
Compression into two-component PLS
factorizations

Rolf Ergon
Telemark University College

P.O.Box 203
N-3901 Porsgrunn, Norway
E-mail: Rolf.Ergon@hit.no

Telephone: ++ 47 35 57 51 60
Telefax: ++ 47 35 57 52 50

March 24, 2003

Abstract

Partial least squares regression (PLSR) often requires more than two components also in
the case of a scalar response variable. As shown in papers on orthogonal signal correction
(OSC) it is possible to reduce the number of components, resulting in easier data interpre-
tation. In this paper it is shown how all scalar response PLSR models can be reduced to
two-component models with the same structure and giving exactly the same estimator as
the original model using many components. This is done by use of a direct and very simple
algorithm, based on a two-dimensional subspace in the loading weights space. The result-
ing model may be transformed into different realizations for different purposes, e.g. latent
variable profile estimation, process monitoring, fault detection etc., as discussed in the paper.

Keywords: PLS factorizations, parsimonious, model reduction

1 Introduction

Partial least squares regression (PLSR) is a well known and popular method for prediction of e.g.
a scalar response variable y from multivariate regressor variables xT according to ŷnew = xTnewb̂
[e.g. 1]. Due to both a large number of regressor variables and collinearity, such regression
problems are often ill-posed, and in PLSR a regularized estimator b̂ is found from modeling
data collected in a regressor matrix X and a response vector y. In many practical cases a fairly
high number of PLS components are needed in order to obtain good predictions, and this makes
pretreatment and interpretation of the data difficult. Reduction of the necessary number of PLS
components is therefore a major advantage of orthogonal signal correction (OSC), which has
attracted quite some attention in recent years [e.g. 2]. This raises the question whether it is
possible to find a parsimonious PLS model in a more direct way than by use of OSC, and as
shown in the present paper this can in fact be done, once the complete model with A components
have been determined.
Reduction to one component only is trivial, this component is given by the estimator b̂ itself.

The reason for use of more than one component is the interpretational advantages that score and
loading plots give with respect to outlier detection, spectra estimation, process monitoring, fault
detection and diagnosis etc. For the scalar response case this can be fully exploited when the
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structured and y-relevant variation in X is compressed into two components, and use of more
components only complicates the situation.
Two components only may possibly be obtained in several ways other than OSC. One example

is principal components of predictions (PCP) [3], where in the scalar response case ŷ = Xb̂ after
normalization is used as one component, while residuals of X not contributing to ŷ are suggested
for use as the second component.
In the present paper the goal is to develop an algorithm for a two-component PLS compression

with the same structure and giving exactly the same estimator b̂ as the original PLS solution
using many components. The basic insight behind this is illustrated in Fig. 1. The estimator
b̂ is found in the space spanned by the loading weight vectors in Ŵ =

£
ŵ1 ŵ2 · · · ŵA

¤
,

i.e. it is a linear combination of these vectors. It is, however, also found in the plane defined by
ŵ1 and a vector ew2, which is a linear combination of the vectors ŵ2, ŵ3, . . . , ŵA. The matrix
W̃ =

£
ŵ1 ew2 ¤ is thus the loading weight matrix in a two-component PLS solution (2PLS)

giving exactly the same estimator b̂ as the original solution using any number A components.

b̂ = â1ŵ1 + â2ŵ2 + â3ŵ3

= â1ŵ1 + ea2 ew2
ew2

ŵ3

ŵ2

ŵ1

Figure 1. Illustration of basic insight behind the 2PLS factorization, assuming A = 3 original
components. The PLSR estimator b̂ is found in the space spanned by ŵ1, ŵ2 and ŵ3, but also
in the shadowed plane spanned by ŵ1 and ew2.
What matters in the original PLS model is not the matrix Ŵ as such, but the space spanned by

ŵ1, ŵ2, · · · ŵA [4], and in the 2PLS model it is the plane spanned by ŵ1 and ew2 that is essential.
The reason for keeping ŵ1 will be apparent from the discussion on profile estimation in Section 3,
where it is shown that it can be found from a well-posed least squares (LS) problem. Keeping ŵ1,
there may be several meaningful ways to define the second loading vector for spanning the plane
through b̂, and two options for different applications are presented in Section 2. Also note that
all objects in X (row vectors) in the original PLS model are projected onto the space spanned by
ŵ2, ŵ3, . . . , ŵA. They may thus be further projected onto the plane spanned by ŵ1 and ew2,
and form a single score plot containing all y-relevant information. If for some reason e.g. ŵ2 is
more informative than ŵ1, a plane through ŵ2 and b̂ may be a better alternative. It will in any
case result in a 2PLS model that gives the estimator b̂, as will in fact all planes through b̂ that
are at the same time subspaces to the column space of Ŵ.
The reduction from many to only two PLS components should be helpful in a number of

practical applications. A simulation example involving latent variable profile estimation as well as
outlier detection is given in Section 4, and an industrial data example involving outlier detection
and process monitoring for fault detection is given in Section 5. Another example is process
monitoring by use of correspondence between score and loading plots [5], often presented in
so-called biplots. With e.g. four PLS components it will then in principle be necessary to
monitor three biplots in order to follow all possible process changes, while two components can
be monitored by use of one biplot only.
The theory for compression into 2PLS factorizations is given in Section 2. The special case

of latent variable profile estimation is discussed in Section 3, followed by a simulation example in
Section 4. The industrial data example and final conclusions are given in Section 5 and Section
6. Some details are collected in Appendix A and B, while Matlab code is given in Appendix C.
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2 Theory

2.1 PLS modeling

Multivariate calibration using PLSR directly or implicitly assumes a latent variables (LV) model

y = TQT+f (1)

X = TLT+E. (2)

The two PLSR algorithms of Wold and Martens [1] use different factorizations ofX as summarized
below, and thus also different factorizations of y. They result, however, in the same estimator b̂,
and they have the same first score vector t̂1. The orthogonal scores PLSR algorithm of Wold is
based on the factorization

X = T̂W P̂
TŴŴ

T
+ Ê = t̂1p̂

T
1 + t̂

W
2 p̂

T
2 + . . .+ t̂WA−1p̂

T
A−1 + t̂

W
A ŵ

T
A + Ê, (3)

where T̂W = XŴ
³
P̂TŴ

´−1
is orthogonal and P̂ =

£
p̂1 p̂2 · · · p̂A

¤
is a special non-

orthogonal loading matrix, while Ŵ =
£
ŵ1 ŵ2 · · · ŵA

¤
is the orthonormal loading weight

matrix. The orthogonal loadings PLSR algorithm of Martens is based on the factorization

X = T̂MŴ
T + Ê = t̂1ŵ

T
1 + t̂

M
2 ŵ

T
2 + . . .+ t̂MA ŵ

T
A + Ê, (4)

where T̂M = XŴ is non-orthogonal, while Ŵ is the same as in the Wold algorithm. Note that
T̂W and T̂M have the same column space. The estimator that is common for the two PLSR
algorithms can be written as [4,6]

b̂ = Ŵ
³
ŴTXTXŴ

´−1
ŴTXTy. (5)

As a part of the PLSR algorithms the first loading weight vector is chosen as

ŵ1 = c1X
Ty =

³
yTXXTy

´− 1
2

XTy. (6)

A good argument for that is given in the discussion on LV profile estimation in Section 3.

2.2 Compression into two PLS components

As shown in Section 3 below the first loading weight vector ŵ1 can be found from a well-posed
LS problem, and it gives valuable information about the latent variable corresponding to the
response y. The other loading weight vectors ŵ2 to ŵA contain information about the other
latent variables, but the interpretation is difficult due to confounding. Although more than two
PLS components may be needed to obtain the best predictive performance, the added model
complexity will thus give interpretational difficulties. This is the motivation for compression of
the original model using A components into a final model using two components only.
As illustrated in Fig. 1, the central problem is to find a second vector that together with

ŵ1 spans the shadowed plane that includes b̂. One way of doing this follows from the estimator

formulation (5), in that
³
ŴTXTXŴ

´−1
ŴTXTy =

£
â2 â3 · · · âA

¤T
, and thus

b̂ = â1ŵ1 +
£
ŵ2 ŵ3 · · · ŵA

¤ £
â2 â3 · · · âA

¤T
= â1ŵ1 + ea2 ew2. (7)

We summarize the 2PLS compression and its properties in Theorem 1 below (see Appendix
A for proof, and Appendix C for an algorithm in Matlab code). The second vector spanning the
shadowed plane in Fig. 1 is not necessarily ew2, but it is convenient to make use of the orthogonal
vectors ŵ1 and ew2 in the theorem.
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Theorem 1 The original PLSR estimator (5) can be written as

b̂ = W̃
³
W̃TXTXW̃

´−1
W̃TXTy, (8)

where W̃ =
£
ŵ1 ew2 ¤ is the new orthonormal loading (weight) matrix. The corresponding

factorization of X is
X = T̃MW̃

T + Ẽ = t̂1ŵ
T
1 + t̃

M
2 ewT

2 + Ẽ, (9)

where ew2 is
ew2 = £

ŵ2 ŵ3 · · · ŵA

¤ £
â2 â3 · · · âA

¤T°°°£ ŵ2 ŵ3 · · · ŵA

¤ £
â2 â3 · · · âA

¤T°°° . (10)

Here
£
â2 â3 · · · âA

¤T
is extracted from

£
â1 â2 · · · âA

¤T
=
³
ŴTXTXŴ

´−1
ŴTXTy,

while t̂1 = Xŵ1 is the same as in the factorizations (3) and (4), and t̃M2 = Xew2. Furthermore,
t̃M2 is orthogonal to both y and ŷ =Xb̂, i.e. yT t̃M2 = 0 and ŷT t̃M2 = 0.

Note that the residual Ẽ may be different from the original residual Ê, i.e. some extra
y-orthogonal structured variation in X may be captured in Ẽ (see Subsection 2.4 below, and
industrial data example in Section 5).

Remark 1 Since Ŵ in the estimator (5) may be replaced by ŴM, where M is any invertible
transformation matrix, it follows from Theorem 1 that any plane containing b̂ that is also a
subspace to the column space of Ŵ may be used instead of the shadowed plane in Fig. 1. The
theorem may thus be given a more general formulation.

The factorization (9) has orthonormal loadings, just as the Martens factorization (4). It has
the nice property that it gives exact correspondence between score and loading directions, i.e. an
object xTi =

£
0 · · · 0 ∆xij 0 · · · 0

¤
is found in the same direction in the score plot as

variable number j in the loading plot. This property may be utilized in process monitoring, and
for that purpose also a bi-orthogonal representation is possible, with orthogonal score and loading
matrices [5] Process monitoring applications combining such score-loading correspondence with
the 2PLS compression will be reported separately. A transformation to a form with orthogonal
scores is also useful, and follows next.

2.3 Transformation to orthogonal scores form

In order to retain ŵ1 and the nice property that t̃M2 is orthogonal to both y and ŷ, we write the

factorization (9) as X = T̃MMM
−1W̃T + Ẽ, and use the transformation matrixM =

·
1 0
d f

¸
.

With d = −t̂T1 t̃M2 /
¡
t̃M2
¢T
t̃M2 and f =

√
d2 + 1 we obtain an orthogonal score matrix T̃W and a

non-orthogonal loading matrix P̃W, just as in the Wold factorization (6),

X = T̃W P̃
T
W + Ẽ = t̃

W
1 ŵ

T
1 + t̃

W
2

¡
p̃W2
¢T
+ Ẽ, (11)

(see Appendix B for proof). We also obtain
¡
p̃W2
¢T
p̃W2 = ŵT

1 ŵ1 = 1.
Since t̃W2 is orthogonal to both t̃W1 and ŷ, and since ŷ is found in the plane spanned by t̃W1 and

t̃W2 , t̃
W
1 will have the same direction as ŷ. Note that the scalar relation t̃W1 = cŷ holds also for new

objects xTnew (see Appendix B for proof). This may for example be utilized in process monitoring
applications, where score movements in the t̃W1 direction would mean predicted response changes,
while movements in the t̃W2 direction would mean y-orthogonal process changes that are not
captured in Ẽ (see industrial data example in Section 5). This is basically the same properties
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as in score plots based PCP [3], except that a PCP score plot for a scalar response variable
doesn’t filter out y-orthogonal process changes in the same way. A score plot based on the 2PLS
algorithm shows only y-orthogonal process changes that are reflected in X̃ = T̃W P̃

T
W, while a PCP

score plot shows all y-orthogonal process changes contributing to the first principal component
of the residual after removal of the first (and only) PCP component from X (see Section 5 for a
comparison using industrial data).

2.4 Discussion on residuals

Assume an orthogonal loadings PLS factorization (4) with A = 3 components. A given object
xT may then be plotted in the coordinate system in Fig. 1, with projections (scores) t̂1 = xT ŵ1,
t̂M2 = xT ŵ2 and t̂M3 = xT ŵ3 on the ŵ1, ŵ2 and ŵ3 axes, and accordingly included in X̂ =
T̂MŴ

T . Objects with t̂1 = 0 will fall on the plane spanned by ŵ2 and ŵ3, and objects with
t̂1 = t̂M2 = t̂M3 = 0 will be totally captured in the residual Ê. Some of the objects that fall on the
plane spanned by ŵ2 and ŵ3 may, however, be orthogonal to the new vector ew2, and thus not
included in X̃ = T̃MW̃

T . Such objects will as a result of the 2PLS compression be removed from
X̂ and totally captured in the new residual Ẽ. Many objects may in fact have small projections
on ew2 also if they have large projections to either ŵ2 or ŵ3, and thus more of X will be captured
in Ẽ than in Ê. Note, however, that the estimator b̂ will be exactly the same.

3 Latent variable profile estimation

3.1 Introduction

An argumentation for keeping the first loading vector ŵ1 in the two 2PLS factorizations (9) and
(11) may be based on profile estimation properties. For a spectral measurement on a mixture of
pure constituents, ŵ1 will be a scaled LS estimate of the spectral profile of the constituent used
as response variable. The second loading vector p̃W2 in the factorization (11) will furthermore be
a scaled estimate of a weighted sum of the spectral profiles of all the interferants.

3.2 Latent variable modeling

Assume centered data generated according to the LV model

yk = C1zk + fk (12)

xk = C2zk + ek, (13)

where zk =
£
z1 z2 . . . zA

¤T ∈ RA×1 is a random vector of latent variables, i.e. the expec-
tation Ezjz

T
k = 0 for all j 6= k, and where yk is a scalar response variable, while xk ∈ Rp×1 is a

vector of regressor variables. C1 ∈ R1×A and C2 ∈ Rp×A are time-invariant matrices, while fk
and ek are independent and random noise of appropriate dimensions.
Also assume independent latent variables in zk, i.e. a diagonal expectation Ezkz

T
k . Without

loss of generality we may then assume an LV representation such that C1 =
£
1 0

¤
, i.e. we

assume that the response variable is a specific latent variable plus some random noise. Collection
of data from N observations in a vector y ∈ RN×1 and a matrix X ∈ RN×p thus gives

y = ZCT
1 + f =

£
z1 Z2

¤ · 1
0

¸
+ f = z1 + f (14)

X = ZCT
2 +E = z1C

T
21 +Z2C

T
22 +E = yC

T
21 − fCT

21 +Z2C
T
22 +E, (15)

where it is a part of the assumptions that A << min(N, p). The columns of C2 may typically be
scaled versions of pure constituent spectral profiles. It also follows from the assumptions that the
columns of Z2 are orthogonal to y, i.e. all LV vectors except z1 are orthogonal to y. Finally note
that the model (14,15) can be transformed into the model (1,2) by a similarity transformation.
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3.3 Profile estimation

3.3.1 Estimation of primary spectral profile

The column C21 of C2 that is directly related to the response y can be found from Eq. (15) using
LS regression according to

Ĉ21 =X
Ty
¡
yTy

¢−1
. (16)

Under the assumptions given the underlying LS problem is well-posed. It is also a central part of
the PLSR algorithms that the first loading weight vector with a scalar response variable is found

according to Eq. (6). From Eqs. (6) and (16) thus follows that Ĉ21=
q
yTXXTy

¡
yTy

¢−1
ŵ1.

With the representation used in Eq. (14), i.e. y = z1 + f , the first loading weight vector ŵ1
thus gives a scaled LS estimate of C21. This is an argument for keeping ŵ1 also after the 2PLS
compression.

3.3.2 Isolation of y-orthogonal components

From Eq. (15) follows
X− yCT

21 = Z2C
T
22 − fCT

21 +E. (17)

Using Ĉ21 from Eq. (16) we may compute X− yĈT

21, and singular value decomposition (SVD)
of the result gives

X− yĈT

21 = USV
T=

£
U2 UE

¤ · S2 0
0 SE

¸ ·
VT
2

VT
E

¸
= U2S2V

T
2 +E. (18)

Choosing Ẑ2 = U2 we will thus find the confounded, scaled and noise corrupted profiles of the
y-orthogonal LVs in Ĉ22 = V2S2. Note that the scaled and sign indeterminate profile estimate
of a single unknown LV will be found directly from this.

3.3.3 2PLS result

In the noise free case it follows from Eq. (15) and use of the orthogonal scores factorization (11)
that

X = yCT
21 +Z2C

T
22= t̃

W
1 ŵ

T
1 + t̃

W
2

¡
p̃W2
¢T

, (19)

where t̃W1 ŵ
T
1 = yC

T
21, i.e. the p̃

W
2 vector is a weighted and noise corrupted sum of all columns

in C2 in the model (12,13) except C21,

p̃W2 ≈ C22ZT2 t̃W2
³¡
t̃W2
¢T
t̃W2

´−1
. (20)

Although some structured X-variation may be captured in Ẽ, Eq. (20) may still, together with
Eq. (18), be an aid for the interpretation with regard to unknown LVs (see simulation example
in Section 4).

3.3.4 Consequences of data centering and standardization

Centering of the data, i.e. usingX← X− X̄ and y← ȳ, where X̄ and ȳ are column mean values,
has no effect on the Ĉ2 estimates according to Eqs. (16) and (18). However, standardization of
the columns of X and y to unit variance does affect Ĉ2, and must thus be properly accounted
for.
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4 Simulation example

The practical case behind the following simulation example could be a spectroscopic measurement
of a solution with three different chemical constituents. A typical simulation result is shown in
Fig. 2. Note the overlapping peaks and considerable X-noise.
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Figure 2. Mean spectrum and standard deviations (Fig. a - dashed lines) plus a typical realiza-
tion of a noise free original spectrum (Fig. a - solid line), and a corresponding centered and noise
corrupted spectrum (Fig. b) of a mixture of three chemical constituents. The centered noise free
spectrum is shown by dashed line in Fig. b.

The simulations are based on assumed discrete frequency spectra in the range 0 < f ≤ 400
frequency units, constituting C2 in the LV model (12,13) (see [6] for details). It is assumed that
the variations in the concentrations of the three constituents, z1,k, z2,k and z3,k, are independent
and randomly generated zero mean numbers with normal distributions and variances Ez21,k =
Ez22,k = Ez23,k = 1. The noise terms ek(f) are independent and randomly generated zero mean
numbers with normal distribution and equal variances Ee2k(f) = 10. The response variable yk
is assumed to be the concentration z2 of constituent 2, with a measurement error variance of
Ef2k = 0.0001. The optimal number of original PLS components using mean centered data,
N = 200 modeling samples and Nval. = 200 independent validation samples were found to be
A = 3, typically resulting in 91% explained y-variance. The PLSR and 2PLSR estimators (5)
and (8) were exactly the same (using long Matlab format).
Examples of the resulting normalized estimates of the known constituent spectrum, and of

the confounded unknown interferants spectra are shown in Fig. 3. Note, however, that parts of
the interferants spectra may be captured in Ẽ.
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Figure 3. Normalized estimates of known constituent spectrum (Fig. a) and of confounded
unknown interferants spectra (Fig. b). Solid lines show ŵ1 and p̃W2 in the orthogonal scores 2PLS
factorization (11), while the dashed lines are given by Eqs. (16) and (20) after normalization.

The corresponding score plots for the ordinary orthogonal scores PLS model (3) are shown in
Fig. 4a and 4b, while the score plot for the orthogonal scores 2PLS model (11) is shown in Fig.
4c. Fig. 4d shows ŷ vs. y for the modeling set. Note that the specific o-marked sample might
be questioned as an outlier (Fig. 4a), although Fig. 4d shows that the corresponding prediction
is well in line. Using the two-component 2PLS model it can be seen directly in the score plot
(Fig. 4c) that this sample gives a very small ŷ value, although it would still be an outlier if the
corresponding value of y was far from zero.
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Fig. a - PLS score plot
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Figure 4. Score plots for ordinary orthogonal scores PLS model (Fig. a and b), and for orthogonal
scores 2PLS model (Fig. c). Fig. d shows ŷ vs. y (a limited number of samples only, for clarity).
Sample 178 is o-marked in all plots.

Fig. 5 shows corresponding simulation results with two extra interferants. Note that the
theoretical mixed spectrum (20) is using a very low weight for the last interferant (f5 = 280),
and a low weight also for the first interferant (f1 = 120), as reflected in the mixed spectra results
shown. However, these interferants are clearly visible in the residual spectra, determined as the
three first columns in the matrix V in the SVD (i.e. principal component analysis)

Ẽ =X− T̃W P̃T
W =USVT . (21)

The other columns in V showed no structured variation. Note that also these residual spectra
are normalized, i.e. the actual amplitudes cannot be judged from the plot.
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Figure 5. Results from simulations with two added interferants. Compare with the mean noise
free spectrum in Fig. 2, the pure profile in Fig. 3a and the mixed profiles in Fig. 3b. The last
plot is determined by a SVD/PCA of the residuals from the 2PLS model.

5 Industrial data example

The data in this example is with permission from the company borrowed from the function
plsdemo in the Eigenvector PLS Toolbox 2.0.1b [7]. Each sample consists of 20 temperature
measurements and a level measurement from a Liquid-Fed Ceramic Melter. As is typical for
many industrial process cases, the X and y data are here time series, i.e. they have dependent
samples. As in the toolbox the data are used to develop a model that relates temperatures xT in
a molten glass tank to the tank level y. The data is given in two independent time series, with
300 samples in Block 1 and 200 samples in Block 2. The main point in the present example is a
comparison between an ordinary PLS model and the 2PLS model developed in Section 2, related
to outlier detection and fault detection.
Fig. 6 shows results using all 300 samples in the Block 1 data to find first an ordinary

orthogonal scores PLS model with mean centered data and A = 3 components, and based on
that an orthogonal scores 2PLS model giving exactly the same estimator b̂. The first score plot
(PC2 vs. PC1) from the PLS model (Fig. 6a) shows a rather obvious o-marked outlier (sample
73). However, this outlier has a very insignificant effect on the predictions when validated against
the Block 2 data (58.1 % explained y-variance with sample 73 included, and 58.2 % without),
indicating some largely y-orthogonal features. The score plot in Fig. 6c is based on the orthogonal
scores 2PLS model (11), and the o-marked sample now looks much more normal, indicating that
the y-orthogonal feature has been filtered out and captured in the residuals Ẽ. The ♦-marked
sample now looks more like an outlier, although not in an extreme way. Fig. 6b and d show
ŷ results using the the estimator b̂ on samples 51 to 110 in the modeling set. The two o- and
♦-marked samples here appear quite normal, while a third ¤-marked sample now appears the
most abnormal. This last sample appears quite normal in the two score plots, and the large
prediction error is most likely caused by an error in the y-measurement.
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Figure 6. Results when using samples 1-300 for PLS and 2PLS modeling and outlier detection.
The 2PLS model largely overlooks the apparent o-marked outlier resulting from ordinary PLS
modeling, which may be a good feature since the predictor is not affected. The solid line in Fig.
6b is ŷ. See text for other details.

In the next step samples 131 to 300 were used for modeling, while samples 51-110 were used
for testing fault detection properties. Also here orthogonal scores PLS and 2PLS models were
used. Fig. 7a shows the first PLS score plot (PC2 vs. PC1) for the test set. A solid line is
used up to sample 73 (while the dashed line indicates the process movements ahead of sample
73), and this would be the picture if the score plot was used for process monitoring. The large
deviation of sample 73 would cause some concern, although such a one-sample departure would
be overlooked by a somewhat conservative fault detection system. The corresponding deviation
is much smaller in the 2PLS score plot in Fig. 7c. Here, the ♦-marked sample would cause
more concern, although the deviation is considerably less than for sample 73 in Fig. 7a. For
the ordinary PLS the ♦-marked deviation is most pronounced in the second score plot (PC3 vs.
PC1) in Fig. 7b. However, since vertical movements in the 2PLS score plot are y-orthogonal,
we can conclude that both the o- and the ♦-marked one-sample deviations have very little to do
with variations in y. The ŷ vs. y plot is very much the same as in Fig. 6d, and is therefore not
included. Instead a PCP plot according to [3] is included in Fig. 7d, scaled to the same score
variances as for the 2PLS plot. The o- and the ♦-marked one-sample deviations are also here
y-orthogonal, but since the second score vector is found from the first principal component of the
residual after removal of the first (and only) PCP component from X, the deviation for sample
73 is just as pronounced as in Fig. 7a.
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Figure 7. Results when using samples 131-300 for PLS and 2PLS modeling, and samples 51-110
for testing and fault detection. The 2PLS score plot shows that the o- and ♦-marked one-sample
departures are y-orthogonal. The maximal departure is also much smaller in the 2PLS score plot
than in the PLS score plots. Fig. d shows a PCP plot for comparison. See text for details.

The example shows that compression from an ordinary PLS model into a two-component
2PLS model may filter out y-orthogonal variation in X in such a way that score plot based
outlier detection (Fig. 6) and fault detection (Fig. 7) are made more response relevant. The
possibility to distinguish between y-related and y-orthogonal movements in the 2PLS score plot
gives additional interpretational power.

6 Conclusions

Assuming a scalar response variable, all PLS factorizations with any number of components
can by use of a simple algorithm be compressed into two components only. Different 2PLS
transformations for use in different applications are possible. The advantage with a complete two-
component model is easier interpretation in spectra estimation, outlier detection, fault detection
etc., as exemplified in simulations and an industrial data case. A process monitoring application
using score-loading correspondence will be reported separately.

A Proof of Theorem 1
Lemma 1 Given the factorization (4) and ŷ = Xb̂ we have

TT
M (y− ŷ) = ŴTXT (y− ŷ) = ŴTXT

µ
y − X̂Ŵ

³
ŴTXTXŴ

´−1
ŴTXTy

¶
= 0, (22)

i.e. y− ŷ is orthogonal to the score vectors in TM = XŴ (and thus also to the score vectors in
TW ).
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Lemma 2 By insertion of b̂ = Ŵ
³
ŴTXTXŴ

´−1
ŴTXTy and

b̂1= ŵ1
¡
ŵT
1X

TXŵ1
¢−1

ŵT
1X

Ty (23)

(the estimator when one component only is used) it is straightforward to show that

b̂
³
b̂TXTXb̂

´−1
b̂TXTy = b̂, (24)

b̂1
³
b̂T1X

TXb̂1
´−1

b̂T1X
Ty = b̂1. (25)

From this also follows b̂TXTXb̂ = b̂TXTy and b̂T1X
TXb̂1 = b̂

T
1X

Ty.

Proof of Theorem 1 Just as the factorization (4) gives the estimator (5), the factorization
(9) gives the estimator (8) (independent of the number of components, see [6]). It remains to
show that the two estimators are identical. As a first step we perform a similarity transformation
of (9) (see subsection 2.3 for principle) into

X = t̃1ŵ
T
1 + t̃2p̃

T
2 + Ẽ, (26)

where p̃2 is a unity vector in the plane defined by ŵ1, b̂ and ew2 (see Fig. 1). More precisely we
specify

p̃2 =
b̂− b̂1°°°b̂− b̂1°°° = b̂2°°°b̂2°°° . (27)

The loading matrix is now P̃ =
£
ŵ1 p̃2

¤
, and the estimator (8) thus becomes

b̃ = P̃
³
P̃TXTXP̃

´−1
P̃TXy. (28)

It still remains to show that b̃ is identical to b̂ according to Eq. (6).
The detailed development of b̃ is facilitated by the fact that ŵT

1X
TXp̃2 = 0. This is so since

after introduction of ŷ1 = Xb̂1 we have

ŵT
1X

TXp̃2kb̃2k = ŵT
1X

TXb̃2 = ŵ
T
1X

T
³
Xb̂−Xb̂1

´
= ŵT

1X
T (ŷ− ŷ1)

= −tM1 [(y− ŷ)− (y− ŷ1)] = 0, (29)

where the last equality follows from Lemma 1 because y− ŷ1 and y− ŷ are both orthogonal to
t̃M1 = Xŵ1. Since ŵ1 and p̃2 have the same directions as b̂1 and b̂2, this also gives b̂

T
1X

TXb̂2 = 0,
and thus

b̂TXTXb̂1 =
³
b̂1 + b̂2

´T
XTXb̂1 = b̂

T
1X

TXb̂1 + b̂
T
2X

TXb̂1 = b̂
T
1X

TXb̂1. (30)

From Eqs. (24), (25), (27), (28) and (30) and use of Lemma 2 thus follows

b̃ = ŵ1
¡
ŵT
1X

TXŵ1
¢−1

ŵT
1X

Ty+ p̃2
¡
p̃T2X

TXp̃2
¢−1

p̃T2X
Ty

= b̂1 + b̂2
³
b̂T2X

TXb̂2
´−1

b̂T2X
Ty

= b̂1 + b̂2

µ³
b̂− b̂1

´T
XTX

³
b̂− b̂1

´¶−1 ³
b̂− b̂1

´T
XTy

= b̂1 + b̂2
³
b̂TXTXb̂−2b̂TXTXb̂1 + b̂

T
1X

TXb̂1
´−1 ³

b̂TXTy− b̂T1XTy
´

= b̂1 + b̂2

³
b̂TXTXb̂− b̂T1XTXb̂1

´−1 ³
b̂TXTy − b̂T1XTy

´
= b̂1 + b̂2 = b̂. (31)
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The score expressions t̂1 = Xŵ1 and t̃M2 = Xew2 follow from Eq. (26) since ŵ1 and ew2 are
orthogonal, with ŵT

1 ŵ1 = 1 and ewT
2 ew2 = 1. It remains to prove that yT t̃M2 = 0 and ŷT t̃M2 = 0.

From Eq. (5) follows
yT t̃M2 = y

TXew2 = c−11 ŵ
T
1 ew2 = 0, (32)

which with use of Eq. (8) further gives

ŷT t̃M2 = b̂TXT t̃M2 = y
TXW̃

³
W̃TXTXW̃

´−1
W̃TXTXew2

= yT
£
t̂1 t̃M2

¤ · ŵT
1X

TXŵ1 ŵT
1X

TXew2
ŵT
1X

TXew2 ewT
2X

TXew2
¸−1 ·

ŵT
1X

TXew2ewT
2X

TXew2
¸

=
1

ŵT
1X

TXŵ1 ewT
2X

TXew2 − ¡ŵT
1X

TXew2¢2
£
yT t̂1 0

¤
×
· ewT

2X
TXew2 −ŵT

1X
TXew2

−ŵT
1X

TXew2 ŵT
1X

TXŵ1

¸ ·
ŵT
1X

TXew2ewT
2X

TXew2
¸

(33)

= const. × £¡ewT
2X

TXew2¢ ¡ŵT
1X

TXew2¢− ¡ŵT
1X

TXew2¢ ¡ewT
2X

TXew2¢¤ = 0.
B Details of orthogonal scores 2PLS factorization

The transformation£
t̃W1 t̃W2

¤ · ŵT
1¡

p̃W2
¢T ¸

=
£
t̂1 t̃M2

¤ · 1 0
d f

¸·
1 0
−d/f 1/f

¸·
ŵT
1ewT
2

¸
(34)

gives t̃W1 = t̂1 + dt̃M2 and t̃W2 = f t̃M2 . In order to obtain
¡
t̃W1
¢T
t̃W2 =

¡
t̂1 + dt̃M2

¢T
f t̃M2 = 0, we

must chose d = −t̂T1 t̃M2 /
¡
t̃M2
¢T
t̃M2 . We further find p̃

W
2 = (−dŵ1 + ew2) /f , and in order to get¡

p̃W2
¢T
p̃W2 = 1, we chose f =

√
1+ d2.

Finally, it remains to prove that t̃W1 = cŷ holds also for new objects. From the transformation
above follows that

t̃W1,new =
£
t̂1 t̃M2

¤
new

·
1
d

¸
= xTnewW̃

·
1
d

¸
= xTnewW̃

"
1

−t̂T1 t̃M2
³¡
t̃M2
¢T
t̃M2

´−1 # , (35)

while the estimator (8) with use of the fact that
¡
t̃M2
¢T
y = 0 gives

ŷnew = xTnewW̃
³
W̃TXTXW̃

´−1
W̃TXTy = xTnewW̃

"
t̂T1 t̂1 t̂T1 t̃

M
2

t̂T1 t̃
M
2

¡
t̃M2
¢T
t̃M2

#−1 "
t̂T1 y¡
t̃M2
¢T
y

#

=
1

c
xTnewW̃

"
1

−t̂T1 t̃M2
³¡
t̃M2
¢T
t̃M2

´−1 # = 1
c
t̃W1,new. (36)

C Matlab code for 2PLS compression and transformation

%% Assume X, y and W known and find orthogonal loadings 2PLS factorization
a=inv(W’*X’*X*W)*W’*X’*y;
w1=W(:,1);
w2tilde=W(:,2:A)*a(2:A)/norm(W(:,2:A)*a(2:A));
t1=X*w1;
tm2tilde=X*w2tilde;
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%% Transform to orthogonal scores 2PLS form
d=-t1’*tm2tilde/(tm2tilde’*tm2tilde);
f=sqrt(1+d^2);
p2tilde=(-d*w1+w2tilde)/f;
tw1tilde=t1+d*tm2tilde;
tw2tilde=f*tm2tilde;
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