9 shows the simulated response with constant
𝐹feed. Table 4 shows performance measures.

7.3. Control of 𝑆vfa. 𝑆vfa is controlled to its setpoint, 𝑆spvfa =
𝑆
max
vfa , using feedback from 𝑆

est
vfa from the Kalman Filter (cf.

Section 5). Both predictive control and PI control are tested.

7.3.1. Predictive Control. The optimization criterion of the
predictive controller is selected as

min
𝑢
𝑓obj, (16)

where

𝑓obj = ∫
𝑡+𝜏ℎ

𝑡

[𝑒
2
(𝜃) + 𝐶

𝑑𝑢
𝑢̇
2
(𝜃)] 𝑑𝜃 + 𝐶

ℎ
𝑒
2
(𝜏
ℎ
) (17)

with constraint 𝑢min ≤ 𝑢(𝑡) ≤ 𝑢max. The control error is
𝑒 = 𝑆

sp
vfa − 𝑆

est
vfa. Comparing with the criterion of predictive

control of 𝐹meth, (11), the term 𝑒
2
(𝜏
ℎ
), which is 𝑒2 at the end

of the prediction horizon, is now included. The term brings
𝑒(𝑡 + 𝜏

ℎ
) approximately to zero. Without this term, 𝑒(𝑡 + 𝜏

ℎ
) is

0.1 g/L, and the control signal is actually constant. It is found
that 𝐶

𝑑𝑢
= 0.2 and 𝐶

ℎ
= 20 are proper settings.
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Figure 8: Time series from application of predictive control of 𝐹meth on the real reactor.

It is found that the predictive control is considerably
smoother with 𝜏

ℎ
= 4 d than with 𝜏

ℎ
= 1 d which is used

in Section 6. Increasing 𝜏
𝑠
from 0.025 d, which is used in

Section 6, to 0.1 d, here, has very little impact on the control
system performance over the simulation time interval used
here, while the computational burden is noticeably less.

7.3.2. PI Control. PI controller is also applied. The PI settings
are 𝐾

𝑐
= 50.9 (L/d)/(g VFA/L) and 𝜏

𝑖
= 0.9 d found using

the Relaxed Ziegler-Nichols closed-loop method based on
relay oscillations [38] which is a quick method to use on a
simulator.

7.3.3. Simulations. The initial operating point is as shown in
Table 2. The setpoint is 𝑆spvfa = 𝑆

max
vfa = 0.8 g/L. At 𝑡 = 10 d,

the disturbance 𝑆vsin is changed as a ramp of slope 2 (g/L)/d
during 1 d, which is the same variation as in 𝐹meth control (cf.
Section 6). This is a reasonable variation for the real reactor.
Measurement noise is not included in simulations.

Figure 9 shows simulated responses in 𝑆vfa, 𝐹meth, 𝐹feed,
and 𝑆vsin with predictive control and PI control and with
constant 𝐹feed. Table 4 shows performance measures.

7.3.4. Results andDiscussion. Table 4 shows performance and
robustness measures with the three control strategies above.
IAE
𝑑
, defined by (13), is calculated over the simulated time

interval. |𝑒|max is the maximum control error. GM and PM
are found as explained in Section 6.4.

Comments

(i) In Figure 9 it is seen that the setpoint tracking works
for both predictive control and PI control. However,
the PI controller gives amore smooth response in 𝑆vfa.

(ii) The lower-right plot in Figure 9 shows the manipu-
lated 𝐹feed which is adjusted by the controllers. The
control action is smoother with PI control than with
predictive control.

(iii) The performance measures shown in Table 4 indicate
that PI control of 𝑆vfa, based on feedback from UKF,
is the best control strategy here.

(iv) Also using a constant 𝐹feed can be regarded as accept-
able with the disturbance change simulated.

(v) The upper-right plot in Figure 9 illustrates that 𝐹meth
is not under control. Although not shown here, 𝐹meth
settles at steady state at approximately 𝑡 = 120 d.

(vi) GM is large with PI control. With predictive control,
the notion of GM is questionable, since the simulated
control system does not actually become unstable for
any gain increase at the process input. Rather, the
gain increase is seen by the UKF as an increase in
𝑆vsin . The relatively large estimate of 𝑆vsin is used in the
prediction by the predictive controller, causing a large
overshoot in 𝐹meth before it eventually reaches 𝐹spmeth
(plots are not shown here). This behavior is the same
as with predictive control of 𝐹meth (cf. Section 6.4).

(vii) PM is large with PI control. With predictive control,
no limit was found; that is, the controller handles
unmodeled time-delays in the controlled process
even as large as 10 d.

7.4. Control of 𝐹meth

7.4.1. Controllers. The third control strategy proposed in
Section 7.1 is controlling 𝐹meth to a setpoint, 𝐹spmeth, set equal
to the value of 𝐹meth at the ultimate operating point (cf.
Table 2). Both predictive control based on feedback from
UKF estimates and PI control based onmeasurement of𝐹meth
are simulated.

7.4.2. Simulations. The simulation scenario differs from the
scenario of the simulations in Section 7.3 as 𝑆vsin is now
decreased instead of increased. Decreasing 𝑆vsin is selected
here because, in the corresponding response, 𝑆vfa increases
(in steady state), and an increase of 𝑆vfa is more critical than
a decrease.

In the predictive controller, 𝜏
𝑠
is set as 0.05 d, and 𝜏

ℎ
is 1 d.

Figure 10 shows simulated responses in 𝑆vfa, 𝐹meth, 𝐹feed,
and 𝑆vsin with predictive control based on feedback fromUKF
estimates and PI control based on measurement of 𝐹meth.
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Figure 9: Control of 𝑆vfa with different control functions: constant 𝐹feed, predictive control (MPC), and PI control. Simulated responses in
𝑆vfa, 𝐹meth, 𝐹feed, and 𝑆vsin are shown.

7.4.3. Results

(i) As seen in Figure 10,𝐹meth ismuch closer to𝐹spmeth with
predictive control than with PI control.

(ii) With both predictive control and PI control, 𝑆vfa
increases. Simulations over 400 d show that 𝑆vfa goes
toward approximately 1.05 g/L, which is 0.25 larger

than the critical value of 0.8 g/L. This makes this
control strategy questionable.

7.5. What Is the Best Control Strategy for Safe Reactor
Operation? From the results in Sections 7.3, 7.2, and 7.4,
it can be concluded that the best control strategy for safe
reactor operation is controlling 𝑆vfa to a (fixed) setpoint
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Figure 10: Predictive control and PI control of 𝐹meth. The process perturbation is a change in 𝑆vsin . Simulated responses in 𝑆vfa, 𝐹meth, 𝐹feed,
and 𝑆vsin are shown.

using feedback from the state estimator (UKF). In the
aforementioned control strategy, PI control is evaluated as
better than predictive control. These two controllers give
similar disturbance compensation, but the control signal is
smoother with PI control than with predictive control.

8. Conclusions

The original four states of the modified Hill model, 𝑆bvs, 𝑆vfa,
𝑋acid, 𝑋meth, and the assumed unknown organic content,
𝑆vsin , of the feedstock of a real pilot AD reactor have been
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mainly successfully estimated with an Unscented Kalman
Filter (UKF), but with an estimation error for 𝑆vfa in a part
of the time interval.

These estimates, together with the model, have been
applied in two different model-based control systems. The
first system aims at retaining 𝐹meth at a possibly time-varying
setpoint, which may originate from a demanded power pro-
duction by the reactor. Simulations indicate that the setpoint
tracking performance of the predictive controller is consid-
erably better while disturbance compensation, assuming that
the disturbance has an unknown value, is not much better
compared with PI control, confirming a well-known fact,
compared to, for example, [33]. Consequently, assuming the
setpoint is constant, the PI controller competes well with the
predictive controller. A successful application of predictive
control of the real reactor is reported.

The second control system aims at retaining the reactor
at an ultimate safe operating point, where 𝑆vfa has a critical
maximum value. This operating point is characterized by
three corresponding values of 𝐹feed, 𝑆vfa, and 𝐹meth, as found
from steady-state simulations of the reactor model. These
operating point values can be used as setpoints in pertinent
control systems. Simulations indicate that the best control
solution among the three alternatives is PI control based on
feedback of 𝑆vfa estimated by Kalman Filter.

The results of this paper indicate that a model-based con-
trol system, using a relatively simple mechanistic dynamical
reactor model, can be designed and implemented on real AD
reactors.

Abbreviations

AD: Anaerobic digestion
BVS: Biodegradable volatile solids
COD: Chemical oxygen demand
EKF: Extended Kalman Filter
FC: Flow controller
FT: Flow transmitter (sensor)
HRT: Hydraulic retention time
IAE: Integral of absolute error
MPC: Model-based predictive control
NTP: Normal temperature and pressure—0∘C, 1 atm
PI: Proportional plus integral (control)
PWM: Pulse width modulation
TIC: Total inorganic carbon
UKF: Unscented Kalman Filter
VFA: Volatile fatty acids
VS: Volatile solids.

Nomenclature

𝐴
𝑒
: Amplitude of the control

error and the process
output (measurement)

𝐴
𝑓
((g VFA/L)/(g BVS/L)): Acidity constant

𝐴
𝑢
: Amplitude of the on-off

control signal

𝐵
0
((g BVS/L)/(g VS/L)): Biodegradability

constant
𝐶
𝑑𝑢
: Cost (weight) factor of

𝑢̇
2 in predictive control

𝐶
ℎ
: Cost (weight) factor of

𝑒
2
(𝜏
ℎ
) in predictive

control
𝐷 (d−1): Dilution rate
𝑒: Control error
𝑓obj: Objective function
𝐹feed (L/d): Influent or feed flow or

load rate, assumed equal
to effluent flow (constant
volume)

𝐹meth (L CH
4
/d): Methane gas flow

𝐹
sp
meth (L CH

4
/d): Setpoint of 𝐹meth

GM: Gain margin
𝑘: Discrete-time index
𝑘
1
(g BVS/(g acidogens/L)): Yield constant

𝑘
2
(g VFA/(g acidogens/L)): Yield constant

𝑘
3
(g VFA/(g methanogens/L)): Yield constant

𝑘
5
(L/g methanogens): Yield constant

𝐾
𝑠
(g BVS/L): Monod half-velocity

constant for acidogens
𝐾
𝑠𝑐
(g VFA/L): Monod half-velocity

constant for
methanogens

𝐾
𝑑
(d−1): Specific death rate of

acidogens
𝐾
𝑑𝑐
(d−1): Specific death rate of

methanogens
𝜇 (d−1): Reaction (growth) rate

of acidogens
𝜇
𝑐
(d−1): Reaction (growth) rate

of methanogens
𝜇
𝑚
(d−1): Maximum reaction rate

for acidogens
𝜇
𝑚𝑐

(d−1): Maximum reaction rate
for methanogens

𝑃 (kW) Power
𝑃
𝑢
(d): Period of oscillation

𝑃̂: State estimation error
covariance

PM (degrees): Phase margin
𝑄: Process noise covariance
𝑅: Measurement noise

covariance
𝑆vfa (g VFA/L): Concentration of VFA

acids in reactor
𝑆
est
vfa (g VFA/L): Estimate of 𝑆vfa
𝑆vfain (g VFA/L): Concentration of VFA in

biodegradable part of
influent

𝑆
max
vfa (g VFA/L): Upper limit of safe range

of concentration of VFA
in reactor

𝑆
sp
vfa (g VFA/L): Setpoint of 𝑆vfa
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𝑆bvs (g BVS/L): Concentration of BVS in
reactor

𝑆bvsin (g BVS/L): Concentration of BVS in
influent

𝑆vsin (g VS/L): Concentration of volatile
solids in influent

𝜎
𝑢
(L/d): Standard deviation of

control signal
𝑇reac (

∘C): Reactor temperature
𝜏
ℎ
: Prediction horizon

𝜏
𝑖
(d): Controller integral time

𝜃 (d): Integration variable in
predictive control
criterion

𝑉 (L): Effective reactor volume
(assumed filled with
liquid)

𝑥: Estimated state vector
𝑋acid (g acidogens/L): Concentration of

acidogens
𝑋meth (g methanogens/L): Concentration of

methanogens.
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