
Multi-CMP System with Data Communication
on the Fly
Marek Tudruj1,2 Lukasz Masko1 Miroslaw Thor3

1Institute of Computer Science of the Polish Academy of Sciences

01-237 Warsaw, ul. Ordona 21, Poland
2Polish-Japanese Institute of Information Technology

02-008 Warsaw, ul. Koszykowa 86, Poland
3Telemark University College, Hallvard Eikas plass, N-3800 Bo i Telemark, Norway

E-mail: {tudruj, masko}@ ipipan.waw.pl, miroslaw.thor@hit.no

Abstract - The paper concerns new communication solutions for hierarchical Chip Multiprocessor (CMP)
systems composed of many CMP modules interconnected by a global data exchange network. New
architectural solutions for internal module data communication are presented in the presence of hierarchical
data caches in CMP modules. Inside CMP modules dynamic shared memory core clusters are organized
around L1-L2 data cache busses. Such clusters enable a group-oriented data communication based on reads
on the fly to L1 banks of data present on the busses by many cores at a time. Dynamic switching of cores
between such L1-L2 busses is done with porting data in core's L1 caches. Together with data reads on the fly
it provides a very efficient inter-cluster "communication on the fly", especially useful for transfers of strongly
shared data. It provides fast cache to cache group data transmissions and eliminates standard transactions
based on shared memory in the system. Comparative experimental results based on automatic scheduling of
program data flow graphs and execution in a simulator of the proposed architecture evaluate the assumed
architectural solutions. The multi-CMP system structure is assessed while taking into account technological
limitations of the size of the single CMP module.

Keywords: modular CMP systems, program execution control, dynamic shared memory clusters,
communication on the fly.

Introduction
Cluster-based approach is an important solution, which can improve communication efficiency in
parallel shared memory systems. Distribution of memory traffic among many Shared Memory
Processor (SMP) clusters has been extensively used to alleviate the memory bus saturation
problem in large shared memory processor systems. In standard implementations, the size of the
SMP clusters is fixed, which can decrease parallel program execution efficiency due to
discrepancy between system structure and program needs. A more ambitious strategy assumes
modifiable cluster sizes, which can adjust system structure to real needs of an application problem
leading to a better use of communication resources.

Parallel shared memory systems implemented in Chip Multiprocessor (CMP) technology
attract currently much of the systems architects’ attention [1, 2]. Data communication efficiency in
such systems is determined to the large extent by data exchange latency of transfers between
processor data caches, which are the actual sources and destinations of shared data. Therefore, in
current CMP systems, internal communication between on-chip cores and elements of the
hierarchy of data caches is an important problem considered in research papers [3-7]. Especially,
dynamically reconfigurable communication of strongly shared data between processor cores and
their data caches deserve high designers’ interest; however, no sufficient attention in current
papers has been paid to efficient group communication on chip.

Cluster-based approach is currently in common use, but up-to now this approach has not been
ported to the area of the internal network structures of CMP systems. This paper presents new
solutions in this respect and proposes a new data communication method for parallel numerical
computations in dynamic cluster-based shared memory system architecture for the CMP
technology. The new method is called communication on the fly [11-13]. It enables dynamic
creation of temporary shared memory core clusters (SMPs), which provide means for fast group
transmission of shared data between cores, more exactly between their L1 data caches. In this
paper, the initial solution based on a single level data caches [11], has been extended to multi-level
caches. It improves time efficiency of the proposed group communication since it concerns now

1

faster L1, L2 data cache memories. Dynamic SMP clusters are organized using local data
networks, which connect L1 data caches with L2 cache banks (L1-L2 packetized data busses) to
enable data reads on the fly of shared data. Communication on the fly is a new inter-cluster data
exchange method. Its main idea consists in switching processor cores with some relevant data in
their L1 caches to new L1-L2 bus-based clusters to pass there new data by a group-like read on the
fly to L1 caches of many cores at a time. In this way, classic data exchange by deposing data in a
shared memory to be next read by many processes or threads is replaced by processor core
switching and a single group transaction on a data bus. The core switching is done during program
execution for program defined time interval, longer than for a single memory transaction, which
distinguishes this solution from a standard shared memory access. It strongly reduces contention
on memory bus lines and eliminates many separate data transactions concerning the same data.
Although many authors have suggested using the multi-hop packet switching on-chip networks [4,
5], it is the data bus which provides the data and address observability features necessary for this
type of group communication.

The core switching and communication on the fly can be automatically embedded in the
application program code by special scheduling algorithms [14, 15] in a way, which corresponds
to particular program needs. In this respect, the applied communication method shows features of
dynamically reconfigurable embedded system, in which internal structures of CMP modules are
adjusted to program requirements. Such systems enable accelerated execution of typical time
consuming numerical computations in problem-oriented libraries.

Simulation experiments have shown the potential of communication on the fly for fine grain
parallel programs [11-13]. However, current CMP technology limitations imposed by power
dissipation, wire delays, signal cross talks and silicon area space make that the physical system
structure should be based on many co-operating CMP modules, containing a limited number of
cores and L2 cache banks, rather than on a single large CMP module. The CMP system modular
architecture also comes from characteristics of shared memory data busses, which for a limited
number of bus customers behave in an acceptable manner, not worse than other types of networks
[8], while showing valuable features relevant for the described efficient group data transactions.
Most of the cited experiments concerned standard parallel matrix multiplication based on recursive
data decomposition into quarters. In this paper, we evaluate the speedups of scheduled general
layered parallel program graphs executed by simulation in the proposed architecture for different
assumptions concerning the number of dynamic CMP modules used, the speed of cache memory
busses and the speed of the global network.

The paper is composed of three main parts. In the first part, new system general architectural
features are discussed. Next, an extended macro data flow graph representation is explained, which
has been used for simulation experiments. In the last part, efficiency of the parallel programs in the
proposed architecture is evaluated by simulation experiments with program graphs execution.

1. General system architecture
In this paper, we present a new version of a general system architecture based on dynamic SMP
clustering, which is tailored to be implemented in the chip multiprocessor technology. We
investigate a hierarchical modular structure of many CMP modules connected by a central global
network, Fig. 1. A CMP module contains a number of processor cores C with directly used L1 data
caches, which are connected to shared L2 data cache memory banks using CMPs local L1-L2 data
networks. Each CMP module has directly accessible fragment of the shared data main memory
placed in the address space common for all modules. The global network provides data exchange
between shared data memory modules of CMP modules at the cost of higher data transfer latency
compared to internal transfers of data inside particular CMPs.

The internal structure of a CMP module is shown in Fig. 2. Processor cores C i (each connected
with its local L1 data cache and shared L2 cache banks) can be dynamically interconnected in
dynamic clusters through local communication network composed of L2 busses (local busses, L1-
L2 busses). Additional instruction caches are also provided, but discussing them is beyond the
scope of this paper. A new collective data communication in clusters of cores can be organized
inside CMP modules. It consists in dynamic switching of cores with data cache contents between
SMP clusters organized on L2 bank busses [11]. This method converts data transmissions through
memory and/or some global network into dynamic cluster reconfiguration with data transfers
performed directly between data caches. Such a conversion enables, multiple parallel reads of data
by many processors to their L1 data caches from L2 bank busses (reads on the fly, similar to cache
injection [10]) while a processor writes data from its L1 cache to the cluster L2 bank. It is based on

2

address snooping of L2 bank bus by a core Bus Request Controller (BRC) in which read on the fly
requests are queued when issued from the application programs. Reads on the fly combined with
processor switching, called "communication on the fly", provide a very fast way of data exchange
between processor clusters. During reads on the fly, the data copies can be written with new
memory addresses if are to be later subject to modification, thus avoiding cache coherence
problems.

CMP

CMP

Local
network

L2 L2

C+L1

C+L1

NIC
CMP

Local
network

L2 L2

C+L1

C+L1

NIC

CMP

Local
network

L2 L2

C+L1

C+L1

NIC

Local
network

L2 L2

C+L1

C+L1

NIC

Shared
data

memory
module

Shared
data

memory
module

Shared
data

memory
module

Shared
data

memory
module

Global network

Fig. 1 The general system structure

Local busses used for local data transmission inside CMP modules, provide a very efficient intra-
cluster communication on the fly especially useful for transfers of shared data. Operations on data
include: data pre-fetch from L2 cache to a core L1, write from L1 to L2, read on the fly from a L2
bank bus to many L1s in parallel, core switching between L2 busses (core clusters), data pre-
fetches from shared memory modules to L2 banks, data updates of memory modules from L2
banks, inter-CMP module data exchange accomplished as transfers between shared data memory
modules. Before pre-fetches of data to L1, the corresponding data blocks must be pre-loaded to L2
from the respective memory modules in a programmed way. Current task computing results are
sent from L1 to the L2 data cache module only after a task completes.

The global data exchange is performed between shared memory modules attached to CMPs. It
is done under control of the Network Interface Controller (NIC), which collects global data
transfer requests from the CMP cores. The NIC creates connections in the global network (which
can be a crossbar switch or a multi-layer Closs connection network). The shared memory modules
are dual-ported, so that it is possible to perform simultaneously a data read/write on the “shared
memory-L2” bus and a read from the shared data memory for a global network transmission.
The local communication networks inside CMP modules are provided with very advanced data
exchange features. They consist in multi-ported data caches L1 that enable parallel pre-fetching of

L1 Data cacheL1 Data cache

Local communication network L2 data
cache

CMP Module

Bank 1Bus
arbiter

Core C
1

Bank MBus
arbiter

Instruction cache

Instruction
memory

L1 Data cache

Core C
N

Instruction cache

Synchronization path

L1 Data cache

Local bus

Local bus

Cluster 1

Instruction
memory

Shared
data

memory

BRC

BRC

BRC

BRC

NIC X-Bar

To other
modules

Fig. 2 Internal structure of a CMP module

3

arguments of subsequent numerical operations and many communications on the fly performed at
a time for a processor core. The multi-ported data cache L1 provides much better functionality and
performance than a cache shared by many processors based on address interleaving among
multiple cache banks since it ensures many parallel copies of shared data available to processors.

The L1 and L2 data caches are used in this architecture in many cases as “scratch-pad
memories” rather than with the functionality of classic cache memory. It is because the cache-
controlled macro data flow program execution paradigm enforces strong data pre-fetching to L1
caches, which can be also extended on the L2 data cache behavior. Following special data cache
functionality, the system ensures L1 and L2 data caches synchronization in the context of
processor core switching and reads on the fly. If a processor core is switched from one L2 module
to another and is to write some data from its L1 to this new L2 module (for instance to enable
other processors to read these data through reads on the fly or simply to do a cache block flush), a
respective new line in the target L2 data cache must be provided. This operation is not performed
in a standard manner (by transmitting proper data from the shared memory), but instead, just
before the L2 write operation, an empty line in L2 is generated together with the address tag and a
special validity mask. The mask controls in terms of L1 blocks which data will be moved in by the
considered data transfer on the fly from the L1-L2 bus. When necessary, the operating memory
will be updated using only the valid parts of the L2 lines. Similar actions are performed in L1
caches, when data are pre-fetched into L1 under new addresses to comply with the assumed single-
assignment principle, which eliminates consistency problems for multiple copies of modified
shared data (data read for subsequent modification are stored under new addresses). This imposes
new dummy lines in L1 data caches provided with similar control fields. Only on L1 to L2
flushing or reads on the fly through the L2 busses the corresponding L2 dummy lines will be
generated (a lazy synchronization is used).

The floor-plan of the proposed CMP module is shown in Fig. 3. The active elements of a CMP
module (cores, L1 caches, L2 caches, bus arbiters, NIC controller) can be placed around the local
communication network which implements switched connections and reads on the fly with address
snooping.

C o re w ith L 1

A r b i t e r L 2

C o re w ith L 1

C ore w ith L 1 C ore w ith L 1

A r b i t e r

A r b i t e r

L 2

L 2

C o nnect
& sno op
circuits

N
I

C

Sh
ar

ed

m
em

or
y

To
 o

th
er

m

od
ul

es

Fig. 3 Floor-plan of the proposed CMP module

2. Extended macro-data-flow graph representation
An application program for the proposed architecture is built following the structure of its Macro
Data Flow Graph (MDFG). The macro nodes in this graph are sequences of program instructions
meant for execution in a single core. They are defined by a programmer according to the policy he
uses for program parallelization. The macro nodes are atomic entities executed in parallel in the
system. To describe activities of processor cores in dynamic clusters, we propose an Extended
Macro Data Flow Graph notation (EMDFG) in which special kinds of nodes are used in the
program graph: data pre-fetch (read) nodes to the data cache L1 from L2 (R1), data write nodes
from processor’s L1 data cache to L2 (W2), write of some data from the L2 to the shared memory
of the CMP module (WM), L2 data cache pre-fetch from shared memory (RL2), write from the
shared memory of a CMP module to the memory of another CMP module (MMW), read from a
distant CMP module shared memory to the memory of a CMP module, processor switch nodes
between L2 data cache banks, barriers used to synchronize reads on the fly with the write which

4

supplies data (B), intra-cluster (local) bus arbiter nodes, the inter-cluster global bus arbiter node.
The read and write nodes weights correspond to volumes of data measured in L1 data cache
blocks. EMDFGs can be generated manually by programmers but it is complicated and error
prone. What we recommend is that EMDFGs are generated automatically by a scheduling program
[14, 15] whose input is a program MDFG and which takes into account the parameters of the
target system with the proposed architecture. A scheduled EMDFG will be then transformed into
an executive code in which special instructions, representing the described above special elements
of the extended graph, will be automatically inserted.

Fig. 4 (right) presents an EMDFG of a simple the program MDFG shown in Fig. 4 (left)
meant for execution in a system without processor core switching nor reads on the fly. In these
graphs program macro nodes (T0...T5) are assigned to processor cores (C1...C5) in CMP modules
(CMP1, CMP2). There are the following new nodes in the graph: W21 - write of data from core's
C3 data cache L1 to L2 inside CMP1, R11 – data pre-fetch from L2 to L1 in CMP1, WM - write
of some data from the L2 to the shared memory of CMP1, MMW - write from the shared memory
of a CMP1 to the memory of CMP2, R22 – pre-fetch of data from shared memory to L2 banks in
CMP2, R12 – pre-fetch of data from L2 to L1 in CMP2.

a)

T2

T0

T4

Module CMP1 Module CMP2

T5

T3

T1

C1 C2 C3 C4 C5

C3

 b)

T1

W2

T0

T4

WM R11

MMW

R22

R12

Module CMP2

T3

R11

T5

R22

R12

T2

R11

Module CMP1

C1 C2 C3

C4 C5

C3

Fig. 4 Simple EMDFG example: a) MDFG, b) EMDFG

An example of the extended macro data flow program graph for a program with communication
on the fly is shown in Fig. 5. The graph is composed of program nodes T1 - T6. Nodes T4, T5, T6
receive data through communication on the fly from node T1 in a system composed of cores C1,
C2, C3 placed in the same CMP module To represent a synchronized read on the fly, a read node
can be decomposed into two nodes: the read on the fly request deposing in a BRC performed
before the barrier working for the “write” node and the read on the fly execution performed when
the barrier is reached. A special node marked in the Fig. 5 as a crossed rectangle (with L2 module
specification), represents switching of a core to a new dynamic cluster. The write node execution
time depends on the bus access acknowledge sent from the bus arbiter. In communication on the
fly, processor cores can read parts of data on the bus, which differentiates this solution from a
standard multicast or broadcast. In read on the fly instructions, delimiters are specified which
determine read starting addresses (ai in Fig. 5) and data volumes (fractions of the total data volume
sent on the bus can be captured). Since in a cache memory environment the transactions on the
memory busses concern entire cache blocks, the delimiters are expressed in terms of the cache
blocks.

A section in a program graph (denoted by a dotted oval rectangle in Fig. 5) is a sub-graph
executed by a fixed subset of processor cores connected to the same local L2 bus i.e. belonging to
the same cluster. Cores are notified about newly starting sections to activate all program parallel
threads specified for them. By the mechanism of sections, communication (data read and write)
requests sending to BRCs can be adjusted to current sections i.e. to the use of the right busses and
the composition of core clusters.

5

a)

C1 C2 C3

T1 T2 T3

T4 T5 T6

C1 C2 C3

a1
a2

a3

 b)

ARBITER

switch C1 to
the cluster
of C2, C3

R1 R2

a1

write

barrier

C1 C2 C3

T1 T2 T3

T4 T5 T6

C1

C2 C3

a2
a3

 c)

switch C1

barrier

C1 C2 C3

read on
the fly

write
ARBITER

T1 T2 T3

T4 T5 T6

read on
the fly

C1

C2 C3

Fig. 5. EMDFG with communication on the fly: a) standard MDFG, b) equivalent EMDFG with
communication on the fly, c) simplified EMDFG notation

3. Experimental results
The efficiency of parallel program execution in the proposed architecture has been verified by
experiments with artificially generated program graphs. Since the assumed system is strongly
modular and the communication on the fly requires strict synchronization of the participating
cores, the structures of the examined program graphs were selected to be of modular and
synchronous character. It means that the graphs have layered structures in which some roughly
regular subgraphs with intensive communication can be identified. These graphs have similar
structure and granularity to graphs of many regular parallel numerical programs like parallel
matrix multiplication or parallel FFT computations.

The graphs have been automatically scheduled for execution in the proposed architecture with
and without communication on the fly for different assumptions regarding time and structural
parameters of the executive system. The number and structure of the CMP modules, the speed of
L1-L2 busses and the latency of the global networks (a crossbar switch) were considered. Next,
the scheduled graphs were symbolically performed using a simulator, which is cycle accurate if
the communication control is concerned, using the approach similar to [16]. The simulator was
written by the authors in C++ language. It determined program execution times based on which
parallel speedups were computed against execution on a single processor.

Programs have been structured by a heuristic scheduling algorithm [14] based on the use of
the notion of moldable tasks [9]. This algorithm assigns tasks to processor cores and
communication to L1-L2 busses in CMP modules in a way which reduces application program
execution time. A moldable task is a part of a program, whose structure can be tailored for
execution on different numbers of processors, assuming that for each number of processors a best
execution time can be determined. The moldable task approach enables a hierarchical approach to
program scheduling in which first characteristics of moldable tasks, as building program
components, are found and then an optimal program structuring of these building elements is
designed. The macro data flow graph representation of programs is used for this optimization. The
algorithm first builds a graph of admissible moldable tasks (it was assumed not wider than 4
nodes) for a given program and then moldable tasks are scheduled for a given number of CMP
modules with particular characteristics. To find moldable tasks the algorithm schedules program
tasks for execution inside the CMP modules with communication on the fly. Next, it schedules the
global communication between the CMP modules. As a result, a scheduled program moldable task
graph is produced in which computation and internal moldable task communication are assigned to
resources inside CMP modules and global communication between the tasks is assigned to links of
the global network.

Fig. 6. Experimental program graph structure.

6

The general structure of experimental program graphs is shown in Fig. 6. The graphs have the
following parameters - the number of levels: 10; number of intensive communication subgraphs:
8; the width of a level in a subgraph: 4; the total graph width: 32, the computing node weight: 100;
the communication edge weight: 20-30, 100-150; the node output degree: 1-2, 3-4. Up to 25
additional edges of inter-subgraph data transfers have been added to the graphs. Both the internal
data communication in CMP modules and global inter-module communication were placed at the
application program levels (neither communication libraries nor the operating systems support
were used). The width of the moldable tasks generated by the task scheduling algorithm was in all
cases limited to 4. Thus, the moldable tasks could be embedded inside single CMP modules.

The relation between the speed of processor cores and local communication speed (i.e. the
frequency of the L1-L2 bus) was assumed 2:1, 4:1, 8:1 (2:1 is equivalent to 1.6 GFLOPS
processor with L1 cache co-operating with L2 cache via 800 MHz bus). The latency of the global
network was assumed to be 2, 8 or 16 times bigger than that of the L1-L2 bus. The following
cache memory bus and global network speeds configurations were examined: 8_2, 8_8, 8_16,
16_2, 16_8, 16_16. The number of cores in the system was always equal to 32. However, the cores
were embedded in 1, 2, 4 and 8 CMP modules with communication on the fly, containing 32, 16, 8
and 4 cores, respectively. Additionally, a system with 32 single-core processors interconnected by
a global network without communication on the fly was considered. Therefore, the following
configurations of the numbers of CMP modules and core numbers in modules were considered:
1_32, 2_16, 4_8, 8_4, 32_1. The total system configuration description (for example 4_8_8_2) is
composed of the number of CMP modules (4), the number of cores in a CMP module (8), the L1-
L2 bus speed coefficient (8) and the global network speed coefficient (2).

In figures below, the average parallel execution speedup against sequential execution of
programs in different system configurations as explained above is presented in whose macro data
flow graphs the computational node degree was 3 - 4 or 1 - 2 and the data transaction volume was
100-150 or 20-30. The local communication time (inside a CMP module) was measured as a
product of the data volume and the L1-L2 bus speed coefficient and the global communication
time was determined as the product of the local communication time and the global network speed
coefficient. The experiments correspond to programs with intensive (frequent) local data
communication whose latency is much larger than the computation time of nodes. We can observe
that for fast global networks the obtained speedup was the highest for the single large CMP
module. This is due to communication on the fly and the absence of the global network.

However, the technology reasons enforce the use of multiple smaller CMP modules to avoid
large values of the signal propagation time on long bus wires and the diversity of this time
depending on the physical placement of the bus customer. For high global network speed, Fig. 7,

Fig. 7 Parallel speedup for fast global network.

7

the speedup of execution on 2 CMP modules for dense communication with big data volumes was
close to the results for the system with a single CMP module. For 4 and 8 CMP modules with a top
global network speed the speedup decreased from 23 to 20 and 17 respectively due to global
communication. It shows that the use of smaller CMP modules for not very frequent global
communication in programs can be advantageous. For less intensive communication (node degree
1-2 and small communication volume) the speedup decrease was from 15 to 11. The system
configuration with 32 single-core processors connected exclusively by the global network
(configurations 32_1_8_2 and 32_1_16_2, where all data transfers were global) has provided the
small speedup which increased for the programs with less intensive communication.

Fig. 8 presents program execution speedups when the global network was very slow (8 times
slower than the L1-L2 bus) programs contained a much less communication, however for large
data volumes. Due to weak global communication, the speedup for dense communication for 2,
and 4 CMP modules is still not so much lower than for a single module, but it degrades below 15
when communication is not intensive nor large, which gives the parallelization efficiency below
0.5. This efficiency is above 0.5 for voluminous and dense communication with 4 and 8 CMP
modules and small L1-L2 bus speed, due to the positive influence of the communication on the fly.

Fig. 8 Parallel speedup for very slow global network

In all discussed cases of the relatively weak global communication, the best speedups were
obtained for small number of CMP modules and for dense and voluminous communication. Based
on other research not shown in this work, we can state that more dense global communication
gives smaller speedups for larger numbers of CMP modules and low global network speed.
Therefore the speed and the architecture of the global network are crucial in such cases.

Fig. 9 Parallel speedup improvement due to communication on the fly for fast L2 busses

8

Fig. 9 and 10 present improvements of speedups due to application of communication on the fly
corresponding to large and small communication volumes (20-30 and 100-150), for different
configurations of system parameters. In these experiments, a list scheduling algorithm combined
with a genetic algorithm was used [14]. It enables better examination of the influence of
communication on the fly on parallel speedup since the structuring of the program is simpler than
in the case of moldable tasks approach. We can see that communication on the fly gives an
average speedup improvement of 1.44 for faster L1-L2 busses (8 times slower than the core-L1
communication) and 1.22 for the slower L1-L2 busses (16 times slower than the processor core-L1
bus), comparing the scheduling without communication on the fly.

Fig. 10 Parallel speedup improvement due to communication on the fly for slow L2 busses

Conclusions
In the paper, we have presented and examined system architecture based on multiple CMP
modules interconnected by a global network with a special new feature of the communication on
the fly inside the CMP modules. Communication on the fly can be an important data exchange
mechanism for execution of computational algorithms in which strong data sharing appears among
parallel fragments of programs. It enables strong reduction of data traffic on busses which lead
from processor cores to shared L2 data caches and main memory modules. This type of
communication should be embedded in special CMP modules meant for execution of numerical
fragments of parallel programs. Its positive impact on efficiency of parallel computations grows if
the degrees of data sharing and the synchronous layer-based data processing in parallel programs
are higher. The use of many smaller size CMP modules interconnected by a global network can be
enforced by technology limitations. The speedups of execution of computational programs with
layered graph structures composed of communicating subgraphs with relatively low inter-subgraph
communication were examined. We can see that for such assumptions this architecture behaves in
a satisfactory way for fast global networks and for a relatively small number of CMP modules, so,
the use of several CMP modules for programs as examined, provides not much worse results than
the use of a single large CMP module. With multiple CMP modules applied for programs with
more intensive global communication, high global network speed and proper architectural
properties of the network to reduce the global communication influence are of big importance.

References
1. J. D. Owens et al, Research Challenges for On–Chip Interconnection Networks, IEEE MICRO,
Sept–Oct. 2007, pp. 96-108.
2. Sharing Kundu, L.S. Peh, On-Chip Interconnects for Multicores, IEEE MICRO, Sept-Oct. 2007,
pp.3-5.
3. L.Hsu et al., Exploring the Cache Design Space for Large Scale CMPs, SIGARCH Computer
Architecture News, Vol. 33, No. 4, September 2005.
4. W. Dally, B. Towles, Route Packets, Not Wires: On-Chip Interconnection Networks, DAC
2001, Las Vegas.
5. Terry Tao Ye et al., Packetization and routing analysis of on-chip multiprocessor networks, J. of
Systems Architecture, 50 (2004), pp. 81-104.

9

6. J. Huh, A NUCA Substrate for Flexible CMP Cache Sharing, IEEE Transactions on Parallel and
Distributed Systems, Vol.18, No. 8, August 2007, pp. 1028-1040.
7. H. Hossain et al., Improving Support for Locality and Fine-Grain Sharing in Chip
Multiprocesors, PACT'08, Toronto, ACM.
8. Adriahantenaina et al., SPIN: A Scalable, Packet Switched On-Chip Micro-Network,
Proceedings of the Design, Automation and Test in Europe, Munich, March 2003.
9. R. Lepere, D. Trystram, G. J. Woeginger, Approximation algorithms for scheduling malleable
tasks under precedence constraints, 9th Annual European Symposium on Algorithms, 2001, LNCS
2161, Springer Verlag, pp. 146-157.
10. Milenkovic, V. Milutinovic. Cache injection: A novel technique for tolerating memory latency
in bus-based SMPs, Proceedings of the Euro-Par 2000, LNCS 1900, Springer Verlag.
11. M. Tudruj, L. Masko, Dynamic SMP Clusters with Communication on the Fly in NoC
Technology for Very Fine Grain Computations, 3rd Int. Symp. on Parallel and Distributed
Computing, ISPDC 2004, Cork, July 2004, pp. 97-104.
12. M. Tudruj, L. Masko, Towards Massively Parallel Computations Based on Dynamic SMP
Clusters wih Communication on the Fly, 4th Int. Symp. on Parallel and Distributed Computing,
ISPDC 2005, Lille, France, IEEE CS Press, pp. 155-162.
13. M. Tudruj, L. Masko, Fast Matrix Multiplication in Dynamic SMP Clusters with
Communication on the Fly in Systems on Chip Technology, PARELEC 2006, IEEE CS Press,
September 2006, pp. 77-82.
14. L. Masko et al., Scheduling Moldable Tasks for Dynamic SMP Clusters in SoC Technology,
Parallel Processing and Applied Mathematics, PPAM 2005, Poznań, Poland, Sept. 2005, LNCS
3911, 2006, Springer Verlag, pp. 879-887.
15. L. Masko, M. Tudruj, Task Scheduling for SoC-Based Dynamic SMP Clusters with
Communication on the Fly, 7th Int. Symp. on Parallel and Distributed Computing, ISPDC 2008,
Krakow, pp. 99-106.
16. S. Parisha, N. Dutt, M. Ben-Romdhane, Fast exploration of bus-based communication
architectures at CCATB abstraction, ACM Transations on Embedded Computing Systems, Vol. 7,
Issue 2, February 2008.

10

