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On Primary Output Estimation by Use of Secondary
Measurements as Input Signals in System Identification

Rolf Ergon

Abstract—In many cases, vital output variables in, e.g., industrial
processes cannot be measured online. It is then of interest to estimate
these primary variables from manipulated and measured inputs and the
secondary output measurements that are available. In order to identify
an optimal estimator from input–output data, a suitable model structure
must be chosen. The paper compares use of ARMAX and output error
(OE) structures in prediction error identification methods, theoretically
and through simulations.

Index Terms—Estimation, product quality, system identification.

I. INTRODUCTION

An important use of system identification methods is to find
models for estimation of primary output variables y i that are not
normally available online. In such cases all available information
should be utilized, including secondary measurements 9 2 . A typical
industrial application would be estimation of a product quality yi
from manipulated inputs u m. , measured disturbances u d , and available
process measurements y 2 . The practical use of the estimated 91 output
variables may be operator support, failure detection, and possibly
closed-loop control.

From a system identification point of view, it is very natural to
include the secondary measurements as input signals [1]. The basic
idea in the present context is that for output estimation purposes,
knowledge of the system model as such is not necessary. What is
needed are the dynamical relations between the known input signals

= [u d ] T , the available secondary measurements 92 , and the
primary output variables yl, and these relations can often be identified
with better accuracy than the relations between u and y i alone. The
reason for this is that disturbances and noise entering early in the
system will be indirectly measured by the secondary measurements
later in the system. Here we assume, of course, that a representative
data record of sufficient length and including also y l is available from
an informative identification experiment.

The use of dependent y2 variables as inputs to a system identi-
fication procedure raises several questions concerning identifiability,
deterministic systems, and perfect measurement systems, and these
topics are treated in [2]. In the present paper we assume a discrete-
time system that is observable from the 9 2 measurements. We
then assume a prediction error identification method and compare
identified Auto Regressive Moving Average with eXogenous inputs
(ARMAX) and Output Error (OE) models using u and y 2 as inputs.
It is shown that use of the OE structure asymptotically will result in
optimal 91 estimators giving minimized estimation covariance. The
ARMAX structure will not give minimized estimation covariance due
to the fact that past 9 1 values are not available as a basis for the y:,
estimation, although such values are used in the system identification
procedure. The result of this is that the yz information is not optimally
utilized in the y l estimator.

A simulation example that supports the theoretical results is also
presented.
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II. THEORY

A. Statement of Problem

Consider the discrete-time system model

xk±1 = Axk + Buk + GUk

Y1,k = Cl xk + Dl u k + wl,k
	 (1)

Y2,k = C2xk + D2Uk + W2,k

where x k is the state vector, while vk and wk = [wi k w2 k]T
are white, independent, and normal process and measurement
noise vectors with covariance matrices R„ = Ev k vk and Rv, =
Ew kwti = [R21 R12,  

Also assume that (C2 . A) is observable
and that (A. G R) is stabilizable. The assumptions of noise
independence and state observability may be relaxed with appropriate
theoretical modifications. This is, however, beyond the scope of the
present paper.

Further assume that input–output data is available from an infor-
mative experiment [3], i.e., that data records for u k , 9 1,k . and 92,k
for k = 1.2. • • • . N are at hand, with u k persistently exciting of
appropriate order. The problem is now to identify the optimal one-
step-ahead yl.k l k-1 prediction estimator based on past and present uk

and past 99 ,k values, and the optimal y i , k i k current estimator based
also on present 92,k values.

Note that it is a part of the problem that past y i,k values are not
available as a basis for the estimates. This is a common situation
in industrial applications, e.g., in polymer extruding, where product
quality measurements involve costly laboratory analyses. Product
samples are then collected at a rather low sampling rate, and product
quality estimates at a higher rate may thus be valuable.

B. Preliminary Discussion

In the following, three different estimation models will be dis-
cussed. Subsection II-C assumes identification of an ARMAX model
using both 91 and y2 as outputs. The resulting one-step-ahead
predictor is then clearly not optimal when past ,y i values are not
available.

Subsection II-D discusses the use of ARMAX models of the form

-Ayl,k = Bluk + B2y2,k +Cel,k

where A = A(q -1 ) etc. are matrix polynomials in the unit delay op-
erator q -1 , and where e l,k is an innovation process in an underlying
Kalman filter. Such a model can be constructed after identification
of the model used in Section II-C, or alternatively directly identified
by use of y 2 as an input signal as shown in Subsection II-D. The
innovation el.k will in general be correlated with 9 2,k , and thus

yl.k^k-1 = .1-1 Bluk + A -1 B2y2,k	 (3)

will not in general be the optimal predictor given only past and present
inputs v k and past secondary outputs y2,k.

Subsection II-E discusses identification of an OE model

yl.k = FI—i Bor k +F -1 B2y2.k+t9k

where 79k is colored noise, and where 92,k is used as input signal.
Although 1 k here is correlated with 92,k, the result will still be an
optimal predictor. The reason for this is that the expectation E19 k t9 j
is minimized when and only when the correct parameters are found.

(2)

(4)
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TABLE I
VALIDATION RMSE MEAN VALUES WITH STANDARD DEVIATIONS AND

THEORETICAL MEAN VALUES FOR ARMAX2 MODEL (MULTIPLIED BY 10 000)

TABLE II
VALIDATION RMSE MEAN VALUES WITH STANDARD DEVIATIONS AND

THEORETICAL MEAN VALUES FOR OE MODELS (MULTIPLIED BY 10000)

r11 OEP OEPth, OEC OECth.
10-5 177± 5 177 173±6 173
10-7 177±5 177 173±6 173
10-5 177±5 177 173±5 173
10-5 181±5 180 177±5 176
10'4 204 ± 6 203 200 ± 5 200
10-' 363 ± 4 362 361 ± 3 360

C. ARMAX Model with y2 As Output

System (1) can be expressed in the ordinary innovation form [4],
based on an underlying Kalman filter driven by u and the y 1 and y2
measurements. This form is given by the following equations, where
K = [K1 K2] is the predictor-corrector Kalman gain, and where
el,k and 6 2,k are white innovation processes

e1k
xk+1 = Axk + Buk + [_AIi1 AK2 ] [ ,

e2,k

Yl,k = C1xk + Dluk + 61,k
	 (5)

Y2,k = C2xk + D2Uk + e2,k•

In a prediction error identification method with u k as input and yl,k
and y2,k as outputs, the predictor would asymptotically (N -> oo)
and after minimization of an appropriate criterion function [4] become

xk+1 = Ax'k + B Uk + AIi1y1,k + AK2y2,k

111,k = Cl xk + Dluk
	 (6)

y2,k = C2xk + D2u.k

where A = A- Mil C1 -AK2 C2 and B = B - AK). Dl -AK 2D2. D2.
This is the best linear one-step-ahead predictor if xo, vk , and wk have
arbitrary statistics, and the optimal predictor assuming that xo, vk,
and w k are normally distributed [5].

Once the model (5) is identified, and assuming normal statistics,
the optimal one-step-ahead prediction of y l,k based on u k and past
y1,k and y2,k measurements could be constructed as

Y1,k1k-1 = C1[0I - A] 	 [Bu k +AK1 Y1,k + AK2y2,k1 + Dl uk.

(7)

When past outputs yl,k are not available, i.e., with y1,k = 0, the
information in y2,k will not be utilized in an optimal way. A simple
example occurs when C1 = C2 and D 1 = D2, i.e., when the y1,k
and y2,k outputs are identical except for the noise term. Then perfect
yi measurements, i.e., Ru - 0, would result in K2 - 0. With
1Y1,k = 0, the predictor (7) would thus be based almost entirely on the
information in u k , also if y2,k was obtained at a low measurement
noise level.

D. ARMAX Model with y2 as Input

A different choice when yl is not available as a basis for estimation
would be to set also Ii 1 = 0, i.e., to assume an underlying observer

driven only by u and y2 . The one-step-ahead predictor (7) would
then be modified into

yARMAX2 = Cl [gI - A + AIi2 C2]-1
[(B - AK2D2) u k + AK2y2,k] + Diuk•

This is a predictor of the form given in (3) and thus not optimal. The
underlying ARMAX form (2) is here obtained by elimination of 62,k
in the state equation in (5).

Assuming that (C2, A) is observable, the state estimation error
Xk = xk - xARMAX2 in the underlying nonoptimal observer wouldk	 Y g	 P
be governed by

Xk+1 = (A - AI2 C2)xk + Gvk - AK2w2,k	 (9)

resulting in the asymptotic prediction covariance

CiOV 1 ^Athelo x2 ) = E (.yl,k - ^
ARMA1 2 )R11( yl k - ^i RMAX 2 ) T

\	 = C1 PARMAx 2 Crl +  	 (10)

where PARMAx 2 = EXk Xk is determined by (9) through the
Lyapunov equation

pARMAX 2 = (A - AK2 C2)

+ GR„GT +AK2R22Kz AT .	 (11)

Since (10) is a sum of nonnegative terms, it is evident that
Cov(y R eIo x2) is minimized only when PARMAx2 is minimized,
which requires an optimal gain K2. This will be obtained only when
the prediction is based on an underlying Kalman filter driven only
by u and y2 and not also by yl (see also Subsection II-E).

The estimator (8) may be constructed after identification of (5).
For complex systems with a number of secondary y 2 measurements,
however, identification of (5) is a difficult task [1], involving mini-
mization of, e.g., the criterion function VN(B) = tr( E El, k E.'1 k)+

tr(N E 62,k6? k), where 61,k = 111,k -Y1,k and 62,k = y2,k
Here, y l,k and y2,k are determined by (6) with A. AK, etc. replaced
by estimates A, AK etc. Another and more appealing choice,
especially with only one or a few primary yl measurements, would
be to reorganize (5) into the partitioned innovation model

xk+1 = (A - AK2C2) Xk + (B - AK2D2)uk + AK2ya,k

+AKl e l k	 (12)

Yl,k = Clxk + Dluk + el,k

before the identification. In this model 61,k is uncorrelated with us
and y2,s for s < k, and we therefore have y 1,k = zk + el,k with
zk and el,k uncorrelated. From this it follows that zk = yl,klk-1
according to (7) is the optimal predictor, just as when (5) is identified
directly. The predictor in a prediction error identification method
would also be the same as when identifying (5), with the optimal
predictor given by (6). The difference would be that a simplified
criterion function, e.g., 1/} (8) = tr(N > el,kei,k), was used, and
that A - AK2 C2 and B - AK 2 D2 D2 were treated as single matrices.
Identification of (12) would therefore give the predictor (8) as the
deterministic part of the solution, including the yz contribution.
Regardless of the way we find it, however, the predictor (8) is not
the optimal solution, since K2 is found from the innovation forms
(5) or (12) based on an underlying Kalman filter driven by u and
both yl and y2.

E. OE Model with y2 as Input

Based on the assumption that (C2, A) is observable and on an
underlying Kalman filter driven by u and the y 2 measurements, the

(8)

pARMAX2 . (A - AK2C2)T
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Fig. 1. Validation RMSE values for identified ARMAX 2 (x-markings) and OEP (o-markings) estimators as a function of log(r l1 ) with ry = 0.1, r22 = 0.01,
and N = 10 000 (N = 50 000 for the ARMAX2 model at rn = 10 -4). These estimators utilize the information in both u and 9 2 . Theoretical values are
shown as lines, including RMSE values for estimates based only on u (OEU) and on u and past yl as well as past y2 values (ARMAX12).

Fig. 2. Segment of validation responses for the OEP model (41) using both u and 9 2 as inputs (dashed, RMSE = 0.0239) and an OE model using only
u as input (nnoEu = [0, 3, 0, 0, 3, 1], dotted, RMSE = 0.1078). The experimental conditions are given by r„ = 1, ru = 0.0001, r22 = 0.01,
and N = 200, and the ideal validation response is shown by a solid line.

following innovation form can be derived from (1):

xk+P = Axk + Buk + AR 2 e2,k

92,k = C2 xOEP + 
D2uk + 

e2,k•

The y 1 output is then given by

y1,k = Ci x
O

E
P + Dl uk + t9k

where

OEP
19 k = C1 (xk — xk ) + w1,k

is colored noise.

The system determined by (13) and (14) can be identified by use
of y2 as an input signal in the output error prediction (OEP) model

(13) xk+P = (A — AKoEC2)xoEP + (B — AR °ED2)uk

+ AIi °E y2,k	 (16)

91,k = 
C1X OEP + Dluk + 19k

(14)
The corresponding input—output model is then

yl,k = Cl [4I — A + AA °E C2 ] —1

(15) • [(B—AK°ED2)uk+Ak°Ey2,k]+ Dluk+'t9k
-OEP

= y l,k1k -1 + "uk 	 (17)



y1,k = [1 0 0 ]xk + w1,k

Y2,k = [0 1 0]x, + w2,k.

(26) The system was then simulated with uk as a filtered pseudorandom
binary sequence (PRBS) with autocovariance r uw (p) = 0.8 1P1 ([6,
example 5.11] with a = 0.8), i.e., an input that was persistently
exciting of sufficient order. The noise sources vk , w1 , k, and w2 ,k

(27) were independent and normally distributed white noise sequences
with zero mean and variances given below.

The simulated system was identified using ARMAX 2 , OEP, and
OEC models with uk and y2,k as input signals and y l,k as output

(28) signal, using N = 10 000 samples.
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or Minimization of the criterion function Vk(9) will now result in an
optimal estimator only if

Evk	 Ci1 POEC
CT + R11 - C1KTE R21 - R12 (C1 I1 TE ) T(18)	 ?bk 

(29)

Y1,k = G1 (g-1 ) u k + G2(g-1 ) y2,k + 19k

where

G1(4-1 ) = Cl [qI — A+ AKTE C2 1 -1 . [B — AKTE D2] + Dt
(19)

and

G2 (q — ') = C1 [qI — A + ARTE C2 ] -1 ARTE .	 (20)

In order to identify the deterministic part of the system (17), i.e.,
G1 and G2 , we model 19 k by some unknown white noise sequence
and use the prediction

yl,k = G1 ( q-1 ; 8)uk + 62 (q -1 i B ) y2,k	 (21)

where B is the parameter vector. The prediction error is then

El ,k = y1,k — y1,k = [Gi(q- 1 ) — 61 0' 1 ; B)]u k + [G2(gs1)

- G2(4 -1 ; 0 )] y2,k + z9 k .	 (22)

When evaluating the result of minimizing a scalar criterion function,
e.g., Vk(G) = tr(N ^x  e l,k ei,k ), we must now consider the fact
that y2,k and 19 k are not independent. Note, however, that when
Gi(q -1 ; 8) _ Gi(q -1 ) and G2(4 -1 ;8) G2(q -1 ), we will in
the asymptotic case (N — oo) simultaneously obtain

ov(y1, hear.) = Ee1,kvl k = EE19097;C 
= Ci POEP 

Cl 
4_	 (23)

where POEP = E(xk — xOEP )(xk — x()EP) T is determined by the
Riccati equation

pOEP = APOEP AT + GRvGT — ARTE C,2 PoEPAT (24)

with

KOE = POEP C2 [C,2POEPC2 +R22]
-1 .	 (25)

Since P°EP is the minimized prediction state estimation covari-
ance given the y 2 measurements, this represents a true minimum,
resulting in consistent parameter estimates.

Note that the prediction covariance (23) is derived in the same
way as the prediction covariance (10) for the ARMAX2 case (with
Ii 1 = 0), only that we now have a minimized P 0EP covariance
matrix due to the use of K2 = KOE

Utilizing also current y2 values, the optimal estimator considering
that y i is not available will be found by identifying the following
output error model based also on current data (OEC model):

y1,k = C1 (I — ATE C2)[gI —A +AKTE C2]-1

• [(B — AKTE D2 )u k + AK2oE y2,k]
+ C1 I1TE (y2 , k - D2 uk) + Dl U k +?Gk
-OEC

= y1,kik + y,k-

Here we introduce the colored noise

k= C1(xk - xOEC) +
wi,k

based on

,OEC
I1= 

(I - 
0E C2)-OEP + Ii 20E (y2 k D2uk

with POEC = E(X k - XOEC)(xk - xOEC) T given by
pOEC = 

(I -I1
 -OE C,2 )POEP (I -IiOEC2)+KTER22(Ii0E) T

(30)

simultaneously is at a minimum. Since PoEC is the minimized
current state estimation covariance, this is true only when R12
RE = 0, and the asymptotic current estimation covariance then
becomes

CiOV (y^heor.) = E^k^k = 
C1PoEC

Ck + R11. 	 (31)

111. SIMULATION RESULTS

Simulation studies are undertaken, using dlsim.m in the Control
system toolbox for use with Matlab [7], and the prediction error
method implemented in pem.m in the System identification toolbox
for use with Matlab [8]. The pem.m function identifies the system
matrices and the Kalman gain, based on the general innovation
model (5), or the partitioned innovation model (12) when the y2
measurements are also used as input signals. Provided a proper
parameterization, it also identifies the OEP model (17) and the OEC
model (26).

The main aim of the simulations is to support the theoretical
asymptotic covariance expressions (10), (23), and (31), using a simple
system and a high number of samples. Note, however, that the
theoretical expressions are based on perfect model information, which
would not be available in a practical situation (see [9] for a general
discussion of practical cases).

As a starting point, the following continuous-time second-order
process model with an additional first-order process noise model was
used (e.g., interacting mixing tanks or thermal processes):

=

yl = [1

Y2 = [0

—1
1
0

0

1

1	 0
—2	 1
0	 —1

0]x + w
0 ]x+w2.

x +
0
1[0 u+

0
0
1

v

(32)

The system was discretized assuming zero-order hold elements on
the u and v inputs and a sampling interval T = 0.1, resulting in the
discrete model

xk+1 =

+

0.9092	 0.0863
0.0863	 0.8230

0

0.0002
0.0045
0.0952

.	 0

vk

0.0044
0.0863
0.9048

x k +
0.0045
0.0908

0
Uk

(33)



RMSE = 1	 estN E (y1,k — yl,k
k-1

N

(46)
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The ARMAX2 model (12) was specified as (see [8] for definition
of nn)

nnARMAx2 = [3, [3 3], 3, 0, [0 0],[1 1]]

i.e., a model

-4 (q-1 ) y1,k = B1(q-1 )u k + B2(q-1 ) y2,k +C(q-1)

with

A(q-1) = 1 + al q-1 + a z q-2 + a3g-3

B1( q -1 ) = b114 -1 + b12q 2 + bl3q -3

B2( q-1 ) = b21g
-1 

+ b22 q -2 + b23q -3

C(q -1 ) = 1+ c1 g-
1 
+ c2q -2 + C3q-3-

The OEP model (17) was specified as

nnoEP = [0, [3 3],0,O,[3 3], [1 1 ]]

i.e., a model

B1(q-1)u + B2(q-1) y2,k +7iky1 ,k = 
Fi(q-1 )

k	
F2 (q-1)

with B i (q -1 ) and B2 (q- 1 ) as in (37) and (38), and

F1(q-1 ) = 1+ f11 q-1 + fl2 q-2 + fl3q-3

F2 (q-1 ) = 1 + f21q- 1
 + f22q 2 + f23q 3•

The OEC model (26) was specified as

nnoEC = [0, [3 4 ], 0, 0, [3 3], [1 01]

i.e., the same model as (41), but with B2 (q -1 ) altered to

B2 (4 1 ) = b20 + b21 q-1 + b22 q-2 + b23q-3-

As the main purpose of the simulations was to verify the theory, no
attempt was made to find the model order and model structure from
the data. The model order can, however, be found by ordinary use
of one of the several available subspace identification methods, e.g.,
[10], and a systematic method for finding the structure is presented
in [2]. For the OEP and OEC models, no attempt was made to force
F1 (q -1 ) and F2 (q -1 ) to be identical, as they theoretically should be.

Each identified model was validated against an independent data
set with the same number of samples and the same noise variances as
used for identification. Validation comparisons between the different
identified models were based on the root mean square error (RMSE)
criterion

where ylst . = yARMAx 2 according to (8) for the ARMAX model

(35) ylsk = according to (17) for the OEP model (41) and

yisk  y°k^k according to (26) for the OEC model specified by (44).
As a basis for comparisons given a specific experimental condition,

each model was identified and validated in M = 100 Monte Carlo
runs using independent data sets. In order to limit the influence of
local minima problems, each identification and validation given a
specific data set was repeated J = 5 times with randomized initial
B parameters (b i1 , j+1 = bp 1,1 • (1 + 0.5e), with e as a zero mean and
normal random variable with variance 1).

The mean RMSE values and RMSE standard deviations for N =
10000, T v = 0.1, T22 = 0.01, and varying r 11 values are given
in Tables I and II. The tables also include theoretical RMSE values
JVar AR	 , /Var °	 and 3Var oEC ) computed(ylth

MAx2
eor. )^ V	 ( y l EPtheor.)	 (yltheor.

according to (10), (23), and (31).

The tables show an obvious agreement between results based
on simulation and theory. The only exception is the ARMAX2
result for r11 = 10 -4 , where repeated simulations show a mean
deviation of approximately 10 - 10 -4 . When the number of samples
was increased to N = 50 000, this specific result was altered to
RMSE = (250±6) . 10-4 . The reason for this extraordinary demand
for a high number of samples is not investigated further.

The RMSE results for the ARMAX2 and OEP models in Tables I
and H are also shown in Fig. 1, together with the theoretical results
for a one-step-ahead predictor OEU based only on the independent
input a and for the one-step-ahead predictor ARMAX 12 based on
(7), i.e., utilizing also past y l values.

The results in the tables and Fig. 1 were obtained from N = 10 000
samples (one exception with N = 50 000). To indicate expected
results for a more realistic number of samples, and at the same time
visualize the degree of model misfit behind the RMSE values in the
tables, specific validation responses for models based on N = 200
samples are shown in Fig. 2. This figure also gives a representative
picture of the improvement achieved by including y 2 as an input
signal.

IV. CONCLUDING REMARKS

Through a theoretical development with established system identi-
fication theory as a basis, it is shown how one-step-ahead prediction
and current estimation of nonmeasured primary output variables 91
can be done in asymptotically optimal ways by use of identified
models. The solution is to employ OE models with both the indepen-
dent inputs u and secondary output variables 92 as input signals.
This can be achieved by use of a prediction error identification
method. ARMAX models may utilize the y2 information in a far
from optimal way, due to the fact that past 91 values are used in
the identification stage, while such values are later not available as
a basis for estimation. In both the OE and ARMAX cases, Kalman
gains in underlying optimal observers will be part of the deterministic
models for prediction and estimation of Pi.

The theoretical estimation covariance results are supported by
Monte Carlo simulations of a third-order system.
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