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Abstract - The paper concerns new communication solutions for hierarchical Chip Multiprocessor (CMP) 
systems  composed  of  many  CMP  modules  interconnected  by  a  global  data  exchange  network.  New 
architectural solutions for internal module data communication are presented in the presence of hierarchical  
data caches in CMP modules.  Inside CMP modules dynamic shared memory core clusters are organized  
around L1-L2 data cache busses. Such clusters enable a group-oriented data communication based on reads  
on the fly to L1 banks of data present on the busses by many cores at a time. Dynamic switching of cores  
between such L1-L2 busses is done with porting data in core's L1 caches. Together with data reads on the fly  
it provides a very efficient inter-cluster "communication on the fly", especially useful for transfers of strongly 
shared data. It  provides fast cache to cache group data transmissions and eliminates standard transactions  
based on shared memory in the system. Comparative experimental results based on automatic scheduling of  
program data flow graphs and execution in a simulator of the proposed architecture evaluate the assumed  
architectural solutions. The multi-CMP system structure is assessed while taking into account technological  
limitations of the size of the single CMP module.

Keywords: modular  CMP  systems,  program  execution  control,  dynamic  shared  memory  clusters,  
communication on the fly.

Introduction
Cluster-based approach is an important solution, which can improve communication efficiency in 
parallel  shared memory systems.  Distribution of memory traffic  among many Shared Memory 
Processor  (SMP)  clusters  has  been  extensively  used  to  alleviate  the  memory  bus  saturation 
problem in large shared memory processor systems. In standard implementations, the size of the  
SMP  clusters  is  fixed,  which  can  decrease  parallel  program  execution  efficiency  due  to 
discrepancy between system structure and program needs.  A more ambitious strategy assumes 
modifiable cluster sizes, which can adjust system structure to real needs of an application problem 
leading to a better use of communication resources.

Parallel  shared  memory  systems  implemented  in  Chip  Multiprocessor  (CMP)  technology 
attract currently much of the systems architects’ attention [1, 2]. Data communication efficiency in 
such systems is determined to the large extent by data exchange latency of  transfers  between 
processor data caches, which are the actual sources and destinations of shared data. Therefore, in 
current  CMP  systems,  internal  communication  between  on-chip  cores  and  elements  of  the 
hierarchy of data caches is an important problem considered in research papers [3-7]. Especially,  
dynamically reconfigurable communication of strongly shared data between processor cores and 
their  data  caches  deserve  high  designers’  interest;  however,  no  sufficient  attention  in  current 
papers has been paid to efficient group communication on chip.

Cluster-based approach is currently in common use, but up-to now this approach has not been 
ported to the area of the internal network structures of CMP systems. This paper presents new 
solutions in this respect and proposes a new data communication method for parallel numerical  
computations  in  dynamic  cluster-based  shared  memory  system  architecture  for  the  CMP 
technology.  The new method is  called  communication  on the  fly  [11-13].  It  enables  dynamic 
creation of temporary shared memory core clusters (SMPs), which provide means for fast group 
transmission of shared data between cores,  more exactly between their L1 data caches.  In  this 
paper, the initial solution based on a single level data caches [11], has been extended to multi-level  
caches. It improves time efficiency of the proposed group communication since it concerns now 
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faster  L1,  L2  data  cache  memories.  Dynamic  SMP  clusters  are  organized  using  local  data 
networks, which connect L1 data caches with L2 cache banks (L1-L2 packetized data busses) to 
enable data reads on the fly of shared data. Communication on the fly is a new inter-cluster data 
exchange method. Its main idea consists in switching processor cores with some relevant data in 
their L1 caches to new L1-L2 bus-based clusters to pass there new data by a group-like read on the 
fly to L1 caches of many cores at a time. In this way, classic data exchange by deposing data in a  
shared  memory  to  be  next  read  by  many processes  or  threads  is  replaced  by processor  core  
switching and a single group transaction on a data bus. The core switching is done during program 
execution for program defined time interval, longer than for a single memory transaction, which 
distinguishes this solution from a standard shared memory access. It strongly reduces contention 
on memory bus lines and eliminates many separate data transactions concerning the same data. 
Although many authors have suggested using the multi-hop packet switching on-chip networks [4, 
5], it is the data bus which provides the data and address observability features necessary for this 
type of group communication. 

The core  switching and communication  on the  fly can  be  automatically embedded in the 
application program code by special scheduling algorithms [14, 15] in a way, which corresponds 
to particular program needs. In this respect, the applied communication method shows features of 
dynamically reconfigurable embedded system, in which internal structures of CMP modules are 
adjusted  to  program  requirements.  Such  systems  enable  accelerated  execution  of  typical  time 
consuming numerical computations in problem-oriented libraries. 

Simulation experiments have shown the potential of communication on the fly for fine grain 
parallel  programs  [11-13].  However,  current  CMP  technology  limitations  imposed  by  power 
dissipation, wire delays, signal cross talks and silicon area space make that the physical system 
structure should be based on many co-operating CMP modules, containing a limited number of 
cores and L2 cache banks, rather than on a single large CMP module. The CMP system modular 
architecture also comes from characteristics of shared memory data busses, which for a limited 
number of bus customers behave in an acceptable manner, not worse than other types of networks 
[8], while showing valuable features relevant for the described efficient group data transactions.  
Most of the cited experiments concerned standard parallel matrix multiplication based on recursive 
data decomposition into quarters. In this paper, we evaluate the speedups of scheduled general  
layered parallel program graphs executed by simulation in the proposed architecture for different 
assumptions concerning the number of dynamic CMP modules used, the speed of cache memory 
busses and the speed of the global network.

The paper is composed of three main parts. In the first part, new system general architectural  
features are discussed. Next, an extended macro data flow graph representation is explained, which 
has been used for simulation experiments. In the last part, efficiency of the parallel programs in the 
proposed architecture is evaluated by simulation experiments with program graphs execution. 

1. General system architecture
In this paper, we present a new version of a general system architecture based on dynamic SMP 
clustering,  which  is  tailored  to  be  implemented  in  the  chip  multiprocessor  technology.  We 
investigate a hierarchical modular structure of many CMP modules connected by a central global  
network, Fig. 1. A CMP module contains a number of processor cores C with directly used L1 data 
caches, which are connected to shared L2 data cache memory banks using CMPs local L1-L2 data  
networks. Each CMP module has directly accessible fragment of the shared data main memory 
placed in the address space common for all modules. The global network provides data exchange  
between shared data memory modules of CMP modules at the cost of higher data transfer latency 
compared to internal transfers of data inside particular CMPs. 

The internal structure of a CMP module is shown in Fig. 2. Processor cores C i (each connected 
with its local L1 data cache and shared L2 cache banks) can be dynamically interconnected in  
dynamic clusters through local communication network composed of L2 busses (local busses, L1-
L2 busses). Additional instruction caches are also provided, but discussing them is beyond the 
scope of this paper. A new collective data communication in clusters of cores can be organized  
inside CMP modules. It consists in dynamic switching of cores with data cache contents between  
SMP clusters organized on L2 bank busses [11]. This method converts data transmissions through 
memory  and/or  some  global  network  into  dynamic  cluster  reconfiguration  with  data  transfers 
performed directly between data caches. Such a conversion enables, multiple parallel reads of data 
by many processors to their L1 data caches from L2 bank busses (reads on the fly, similar to cache 
injection [10]) while a processor writes data from its L1 cache to the cluster L2 bank. It is based on 
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address snooping of L2 bank bus by a core Bus Request Controller (BRC) in which read on the fly  
requests are queued when issued from the application programs. Reads on the fly combined with 
processor switching, called "communication on the fly", provide a very fast way of data exchange  
between processor  clusters.  During reads  on the fly,  the data copies  can be written with new 
memory  addresses  if  are  to  be  later  subject  to  modification,  thus  avoiding  cache  coherence 
problems.
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Fig. 1 The general system structure

Local busses used for local data transmission inside CMP modules, provide a very efficient intra-
cluster communication on the fly especially useful for transfers of shared data. Operations on data 
include: data pre-fetch from L2 cache to a core L1, write from L1 to L2, read on the fly from a L2  
bank bus to many L1s in parallel,  core switching between L2 busses (core clusters),  data pre-
fetches from shared memory modules to L2 banks, data updates of memory modules from L2 
banks, inter-CMP module data exchange accomplished as transfers between shared data memory 
modules. Before pre-fetches of data to L1, the corresponding data blocks must be pre-loaded to L2  
from the respective memory modules in a programmed way. Current task computing results are 
sent from L1 to the L2 data cache module only after a task completes. 

The global data exchange is performed between shared memory modules attached to CMPs. It 
is  done  under  control  of  the  Network  Interface  Controller  (NIC),  which  collects  global  data 
transfer requests from the CMP cores. The NIC creates connections in the global network (which 
can be a crossbar switch or a multi-layer Closs connection network). The shared memory modules  
are dual-ported, so that it is possible to perform simultaneously a data read/write on the “shared  
memory-L2” bus and a read from the shared data memory for a global network transmission.
The local communication networks inside CMP modules are provided with very advanced data 
exchange features. They consist in multi-ported data caches L1 that enable parallel pre-fetching of
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arguments of subsequent numerical operations and many communications on the fly performed at 
a time for a processor core. The multi-ported data cache L1 provides much better functionality and 
performance  than  a  cache  shared  by  many  processors  based  on  address  interleaving  among 
multiple cache banks since it ensures many parallel copies of shared data available to processors.

The  L1  and  L2  data  caches  are  used  in  this  architecture  in  many  cases  as  “scratch-pad 
memories” rather than with the functionality of classic cache memory.  It  is because the cache-
controlled macro data flow program execution paradigm enforces strong data pre-fetching to L1 
caches, which can be also extended on the L2 data cache behavior. Following special data cache 
functionality,  the  system  ensures  L1  and  L2  data  caches  synchronization  in  the  context  of 
processor core switching and reads on the fly. If a processor core is switched from one L2 module 
to another and is to write some data from its L1 to this new L2 module (for instance to enable  
other processors to read these data through reads on the fly or simply to do a cache block flush), a 
respective new line in the target L2 data cache must be provided. This operation is not performed  
in a standard manner (by transmitting proper data from the shared  memory),  but  instead,  just  
before the L2 write operation, an empty line in L2 is generated together with the address tag and a  
special validity mask. The mask controls in terms of L1 blocks which data will be moved in by the 
considered data transfer on the fly from the L1-L2 bus. When necessary, the operating memory 
will be updated using only the valid parts of the L2 lines. Similar actions are performed in L1 
caches, when data are pre-fetched into L1 under new addresses to comply with the assumed single-
assignment  principle,  which  eliminates  consistency  problems  for  multiple  copies  of  modified  
shared data (data read for subsequent modification are stored under new addresses). This imposes 
new dummy lines  in  L1  data  caches  provided  with  similar  control  fields.  Only on L1  to  L2 
flushing or reads on the fly through the L2 busses the corresponding L2 dummy lines will be 
generated (a lazy synchronization is used). 

The floor-plan of the proposed CMP module is shown in Fig. 3. The active elements of a CMP 
module (cores, L1 caches, L2 caches, bus arbiters, NIC controller) can be placed around the local  
communication network which implements switched connections and reads on the fly with address 
snooping.
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Fig. 3 Floor-plan of the proposed CMP module

2. Extended macro-data-flow graph representation
An application program for the proposed architecture is built following the structure of its Macro 
Data Flow Graph (MDFG). The macro nodes in this graph are sequences of program instructions 
meant for execution in a single core. They are defined by a programmer according to the policy he 
uses for program parallelization. The macro nodes are atomic entities executed in parallel in the  
system. To describe activities of processor cores in dynamic clusters,  we propose an Extended 
Macro  Data  Flow Graph notation (EMDFG)  in which  special  kinds of  nodes are  used in  the 
program graph: data pre-fetch (read) nodes to the data cache L1 from L2 (R1), data write nodes  
from processor’s L1 data cache to L2 (W2), write of some data from the L2 to the shared memory 
of the CMP module (WM), L2 data cache pre-fetch from shared memory (RL2), write from the 
shared memory of a CMP module to the memory of another CMP module (MMW), read from a 
distant CMP module shared memory to the memory of a CMP module, processor switch nodes 
between L2 data cache banks, barriers used to synchronize reads on the fly with the write which  
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supplies data (B), intra-cluster (local) bus arbiter nodes, the inter-cluster global bus arbiter node. 
The read and write  nodes weights  correspond to volumes of  data measured  in L1 data cache 
blocks.  EMDFGs can  be generated  manually by programmers  but  it  is  complicated  and error 
prone. What we recommend is that EMDFGs are generated automatically by a scheduling program 
[14, 15] whose input is a program MDFG and which takes into account the parameters of the 
target system with the proposed architecture. A scheduled EMDFG will be then transformed into 
an executive code in which special instructions, representing the described above special elements 
of the extended graph, will be automatically inserted.

Fig. 4 (right) presents an EMDFG of a simple the program MDFG shown in Fig. 4 (left) 
meant for execution in a system without processor core switching nor reads on the fly. In these 
graphs program macro nodes (T0...T5) are assigned to processor cores (C1...C5) in CMP modules 
(CMP1, CMP2). There are the following new nodes in the graph: W21 - write of data from core's 
C3 data cache L1 to L2 inside CMP1, R11 – data pre-fetch from L2 to L1 in CMP1, WM - write 
of some data from the L2 to the shared memory of CMP1, MMW - write from the shared memory 
of a CMP1 to the memory of CMP2, R22 – pre-fetch of data from shared memory to L2 banks in  
CMP2, R12 – pre-fetch of data from L2 to L1 in CMP2. 
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Fig. 4 Simple EMDFG example: a) MDFG, b) EMDFG

An example of the extended macro data flow program graph for a program with communication 
on the fly is shown in Fig. 5. The graph is composed of program nodes T1 - T6. Nodes T4, T5, T6  
receive data through communication on the fly from node T1 in a system composed of cores C1, 
C2, C3 placed in the same CMP module To represent a synchronized read on the fly, a read node 
can be decomposed into two nodes: the read on the fly request deposing in a BRC performed 
before the barrier working for the “write” node and the read on the fly execution performed when 
the barrier is reached. A special node marked in the Fig. 5 as a crossed rectangle (with L2 module 
specification), represents switching of a core to a new dynamic cluster. The write node execution 
time depends on the bus access acknowledge sent from the bus arbiter. In communication on the 
fly, processor cores can read parts of data on the bus, which differentiates this solution from a 
standard  multicast  or broadcast.  In  read on the fly instructions,  delimiters  are specified which 
determine read starting addresses (ai in Fig. 5) and data volumes (fractions of the total data volume 
sent on the bus can be captured). Since in a cache memory environment the transactions on the 
memory busses concern entire cache blocks, the delimiters are expressed in terms of the cache  
blocks. 

A section in a program graph (denoted by a dotted oval rectangle in Fig. 5) is a sub-graph 
executed by a fixed subset of processor cores connected to the same local L2 bus i.e. belonging to 
the same cluster. Cores are notified about newly starting sections to activate all program parallel  
threads specified for them. By the mechanism of sections, communication (data read and write) 
requests sending to BRCs can be adjusted to current sections i.e. to the use of the right busses and 
the composition of core clusters.
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3. Experimental results
The efficiency of parallel program execution in the proposed architecture has been verified by 
experiments  with artificially  generated  program graphs.  Since  the  assumed system is  strongly 
modular  and the  communication  on the  fly  requires  strict  synchronization  of  the participating 
cores,  the  structures  of  the  examined  program  graphs  were  selected  to  be  of  modular  and 
synchronous character. It  means that the graphs have layered structures  in which some roughly 
regular  subgraphs  with intensive  communication can  be  identified.  These  graphs  have  similar 
structure  and  granularity  to  graphs  of  many regular  parallel  numerical  programs  like  parallel  
matrix multiplication or parallel FFT computations. 

The graphs have been automatically scheduled for execution in the proposed architecture with 
and without communication on the fly for  different  assumptions regarding time and structural 
parameters of the executive system. The number and structure of the CMP modules, the speed of 
L1-L2 busses and the latency of the global networks (a crossbar switch) were considered.  Next, 
the scheduled graphs were symbolically performed using a simulator, which is cycle accurate if  
the communication control is concerned, using the approach similar to [16]. The simulator was 
written by the authors in C++ language. It determined program execution times based on which 
parallel speedups were computed against execution on a single processor. 

Programs have been structured by a heuristic scheduling algorithm [14] based on the use of 
the  notion  of  moldable  tasks  [9].  This  algorithm  assigns  tasks  to  processor  cores  and 
communication to L1-L2 busses in CMP modules in a way which reduces application program 
execution  time.  A moldable  task  is  a  part  of  a  program,  whose  structure  can  be  tailored  for 
execution on different numbers of processors, assuming that for each number of processors a best 
execution time can be determined. The moldable task approach enables a hierarchical approach to 
program  scheduling  in  which  first  characteristics  of  moldable  tasks,  as  building  program 
components,  are  found and then an optimal program structuring of  these building elements  is 
designed. The macro data flow graph representation of programs is used for this optimization. The 
algorithm first  builds a graph of admissible moldable tasks (it  was assumed not wider  than 4 
nodes) for a given program and then moldable tasks are scheduled for a given number of CMP 
modules with particular characteristics. To find moldable tasks the algorithm schedules program 
tasks for execution inside the CMP modules with communication on the fly. Next, it schedules the 
global communication between the CMP modules. As a result, a scheduled program moldable task 
graph is produced in which computation and internal moldable task communication are assigned to 
resources inside CMP modules and global communication between the tasks is assigned to links of  
the global network.

Fig. 6. Experimental program graph structure.
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The general  structure of experimental program graphs is shown in Fig. 6. The graphs have the 
following parameters - the number of levels: 10; number of intensive communication subgraphs: 
8; the width of a level in a subgraph: 4; the total graph width: 32, the computing node weight: 100; 
the communication edge  weight:  20-30,  100-150;  the node output  degree:  1-2,  3-4.  Up to 25 
additional edges of inter-subgraph data transfers have been added to the graphs. Both the internal  
data communication in CMP modules and global inter-module communication were placed at the 
application program levels  (neither  communication libraries  nor the operating systems support 
were used). The width of the moldable tasks generated by the task scheduling algorithm was in all  
cases limited to 4. Thus, the moldable tasks could be embedded inside single CMP modules. 

The relation between the speed of processor cores and local communication speed (i.e. the 
frequency  of  the  L1-L2  bus)  was  assumed  2:1,  4:1,  8:1  (2:1  is  equivalent  to  1.6  GFLOPS 
processor with L1 cache co-operating with L2 cache via 800 MHz bus). The latency of the global 
network was assumed to be 2, 8 or 16 times bigger than that of the L1-L2 bus. The following 
cache memory bus and global  network speeds configurations were examined: 8_2, 8_8, 8_16, 
16_2, 16_8, 16_16. The number of cores in the system was always equal to 32. However, the cores  
were embedded in 1, 2, 4 and 8 CMP modules with communication on the fly, containing 32, 16, 8 
and 4 cores, respectively. Additionally, a system with 32 single-core processors interconnected by 
a global  network  without  communication on the  fly  was considered.  Therefore,  the following 
configurations of the numbers of CMP modules and core numbers in modules were considered: 
1_32, 2_16, 4_8, 8_4, 32_1. The total system configuration description (for example 4_8_8_2) is 
composed of the number of CMP modules (4), the number of cores in a CMP module (8), the L1-
L2 bus speed coefficient (8) and the global network speed coefficient (2).

In  figures  below,  the  average  parallel  execution  speedup  against  sequential  execution  of 
programs in different system configurations as explained above is presented in whose macro data  
flow graphs the computational node degree was 3 - 4 or 1 - 2 and the data transaction volume was  
100-150 or  20-30. The local  communication time (inside a CMP module)  was measured  as  a 
product of the data volume and the L1-L2 bus speed coefficient and the global communication 
time was determined as the product of the local communication time and the global network speed 
coefficient.  The  experiments  correspond  to  programs  with  intensive  (frequent)  local  data 
communication whose latency is much larger than the computation time of nodes. We can observe 
that  for  fast  global  networks  the  obtained  speedup was  the  highest  for  the  single  large  CMP 
module. This is due to communication on the fly and the absence of the global network.

However, the technology reasons enforce the use of multiple smaller CMP modules to avoid 
large  values  of  the  signal  propagation  time  on  long bus  wires  and  the  diversity  of  this  time  
depending on the physical placement of the bus customer. For high global network speed, Fig. 7, 

Fig. 7 Parallel speedup for fast global network.
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the speedup of execution on 2 CMP modules for dense communication with big data volumes was 
close to the results for the system with a single CMP module. For 4 and 8 CMP modules with a top 
global  network speed the speedup decreased from 23 to 20 and 17 respectively due to global 
communication.  It  shows that  the  use  of  smaller  CMP modules  for  not  very  frequent  global 
communication in programs can be advantageous. For less intensive communication (node degree 
1-2 and small  communication  volume) the speedup decrease  was from 15 to 11.  The system 
configuration  with  32  single-core  processors  connected  exclusively  by  the  global  network 
(configurations 32_1_8_2 and 32_1_16_2, where all data transfers were global) has provided the 
small speedup which increased for the programs with less intensive communication.

Fig. 8 presents program execution speedups when the global network was very slow (8 times 
slower than the L1-L2 bus) programs contained a much less communication, however for large 
data volumes.  Due to weak global communication, the speedup  for dense communication for 2, 
and 4 CMP modules is still not so much lower than for a single module, but it degrades below 15 
when communication is not intensive nor large, which gives the parallelization efficiency below 
0.5. This efficiency is above 0.5 for voluminous and dense communication with 4 and 8 CMP 
modules and small L1-L2 bus speed, due to the positive influence of the communication on the fly.

Fig. 8  Parallel speedup for very slow global network

In  all  discussed  cases  of  the  relatively  weak  global  communication,  the  best  speedups  were  
obtained for small number of CMP modules and for dense and voluminous communication. Based 
on other research not shown in this work, we can state that more dense global communication 
gives  smaller  speedups  for  larger  numbers  of  CMP modules  and  low global  network  speed. 
Therefore the speed and the architecture of the global network are crucial in such cases.

Fig. 9  Parallel speedup improvement due to communication on the fly for fast L2 busses
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Fig. 9 and 10 present improvements of speedups due to application of communication on the fly 
corresponding  to  large  and  small  communication  volumes  (20-30  and  100-150),  for  different  
configurations of system parameters. In these experiments, a list scheduling algorithm combined 
with  a  genetic  algorithm  was  used  [14].  It  enables  better  examination  of  the  influence  of 
communication on the fly on parallel speedup since the structuring of the program is simpler than  
in  the case  of  moldable tasks  approach.  We can  see  that  communication  on the  fly gives  an 
average speedup improvement of 1.44 for faster L1-L2 busses (8 times slower than the core-L1 
communication) and 1.22 for the slower L1-L2 busses (16 times slower than the processor core-L1 
bus), comparing the scheduling without communication on the fly.

Fig. 10  Parallel speedup improvement due to communication on the fly for slow L2 busses

Conclusions
In  the  paper,  we  have  presented  and  examined  system  architecture  based  on  multiple  CMP 
modules interconnected by a global network with a special new feature of the communication on 
the fly inside the CMP modules. Communication on the fly can be an important data exchange  
mechanism for execution of computational algorithms in which strong data sharing appears among 
parallel fragments of programs. It enables strong reduction of data traffic on busses which lead 
from  processor  cores  to  shared  L2  data  caches  and  main  memory  modules.  This  type  of 
communication should be embedded in special CMP modules meant for execution of numerical  
fragments of parallel programs. Its positive impact on efficiency of parallel computations grows if 
the degrees of data sharing and the synchronous layer-based data processing in parallel programs 
are higher. The use of many smaller size CMP modules interconnected by a global network can be 
enforced by technology limitations. The speedups of execution of computational programs with 
layered graph structures composed of communicating subgraphs with relatively low inter-subgraph 
communication were examined. We can see that for such assumptions this architecture behaves in 
a satisfactory way for fast global networks and for a relatively small number of CMP modules, so, 
the use of several CMP modules for programs as examined, provides not much worse results than 
the use of a single large CMP module. With multiple CMP modules applied for programs with  
more  intensive  global  communication,  high  global  network  speed  and  proper  architectural 
properties of the network to reduce the global communication influence are of big importance.
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