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ABSTRACT 

This paper deals with generic problems regarding segmentation for cross validation in 
multivariate image regression. Multivariate images are characterized by a very large 
numbers of pixels which usually are highly redundant. When several thousand (ten 
thousand) pixels or more represent the same object, special considerations are required 
for proper cross validation segmentation. 

A new approach for guided segmentation is introduced, in which the validation 
segments are specifically delineated by the informed user in score space. The practise 
of "blind", automated segmentation, which is dominating 2-way cross validation, is 
found to be useless in the 3-way MIA regimen. Problems concerning which order of 
components to use for the segmentation delineation are illustrated and the necessary 
precautions needed to ameliorate this approach are discussed. A general solution to the 
problem, called higher-order components guided random sampling , is  described in 
detail, which may even also shed new light on current chemometric cross-validation 
practises in the conventional 2-way realm. 

This new cross-validation approach is illustrated with multivariate image data sets 
which are known from the pertinent literature for easy comparison.  

 

INTRODUCTION 

This paper is the second in a series regarding Multivariate Image Regression, MIR, 
which has been developed to create regression models between multivariate images 
[1]. For a general introduction to this field, please see part 1 [2], in which the complete 
phenomenology of the three principal cases of multivariate image regression was 
detailed. 

A multivariate image is a 3-D OOV matrix [3], i.e. two ways are objects (pixels in 
rows and columns), while the variable-way is comprised by different channels, e.g. 
colours. There are quite distinct differences between this 3-way domain and the 
complementary OVV domain, well-known from the three-way decomposition. These 
two domains do not in general make use of the same data modelling methods [2]. Here 
we treat OOV (MIA, MIR) exclusively. 
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In any multivariate model that will be used for prediction, it is important to know the 
predicting powers of the model. This is usually done by estimating the prediction errors 
as a measure between known and predicted values. A popular prediction measure is 
RMSEP (Root Mean Square Error of Prediction) which is defined as 

 

Equation  1 

 

where ŷi refers to the predicted value, and yi,ref is the known value [4]. 

The procedure of testing prediction performance is known as validation. To perform 
this optimally, at least two sets of data are required, one for calibration and one for 
validation. When a model has been established, using the calibration set, the validation 
set is subsequently used for predicting the ŷ-values of the validation set for 
comparison, e.g. according to equation 1. 

At least two variations for this type of validation exist, one is known as “test set 
validation”, the other as “cross validation”. In test set validation, a completely new, 
independently sampled dataset is acquired, in addition to the calibration set. This 
demands that an identical sampling procedure is used for both data sets.  

If this is not feasible, a different, less optimal, approach will have to be resorted to. 
Cross validation extracts a pseudo-validation set from the calibration set before 
building the model on the remaining complement of data. The extracted data is now 
used for validation. This approach may take several different forms, but all are closely 
related, in that they per force must correspond to a number of so-called segments in the 
list: 2,3,4,5....N, where N stands for the total number of objects in the original 
calibration set. After prediction errors have been estimated for the one left-out 
segment, it is replaced back into the modelling base and a new model is created in 
which a different segment is being kept out of the modelling etc. This is continued until 
every segment, and object, has been used for validated, hence the term cross validation 
[5]. 

To get realistic validation estimates, it is important that the calibration and validation 
datasets represent two independent samplings from the target (parent) population. The 
degree of difference between them should reflect the variations that can be expected 
associated with the future measurement situation in which the regression model is to be 
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used for prediction purposes [4]. It is easy to see that test set validation is the only 
approach which honours all these requirements, ibid. 

In 2-way chemometrics there are steadfast different opinions regarding how exactly to 
divide the data in calibration and cross validation sets or segments [6]. From so-called 
full cross validation (leave one out) on the one hand, to two-segment, so-called "test set 
switch" on the other; the latter represent a singularly unsatisfactory choice of 
terminology, as there is no "test set" present at all. It is always possible to use any 
intermediate number of segments from the list: 2,3,4 ....N. The relationships between 
test set validation and these systematics of cross validation remain an area of some 
confusion in conventional 2-way multivariate calibration [4]. In multivariate image 
analysis, however, distinct and special considerations are required to which this paper 
is dedicated.  

There are two major characteristics in image data that are rarely found in 2-way data. 
Most striking is the number of “objects”. In a conventional video image (~500x700 
pixels), there are more than 350.000 “objects”, i.e. pixels, in the range [0..255]. 
Removing any single object from this amount of data is not going to change the model 
adequately to perform any useful validation [4]. Also, calculating 350.000 sub-models, 
full cross validation, is not very tempting. 

Secondly, and much more important to consider, is the large redundancy that exists in 
image data. Pixels lying close together in the image space are likely to represent the 
same object, and therefore often have closely similar values. Two-block data sets, for 
example in which every second pixel, say, is to be used for validation, would 
necessarily produce two almost identical images, clearly leading to inferior validation, 
ibid. This would correspond to some spatial (image space) segmentation scheme. With 
knowledge of object selection traditions in 2-way data analysis, the reader might well 
alternatively ask: “Why not simply use random sampling then?” This would 
correspond to a notion of a fair "blind", automated segmentation strategy. Again, 
consider the very large amount of data (pixels) present. Sampling 50% randomly out of 
350.000 objects would most likely again simply produce two practically identical 
datasets. The last refuge from frustration of trying to generalise from the well-known 
2-way regimen into the 3-way MIA/MIR realm will probably be to throw ones hands in 
the air: "Then use a larger number of segments, 10 or so!" - We shall show below that 
all such "blind" segmentation strategies are doomed to failure in the multivariate image 
regimen, irrespective of the actual number of segments chosen - if not specifically 
related to the covariance structure in the multivariate image.   



 4

In fact, multivariate image analysis requires a complete reconsideration of relevant 
strategies for selecting relevant data sets for calibration and validation. A new a 
strategy called “guided random sampling” is suggested below. In guided random 
sampling the user decides how the data is to be divided into the pertinent sets. This is 
neither done randomly, nor by a pre-specified "blind" number of segments, but with 
very specific respect for the empirical data covariance structure present (in the score 
feature space). A different angle from which to attack the data segmentation problem is 
required. Following the MIA experience this angle is to be found in the score-space. 

Nomenclature 

The following notation is used: 

X Matrix of predictor variables 

Y Matrix of dependent variables 

y Y-vector 

T Matrix of X-scores 

U Matrix of Y-scores 

 

CASE STUDIES 

For illustration purposes, several examples mostly based on already published 
multivariate image data sets will be used [7, 8]. The master dataset consists of a 
512x512x8 image, the Montmorency Forest experimental data set [7, 8], where the 
channel with lowest wavelength is here chosen as the Y-image in the present context. 
This is not to be understood so that we suggest to predict this channel from the 
remaining seven others (although this actually might be an excellent solution for 
recovering a "corrupted" channel, which is often enough met with in remote sensing) - 
rather we make good Y-use of this particular channel in order to illustrate the special 
image regression case of Y-total, compare [2].  

In figure 2 the pertinent T1-U1 score-plot from this application is shown. The cross 
validation challenge is here to divide this plot in, say,  two sets (segments) that both are 
equally representative of the actually covariance structure present. A simple two-split 
in this plot may easily give rise to a significant difference between the subsets if the 
data structure does not comply well with a simple joint multivariate normal distribution 
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assumption. In multivariate image analysis we have yet to find such simple 
relationships! Some objects in one set will not be equally represented (if at all) in the 
other, and validation may easily tend to become unbalanced. A(ny) two-split - alone - 
would almost always be in danger of being unbalanced.  

 

Figure 1. The scene space  master image data which will be used for illustration, the 
Montmorency Forest data set [7,8]. The image consists of 512x512 pixels in eight bands 
(Channels, variables). Here it is represented by channels 1-2-3 as R-G-B. 

To solve this problem, we suggest that the data set - generically - is divided in eight 
segments, sampling both along as well as across the dominant covariance data 
structures in the following way. 

Initially the data is split in two halves along the main covariance direction. In figure 2 
this would be a line passing through the two modes of the highest concentrations of 
pixels with similar score signatures, i.e. topographic “peaks”, compare [3,8] (figure 3), 
which are coloured red and orange in fig. 3. Each of these parts should now contain 
approximately 50% of the objects, and all main classes should be represented - at least 
the classes which go along to make up the dominating elongated covariance trend. 
Secondly, intersecting the first line, a new line should be drawn representing the 
second most important covariance direction, again as judged from the pertinent MIA 
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score cross-plot conventions, ibid. It is important that this second direction really 
corresponds to what the user perceives as the second most representative part of the 
overall covariance structure (more examples to be given below); thus there are no 
requirements for orthogonality of these two salient user-delineated covariance 
directions etc. This gives four segments, which each ideally should contain about 25% 
of the objects - barring whatever "surprises" may be in waiting in the higher-order 
components not captured in this first delineation. This, generally oblige, axis cross 
delineation is all the user has to supply in order for our new cross validation procedure 
to take over. 

 

Figure 2. T1-U1 scoreplot from the MIR  analysis of the image in figure 1. 

After the user has drawn this second line, the software draws the four lines between the 
endpoints of these backbone intersecting lines. The software locates the intersection 
point, and finally calculates the midpoints between the corners of the outer frame. 
Lines are then drawn between the midpoints and the intersection point. An example of  
a resulting eight-segment mask is shown in figure 3. This configuration illustrates a 
generic eight-segment mask which it is the user's task to implement on top of a specific 
T-U, or T-T score plot. 

With this type of mask, there are three functional combinations of subsets consisting of 
eight, four or two validation segments respectively. When selecting and combining 
sets, they should be opposite with regard to the centre point. Figure 4 shows the two 
compounded sets used in two-segment cross validation. In general each of these non-
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overlapping two-fold division of the image covariance structure takes the form of a 
Maltese Cross, illustrated vividly in fig. 4. 

Notice in Figs. 3 & 4 how some obvious outlying features have been  excluded already 
in this first stage of cross validation segmentation (top right portions). 

 

 

Figure 3. Left: Sketch of cross validation segment splitter initiated by two master lines drawn by 
the user. Right:  Example of eight cross validation segments defined in a score-plot, T1-U1. Note 
that outlying pixels can be excluded already when delineating this mask. 

Case 1: Full Y-image 

The first case is a study of what was found in [2] to be a comparatively rare situation in 
image analysis; the full Y-image. In this situation, each object in X, each pixel, also 
has a corresponding representation in Y. This furnishes a particularly illustrating 
example of the new image analytical cross validation approach to be outlined. A more 
usual situation is studied in case 3.  

While figure 4 shows the two validation data sets in the scoreplot, figure 5 displays the 
same data in image space. Pixels marked with white colour is used in the set. 

Some outlying parts of the data was left out of the validation set entirely, because these 
pixels were identified as outliers already when delineating the problem-specified 
Maltese Cross region of interest. Alternatively this built-in outlier remover can be 
refined by making a local model [3,8] prior to the cross validation, allowing only the 
specific, problem-dependent objects of interest to be represented in the scoreplot. 

Line 1 

Line 2 
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Figure 4. The two complementary “Maltese cross” validation data sets selected in the T1-U1 
scoreplot shown in figure 2. Note how both achieve good data structure representation. 

 

  

Figure 5. The two complementary validation segments selected figure 4 projected to image 
space. Note how both achieve satisfactory coverage and spatial representation. 

Studying the images in figure 5, it should be fair to say that these two data sets 
represents  approximately the same objects at the scale of the overall, full FOW image, 
with only a small difference at the most detailed levels. What you SEE in the score 
space rendition, fig. 4, is exactly what you GET, fig.5. The user has the full ability to 
iterate his or hers first tentative delineations of the Maltese Cross configuration by 
careful inspection of the RESULTING disposition of the two compound, non-
overlapping scene space renditions, fig. 5, until a satisfactory results has been 
achieved. 
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 Figures 6 and 7 shows what happens if eight segments were to used independently as 
in a conventional eight-segment cross validation. Obviously there are very great 
differences between these eight datasets, in fact there is an absolute certainty that these 
sub-models will be totally incommensurable with each other. This is a dramatic 
illustration also of the general cross-validation "problem" when the relationships 
between the X and the Y-space is more complex. In the present image analysis 
example, it is evident what goes wrong, were one to use an eight-segment (12.5%) 
cross validation scheme. 

Figure 6. Eight individual validation segments in the T1-U1 scoreplot and the corresponding 
image space. Note how none of these achieve neither data structure nor spatial representa-
tivety. 
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Case 2: Problems 

It is possible to run into problems with this approach if great care is not taken in the 
CV segmentation step however. If the segments are too small, they will very probably 
not be representative for the entire dataset. Another possibility, as will be shown in this 
case, is failure drawing the optimal guiding lines. Figure 7 and 8 shows what happens 
when the guiding lines split the data in a off-centred fashion. Clearly these two Maltese 
Cross configurations are NOT making up a good, balanced 50/50 cross validation 
bases. As can be seen even a small off-centred two-split has a dramatic effect on the 
two relative datasets because of the very high number of similar pixels making up the 
covariance backbone of the data structure. One dataset is provably very different than 
the other with very obvious poor, non-representative validation results to be expected. 
The current approach is thus very sensitive to the precision of - and the understanding 
behind - the user-interaction. 

  

Figure 7. Corresponding scoreplot (T1-U1)  and image for off-centred Maltese Cross. The 
complementary 50% segment is shown in figure 8. 

Another potential problem is when the modes (the "peaks") in the scoreplot does not lie 
on a straight line. If there are more than two peaks of interest, drawing a representative 
two-split line through them is practically next to impossible. This problem is illustrated 
well by a scoreplot from a different representative data set, also from [2], illustrated in 
figure 9. This example illustrates with all clarity why multivariate image analytical 
endeavours usually are of an order-of-magnitude more complex than in the ordinary 
two-way regimen. 
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Figure 8. Corresponding scoreplot and image for off-centred Maltese cross. The contrary 
segment is shown in figure 7. 

 

 

Figure 9. T1-T2 Scoreplot from a complex dataset showing a 7-8 mode (“peaked”) curved data 
structure. Observe how it is apparently impossible to apply a Maltese Cross segmentation on a 
data structure as complex as this. 

Case 3: Y-grid 

More commonly than the full Y-image, is when X and Y are constructed as grids from 
several smaller images. This is a useful approach when making a reference dataset as a 
basis for a regression model. A typical grid image is shown in figure 11. This image 
consists of 6 smaller images of different sausages. The corresponding Y-image 
contains the overall fat-content for each sub-image. The fat content is represented as a 
grey-level as shown in figure 10. This data set-up was discussed extensively in [2] 
where used as a vehicle for explaining the concepts of MIR, Multivariate Image 
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Regression. In this particular case the objective is the be able to predict the average fat 
content in the six heterogeneous sausages (left in fig. 10). 

  

Figure 10. Illustration of the Y-grid MIR case. Six sausages, left: (X-image, variables 1, 2 and 
3) and corresponding fat-content, right (Y-image). 

As can be seen from the Y-image in figure 10, there is no unique Y-value for each 
pixel in X. This phenomenon occurs when an overall value is to be predicted from an 
image, and it has a somewhat negative effect on the T-U scoreplot. This effect is 
shown in figure 11 the pertinent T1-U1 scoreplot from the sausage data. 

 

Figure 11. T1-U1 scoreplot from the sausage fat prediction case. Each line represents a 
specific Y-value, or sub-image, compare figure 10 (right). 

In figure 12 it will be demonstrated that applying the eight segment Maltese Cross 
scheme in a T-U plot, as the one in figure 11 is not at all straight forward. The nature 



 

 

13

of the T-U plot in grid cases will force an uneven distribution in the image-space, 
almost no matter how the eight-fold segmentation mask is delineated. Also observed 
how the score space delineations are very difficult to evaluate because of the extremely 
discrete nature of the Y-levels present in a Y-grid case; for full details, see [2]. 

 

 
Figure 12. Y-grid case, two-block segments from selection in T1-U1 plot. Note extensive
unbalance in the image space (right). 

In figure 12 it is evident that especially the two lower and the middle right X sub-
images are very poorly represented in the complementary validation segments. This is 
even more so if eight individual segments were to be used, as was shown in the first 
example in figure 6. To save space, this is not repeated for the current example. 

Thus what seemed initially to be a good idea, i.e. the “Maltese Cross” eightfold cross 
validation segmentation in the TU-score space, on further inspection has proved to be 
at best a very sensitive approach - in fact in would be wrong to say that it has proved 
its reason for existence convincingly.  

It can be shown, however, that this is merely a question of application. The critical 
point is not so much how the lines are drawn in the plot, it is what plot the lines are 
drawn in. So far, the procedure has been applied to plots where there are strong 
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correlation in the data, and physical objects have specific locations too, i.e. the familiar 
low-order score plot(s), e.g. T1-U1 etc. which all play a very dominating role in 
conventional 2-way multivariate calibration [4].  Chemometricians will be familiar 
with the fact that in the score space, the first dimensions contain the most structured 
parts of the data, while for the higher-order components there is bound to be less and 
less variance etc.  

With this in mind, the next, perhaps surprising step in the present image exploration 
will focus explicitly on this higher-order score space.  

Figure 13 shows T-scores 4 vs. 5 from the master Montmorency Forest example. What 
is interesting in this plot, is that most of the structural information is now orthogonal 
to the data  delineated in this figure. This indicates that the current plot is well suited as 
a starting point for the cross validation data segmentation. 

 
Figure 13. Alternative higher-order components scoreplot (T4 vs. T5 ) from the 
Montmorency Forest (figure 1). 

Below, a Maltese Cross cross validation segmentation has been applied to the scoreplot 
in figure 13. Figure 14 shows the resulting two non-overlapping segments both in score 
space and image space. As can bee seen from the figure, there is now a very 
satisfactory even distribution in the two segments (and only with very close 
investigation, some minor differences can be found between the image-space 
representations though, which have to do with shadows mainly).  

In figure 15 this is further illustrated by examining the eight segments separately. The 
conclusions from figs 13 - 15 are very clear: when delineating the new image analytical 
eight-fold cross validation segmentation in some appropriate higher-order score space 
rendition, in which most of the substantial data structure is orthogonal, the documented 
sensitivity has been controlled completely. 
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Figure 14. . Maltese Cross validation segments selected in higher-order T4-T5 scoreplot in
figure 13. Note excellent data structure as well as image (spatial) coverage and
representativity. 

 

It is still evident that an "even" rotation of the segments in score-space, leads to 
extremely opposing unbalanced pixel divisions in the corresponding image space. 
From this it is necessary to conclude that many such segments must always be 
combined to form larger fractions of the entire field-of-view, e.g. two 50% segments as 
in figure 14. 

Stepping back to the difficult Y-grid example (sausage fat-prediction), it is now 
interesting to see how this higher-order components approach will behave. Using T-
scores 5 vs. 6 and drawing the two lines that split this data set in as equally 
representative fashion as possible produces the segments shown in figure 16. 
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Figure 15. Eight segments from the T4-T5 scoreplot cross validation splitter shown in both 
score- and image space. Note that an acceptable representation has now been achieved in both 
score- and image space; compare figure 6. 

Compared with figure 12, figure 16 now shows a strikingly more uniform distribution 
of one validation segment in the image with respect to the complementary calibration 
set - and there are only a few, minor differences. Overall, this partition should lead to a 
realistic validation of the prediction model performance even for this very complex 
difficult data structure. 
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Figure 16. Cross validation segments in [T5T6 ] score- and[1,2,3] image space for the sausage 
fat prediction example. Note that an acceptable representation has now been achieved in both 
score- and image space. Compare figure 12. 

Case 4: Cutting to the bone 

One of the key features in image analysis, mentioned in the introduction, is the huge 
redundancy in this type of data. Having 350.000 objects describing, say typically, 10-
20 classes is obviously an overkill. In MIR-cases where reducing this redundancy is 
essential, it is possible to reduce the number of objects dramatically by a simple 
procedure, compare also [8] in which this case was described for MIA. The suggestion 
is shown in figure 17 in the form of the curved (hand-drawn) line, where the number of 
objects have been reduced to a small fraction of the original, but deliberately covering 
all the important classes of interest in the image. This is so because it has been drawn 
specifically to "cover" the most dominating global covariance trend of the image 
feature space. Since this mask is positioned directly along the "topographic" highs, 
compare [8] for full details, it will - per force - be maximally representative for the 
essential data structure present while at the same time allowing for the exclusion of all 
similar pixels lying outside its width (typically 1-3 pixels wide) without any risk of 
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loosing out on the most representative pixels. Observe how we have made use of this 
feature in the so-called "pred-meas" plot (predicted vs. measured), well-known from 
conventional 2-way multivariate regression validation. Thus for fig. 17 below: 

 

 
Figure 17. Freehand line covering the essential covariance structure in a Pred.-Meas. plot. 
After a local MIR model has been created on this basis, the corresponding T1U1 (lower left) 
and the Pred.-Meas. (lower right) plots are shown, validating this type of representative 
sampling of MIA/MIR data. 

Starting out in the strongly correlated pred-meas plot, a one-pixel-wide line is drawn 
covering the main data of interest. This line emulates the global covariance trend as 
best as at all possible. All objects (pixels) covered by this line only, are then used as 
objects in a new, local model [3,8]. This model will contain far less objects, and the 
redundancy in the data will be strongly reduced. In figure 17, a T1-U1 plot is shown at 
the lower left. This can now be used as a starting point for the cross validation 
segmentation. The corresponding local model pread.-meas plot is shown at the right in 
the figure. 

Some comments are required for the last figure. The points and line that can be observed in the 
lower part of the plots, represent the objects that have been left out of the model. In the 
calibration procedure, they have been removed from the data modelling, but for image 
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displaying purposes, it is necessary to include these pixels. To avoid them from interfering with 
the image, they are set to zero-value, and are displayed black in the image. The lower-left point 
is hence the (0,0) coordinate, as all score-values are scaled in the range [0..255] to optimise 
their display. 

 

DISCUSSION AND CONCLUSIONS 

We have shown that the new approach in which segmentation is done based on the 
orthogonal data representation in higher-order score components, is of a powerful and 
general nature, which in most cases will enable a realistic two-split cross validation 
(approximately 50/50). Segmentation following this approach takes the form of two 
non-overlapping “mirror” Maltese Cross configurations, each made up of four “arms”. 
The Maltese Cross is designed specifically to allow equal (but non-overlapping) 
neighbouring segments in parallel along both the user-defined axes of the mask (figure 
3). This enables a near-optimal representative split of the training data set across all 
covariance structure directions, precisely because of this compound nature. 

We have also shown that considerable care is needed when employing this feature on 
the alternative lower-order component plots available (e.g. T1-U1), in which a rather 
large “off-centre” sensitive was demonstrated.  

In general it is not recommended to use cross validation in multivariate image analysis 
with a number of segments higher than two, and then only in the form of the Maltese 
Cross (sic) - due to the much higher complexity of the covariance structures for this 
type of data relative to the experiences from the conventional 2-way realm. 

In multivariate image analysis, there is usually a high degree of redundancy in the data. 
In such cases with relatively few physical objects (classes), data reduction with local 
modelling should be considered prior to validation. We have delineated a simple 
approach for this – the one-pixel-wide swath across the backbone of the dominating 
data covariance structure(s). 
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