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Abstract 

Reliable monitoring of pneumatically conveyed particulate materials is critical for on-
line detection and controlling material composition changes in the regimen of Process 
Analytical Technology (PAT), e.g. as the case investigated here: determination of 
varying concentration levels of extraneous material in a source stream. Results are 
reported from an experimental test campaign on a pilot-scale pneumatic conveying 
facility. Optimal sensor deployment and material flow rates are decisive parameters 
for signal quality and prediction performance. The test campaign resulted in an 
optimal sensor location/flow rate combination, based on which we present a validated 
prediction model (Partial Least Squares Regression model) for prediction of 
extraneous material concentration levels, with a RMSEP(rel) of 17.7% (RMSEP: 0.92) 
and r2 of 0.95. The present approach is based on acoustic chemometrics (a.c.). The 
impact of nominal reference values vs. representative reference values used as 
response variables in prediction models is discussed. Optimal reference values were 
obtained through the use of representative sampling equipment (based on Theory of 
Sampling, TOS), specifically designed for pneumatic conveying systems, and 
compared with nominal concentration levels, allowed an improvement of the 
prediction model: (RMSEP(rel), of 15% (RMSEP: 0.85) and r2 0.95). While the present 
experimental rig test resulted in relative minor quantitative improvements only, 
representative reference samples, required for prediction models, are essential when 
nominal concentration levels cannot be determined or are unknown, which is usually 
the case in enclosed pneumatic conveying systems, the target for this study. All 
prediction results are validated with independent data (test set validation). 

Key words: Process Analytical Technology, Acoustic chemometrics; Pneumatic 
conveying; Chemometrics; Reference sampling 



1. Introduction 

Pneumatic conveying systems for transporting particulate materials are widely used in 
processing industries. The main advantage of pneumatic conveying is full 
encapsulation of the transported material, preventing e.g. loss and/or material 
modifications by external factors such as moisture for example. In many cases it is of 
particular importance to monitor material composition during pneumatic conveying. 
Variation in concentration levels of the analyte of interest, or changes in the 
concentration of extraneous material levels (contaminants, pollutants etc.) in the 
transported material are important monitoring objectives.   

Acoustic chemometrics and monitoring, one recent PAT modality (Process Analytical 
Technology), has been applied in several earlier studies and cases for on-line 
monitoring of pneumatic conveying systems [1-6, 21-24], but quantification of 
material composition based on acoustic chemometrics has previously not been 
reported for particulate, aggregate systems. 

By acquisition, processing and chemometric analysis of the relevant acoustic signals, 
acoustic chemometrics allows to predict the parameter(s) of interest – e.g. material 
composition quantifications (matrix, components, trace constituents). Signal quality is 
critically dependent on sensor location on the conveying system as well as material 
flow behaviour, for which two different sensor locations and two flow rates were 
compared and evaluated. Locations and flow characteristics were greatly helped by 
more than 10 years experience with acoustic chemometrics, ibid. This evaluation was 
performed for two test materials: wheat flour and pulverized alumina, for both using 
LDPE plastic pellets as a spiking material, standing in as extraneous material at 
various concentrations. These tests materials were selected within the context of an 
extensive testing campaign for a newly developed representative sampler (termed 
‘EF-sampler’) designed for suspended particulate material streams in horizontal 
pneumatic conveying systems [13].  

For calibrating an optimal model and in order to be able to predict the extraneous 
material concentrations with acceptable accuracy and precision, reliable reference 
samples of the various calibration composition levels are required. Only 
representative reference samples will allow complete optimization of a multivariate 
calibration the model. The successful validation of the EF-sampler allowed to extract 
the required representative reference samples for the present research [20].  

This study focuses, besides sensor location and optimal flow conditions, on the 
critical role of representative reference sampling for the final prediction performance 
by showing the difference in prediction results between nominal and representative 
reference values used as input X-data in calibration and validation of the model 
(nominal values are explained below).  

 



2. Methods 

2.1 Acoustic chemometrics  

Acoustic chemometrics is a non-invasive PAT measurement technique for on-line 
monitoring of industrial processes. It involves an interwoven signal 
acquisition/conditioning and data analysis approach that spans several fields in 
science, engineering and technology. Acoustic measurement technique is suitable for 
characterisation and monitoring of several types of industrial processes, based on 
“acoustic noise” (vibration energy), produced during manufacturing, processing or 
material transport. The acoustic chemometrics approach has been applied in various 
areas of research and industrial process monitoring installations [1-6, 21-24].  

Some of the inherent advantages of acoustic chemometrics are summarised below: 

• On-line and non-invasive – no interruption/ modification of system 
• Real time prediction 
• Easy sensor deployment  (often “clamp on”) 
• Passive acoustic energy output from the process is the source; no active signal 

generation is needed 
• Relatively inexpensive sensor technology and easy installation 
• Prediction of several parameters of interest from the same acoustic spectrum 
• Fast Fourier Transformed acoustic spectra obtained at different resolutions 

Acoustic signals are acquired from suitable acoustic sensors deployed on the system 
involved; data from the acoustic sensors are subsequently subjected to digital signal 
processing and multivariate calibration, such as PCA or PLS-R. Readers are referred 
to [1-6] for more details on the principles, theory and application of acoustic 
chemometrics technique. After the acoustic signal acquisition stage, the signals 
undergo digital signal conditioning [7,8].  

The acoustic chemometric signal path can be summarised as: 

• Acoustic emission from the source is measured by the sensor (accelerometer) 
• Amplification to the highest obtainable digital resolution (with the aid of a 

Signal Amplification Module unit) 
• Filtering using band-pass filters to attenuate unwanted frequencies (spectral 

noise) 
• Analogue to digital (A/D) conversion. Window transformation in order to 

reduce spectral leakage 
• Fast Fourier Transformation (FFT) from time domain to frequency domain  
• Multivariate calibration (Multivariate Data Analysis - MVDA) and proper 

validation (test set validation) 

The acoustic spectra (X-data) contain many types of information about the system, 
e.g. system state, flow characteristics, material composition(s). This unspecified, 



potential information is subsequently data analysed, and the parameter of interest is 
designated as the Y-variable, whereby the correlated information is extracted in the 
multivariate calibration stage.  

 

2.2 Partial Least Squares Regression (PLS-R) 

Advanced measurement and monitoring techniques give rise to complex multivariate 
data due to the fact that many variables are measured on numerous samples and/or 
over a long time period. Therefore, a combination of methodologies, or a data 
analysis approach that has the capacity to elucidate the properties of interest in such 
data, is needed. PLS-R modelling is a powerful empirical approach, which has the 
potential to extract the relevant latent information from such complex data structures. 
For PLS1-R modelling the relationship between X matrix and y (vector), which could 
be linear or non-linear are in focus. The X matrix contains the descriptor variables and 
the y vector is the response variable. In process monitoring/PAT cases the X data 
matrix may also include data from many measurement approaches e.g. acoustic 
signals, spectroscopic measurements, pressure data, temperature, flow data, 
chromatographic data whilst y contains reference values of the parameter of interest. 
In PLS-R y information is used directly in the decomposition of the X data in order to 
derived optimal lower dimensional data spaces that are usually also more 
interpretable. PLS-R involves non-iterative bilinear modelling by NIPALS algorithm 
(Non-linear Iterative PArtial Least Squares), which need not be described further 
here; readers are referred to dedicated chemometric literature for more details on 
principle and the theory of PLS-R [8-11]. Applications of PLS-R modelling span 
numerous fields such as science, technology, engineering and industrial process 
monitoring and control [10,11].  

An obvious requirement for successful application of PLS-R is that representative 
calibration data, and test data, is a must in the modelling stage. The test data (test set) 
are utilised for model validation, both to obtain the optimal number of PLS-R 
components and to estimate the pertinent RMSEP (Root Mean Square Error of 
Prediction) of the prediction model. This will prevent both over-fitting and under-
fitting of the prediction model. By over-fitting, more PLS-components than necessary 
are used for modelling and this leads to modelling of the noise in the data. In contrast, 
under-fitted models are deficient in information since the whole information 
contained in the analysed data is not extracted during the modelling step. In this 
regard, it is pertinent to apply the proper validation approach. There are several 
validation techniques in multivariate calibration available in the chemometric 
literature [9-11], but criteria for selection and optimality are scarce, or many times 
absent. Recently however, test-set validation has been pointed to as constituting the 
universally best validation method [12], and this is followed here. Esbensen & Geladi 
outline the in-depth analysis and argumentation behind this resolution [12].   



In order to determine the predictive capability or goodness of PLS-R prediction 
models, the associated diagnostic plots and statistical results are evaluated. These 
plots include both visualisation plots, such as the X loading weight plot (X-variable 
correlations and influence of the components); only X-variables with loadings 
significantly different from zero influence the prediction model. Complementary the 
y-validation variance plot provides information about the optimal number of PLS-R 
components in the model and furthers the data for calculation of RMSEP. The T-U 
plots show the latent, “inner” relationships between X and y; this type of plot 
illustrates well observations or samples that deviate so significantly from the 
regression line, that they may be considered outliers [11]. Diagnostic tools for 
multivariate calibration/prediction abound, readers interested in this topic are referred 
to the details in the literature [9-12]. 

The equation presented below gives an insight on how the RMSEP is calculated 
during PLS regression application.  

 

 
where the calculated RMSEP has the same unit as y, n is the number of reference 
observations/samples contained in the independent test set data. 

Data pre-processing are widely used in multivariate calibration. In general, some of 
the commonly applied pre-processing techniques include auto-scaling (mean-centring 
and variance scaling), moving average smoothing, variable selection, etc. In this work 
however, details of the numerous pre-processing tools used in multivariate data 
analysis will not be presented but the following literature is recommended for more 
information on this topic [9,11].  

 

2.3 Experimental set up 

All experiments were carried out on a semi-industrial pneumatic conveying rig 
situated at the Department of Powder Science and Technology, Tel-Tek in Porsgrunn, 
Norway. A schematic overview of the conveying rig is shown in figure 1. The 
experimental rig consists of approximately 30 meters of 3-inch steel pipeline with a 
wall thickness of 3mm. The material is filled from the receiving tank into the feeding 
tank, where a vibrating mechanism supports the flow of material into a rotary feeder. 
By adjusting the feed rate of the rotary feeder, the material flow into the pipeline can 
be controlled. In combination with introduced compressed air, the particulate material 
can be transported with a desired mass flow rate. The material flow direction is 
marked with an arrow in figure 1. The two different sensor positions – at a pipeline 
bend and after the feeder - are marked with “X” in figure 1 and are shown in more 



detail in figure 2. The left-hand picture shows the sensor position as a top view of the 
pipeline bend, mounted on the outer sidewall of the 90-dregree bending. The right-
hand picture depicts the sensor location on the feeder, glued on to the sidewall of the 
feeder outlet. The dashed boxes show where the determination of the “nominal 
reference values” (y_nominal) and “representative reference values” 
(y_representative) originate, as used in the second part of this research. The nominal 
plastic pellet concentrations are calculated by adding the required concentration level 
to the matrix test material, based on the weight of test material, which is measured by 
a weighing system located under the receiving tank. These concentration levels are 
referred to as the “nominal concentration levels” (y_nominal) below. It is important to 
note that in particular the imprecision of the weighing system, on which the spiking 
concentration percentage has been based on, increases the uncertainty on the actual 
nominal concentration levels.   

The “representative reference values”, referred to as y_representative are based on 
representative samples extracted by an experimental sampling device (“EF-sampler”), 
which has been installed at the marked position in figure 1. The EF-sampler is a 
newly developed sampling device for suspended particulate materials in horizontal 
pneumatic conveying systems, designed in maximum possible compliance with the 
Theory of Sampling (TOS) [13]. The EF-sampler has recently been validated in terms 
of accuracy, precision and technical functionality at the same test facility the 
presented experiments were performed on. Based on the comprehensive approach for 
representative sampling – the Theory of Sampling (TOS) - the successful validation 
of this sampling device documents truly representative samples, which are used in the 
following as the “representative reference values” for plastic pellet concentrations. In 
order to secure a solid, representative reference value, a composite sample consisting 
of 75 increments was extracted for each test round (compare table 3). For an 
introduction to the Theory of Sampling the interested reader is referred to the 
following selected literature [14-19].  

 

Figure 1: Schematic drawing of pneumatic conveying system, POSTEC (modified by the authors). 

 

Both selected sensor positions favour particles hitting the pipe wall on which the 
sensor is attached, significantly increasing signal strength. For the sensor position on 
the bend the redirection of the material stream achieves this requirement. The acoustic 
signal acquired from the sensor on the feeder outlet is strengthened by the gradual 
constriction of the pipe diameter (see figure 2). Readers who are interested in the 
general background regarding physical vibration phenomena of the pipes caused by 
the transported material, which are picked up by the sensors, are referred to a study by 
Kupyna 2008 [25].  

 



Figure 2: Acoustic sensor deployment on bend (left side) and on feeder outlet (ride side). 

                                                                                                                                                                                                                                                 
In the first part of the experimental test campaign wheat flour has been conveyed, 
focussing on the comparison of the depicted sensor locations with two different flow 
rates. Subsequently the test campaign was repeated but now transporting alumina, 
confirming earlier results. Characterising values for density, particle size distribution, 
as well as amount of both conveyed materials used are stated in table 1, which also 
includes the characteristics of the spiking material. The spiking material was added to 
each of the transported materials in order to span realistic levels of extraneous 
concentrations. It was decided to use LDPE plastic pellets because this material has  a 
density intermediate between the two test materials, while its particle size is 
substantially larger w.r.t. to both test materials. The LDPE concentration levels in 
wheat flour were set to 0%, 2% and 5%, serving as a feasibility study for the 
subsequent test campaign on alumina where the concentration levels were set to 0%, 
2%, 5%, 8% and 11%.  
 
 
Table 1: Physical characteristics of test materials 

Material Density Particle size distribution Amount of material 

  D10 D50 D90  

Wheat flour 0.46g/cm3 13.3μm 66.5μm 161.3μm 240kg 

Alumina 1.25g/cm3  35.7μm 85.7μm 134.5μm 150kg 

Plastic pellets 0.58g/cm3 ~3mm Depending on simulated 
concentration 

 
The conveying mass/air ratios are listed in table 2 with the corresponding mass- and 
airflow rates of wheat flour and alumina - both transported in a dilute flow regime. 
The airflow was varied between 750Nm3/h (Flow rate 1) and 950Nm3/h (Flow rate 2) 
with a constant feeding rate for both scenarios and test materials.  
 
Table 2: Tested mass/air ratios of wheat flour and alumina 

Material Naming of flow rate Mass flow  
(kg/s) 

Airflow 
(Nm3/h) 

Mass-air-ratio 

Wheat flour FR 1 0.30 750  

FR 2 0.20 950  

Alumina FR 1 0.50 750  

FR 2 0.350 950  

 



Each test scenario [factors: test materials (2), spiking concentrations (3 or 5) and flow 
rate (2)] was repeated in order to produce an independent calibration and test set [11], 
resulting in 12 test rounds for wheat flour (3 concentration levels * 2 flow rates * 2 
transportation rounds) and 20 for alumina (5 concentration levels * 2 flow rates * 2 
transportation rounds). 

The acoustic signatures from both sensor locations involved individual recording of 
150 replicate signal spectra from each sensor per test round for wheat flour and 60 
replicate spectra (for each sensor location) per test round for alumina. By applying 
reduced averages, the 150 wheat flour replicate spectra were reduced by a factor of 
15, giving 10 spectra per concentration level for calibration purposes, while the 
alumina spectra were reduced by a factor of 6, also resulting in 10 spectra per 
concentration level. The smaller number of spectra for alumina was due to a smaller 
total amount conveyed therefore a faster transportation time. Table 3 gives a full 
listing of all test scenarios for alumina. The test scenarios for wheat flour are 
equivalent, however using only three spiking concentrations.   

 
Table 3: List of test scenarios including all test parameters 

Test scenario* Test material  Spiking concentration (%) 
‘nominal concentration levels’ 

Flow rate 
 

Repetition 

A_0_FR1_1 Alumina 
 

0 
 
 

1 
 

1 
A_0_FR1_2 2 
A_0_FR2_1 2 1 

A_0_FR2_2 2 
A_2_FR1_1 2 

 
1 
 

1 
A_2_FR1_2 2 
A_2_FR2_1 2 1 
A_2_FR2_2 2 
A_5_FR1_1 5 

 
1 
 

1 
A_5_FR1_2 2 
A_5_FR2_1 2 1 
A_5_FR2_2 2 
A_8_FR1_1 8 

 
1 
 

1 
A_8_FR1_2 2 
A_8_FR2_1 2 1 
A_8_FR2_2 2 
A_11_FR1_1 11 

 
1 
 

1 
A_11_FR1_2 2 
A_11_FR2_1 2 1 
A_11_FR2_2 2 

* W=wheat flour, A= Alumina; FR1, FR2 = see table 2; _1, _2 = repetition round used as calibration (_1) and test 
set (_2) 

The acoustic signal acquisition system included accelerometers/sensors (Brüel & 
Kjær® 4518-002), which are glued on the marked positions as show in figure 1 and 2, 
being in direct contact with the piping system. The specific data acquisition 
conditions include a sampling rate of 300kHz and an averaging of 100 acoustic 



spectra into one spectrumavg. A Blackman- Harris window (weighting) transformation 
is applied to minimise spectral leakage during the subsequent FFT step [7], for which 
each Fast Fourier transformed acoustic spectrum is a result of 100 averaged individual 
acoustic spectra. The time averaged over for each spectrum is approx. 3 seconds. The 
frequency range covered by each spectrum is 0─150kHz. 

 

3. Analysis and results 

In the following section selected results will be shown from part 1: comparison of 
sensor locations and airflow rates, and part 2: the effect of representative reference 
values (y_representative) on prediction results in contrast to nominal reference values 
(y_nominal). 

 
3.1 Part 1: Comparison of sensor locations with different airflow rates 

The wheat flour feasibility study shows a clear tendency favouring the higher airflow 
rate (FR2) for both sensor locations, using the prediction model as basis for 
comparison (see table 4). All prediction results are validated using an independent test 
set, acquired by the second experimental round, repeating the entire experiment.   

Comparing the bend vs. feeder sensor locations, prediction results are slightly better if 
based on acoustic signals acquired at the feeder location. The following tabulation 
shows RMSEP for all four scenarios (two flow rates, two sensor locations): 

Table 4: RMSEPs for wheat flour, FR1 vs. FR2, bend vs. feeder. 

RMSEP FR1 FR2 

Bend location 1.17 0.67 

Feeder location 0.81 0.45 

 

The feasibility study allows to conclude that plastic pellet concentration in wheat 
flour can best be predicted if based on a higher airflow rate (FR2) with the sensor 
located on the feeder outlet.  

Analysis of two typical (averaged) spectra, selected from the recordings during 
transportation of alumina with flow rate 1 and flow rate 2 (nominal concentration of 
11%, sensor location also at the feeder), confirms these wheat result. The upper 
spectrum in figure 3 represents the acoustic signal corresponding to material 
transportation with the higher flow rate FR2, showing that in most parts of the 
frequency range the signal is stronger compared to that for transportation with the 
lower flow rate FR1.  



 

Figure 3: Spectra comparison of FR1 vs. FR2 for alumina with 11% spiking concentration, sensor 
location on feeder. 

In figure 4 the two sensor locations (feeder vs. bend) are compared again pertaining to 
alumina, also here confirming the feasibility test results for optimal sensor location. 
The sensor located on the feeder (upper spectrum) displays in general higher 
amplitudes for the majority of the frequency range. Hence FR2 was chosen as fixed 
transportation speed, using the sensor located on the feeder outlet for the prediction 
models of plastic pellet concentration in alumina below. 

 

Figure 4: Spectra comparison of feeder vs. bend location for alumina with 11% spiking concentration, 
flow rate 2. 

 

 

 

3.2 Part 2: Nominal reference values vs. representative reference values  

Figure 5 shows the validated chemometric prediction results based on the nominal 
plastic pellet concentration (y_nominal) in alumina under optimal flow rate and 
sensor deployment conditions (FR2, sensor location on feeder).  

The X-loading weights from the model of the raw data, shown in the upper left part of 
figure 5, reveal that the higher frequency range carries a systematic, structured 
periodic noise in the range 90-150kHz. A comparison of spectra from initial 
transportation pre-tests revealed that this is caused by the vibrating mechanism 
located on the feeding tank for supporting the material flow into the feeder and piping 
systems respectively. These vibrations are transferred to the sensor located on the 
feeder outlet below the feeding tank by the support system for the rig, which acts as a 
waveguide. This part of the frequency spectrum is therefore corrupted and not needed 
for calibration. Removal of this frequency range, as shown in the upper right part of 
figure 5, improved the prediction model. Furthermore, the loading weight spectrum 
w1 (upper right figure) reveals equal model contributions from frequencies distributed 
over the entire frequency range now in use, with w2 (PLS component #2) and w3 (PLS 
component #3) adding important information mainly in the lower frequency range (0-
10kHz) and also in the high frequency range for w2 (70-80kHz) respectively. Three 
outliers in the validation set were removed from the relevant TU-score plots, leading 
to a final model based on 3 PLS components, the characteristics of which are depicted 
in the validation Y-variance plot in figure 5. This test set validation shows that three 
PLS-components are significant. A model based on two or even one component(s) 
would lead to an under-fitted model, since important calibration information would be 



left out. A thorough background of the need for universal application of test set 
validation in complex, noisy real-world systems (a.c. is a prime example) has been 
given by Esbensen & Geladi [12].  

The prediction evaluation, successfully validated by the independent test set, shows a 
prediction error (RMSEP) of 0.92, with a regression line slope very close to 1.00 
(0.98). Further pre-processing of the data did not further improve the model. For 
comparison purposes, we prefer to express this RMSEP in a relative % format, 
RMSEP(rel), w.r.t the average y-value = 17.7%. 

 

Figure 5: Upper left: X-loading Weights of raw data; upper right: X-loading Weights without 
systematic noise: lower left: Residual Validation Variance; lower right: Predicted pellet concentration 
vs. nominal reference.  

 

The depicted model predicts the concentration levels of the extraneous material with a 
quite satisfactory average accuracy (slope), but as the prediction error, RMSEP(rel) 
cannot be said to reach a similar status, a further study was performed analysing the 
effect of nominal reference values in contrast to representative reference values used 
as the response variable in the prediction models. The nominal concentration levels 
are only assumed to represent the actual concentration levels of the plastic pellets in 
the transported alumina, but with some reservation as outlined above. Inaccuracy of 
the weighing system is the likely main reason for possible deviation between the 
actual pellet concentration levels in the alumina and the nominal concentrations. The 
objective was therefore, to find to what degree the prediction performance of the 
prediction model could be improved by introducing more representative y-values.  

For this evaluation, the newly developed representative sampling device (’EF-
sampler’) designed for horizontal pneumatic conveying systems has been installed at 
the position shown in figure 1 [13].  

Table 5 depicts the alternative nominal and representative basis for calibration and 
validation, revealing minor, but significantly different concentration levels.  

 
Table 5: Comparison of nominal vs. representative LDPE concentration levels.  

Nominal concentration level 
(y_nominal) 

Representative concentration level 
– calibration set – 

(y_representative_cal) 

Representative concentration level 
– test set – 

(y_representative_val) 
0% 0% 0% 
2% 1.78% 1.89% 
5% 4.89% 4.76% 
8% 7.68% 7.34% 
11% 10.77% 10.39% 

 



Again after removal of the noisy, higher frequency range interval as argued above, 
seven individual measurements in the validation set were excluded and the remaining 
spectra averaged as described. This prediction model, “representative y-values 
model”, is also based on 3 PLS components as shown in the residual variance plot in 
figure 6. Comparing the validation Y-variance plot based on y_representative with the 
validation Y-variance plot based on y_nominal (figure 5) it transpires that the 
additional two PLS components are only correcting for deviations between the 
nominal and the real physical-present y-values (y_representative). This observation 
supports the reasoning for only using representative reference values (see also further 
below).   

The predicted vs. measured plot in figure 6 shows the improvement of the RMSEP, 
from 0.92 (y_nominal) to 0.85 (y_representative) as well as a lower bias, decreasing 
from 0.23 to 0.10. The corresponding RMSEP(rel) is lowered to 15.5%.  

 

Figure 6: Upper left: X-loading Weights of raw data; upper right: X-loading Weights without 
systematic noise: lower left: Residual Validation Variance; lower right: Predicted pellet concentration 
vs. representative reference concentrations. 

 

It can be concluded that the representative reference concentration indeed improves 
the prediction precision, albeit only marginally in the present case. Even though the 
difference between these two prediction models only has a minor quantitative impact 
on the prediction results in this example, it is generally so that nominal reference 
values may well lead to both a higher RMSEP and/or to a higher inaccuracy, for 
example due to uncontrolled process variations and even higher uncertainties in the 
determination of the reference value. These results also confirm the representativity of 
the EF-sampler, being able to secure representative material characteristics in 
pneumatic conveying systems. Furthermore, in real-life applications of such 
prediction models for which extraneous concentration levels are unknown and are 
therefore focus of interest, prediction models can only be based on representative 
reference sample, since no nominal concentration levels can be determined.  

It is a general conclusion regarding acoustic chemometrics that while the average 
prediction accuracy over the entire calibration range is often good (slope close to 1.0), 
the associated prediction error (RMSEP) is not yet in a completely satisfactory state, 
as witnessed by a RMSEP(rel) close to 15%. There are evidently a not yet fully realised 
a.c. regimen regarding even better sensor localisation and general flow conditions.  

 

4. Conclusions 

Comparison of sensor locations and different airflow rates revealed a locally 
optimised setup for on-line acoustic chemometrics prediction of extraneous 



concentration levels in wheat flour and alumina transported in pneumatic conveying 
systems. In particular an increase of the airflow rate and herewith a lower mass-air 
ratio improved the prediction results of plastic pellet concentration levels in alumina. 

The discussion of the difference between nominal reference values and representative 
reference values pointed out the risk of unknown uncertainties inherent in non-
representative reference values, risking an inferior calibration model. Comparison of 
concentration levels based on analysis via a representative sampling device, with the 
more uncertain nominal concentration levels, showed that the LDPE concentration in 
the pneumatically transported material was universally lower than set for the 
corresponding nominal concentration levels. In this particular case this difference is 
most likely due to the inaccuracy of the weighing system located on the conveying 
rig, which served as the basis for calculating the required amount of plastic pellets to 
reach the nominal concentration levels.  

Calibrating the model with y_representative instead of y_nominal further improved 
the prediction model, reducing RMSEP and the offset (bias). While the present 
experimental rig test resulted in relative minor quantitative improvements only, 
representative reference samples, required for prediction models, are essential when 
nominal concentration levels cannot be determined or are unknown, which is usually 
the case in enclosed pneumatic conveying systems, the target for this study. One is 
always obliged to use only representative y reference levels in modelling and 
validation, especially in complex multivariate calibration settings. 

Further research is planned which will shed light on whether the present a.c. approach 
also allows on-line prediction of the actual particle size fraction distributions of the 
conveyed material. This is a much tougher ambition level; the present feasibility study 
was initiated to indicate the likely prospects for such an endeavour. It can be 
concluded that a major critical success factor will be improvements in the a.c. 
prediction precision. There are hopeful indications from a wide swath of a.c. 
applications that this would appear to be within reach [1-6]. It is likely that sensor 
localisation will play a very important role. It is necessary to search extensively, and 
exhaustively, for optimal sensor localisations. The present feasibility study serves to 
point the way.    

Full evaluation of the EF-sampler, a minor player in the present study, is given in a 
parallel study, but presented elsewhere [20]. 
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