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SUMMARY

When the data in principal component regression (PCR) or partial least squares regression (PLSR) form time
series, it may be possible to improve the prediction/estimation results by utilizing the correlation between
neighboring observations. The estimators may then be identified from experimental data using system
identification methods. This is possible also in cases where the response variables in the experimental data are
sampled at a low and possibly irregular rate, while the regressor variables are sampled at a higher rate. After a
discussion of the options available, the paper shows how the autocorrelation of the regressor variables in such
multirate sampling cases may be utilized by identification of parsimonious output error (OE) estimators. An
example using acoustic power spectrum regressor data is finally presented.
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1. PROBLEM

When the X and y data (assuming a single response variable) in ordinary PCR (principal component
regression) or PLSR (partial least squares regression) form time series, it may be possible to improve
the prediction/estimation results by utilizing the correlation between neighboring observations. After
compression of the X data into a latent variables matrix T, this can basically be done by identification
of an FIR (finite impulse response), ARMAX (autoregressive moving average with extra inputs),
ARX (autoregressive with extra inputs) or OE (output error) type of model. The estimator may thus be
found from experimental data by a combination of multivariate calibration [1] and system
identification [2] methods.

In many cases of practical interest it is possible to obtain experimental X data at a high sampling
rate, while the experimental y data for practical and economical reasons are obtained at a lower and
possibly also irregular rate. The problem of the present paper is to find an identification method that
handles such multivariate and multirate sampling time series data.

After an introductory discussion of the options available, a solution to the problem using an OE
model structure is presented. An example using acoustic power spectrum X data is finally presented.



DISCUSSION

2.1. FIR models

Assuming a dynamic and asymptotically stable multi-input—single-output system with a known input
sequence uk and a recorded response sequence yk, the FIR model is

yk
	

hT uk_i + 7ik	 (1)
i=0

where L is chosen sufficiently large in order to capture the essential dynamics of the system, and
where pk is a non-white stochastic sequence. This means that LT must be larger than the settling time
of the system, where T is the sampling interval for the input variables. We can then determine
estimates ho, h l , ...,h^ of the Markov parameters as a least squares (LS) solution of (1). Such a system
identification is possible also when most of the yk values are missing, in which case we use only the y 

samples that are available, together with the corresponding past and present uk values.
There are two principal drawbacks related to the identification of FIR models.

• The models found will be biased owing to both the truncation and the lack of noise modeling.
This might, however, be a minor problem in a practical case without a well-defined underlying
system. The problem is also reduced when the output is sampled at a low rate, since the noise
terms n, will then not be consecutive.

• Since LT must be longer than the settling time of the system, a large number of Markov
parameters may have to be identified, and this requires a correspondingly large number of
response observations. This is a serious drawback, especially since it often is a part of the
problem that the number of response observations is very limited. Also note that the dimension
of each Markov parameter h i is determined by the number of input and output variables.

Some authors have discussed the use of PCR and PLSR in order to determine FIR models for
dynamic systems. Ricker [3] discussed identification of FIR models using PLSR and singular value
decomposition (SVD), and applied this to an anaerobic wastewater treatment plant. MacGregor et al
[4] looked at several methods for the identification of dynamic models by use of PLSR. Wise and
Ricker [5] discussed identification of FIR models by use of PCR, and looked especially at frequency
response properties. Dayal and MacGregor [6] focused on robustness issues.

2.2. ARMAX models

Assuming a multiple-input—single-output system, an ARMAX model would be of the type

Yk = — alyk-1 — a2yk-2 — ... + bouk + Ill uk-1 + b2 Uk_2 + .. •

+ coek + c l ek _ l -{- c2ek_2 + .. •
	 (2)

where ek is a white noise sequence. More generally we would have

A (q 1)yk= B(q-1)uk+C(q 1)ek	 (3)

where A(q — '), B(q -1 ) and C(q -1 ) are polynomials in the unit time delay operator q- 1.

There are two principal drawbacks related to the identification of ARMAX estimators.

• They make use of past yk data and thus cannot be identified when y is sampled at a lower rate than u.



• They are in any case non-optimal when also secondary system outputs are used as inputs to the
estimator, i.e. when we are identifying a model

A (q—t )y l,k = B l (q ')uk + B2(q 1 ) y2,k + C(q-t ) ek 	 (4)

The reason for this is that past y l,k values will not be available in the estimation stage,
and an ARMAX estimator will then not utilize the y2 information in an optimal way
[7].

2.3. ARX models

ARX models are ARMAX models without moving average (MA) noise modeling, i.e. of the structure
given in (3) with C(q -1 ) = co, and the parameters may thus be determined by an ordinary LS solution.
ARX estimators

• make use of past yk data and thus cannot be identified when y is sampled at a lower rate than u;
• are in any case non-optimal owing to the lack of MA noise modeling;
• are even more non-optimal when also secondary system outputs are used as inputs to the

estimator, for the same reason as for the ARMAX estimators discussed above.

Several authors have discussed the use of PCR and PLSR in order to determine ARX models for
dynamic systems. Wise [8] studied the relations between ARX models and PCA based on lagged
values of both the system inputs and the system outputs. Qin and McAvoy [9] used PLSR in a similar
way to find an ARX model for a catalytic reforming system. Wise et al [10] compared neural
networks, PLSR and a genetic algorithm used for identification of non-linear FIR and ARX models.
Dayal and MacGregor [11] presented a recursive PLSR algorithm and identified an ARX model used
for adaptive control of a simulated stirred tank reactor. Wikström et al [12] used PLSR for time series
modeling related to an electrolysis process (they had no known inputs and were thus identifying an
AR model). Harnett et al [13] extended the work of Wise [8] in order to facilitate the development of
a predictive model of the overheads condenser and reflux drum system for a distillation column.

2.4. OE models

OE estimators

• can be identified also when most of the ordinary y observations are missing (see theoretical
development below);

• use a small number of parameters;
• are optimal in the sense that they are unbiased and have minimized variances also when

secondary system outputs are used as estimator inputs [7].

3. THEORETICAL OE ESTIMATOR

Assume the known discrete-time state space plant model

Xk+1 = AXk + Buk + GVk

yl,k = Cl Xk + D i Uk + W1,k

Y2,k   C2Xk   D2 Uk + W2,k

(5)
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Figure 1. Optimal primary output estimator. 

where xk is the state vector. Here y 1,k are the primary response observations that in ordinary PCR/
PLSR with a single response variable would be collected in the y vector, while the known inputs uk
and the secondary outputs Y2,k would be collected in the X matrix. The process and measurement
noise c	 nfl.	 °'l to ha independent nn`l ,.,. to,hi...,.^.^ sequences :'k , i"v'I k and .:'2 k are 	 to va. ,.,..ua,peaaua.ua U11U vvuiw.

Assuming the system matrices known, the optimal y i estimator is then obtained by the Kalman
filter in Figure 1.

The matrix K°E is here a Kalman gain found from the algebraic Riccati equation

POE APOEAT + GR GT — ÅPOEC2 
(C2POE C

2 
+ R22 ) - 1 C2POEAT

and

KOE _ 
POEC2 (C2

POEC2T 
+ R22 -I)

where Poe = E(xk — Xkik-1)(xk — Xk k -1 )T is the minimized prediction state estimation
covariance [14].

The optimal estimator given by the block diagram in Figure 1 is

y^kk = Ci (I—K°EC2)(qI —A + AKOEC2)

X [(B — AK°ED2)uk + AK°Ey2,k] + C 1 K(23E (y2,k — D2uk ) + Diuk

(6)

(7)

(8)
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A - AK2C2)1,r

This estimator corresponds to the OE model

y 1 ,k

	 B1(q-1)uk +B2(g 1)3'2 kk
A(q-1)

where A (q- 1 ), B 1 (q - 1 ) and B2 (q
- 1 ) 

are polynomials in the unit time delay operator q - ', and tik is a
non-white stochastic process.

Note that for a first-order system with C 1 = 1 and uk = 0, Equation (8) can be simplified to

y^klk = [1 — (A - AKOEC2)Cl 11 -1KOEy2,k

4. ESTIMATOR IDENTIFICATION

The block diagram in Figure 1 may be rearranged as shown in Figure 2, where the notation (•)pied

indicates parameter values that are not necessarily correct (although some useful initial values are
needed). Figure 2 illustrates the prediction error method (PEM) for system identification, adapted to

ypiminimize the error in the current estimate '
,klk.

As indicated in the figure, the parameter values are successively modified until a criterion function

N
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Figure 2. Identification by estimation error minimization.



is minimized. Here

E1,k(0) = y1,k - yp,klk

is the estimation error and N is the number of y observations [15-18].
When not all y1,k values are available, only the estimation errors r  that can be computed may be

used [19]. The most difficult part may in fact be to find useful initial parameter values for the
minimization, and several ad hoc approaches can be used to solve that problem [18,19].

Minimization of (11) can be performed only after a specification of the structure and model order,
and the normal procedure is then to select a chain of canonical structures with increasing model order,
starting with a low-order model [2]. An alternative would be to find the model order by use of a
subspace identification method [20], which would give an ARMAX type of model. However, this is
not a feasible choice in the case of a low primary output sampling rate.

5. NUMERICAL ALGORITHM

The practical identification in the multirate sampling case can be performed by a modified version of
the pem. m function in the System Identification Toolbox for use with Matlab, which uses an iterative
Gauss-Newton algorithm [21]. The modifications are necessary in order to handle the situation when
only some of the y l,k observations are available.

6. PRINCIPAL COMPONENT SOLUTION

With a large number of secondary y 2 variables, the number of parameters to identify will be
correspondingly large. In many cases, fortunately, the y 2 variables are highly collinear, and the Y2
data may then be compressed by use of principal component analysis (PCA) and the factorization
[1,22]

Y2=TPf + E

Using estimated latent variables

instead of y2,k, the estimator (8) is replaced by

(14)

Pca+oE = C 1 (I - KpPT C2 ) (gl - A + AKpPTC2)-1yl,k^k

	

x [(B - AKpPTD2 )uk + AKp -k ] + C l Kp(-k - PTD2Uk ) + D l uk	 (15)

where the Kalman gain is given by appropriately modified versions of (6) and (7), i.e.

Kp = PpCZP(PT C2PP CZP + PTR22P) - 1 	 (16)

with Pp determined by the algebraic Riccati equation

	

Pp = APpAT + GRV,GT - APpC2P(PTC2PpC2P + PTR22P) -1 PT C2PpAT	(17)

(12)

(13)

The identification of this estimator is performed as indicated in Figure 2, only now the y2,k data are



replaced by the Tk data as given by (14). For the special case of a first-order estimator, Equation (10)
is then modified to

yPkAk+oE _ [1 — (A —AKPI'TC2)q i ] iKP rk

7. ACOUSTIC DATA EXAMPLE

7.1. Introduction

Acoustic chemometrics is based on signals from an acoustic sensor (accelerometer) placed e.g. on, or
slightly downstream of, a standard orifice plate. Observations of the power spectrum of the sensor
signal are collected in the X = Y 2 matrix and calibrated against physical y = y l primary quantities such
as multicomponent mixture concentrations, density, etc. using e.g. a standard PLSR method [23]. The
information in the large number of collinear Y2 variables is then compressed into a small number of
latent variables ekLSR = WTy2 k where W is the PLSR weighting matrix.

7.2. Experiment

In an experiment on a test rig at Telemark Institute of Technology, Porsgrunn, Norway the flow rate of
ordinary drinking water was measured by use of an orifice plate. More precisely, the differential
pressure across the orifice was measured and used as the response variable y 1 , while the acoustic
power spectral densities at 1024 frequencies were used as y 2 variables. The sampling interval was
5 . 3 s and the total number of observations was 200. No known inputs u were recorded. Six outliers in
the acoustic power spectrum results were corrected by use of interpolated values (in a time series
analysis, outliers cannot simply be removed).

The response variable had a considerable content of high-frequency components, as shown in
Figure 3.

As indicated in the figure, the data set was separated into two parts, one for modeling by system
identification and the other for validation.

7.3. Multirate identification

In order to test the method presented above, static PLSR and dynamic PCA+OE estimators were
identified using only every fifth response observation in the modeling data (the first 20 open circles in
Figure 3). We thus consider a multirate system with y 2 sampled with intervals T, = 5 . 3 s, while yi is
sampled with intervals T1 = 26 . 5 s. We also consider a difficult case with only N1 = 20 samples of y1.
The estimators were validated against the complete validation set using all 100 primary output
samples in the second part of the data set.

Remark. The use of every fifth observation from high-sampling-rate data is of course not optimal.
However, if the response variable had been e.g. a concentration of a certain component in a
multicomponent mixture, and the measurements had to be done through laboratory analyses, the
response sampling rate would very likely for practical and economic reasons have been lower than
the obtainable acoustic data sampling rate. Also the validation would in such a case have to be
done against low-sampling-rate data.

Both an ordinary PLSR estimator [16,17]

f3PLSR = 
W(WTYz,lowY2,lowW)-1WT

I T	 WbPLSR
2,10\4'1 =	T

(18)

(19)
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Figure 3. Differential pressure across orifice plate (dotted curve), with low-sampling-rate measurements (open
circles).

and the first-order PCA+OE estimator (18) were determined using only the 20 response observations
considered available. Here Y2 , 10, contains only low-sampling-rate y2,k data.

7.4. Number of parameters

The number of parameters in the PLSR estimator is equal to the number of components a chosen,
while the PCA+OE estimator has n + (n+l)a parameters, where n is the model order (i.e. 13
parameters for a = 6 and n = 1, and 20 parameters for a = 6 and n = 2).

7.5. Initial values

As must be expected with the considerable high-frequency content in the response signal, it turned out
to be difficult to find useful initial values for the PCA+OE estimators, and use of random values did
not work. Instead, the initial parameters in a first-order state space realization

Xk+l = fxk + hT 
Tk

Y1,k =xk+ mTTk

corresponding to the OE estimator

mT (hT f mT ) q -1
y1,W = 1 	 Tk

1— fq

(20)

(21) 

Validation data       
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0 0                                                                                                                                                                   

O.                                            

b                                                      

were chosen such that the structure of estimator (18) was obtained. This requires that f = A
—AKPPTC2, mT = Kp and hT = fmT , resulting in the static estimator (with q- 1 = 1)
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A comparison with the PLSR estimator (19) now indicates the initial guesses

MOT (1 —h) (±bTLSR)
TT

and

bp = fOmO =fo( 1 —
fo) (±bPTLSR)T

Here the sign indeterminacy is due to the use of sign-indeterminate PCA components. It now only
remains to select fo and the sign. After a systematic search the initial value was chosen as fo = 0.25,
combined with negative sign in (23) and (24). Values in the range 0 . 15 <fo < 0 . 30 gave very similar
results, and values in an even wider range could be used when combined with repeated identifications
with randomly modified initial values.

7.6. Results

The PCA+OE estimator (21) for different numbers of components found in this way gave the
validation RMSEP results shown in Figure 4, where also the validation results for the corresponding
ordinary PLSR estimator (19) are shown.

As can be seen in Figure 4, the first-order dynamic estimator gave an approximately 30% reduction
of the validation RMSEP value at the optimal number of components a = 6.

(22)
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x......... x

PCA+OE

3	 4	 5	 6	 7
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Figure 4. Validation RMSEP results for static PLSR and dynamic PCA+OE estimators based on low-sampling-
rate y l data.



The PCA+OE estimator obtained with a = 6 components was

(0.95 + 0 . 44q-1 )Ti + (2 . 14 + 0.80q-')T2

+(0 . 50 - 0 . 05q- ')T3 + (1 . 20 + 1 . 00g ')T4

+(1-35 + 	 ')TS + (0.15 - 0.88q-')T6
10-3x (25)Yt = 1 + 0.22q-1

Note that although the initial pole placement was at q = 0 . 25, the identified estimator has its pole at
z = - 0 . 22. This means an oscillatory step response with a relative damping coefficient = 0 . 44 and a
natural frequency cvn = 112T2 = 0 . 0943 s [24].

The corresponding result for the optimal number of components a= 4 when the estimator was
identified by use of the high-sampling-rate y i data was

(0 . 98 + 0 . 42q-1 M + (2 . 1 + 0.8q-1)T2

_ +(2 . 5 +1 . 2q 1 )T3 +(2 . 3 +0'9g ')r4 
Y]	 1 + 0.26q'

x 10-3	(26)

The RMSEP values for the PCA+OE estimator were then 16% lower than the optimal value in the
present multirate sampling case [13].

A typical PCA+OE validation response for the optimal number of components is shown in Figure
5.

Note that the estimated response follows the (in this case) measured response well also between the
sampled values. This is also the case for the low-sampling-rate PLSR estimator, although the dynamic
estimator gives a considerably lower validation RMSEP value.

2.
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Figure 5. Validation response for dynamic PCA+OE estimator based on low-sampling-rate y t data. The low-
sampling-rate validation data are shown as open circles, while the (in this case) known intermediate validation

values are shown by the dotted curve. The estimated values are shown by the full curve.



8. CONCLUSION

High-sampling-rate X and low-sampling-rate y time series data may be used to identify an output
error (OE) response estimator based on an underlying Kalman filter. The X variables may be both
known system inputs uk and secondary system outputs y2,k while the y variables are the primary
responses yd,i.

A high number of collinear X variables may be compressed by principal component analysis
(PCA), resulting in a novel PCA+OE method.

A multirate sampling example with acoustic power spectrum data demonstrates the feasibility of
this method.
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