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ABSTRACT 

Selected two- and three-component mixtures are studied by image analysis plus 
chemometric data analysis, specifically AMT (Angle Measure Technique), MIR 
(Multivariate Image Analysis - and the recent extension termed MIR+) and PLS-R 
(Partial Least Squares Regression). The present studies comprise a first foray regarding 
the possibilities of continuous mixing process - and product monitoring (homogeneity, 
on-line mixing fraction quantification etc.)  using image analysis as the primary data 
capture facility. 

We study three very different types of mixing systems, i.e. dry two-component powder 
systems, frozen three-component vegetable mix systems and a minced meat mixing 
system - the latter two of which constitute real-world industrial systems of current 
economical interest. 

Results show that the present line-up of chemometric image analysis and data analysis 
methods are fully sufficient to outline a framework for automated process monitoring 
systems. The two-component systems are also representative of a much larger study 
(barely initiated) on the possibilities of predicting the ultimate propensity of mixing 
systems, based only on standard image analysis characterisation plus the necessary 
chemometric data analysis. 

We conclude that both the AMT and the MIR+ approaches are suitable for the realistic 
tasks specified in the current studies, both with satisfactory relative prediction 
accuracies and precisions as estimated from comparable cross-validations. 

INTRODUCTION 

Mixing, blending, homogenisation of granular poly-component materials is of great 
importance in modern manufacturing and in large-scale process industries. These 
processes have been  studied intensively within the field of powder science and 
technology. Despite it's importance, however, a full understanding of granular mixing 
processes is surprisingly limited. Often quite unexpected segregation can occur, even 
in what was thought to be well-designed mixers or blenders, for example when batches 
are mixed just slightly "to fast" or  for just a trifle "too long" etc. A recent overview 
highlighted these difficulties graphically with great impact[1]. Here was outlined in 
detail the many factors involved in determining the ultimate outcome of a particulate 
matter mixing. We have determined to begin a major effort of mapping the interplay 
between these instrumental factors - only based on a direct image analysis 
characterisation of the components involved  plus whatever a posteriori intricate (or 



   2 

simple) data analysis needed. I.e. we want to find out the possibilities - and limitations 
- of being able to use only a standard, non-invasive image analysis recording technique 
of the in-situ appearances of the end-member components involved - in order to be able 
to predict the final outcome of physical mixing- and blending testing under real-world 
conditions (this latter to be carried out in realistic full-scaled certified mixing 
experiments of the type reported in  [1]). For this predictive effort, as well as for the 
presumably rather complex post-imaging data treatment necessary, we turn to 
chemometrics, which has been used in connection with powder science and technology 
only in the last five years, but with rather spectacular results [2, 3, 4 , 5, 6]. 

As a first side-benefit of the above major experimental research program it was found 
that a selected few of the many types of poly-component mixtures involved, also could 
serve a more limited purpose of illustrating new, modern and efficient possibilities for 
on-line mixing process characterisation, together with a few different, but closely 
related, types of mixtures, all of which have very great significance as general 
representatives of industrial systems in need of reliable, precise and accurate process 
monitoring (mixing process monitoring). On the market today there are to be found 
many types of such monitors to be sure, but they are all more-or-less rather dedicated 
systems directed towards rather narrow classes of materials, powders etc. 

We want to develop a completely generic image analysis_cum_chemometrics system, 
to be based on existing, inexpensive off-the-shelf digital video camera technologies 
only. Thus the "new" elements in the system we are developing will mainly be the 
problem-specific chemometric image data analysis (AMT, MIR+) and related 
quantitative prediction facilities involved (PLS). We shall use very simple digital video 
imaging data capture in our studies, which never-the-less is of exact industrial 
standards. 

Specifically the present work attempts to predict quantitative mixing fractions on a 
selected set of (very) different mixing series. We simulate on-line monitoring of 
representative mixing processes, by preparing precise (v/v %) quantitative fractions of 
the granular materials involved and subjecting them to the above camera under direct 
industrial process monitoring conditions. 

Of the methods employed here, the Multivariate Image Regression (MIR) approach is 
used to establish a relationship between video imagery data (X) and functional granular 
properties (Y) (here we limit ourselves to addressing quantification of the homogeneity 
of mixings, but in the major research program mentioned above, we shall also address 
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a range of other, standard powder characterising functional properties). Images taken 
of granular materials are bound to contain inherent information concerning the 
geometric shape(s) of the individual particles, their sizes, or size distributions, surface 
roughness, irregularities, smoothness, etc. This type of imagery will also contain 
information related to the ensemble of particles, to the particulate aggregate, or powder 
etc. as it were. Both these basic types of characteristics can be related to the bulk 
granular functional properties and mixing fractions, using proper multivariate 
calibration (PLS-regression), based on derived AMT-spectra[2] and/or MIR analysis 
techniques [8-9]. The major methodological objective of the present work will be to 
compare these fundamental two (the AMT-based and the MIR-based) prediction 
possibilities. 

Two laboratory systems are studied below, a selected suite of four dry two-component 
powder systems (representing very varying colour -, reflectance -, as well as 
morphological contrast) and a system consisting of vegetable mixes of three end-
components. The first set is used to study the more fundamental factors governing the 
mixing processes and - results, while the second set is a bona fide industrial mixing 
process monitoring example. 

 In addition to this study of granular mixtures, a real-world food mixing process 
involving minced meat (mincing meat and fat at industrial scales) is examined, using a 
newly developed industrial standard mixer ("IDE-CON"). To be able to satisfy their 
customers, producers of minced meat products are critically dependent upon reliable, 
essentially real-time on-line measurements of fat content in their products, as only very 
small deviations from the health authority specifications are accepted. Traditional off-
line fat measurements are time-consuming and certainly not continuous. Image 
analytical on-line measurements would be very preferable, if feasible, also because of 
the possibility of actually designing systems with an ability - in principle - to be totally 
representative, i.e. image analysis solutions have the prospect of being able to inspect 
the entire production output. 

A few examples of sample preparation problems occurred when certain sample types 
were introduced to the camera. Homogeneous mixtures would sometime segregate 
slightly when being poured onto the sample presentation plate in front of the camera 
etc. Flow - and transportation segregation is often a well-known problem in the 
handling of particulate matter. We made serious efforts to curtail this heterogeneity-
increasing factor in the studies presented below, by standardising the specific sample 
presentation  process (presenting the sample to the camera) throughout. On the other 
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hand what (little?) pouring segregation variance remaining was accepted as it indeed 
mimics correctly the identical problem facing industrial inspection systems. This 
certainly introduced more realistic variation  in  the analysis results obtained over that 
of otherwise "idealised" laboratory systems. 

AMT (Angle Measure Technique)  

The AMT transform, as a new signal analysis method, has shown potential in many 
areas of science and technology since its debut in 1994.  It characterises the scale-
dependent complexity of data such as time series, spatial data series, indeed any 
generic measurement series, in a new domain - the scale domain. Applications include 
image analysis, signal analysis, spectroscopy, analysis of drilling well log data, 
measurement runs in quality control, etc [2-6].  

AMT has been applied on powder imagery in connection with multivariate calibration 
in a series of recent studies resulting from our chemometric collaborations in powder 
science and technology [2-6]. AMT has shown a significant positive propensity as a 
salient pre-processing facility for quantifying the textural characteristics of images. 
When derived AMT-spectra (see further below) are subjected to multivariate 
calibration, e.g. in the form of PLS-regression modelling, a combined facility termed 
MAR (Multivariate AMT Regression) has been shown to have a very wide 
applicability. It is especially the combined facility of being able to quantify texture 
features for both individual particles as well as for their aggregate (powder/mixture) 
characteristics which comes to the fore in these applications, allowing for materials 
characteristication simultaneously over all particulate scales. 
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Figure 1. A representative image of a mixture of particulate matter, to be unfolded and subjected to AMT-
characterisation 

 

 

Figure 2. AMT-derivation of the so-called MA angle measure (Mean Angle). The extensive reference litterature 
explains parallel derivation of the MDY-measure as well [2-6]. 
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Figure 3. Illustration of representative AMT complexity-spectrum derived from a mixture image.  Observe how the MA-
spectrum is calculated as the mean of all individual angle measures at all scales, two of which two have been 
highlighted (scales = 10, 100). The horizontal axis represents "log S". MA displays a complexity "peak" corresponding 
to a scale of approx. 10-30. When several AMT-spectra are collected into a common X-matrix, the (log S) scale is used 
as the variable dimension. For full details of AMT [2-6].  
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The most useful aspect of the AMT transform is that the compound (MA, MDY) 
spectrum can be used as 1-D object vectors in multivariate data modelling (e.g. PCA or 
PLS). For 2-D image objects it is the local texture of the field-of-view which is 
transformed into a corresponding 1-D linear complexity spectrum. These complexity 
spectra, implicitly carry a remarkable information richness related to all scale(s). 

Multivariate AMT regression (MAR) has brought a new approach to extracting 
information for prediction purposes from “measurement series” (of any kind), which in 
the present context consist of unfolded† isotropic digital images. This approach 
converts texturally isotropic images into 1-D multivariate AMT-spectra without loss of 
fidelity. It views an image in a mathematically transformed way instead of by direct 
visualization. The present work deals with granular powder and food particular 
materials as well as minced meat imagery, but applies equally well in many other 
similar situations.  

Figure 4 below shows a schematic overview of the processes involved when using 
AMT-spectra of images for multivariate calibration. The MAR approach requires 
several steps when used for quantification of heterogeneous mixtures. Regression 
models must either be created based on images of pure mixing-components (classes), 
or based on a series of "spiked" concentrations of one, or more of the end-member 
fractions etc. The appropriate AMT-spectra are combined in a training data set related 
to the multivariate calibration PLS-modelling. If possible a relevant test set should also 
be prepared etc [7]. 

 

Figure 4. Schematic overview of  image processing with AMT before regression calibration, MAR 
(Multivariate AMT Regression). 

                                                      
† Unfolded is here used to describe the operation of rearranging each image-channel from a 2D matrix to a long 1D 
vector. 
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For a full description of the AMT approach, see [2-6]. Suffice here to emphasise that the 
AMT image processing approach deals with characterisation of contrasts in both 
colour, reflectance, texture,  individual grain forms and more. Thus it is not only the - 
perhaps more conventional - geometrical texture interpretations which are codified. 
Since derived AMT-spectra of an imaged material represent a unique scale-domain 
complexity/texture pattern of the image, they are well suited for calibration of images 
where changes in overall texture is an issue. Consider e.g. a series of fractions of two -, 
three - (or poly-) component mixtures (used as a calibration data set for the present 
studies). It will be seen that it is the totality of all these potential texture features which 
is changed when the mixing fractions of one (or more) of the end-members are 
changed. This shall be amply illustrated below. It bears to observe that it is not strictly 
necessary to be able to understand in all details which of the individual different 
contrasting texture factors are involved - nor how, or their supposed much more 
complex potential interactions. We have shown in several of the precursor 
investigations upon which the present work is firmly established [2-6], that the 
compound AMT-spectra in a sense automatically codifies all relevant factors and that 
it is the subsequent PLS-regression multivariate calibration which is responsible for 
extraction of precisely those parts of these X-spectra which correlates most strongly to 
the chosen Y-variable, which will be the pertinent mixing-fractions in all present 
studies. 

There is thus a well-reflected reason to expect that the AMT- approach also will be 
successful in quantifying the mixing-fractions involved in the present experiments, but 
it is an open question to what ultimate levels of accuracy and precision this will be 
attainable. The AMT-approach will be compared below with the Multivariable Image 
Regression alternative, MIR - especially in a novel, extended modification, MIR+. 

The MIR Concept 

MIR (Multivariate Image Regression) [8, 9, 10, 11] can also be viewed as a transformation 
of images. In this case, the multivariate image is transformed from raw data to PLS-
components [12,  13, 14] called score-images. MIR is aimed towards being able to predict 
Y-images based on a regression model [15, 16, 17]. The predicted images may often 
constitute the final result in themselves, but can also sometimes be used for further 
feature extraction in several ways.  

The MIR approach requires several steps when used for quantification of 
heterogeneous mixtures. First of all, regression models should be created from images 



   9

   

Ytrain-B 

A 

B 

C    

   

   

Xtrain 

Ytrain-A 

Ytrain-C 

PLSA 

PLSB 

PLSC

of pure mixing-components (classes). These images are combined in a training data 
set, as shown in Figure 5.  

In this illustration three models are created, one for each class. It is possible to use 
PLS2 to create one general model for all classes, but predictions will usually be 
improved by using separate models [7]. Appropriate reference Y-images are generated 
so as to maximise the grey-level intensity differences between the end members. The 
Y-image contains the maximum grey-level value at the image positions of the training 
object(s), and the minimum values in all other positions. For an unsigned, 8-bit image 
these values are 255 (white) and 0 (black), respectively. The graphic illustration in 
Figure 5 is probably much more directly telling.... 

 

Figure 5. Illustration of MIR training set-up for quantitative characterisation of classes A, B and C of heterogeneous 
mixtures. A separate model is calibrated for each class, using dichotomous (white/black) reference Y-masks.  

When acquiring new images of mixed classes - corresponding to taking an image of the 
product to be characterised (f. ex. on the production conveyor belt etc.), these will be 
Y-predicted with the models created above. If the training models have been created 
successfully, and if the particular input-output relation is generally linear or can be 
modelled by a bilinear PLS-regression model, pixels belonging to the current training 
class in question will be characterised by bright grey-level values ("close to white"), 
while all other pixels will usually be much more dark in their grey-level values. The 
fraction of "bright pixels", suitably defined (problem-dependent), will thus be expected 
to correlate to the overall mixing-fraction of  the current class in the mixture. We have 
recently published several extensive MIR descriptions with a wide variety of 
laboratory and industrial illustrations elsewhere; see [8-17] for in-depth MIR coverage. 
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While AMT mainly focuses on textural and spatial information like contrasts in shape 
and pattern, MIR focuses on spectral information. This means that AMT has its 
preferences if texture and spatial information is important, while MIR relies much 
more on differences in colour etc. with which to classify and to quantify objects. It is 
thus expected that it is not necessarily an easy given which method to apply in a given 
situation. Clearly one needs a lot of experience with many, and diverse, problem-
dependent data sets and applications. If both spectral and spatial information is 
valuable for the quantification, combining the results from AMT and MIR should be an 
advantageous possibility. 

Analysing the primary MIR prediction results 

Three different approaches are discussed when it comes to correlating the MIR-
predicted images with the concentrations of the different mixing fractions. Two of 
these are univariate, and the third method is based on multivariate calibration. 

Thresholding 

Thresholding is perhaps the most well-known “traditional” way of analysing the 
frequency of bright pixels in an image. By converting the image to black and white at 
some critical grey-level threshold-value and then counting the number of "white 
pixels", an estimate of the concentration  of the class can be calculated. If the black and 
white image is binary (0’s and 1’s), calculating the mean value will give the mixing-
fraction directly. 

Problems with this approach applies to noise in the data that f. ex. may result from sub-
optimal lighting conditions (highlights and/or shadows), which can lead to severe 
misclassification etc.  

The Mean Grey-level Value 

Especially when dealing with two-component mixtures, in which one end-member is 
predicted bright and the other dark, calculating the mean grey-level value will correlate 
to the fraction of bright pixels in the image. This method does not give an answer in 
fractions units though, and some further (linear) adaptation of the result will be 
required. 

Histogram Calibration - Extended MIR (MIR+) 

Instead of thresholding, or calculating a mean grey-level value for the image, the entire 
grey-level histogram[18] of the predicted image can be used for multivariate calibration 
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MIR Ŷ
X 

PLS 3.2%

using PLS. This approach is the one most similar to the AMT approach, which also 
depends on multivariate calibration of (complexity) spectra. Figure 6 shows how MIR 
and 2-way PLS relates to the multivariate image X, the predicted Ŷ-image and its 
histogram. The MIR model being used for Ŷ-prediction has been established earlier 
using the approach outlined in Figure 5. The PLS-model used to predict the final 
mixing fractions has been established on the basis of a calibration set of several 
histograms with known Y-values. This is in fact a standard 2-way PLS multivariate 
calibration, in which the initial MIR Y-image prediction_cum_histrogram derivation 
can be viewed as an image pre-processing step. 

This new compound MIR/Y-pred/histogram/PLS-approach is termed the extended 
MIR: MIR+. 

 

 

Figure 6. The MIR+ Ŷ-histogram prediction approach. A Ŷ-image is predicted from the Multivariate Image X using an 
existing MIR model. The histogram of the Ŷ-image grey-levels is used for training  a traditional 2-way PLS-R  model. 

It might perhaps be argued that instead of predicting an image prior to mixing fraction 
calibration, why not just use the raw image grey-level histograms directly? In some 
simple cases this may indeed be possible, but certainly not as a general approach. 
When working with a large number of video channels, it can be seen generally to be 
difficult to isolate just one singular channel that optimally enhances a single class with 
respect of all other classes, compare above. The powerful data compression that lies in 
MIR (PLS), and the extended MIR+, is most often much more effective for extracting 
the kind of information needed for the calibration of a specific class or for quantitative 
mixing fraction prediction. 

DATA PRESENTATION 

AMT and MIR has been applied in parallel to all the data sets presented briefly in the 
introduction above. The data sets are further presented in a sufficient detail below - 
with representative imagery and accompanying explanations - in order to be able to 
serve as the common framework for comparing the alternative AMT and MIR+ 
quantifications below.  
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Three different mixing product types were used: two-component dry granular mixtures, 
three-component "wet" mixture and three different series involving mixing fat into 
minced meat product types. 

Two-Component dry Granular Mixtures 

Four representative combinations of two-component granular mixtures was selected for 
the present purpose - out of a significantly larger experimental design of nine mixing 
series, which have been designed to span a maximum coverage w.r.t. the three 
principal design variables: colour contrast; reflectance contrast and morphological 
contrast. (These design variables represent critical material factors involved in image 
analytical imagery, representing the primary image quality response(s) to the 
illumination conditions etc.). This background study specifically only addresses the 
AMT-prediction feasibility studies.  

The four series chosen here represent both "easily AMT-modelled" systems, as well as 
their distinct counterparts, i.e. systems which did not lend themselves to fair AMT-
modelling - perhaps potential candidates for the alternative MIR+ approach?  

The first dry two-component mixture consists of whole-grain black pepper and white 
PVC-pellets, generally of similar grain size, Figure 7. This mixture was chosen 
because of its marked high spectral - (large colour difference) and textural contrasts 
(relatively large difference in grain form definitions). The data set contains 11 principal 
mixing fractions, all imaged with four replicates. For one component the fraction was 
[0%, 10%, 20%, …, 100%], with complementary fractions for the other. 

 

Figure 7. Whole-grain black pepper and white PVC-pellets. Training set-up of pure classes. 

The second dry granular mixture involved a whole-grain coriander and ditto white 
pepper mixture, illustrated below. This system was chosen as a "maximally difficult 



   13

system". Thus a mixing system was deliberately designed to have maximally low 
spectral and textural, as well as morphological contrast for both end-members, i.e.  In 
Figure 8 one observes the dramatic difference to the system in Figure 7. In this system 
it is decidedly not easy to distinguish between the individual grains from either pure 
end-member.   

 

Figure 8. Whole-grain coriander (left) and ditto white pepper (right). Observe the dramatically smaller contrast 
compared with Figure 7. 

The additional two dry mixture systems were chosen so as to represent more 
intermediate contrast ranges for the three design factors. 

The third two-component mixture thus concerned grey and white PVC-pellets, Figure 9 
with relatively high spectral contrast, but distinctly low textural contrast. There are 
however some important differences w.r.t. the individual grain shapes, but their 
average grain sizes are almost equal. Compared with Figure 7 & Figure 8, this system 
is clearly intermediary, as is it's close companion, shown in Figure 10 (the same grey 
PVC-pellets, but now mixed in with green beans). 

 

Figure 9. Grey and white PVC-pellets (of different grain shapes) 
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The last two-component mixture (grey PVC-pellets/green beans), Figure 10, was 
chosen primarily for the marked (large) contrast w.r.t. to the two individual grain 
shapes involved - every other contrast being in the intermediary/low range.  

 

Figure 10. Grey PVC-pellets (left) and green beans (right). The NIR-Red-Green camera used (SILVACAM) is 
responsible for the false colour appearance of the "green" beans in this rendition. Note especially high grain 
shape/form contrast. 

Three-Component Granular Mixtures 

One major three-component example was selected for this study, a real-world 
industrial mixing problem directly from the production line of a Norwegian producer 
of vegetable mixes - in the present example we focused on an evergreen mix: green 
peas/maize/carrot (cubes), Figure 11. The producer is concerned with on-line quality 
control (just precise enough), which translates into an image analysis system, which 
should be able to predict mixing fractions of two of the three components with a 
precision of  8% (rel.) or better. In the laboratory experimental design used here, the 
fractions of each component was varied  in increments 0%, 25%, 33%, 50%, 67% 75% 
or 100%. The imaging system is presented below, Figure 17. 

For this three-component system we experienced occasional rather severe 
homogenisation -, and especially critical pouring segregation when presenting the 
mixed samples to the camera field-of-view, compare above ("Introduction"). It was 
necessary to instigate a detailed sample handling and presentation protocol, to be very 
strictly adhered to for all samples involved - and still some measure of residual 
individual sample preparation variance could be observed. This we decided to keep as 
it was however, for reasons of compliance with realistic on-line sample preparation in 
the industrial realm. 



   15

 

Figure 11. Green peas (left), carrot (middle) and maize (right) pure training classes(100%) respectively . SILVACAM’s 
false colours figures prominently here, but are of no consequence for the spectral contrasts involved. 

On-line Minced Meat Mixing Fraction Specification Control 

Applied Chemometric Research Group is presently involved in a long-term campaign 
of particulate matter and powder application studies. One recent new avenue concerns 
outlet quality control from a novel industrial mixer (the "IDE-CON" mixing concept), 
which is briefly presented in Figure 12. 

 

Figure 12.The IDE-CON continuous mixer. Note the two counter-rotating shovels of the new, proprietary IDE-CON 
design. 

The IDE-CON continuous mixer is presently used extensively in selected test industrial 
sectors, amongst which mentioning of the following high-precision target examples 
should suffice to illustrate the importance a reliable mixer-outlet product specification 
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verification: on-site road tarmac mixing/blending from three raw materials (all at 
elevated temperatures of about 85°C; several poly-component health product 
manufacturing, with up to 10 components in concentrations ranging from, say 1000 
ppm to typical filler status (50-90%). 

The IDE-CON mixer has the added versatility of being able of continuous on-line 
adjustment of the blending/mixing regimens as needed. Therefore it is also used in 
industrial sectors and branches, for example the food - and feed producers etc. where 
non-invasive (indeed sterile), strongly regulated, precise control facilities are required 
by the authorities. As an example, from a leading Norwegian agricultural producer, our 
last example is related to industrial production of minced meat products - in which 
quick adjustment  of the mixer is often required, (virtually instantaneous changes in the 
current product specifications). Three different meat + fat mixture series was studied 
directly in the IDE-CON mixer:  bovine meat vs. fat (Figure 13), pork vs. fat (Figure 
14) and (bovine + pork) vs. fat (Figure 15). The fat fraction to be added varied from 
22% to 42 % in 4%  steps in all three series. 

 

Figure 13. Bovine meat with incrementally added fat. From left to right: 21%, 33%  and 41%. SILVACAM false 
colours. 

 

Figure 14. Pork with incrementally added  fat fractions. From left to right: 22%,34% and 42% fat. SILVACAM false 
colours. 
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Figure 15. ( Pork and bovine) with incrementally added  fat. From left to right: 22%, 34%, and 42%. SILVACAM false 
colours. 

Representative 150g samples were taken at the outlet of the IDE-CON mixer (full 
cross-sectional sampling) after identical mixing times (1 minute) for each new added 
fat-content increment of 4%. Samples were transported in glass petri-dishes, Figure 16, 
directly to our laboratory imaging setup presented below, Figure 17 with less than 20 
minutes duration. There were no transportation segregation or similar in this type of 
mixture samples due to the extremely high viscosity of the meat-fat mixtures. 

 

Figure 16. Petri-dishes with meat/fat mixtures. From top to bottom: Bovine, Bovine/Pork, Pork and pure fat. Fat 
content increases from left to right. Glass covers were removed just prior to imaging. 

IMAGING SYSTEM 

All studies reported here used a trusted, old-time friend of the Applied Chemometrics 
Research Group, the "SILVACAM" NIR/R/G digital camera (modified from an 
original JVC R/G/B television camera by the now defunct Finnish "Karelsilva" 
company (B. Braam). Figure 17 below presents the laboratory SILVACAM set-up. 
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Figure 17. The SILVACAM imaging system at ACRG. Modified JVC-camera, with two quasi-parallel 150W 
illumination sources. Sampleholder (round) on sample table. 

 

All image analysis systems are critically dependent upon a proper illumination system, 
which we have commented upon in several of our earlier powder and mixture studies[2-

6]. Sometimes the AMT-derivation is directly dependent upon a unilateral low-angle 
illumination for example, while for other characterisations uniform multi-source 
illumination fits the bill. Each image analysis characterisation problem in fact always 
necessitates a thorough initial analysis of the proper illumination requirements for 
example. We shall here refrain from further commenting on this fundamental problem 
as all the examples used have been subjected to careful illumination optimisation 
efforts.  
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RESULTS 

Results from applying the alternative AMT and MIR+ approaches on the ten different 
data sets introduced above will be presented in parallel below. Focus is on comparing 
the optimal multivariate calibration models produced for each individual case; thus we 
performed individual multivariate calibration outlier screenings, and model-
dimensional validations etc. for each model. For precisely this type of relative 
comparison purposes full cross-validation comes to its right with full force [7]. All 
models were calibrated against the pertinent mixing fraction as y1 variable (PLS1), 
while the relevant AMT-spectra or the alternative MIR+-spectra served as the X-data 
block. 

The number of objects (images) and replicates are equal in MIR+ and AMT, but the 
pretreatment used wary in the examples. In some cases all replicates are shown (Figure 
18 left), while in other cases replicate-spectra have been averaged (Figure 18 right), 
resulting in fewer objects in the model. 

All AMT-spectra have been centered and scaled to uniform standard deviation (auto-
scaled). In some MIR+ cases, scaling the data can blow up noise and is thus avoided 
where possible. In other cases though, scaling the MIR+ histograms was found a 
necessity.  

Two-component Granular Mixtures 
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Figure 18. Black Pepper and PVC Pread-Meas plots. Left: MIR+, Right: AMT 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 3 0.985 0.731 0.993 3.845
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AMT 2 0.951 2.389 0.986 5.367

In the high-contrast ("easy") black pepper vs. white PVC-pellets case, MIR+ performs 
slightly better with one additional component (fully significant according to the 
validation) is used. 

This is one example where scaling is applied to the MIR+ histogram. The predicted 
images are closely to a true black & white (one-bit) image, with information mainly in 
the beginning and end of the spectra. Scaling the data allows also the middle part of the 
histograms to influence on the model. Because of the very high contrast between the 
elements, the current example could possibly also be solved directly with thresholding. 
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Figure 19. Coriander and White Pepper Pread-Meas plots. Left: MIR+, Right: AMT 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 4 0.951 2.543 0.987 5.105

AMT 3 0.940 3.496 0.976 6.989

By using one more component, MIR+ shows marginally better performance in the 
"very difficult" coriander vs. white pepper example. 

In this example, scaling the MIR+ data was not required. Because there is almost no 
contrast between the two classes, this example is not solvable using thresholding; a 
more subtle approach is required, hence MIR+. 
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Grey and White PVC-pellets 
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Figure 20. Grey and White Pread-Meas plots. Left: MIR+, Right: AMT. 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 2 0.945 2.279 0.986 5.435

AMT 2 0.981 0.735 0.985 5.550

In the case of the grey and white PVC-pellets the results are practically equal, although 
here AMT displays a clearly more comfortable slope (of a fitted "predicted vs. 
measured" regression). 

This is another example of high spectral contrast, especially in the predicted images. 
Again, the data was scaled to extract information also from the middle parts of the 
histograms. 
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Grey PVC-pellets and green beans 
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Figure 21. Grey PVC-pellets and green beans Pread-Meas plots. Left: MIR+, Right: AMT. 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 1 0.952 2.582 0.989 4.922

AMT 2 0.928 3.807 0.991 4.695

MIR+ has a slightly better performance in the grey PVC-pellets/green beans example, 
considering  it uses less components.  

In this example, the MIR+ histograms were not scaled. There is only small contrasts 
between the two elements, and the model uses the major “shape” of the histogram, and 
not so much the intermediate variables.  
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Three-Component Granular Mixture 

PLS1 (y1 : Peas mixing fraction) 
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Figure 22. 3-component mixture modelled for Peas. Pread-Meas plots. Left: MIR+, Right: AMT. 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 2 0.976 0.716 0.992 3.866

AMT 5 0.964 1.721 0.988 4.936

Concerning pea mixing fraction predictions, MIR+ is clearly performing best, using 
two components vs. AMT which uses five. 

In none of the three cases involving three-component mixtures, scaling were applied to 
the MIR+ data. In the plots above (Figure 22), notice that the number of elements differ 
by a factor two. This is due to the use of a different averaging factor in the MIR+ and 
AMT models. Final comparison is not hampered by this. 
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PLS1 (y1 : Maize mixing fraction) 

0

20

40

60

80

100

0 20 40 60 80 100
 mais-avg, (Y-var, PC): (*,1) 

1

23

45

6

7

8

10

11

12

13

Elements:
Slope:
Offset:
Correlation:
RMSEP:
SEP:
Bias:

 12
0.957150
1.712211
0.975331
6.702771
6.988006
0.405299

Measured Y

Predicted Y

 

-30

0

30

60

90

0 20 40 60 80 100
 IRtrippeltestMa…, (Y-var, PC): (M,3) 

1
2

3
4

5
7

8

9

10

12

13
14

15

1718

19
20Elements:

Slope:
Offset:
Correlation:
RMSEP:
SEP:
Bias:

 17
0.955992
1.894163
0.977462
6.899899
7.110643
0.146801

Measured Y

Predicted Y

 

Figure 23. 3-component mixture modelled for Maize. Pread-Meas plots. Left: MIR+, Right: AMT. 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 1 0.957 1.712 0.975 6.703

AMT 3 0.956 1.894 0.977 6.900

The maize prediction is difficult in both cases, and the results are almost identical. For 
maize both estimates of RMSEP are the largest of all three vegetables. The only 
difference is that MIR+ uses one component, while AMT uses three. 

 

PLS1 (y1 : Carrot mixing fraction) 
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Figure 24. 3-component mixture modelled for Carrots. Pread-Meas plots. Left: MIR+, Right: AMT. 
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 # Comp Slope Offset Correlation RMSEP 

MIR+ 3 0.955 1.546 0.981 5.063

AMT 3 0.951 1.936 0.997 2.843

In the carrot example AMT performs significantly better. The number of components 
are equal. Carrot cubes are clearly of a significantly different shape than either peas or 
maize. 

 

Minced Meat 

This example is organised in much the same way as the two above. MIR+ training 
images, (Figure 5) were acquired for 100% pure meat of the relevant types and pure fat 
respectively, while in the experimental mixtures fat in the range of  approx. 20-40% is 
studied, which is in the representative industrial production range. Meat was calibrated 
against a black Y-image, and fat calibrated against a white ditto (compare Figure 5). 
Starting at the reference minimum fat-content at 21%, the 4% fat increments (v/v) were 
added successively in a standardised manner and three replicate-samples were removed 
for each fat-level. For each of these parallel physical replicates, three images-
replicates were also acquired by rotating the sample container 120 deg. in front of the 
camera. Thus there were a total of nine images representing each fat-level; there were 
overall six fat-levels in total, wiz. 21%, 25%, 29%, 33%, 37% and 41%. 
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Figure 25. Minced Bovine meat and fat Pread-Meas plots. Left: MIR+, Right: AMT. 
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 # Comp Slope Offset Correlation RMSEP 

MIR+ 3 0.950 1.485 0.974 1.524

AMT 2 0.926 1.905 0.966 1.802

MIR+ predicts the fat content in Bovine meat slightly better, using one more PLS- 
component. 
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Figure 26. Minced Pork meat and fat Pread-Meas plots. Left: MIR+, Right: AMT. 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 3 0.833 5.061 0.891 3.048

AMT 2 0.986 0.381 0.997 0.566

In the pork example AMT performs significantly better, also boasting fewer PLS-
components. 
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Bovine & Pork 
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Figure 27. Minced Bovine & Pork meat and fat Pread-Meas plots. Left: MIR+, Right: AMT 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 2 0.912 3.050 0.979 1.490

AMT 2 0.972 0.426 0.967 1.830

In the combined meat (bovine and pork) vs. fat example, the results are practically 
equal, except w.r.t. the slope of the fitted regression index; this makes AMT a potential 
marginal winner here. 

Discussion 

Two-component mixtures - overview of results:  

Essentially all models for both AMT and MIR+ perform satisfactorily in this first 
overview, but the MIR+ models do perform best, or marginally best, in three out of four 
detailed evaluations of the selected dry two-component mixture fraction prediction 
studies; one medium contrast ("somewhat difficult") case has AMT as best. It is 
encouraging that both the AMT - as well as the MIR+ models essentially both are up to 
the complicated image analysis job set up. The kinds of precisions obtained in these 
first attempts are satisfactory: For all models the total span of validation-estimated 
RMSEP ranges 3.845 - 7.866, while this range for the best four models corresponds to: 
3.845 - 5.550. Based on an average mixing fraction of 50% these latter correspond to 
precisions of 7.7% - 11.1% respectively (rel. %). The better end of this interval 
comprise very respectable precisions for our first attempts image analysis approaches 
(irrespective of whether one chooses to improve on the MIR+ - or the AMT 
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approaches; a rational choice demands a much larger factual results data base than the 
one presently presented). It should be pointed out that the selected two-component 
mixing systems deliberately includes both the supposedly easiest - as well as the 
supposedly most difficult systems; also we were certainly surprised e.g. by the 
unexpected success of the coriander - white pepper case. The complete study of 
representative dry two-component mixing systems is far from finished at present, and 
shall be reported on in its totality at a later occasion. The present results can only be 
characterised as very  encouraging as feasibility studies go.  

 Three-component vegetable mixtures:  

Winners are about equal, wiz. one AMT- and one MIR+ model, and one draw (maize). 
Validation estimates of RMSEP are - peas: 3.866 (MIR+); maize: 6.703 (MIR+/AMT); 
carrots: 2.843 (AMT), which translates to the following rel. % precision (+/- 1 
RMSEP) - peas: 7.7%; maize: 13.4% and carrots: 5.7% respectively (all calculated 
w.r.t. an average mixing fraction of 50% (abs.). Two of these three models, 
characterised by very realistic sample preparation variances, actually reach below 
industry's precision demand of 8% already from these first pilot studies (sic). Clearly 
the troublesome maize prediction can  be better handled by a simple constant sum 
difference calculation! We term these pilot results as absolutely satisfactory. 

Minced meat mixtures: 

For the three best minced meat models, the validation RMSEP estimates translates to 
4.9% (MIR+), 1.8% (AMT) and 5.9% (AMT) respectively (all expressed as relative %), 
compared to a product fat specification range of 21-41% (rel. % calculated w.r.t. an 
average of 31%). For a first pilot study of this relatively complex on-line mixing 
system, precisions of 2-6 rel. % can only be characterised as excellent. Not only are the 
outlet sampling procedures not fully optimised yet, neither are the imaging illumination 
conditions etc. At this time it is only possible to say that there is certainly a significant 
potential improvement to be gained here.  

AMT or MIR+: 

If judgement would have to passed on the basis of the present results alone, the new, 
extended MIR+ approach merits very close attention. The degree of accuracy and 
precision obtained for the present three very different sets of mixing systems is 
impressing indeed. And AMT is a very close runners-up, which should also be related 
to its recent history of well-documented successes, reported in several complementary 
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powder/granular matter studies [2-5], in which AMT has shown similar degrees of 
promising results. Thus we are not at all in a(ny) position to even try to chose between 
these two powerful chemometric image analysis processing alternatives - on the 
contrary: they will of course be extensively further explored in parallel.  

The above discussion has presented more than enough evidence to leave this pilot 
study in a very optimistic state. Much interesting real-world, industrial implementation 
work awaits, as well as an enticing fundamental science, broad-scoped functional 
powder mixing laboratory study - all with exciting potentials for industrial applications 
and economic benefits. 

Interpretations of alternative  model structures: MIR+ vs. AMT 

We end this study by showing what kind of detailed interpretations is made possible by 
systematic evaluation of the prediction models established. By focusing on the final 
validated prediction results, we now examine the models from the perspective of their 
comparative intrinsic data structures, as represented by their loading-weight 
relationships. 

At the same time we shall also honour the inter-comparison objective between AMT 
and MIR+, although the conclusions above would appear to rule out any unambiguous 
winner. Thus this comparison shall mostly focus on the basic differences experienced 
in their respective w-relationships. These two fundamentally different approaches to 
quantification of mixture – and texture features will necessarily lead to very different 
loading-weight spectra (they are de facto modelling quite different features) – while in 
the final assessment they may well lead to almost identical prediction strengths, as 
indeed demonstrated above. 

Figure 28 shows the necessary interpretation background in the form of a small recap 
of the raw images and their corresponding MIR+ and AMT raw spectra respectively. 
This juxtaposition will make it easy to appreciate the following interpretations. 

 
 PepperPVC2hist_H2-total - Matrix Plot, Sam.Set: All Samples, Var.Set: H2

20

40 200
400

S
a

m
p

l
e

s
X - V a r i a b l e s

0.000 4.377e+04 8.754e+04 1.313e+05 1.751e+05 2.189e+05

 Ifull - Matrix Plot, Sam.Set: All Samples, Var.Set: AMT

20

40 300
600

S
a

m
p

l
e

s
X - V a r i a b l e s

0.000 26.527 53.054 79.580 106.107 132.634

 



   30

 
 korhvp2hist_H2 - Matrix Plot, Sam.Set: All Samples, Var.Set: Selected V

20

40 200
400

S
a

m
p

l
e

s
X - V a r i a b l e s

0.000 467.600 935.200 1.403e+03 1.870e+03 2.338e+03

  Iavr2 - Matrix Plot, Sam.Set: All Samples, Var.Set: Selected Variables

5

10 300
600

S
a
m

p
l
e

s
X - V a r i a b l e s

0.000 27.854 55.707 83.561 111.415 139.268

 
 PVChvgr2hist_H2 - Matrix Plot, Sam.Set: All Samples, Var.Set: Selected

20
200

400

S
a

m
p

l
e

s
X - V a r i a b l e s

0.000 1.428e+04 2.856e+04 4.284e+04 5.712e+04 7.140e+04

  Ipvcgråhvitavr2 - Matrix Plot, Sam.Set: All Samples, Var.Set: anglemdy

5

10 200
400

S
a
m

p
l
e

s
X - V a r i a b l e s

0.000 32.600 65.200 97.800 130.400 163.000

 

 
 BeansPVC2hist_H2 - Matrix Plot, Sam.Set: All Samples, Var.Set: Selecte

20
200

400

S
a

m
p

l
e

s
X - V a r i a b l e s

0.000 1.023e+03 2.046e+03 3.068e+03 4.091e+03 5.114e+03

  Gbønner&gråpvcavr2 - Matrix Plot, Sam.Set: All Samples, Var.Set: anglem

3

6

9 200
400

S
a

m
p

l
e

s
X - V a r i a b l e s

0.000 33.152 66.305 99.457 132.609 165.761

 

Figure 28. Data presentation of raw data (left), MIR+ histograms (middle) and AMT-spectra (right). 

Figure 28 shows a two-fold division in high-contrast (row A and C) and intermediate-
contrast mixing systems (row B and D). Individual MIR+-modelling lead to the use of 
auto-scaled models for the former, while the latter were best serviced without. One 
observes the very marked different raw MIR+-spectra for these opposing systems. 

These observations makes for easy detection of a similar pattern in both the MIR+ and 
the AMT w-spectra below in Figure 29. 
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Figure 29. 2-component mixture loading weight plots. Left: Mir+, right: AMT. From top to bottom: Pepper/PVC, 
Coriander/White Pepper, white/grey PVC and Beans/PVC. 

MIR+: 

MIR+-modelling of the intermediate-contrast systems are distinctive (row B and D). 
The first PLS-component, to a large extent, takes good care of the Y-modelling but 
with a very significant addition from PLS-component 2 (row B). For both systems w1 
mimics the raw MIR+-spectrum to a very high degree, while the second order 
addendum from PLS-component 2 attest to a slight shift in the X-variable direction for 
the coriander-white pepper system (row B); for row D system there is an even simpler 
relationship with mixing fractions (Y) leading to only one significant PLS-component. 
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For the more-simple-to-model high-contrast systems (row A and C) one observes that 
two PLS-components are also needed, but with only marginally improved Y-variances 
for the second PLS-component (only first significant according to the validations). It 
will be appreciated that the X-variance is utilised in a very effective fashion caused by 
the auto-scaling.  

AMT: 

For AMT one observes a distinctly opposite pattern. For both high-contrast systems 
(row A and C) there is now a very marked need for both PLS-components in order to 
do the prediction modelling effectively (32% and 64% Y-variance accounted for 
respectively by the second component). Both components are now highly significant 
according to the validations. For both systems, their respective w1- and w2-spectra 
shows essentially the same pattern (rare!), while for the opposing intermediate-contrast 
systems (row B and D) there is only a small (10%) Y-variance addendum from w2. 

With due reference to the rather disparate four systems some underlying systematics 
may perhaps be found. MIR+ manages to combine most of the essential X-variance in 
just one PLS-component (three out of four systems), while AMT would appear to 
favour two-component systems, especially for the high-contrast cases. Our initial  
classification into H, I and L-contrast systems may very well be further refined a.o. 
also based upon this kind of systematic modelling of all systems in the background 
study (nine systems covering the H, I, L-domain more fully). 
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Figure 30. 3-component loading weights plots. Left: MIR+, right: AMT. From top to bottom: Peas, Carrot and Maize. 

For the three-component vegetable system we may use the above interpretation 
systematics in order to simplify what would appear to be a more complex issue. 

Inspection of Figure 30 again reveals an extremely simple relationship for MIR+ 

however. For both peas, carrot as well as maize prediction models, the first PLS-
component accounts for 98%, 96% and 94% Y-variance respectively, with barely 
significant, very minor additions for the second components, a very clear one-
component trend. 

In stark contrast to this, the AMT-relationships show marked multi-component 
features, some using even more than two validated components, thus further 
contributing to the overall MIR+

 vs. AMT relative pattern. MIR+ is able to model even 
these, clearly more complex systems, still basically using only one PLS-component – 
no doubt primarily due to its underlying dichotomous 0/100 model-definition. AMT on 
the other hand, while able to reach essentially identical prediction validation results, 
does this in a distinctly more elaborate fashion in which several essential contrast 
phenomena are found distributed over more PLS-components.  
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The remaining meat-fat systems (Figure 31 below) are no doubt one order of 
magnitude more complex still. But here again for MIR+ we find the exact same 
dispositions as for the vegetable – and the dry powder systems both: extreme reliance 
on the first PLS-component accounting for 88%, 98% and 93% Y-variance 
respectively, while AMT here shows especially complex multi-component patterns, 
also between the different meat-fat mixing series internally. In fact there would appear 
to be very interesting detailed interpretation possibilities for this latter system as 
regards these internal AMT differences, which we shall never-the-less leave for an 
other occasion since the overall comparative MIR+ vs. AMT pattern remains the same 
for this system as for the two above:  

Considering the gamut of all the three pilot studies, covering a broad swath of relevant 
real-world, industrial mixing two-component and three-component end-member 
systems, the overall conclusion would now appear to have become clear: 

 

MIR+ can do with few – what AMT must do with more. 

 

Following Occam’s razor, we then must point to MIR+ as a very powerful new 
complement to AMT in the family of multivariate image regression problem-dependent 
pre-processing  facilities, which we intend to develop much further with great interest. 

AMT on the other hand, confirms its status of being able to model even very complex 
systems with a detailed internal model structure, well suited for in-depth 
interpretations. 
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Figure 31. Minced Meat loading weight plots. Left: MIR+, right: AMT. From top to bottom: Bovine, Pork and 
Bovine+Pork. 
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