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Abstract

Assuming a fully known latent variables model, the optimal multivariate calibration predictor is
found from Kalman �ltering theory. From this follows the best possible column space for a loading
weight matrixWopt: in a predictor based on the latent variables, and thus the optimal factorization of
the regressor matrix X. Although the optimal predictor cannot be directly determined in a practical
case, we may still make an attempt to �nd it. The paper presents a simple algorithm for a constrained
numerical search for aWopt: matrix spanning the optimal column space, using a principal component
analysis (PCR) or a partial least squares (PLS) factorization as a starting point. The constraint is
necessary in order to avoid over�tting, and it is based on an assumption of a smooth predictor.
A simulation example and data from a metal ion mixture experiment are used to demonstrate the
feasibility of the proposed method.

1 Introduction

The aim of this paper is to show that multivariate calibration results from principal component regression
(PCR) or partial least squares regression (PLSR) at least in some cases may be improved by a numerical
search for an optimal factorization of the X data matrix, i.e. for an optimal loading or loading weight
matrix. The theoretical basis for this is found in general Kalman �ltering theory, and the fact that an
optimal factorization under the assumptions of a linear latent variables (LV) model and normal LV and
X-noise distributions can be shown to exist. An additional assumption is that the resulting optimal
predictor is smooth, such that a numerical search for an optimal factorization can be constrained by
use of a predictor roughness index. This is necessary in order to avoid convergence to the least squares
solution and thus over�tting. The treatment is limited to the scalar response case.
For an introduction, assume an underlying LV model

yk = Q� k + fk (1)

xk = L� k + ek; (2)

with a scalar response variable yk, regressor variables xk = Rp�1, latent variables � k = RA�1, Q 2 R1�A
and L = Rp�A, where L has orthonormal columns: The error terms fk and ek are assumed to be
independent with expected variance rf = E

�
f2k
	
and covariance Re = E

�
eke

T
k

	
, while � k has the

expected covariance R� = E
�
� k�

T
k

	
: With data collected from k = 1, 2, : : : , N observations we from
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this obtain the sample latent variables model [1]

y = TQT + f (3)

X = TLT +E: (4)

Assuming A << p the multivariate calibration predictor based on a given modeling set can then be
expressed as [2]

b̂LV = L̂
�
L̂TXTXL̂

��1
L̂TXTY: (5)

This applies to both PCR and PLSR, with L̂ being the loading matrix P̂ or the loading weight matrix
Ŵ respectively [3].
It has further been shown that the theoretically optimal L̂ matrix is a transposed Kalman gain KT

[4], or any matrix spanning the same column space. This matrix can be computed only if both R� and
Re are known, which of course they are not in practical cases. However, it has also been shown that an
estimate K̂ may be found by means of covariance estimation using extra X-observations, i.e. from a long
X matrix [4]. When this is applied to PCR it turns out that L̂ in (5) is replaced by the loading matrix
P̂long found from Xlong , which method for stabilization of the PCR predictor was earlier presented in [5].
Application to PLSR may, however, give better prediction results and/or fewer components.
A singular value decomposition (SVD) (or any other method for obtaining an orthonormal basis, e.g.

QR decomposition) of the transposed Kalman gain gives

KT = USVT =
�
U1 U2

� � S1
0

�
VT = U1S1V

T ; (6)

where S1VT 2 RA�A is a square and invertible matrix. The matrix L̂ in (5) may thus be replaced
by U1 2 Rp�A, which just as P̂ (PCR) and Ŵ (PLSR) has orthonormal columns. It may in fact be
replaced by any orthonormal matrix Wopt: with the same column space as U1, i.e. an optimization of
the predictor may be performed by an column space adaptation using e.g. Ŵ as a starting point.
The present paper investigates the possibilities to �nd a Wopt. matrix by a numerical search using

cautiously modi�ed Ŵ (or P̂) matrices, i.e. without using extra X observations as in [4]. When this is
attempted, two principal problems are encountered:

� Optimization using only calibration/modeling data, i.e. �nding min fRMSECg, will result in over-
�tting and poor prediction results for new X data.

� Optimization using also validation data, i.e. �nding min fRMSEPg for a given test set, makes the
test set a part of the modeling set, again with over�tting as result. The corresponding over�tting
problem will occur also if cross-validation is used in the optimization algorithm.

These problems can be overcome only by use of some optimization constraints. In this work we assume
a theoretically smooth predictor, and use the roughness of (5) for this purpose, i.e. the search forWopt.

is constrained by the requirement that a given predictor roughness index should not increase.
The theoretical basis presented above is somewhat expanded in Section 2, while a simple optimization

algorithm including a roughness index is introduced in Section 3. A simulation example in Section 4
makes it possible to compare optimization results with a theoretically optimal solution. A real world data
example involving metal ion mixtures is presented in Section 5, followed by a summary and conclusions
in Section 6.

2 Theoretical basis

The Helland predictor
The PCR and PLSR regularizations are based on the latent variables model (3,4) above. The least

squares (LS) solution of (4) is

T̂ = XL
�
LTL

��1
; (7)
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and from (3) and (7) we thus �nd the LS predictor related to the latent variables

Q̂T =
�
T̂T T̂

��1
T̂TY =

��
LTL

��1
LTXTXL

�
LTL

��1��1 �
LTL

��1
LTXTY; (8)

which after some simpli�cations results in �tted experimental responses according to (3),

ŷ = T̂Q̂
T
= XL

�
LTXTXL

��1
LTXTY: (9)

The regularized LV predictor thus becomes

b̂LV = L
�
LTXTXL

��1
LTXTY: (10)

This predictor was �rst presented in [2], although there not explicitly based on an LV model. Note that
L = P̂ gives the standard PCR predictor, while L = Ŵ gives the standard PLSR predictor [3].

The optimal predictor
In order to obtain a theoretical basis for both an optimization algorithm and simulation comparisons

we need an optimal predictor formulation. The optimal predictor may be found by use of general Kalman
�ltering theory [6]. We will, however, derive the optimal solution directly by introduction of the optimal
state estimate related to the LV model (1,2),

�̂ k = Kxk: (11)

We chose K such that the expectation

R = E(� k � �̂ k)(� k � �̂ k)T = E [� k �K (L� k + ek)] [� k �K (L� k + ek)]T

= (I�KL)E
�
� k�

T
k

�
(I�KL)T +KE

�
eke

T
k

�
KT (12)

is minimized. Using E� k�Tk = R� and EekeTk = Re we �nd [7]

@

@K
trace(R) = �2(I�KL)R�L

T + 2KRe; (13)

i.e. @
@K trace(R) = 0 gives the optimal solution

K = R�L
T
�
LR�L

T +Re

��1
: (14)

This intermediate result, derived from general Kalman �ltering theory, was �rst presented in [8].
The resulting optimal response estimate is

ŷk = QKxk; (15)

i.e. the optimal predictor is

bKF = K
TQT =

�
LR�L

T +Re

��1
LR�Q

T : (16)

Optimality here means that (16) gives the best linear unbiased estimate (BLUE), and the best possible
estimate whatsoever assuming normal LV and X-noise distributions [6]. This predictor will be used as
a source of reference in the simulation example in Section 4. Note, however, that with noise that is not
Gaussian, a biased and/or non-linear predictor may give even better results.
From (3) and (15) follows

y = XK̂
T
QT + fKF ; (17)

where fKF is a random noise term, and assuming Q unknown an LS solution Q̂T thus results in

b̂KF = K
T Q̂T = KT

�
KXTXKT

��1
KXTY: (18)

This is the predictor (10) with L replaced by KT . As shown in (6) and the discussion that follows there,
KT may here be replaced by any orthonormal matrixWopt. spanning the same column space. Also this
predictor will be used as a source of reference in the simulation example in Section 4.
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Remark 1 PCR and PLSR are often referred to as biased regression methods. Assuming the underlying
latent variables model (3,4), this is meaningful only when comparing with the BLUE (16), or the LS
counterpart (18).

We summarize the theoretical basis in the following theorem, where we also include some score matrix
computations.

Theorem 1
Assume the linear latent variables models (1,2) and (3,4) with p >> A, and the problem of predicting

a new response from new observations according to yTnew = x
T
new b̂. The optimal predictor is then given

by (16), which with Q unknown gives the optimal LS predictor

b̂KF =Wopt:
�
WT

opt:X
TXWopt:

��1
WT

opt:X
TY; (19)

whereWopt: 2 Rp�A with orthonormal columns is found from the Kalman gain (14) by e.g. the SVD

KT = USVT =
�
U1 U2

� � S1
0

�
VT = U1S1V

T =Wopt:ZZ
�1S1V

T ; (20)

where Z is any suitable transformation matrix. The resulting predictor (19) is the best linear unbiased
estimator (BLUE) in the LS sense (assuming Q unknown), and the best LS estimator whatsoever also
assuming normal LV and X-noise distributions.
An optimal factorization of X is

X = Topt:W
T
opt: +E; (21)

and an LS estimate of the non-orthogonal score matrix Topt: [3] is given by

T̂opt: = XWopt:: (22)

As shown in [9], a factorization with orthogonal score and loading weight matrices is furthermore given
by the SVD

X̂ = T̂opt:W
T
opt: =

�
Û1 Û2

� � Ŝ1
0

�
V̂TWT

opt: =
�
Û1Ŝ1

��
Wopt:V̂

�T
= T̂?Ŵ

T
?: (23)

It follows from this theorem that under the assumptions given the optimal predictor (19) exists, and
that the Wopt: matrix may be seen as a column space adapted version of the ordinary PLSR loading
weight matrix Ŵ, or alternatively of the PCR loading matrix P̂.

3 Numerical random search algorithm

Modeling and validation RMSE values
The numerical search algorithm below involves the root mean square error of calibration, based on the

available modeling data set and assuming a scalar response yk,

RMSEC =

vuut 1

N

NX
k=1

(yk � ŷk)2: (24)

The corresponding root mean square error of prediction (RMSEP) based on an independent validation
data set is used for the search interrupt decision only.
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The idea behind the algorithm
The idea behind the algorithm is to search for an improved model �t by small random modi�cations of

the PLSR loading weight matrix Ŵ (or the PCR loading matrix P̂), and at the same time avoid over�tting
by requiring that the initial smoothness of the predictor should not be impaired. The algorithm is based
on a straightforward random search, while developement of a more e¤ective algorithm is left for further
work.

Theoretical limits
It follows from the theory above that the predictor (16) is the best predictor whatsoever assuming

normal LV and X-noise distributions, and that (19) is then the best predictor that can be found through
a numerical search forWopt:. For other distributions an even better biased and/or non-linear predictor
can in theory be found.

The algorithm

1. Set i = 0 and use the available modeling data and an ordinary PLSR (or PCR) algorithm to �nd
an initial loading weight matrixWi = Ŵ 2 Rp�A (or loading matrixWi = P̂ 2 Rp�A). Find the
corresponding predictor b̂i according to (5) with L̂ = Wi, and the RMSECi value according to
(24). Also compute the RMSEPi value based on an independent validation data set (to be used for
iteration interrupt only).

2. Compute a roughness index according to e.g.

ri =

p�1X
j=2

 
b̂j �

b̂j�1 + b̂j+1
2

!2
i

: (25)

3. Add a matrix with small random elements toWi , i.e. form

Wi;new =Wi + ��W; (26)

where �W 2 Rp�A has random entries chosen from e.g. a normal distribution with mean zero and
variance one, and where the step factor � is chosen as e.g. � = 0:001, or � = 0:001e�i=10000.

4. Perform e.g. an SVD in order to retain orthonormal columns,

Wi;new = UiSiV
T
i =

�
Ui;1 Ui;2

� � Si;1
0

�
VT
i = Ui;1Si;1V

T
i ; (27)

and �nd a randomly modi�ed and orthonormal loading weight matrix

Wi;mod. = Ui;1 2 Rp�A: (28)

5. Find again the corresponding predictor b̂i;mod. according to (5), the RMSECi;mod. value according
to (24) and the roughness index ri;mod. according to (25). If both the error of calibration RMSEC
and the roughness index r decrease, set Wi+1 = Wi;mod., ri+1 = ri;mod. and bi+1 = b̂i;mod..
Otherwise keep the old values.

6. Compute the RMSEPi+1 value using an independent data set, and go to step 8 when no more
progress towards a reduced RMSEP is achieved over some iteration steps.

7. Let i i+ 1 and go to step 3.

8. Set Ŵopt: =Wi;mod. and interrupt the search.
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Note that the RMSEP value is used for the interrupt decision in step 6 only, i.e. the search as such is
based on the modeling set exclusively. Also note that the resulting loading weight matrix Ŵopt. and the
corresponding non-orthogonal score matrix T̂opt: = XŴopt. may be used for interpretational purposes
as in the ordinary PLSR case. Alternatively, the factorization (23) with the orthogonal score matrix T̂?
may be used for this purpose.

4 Simulation example

The practical case behind the following simulation example could be a spectroscopic measurement of a
solution with three di¤erent chemical constituents. A typical simulation result is shown in Fig. 1. Note
the overlapping peaks and considerable X-noise.
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Figure 1. Mean spectrum and standard deviations (Fig. a - dashed lines) plus a typical realization of a noise
free original spectrum (Fig. a - solid line), and the corresponding centered and noise corrupted spectrum (Fig. b)
of three chemical constituents. The X-noise variances are here ree = 10 (solid line) and ree = 100 (dotted line)
(see explanation of ree below). The centered noise free spectrum is shown by dashed line in Fig. b.

The simulations are based on assumed discrete frequency spectra in the range 0 < f � 500 frequency
units (f.u.),

xk(f) =
f1fq

(f21 � f2)
2
+ (2�f1f)

2
(3 + z1;k) +

f2fq
(f22 � f2)

2
+ (2�f2f)

2
(3 + z2;k) (29)

+
f3fq

(f23 � f2)
2
+ (2�f3f)

2
(3 + z3;k) + ek(f) = 3C2(f)

�
1 1 1

�T
+C2(f)zk + ek(f);

with resonance frequencies f1 = 200 f.u., f2 = 250 f.u., f3 = 300 f.u. and relative dampings �1 =
�2 = �3 = 0:05, and with C2(f) 2 R1�3. It is also assumed that the variations in the concentration
of Constituent 1, Constituent 2 and Constituent 3, denoted z1;k, z2;k and z3;k, are randomly generated
zero mean numbers with normal distributions and variances rzz = Ez21;k = Ez

2
2;k = Ez

2
3;k = 1: The noise

terms ek(f) are randomly generated zero mean numbers with normal distribution and equal variances
ree = Ee

2
k(f). Several ree values were used in the simulations.

It was assumed a scalar response

yk = z2;k = C1zk + fk; (30)
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with C1 =
�
0 1 0

�
and Ef2k = 0:0001. In a practical case this would mean that the primary response

of interest would be the concentration of Constituent 2, while the other constituents would be treated as
interferants.
Collecting yk and xTk over k = 1; 2; : : : ; N modeling observations the total model with mean centered

data is then

y = ZCT1 + f (31)

X = ZCT2 +E; (32)

where C2 2 R500�3. Note that this model may be transformed to the model (3,4) by a similarity
transformation [10]. With this model the Kalman predictor (16) is replaced by

bKF =
�
C2RzC

T
2 +Re

��1
C2RzC

T
1 ; (33)

where Rz = Ezkz
T
k = I3 and Re = Eeke

T
k = reeI500.

PCR and PLSR prediction ability
PCR and PLSR validation results for M = 100 Monte Carlo runs at di¤erent X-noise levels ree and

with di¤erent numbers N of modeling observations using A = 3 components and independent validation
sets with Nval: = 1000 observations are shown in Fig. 2. Here are included also results using the Kalman
predictor (33). The RMSEP values at A = 0 components were RMSEP = 1:0. Not surprisingly, the
predictors deteriorate for small values of N , especially at high noise levels. Note that the di¤erence
between PCR and PLSR is more pronounced at high noise levels, and that for large values of N the
predictions apparently approach the theoretical Kalman predictions.
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ree=32

ree=10
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Figure 2. Mean validation PCR and PLSR results forM = 100 Monte Carlo runs with ree = 10, 32 and 100,
A = 3 and di¤erent numbers N of modeling observations. The validation results were based on Nval: = 1000
observations. The theoretical Kalman predictor results are shown by solid lines.

Fig. 2 indicates that not much is to be gained from optimization at relatively low noise levels combined
with relatively long modeling data (e.g. ree = 10 and N = 200).

Optimization results
An optimization result for A = 3 components using the algorithm in Section 3 with a step factor

� = 0:001e�i=10000 is shown in Fig. 3. The X-noise level was here ree = 10 (see Fig. 1 and 2), while the
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number of observations in the modeling and validation data were N = 50 and Nval: = 1000 respectively.
The theoretical RMSEK value based on the Kalman predictor (33), as well as the corresponding LS
predictor (18) are also shown. The relative RMSEP reduction is 20 %, while the theoretically possible
reduction is at most 25 %. The absolute reduction is 2.0 %, which could be compared with the standard
deviation of 1 % for the yk measurements. However, note that the variance in the yk observations gives
a 1 % contribution to all RMSE values, and therefore is of no importance for the di¤erences and thus
the optimization improvement. A = 3 components gave the best predictor both before and after the
optimization. Also note that the RMSEP value is plotted for illustration of the search progress only,
while the optimization as such was based on RMSEC exclusively.
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0.12

Number of iterations

RM
SE

RMSEP

RMSEC

RMSEKF

Figure 3. Optimization results for simulation with ree = 10, N = 50, A = 3 and Nval: = 1000, using
a step factor � = 0:001e�i=10000. The relative RMSEP reduction is 20 % of a theoretically possible 25 %.
The theoretical validation result using the Kalman predictor (33) is shown by dashed straight line, while the
corresponding LS result according to (18) is shown as solid straight line.

The search for an optimal predictor was interrupted after 15000 iterations (ca. 18 min. on a Pentium
4 PC). The roughness index (25) was reduced from an initial value rinit: = 9:8 10�5 to a �nal value
r�nal = 4:6 10�5. The noisy variations in b̂ had approximately the same amplitude in the initial and
the �nal predictor, while the variations in the �nal predictor had a clearly reduced content of �rapid�
�uctuations.
A typical optimization result with theX-noise level and the number of modeling observations increased

to ree = 100 and N = 100 is shown in Fig. 4 (see also Fig. 1). Here a �xed step factor � = 0:0001
was used. Tests with a random � (unity distribution between 0 and 0.001), and with an exponentially
declining � = 0:001e�i=10000 gave somewhat faster convergences, but no improvement of the �nal result.
Some simulations gave in fact a slowly increasing RMSEP value at very high numbers of iterations.
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Figure 4. Optimization results for simulation with ree = 100, N = 100, A = 3 and Nval: = 1000, using
a step factor � = 0:0001. The relative RMSEP reduction is here 17 % of a possible 32 %. The theoretical
validation result using the Kalman predictor (33) is shown by dashed straight line, while the corresponding LS
result according to (18) is shown as solid straight line.

5 Metal ion mixtures example

The optimization method developed in Section 3 was tested on a data set made available from the Wentzell
Group [11]. The data set, labeled �inortrun�, was �obtained through a carefully designed experiment
involving three-component mixtures of metal ions (Co(II), Cr(III), Ni(II))�. The X measurements were
absorbances at p = 151 frequencies, while the concentration of Co was used as the response variable y,
and the total number of observations is Ntotal = 128. Based on the mixture preparation methods, the
uncertainty in the yk values can be assumed to be less than 1 % [12]. The N = 25 observations number
31 to 55 were used for modeling, while the other Nval. = 103 observations were used for validation. The
data were autoscaled, and the optimization result using A = 3 components is shown in Fig. 5. The
relative RMSEP reduction is 53 %. Again note that the RMSEP value is not used in the optimization
algorithm as such. The search for an optimal predictor was here interrupted after 50000 iterations (ca.
3 min. on a Pentium 4 PC). Note that in this real world data case a theoretical Kalman predictor result
as in Fig. 3 and 4 is not available.
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Figure 5. Optimization results for metal ion mixture with A = 3 components and step factor � = 0:001.
The relative RMSEP reduction is 53 %.

The RMSEP values for di¤erent numbers of components are shown in Fig. 6, now based on 10000
iterations. Due to the low number of modeling observations ordinary PLSR gave a minimum for A = 4
components, and compared to that the optimization gave a 22 % RMSEP reduction, and at the same
time a reduction to A = 3 components. This corresponds to an absolute improvement of 0.6 %, while
the uncertainty in the yk values can be assumed to be less than 1 %. Also here the yk uncertainty a¤ects
both RMSEP and RMSEPopt:, such that the di¤erence is not a¤ected. However, the most important
improvement might be the reduction in number of components, and after the optimization also a model
with A = 2 components might be considered.
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Figure 6. Prediction RMSEP values for metal ion mixture at di¤erent numbers of components before and
after optimization using 10000 iterations.
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6 Summary and conclusions

The theoretical basis for the numerical optimization algorithm presented in Section 3 is the fact that under
the assumption of a linear LV model an optimal loading weight matrix can be shown to exist, resulting
in the best linear unbiased estimator (BLUE). Also assuming normal LV and X-noise distributions, the
BLUE is the best estimator whatsoever. This basis is summarized in Theorem 1. However, in order to
prevent from over�tting to the modeling data, the numerical search for the optimal loading weight matrix
must be constrained in some way or another. In the present algorithm this is done in an ad hoc fashion,
by requiring that a certain roughness index for the resulting predictor is not increasing. It is possible that
other types of constraints may be used, and they are indeed needed for cases where a smooth predictor
cannot be expected.
The optimization algorithm is at present very simple, and could possibly be improved by further work.

It must be remembered though, that assuming a useful step factor the optimization need to be done only
once, and the computational demand may thus not be of critical importance. However, practical step
factor guidelines remain to be worked out. The algorithm is also restricted to handling of a scalar response
variable, although this may be applied separately for each of several responses.
The simulation example indicates that considerable relative prediction improvements may be obtained

(20 % and 17 % in two cases with di¤erent noise levels), and this is con�rmed in the metal ion mixtures
example (22 % combined with a reduction of number of components). The simulation example also
shows, however, that little is to be gained at a combination of relatively low noise levels and relatively
long modeling data.
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