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The statistical principal component regression (PCR) and chemometric partial
least squares regression (PLSR) algorithms based on latent variables (LV)
modeling are effective tools for handling ill-conditioned regression data. In many
process related cases the data form time series, and it may then be possible to
improve the prediction/estimation results by utilizing the autocorrelation in the
observations. This can be done by use of estimators found from experimental data
by use of a combination of statistical/chemometric and system identification
methods. In important industrial cases, the response variables are product qualities
which also in the experimental data are sampled at a low and possibly irregular
rate, while the regressor variables are sampled at a higher rate. After a discussion
of the options available, the paper shows how the autocorrelation of the regressor
variables in such multirate sampling cases may be utilized by identification of
latent variables based output error (LV + OE) estimators. An example using
acoustic power spectrum regressor data is finally presented.

1. Introduction and problem statement

In many important practical cases there is a need to estimate primary system
responses y i from known system inputs u and secondary system outputs y2 . In
typical industrial cases the y i responses are product quality measurements that
cannot be made available on-line, while u are manipulated process inputs and y 2 are
various on-line process measurements. Dynamic estimators for this purpose may be
identified from experimental u, y i and y2 data (Ergon, 1999b).

The experimental data are often characterized by few observations and a large
number of nearly collinear y 2 variables. In the static case the statistical/chemometric
methods PCR (Principal Component Regression) or PLSR (Partial Least Squares
Regression) based on latent variables (LV) models provide powerful tools for handling
such ill-conditioned problems. The experimental u and y 2 data are then collected in
an X matrix, while the y i data are collected in a y vector (assuming a single response
variable), and the X information is compressed into an estimated latent variables
matrix T. In many process related cases the X and y data in ordinary PCR or PLSR
form time series, and it may then be possible to improve the prediction/estimation
results by utilizing the autocorrelation in the observations. After compression of the
X data into T, this can basically be done by identification of FIR (Finite Impulse
Response), ARMAX (AutoRegressive Moving Average with eXtra inputs), ARX
(AutoRegressive with eXtra inputs) or OE (Output Error) type of models. The
estimator may thus be found from experimental data by a combination of multivariate
calibration methods used in statistics/chemometrics (e.g. Martens and Næs (1989)
and Esbensen (2000)) and system identification methods (e.g. Ljung (1999),

Söderstrøm and Stoica (1989) and Van Overshee and De Moor (1996)).



In some cases of practical interest it is possible to obtain experimental X data at
a high sampling rate, while the experimental y data are obtained at a lower and
possibly also irregular rate. In typical cases the y data are product quality measure-
ments that require chemical or other forms of analyses, such that the results for
practical and economical reasons cannot be made available at a high rate. The
problem of the present paper is to find an identification method that handles such
multivariate and multirate sampling time series data.

After an introductory discussion of the options available, a solution to the
problem using an LV + OE model structure is presented. An example using acoustic
power spectrum X data demonstrates the feasibility of this method.

2. Static multivariate calibration

As a background for a comparison of static and dynamic estimators, we start
with a short presentation of static multivariate calibration methods based on latent
variables models. We then focus on the common situation where the X variables are
secondary outputs from a static system, and where no manipulated or otherwise
known system inputs are available. Since u = 0, the regressor data is then X = [U Y2]

= Y2 , and the following is based on this assumption.

The static multivariate calibration problem
Assuming a static system with a scalar primary output or response variable yl

and multivariate secondary outputs y 2 , the static calibration problem is to find an
estimator b from experimental data that may be used to predict a new response y l,o
from new observations y 2, o according to

Yi,o = Y2,o b

A classical example is the estimation of protein content in whole wheat kernels based
on near infrared (NIR) spectroscopy (Norris, 1993). Here, the protein content is the
primary output y i , while the NIR reflectance at a large number of frequencies gives
rise to the y2 variables. A process related example is the estimation of distillation
product composition from a number of temperature measurements along the distilla-
tion tower (Mejdell and Skogestad, 1989). The fundamental problem in such cases is
that the number of y2 variables may be much larger then the number of observations
in the experimental data. A comprehensive discussion of the multivariate calibration
problem is given in Martens and Nees (1989), while Esbensen (2000) focuses on the
interpretational and practical application aspects of latent variables methods.

Least squares estimation
Assuming experimental data from N observations, Y1 = [Y11 Y12 • • ' YiN]T

and Y2 = [Y21 Y22 • • • Y2N] T , and independent observation errors, we find the
least squares (LS) solution

bLS=(I'iY2)- 11'åY1•

With a large number p of y2 variables, this solution will be very noise and collinearity
sensitive, and in practical applications the LS method will give satisfactory results
only when p is well below N. A thorough discussion of this problem is given in
Belsley (1991).

(2)



Latent variables model

In many practical situations, fortunately, the multivariate y 2 variables are highly
collinear, and the y2 information may then be compressed into small number a of
estimated latent variables T = [i 1 i2 • • • ia ] T. The model underlying such data
compression is the latent variables (LV) model

Xk +1 – Wk

.y l,k – C 1 Xk + v1,k

Y2,k = C2Xk + V2,k,

where w 1 , v1,k and V2,k are white noise sequences. After an appropriate similarity
transformation the output equations may be written

Y1,k = C l tk + v1,k	
(4)

Y2,k = W rk + V2,k,

where W is orthonormal, e.g. W TW = I .
With N observations and T — rT	 T _	 1T	 –	 ,,r„ 	_• ,, __1 T a,,

V2 = [v21 V22 .. • v2 n,] T this gives

Y1 = TCi + v1

Y2 = TWT +V2.

Regularized solutions

In PCR and PLSR (the Martens algorithm) the Y2 data matrix is compressed
into a score matrix T by use of the factorization

Y2 = TWT + E,	 (7)

where E is a residual matrix. Here, the W weighting matrix is orthonormal, i.e.
WTW = I, and the LS solution of (7) is thus

T = Y2W.	 (8)

From (5) we now find the ordinary LS estimator related to the 'r variables

Ci = (TTT) - 1TTy1 = ( 
WTY' Y2W) 1WTYz Y1,	 (9)

which results in fitted experimental responses according to (5) and (8)

Y1 = TCi = Y 2WCi = Y2W(WTYz Y2W) - 'WTYz y 1 •	 (10)

The regularized latent variables estimator thus becomes

bLV = W(WTYi Y2W) -1WTYz y 1 •	 (11)

This LV estimator formulation is earlier given by Helland (1988), although not
directly based on a LV model. We will return to this expression in connection with
PCR and PLSR estimators using W = WPCR = P and W = WPLS.

Principal component regression

In PCR the weighting matrix is * = P, where P is the loading matrix related to
the principal components of Y2 . We may find P from the singular value decomposition
(SVD)

(3)

(5)

(6)



Y2 = USV T = LU1 udrsi 
L	 S2] Cv r	

(12)

= U 1 S 1 PT + U2S 2V z = TP T + E.

The latent variables estimates represented by the score matrix T are thus based on
only Y2 information.

Partial least squares regression

Some of the latent variables estimates used in a PCR solution may be very weakly
correlated with the response variable y i , and the PLSR solution to this is to make
use of both Y2 and y i information in order to find an improved version of the W
matrix. This is normally done step wise by finding one column W a of WPLS at a time
(e.g. Martens and Næs, 1989), although a one-step procedure is recently developed
(Di Ruscio, 2000). Note that T according to (8) is the non-orthogonal score matrix
in the Martens PLSR algorithm, while the orthogonal score matrix in the Wold
algorithm is somewhat differently defined (e.g. Martens and Næs, 1989).

The basic ad hoc idea in the step-wise PLSR algorithms is to find a given column
vector Wa by minimization of the sample covariance between the corresponding score
vector to = Y2wa according to (8) and the residual ea _ 1 of yi that is not explained by
earlier columns w i , W 2 , *a _ i (in the original Wold and Martens algorithms also
residuals of Y2 and not Y2 itself is used). A straightforward and simple step-wise
PLSR algorithm is developed in Ergon and Esbensen (2001), where the relation
between the LV estimator (11) and Kalman filtering theory is also discussed. The
algorithm is as follows:

1. Set a= 1 and 80= y1.
2. Compute

and

Wa = Y2Ea -1 /

Wa
*a<— 	 T

V Wa Wa^

W  
= 

L

^W1 W2 • • • W3a^

ba = Wa(^' a Yi Y2Wa) — i " a Y2 y

(13)

(14)

(15)

(16)

Ea = Y — Y26a.	 (17)

3. Let a — a + 1 and go to step 2.

This algorithm produces a sequence of predictors b i , 62 etc. The appropriate
number of column vectors W i , W 2 , ... , WA to use must then be decided after validation
against an independent data set. The score and loading matrices that are necessary
for the data evaluation and interpretation that is an essential part of chemometrics
may also be computed in the algorithm, or separately for specific values of a.

3. Alternatives for dynamic estimation

Dynamic system extensions of the PCR and PLSR algorithms have been discussed
by a number of authors, see Ergon and Halstensen (2000) for further references. In



relation to the present problem the alternatives available can be summarized as
follows:

• The FIR model

Yk^'	 h yT Uk -i + ^k^
ti = o

may be identified by use of LS regression, and this is possible also when most
of the yk values are missing, in which case we use only the y; samples that are
available, together with the corresponding past and present uk values. However,
a large number of Markov parameters h, must normally be identified, and this
requires a correspondingly large number of response observations. This is a
serious drawback, especially since it often is a part of the problem that the
number of response observations is very limited. In addition the FIR model is
biased due to the lack of noise modeling.

• An ARMAX model of the type

Yk = —a 1Yk- 1 — a2 Yk - 2
— ... +bpuk'I"buk

-1 +h2Uk -2
+..

(19)
+ ek + c l ek - 1 + c2ek- 2 

+ .. •

where ek is a white noise sequence, may be identified by use of for example a
prediction error method (e.g. Soderstrom and Stoica, 1989) or a subspace
method (e.g. Van Overshee and De Moor (1996) and Di Ruscio (1997)). This
is, however, not possible when y is sampled at a lower rate than a, and an
ARMAX estimator is in any case non-optimal when also secondary system
outputs are used as inputs (Ergon, 1999a).

• ARX models are ARMAX models without noise modeling, e.g. as given in
(19) but with c l = c2 = • • • = 0. In the present case they have the same drawbacks
as ARMAX models, and bias due to the lack of noise modeling in addition.

• OE estimators as described below can be identified also when most of the
ordinary y observations are missing and are theoretically optimal in the sense
that they are unbiased and have minimized variances when secondary system
outputs are used as estimator inputs (Ergon, 1999a).

4. Theoretical OE estimator

Assume the known discrete-time state-space model

Xk +1= AXk+ Buk +Gwk

Y1,k = C 1 xk + D lUk + V1,k

y2,lc = C 2Xk + D 2Uk + V2,k,

where Xk is the state vector. Here y 1,k for k = 1, 2, • • • , N are the primary response
observations that in ordinary static PCR/PLSR with a single response variable would
be collected in the y vector, while the known inputs uk and the secondary outputs
y2,k would be collected in the X matrix. The process and measurement noise sequences
Wk, Vl,k and 1/2,k are assumed to be independent and white. Note that the LV model
(3) is a special case of this dynamic model.

(18)

(20)



Assuming the system matrices known and past and present y 1,k values not
available, the optimal yl estimator is obtained by a Kalman filter driven by uk and

y2,k . The result is

=Clxk^k+ Dluk= C1[xklk-1 +K2°E(y2,k—D2Uk— C2xkIk-1)]+Dluk,

where

xk^k-1= (qI — A+ AK°EC2)	 'KB —AK(23.ED2)uk+ AK°Ey2,k]•

(21)

(22)

Here, KT is the Kalman gain found from the algebraic Riccati equation

P °E — AP °EAT +GR„G T — AP °E
C(C2P OEC2 +

R22) 1C2POEAT

and

(23)

K 0E = P OEC 2 (C2P 
OEC 

2 + R22) —1 (24)

where 13 °E = E(xk — xg _ ,)(xk — x° k _ ,)T is the minimized prediction state estimate
covariance (see e.g. Grewal and Andrews, 1993).

The estimator equation (21) corresponds to the OE model

B 1(q 1)uk+B2(q- 1)y2,k 	 (25)

where A(q -1) , B l (q -1) and B2 (q -1) are polynomials in the unit time delay operator
q -1 , while 8, is a non-white stochastic process.

Note that for a first-order system with C 1 = 1 and uk = 0, equation (21) can be
simplified to

}1 10
k Ik =[1 — (A —AK°EC2)g - 1] - 1KOEy2

k •

5. Estimator identification

Block diagram
The block diagram for the estimator (21) is shown as a part of Figure 1,

where the notation OPCed indicates parameter values that are not necessarily correct
(although some useful initial values are needed). The figure also illustrates the
prediction error method (PEM) for system identification, adapted to minimize the
error in the current estimate Arid while considering both u and y 2 as input signals.
A parsimonious canonical form with C = [1 0 . . • 0] is assumed, and the output
matrix is therefore not adjusted in the minimization procedure. It is further assumed
that y, samples are available only at some of the uk and y 2,11 time instances k, resulting
in a sequence of low and possibly irregular sampling rate observations yl,j.

Estimation error minimization
As indicated in Figure 1, the parameter values are successively modified until a

criterion function

(26)

(27)

is minimized. Here

81,0) — .y l, j — y r;d (28)
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Figure 1. Identification of OE estimator by estimation error minimization.

is the estimation error, while N1 is the number of yi observations in the experimental
data (see e.g. Soderstrom and Stoica (1989) for a general discussion of this prediction
error method, and Ergon (1999a), for the case with also y 2 used as input).

Note that when not all y1,k values are available, the standard initial value
procedure based on a least squares approach (Ljung, 1995) cannot be used. The
initial value problem may therefore be the most difficult part of the problem, although
several ad hoc approaches are available (Ergon, 1998, 1999b).

Minimization of equation (27) can be performed only after a specification of the
model order, and the normal procedure is then to select a chain of canonical
structures with increasing model order, starting with a low-order model (Ljung,
1999). An alternative would be to find the model order by use of a subspace
identification method (e.g. Di Ruscio, 1997), which would give an ARMAX type of
model. However, this is not a feasible choice in cases with low primary output
sampling rate.

Numerical algorithm

The practical identification can be performed by a modified version of the pem
function in the System Identification Toolbox for use with Matlab, which uses an
iterative Gauss-Newton algorithm (Ljung, 1995). The modifications are necessary in
order to handle the multirate sampling case with only some of the y i,k observations
available.



(29)

(30)

6. Latent variables solutions
With a large number of secondary y 2 variables, the number of parameters to

identify will be correspondingly large. However, assuming collinear y 2 variables the
Y2 data may be compressed into latent variables by use of principal component
analysis (PCA) or PLSR.

PCA solution

The factorization (7) with W = P as defined by (12) results in the estimated latent
variables

ik = PTy2k = PTC2Xk + PTD2uk + P TV2,k •

With ik as a substitute for y2,k , the estimator (21) is replaced by

yP kAk+ of = C 1 (I — Kp PTC2) (II — A + AKpPTC2) -1

X [(B — AKpP TD 2 )uk + AKP fk] + C 1 Kp (Gk — P TD 2Uk ) + D1U k,

where the Kalman gain is given by appropriately modified versions of equations (23)
and (24), i.e.

	

Kp= PpCZP(PTC2PpC2P +PTR22P) -1,
	 (31)

with Pp determined by the algebraic Riccati equation

Pp = APP A L + GRVG T - AP p C 2 P(PTC2PpC Di; + 1;TR221;) - 1 PTC2PpAT.
(32)

The identification of this estimator is performed as indicated in Figure 1, only
that the y2,k data is replaced by ik as given by equation (29). For the special case of
a first-order estimator, (26) is then modified into

y lx^k	 =[1— (A— AKPP`C2)g 
1] 

'KPik	 (33)

PLSR solution

As an alternative to the PCA + OE estimator (30) we may use a PLSR + OE
estimator with

2k - WP
T
LSy2,k

where WpLS is found by use of low sampling rate y2,k as well as y 1,k data. The first-
order estimator (33) is then replaced by

yP kSR+OE = [1 - 
(A— AKpLsWks C2)q-  - 1KPLS fk• 	(35)

7. Initial value determination
Identification of the OE estimator (16), the PCA + OE estimator (33) or the

PLSR + OE estimator (35) requires useful initial parameter values. As already
mentioned, the standard procedure based on a least squares solution (ARX model)
is not feasible due to the lack of high sampling rate y 1 information, and one has to
resort to ad hoc methods (Ergon,1999b). In the present case it is natural to look for
a solution using a static PCR or PLSR estimator.

(34)



Due to the difficulties involved we focus on a simple although general case. A
first-order state space realization

T
xk+1 =fxk+ h ik

Y1,k = Xk + mTfk

corresponding to the OE estimator	
(	 {

	

J1,kik =
mT + (hT—JmT)q 1^k	

(37)1 —fq-	 l

may be chosen such that the structure of the estimators (33) and (35) is obtained.
We may use this relation to find useful initial parameter values, and then let the
values be free, or we may force the parameter values to comply to the relation during
the entire minimization.

PCA + OE estimator

A comparison of (33) and (37) shows that f= A — AKP PTC2 , mT = lip and
hT = fmT resulting in the static estimator (with q

_ 1 
= 1)

T

	

Y1,kik = 
1m 

yr k = 
1 m 

fPTY2,k = Y2,k P 1	 m f	 (38)

It is natural to compare this with the PCR estimator according to (11) and (12)

h cR = P (PTYLoW Y2,loW 15) 1PTYz,ioWY1 = PbT
cR 	 (39)

where Y2,10W in the same way as y 1 contains only low sampling rate data. This
comparison indicates the initial guesses

no = ± (1 — .fo)bTR ,	 (40)

and thus

ho =fono = ±Jo( 1 —fair 
•

Here, the sign indeterminacy is due to the sign indeterminacy of the PCA involved.
It now only remains to select fo and the sign, and this can be done after a systematic
search for good validation results.

PLSR + OE estimator

In the same way as above, a comparison of (35) and (37) results in the initial
values

mo = ± (1 —fo)bTLSR

and

ho =fono = ±.fo ( 1 —.fo)bTLsx

where bTLSR = (WPLS Y2T,loWY2,ioW WPLS) 1WT Y2,ioWY 1

8. Acoustic data example

Introduction

Acoustic chemometrics is based on signals from an acoustic sensor (accelerometer)
placed for example on, or slightly downstream of, a standard orifice plate. Observa-

(36)

(41)

(42)

(43)



tions of the power spectrum of the sensor signal are collected in the X = Y 2 matrix,
and calibrated against physical y = yl primary quantities like multi-component
mixture concentrations, density etc., using for example a standard PLSR method
(Esbensen et al., 1999).

Experiment

In an experiment on a test rig at Telemark University College, the flow rate of
ordinary drinking water was measured by use of an ultrasonic flowmeter (Fuji
Portaflow X) and used as the response variable y l , while the acoustic power spectral
densities at 1024 frequencies originating from an accelerometer placed on a standard
orifice plate were used as y 2 variables.

The flow rate was varied by means of a control valve with a control signal
generated as filtered white noise. The resulting y 1,k and y2,k signals were recorded for
230 observations with a sampling interval T2 = 5.3 sec . No known inputs u were
recorded. Each power spectrum representing an y 2 observation was formed as the
mean value of 50 consecutive power spectra in the sampling interval. This standard
procedure in static multivariate calibration based on acoustic data is necessary in
order to obtain a reasonable noise level. Only every 5th yi sample was used in the
estimator identification procedure, and the number of y1 observations in the modeling
set were accordingly N1 = 46 . We thus consider a multirate system with y2 mean
sampling with intervals T2 = 5.3 sec , while yi is sampled with intervals T1 = 26.5
sec . We also consider a difficult case with only N1 = 46 samples of y 1 . The y1 signal
in the modeling set is shown in Figure 2.

The estimator model was validated against a separate data set with 170 yl and y2
observations. The modeling and validation data sets were chosen in time intervals
where no obvious outliers in the acoustic power spectrum were recorded.

Remark 8.1 The lise of every .5th ob e,VLLtiOri ji v^ni high sampling rate data is of course
not optimal. However, if the response variable had been for example a concentration of
a certain component in a multi-component mixture, and the measurements had to be
done through laboratory analyses, the response sampling rate would very likely for
practical end economical reasons have been lower than the obtainable acoustic data
sampling rate. Also the validation would in such a case have to be done against low
sampling rate data.

Multirate identification

In order to test the method presented above, static PLSR and dynamic PCA + OE
and PLSR + OE estimators were identified using the multirate modeling data
described above.

Both an ordinary PLSR estimator

bPLSR = WPLS(W PLS Y2,low Y2,low WPLS) ^ 1WPLSY2,low3'1 — WPLSbTLSR9

and first-order PCA + OE and PLSR + OE estimators according to (36) with i given
by (29) and (34) were determined, using only the N1 = 46 response observations
considered available. Here, Y2,10w contains only low sampling rate y 2,k data, while the
PCA + OE and PLSR + OE dynamic estimators were identified by use of the high
sampling rate y2,k data. The best PCA + OE and PLSR results were obtained when

(44)



Figure 2. Measured flow rate (dotted) in the modeling set, with assumed low sampling rate
measurements (o-marked).

the model structures (33) and (35) were used only for the initial parameter values,
i.e. when the parameters in (36) were left to move freely during the minimization.

Number of parameters

The number of independent parameters in the PLSR estimator is equal to the
number of components a chosen (the number of latent variables), while the PCA + OE
and PLSR + OE estimators has n + (n + 1)a parameters, where n is the model order
(i.e. 5 parameters for a = 2 and n = 1).

Results

The best static PLSR estimator was obtained using the means of the last two
Y2 observations, i.e. by computing the mean of 100 power spectra as
Y2,k - (Y2,k + Y2,k - 1)l2. The best PCA + OE and PLSR + OE estimators were
obtained using the original means of 50 power spectra.

The identified estimators were validated by use of the independent validation data
set and computation of

1 "'2_ E(	 2
.y l,k — yl,k) o

k=1

RMSEVAL = (45)
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Figure 3. Validation RMSEVAL results for static PLSR and dynamic PCA+OE and
PLSR+OE estimators based on low sampling rate y i data.

i.e. all available validation data was used, including all validation data yl,k
observations.

The models for different numbers of components found in this way gave the
validation RMSEVAL results shown in Figure 3.

As can be seen in Figure 3, the PCA + OE estimator gave an approximate 30%
reduction of the validation RMSEVAL value at the optimal number of components
a = 5, as compared with the PLSR result at a = 2. However, in a practical application
we would most likely be content with 20% reduction, as given by the parsimonious
PCA + OE and PLSR + OE estimators using only a = 2 components. Note that these
estimators gave very similar results for a 5 4.

The PCA + OE validation response for a = 2 components is shown in Figure 4.
Note that the estimated response follows the (in this case) measured response well also
between the sampled values. This is also the case for the low sampling rate PLSR
estimator, although the dynamic estimator gives a considerably lower validation
RMSEVAL value.

Further results and discussion

The fact that we need two PCA or PLSR components to explain the main part of
the variance in yi indicates that there is a second and independent source of the power
spectrum variations in addition to the varying flow rate. This is most likely a temper-
ature drift, or possibly air bubbles or particles in the water. Note that we use centered
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Figure 4. Validation response for dynamic PCA + OE estimator based on a= 2 PCA compo-
nents and low sampling rate y 1 data. The low sampling rate validation data is o-marked, while
the (in this case) known intermediate validation values are shown by dotted line. The estimated

values are shown by solid line.

data, with flow rate variations around a fixed mean value, i.e. power spectrum variations
caused by such a second source may be present also without flow variations.

Assuming first-order dynamics for the two major and independent acoustic
sources, the model (20) will in such a case result in

1

[a

+1 0l ao2J L'x2Jk + [w2 JkX2 +1 

x1
Y1,k = [1 0]	 + Vl,k

'x2 k

x l

37 2,k = [C21 C22]	 +V2,kc
x2_ k

where a temperature drift can be modeled as integrated white noise by setting
a22 = 1. After the data compression

X 1
^k = *Ty2,k = WT [C21 C22]+`'^'TV2,k,	 (47)

x2 k

(46)



[xi
(48)

^'x2 k

i.e. by using

ik = W TY2,k = W T[c21 C22]

with W =P or W = Wp, S , this results in a theoretical primary response estimate on
the form

_ [kll k12] + [b11 b 12] q-1 i1,k
.yl,k^k 1	 -2

1 + a lg + a2g	 i2,k

where k11 and k12 are Kalman gains. In the case that the second acoustic source
does not result in a time series, i.e. when a 22 = 0, this is simplified to the form given
by equation (26)

(49)

1,k^k =
[k11 k12] ^1 ,k

1 +alg-	 i2,k •
(50)

The theoretical estimators (49) and (50) give a background for a discussion of
the identified dynamic estimators, although this is somewhat complicated by the fact
that the y2 observations were obtained as mean values of various numbers of
consecutive power spectra. The dynamic PLSR + OE estimator obtained with a= 2
components and based on 50 consecutive power spectra was

[0.0652 0.1315] + [0.2345 0.2228] q - 1 'i l,k  
Yl,k^k=	

1-0.0837q- 1 	 i2k] 

10_3,

which resulted in 20% reduction of the RMSEVAL value as compared with the static
PLSR estimator based on the means of 100 consecutive power spectra (see Figure
3). For this estimator the initial values were chosen according to equations (40) and
(41) with fo = 0.5 (the fp value was in no way critical), but the parameters were then
allowed to move freely during the minimization. A comparison with the model in
equation (49) shows that a q -2 term is missing in the denominator, i.e. we should
have identified a second-order estimator. The reason for not doing so is the initial
value problem discussed in Section 7.

When the parameter values in the PLSR + OE estimator were forced to comply
with the theoretical estimators (35) and (50) also during the minimization the
result was

__ [0.1895 0.2018]	 3
Y1,kIk	 1-0.4713q-1 lk

 10
	

(52)

However, this estimator gave no improvement in the RMSEVAL value as compared
to the static PLSR estimator, which indicates that the second acoustic source gave
time series data, i.e. that a22 0.

The dynamic estimators may also be compared to the static estimators. With
q - 1 = 1 the PLSR + OE estimator (51) gives the corresponding static estimator

y l = (0.32711 1 + 0.3867/i2)• 10 -3 ,	 (53)

(51)
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E
^ 0.04

0.02

while the static PLSR estimator (based on the means of 100 consecutive power
spectra) for a = 2 components gave

y l = (0.36841 1 + 0.3009'1 2) • 10 -3 .	 (54)

Let us finally find the spectral properties of the underlying state variables x 1 and
x2 in equation (46). Based on collected data the second output equation in (46) gives

C21
Y2=[x1 x2] Cie +V2 ,

where X = [x 1 x2] is orthogonal. A PLSR factorization using the Martens algorithm
would result in Y2 = 'Nils, where the T matrix is non-orthogonal, and it is therefore
more appropriate to use the orthogonal score matrix fw in the Wold algorithm.
Following Helland (1988) we have Y 2WPLS = TWPwWPLS, where Pw is the Wold
algorithm loading matrix. The corresponding expression (8) for the Martins algo-
rithm is Y2WPLS = T, and we may thus perform the factorization

sT
8(2 = TWPLS = TwPwWPLSWPLS = TwST = Tw 1 T '

SZ

where sl and s2 are scaled estimates of the spectra C21 and C22 in (55). The estimated
spectra for the PLSR estimator (54) are plotted in Figure 5. Here, spectrum 1 shows
the relative weight of the different frequency components in the power spectrum          

M,
V l            

100	 200	 300	 400	 500
	

600
	

700
	

800
	

900
	

1000

(55)

0.1

0.05N
E

UNacn
-0.05

-0.1

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000
Frequency number

Figure 5. Spectra for PLSR estimator with two components.



variations caused by flow variations, while spectrum 2 reflects the influence of the
second underlying source of variation. Since T = Y 2*„, is nearly orthogonal, these
spectra are almost identical to the loading weight spectra based on WPLS = [w 1 w2].

9. Conclusion

High sampling rate X and low sampling rate y time series data may be used to
identify an output error (OE) response estimator based on an underlying Kalman
filter. The X variables may be both known system inputs u k and secondary system
outputs y2,k , while the y variables are the primary responses yid.

A high number of collinear X = [U Y 2] variables may be compressed by principal
component analysis (PCA) or partial least squares regression (PLSR), resulting in
PCA + OE and PLSR + OE methods.

A multirate sampling example with acoustic power spectrum Y2 data and flow
meter y i data demonstrates the feasibility of these methods, although the interpreta-
tion of the results is complicated by the fact that the Y2 data are obtained as means
of several consecutive power spectra.
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