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Principles of Multivariate Image Analysis (MIA) 
in remote sensing, technology and industry 

ABSTRACT 
Multivariate Image Analysis (MIA) is a set of interdependent image analysis 
procedures, encompassing both an explorative and pattern recognition mode, as well as 
classification-related facilities. A synoptic overview of all elements in MIA is 
presented by a series of different applications on a comparison data set, from 
Montmorency Forest, Quebec (a high resolution, airborne spectrophotometric image). 

We present extensive justifications for the specific MIA approach - contra a more 
traditionalist image processing mode. MIA is specifically not a one-shot image analytical 
method, but a set of optional, interdependent explorative analysis and classification tools 
to be used by the informed analyst, according to the specific objectives of the image 
analysis problem context. This overview will furnish the image analyst with an overview 
of the principles of MIA needed to compose one's own flexible, problem-specific strategy 
of multivariate image analysis: pixel class delineation in feature space (score space) by a 
topographic analogy and an end-member/mixing class concept.   

The exposition forms a user-oriented complement to the introductory book: 
“Multivariate Image Analysis” (Geladi and Grahn 1996). 

INTRODUCTION 
Esbensen and Geladi (1989) and Lowell and Esbensen (1993) argued at length against 
what was termed a “traditionalist” image analysis paradigm, more specifically the 
universally adopted tradition of starting any image analysis in scene space. It was argued 
that this necessarily must lead to sub-optimal class representations amongst other 
deficiencies. This traditional approach is centred upon the concept of delineating scene-
space areas (objects, or part-object) that are as homogeneous and/or spatially coherent as 
possible, in order to find "representative" training classes. It was shown that this is but an 
optimistic hope at best. In addition there often would appear to be a slight confusion in 
this image analysis tradition by not always specifying clearly in advance whether one is 
engaged in unsupervised (exploratory) or supervised (discrimination/classification) 
undertakings; see in-depth discussion by Lowell and Esbensen (1993). We shall here add 
only a few, but salient additional iconoclastic comments along the way of presenting the 
MIA concepts and illustrations below.  

MIA approach: synopsis 
MIA takes its point of departure in feature space in general, in the so-called score space 
in particular (Esbensen and Geladi 1989, Geladi and Grahn 1996). MIA can to a first 
delineation be understood as a truncated principal component modelling of the multi-
channel image, producing sets of complementary score- and loading-plots. It was 
argued that MIA’s main thrust is that the score-plot comprise the only valid starting 
point for any image analysis, in that this is the only completely comprehensive 
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delineation of the channel covariance structure(s) of the entire image pixel aggregation. 
The score-plot visualises the entire image inter-pixel dispositions (pixel classes, 
groupings, trends, outliers i.a.), while the complementary loading plot gives a graphic 
illustration of the underlying channel covariance/correlations responsible for the score 
dispositions.  

DATA PRESENTATION 

Master data set: rationale  
The comparison data set to be used for all examples in this overview is an 8-channel 
digital image, recorded with the Canadian MEIS II airborne spectrometer, with a spatial 
pixel resolution of 70 cm, as described in McColl et al. (1984) and Esbensen at al. (1993). 
While in satellite-based remotely sensed satellite imagery usually all fine textural detail is 
lost at most of the presently available resolutions, digital analysis of the present type of 
very high resolution airborne imagery of forested scenes have also been fraught with 
difficulties, but here because the data is so highly variable that traditional pixel classifiers 
have been more or less ineffective. With high spatial resolution, individual image pixels 
(very) often tend to cover only minute fractions of the image objects and a pronounced 
"smearing" of discriminable feature space classes is often observed. This is well-known 
the mixed pixel problem. 

This particular data set was chosen because it represents an easily manageable dimen-
sionality, 8 channels. While clearly at the low(er) end of what is representative for modern 
remote sensing, or for technological/industrial imaging spectrometers, say 10 through 256, 
512 channels or even more (be they laboratory instruments or otherwise), this 
dimensionality still allows us to present all the principles and the potential of the MIA 
approach. Perhaps more important, the data set was chosen because of it’s particularly 
high resolution "overrepresentation" of mixed pixels, but it will serve equally well also in 
relation to less resolved (as well for as even more densely sampled image types than the 
present, such as in current medical, tomographic, chemical imaging). It is emphasized 
however that this data set is primarily a vehicle for presenting the general MIA 
approach, and that the various examples of MIA analyses below should not be 
interpreted as specific for remote sensing type imagery - On the contrary, all our examples 
and illustrations have been selected because of their relevance to the general MIA 
application potential. 

Montmorency Forest, Quebec, Canada – forestry background 
This forest scene was acquired in September 1986 over the Montmorency experimental 
forest belonging to Laval University, Quebec by the Canadian MEIS II airborne platform; 
MEIS II is described in detail in Kramer (1996) (B.115). Table 1 list the pertinent 
spectroscopic channel characteristics in the visible and near infrared.  

 Table 1. MEIS II channel characteristics 

 Band  Wavelength (nm)    Bandwidth (nm) 
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 1   776            37.0 
 2   675            39.5 
 3   747            16.7 
 4   481            30.9 
 5   734            16.9 
 6   710            15.6 
 7   698            13.1 
 8   549            31.9 

The Montmorency Forest is located 80 km north of Quebec City near the southern edge of 
the Northern boreal forest that dominates much of Canada. This partly heavily terrained 
forest contains mainly balsam fir, with minor white birch, white spruce and a small 
number of red spruce, trembling aspen and some other species. 

The site selected for this study contains a cutover which was cleared in 1975 and 1978, 
and which has both natural and planted conifer regeneration resulting from the forest 
experimental and observation campaigns in the ensuing period through 1986. Fig. 1 shows 
the master Montmorency Forest scene, as depicted by MEIS-II channels 1:2:7 (R:G:B).  

 
Figure 1. Composite scene display (R/G/B: 1/2/7) 

The cut clearing is characterised by balsam fir stands around the perimeter, one white 
birch stand in the central area, a small stream (bottom right), east-west trending dirt roads 
and so on. The spatial and temporal regeneration history of this multiple cutover has been 
the subject of several extensive Laval University Forestry Department studies and is 
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accordingly very well understood. This scene is called the "Clear-cut Study" in the 
illustrations that follow below. Further in-depth scene description and full background 
forestry references i.a. was given by Esbensen et al. (1993). The specific scene history, as 
will transpire below, turned out to be a particularly illustrative context both for illustrating 
the comprehensive MIA approach as well as allowing a powerful insight into the 
possibilities for spatio-temporal analysis of imagery characterised by emergent structures, 
i.e. temporally and/or spatially evolving/growing/changing structures. 

TOOLS IN MIA 

MIA score space starting point  
Figs 2 & 3 show the most relevant PC-component cross-plots pertaining to the 
Montmorency Forest scene.  

Figure 2. Standard MIA split-screen score plots (PC12,PC13,PC14,PC23) 

Note how the main MIA score cross-plots specifically uses the same PC-component as 
the X-axis; this usually is PC-1, although the image analyst may opt for any alternative 
(e.g. PC-2 or PC-3), because of the well-known decreasing variance associated with an 
increasing number of principal components calculated. In typical remote sensing 
imagery and in many other comparative types of imagery, PC-1 often represents an 
overall albedo/reflection/.... intensity, or contrast measure, that either may, or may not, 
be well suited for this common X-axis role depending on the specific image analysis 
context (hence the alternatives).  

Every scene has it's own distinct score-space layout - although many similarities and 
analogies eventually will be noted in building up one's own multivariate image analysis 
experience. The integrity and individuality of each new multivariate image that is to be 
analysed cannot be overemphasized. The score space layout cannot be anticipated in 
advance, hence there is never any given a priori method (“algorithm”) for exploratory 
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image analysis, - and neither for classification or for segmentation. This is the first main 
difference between traditional image analysis and MIA.  

Every scene has it's own distinct score-space layout - although many similarities and 
analogies eventually will be noted in building up one's own multivariate image analysis 
experience. The integrity and individuality of each new multivariate image that is to be 
analysed cannot be overemphasized. The score space layout cannot be anticipated in 
advance, hence there is never any given a priori method (“algorithm”) for exploratory 
image analysis, - and neither for classification or for segmentation. This is the first main 
difference between traditional image analysis and MIA.  

  

Figure 3. Standard MIA split-screen loading plots (cmp. Fig. 2 for layout) 

By way of contrast this paper endeavours to develop a meta-principle for a general 
approach to multivariate image analysis – and it will be shown that a phenomenological 
analogy with a topographic map will be very useful. 

Fig. 2 shows the entire score space layout (first four principal components) of the 
Montmorency Forest scene in question (all 512 x 512 pixels are included in the PC-
analysis). When a new image is to be analysed, the series of MIA score cross-plot is the 
only systematic, comprehensive approach to the objective data structures present in the 
feature domain. This score-plot array will necessarily display all there is to be learned 
from inspection of the spectral data structure of the image, provided, of course, that all 
pixels have been included in the analysis. The MIA approach is designed upon this central 
concept of having access to all image pixels, which is (very nearly) always an easy task 
with today’s PC-power. Without loss of generality we may assume that all pixels are 
included in the analysis in the expositions below (but even when this cannot be achieved, 
in some specific hardware configuration case, MIA’s design philosophy allows for easy 
remedies, Esbensen & Geladi, 1989). 

The PC-12 score plot always carries the largest fraction of variance modelled (see 
standard principal components analysis theory) and is consequently always assessed first. 
MIA analysts should always make due note of the relative proportions of the total 
variance modelled by each component image. In the present case PC1 and PC2 "explain" 



 

Paper I   Page 6 

(as this modelling parlance goes) 35% and 27% respectively, totalling 62% of the trace of 
overall variance in the spectral covariance X'X matrix. The image analyst should always 
take notice of the individual as well as the accumulated fractions pertaining to all score 
cross-plots inspected so far, lest interpretations accidentally be based on a too meagre 
residual variance. For the Montmorency Forest scene the decreasing variance fraction for 
all eight components breaks down as follows: 35, 27, 10, 9, …. %, which is by and large 
typical of a large number of multivariate imagery types. 

 

Figure 4. Variance modelled [%] per score-image. 

The basic idea in MIA’s score cross-plot set-up is to have one comparison axis with 
which to interrelate the whole series of cross-plots PC-12; PC-13, PC-14 etc. Adhering 
to such a standard set-up, one will need only a small number of cross-plots (one less 
the number of channels) in order to survey the gamut of all possible plots with e.g. PC-
1 as the common X-axis. However there is also an additional number of higher-order 
cross-plots available of the type PC-23, PC24 ... PC-34, PC-35 .... through PC78 (in the 
present master data set case). It is important, especially for high(er) multi-channel 
work, not be unnecessarily bewildered by this potentially overwhelming array of 
additional cross-plots however. In principle everything there is to be known in 
score-space has been shown in the standard series with the one common anchor-axis. 
While it is indeed possible that certain higher-order cross-plots sometimes may serve to 
depict (very) specific pattern - in special cases - usually the inexperienced new user is 
greatly helped by first learning this systematic approach. Thus the standard cross-plot 
set-up includes only one higher-order plot, PC-23, Fig 2. It will serve the novel MIA 
user well specifically not to experiment with the higher-order option without some 
reflection and experience. 
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Colour-slice contouring in score cross plots - a 3-D histogram 
All MIA score cross-plots employ a colour-slicing technique for depicting a 
three-dimensional histogram rendition of the relative number of pixels with identical 
score-pairs; for details see Esbensen and Geladi (1989) and Geladi and Grahn (1996). 
From the outside (“black sea surrounding the island”), in the score cross-plots the 
colour slicing grades olive/dark-green/green/yellow/orange/red/white, signifying that 
0<5<15<45....>255 image pixels have been plotted at the same position in the pertinent 
PC-cross-plot, i.e. at identical score-pair coordinates in this plot. The exact numerical 
progression of the boundary values of these bins is actually only of minor interest; it's 
the overall visual impression of the relative patterns and trends, which carries the 
essential messages - very much in analogy to a topographic map, more of which 
below. 

Brushing: relating different score cross-plots 
The specific choice of the single cross-plot that is to serve as the starting point for a MIA 
analysis is very important. But what about the complementary cross-plots in which the 
same classes of pixels can also be displayed? Brushing comes to the fore. If no 
information to the contrary is present in a specific image analysis situation, it can be 
assumed as a working hypothesis, that the PC12 cross plot carries the most dominating 
(variance/covariance) information. This is so because these two first principal components 
carry the largest and second largest fraction of the total spectral space variance. In specific 
situations however, there is nothing against using any other, problem-specific combination 
of principal components images as the starting score cross-plot. In the present remote 
sensing example, if it was decided that we are specifically not interested in the overall 
reflectance aspect of the original image, this could easily be compensated for, simply by 
letting the analysis start out e.g. in the PC23 cross plot.  

In this first illustration we shall make use of the standard PC12 cross-plot as the starting 
plot. Fig. 5 shows the technique of brushing, i.e. transferring a score space pixel class to 
the complementary other available score cross-plots. In this example we have delineated a 
rather large class "K”. It will come as no surprise how the common PC-1 anchor axis in 
the PC13 and PC14 plots strongly guides the brushed dispositions of all pixels in the 
PC12 master class. One may perhaps appreciate the impression that in some of the plots 
the brushed class is "floating" above the main histogram. Note how the brushed class 
appears to "dilute" the complementary patterns in score space, as is quite possible, 
because the class was indeed defined in another score cross-plot. 

This is a fairly typical result in a situation where one decides to start the analysis with one 
of the higher-order cross-plots, hopefully for a well-reflected reason (sic). With a little 
careful consideration the marked disposition in the PC23-plot might actually easily have 
been predicted directly from the PC13-plot. 

With this standard powerful explorative brushing facility, it is possible to assess every 
tentative MIA-class in the gamut of all other potential score cross-plots - indeed one 
should always do so. Features observed only by brushing include "splitting" (one 
apparently coherent class, actually splitting up into two, or more, classes in higher-order 
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cross plots); "smearing" (obvious effect in the higher-order plots), "dilution" (illustrated 
above) i.a. We shall show several illustrations below. 

 

Figure 5. Brushing of MIA class  “K”, delineated in upper-left quadrant in score plot PC12 

Joint normal distribution - or not  
From extensive data analytical and statistical experience with principal component 
analysis, it is clear that only truly ellipsoidal pixel clusters in all PC-combination 
cross-plots can be said to meet the requirements of joint multi-normal distributions for all 
channels. It is thus very easy and uncomplicated to decide whether a particular class 
actually meets such requirements or not - and thus equally easy to find out whether 
unacceptable breaking of the premises of quite a number of traditionalist pattern 
recognition classifiers etc. will take place or not. Alas, we have yet to see many good 
examples of truly joint multi-normally distributed classes in nearly all types of 
multivariate imagery from science, technology and industry. True a very few have indeed 
been noted in our combined experience, but these cases are vastly overwhelmed by the 
many other types of strikingly non-normal distributions (multi-modal distributions), all of 
which can easily be analysed with the standard MIA approach however. MIA allows the 
user to make allowances for any specific class shape in the pertinent boundary 
delineations. Fig. 6 shows a relatively complex score aspect layout from this realm, which 
is a LANDSAT image from the Myvatn area in Iceland. 
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Figure 6. Fig. 6. Example(s) of complex, multi-modal layouts in score space. Original class delineated in 
the PC12-score plot (upper-left quadrant) 

Local models/local modelling - the link to the classification modus 
We are now in a position to introduce a major theme of MIA, that of so-called local 
modelling. The image analyst may for instance be interested in using just a subset of a 
scene, or of a score cross-plot aggregate, as a basis for a new, independent PC-model. 
Subsets are often on the agenda when it is not the entire square image upon which we 
wish carry out a new PC-decomposition in its own right. Geladi and Grahn (1996) 
develops the theme of local modelling in some detail. Reasons for such a local PC-
modelling facility are invariably closely related to the specific image analytical objectives, 
which of course will vary from image to image.  

Image subclasses come in two distinct varieties only:  

1. Sub-classes delineated in scene space (traditionalist fashion), or 

2.  Sub-classes delineated in score space as bona fide MIA-classes 

In this paper we have nothing more to say regarding the sub-optimality of the first 
category, which has been adequately denounced by Esbensen and Geladi (1989), 
Esbensen et al. (1993), Lowell and Esbensen (1993) and Geladi and Grahn (1996). 

On the other hand, it is a very simple matter to direct MIA's PCA-module to work only on 
a selected score space class as an alternative to the entire image. Based on such a local 
model it's equally simple to follow up and let MIA calculate scores for all pixels in the 
image, said scores now corresponding to the covariance data structure of this local PC-
model only (not corresponding to the entire image any more). This of course also applies 
to pixels in related scenes, images etc. 

The concept of MIA local modelling is very useful for more advanced work, but proper 
understanding and competence is dependent upon a thorough understanding and 
experience of the basic MIA PC-modelling concepts first. Once this has been mastered 
however, there is really only very little difference working with global or local models. 
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The essential difference lies more with the specific reasons behind the need for local 
modelling. MIA's main contribution here again resides with its design primacy of 
delineating the appropriate local models in score space. Amongst other features, the local 
modelling feature can be shown to open up for the second-generation MIA concept of 
Multivariate Image Regression (MIR), which is a hot subject on the agenda for present 
R&D work at our laboratories, to be presented elsewhere (Lied, Geladi and Esbensen 
2000). For a first introduction to the topic of MIR, see e.g. Geladi & Esbensen (1991), 
Esbensen et al. (1992). 

Any local model, selected and delineated on the basis of a pertinent problem-specific 
reason, may serve as a basis for a re-classification of the entire image. It is important 
that completely new images (or relevant parts hereof) may now be classified, or re-
classified as the need may be, in a completely analogous fashion to that of any global 
MIA model classification. This feature opens up for the complete range of 
discrimination/classification facilities of well-known features such as pattern 
recognition, SIMCA-classification etc. - which is an entire topic for itself and for a 
sequel paper. 

MIA ANALYSIS CONCEPT – MASTER DATA SET 
ILLUSTRATIONS 

The topographic analogy 
In the following we shall adhere strictly to a topographic map terminology when 
discussing how to analyse the series of MIA score cross-plots. We shall use 
straightforward analogues: island, peninsula, peak, ridge, rise, flat, watershed, while also 
making use of imaginary, or virtual, “brooks, or rivers” supposed to follow ditto valley 
bottoms etc. We shall rely heavily on the reader's imagination in this endeavour, which is 
all-critical: The topographic analogy constitutes the core of the subject-matter of the 
central MIA principles exposition below.  

The colour-sliced score cross-plots, Fig. 2, are specifically designed to be viewed, and 
interpreted, exactly like a topographic map. Thus e.g. white areas, which invariably will 
be situated only in the centre of the “topographic highs”, signify the 3-D frequency 
histogram peaks, i.e. the highest densities of pixels with similar score-pairs. Uni-modal 
and multi-modal pixel distributions are revealed with absolute unambiguity. In Fig. 2, one 
thus observes three major topographic peaks (PC12 plot), more of which below. There is 
never any question about where and how these topographic peaks are to be found – it is 
not important that not all peaks boast a pixel density which necessarily results in white 
“snow-capped” peaks; it’s dominantly the relative topographic expression which is 
important in this first interpretation stage (in fact there happens to be no “snow-capped” 
peaks in Fig. 2, but see later). 

Much more important - more subtle pixel groupings and trends are also clearly outlined, 
never mind that such phenomena may be outlined in "only" the smallest of relative density 
terms, e.g. in the olive fringe areas only. A case in point in Fig. 7 is the very prominent 
south-east trending "ridge" in the lower half of the PC12 quadrant, termed “B”. The 
relative proportion of all pixels encompassed by this ridge is actually far less than 2% of 
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the total number of pixels in the original image, while its covariance trend occupies a 
much more significant part of this plot. MIA is i.a. designed towards the greatest possible 
sensitivity w.r.t. this type of subtle features in the score space domain.  

In fact, MIA's 3-D colour-sliced histogram score cross-plots often result in an "inverse" 
mapping of the frequency manifestation of the dominating scene data structures, such that 
these will be “compressed” into geometrically constricted “peaks” etc. in score space. Any 
class of significant geometrical coherence in the score cross-plots by necessity must 
represent a bona fide image pixel class, irrespective of the corresponding 
spatial/geometrical disposition, or apparent size in the scene. Examples abound in which 
there is very little, or no correspondence, between well-defined score space pixel classes 
and the archetype, spatially coherent training classes defined in scene space. Note that this 
situation is what prompted our critique of the “traditionalist image analysis” scene space 
training paradigm (Esbensen and Geladi 1989), Lowell and Esbensen 1993), Geladi and 
Grahn 1996), compared to which we here present the MIA alternative/complement. 

A(ny) major histogram peak in the score-plot(s) necessarily corresponds to a (very) large 
proportion of image pixels, but it is often not very illuminating to focus MIA's attention 
on such prominent features - since they are simply manifestations of the (by far) most 
dominating image structures, which are always very clearly observed in the scene space 
anyway. A case in point is shown in Fig. 7, in which a MIA class of the absolutely most 
dominating peak in the Montmorency Forest scene, the central “volcanic peak” of the 
“volcanic island-like” PC12 score cross-plot analogy, termed “D”, has been mapped back 
into the scene space. The forestry interpretation of this class is very clear: undifferentiated 
clearcut re-growth. The first general MIA rule: all dominating peaks in score space 
correspond to the dominating image space structures/segments. There is nothing new, nor 
even particularly interesting were this the only MIA feature. In fact MIA merges with 
“traditionalist” image analysts when these first-order, most dominating image 
structures/objects/segments are the only items on the agenda. 

But this is also where MIA parts with the traditionalist image analysis concept, which - by 
definition - cannot delineate subtle class features by starting out in scene space, with 
anything even remotely akin to MIA’s power, as shall be shown in full depth and detail 
immediately. In this situation MIA rather presents itself as a most powerful complement 
that specifically only claims rights of true superiority - and progressively so - when the 
more and more subtle details in the image comes to the fore. MIA comes on very strongly 
indeed for all weakly populated and/or subtly defined data structures in both scene as well 
as score space. Exploratory MIA image analysis is especially aimed at finding and 
highlighting exactly these types of subtle peak-structured or similar less well defined pixel 
aggregates (e.g. isolated “islands”, “peninsulas”, “ridges” i.a.), that otherwise run the risk 
of being swamped or drowned in the dominating structures and textures when delineated 
in scene space. Almost the remainder of this exposition is devoted to showing one or other 
aspect of exactly this, much more difficult-to-analyse image analysis situation, the subtle 
class regimen. 

MIA will now be presented in a series of practical image analytical sessions. Along the 
way both an exploratory image analysis mode as well as a pattern recognition 
(classification) mode shall be illustrated, as shall demonstrations of other related image 
analysis objectives, which lends themselves naturally in the MIA context. The totality of 
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image analysis objectives/operations to be displayed below need not all be put into use 
simultaneously, nor always be all relevant for one particular image or scene. But we shall 
deliberately, and quite literally, take the Montmorency Forest scene apart in every which 
way in order to show to power of the general MIA approach. 

MIA topographic score space delineation of single classes 
MIA has been designed to allow the image analysts to focus on any "interesting" pixel 
cluster, prominent or subtle, by convex polygons, five of which are delineated in Fig. 7. 
Thus class “A” is the class encompassing all pixels with highest reflectance in the entire 
scene. It is emphasized that the specific delineation of pixel classes has been designed to 
allow for maximum freedom by the image analyst when outlining the enclosing perimeter 
of the (convex) polygons. Usually this type of convex polygon follows the topographic 
contours to a large extent, e.g. class “D”. By way of contrast, class B has a very different 
geometric layout which suggest itself entirely by way of the covariance trend of the pixels 
involved however. 

 

Figure 7. Maximum intensity/albedo contrast axis (Classes B --> A). Red pixels in scene space: “A”. 
White pixels in scene space: “B”. Insert: scene-space distribution of class “D” – undifferentiated re-
growth . 

All score space pixel classes are followed by immediate back-projection into the scene 
space. Either a simple binary mask is outlined with all designated pixels in white, as foe 
class “D”, or usually MIA displays the original image together with the pertinent scene 
space overlay (in any suitable monitor combination R:G:B). Fig. 7 also shows the 
resulting spatial layout of this back-projection of the two pixel classes “A” and “B”. Upon 
inspection, classes A vs. B turned out to represent the pixels in this particular scene with 
the absolute highest radiometric reflectance, class A (for all channels), and the opposite 
class of the absolute darkest pixels, class B. This latter class represent “shadow-pixels” - 
easily enough appreciated when the entire scene is viewed with particular notice of the 
general sun illumination direction (from NW), cmp. Fig 1. It is important to appreciate 
how the user is accorded complete freedom to iterate and refine this type of (tentative) 
class definition procedure as often as needed, should the first scene projection(s) indicate 
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only a sub-optimal class representation, as revealed in scene space. Domain-specific 
interpretation of the class masks in Fig. 7 may for example tell a forest expert who is 
familiar with the imagery and the general features of all the prevalent tree types in this 
particular context, that these resulting scene boundaries are not optimally delineated yet – 
in which case one more iteration of the score space class delineation is called for etc. 

This score space/scene space iteration constitute the most important design principle of 
MIA in the explorative mode – an interactive interpretation stage, from score cross-plot 
pixel class delineation(s), to projected scene space class outlines, complete with original 
image underlay. It is up to the user, be it a domain specialist also versed in image analysis 
or a two-person team covering both these fields, to carry out this interactive procedure to 
as high an interpretation detail as deemed necessary by the image analysis objective(s). 
MIA's on-screen capabilities have been designed such that this interaction 
score-space/scene-space interpretation work can be as comprehensive and effective as 
needed, Lied (1999). 

Working systematically, MIA analysis of this particular forest scene will soon reveal five 
primary classes in Figs 1 and 7, wiz. the dirt road,  areas underlain by shadow, mature 
forest stands, undifferentiated re-growth, and a somewhat specific type of class of high 
albedo/reflectance. 

Pixel class   A: areas composed by high reflectance pixels 
B: areas in shadow 
C: road (dirt road, not metalled) 
D: regrowth (undifferentiated), mainly in the clearcut areas 
E: Mature tree stands, also single crowns of old trees 

These primary class designations will play a central role when MIA’s next major image 
analytical features are to be developed, the end-member mixing class concept. 

The classifications revealed in Fig 7 are mainly based on a more-or-less comparable 
equal-area basis in the score cross-plot. This type of grouping may however sometimes 
lead to misrepresentations, when it is remembered that equal areas in the score plot may in 
fact represent very large differences w.r.t. the actual number of pixels in the 3-D 
histogram bins, with density differences as large as 5:255, or more. Usually this "inverse" 
representation does not cause undue problems however, although it certainly pays to be 
aware of it.  

The above illustrations stress the point that careful – iterative - pixel class perimeter 
delineation is of the outmost importance. We strongly believe that the topographic 
analogy is natural, especially as regards peaks etc. It is most likely the topographic 
expressions of "peakedness" that leads the human cognitive facility to form this type of 
pattern cognition very easily. But there is another, equally “natural” type of MIA-class 
now to be distinguished – an end-member series, or the mixing class series. 

MIA delineation of end-member mixing classes 
In Fig. 8 we have delineated three mixing class series. Note how the direction of these 
class delineations are directly related to the topographic ridge patterns (watersheds). In the 
case of class-series "X" and "Y" this terminology would appear obvious and very relevant. 
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E.g. classes "Y1-Y3" are comprised of the "mixing" ridge between classes mature tree 
stands "E" and the re-growth class "C" and likewise, class "X1-X6" can be seen as 
representing a mixing series between end-member classes "C" (re-growth) and the road 
class "D". We shall here also designate "Z1-Z3" a similar mixing class series, but now a 
mixing between the manifest end-members re-growth (“C”) and a virtual high reflectance 
end-member “H”. Observe how this similarity allows the image analyst to analyse all 
types of mixing-classes by relaying on only one common concept. Figs 9-10 shows two 
examples of the gradual relationships displayed by these mixing classes, especially when 
followed from one end-member to its opposite in scene-space. 

 

Figure 8. MIA mixing class concept (three mixing class series delineated). Each mixing class series 
extends between two appropriate end-members (some of which may be virtual)  

In this mixing class delineation we have at first only placed emphasis on identifying the 
end-members making up the series extreme end points, but there are two additional much 
more penetrating and powerful interpretative “hidden information principles” behind these 
mixing-classes. Starting with the road class, following the “X” mixing series towards the 
central re-growth class and immediately continuing along mixing series “Y” ending up 
with the mature tree stand class – forestry interpretation of the entire spatio-temporal 
sequence leads to the following hypothesis:  

The dirt road is regularly swept clean of all incipient re-growth saplings, because of the 
regular traffic of heavy duty forest machinery involved in the overall clear cutting 
operations a.o. – consequently the scene space pattern class for “X1“, the first in the 
direction of the central re-growth class per force must represent whatever incipient re-
growth can be observed in the scene. In other words, the first mixing sub-class 
immediately adjoining the road class must represent the absolute youngest re-growth 
saplings, with progressively older representatives forming the grading sequence of the 
scene-space rendition in the mixing class series X along the watershed route, ending up in 
the central re-growth class, “C”. This can be easily appreciated in the scene-space 
rendition of Fig. 9. 

By similar reasoning, the grading mixing class series Y can be parsed in a corresponding 
fashion– in an identical spatio-temporal context - i.e. from “C” ending up with the oldest, 
most mature trees standings in the scene, class “E”, as is laid out in detail in Fig. 10. The 
longer one progresses along the Y-series (Y1-Y2-Y3), the older the trees delineated. 
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Observe how one is actually able to follow this entire interpreted growth process progress 
in minute detail in this score space rendition, Fig. 8, and immediately have access to its 
scene space dispositions, vide the sequenced imagery in Figs 9, 10.  

Thus the entire ensemble of score space classes X1 X6 C Y1 Y3 represent a spatio-
temporal slicing of what could be interpreted (and termed) the “re-growth process” in the 
context of this particular scene. It is essential to appreciate that this interpretation takes 
place by starting out in score space, but it is only when the resulting MIA-classes are 
displayed in scene space, that full interpretation of their meaning is possible. Also this 
interpretation is validated mostly by reference to other, already interpreted or well-
segmented features in the scene. In this particular dynamic, multi-temporally affected 
scene, the biologic process of re-growth has be subjected to a kind of  “stroboscopic” 
time-slicing, delineated by the sequencing of juxtaposed mixing-classes. 

 X1  X2  X3

 X4  X5  X6
 
Figure 9. Scene space disposition of mixing classes X1 - X6. 

By this development of the end-member/mixing class concept it has been possible to shed 
hitherto unimagined detailed light on this complex spatio-temporal re-growth process. 
Clearly it is the informed interpretation of the domain specialist – and full command of 
MIA’s capabilities – which underlies this powerful analysis. MIA allows a temporal-
spatial decomposition which is unparalleled in traditionalist image analysis; there is 
simply no possibility to decompose the multivariate image in similar segments, were this 
to start out from the scene space, in which the would-be “training classes” are hopelessly 
far too disjunct and far too scantily distributed, as dramatically laid in their scene space 
context, Figs 9, 10. 

There is one more, phenomenologically identical, mixing series present in the score space 
rendition of this scene, but with a distinctly different non-biologic interpretation, the 
Z1 Z3 mixing-series, situated in an almost “perpendicular” disposition w.r.t. to the re-
growth series. This series represents the ultimate span of the general low high intensity 
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Y1 

Y2 

Y3 

(comp. the above “shadow-reflectance” contrast phenomenon, Fig. 7), but in the present 
context it can be seen as also tracking across the same central re-growth class. The 
physical interpretation of this new axis remains the same: the “Z1 Z3 vector” must 
represent a generic, presumably mostly physical reflectance direction (in score space), 
signifying gradations in the total reflectance recorded from within the confines of one 
ground trace pixel size (70 cm x 70 cm). The reflectance in this type of imagery is surely 
dependent on a composite set of factors, among which individual leaves, their colour, 
angle w.r.t. the sun illumination, degree of moisture coverage i.a. plays important roles. 

 

Figure 10. Scene space disposition of mixing classes Y1 - X3. 

There are thus three general aspects of this detailed MIA analysis to be highlighted.  

1. Observe how these two distinctly different compound mixing-series lie very close to 
“orthogonal” to each other. This is of course no coincidence, but is simply an inheritance 
from the underlying PCA analysis, the design purpose of which precisely is to decompose 
covariance trends according to forced orthogonal axes (principal components). In this 
particular case it is mainly PC1 which is rightfully interpreted as the dominating general 
intensity (albedo) axis, though the slightly oblique direction of the “shadow-reflectance” 
axis (Z1 Z3) bears witness to a slight involvement of PC2 as well in delineating the 
direction of the overall increasing albedo. 

2. Observe how both these genetically different series meet, or cross over, at the scene’s 
singular most dominant class, the central re-growth class “C”. This hammers home the 
message that class “C” is nothing but a veritable “mixed bag” of many “types” of re-
growth manifestations and this also explains why the simplest MIA-class analysis of 
delineating the class C peak in this case results in an overwhelming number of scene 
space pixels, drowning out most, if not all, possibilities of making detailed interpretations 
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of the nature of this class - other than that of the standard forestry “undifferentiated re-
growth” category. In fact this type of cross-over class, this type of central, dominating 
class is very often met with in MIA analysis of imagery, certainly not only from (high-
resolution) remote sensing, but from many other technological and industrial imagery as 
well. MIA constitutes the only image analysis tool with sufficient power for these kinds of  
complexities (sic). 

3. We have now presented the two, partly alternative, partly overlapping meta-principles 
for MIA pixel class delineations: individual “peaks” vs. “mixing classes”. 

Which to use? – When? – How?  
One should not dismiss the above “biologic growth interpretation mode” of analysis to 
quickly even if this type of dynamic time-slicing may at first sight seem rather specific for 
remote sensing in general, for change-detection in particular. Very probably however, this 
type of “change-analysis” constitute a generic type of interpretation, which can be 
modified and applied in several other image type contexts as well. Certainly this is the 
experience of the authors from a suite of very different technological and industry-related 
types of imagery. In any event, the other “non-dynamic” mixing series more reflects a 
static, scene-dependent physical phenomenon (albedo/intensity contrast/reflectance), the 
like(s) of which will be present in almost any multivariate image from science, technology 
or industry in which (natural or artificial) illumination plays a role.  

In situations where this mixing-class concept would not appear to be useful, a return to the 
simple “peak” delineation of what will surely always be representative, objective pixel 
classes will often be quite sufficient then. The perhaps most interesting field here would 
be the interplay between these two types of class delineation principles, but needless to 
say, this problem will always be “scene-specific” to a very high degree. One must never 
forget that each new multivariate image always should be analysed on its own accord. 
However, experience with some several types of multivariate images from a vast range of 
different origins (remote sensing imagery, several types of technological imagery, 
industrial...) reveals that the gamut is indeed made up of peaks and end-member/mixing-
classes, to more than 95%. - So when to use which approach: peaks vs. mixing series? 

The resolution lies in the fact that all mixing-class series should be subjected to identical 
mixing-class analysis as that presented above, and that any end-member always also 
constitutes a legitimate single peak in its own right. By employing the concept of end-
member mixing/classes (directed along the watershed ridges, connecting peaks in the 
topographic analogy setting) all types of connected peaks are in principle always open to 
either type of analysis. But clearly it is the scene space knowledge that will determine 
whether it will be possible to make meaningful interpretations of the “mixing-sliced” 
subclasses.  

In this paper we have delineated two generic types of mixing classes. We would probably 
be grossly simplistic, were we to suggest that this is all there is; that still other “types” of 
analogous analysis axes will not be found to be associated with other type(s) of imagery in 
future applications, but we have actually not yet found the need for additional image 
analysis concepts. We are by now fairly certain that the suggested concepts, or meta-
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principles, of end-member/mixing class vs. standard “peak” MIA analysis will be of very 
general, perhaps even universal, applicability. 

Scene-space sampling in score space – a final detail 
Often the image analyst may need to sub-sample an entire image in the specific meaning 
of a representative sub-sample of the image. This may be on the agenda for many 
different reasons, e.g. for forest inventory purposes, where a forester would like 
specifically to sample all known forest and growth classes present. One specifically needs 
to be certain that all classification classes indeed are equally represented on a spatial basis. 
Many procedures and sampling schemes have been developed over the years for this and 
related purposes, all of which operate in the scene space in the image, or on the map. 
There are many parallels to this sub-sampling situation from other types of imagery as 
well. 

Interestingly MIA may also here offer an alternative to this scene space tradition. Again 
we illustrate using the clearcut study imagery. In Fig. 11 observe the extremely thin class 
delineated in the lower left quadrant - actually this class is only one pixel wide. This class 
is immediately brushed into the three complementary PC cross-plots. It is of significance 
that we here have made use of the PC23 cross-plot for the class delineating purpose, for 
reasons that will become immediately clear. Note first how this PC23-class covers all the 
major classes present in score space - here we actually take advantage of the fact that most 
of the major classes are non-resolved in the higher-order, e.g. PC23-plots. It is precisely 
because of this judicious use of the PC-23 cross plot that we have been able to acquire a 
representative, complete, equal-density sampling of the entire covariance data structure in 
feature space by using the simplest of class delineations – a line, as is indeed substantiated 
in the accompanying PC12, PC13 and PC14 cross-plots. It is especially gratifying to 
observe the inherent "splitting" in the PC13 (upper right) plot. This one-pixel thin 
sampling class has done a remarkable job sampling over all classes indeed!  

Fig. 11 also shows the corresponding spatial projection. Indeed a uniform spatial 
disposition of potential inventory localisations has been achieved, complete with a number 
of denser structures present (major tree stands etc.). It is now a simple matter to overlay 
this display with e.g. a road map or the like and to proceed with a logistical planning for 
the forest inventory, in which a further weeding out of  “surplus” sampling sites no doubt 
will form an integral part. It's really not a problem worth mentioning weeding down an 
already acceptable spatial template - relative to the opposite case. Thus, for such sampling 
purposes one might advantageously seek out the least structured score cross-plot. 

There are other variations on this sampling feature of MIA, all invariably related to the 
specific image analysis problems at hand and their special objectives, but we leave it to 
the reader to associate freely from this generic example. 
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Figure 11. Generic MIA sub-sampling concept. From score space to scene space: equal density sampling w.r.t. 
the image covariance structure(s), not w.r.t. scene-space area density. 

 

CONCLUSION 
Multivariate Image Analysis (MIA) is a set of interdependent image analysis 
procedures, encompassing both an explorative and pattern recognition mode, as well as 
classification-related facilities. A synoptic overview of all elements in MIA has been 
presented by a series of different applications on a comparison data set. We presented 
extensive justifications for the specific MIA approach - contra the traditionalist image 
processing mode.  

MIA is a set of problem-dependent, interdependent explorative analysis and classification 
tools to be used by the informed analyst, according to the specific image analysis 
objectives. This review furnished a generic overview of the principles of MIA needed to 
compose one's own flexible, problem-specific strategy of multivariate image analysis: 
Mandatory pixel class delineation in feature space (score space) by a topographic analogy 
and a dual end-member/mixing class vs. peak class delineation concept, of universal 
applicability also in other image modes. 

MIA constitutes a most powerful image analytical concept for dealing with any degree 
of complex imagery: MIA’s design – and analysis principles are invariant w.r.t the 
number of channels present. With MIA is not necessary to invoke massive, parallel 
computer approaches in order to deal with even the most complex imagery (Lied, 
Geladi & Esbensen 2000). 
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Multivariate image regression (MIR): implementation of image
PLSR—first forays
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SUMMARY

In the effort of analysing multivariate images, image PLS has been considered interesting. In this paper, image
PLS (MIR) is compared with image PCA (MIA) by studying a comparison data set. While MIA has been
commercially available for some time, image PLS has not. The kernel PLS algorithm of Lindgren has been
implemented in a development environment which is a combination of G (LabVIEW) and MATLAB. In this
presentation the power of this environment, as well as an early example in image regression, will be
demonstrated. With kernel PLS, all PLS vectors (eigenvectors and eigenvalues) can be calculated from the joint
variance–covariance (X'Y and Y'X) and association (Y'Y and X'X) matrices. The dimensions of the kernel
matricesX'YY 'X andY'XX 'Y areK� K (K is the number ofX-variables) andM�M (M is the number ofY-
variables) respectively. Hence their size is dependent only on the number ofX andY-variables and not on the
number of observations (pixels), which is crucial in image analysis. The choice of LabVIEW as development
platform has been based on our experience of a very short implementation time combined with user-friendly
interface possibilities. Integrating LabVIEW with MATLAB has speeded up the decomposition calculations,
which otherwise are slow. Also, algorithms for matrix calculations are easier to formulate in MATLAB than in
LabVIEW. Applying this algorithm on a representative test image which shows many of the typical features
found in technical imagery, we have shown that image PLS (MIR) decomposes the data differently than image
PCA (MIA), in accordance with chemometric experience from ordinary two-way matrices. In the present
example theY-reference texture-related image used turned out to be able to force a rather significant ‘tilting’
compared with an ‘ordinary MIA’ of the primary structures in the original, spectral R/G image. Copyright
2000 John Wiley & Sons, Ltd.

KEY WORDS: multivariate image regression; MIR implementations; multivariate image analysis; MIA; kernel
PLS

INTRODUCTION

Since the introduction of multivariate image analysis (MIA) in 1989 [1], multivariate image
regression (MIR) has not been developed to the extent one would have perhaps expected. The reasons
for this might be low interest within scientific society, few inspiring MIR applications and/or lack of
the required computing power. With the presentation of kernel PLS, however, Lindgren [2] has
shown that it is possible to reduce this last factor significantly. Computing the PLS loadings using
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only small covariance matrices instead of large multivariate images reducesthe number of
calculationstremendously.

In traditionaltwo-waymultivariateimageanalysiseachpixel is looked uponasanobject. In image
analysis the number of pixels (N) is often large,andastechnology develops,constantly increasing.
Thushavinge.g.two milli on objects is not unusual today.The numberof variables(K), e.g.image
channels, is usually very much lower, representing e.g. wavelength (colour), polarizing angle or
frequency. Whenthesetypes of multivariate imagesareunfolded[3], we tendto get very long and
narrow matrices. In MIA the loadings are usually calculated using SVD (singular value
decomposition) on the covariance matrix X'X [4], which is a K� K matrix. In kernel PLS the
loadingsare calculated from the X'YY 'X matrix, which is also a K� K matrix. Using only small
matricesin theupdatingof thiskernelmeansthatonedoesnothaveto carryaround thelargeX andY
andlong latentvariablevectorsin the numerical calculations.

MIA is first of all intended for explorative imageanalysis purposes.Transforming multivariate
imagesto theirmost importantstructures(latentvariables)enablesadynamic segmentation approach
with problem-dependentinterpretation of similar objects in the entire image [1,4]. However, in
situations where external knowledge (Y-image) is available, image PLSR can now also be
considered, basedon its power in guiding the decomposition of the multivariate X-image. For
predictive purposes the useof somekind of regression model is required.Some very meaningful
candidates are PCR [5] and PLSR [5–8]. In this paperan implementation of multivariate image
PLSR,some considerationsof the methodand an early applicationexample are presented.Other
application examplesareavailable [9]. Comparisonof detailed resultsfrom PCRandPLSRwill be
presented in a future paper.

METHOD

Traditional algorithms [10] for calculating PLS scores and loading weights for a given PC carry
around the large X and Y residual matrices and corresponding parameter vectors. Because
multivariate imagesconsist of very largematrices, typically two milli on pixels by K variablesplus
oneor more Y-variable(s),thesealgorithmsconsumeenormousamountsof computermemory and
processing time. Thusa different approachis desiredfor multivariate imagedata.

In 1994,Lindgren[2] introduceda methoddesignedto reducethematrix sizesduringcalculation.
Thismethodinitially calculatesthreesmall kernel matrices,X'X, X'Y andY'Y, andthemasterkernel
X'YY 'X. Loadingsandweightsarecalculatedusingthe master kernel,which in turn is updated for
eachcomponentcalculated, using X'X and X'Y. Compared with the traditional approach, which
needsto updatethe large X and Y residual matrices, the kernel algorithm can savetremendous
amountsof memory, asillustrated in Figure1.

Thisapproachis basedon thefact thatscoresandloadingscanbecalculatedaseigenvectorsusing
squarekernelmatrices:

w�1 � �X0YY 0X�w; w : PLS X-weights

q�2 � �Y0XX 0Y�q; q : PLS Y-weights

t�3 � �XX 0YY 0�t; t : PLS X-scores

u�4 � �YY 0XX 0�u; u : PLS Y-scores

BecauseMIA andMIR operateonvectorizedimageswhereN� K, w is apreferredstarting point in
thecalibration procedure. In situationswhereK� N, this is not thecase,becauseX'YY 'X becomes
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very large.Instead,XX 'YY ' is used[11] for thispurpose.In situationswhereN� K, kernelPLSdoes
not give muchimprovement.In Reference[12], kernelPLSis comparedwith asimilar algorithmfor
the singular value decompositionof X'Y.

IMPLEMENTATION

It wasfoundconvenient to useLabVIEW asaprogrammingenvironmentfor MIA/MIR. LabVIEW is
mainly usedfor user interactions and file management, while MATLAB takescareof the actual
numbercrunching. Our choicewasmadebasedon prior knowledgeof LabVIEW andMATLAB as
cost-efficient with regard to development time. The price we have to pay is a slightly slower
algorithmthanwouldbepossible to obtainusing C/C��. Especiallythelink between LabVIEW and
MATL AB is slowwhenpassinglargematrices.Thespeedobtained is quiteadequatefor R&D aswell
asroutineMIR, however.

LabVIEW (National Instruments website: www.ni.com/labview) is a graphical programming
environment, writtenin C,whichin thelast few yearshasgainedpopularity andusability in numerous
fields of applications. As the environment itself is becoming more stableand debugged, different
toolboxes pop up around the world, introducing moreandmore pre-programmedfunctions,or VIs
(virtual instruments) as they are called in LabVIEW. Because LabVIEW uses a graphical

Figure1. Thekernelapproachsaveslotsof computermemoryrequiredfor calculatingtheweightsandloadings.
Theactualamountsavedis dependenton the N/K ratio.

Figure2. LabVIEW usesgraphicalsymbolsfor different functionsandsub-VIs,andtheprogrammerconnects
thesetogetherusingwires.Usercontrolsandindicatorsalsoshowup assymbolsin the diagram.
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programminglanguage,calledG,anduserinterfacesaredrawndirectly in panels,LabVIEW truly is a
visual programmingsystem(Figure2).

MATLAB (MathWorks Inc. website: www.mathworks.com) was usedfor the core numerical
calculations.

Therearetwo possibilities when combiningLabVIEW andMATLAB. Oneis to put MATLAB
scripts directly in the LabVIEW diagram, the other is to call external scripts (m-files) from the
diagram.The first alternative waschosen here.

To reducetheamountof datapassed between LabVIEW andMATLAB, it wasdecidedto calculate
the initial kernelsin LabVIEW andpasstheseto MATLAB, which in turn returnsloadings, loading
weightsandregressioncomponents.

As in most modernprogrammingenvironments, in LabVIEW it is desirable to build eachprogram
asacollection of reusablesub-programs,or sub-VIs.Thismakesthecode,or diagrams,easierto read
anddebug,andis of courseindispensablefor buildingcompletededicatedsoftwarepackages.Figure
3 shows how LabVIEW passestheinitial kernelsto MATLAB andcalls uponMATLAB to perform
the PLScalculation.

Onelevelhigherin theprogram, thisVI is calleduponwith thekernel matricesasparameters.The
implementationof this is shown in Figure4.

Prior to the VI shownin Figure 4, scalingandcentringof X andY canbe applied, if necessary.
Following this VI, X- and Y-scoresare calculatedby projecting X and Y on their corresponding
loadings. After this, we areready to displayscoreplots andscoreimages, aswell asloadingplots,

Figure3. Theactualdiagramfor thekernelPLSimplementation.Notethat theentirescript is not shownasit is
insidea scrollablebox. Thealgorithmis found in Reference[2].
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and/orto carry out further calculations,etc.,very muchin the same tradition aswith MIA [1,4–8].
While scoreimagesareshownin their original sizeandgeometry,scoreplotsarenot.A scoreplot

is a 2D histogram,or ascatter plot between two scorevectors. Treatingeachpixel in thescenespace
asanobject, andthusplotting eachobjectindividually, this scatter plot becomesunreadablewithout
usinganintensity colour-slicing map[1]. Scoreplotsareusedfor objectclassification (X-scores,T),
while T vs U (Y-scores) plots are usedfor evaluating the prediction performance of the image
regression model [5–8]. Thedifferencebetween scatterplotsandimageswill bemoreevidentwhen
looking at anexample.

APPLICATIONS

Because most effort has beenput into the presentnew software development, a large rangeof
applications is not yet available. Nevertheless, anearly example with threespectral channels in the
raw imageis presented here.Although this is only a very modestmultivariate image,it servesthe
purposeof showing the principlesof MIR completely.

Theraw imagewascapturedwith SILVACAM (VTT Automationwebsite:http://www2.vtt.fi:82/
aut/rs/prod/silvacam.html), which is a modifiedRGB videocamerawhere thebluechannel hasbeen
replacedwith anNIR (near-infrared)channel. Thecomposite rawimage(R/G/NIR) is shown in Plate
1. In thepresentexample,however, theNIR channel did not contributemuchto thedecomposition
andwasthereforeremovedfrom thedatamatrix for thetexturederivationsto bepresentedbelow(in
orderto give moreroom for the latter).

Thisimagehasbeenspecifically designedto highlightbothspectralaswell asdifferenttexturaland
structural differencesbetween thedifferentobjectsin theimage.Thuswehaveconstructedanimage
with only threeprincipal objectspresent:

* highly textured cloth asbackground(Canadian lumber-jacket);
* flat plasticfragment(‘prison window bars’);
* eight leadpencilsin four colours.

Theideabehindthis imageis thatthereareimportantdifferencesbetweenthespectral objects(which

Figure4. How thekernelsarecalculatedandpassedto thekernelPLSVI. ThecurrentVI is typically calledupon
after scalingand/orcentringof X andY.
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canbediscriminatedby astandardMIA spectral decomposition[1,4]) andthetextural objectswhich
will bethemainfocusof concern in thisapplication example(texturally thereis e.g.only onetypeof
pencil,while therearefour spectralclassescorresponding to the four colours).

Observehow the greenimage apparently conveys more detail and focus than the red image,
especially regarding the definition of the highly textured background(Figure5). The imageis also
representative of various forms of specularreflectance. This latter is directly dependent upon
illumination angles,etc. For this constructed imagea partly asymmetrical illumination was used,
producing a clear light/shadow contrastprimarily in the N–Sdirection.

Thus,while very simple in thenumberof objecttypespresent, this imagein fact catchesmany of
the principal imageanalysis elementsandfeaturesof technological imagery, a number of different
spectral classes, many or all with individual texture,illumination(light/dark/shadow) differences,etc.

The goal of this example is twofold:

(1) to discriminatebetween thesedifferenttypesof classesspecifically with helpfrom thetextural
information;

(2) to compareMIA vs MIR.

In orderto do this,anewMIX (multivariateimagetextureanalysis)conceptis introducedwherebya
seriesof textural imagederivatives is directly addedonto the seriesof spectral variables(from the
perspective of bothMIA andMIR, thissimplyresults in asetof addedX-channels).This will bedone
in threedifferent ways in the presentcase.

Thus,for eachof thetwo spectral channels (redandgreen),threerelevant texturalderivativeshave
beencalculated,giving a total of K = 2� (1� 3) = 8 channels (seeFigure 5). The following texture
filters wereapplied:

* medianfilter;
* Laplacefilter;
* compoundfilter (sculpture� variance�median� inversion).

A reference Y-imageis of course required for imagePLSR.A ‘texture index’ Y-image(TI ) is
devised(Figure6) whichexpressesthebasictexturedifferencesbetween thethreetextureclassesin a
quantitative manner. Texturally the piece of plastic is almost completely ‘flat’ (TI = 0–10); the
pencilsareslightly morecomplextexturally speaking(octagonal cross-section), resulting in TI = 20–
40; while the highly texturedCanadianlumber-jacketcloth displays a very high texture index,
TI = 225–255.Figure6 showsthesetexturerelationshipsveryclearly.This is thetypeof information
that will be used in order to introduce textural relationshipsin the image decompositions, but
exclusively asY-information.

TheTI imagewasconstructed in ImageProPlusfrom MediaCybernetics,applying acombination
of texture-sensitive filters to the red channel in X. The combination consistedof ‘sculpt’, ‘Sobel’,
‘5 �median5� 5’ andcontrast enhancement,which,whenappliedin thementionedorder,gavethe
resultshown in Figure6.

Application MIA vsMIR—objectives

In orderto seehow imagePLSR(MIR) decomposes differently thanimagePCA (MIA), threecases
will be studied, in which thePCA andPLSRalgorithmswill be appliedessentially to thesame data
setbut in threedifferent ways:

* case1—MIA0 (without Y-referencein X);
* case2—MIAY (Y-referenceincludedin X);
* case3—MIR (Y-referenceusedin Y-block).
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Plate 1. Raw image in three spectral channels, Red, Green, and NIR.

Plate 2. MIA0 Scoreplots: 1-2, 2-3, 1-3 and 1-4.
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Plate 3. MIAy Scoreplots: 1-2, 2-3, 1-3 and 1-4.

Plate 4. MIR Scoreplots: 1-2, 2-3, 1-3 and 1-4.



Figure5. Two spectralchannels(red, top left; green,top right) andthreetexturalderivativesof each.
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TableI showsthe contents of X andY in the threecases.
Whencomparingthethreecases, thepreprocessingmustof coursebeidentical. Thus,prior to the

calculation in this example, all pertinent imageswere autoscaled.

Cases1 and 2—MIA0 and MIAY. In the first case,X contains eight variablesand approximately
350 000 objects(pixels). ThusX'X is an 8� 8 matrix. In the second case, TI will be addedto X
from MIA 0 as an extra variable. Thus X will have nine variables and approximately 350 000
objectsandX'X will be a 9� 9 matrix. The two models proveto be very similar, so loading plots
areshownonly for case2. Scoreplots, though,areshown for bothcases.

Figure7 shows the accumulatedexplainedvariance for case1. The numberof PCsto usein the
following discussion is not obvious from this plot, but usingthe standard four components that the
softwareprovidesseems to be a fairly goodalternative.

Thereis a very strongpairwisecorrelationbetweenvariablesin these two cases.This canbeseen
from the loadingplots (Figure8).

Onecanseethe following variable pairsin the loadingplots:1–5, 2–6,3–7and4–8.An obvious
interpretationwould be that the texture filter operations on both red andgreen areclosely similar.
Fromtheseobservations,onecouldfor example arguethatthenumber of variablescouldbereduced
to four in the X-matrix, e.g.variables1–4. If the computeris low on memoryor speed, this canbe
consideredto speedup thecalculations.In the following, however, all the initial variablesareused,
sincewe havea quite different purpose thanvariableselectionwith the present decompositions.

Case3—MIR. In the last casea regressionmodel between the X usedin case1 (MIA 0) and Y
from TI will be built using the kernel PLS algorithm. In this casethe model will be actively
forced in the direction of textural information, presumably somewhat suppressingpure spectral
correlations,characterisingthe MIA 0 andMIA Y cases respectively.

Figure6. ReferenceY-imageexpressingTI of the principal ‘texture objects’= spectralobjects.
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In MIR there is still a correlationbetween thesamevariablepairs(seeFigure9), but not at all as
strongasin MIA. Thescore image(seeFigure12) shows bettertextural detailsthanin theprevious
cases.Thusputting theTI imagein Y successfully forcesthealgorithm primarily to enhancetexture
in the decomposition, asit ‘should’ consideringthe exclusive texture index natureof the Y-image.

In general, of course,it is to beexpectedthatMIA andMIR will decompose thesamedataset(the
samemultivariateimage)differently,providedthatthepertinentY-referenceinformationindeeddoes
addnewinformation. It is interestingto seehow theseexpecteddifferencesmanifestthemselves in
the loading and scoreplots (Plates 2–4) of the present example. Combining the first threescore
imagesinto ‘false colourcomposites’is alwaysa usefulway to comparealternative decompositions

TableI. Contentsof X andY in MIA andMIR calculations

Channel MIA 0 MIA Y MIR

Red X1 X1 X1
Redmedian X2 X2 X2
RedLaplace X3 X3 X3
Redcompound X4 X4 X4
Green X5 X5 X5
Greenmedian X6 X6 X6
GreenLaplace X7 X7 X7
Greencompound X8 X8 X8
ReferenceTI image(Figure 6) — X9 Y

Figure7. Explainedvariancefor case1, MIA without Y.
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(Figure10–12). Themost evidentdifferencebetween thescore imagesin thesethreecases, looking
beyonddifferences in colour, is the gradual increase in detail. The MIR scoreimagelooks much
‘sharper’, morefocused, thanthe MIA score images, primarily becauseof bettertextureanddetail
description.

Figure13shows thecalibrated,explainedvariance for MIA 0 vsMIR [14,15].It shows that,in this
case,MIA performs betterin the first two componentsthanMIA. The third componentis not very
different in the two cases,while the fourth componentis a little betterin MIA thanMIR. Figure 14
delineatesy-variancemodelled.

CONCLUSION

In this paperit has beenshown that image PLS addsa new dimension to the complex field of
analysing multispectral images. PLS was performed using the kernel algorithm, which is now
implemented in our prototype MIA/ MIR software system. The programming was done in a

Figure8. MIA Y loadings1–4.
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combination of LabVIEW and MATL AB using the best properties of both programming
environments. Using this approach,the calculations can be carried out on a standarddesktop
computer.

Applying this algorithmon a representative testimagewhich shows many of the typical features
found in technicalimagery, we haveshown that imagePLS(MIR) decomposesthedatadifferently
than image PCA (MIA) , in accordance with chemometric experience from ordinary two-way
matrices. In thepresentexample theY-referencetexture-relatedimageusedturnedout to beableto
forcea rathersignificant ‘tilting’ comparedwith an ‘ordinary MIA’ of theprimarystructuresin the
original, spectralR/G image.

MIR requiresa different validation approachthan the conventional PLS approach.Much work
remains,but theworking prototypeis nowsuccessfully implemented.We arecurrently also working
on an extendedseriesof representativeapplications.

Figure9. MIR loadingweights1–4.
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Figure10. MIA 0 scoreimages1–2–3(R–G–B).

Figure11. MIA Y scoreimages1–2–3(R–G–B).
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Figure12. MIR scoreimages1–2–3(R–G–B).

Figure13. SSXMIA 0 vs SSXMIR.
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Principles of MIR, Multivariate Image Regression - I:  
regression typology and representative application studies 

 

ABSTRACT 

We present an introduction to MIR: Multivariate Image Regression with a selection of 
illustrative application studies. Generalisation from 2-way multivariate calibration to 
the 3-way regimen leads to - at least - three alternative image regression cases 
depending on the nature of the available Y-data: IPLS-Ydiscrim ; IPLS-Ygrid ; IPLS-Ytotal .  
A systematic image regression typology is briefly introduced.  

We here present the core of the principles of applied MIR: Two major MIR application 
studies are worked through,  a food mass product industrial inspection study (IPLS-
Ydiscrim) and a food product (fruit) storage stability image analytical monitoring (IPLS-
Ygrid). These exemplifications are presented as  archetypes, representing a much wider 
range of potential industrial/technological application areas. 

The present paper represents one major element of our work towards establishing a 
complete, stand-alone facility for MIR (Multivariate Image Regression); the second 
paper in this series deals with the development, implementation and extensive 
exemplifications of a complementary cross-validation facility. 

 

KEYWORDS: multivariate image regression; MIR; multivariate image analysis; MIA; 
multivariate image texture analysis; MIX; 2-D images; 3-D image arrays; image 
regression cases; applications  
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1.0 INTRODUCTION 

The introduction of the Multivariate Image Analysis (MIA) concept in cheometrics 
was not longer ago than Esbensen & Geladi (1989) [1]. In the intervening 10+ years 
the development of MIA has been relatively slow, but would appear to begin to take to 
speed more recently - the entire field was summarised in the comprehensive textbook 
by Geladi & Grahn [2]. Much of the theoretical background for Multivariate Image 
Regression (MIR) necessitates a thorough understanding of the principles and methods 
in MIA, which we shall here assume known. It is especially important that the concept 
of the multivariate image is well understood. 

Because regression calculations on the extensive amount of data in multivariate images 
easily can be a technical challenge (growing quadratically with the number of 
variables, or channels), some important recent evolutions have made it more feasible in 
the last few years. The continuously developing technical improvements in computer 
hardware efficiency is of course a major contributor, but especially the KERNEL PLS 
algorithm introduced by Lindgren et.al. in 1993 [3] has dramatically speeded up the 
present type of calculations, as was outlined in detail in [5]. 

Despite of this, few studies has yet shown the true potential of MIR as a tool for 
predicting quantitative features in multivariate image data. Hopefully, this condition 
will be improved by the current paper. 

1.1 Concepts 

Several concepts are used in this paper, some of which may be relatively unfamiliar. A 
brief introduction of these is given to help the reading of the article. 

1.1.1 Multivariate Image (MI): The MI  is a digital image of one scene, consisting of 
many variables (channels), e.g. colour bands, channels. At the outset the simplest 
situation is the one in which each image pixel  is treated  as an object, which requires 
rigid consistency in scene lay-out for all variables. An object in a given scene position 
in one variable must be found in the same scene position in all other channels; for 
regression cases also in the Y-image. MI’s are usually presented as a 3-D matrix, but 
because the two object-ways can be treated as one way, the MI may also be 
reorganized into a 2-D-matrix prior to modelling, and 2-way methods can be applied  
[2] by way of the so-called unfolding operator. 

1.1.2 MIR: Multivariate Image Regression [2, 4] builds regression models between the 
multivariate X-image and the (uni-/multi-)variate Y-image. MIR is here performed 



4 

 

using KERNEL-PLS [3, 5] on reorganized Multivariate Images, i.e. each variable is 
reorganised into a (very long) object vector. In this basic unfolded form, MIR uses only  
the variable-signatures, i.e. the spectral information in the analysis and only indirectly 
makes use of the spatial information analogous to MIA [1, 2]. But even though MIR 
technically uses 2-way analytical methods, there is an enormous visualisation potential 
in image data which is also used fully in MIR. Displaying results not only in score 
space, but also in the so-called backfolded image space, enhances the insight in the data 
structure and the models developed. Applying colour coding to score plots, MIA, or by 
combining three score images in one composite ("R/G/B") colour image, it is often 
possible to capture comprehensive model presentations of great interpretation value 
etc..  

1.1.3 MIX: Multivariate Image teXture analysis. MIX is an extended MIA-MIR 
approach which includes  spatial, especially textural, information in the analysis. In 
cases where spatial information is important, this can be included in the MIR-model by 
e.g. adding derived textural variables calculated from the original variables [6-8]. 
Sometimes enhancing details using e.g. edge-detectors is favourable, in other cases the 
opposite (smoothing details) might be required etc. Also, combining textural filters 
might often give very useful results. MIX has the potential for explosive data growth, 
thus powerful means for variable selection are required. We do not treat the MIX 
aspects in any depth in the present work however. 

1.1.4 Regression typology 

Perhaps surprisingly, going from the 2-way realm in which the concepts of multivariate 
calibration is well-known - and need no further presentation here - there is a 
corresponding three-fold multitude of analogous but in principle different image 
regression modes, Figure 1. 

1.1.4.1 IPLS-Ydiscrim: The Yes/No classificator/discriminator. In every position in the 
Y-image, a pixel is either 1 (one) if it is part of a current class, otherwise 0 (zero). The 
approach is suitable for classifying one class among (many) others. Used as a pre-
processor, this method can easily be taught how to pick out desired classes. This case is 
also easily extended to cover several classes, by using several one-class Y-discrim 
masks, Figure 1. 

1.1.4.2 IPLS-Ygrid: If every Y-condition is not available in one image, several images 
can be juxtaposed in a compound, so-called gridded image. This way the total 
experimental design can be represented in one image, i.e. one model. Extensive 
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illustration of IPLS-Ygrid is given in this work. In some cases, especially when 
predicting an overall value for each sub-image in the grid, the corresponding Y-image 
will have a constant value within each sub-image. When this appears,  some kind of 
smoothing of each sub-image in X will usually be useful, i.e. reducing non-
classification related variations in X. 

1.1.4.3 IPLS-Ytotal: When the entire experimental design is covered in one frame, 
merging images together, as in the IPLS-Ygrid is not required. In these cases, each pixel 
in X also has a separate, unique value in the Y-image. Typical examples come from 
e.g. remote sensing. Because most of the still limited MIR-literature explicitly 
discusses this kind of data, and because it is merely a special, extreme case of the Ygrid, 
it will not be treated further in this paper 

Figure 1. The three different MIR modes, Ydiscrim, Ygrid and Ytotal. 

1.2 Software 

All calculations  in this paper are performed using a self-developed program, described 
in Lied, Geladi & Esbensen [5]. The software is available for Microsoft Windows ® 
(9X NT 4+5) and is written in National Instruments’  LabVIEW  v. 5.1. Both MIA and 

Y discrim Y grid Y total 

X Y 

IPLS-R 

IPCR 

MODES
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MIR is implemented; for MIR regression calculations, KERNEL-PLS [3] is used 
exclusively. 1 

2.0 APPLICATIONS 

Below the terminology IPLS (Image PLS) is used throughout, but it is evident that 
PCR may also be used alternatively should one so desire, albeit with the well-known 
distinctions regarding PCR vs. PLS [9-10] etc. Here PLS is employed exclusively 
because of its well-known chemometric advantages [9-14]. In both major examples 
below, data are mean centred and scaled to uniform standard deviation. All variables 
thus have equal variance weights, making the Kernel-PLS decompositions pertain to 
correlations. 

2.1 IPLS-Ydiscrim : Discrimination Prediction. 

Motivation: A pilot study of image analytical industrial inspection of a mass 
production food article, Swedish crispbread ("knäckebrød") is presented. This item, by 
nature of its mass consumption status, is produced in very large quantities in industrial 
bakeries in many countries. Output from the industrial ovens are necessarily way 
outside complete human inspection capabilities, for which reason an automated, 
industrial image analytical system would be of considerable interest. This in turn could 
form the basis for a truly 100% inspection system. 

In our restricted pilot study involving some 10 pieces of crispbread,  parallel 
representative oven outputs are available, 5 with an "accepted" status and 5 with three 
types of representative faults, typically encountered in the industrial production 
situation. Figure 2 shows these three faults together with examples of the directly 
acceptable product ("normal"). Technical details regarding this image is found in table 
1. 

 

 

 

                                                      

1 When developing this prototype, serious efforts were made to enhance the flexibility and user interaction 
facilities. For large datasets, 10 M pixels or above, calculations starts to become slow however. 
Development of a professional system is now under way. Contact the corresponding author for 
instructions on how to download the freeware prototype. 
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Table 1. Technical Details of the crispbread case 

Image Capture Camera Lens Focal Length 
 JVC 3CCD KYF-50 Micro Nikkor AF 105mm 

Measures With (pixels) Height (pixels) # Variables 
Total Image 1000 666 4 
Sub Images 200 333 4 

Spectral Variables Colour Wavelength Bandwidth 
1 RED N/A N/A 
2 GREEN N/A N/A 
3 BLUE N/A N/A 

Textural Variables Filter Window Size & 
Passes 

Applied to  

1 Variance   

Figure 2. "Normal" and "flawed" Scandinavian crispbread ("knekkebrød"). Three 
representative types of flaws are displayed; broken, perforated and burnt cases. 

Figure 3 shows standard MIA score plot  set-ups for the crispbread case (figure 2) [1, 
2]. 

In the interest of the wider application horizon for this specific IPLS-Ydiscrim regression 
example, a more general IPLS-Ydiscrim regression case will be set up. This is done by 
using a Y-image mask of the areas of interest in the image which are recognised as 
"rejects", i.e. areas which are underlain by those parts of the Y-image which depicts 
flaws of the various type. Figure 4 shows this "flaw"-mask.  
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Figure 3. MIA standard score-plot for the crispbread case in figure 2. 

 

Figure 4. Y-image mask of (0/1) discrimination areas. Note that by using a relevant background 
discrimination feature, it is possible to zoom in only on the true flaws present in the gridded 
calibration imagery, which have been designated white here. 
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Figure 5. IPLS-Ydiscrim t1-t4 score plots showing all three resolved classes in the crispbread 
case: broken/perforated (top panel); burnt (middle) and "accepted" (lower). Note complete 
discrimination. Also comp. with similar t1-t2 scoreplot from the MIA-solution 

 

Figure 5 has been designed to bring forth the full potential of the IPLS-Ydiscrim-case, 
showing (in standard MIA-style) the corresponding t1-t4 score plots  versus the 
original (raw) image domain layouts of three fault classes present in the fully 
background-discriminated crispbread case: shadow (top); burnt (middle) and 
"accepted" (bottom). It is gratifying to observe complete discrimination between all 
relevant classes, i.e. all three types of rejects/accepted and the background as well. This 
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successful discrimination points directly to the desired use of image-based prediction 
of all these types crispbread. This pilot study, while extremely simple, allows full 
conceptual delineation of a complete automated image analysis system, by way of the 
relevant PLS-prediction facility, Figure 7. 

Figure 6. Calibrated X-variance (top) and Y-variance (middle) and validated PRESS (low) for 
the crispbread case in figure 2. 
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Incidentally, observe that in this particular case, there would appear to be very little 
"tilting" of the IPLS-solutions relative to the corresponding simpler PCA-solutions 
(MIA), contrary to many other two-way experiences [4-5, 15-16]. In the present case 
this reflects a rather direct correspondence of the X-block data structure with the Y-
structure(s), i.e. the information gathered in the image analytical X-decription 
"happens" to be directly correlated to the guiding Y-discrimination dummy variable; 
see also below however. 

Figure 7. Predicted Ŷ-image using 1 (one) component. Note how the model distinguishes 
clearly between faults/non faults. 

While figures 4-6 gives the statistical facts in this case, figure 7 shows the actual 
predicted image in scene space using one component. This figure demonstrates that the 
model is excellent for predicting all the relevant types of faults. This result is, needless 
to say, of a much larger generalisation potential than the specific crispbread example 
chosen. The illustration in fact  has merit as an archetype for IPLS-Ydiscrim multivariate 
image regression. 

MIX-aside: In this example a variance filter (table 1) has in fact also been applied to 
extract local textural variations in the X-image. While the background is flat, the 
crispbread has a very distinct, regular texture. The variance filter, which returns the 
local variance in a small window in every position in the image, will thus greatly help 
to distinguish crispbread from background as well as textureless burnt parts, assisting 
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the spectral information in the classification. The effect of this filter addition is 
visualized in figure 8 which shows the loading weights(w) for this example. From this 
figure, it can also be seen that X2 and X3 (Green and Blue) contains mostly the same 
information, indicating that one of them could be left out in later calibrations etc. 

Figure 8. Loading weights 1 vs. loading weights 2 for the crispbread case. Note X-variables 2 
(green) and 3 (blue) which seem redundant. 

Note how judicious use of a relevant background  (colour, texture) is essential to bring 
about the successful discriminations in this case. As in all image analysis applications 
illumination and colouring (not treated here) is often of equal importance compared to 
the data analysis proper etc. 

2.2 IPLS-Ygrid: Monitoring and estimating storage time for fruit 
(bananas). 

Motivation: The objective of this application example is to monitor storage stability by 
a series of (multi-temporal) images of the same fruit(s), with great efforts to keep all 
storage and imaging parameters  constant, the only variable being time elapsed since 
storage start. Successful monitoring will allow for quantitative storage deterioration 
prediction directly from the captured multivariate X-images [5].  

In this context, the calibration-parameter "storage time" shall be represented by 
juxtaposed part-images, making up a complete, so-called gridded, multivariate image, 
hence the suggested name for this second image regression mode: IPLS-Ygrid. This 
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example also serves as an archetype not only of multi-temporal studies but also of 
analogous objectives, conf. below.  

Figure 9 shows the compound, gridded multivariate X-image of a deteriorating banana, 
for which the storage times involved are (from upper left to lower right):  1/2/3/6;  
7/8/9/10;  13/14/15/20 days respectively. This gridded layout is necessary in order that 
all storage times can be analysed together by MIA or MIR. It is emphasized that it is 
the objective of the image analysis (in this case: storage stability monitoring) which 
dictates that the individual grids represent a succession of different storage times. For 
other image regression cases, these individual grid cells will often represent different, 
typical "object-like" categorical entities to be similarly compared, e.g. a series of 
different meats to be characterised, as was the case with Wold et al. [15] (in fact also 
predicting a storage-related parameter, "harshness"), Geladi and Grahn [2] a.o. 

Table 2. Technical Details of banana example 

Image Capture Camera Lens Focal Length 
 SILVACAM Fujinon 120 mm 

Measures With (pixels) Height (pixels) # Variables 
Total Image 800 600 3 
Sub Images 200 200 3 

Spectral Variables Colour Wavelength Bandwidth 
1 NIR 760 - 900 nm  
2 Red 580 – 680 nm  
3 Green 490 - 580 nm  

 

Figure 9. Storage time aging of representative fruit (banana) in the interval 1-20 days. 
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In figure 10, which shows the particular Y-image, the array of grid cells forms the 
basis for an IPLS1. Observe how the deterioration process interval of 1-20 days has 
been mapped into an image analytical appropriate grey-level interval, spanning 0-255. 
Again it is the Y-image mask which makes the regression problem immediately 
appreciable. In one sense, as soon as the multivariate X-image has been defined, it is 
the Y-image which sets up the entire MIR.  

Figure 10. IPLS-Ygrid Y-image, delineating the problem-dependent Y-levels for the banana 
deteriorating process. Figure 10 (Y-image) corresponds to figure 9 (X-block). 

Figure 11 performs an identical role as figure 5, encompassing the essentials of the 
IPLS-analysis. In the t1-t2 score plot  (upper left panel) one may appreciate, in full 
detail, the trace of the fruit deterioration process. 2 We have illustrated two 
representative process stages along this trace, an intermediate stage and the 
penultimate sad, almost totally rotten end of the banana development (upper right and 
lower left panel respectively). With reference to MIA [1, 2, 17] the scene-space back-

                                                      
2 We have elsewhere worked out a complete image analysis strategy, which - while originally presented as 
related to MIA - also applies to the analogous t-t- score plots derived by an IPLS-solution [17]. As but an 
example we there followed another biological process, albeit of considerable greater complexity, i.e. a 
forest clearing regrowth process, using geomorphological analogies in order to characterise MIA score 
plots. From this review [17] a range of interpretation guidelines for t-t score plots were developed, all of 
which may also be applied to the present PLS-solutions. Observe that a slightly different modus operandi 
applies to the t-u plots [18]. These subtle differences will be addressed in several sequel papers on a 
comprehensive MIR strategy, which are in the works.  
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projections of these two classes are self-explanatory in figure 11, especially when 
compared with figure 9.  Fig. 11 shows how it is possible to delineate the entire 
deteriorating process in the X-space because the entire storage time calibration span 
has been compounded in the one (X,Y)-image. 

For IPLS solutions the t-u score plot allows valuable, indeed critical insight into the 
effective regression relationships between the X- and the Y-space [18]. E.g. if already 
the t1-u1 relationships is (close to) linear, this is a certain reflection that a strong 
prediction model will be achieved; likewise, smaller non-linearities in the t1-u1 score 
plots are usually "ironed out" by inclusion of one or a few, additional PLS-components 
t2-u2, t3-u3 etc.  

Figure 11. IPLS of the fruit aging process, in the IPLS-Ygrid regression case. Upper left: t1-t2 
score plot, with two sets of corresponding scene-space (upper right and lower left panels). 
Lower right: corresponding t1-u1 score plot. Note discrtesation along the u1-axis, 
corresponding to the Y-levels presented in figure 9. 

For the present first presentation of the most used features in multivariate image 
regression, these few aspects of the general use of the t-u- plot will be enough to allow 
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appreciation of the way the IPLS-Ygrid-modelling works. Figures 11-13 represents 
salient central aspects of our work leading up to a complete MIR strategy [5,19]. 

Figure 12. Complete predicted vs. measured (P/M) layout of the banana aging process IPLS-
Ygrid-analysis. The standard P/M assessment plot is shown for 1,2 and 3 IPLS-components, 
while only the t1-u1 scoreplot is shown (lower right). Significant improvement of prediction 
precision using 3 components 

For an assessment of the modelling strength of the IPLS-analysis, figures 11-13 will 
also suffice. From these X-Y relationships it is evident that a satisfactory model can be 
achieved using three IPLS-components. Observe e.g. how the P/M (predicted vs. 
measured) relationships improves quite considerably when adding the second - and 
third IPLS-components. From the t1-u1 relationships alone it was however already 
clear that this would per force result. We are also able to follow how one would go 
about identifying outliers etc. by using the appropriate t-u score plots, following [18]. 
In the specific present plots in Figure 11 we did actually not have reason to perform 
any outlier deletion, since none were found. 
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Figure 13. Calibrated X-variance (top) and Y-variance (middle) and validated PRESS (bottom) 
for banana aging case. 
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3.0 DISCUSSION AND CONCLUSIONS 

The examples above represents our first presentation of a simulation of an automated 
image-analysis monitoring system in the guise of IPLS: MIR (and MIX), in which we 
focused on the general aspects of the IPLS-Ydiscrim and the IPLSgrid cases. 

The specific choices of illustrative food article systems is not in any way an absolute 
indication of the general applicability of this approach. What have been shown feasible 
for perishable fruit articles, and for on-line food product characterisation, is of course 
equally applicable to, say, cereals, bread, meat, fish - indeed the food and feed areas at 
large are potentially opened up for a similar approach, e.g. the berries -, beverages, - 
dairy sectors etc. 

Continuing outside the human, and animal, food and feed areas, an analogous 
automated image monitoring approach can of course equally well be envisaged for 
quite different application areas, at first primarily within the general technological and 
industrial sectors - but  perhaps even further removed. One common denominator 
could be any multi-temporal aspect, which would lend itself to an appropriately 
modified image recording and - analysis approach, similar to the one illustrated here, 
e.g. degradation studies: paints, coatings, corrosion inhabitation - industrial inspection 
in general i.a. Within the field of remote sensing there is also a plethora of similar 
multi-temporal objectives.  

The on-line image monitoring example, while relatively simple in the crispbread case, 
also has many, much broader applications potentials within much of the industrial 
inspection realm, in which there is often a distinct need for automated image analytical 
monitoring. 

For the present feasibility studies we are satisfied with the above results for both the 
IPLS-Ydiscrim and the IPLS-Ygrid approaches. We have shown that the multivariate image 
regression approach (MIR) is now fully established. It bears in mind though, that there 
is always a series of critically important specific associated image-analytical problems, 
e.g. problem-specific illumination, shadows, reflections, non-constant object sizes i.a. - 
Much interesting work remains.   

The present first foray into the possibilities of multivariate image regression has 
focussed on the ways-and-means of modelling (using bilinear IPLS) and prediction. 
What remains is the equally important aspect of multivariate calibration, validation (in 
the form of image-regression validation), which forms the subject-matter of the second 



  19 

paper in this series, in which we also will make use of the third IPLS-regression case 
only identified here: Ytotal [19]. 

 

 



20 

 

References 

1. K. Esbensen and P. Geladi; Chemometrics Intell. Lab. Syst. 7 (1989) pp. 67-86. 

2. P. Geladi, and H. Grahn: Multivariate Image Analysis. John Wiley & Sons, Chichester, 
UK, 1996, p. 316. 

3.  F. Lindgren, P. Geladi and S. Wold; J. Chemometrics, 7 (1993) 45-59 

4. K. Esbensen, P. Geladi and H. Grahn; Chemometrics Intell. Lab. Syst. 14 (1992) 67-
86. 

5. T.T. Lied, P. Geladi and K. Esbensen;  J. Chemometrics 14 (2000) 585-598 

6. N. Lamei, K.D. Hutchison, M.M. Crawford and N. Khazenie. Optical engineering 33 
(1994): 1303-1313. 

7. T. Yamazaki and D. Gingras. IEEE transactions on image processing 4 (1995) 
1333-1339 

8. J. R. Carr. Computers & Geosciences. 22 (1996), 849-865. 

9. H.  Martens and T. Næs: Multivariate Calibration.  John Wiley & Sons, Chichester, UK,  
1989, p. 419. 

10. K. Esbensen, S. Wold and P. Geladi; J. Chemometrics, 3 (1988) pp. 33-48.    

11. A.K. Smilde, J.A. Westerhuis and R. Boque; J. Chemometrics, 14 (2000), pp. 301-331. 

12. R. Bro, Doctoral thesis. (1998): Multiway analysis in the food industry.  

13. C. Anderson,  and R. Bro  (editors); J. Chemometrics 14 (2000): pp. 103-334. 

14. A.K. Smilde, and H.A.L Kiers; J. Chemometrics 13 (1999) pp.31-48. 

15. P. Geladi and K. Esbensen; J. Chemometrics 5 (1991)  pp. 97-111. 

16. J. P. Wold and K. Kvaal ;  Appl. Spectrosc. 54. (2000) 

17. K. Esbensen, T.T. Lied, K. Lowell and G. Edwards. (Submitted for publication) 
Principles of Multivariate Image Analysis (MIA) in remote sensing, technology and 
industry.  

18. K. Esbensen: Multivariate Analysis in Practice, 4th edition. (2000). CAMO ASA, Oslo, 
Norway.  

19. T.T. Lied and K. Esbensen (Submitted for publication) Principles of MIR, Multivariate 
Image Regression -II: Cross validation- What you see is what you get. 



 

 

 
 

 
 

 
 

Paper IV 
 

 
 





Principles of MIR,  
Multivariate Image Regression - II: 
Cross validation - what you see is what you get 

 

 

 

 

Thorbjørn Tønnesen Lied & Kim H. Esbensen 
 

thorbjorn.t.lied@hit.no  -  kim.esbensen@hit.no 
+47 35 57 51 53  -  +47 35 57 51 50 

fax: +47 35 57 52 50 
 

Telemark University College 
Dept. of technology 

Kjølnes ring 56 
N-3918 Porsgrunn 

Norway 

 



 ii 

CONTENTS 
 
 

Abstract........................................................................................................................... 1 

Introduction..................................................................................................................... 1 

Nomenclature ............................................................................................................. 4 

Case studies..................................................................................................................... 4 

Case 1: Full Y-image.................................................................................................. 7 

Case 2: Problems ...................................................................................................... 10 

Case 3: Y-grid........................................................................................................... 11 

Case 4: Cutting to the bone ...................................................................................... 17 

Discussion and conclusions .......................................................................................... 19 

References..................................................................................................................... 20 

 



 1

ABSTRACT 

This paper deals with generic problems regarding segmentation for cross validation in 
multivariate image regression. Multivariate images are characterized by a very large 
numbers of pixels which usually are highly redundant. When several thousand (ten 
thousand) pixels or more represent the same object, special considerations are required 
for proper cross validation segmentation. 

A new approach for guided segmentation is introduced, in which the validation 
segments are specifically delineated by the informed user in score space. The practise 
of "blind", automated segmentation, which is dominating 2-way cross validation, is 
found to be useless in the 3-way MIA regimen. Problems concerning which order of 
components to use for the segmentation delineation are illustrated and the necessary 
precautions needed to ameliorate this approach are discussed. A general solution to the 
problem, called higher-order components guided random sampling , is  described in 
detail, which may even also shed new light on current chemometric cross-validation 
practises in the conventional 2-way realm. 

This new cross-validation approach is illustrated with multivariate image data sets 
which are known from the pertinent literature for easy comparison.  

 

INTRODUCTION 

This paper is the second in a series regarding Multivariate Image Regression, MIR, 
which has been developed to create regression models between multivariate images 
[1]. For a general introduction to this field, please see part 1 [2], in which the complete 
phenomenology of the three principal cases of multivariate image regression was 
detailed. 

A multivariate image is a 3-D OOV matrix [3], i.e. two ways are objects (pixels in 
rows and columns), while the variable-way is comprised by different channels, e.g. 
colours. There are quite distinct differences between this 3-way domain and the 
complementary OVV domain, well-known from the three-way decomposition. These 
two domains do not in general make use of the same data modelling methods [2]. Here 
we treat OOV (MIA, MIR) exclusively. 
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In any multivariate model that will be used for prediction, it is important to know the 
predicting powers of the model. This is usually done by estimating the prediction errors 
as a measure between known and predicted values. A popular prediction measure is 
RMSEP (Root Mean Square Error of Prediction) which is defined as 

 

Equation  1 

 

where ŷi refers to the predicted value, and yi,ref is the known value [4]. 

The procedure of testing prediction performance is known as validation. To perform 
this optimally, at least two sets of data are required, one for calibration and one for 
validation. When a model has been established, using the calibration set, the validation 
set is subsequently used for predicting the ŷ-values of the validation set for 
comparison, e.g. according to equation 1. 

At least two variations for this type of validation exist, one is known as “test set 
validation”, the other as “cross validation”. In test set validation, a completely new, 
independently sampled dataset is acquired, in addition to the calibration set. This 
demands that an identical sampling procedure is used for both data sets.  

If this is not feasible, a different, less optimal, approach will have to be resorted to. 
Cross validation extracts a pseudo-validation set from the calibration set before 
building the model on the remaining complement of data. The extracted data is now 
used for validation. This approach may take several different forms, but all are closely 
related, in that they per force must correspond to a number of so-called segments in the 
list: 2,3,4,5....N, where N stands for the total number of objects in the original 
calibration set. After prediction errors have been estimated for the one left-out 
segment, it is replaced back into the modelling base and a new model is created in 
which a different segment is being kept out of the modelling etc. This is continued until 
every segment, and object, has been used for validated, hence the term cross validation 
[5]. 

To get realistic validation estimates, it is important that the calibration and validation 
datasets represent two independent samplings from the target (parent) population. The 
degree of difference between them should reflect the variations that can be expected 
associated with the future measurement situation in which the regression model is to be 
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used for prediction purposes [4]. It is easy to see that test set validation is the only 
approach which honours all these requirements, ibid. 

In 2-way chemometrics there are steadfast different opinions regarding how exactly to 
divide the data in calibration and cross validation sets or segments [6]. From so-called 
full cross validation (leave one out) on the one hand, to two-segment, so-called "test set 
switch" on the other; the latter represent a singularly unsatisfactory choice of 
terminology, as there is no "test set" present at all. It is always possible to use any 
intermediate number of segments from the list: 2,3,4 ....N. The relationships between 
test set validation and these systematics of cross validation remain an area of some 
confusion in conventional 2-way multivariate calibration [4]. In multivariate image 
analysis, however, distinct and special considerations are required to which this paper 
is dedicated.  

There are two major characteristics in image data that are rarely found in 2-way data. 
Most striking is the number of “objects”. In a conventional video image (~500x700 
pixels), there are more than 350.000 “objects”, i.e. pixels, in the range [0..255]. 
Removing any single object from this amount of data is not going to change the model 
adequately to perform any useful validation [4]. Also, calculating 350.000 sub-models, 
full cross validation, is not very tempting. 

Secondly, and much more important to consider, is the large redundancy that exists in 
image data. Pixels lying close together in the image space are likely to represent the 
same object, and therefore often have closely similar values. Two-block data sets, for 
example in which every second pixel, say, is to be used for validation, would 
necessarily produce two almost identical images, clearly leading to inferior validation, 
ibid. This would correspond to some spatial (image space) segmentation scheme. With 
knowledge of object selection traditions in 2-way data analysis, the reader might well 
alternatively ask: “Why not simply use random sampling then?” This would 
correspond to a notion of a fair "blind", automated segmentation strategy. Again, 
consider the very large amount of data (pixels) present. Sampling 50% randomly out of 
350.000 objects would most likely again simply produce two practically identical 
datasets. The last refuge from frustration of trying to generalise from the well-known 
2-way regimen into the 3-way MIA/MIR realm will probably be to throw ones hands in 
the air: "Then use a larger number of segments, 10 or so!" - We shall show below that 
all such "blind" segmentation strategies are doomed to failure in the multivariate image 
regimen, irrespective of the actual number of segments chosen - if not specifically 
related to the covariance structure in the multivariate image.   
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In fact, multivariate image analysis requires a complete reconsideration of relevant 
strategies for selecting relevant data sets for calibration and validation. A new a 
strategy called “guided random sampling” is suggested below. In guided random 
sampling the user decides how the data is to be divided into the pertinent sets. This is 
neither done randomly, nor by a pre-specified "blind" number of segments, but with 
very specific respect for the empirical data covariance structure present (in the score 
feature space). A different angle from which to attack the data segmentation problem is 
required. Following the MIA experience this angle is to be found in the score-space. 

Nomenclature 

The following notation is used: 

X Matrix of predictor variables 

Y Matrix of dependent variables 

y Y-vector 

T Matrix of X-scores 

U Matrix of Y-scores 

 

CASE STUDIES 

For illustration purposes, several examples mostly based on already published 
multivariate image data sets will be used [7, 8]. The master dataset consists of a 
512x512x8 image, the Montmorency Forest experimental data set [7, 8], where the 
channel with lowest wavelength is here chosen as the Y-image in the present context. 
This is not to be understood so that we suggest to predict this channel from the 
remaining seven others (although this actually might be an excellent solution for 
recovering a "corrupted" channel, which is often enough met with in remote sensing) - 
rather we make good Y-use of this particular channel in order to illustrate the special 
image regression case of Y-total, compare [2].  

In figure 2 the pertinent T1-U1 score-plot from this application is shown. The cross 
validation challenge is here to divide this plot in, say,  two sets (segments) that both are 
equally representative of the actually covariance structure present. A simple two-split 
in this plot may easily give rise to a significant difference between the subsets if the 
data structure does not comply well with a simple joint multivariate normal distribution 
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assumption. In multivariate image analysis we have yet to find such simple 
relationships! Some objects in one set will not be equally represented (if at all) in the 
other, and validation may easily tend to become unbalanced. A(ny) two-split - alone - 
would almost always be in danger of being unbalanced.  

 

Figure 1. The scene space  master image data which will be used for illustration, the 
Montmorency Forest data set [7,8]. The image consists of 512x512 pixels in eight bands 
(Channels, variables). Here it is represented by channels 1-2-3 as R-G-B. 

To solve this problem, we suggest that the data set - generically - is divided in eight 
segments, sampling both along as well as across the dominant covariance data 
structures in the following way. 

Initially the data is split in two halves along the main covariance direction. In figure 2 
this would be a line passing through the two modes of the highest concentrations of 
pixels with similar score signatures, i.e. topographic “peaks”, compare [3,8] (figure 3), 
which are coloured red and orange in fig. 3. Each of these parts should now contain 
approximately 50% of the objects, and all main classes should be represented - at least 
the classes which go along to make up the dominating elongated covariance trend. 
Secondly, intersecting the first line, a new line should be drawn representing the 
second most important covariance direction, again as judged from the pertinent MIA 
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score cross-plot conventions, ibid. It is important that this second direction really 
corresponds to what the user perceives as the second most representative part of the 
overall covariance structure (more examples to be given below); thus there are no 
requirements for orthogonality of these two salient user-delineated covariance 
directions etc. This gives four segments, which each ideally should contain about 25% 
of the objects - barring whatever "surprises" may be in waiting in the higher-order 
components not captured in this first delineation. This, generally oblige, axis cross 
delineation is all the user has to supply in order for our new cross validation procedure 
to take over. 

 

Figure 2. T1-U1 scoreplot from the MIR  analysis of the image in figure 1. 

After the user has drawn this second line, the software draws the four lines between the 
endpoints of these backbone intersecting lines. The software locates the intersection 
point, and finally calculates the midpoints between the corners of the outer frame. 
Lines are then drawn between the midpoints and the intersection point. An example of  
a resulting eight-segment mask is shown in figure 3. This configuration illustrates a 
generic eight-segment mask which it is the user's task to implement on top of a specific 
T-U, or T-T score plot. 

With this type of mask, there are three functional combinations of subsets consisting of 
eight, four or two validation segments respectively. When selecting and combining 
sets, they should be opposite with regard to the centre point. Figure 4 shows the two 
compounded sets used in two-segment cross validation. In general each of these non-
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overlapping two-fold division of the image covariance structure takes the form of a 
Maltese Cross, illustrated vividly in fig. 4. 

Notice in Figs. 3 & 4 how some obvious outlying features have been  excluded already 
in this first stage of cross validation segmentation (top right portions). 

 

 

Figure 3. Left: Sketch of cross validation segment splitter initiated by two master lines drawn by 
the user. Right:  Example of eight cross validation segments defined in a score-plot, T1-U1. Note 
that outlying pixels can be excluded already when delineating this mask. 

Case 1: Full Y-image 

The first case is a study of what was found in [2] to be a comparatively rare situation in 
image analysis; the full Y-image. In this situation, each object in X, each pixel, also 
has a corresponding representation in Y. This furnishes a particularly illustrating 
example of the new image analytical cross validation approach to be outlined. A more 
usual situation is studied in case 3.  

While figure 4 shows the two validation data sets in the scoreplot, figure 5 displays the 
same data in image space. Pixels marked with white colour is used in the set. 

Some outlying parts of the data was left out of the validation set entirely, because these 
pixels were identified as outliers already when delineating the problem-specified 
Maltese Cross region of interest. Alternatively this built-in outlier remover can be 
refined by making a local model [3,8] prior to the cross validation, allowing only the 
specific, problem-dependent objects of interest to be represented in the scoreplot. 

Line 1 

Line 2 
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Figure 4. The two complementary “Maltese cross” validation data sets selected in the T1-U1 
scoreplot shown in figure 2. Note how both achieve good data structure representation. 

 

  

Figure 5. The two complementary validation segments selected figure 4 projected to image 
space. Note how both achieve satisfactory coverage and spatial representation. 

Studying the images in figure 5, it should be fair to say that these two data sets 
represents  approximately the same objects at the scale of the overall, full FOW image, 
with only a small difference at the most detailed levels. What you SEE in the score 
space rendition, fig. 4, is exactly what you GET, fig.5. The user has the full ability to 
iterate his or hers first tentative delineations of the Maltese Cross configuration by 
careful inspection of the RESULTING disposition of the two compound, non-
overlapping scene space renditions, fig. 5, until a satisfactory results has been 
achieved. 
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 Figures 6 and 7 shows what happens if eight segments were to used independently as 
in a conventional eight-segment cross validation. Obviously there are very great 
differences between these eight datasets, in fact there is an absolute certainty that these 
sub-models will be totally incommensurable with each other. This is a dramatic 
illustration also of the general cross-validation "problem" when the relationships 
between the X and the Y-space is more complex. In the present image analysis 
example, it is evident what goes wrong, were one to use an eight-segment (12.5%) 
cross validation scheme. 

Figure 6. Eight individual validation segments in the T1-U1 scoreplot and the corresponding 
image space. Note how none of these achieve neither data structure nor spatial representa-
tivety. 
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Case 2: Problems 

It is possible to run into problems with this approach if great care is not taken in the 
CV segmentation step however. If the segments are too small, they will very probably 
not be representative for the entire dataset. Another possibility, as will be shown in this 
case, is failure drawing the optimal guiding lines. Figure 7 and 8 shows what happens 
when the guiding lines split the data in a off-centred fashion. Clearly these two Maltese 
Cross configurations are NOT making up a good, balanced 50/50 cross validation 
bases. As can be seen even a small off-centred two-split has a dramatic effect on the 
two relative datasets because of the very high number of similar pixels making up the 
covariance backbone of the data structure. One dataset is provably very different than 
the other with very obvious poor, non-representative validation results to be expected. 
The current approach is thus very sensitive to the precision of - and the understanding 
behind - the user-interaction. 

  

Figure 7. Corresponding scoreplot (T1-U1)  and image for off-centred Maltese Cross. The 
complementary 50% segment is shown in figure 8. 

Another potential problem is when the modes (the "peaks") in the scoreplot does not lie 
on a straight line. If there are more than two peaks of interest, drawing a representative 
two-split line through them is practically next to impossible. This problem is illustrated 
well by a scoreplot from a different representative data set, also from [2], illustrated in 
figure 9. This example illustrates with all clarity why multivariate image analytical 
endeavours usually are of an order-of-magnitude more complex than in the ordinary 
two-way regimen. 
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Figure 8. Corresponding scoreplot and image for off-centred Maltese cross. The contrary 
segment is shown in figure 7. 

 

 

Figure 9. T1-T2 Scoreplot from a complex dataset showing a 7-8 mode (“peaked”) curved data 
structure. Observe how it is apparently impossible to apply a Maltese Cross segmentation on a 
data structure as complex as this. 

Case 3: Y-grid 

More commonly than the full Y-image, is when X and Y are constructed as grids from 
several smaller images. This is a useful approach when making a reference dataset as a 
basis for a regression model. A typical grid image is shown in figure 11. This image 
consists of 6 smaller images of different sausages. The corresponding Y-image 
contains the overall fat-content for each sub-image. The fat content is represented as a 
grey-level as shown in figure 10. This data set-up was discussed extensively in [2] 
where used as a vehicle for explaining the concepts of MIR, Multivariate Image 
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Regression. In this particular case the objective is the be able to predict the average fat 
content in the six heterogeneous sausages (left in fig. 10). 

  

Figure 10. Illustration of the Y-grid MIR case. Six sausages, left: (X-image, variables 1, 2 and 
3) and corresponding fat-content, right (Y-image). 

As can be seen from the Y-image in figure 10, there is no unique Y-value for each 
pixel in X. This phenomenon occurs when an overall value is to be predicted from an 
image, and it has a somewhat negative effect on the T-U scoreplot. This effect is 
shown in figure 11 the pertinent T1-U1 scoreplot from the sausage data. 

 

Figure 11. T1-U1 scoreplot from the sausage fat prediction case. Each line represents a 
specific Y-value, or sub-image, compare figure 10 (right). 

In figure 12 it will be demonstrated that applying the eight segment Maltese Cross 
scheme in a T-U plot, as the one in figure 11 is not at all straight forward. The nature 
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of the T-U plot in grid cases will force an uneven distribution in the image-space, 
almost no matter how the eight-fold segmentation mask is delineated. Also observed 
how the score space delineations are very difficult to evaluate because of the extremely 
discrete nature of the Y-levels present in a Y-grid case; for full details, see [2]. 

 

 
Figure 12. Y-grid case, two-block segments from selection in T1-U1 plot. Note extensive
unbalance in the image space (right). 

In figure 12 it is evident that especially the two lower and the middle right X sub-
images are very poorly represented in the complementary validation segments. This is 
even more so if eight individual segments were to be used, as was shown in the first 
example in figure 6. To save space, this is not repeated for the current example. 

Thus what seemed initially to be a good idea, i.e. the “Maltese Cross” eightfold cross 
validation segmentation in the TU-score space, on further inspection has proved to be 
at best a very sensitive approach - in fact in would be wrong to say that it has proved 
its reason for existence convincingly.  

It can be shown, however, that this is merely a question of application. The critical 
point is not so much how the lines are drawn in the plot, it is what plot the lines are 
drawn in. So far, the procedure has been applied to plots where there are strong 
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correlation in the data, and physical objects have specific locations too, i.e. the familiar 
low-order score plot(s), e.g. T1-U1 etc. which all play a very dominating role in 
conventional 2-way multivariate calibration [4].  Chemometricians will be familiar 
with the fact that in the score space, the first dimensions contain the most structured 
parts of the data, while for the higher-order components there is bound to be less and 
less variance etc.  

With this in mind, the next, perhaps surprising step in the present image exploration 
will focus explicitly on this higher-order score space.  

Figure 13 shows T-scores 4 vs. 5 from the master Montmorency Forest example. What 
is interesting in this plot, is that most of the structural information is now orthogonal 
to the data  delineated in this figure. This indicates that the current plot is well suited as 
a starting point for the cross validation data segmentation. 

 
Figure 13. Alternative higher-order components scoreplot (T4 vs. T5 ) from the 
Montmorency Forest (figure 1). 

Below, a Maltese Cross cross validation segmentation has been applied to the scoreplot 
in figure 13. Figure 14 shows the resulting two non-overlapping segments both in score 
space and image space. As can bee seen from the figure, there is now a very 
satisfactory even distribution in the two segments (and only with very close 
investigation, some minor differences can be found between the image-space 
representations though, which have to do with shadows mainly).  

In figure 15 this is further illustrated by examining the eight segments separately. The 
conclusions from figs 13 - 15 are very clear: when delineating the new image analytical 
eight-fold cross validation segmentation in some appropriate higher-order score space 
rendition, in which most of the substantial data structure is orthogonal, the documented 
sensitivity has been controlled completely. 
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Figure 14. . Maltese Cross validation segments selected in higher-order T4-T5 scoreplot in
figure 13. Note excellent data structure as well as image (spatial) coverage and
representativity. 

 

It is still evident that an "even" rotation of the segments in score-space, leads to 
extremely opposing unbalanced pixel divisions in the corresponding image space. 
From this it is necessary to conclude that many such segments must always be 
combined to form larger fractions of the entire field-of-view, e.g. two 50% segments as 
in figure 14. 

Stepping back to the difficult Y-grid example (sausage fat-prediction), it is now 
interesting to see how this higher-order components approach will behave. Using T-
scores 5 vs. 6 and drawing the two lines that split this data set in as equally 
representative fashion as possible produces the segments shown in figure 16. 
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Figure 15. Eight segments from the T4-T5 scoreplot cross validation splitter shown in both 
score- and image space. Note that an acceptable representation has now been achieved in both 
score- and image space; compare figure 6. 

Compared with figure 12, figure 16 now shows a strikingly more uniform distribution 
of one validation segment in the image with respect to the complementary calibration 
set - and there are only a few, minor differences. Overall, this partition should lead to a 
realistic validation of the prediction model performance even for this very complex 
difficult data structure. 
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Figure 16. Cross validation segments in [T5T6 ] score- and[1,2,3] image space for the sausage 
fat prediction example. Note that an acceptable representation has now been achieved in both 
score- and image space. Compare figure 12. 

Case 4: Cutting to the bone 

One of the key features in image analysis, mentioned in the introduction, is the huge 
redundancy in this type of data. Having 350.000 objects describing, say typically, 10-
20 classes is obviously an overkill. In MIR-cases where reducing this redundancy is 
essential, it is possible to reduce the number of objects dramatically by a simple 
procedure, compare also [8] in which this case was described for MIA. The suggestion 
is shown in figure 17 in the form of the curved (hand-drawn) line, where the number of 
objects have been reduced to a small fraction of the original, but deliberately covering 
all the important classes of interest in the image. This is so because it has been drawn 
specifically to "cover" the most dominating global covariance trend of the image 
feature space. Since this mask is positioned directly along the "topographic" highs, 
compare [8] for full details, it will - per force - be maximally representative for the 
essential data structure present while at the same time allowing for the exclusion of all 
similar pixels lying outside its width (typically 1-3 pixels wide) without any risk of 
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loosing out on the most representative pixels. Observe how we have made use of this 
feature in the so-called "pred-meas" plot (predicted vs. measured), well-known from 
conventional 2-way multivariate regression validation. Thus for fig. 17 below: 

 

 
Figure 17. Freehand line covering the essential covariance structure in a Pred.-Meas. plot. 
After a local MIR model has been created on this basis, the corresponding T1U1 (lower left) 
and the Pred.-Meas. (lower right) plots are shown, validating this type of representative 
sampling of MIA/MIR data. 

Starting out in the strongly correlated pred-meas plot, a one-pixel-wide line is drawn 
covering the main data of interest. This line emulates the global covariance trend as 
best as at all possible. All objects (pixels) covered by this line only, are then used as 
objects in a new, local model [3,8]. This model will contain far less objects, and the 
redundancy in the data will be strongly reduced. In figure 17, a T1-U1 plot is shown at 
the lower left. This can now be used as a starting point for the cross validation 
segmentation. The corresponding local model pread.-meas plot is shown at the right in 
the figure. 

Some comments are required for the last figure. The points and line that can be observed in the 
lower part of the plots, represent the objects that have been left out of the model. In the 
calibration procedure, they have been removed from the data modelling, but for image 
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displaying purposes, it is necessary to include these pixels. To avoid them from interfering with 
the image, they are set to zero-value, and are displayed black in the image. The lower-left point 
is hence the (0,0) coordinate, as all score-values are scaled in the range [0..255] to optimise 
their display. 

 

DISCUSSION AND CONCLUSIONS 

We have shown that the new approach in which segmentation is done based on the 
orthogonal data representation in higher-order score components, is of a powerful and 
general nature, which in most cases will enable a realistic two-split cross validation 
(approximately 50/50). Segmentation following this approach takes the form of two 
non-overlapping “mirror” Maltese Cross configurations, each made up of four “arms”. 
The Maltese Cross is designed specifically to allow equal (but non-overlapping) 
neighbouring segments in parallel along both the user-defined axes of the mask (figure 
3). This enables a near-optimal representative split of the training data set across all 
covariance structure directions, precisely because of this compound nature. 

We have also shown that considerable care is needed when employing this feature on 
the alternative lower-order component plots available (e.g. T1-U1), in which a rather 
large “off-centre” sensitive was demonstrated.  

In general it is not recommended to use cross validation in multivariate image analysis 
with a number of segments higher than two, and then only in the form of the Maltese 
Cross (sic) - due to the much higher complexity of the covariance structures for this 
type of data relative to the experiences from the conventional 2-way realm. 

In multivariate image analysis, there is usually a high degree of redundancy in the data. 
In such cases with relatively few physical objects (classes), data reduction with local 
modelling should be considered prior to validation. We have delineated a simple 
approach for this – the one-pixel-wide swath across the backbone of the dominating 
data covariance structure(s). 
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ABSTRACT 

Selected two- and three-component mixtures are studied by image analysis plus 
chemometric data analysis, specifically AMT (Angle Measure Technique), MIR 
(Multivariate Image Analysis - and the recent extension termed MIR+) and PLS-R 
(Partial Least Squares Regression). The present studies comprise a first foray regarding 
the possibilities of continuous mixing process - and product monitoring (homogeneity, 
on-line mixing fraction quantification etc.)  using image analysis as the primary data 
capture facility. 

We study three very different types of mixing systems, i.e. dry two-component powder 
systems, frozen three-component vegetable mix systems and a minced meat mixing 
system - the latter two of which constitute real-world industrial systems of current 
economical interest. 

Results show that the present line-up of chemometric image analysis and data analysis 
methods are fully sufficient to outline a framework for automated process monitoring 
systems. The two-component systems are also representative of a much larger study 
(barely initiated) on the possibilities of predicting the ultimate propensity of mixing 
systems, based only on standard image analysis characterisation plus the necessary 
chemometric data analysis. 

We conclude that both the AMT and the MIR+ approaches are suitable for the realistic 
tasks specified in the current studies, both with satisfactory relative prediction 
accuracies and precisions as estimated from comparable cross-validations. 

INTRODUCTION 

Mixing, blending, homogenisation of granular poly-component materials is of great 
importance in modern manufacturing and in large-scale process industries. These 
processes have been  studied intensively within the field of powder science and 
technology. Despite it's importance, however, a full understanding of granular mixing 
processes is surprisingly limited. Often quite unexpected segregation can occur, even 
in what was thought to be well-designed mixers or blenders, for example when batches 
are mixed just slightly "to fast" or  for just a trifle "too long" etc. A recent overview 
highlighted these difficulties graphically with great impact[1]. Here was outlined in 
detail the many factors involved in determining the ultimate outcome of a particulate 
matter mixing. We have determined to begin a major effort of mapping the interplay 
between these instrumental factors - only based on a direct image analysis 
characterisation of the components involved  plus whatever a posteriori intricate (or 
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simple) data analysis needed. I.e. we want to find out the possibilities - and limitations 
- of being able to use only a standard, non-invasive image analysis recording technique 
of the in-situ appearances of the end-member components involved - in order to be able 
to predict the final outcome of physical mixing- and blending testing under real-world 
conditions (this latter to be carried out in realistic full-scaled certified mixing 
experiments of the type reported in  [1]). For this predictive effort, as well as for the 
presumably rather complex post-imaging data treatment necessary, we turn to 
chemometrics, which has been used in connection with powder science and technology 
only in the last five years, but with rather spectacular results [2, 3, 4 , 5, 6]. 

As a first side-benefit of the above major experimental research program it was found 
that a selected few of the many types of poly-component mixtures involved, also could 
serve a more limited purpose of illustrating new, modern and efficient possibilities for 
on-line mixing process characterisation, together with a few different, but closely 
related, types of mixtures, all of which have very great significance as general 
representatives of industrial systems in need of reliable, precise and accurate process 
monitoring (mixing process monitoring). On the market today there are to be found 
many types of such monitors to be sure, but they are all more-or-less rather dedicated 
systems directed towards rather narrow classes of materials, powders etc. 

We want to develop a completely generic image analysis_cum_chemometrics system, 
to be based on existing, inexpensive off-the-shelf digital video camera technologies 
only. Thus the "new" elements in the system we are developing will mainly be the 
problem-specific chemometric image data analysis (AMT, MIR+) and related 
quantitative prediction facilities involved (PLS). We shall use very simple digital video 
imaging data capture in our studies, which never-the-less is of exact industrial 
standards. 

Specifically the present work attempts to predict quantitative mixing fractions on a 
selected set of (very) different mixing series. We simulate on-line monitoring of 
representative mixing processes, by preparing precise (v/v %) quantitative fractions of 
the granular materials involved and subjecting them to the above camera under direct 
industrial process monitoring conditions. 

Of the methods employed here, the Multivariate Image Regression (MIR) approach is 
used to establish a relationship between video imagery data (X) and functional granular 
properties (Y) (here we limit ourselves to addressing quantification of the homogeneity 
of mixings, but in the major research program mentioned above, we shall also address 
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a range of other, standard powder characterising functional properties). Images taken 
of granular materials are bound to contain inherent information concerning the 
geometric shape(s) of the individual particles, their sizes, or size distributions, surface 
roughness, irregularities, smoothness, etc. This type of imagery will also contain 
information related to the ensemble of particles, to the particulate aggregate, or powder 
etc. as it were. Both these basic types of characteristics can be related to the bulk 
granular functional properties and mixing fractions, using proper multivariate 
calibration (PLS-regression), based on derived AMT-spectra[2] and/or MIR analysis 
techniques [8-9]. The major methodological objective of the present work will be to 
compare these fundamental two (the AMT-based and the MIR-based) prediction 
possibilities. 

Two laboratory systems are studied below, a selected suite of four dry two-component 
powder systems (representing very varying colour -, reflectance -, as well as 
morphological contrast) and a system consisting of vegetable mixes of three end-
components. The first set is used to study the more fundamental factors governing the 
mixing processes and - results, while the second set is a bona fide industrial mixing 
process monitoring example. 

 In addition to this study of granular mixtures, a real-world food mixing process 
involving minced meat (mincing meat and fat at industrial scales) is examined, using a 
newly developed industrial standard mixer ("IDE-CON"). To be able to satisfy their 
customers, producers of minced meat products are critically dependent upon reliable, 
essentially real-time on-line measurements of fat content in their products, as only very 
small deviations from the health authority specifications are accepted. Traditional off-
line fat measurements are time-consuming and certainly not continuous. Image 
analytical on-line measurements would be very preferable, if feasible, also because of 
the possibility of actually designing systems with an ability - in principle - to be totally 
representative, i.e. image analysis solutions have the prospect of being able to inspect 
the entire production output. 

A few examples of sample preparation problems occurred when certain sample types 
were introduced to the camera. Homogeneous mixtures would sometime segregate 
slightly when being poured onto the sample presentation plate in front of the camera 
etc. Flow - and transportation segregation is often a well-known problem in the 
handling of particulate matter. We made serious efforts to curtail this heterogeneity-
increasing factor in the studies presented below, by standardising the specific sample 
presentation  process (presenting the sample to the camera) throughout. On the other 
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hand what (little?) pouring segregation variance remaining was accepted as it indeed 
mimics correctly the identical problem facing industrial inspection systems. This 
certainly introduced more realistic variation  in  the analysis results obtained over that 
of otherwise "idealised" laboratory systems. 

AMT (Angle Measure Technique)  

The AMT transform, as a new signal analysis method, has shown potential in many 
areas of science and technology since its debut in 1994.  It characterises the scale-
dependent complexity of data such as time series, spatial data series, indeed any 
generic measurement series, in a new domain - the scale domain. Applications include 
image analysis, signal analysis, spectroscopy, analysis of drilling well log data, 
measurement runs in quality control, etc [2-6].  

AMT has been applied on powder imagery in connection with multivariate calibration 
in a series of recent studies resulting from our chemometric collaborations in powder 
science and technology [2-6]. AMT has shown a significant positive propensity as a 
salient pre-processing facility for quantifying the textural characteristics of images. 
When derived AMT-spectra (see further below) are subjected to multivariate 
calibration, e.g. in the form of PLS-regression modelling, a combined facility termed 
MAR (Multivariate AMT Regression) has been shown to have a very wide 
applicability. It is especially the combined facility of being able to quantify texture 
features for both individual particles as well as for their aggregate (powder/mixture) 
characteristics which comes to the fore in these applications, allowing for materials 
characteristication simultaneously over all particulate scales. 
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Figure 1. A representative image of a mixture of particulate matter, to be unfolded and subjected to AMT-
characterisation 

 

 

Figure 2. AMT-derivation of the so-called MA angle measure (Mean Angle). The extensive reference litterature 
explains parallel derivation of the MDY-measure as well [2-6]. 
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Figure 3. Illustration of representative AMT complexity-spectrum derived from a mixture image.  Observe how the MA-
spectrum is calculated as the mean of all individual angle measures at all scales, two of which two have been 
highlighted (scales = 10, 100). The horizontal axis represents "log S". MA displays a complexity "peak" corresponding 
to a scale of approx. 10-30. When several AMT-spectra are collected into a common X-matrix, the (log S) scale is used 
as the variable dimension. For full details of AMT [2-6].  
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The most useful aspect of the AMT transform is that the compound (MA, MDY) 
spectrum can be used as 1-D object vectors in multivariate data modelling (e.g. PCA or 
PLS). For 2-D image objects it is the local texture of the field-of-view which is 
transformed into a corresponding 1-D linear complexity spectrum. These complexity 
spectra, implicitly carry a remarkable information richness related to all scale(s). 

Multivariate AMT regression (MAR) has brought a new approach to extracting 
information for prediction purposes from “measurement series” (of any kind), which in 
the present context consist of unfolded† isotropic digital images. This approach 
converts texturally isotropic images into 1-D multivariate AMT-spectra without loss of 
fidelity. It views an image in a mathematically transformed way instead of by direct 
visualization. The present work deals with granular powder and food particular 
materials as well as minced meat imagery, but applies equally well in many other 
similar situations.  

Figure 4 below shows a schematic overview of the processes involved when using 
AMT-spectra of images for multivariate calibration. The MAR approach requires 
several steps when used for quantification of heterogeneous mixtures. Regression 
models must either be created based on images of pure mixing-components (classes), 
or based on a series of "spiked" concentrations of one, or more of the end-member 
fractions etc. The appropriate AMT-spectra are combined in a training data set related 
to the multivariate calibration PLS-modelling. If possible a relevant test set should also 
be prepared etc [7]. 

 

Figure 4. Schematic overview of  image processing with AMT before regression calibration, MAR 
(Multivariate AMT Regression). 

                                                      
† Unfolded is here used to describe the operation of rearranging each image-channel from a 2D matrix to a long 1D 
vector. 
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For a full description of the AMT approach, see [2-6]. Suffice here to emphasise that the 
AMT image processing approach deals with characterisation of contrasts in both 
colour, reflectance, texture,  individual grain forms and more. Thus it is not only the - 
perhaps more conventional - geometrical texture interpretations which are codified. 
Since derived AMT-spectra of an imaged material represent a unique scale-domain 
complexity/texture pattern of the image, they are well suited for calibration of images 
where changes in overall texture is an issue. Consider e.g. a series of fractions of two -, 
three - (or poly-) component mixtures (used as a calibration data set for the present 
studies). It will be seen that it is the totality of all these potential texture features which 
is changed when the mixing fractions of one (or more) of the end-members are 
changed. This shall be amply illustrated below. It bears to observe that it is not strictly 
necessary to be able to understand in all details which of the individual different 
contrasting texture factors are involved - nor how, or their supposed much more 
complex potential interactions. We have shown in several of the precursor 
investigations upon which the present work is firmly established [2-6], that the 
compound AMT-spectra in a sense automatically codifies all relevant factors and that 
it is the subsequent PLS-regression multivariate calibration which is responsible for 
extraction of precisely those parts of these X-spectra which correlates most strongly to 
the chosen Y-variable, which will be the pertinent mixing-fractions in all present 
studies. 

There is thus a well-reflected reason to expect that the AMT- approach also will be 
successful in quantifying the mixing-fractions involved in the present experiments, but 
it is an open question to what ultimate levels of accuracy and precision this will be 
attainable. The AMT-approach will be compared below with the Multivariable Image 
Regression alternative, MIR - especially in a novel, extended modification, MIR+. 

The MIR Concept 

MIR (Multivariate Image Regression) [8, 9, 10, 11] can also be viewed as a transformation 
of images. In this case, the multivariate image is transformed from raw data to PLS-
components [12,  13, 14] called score-images. MIR is aimed towards being able to predict 
Y-images based on a regression model [15, 16, 17]. The predicted images may often 
constitute the final result in themselves, but can also sometimes be used for further 
feature extraction in several ways.  

The MIR approach requires several steps when used for quantification of 
heterogeneous mixtures. First of all, regression models should be created from images 
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of pure mixing-components (classes). These images are combined in a training data 
set, as shown in Figure 5.  

In this illustration three models are created, one for each class. It is possible to use 
PLS2 to create one general model for all classes, but predictions will usually be 
improved by using separate models [7]. Appropriate reference Y-images are generated 
so as to maximise the grey-level intensity differences between the end members. The 
Y-image contains the maximum grey-level value at the image positions of the training 
object(s), and the minimum values in all other positions. For an unsigned, 8-bit image 
these values are 255 (white) and 0 (black), respectively. The graphic illustration in 
Figure 5 is probably much more directly telling.... 

 

Figure 5. Illustration of MIR training set-up for quantitative characterisation of classes A, B and C of heterogeneous 
mixtures. A separate model is calibrated for each class, using dichotomous (white/black) reference Y-masks.  

When acquiring new images of mixed classes - corresponding to taking an image of the 
product to be characterised (f. ex. on the production conveyor belt etc.), these will be 
Y-predicted with the models created above. If the training models have been created 
successfully, and if the particular input-output relation is generally linear or can be 
modelled by a bilinear PLS-regression model, pixels belonging to the current training 
class in question will be characterised by bright grey-level values ("close to white"), 
while all other pixels will usually be much more dark in their grey-level values. The 
fraction of "bright pixels", suitably defined (problem-dependent), will thus be expected 
to correlate to the overall mixing-fraction of  the current class in the mixture. We have 
recently published several extensive MIR descriptions with a wide variety of 
laboratory and industrial illustrations elsewhere; see [8-17] for in-depth MIR coverage. 
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While AMT mainly focuses on textural and spatial information like contrasts in shape 
and pattern, MIR focuses on spectral information. This means that AMT has its 
preferences if texture and spatial information is important, while MIR relies much 
more on differences in colour etc. with which to classify and to quantify objects. It is 
thus expected that it is not necessarily an easy given which method to apply in a given 
situation. Clearly one needs a lot of experience with many, and diverse, problem-
dependent data sets and applications. If both spectral and spatial information is 
valuable for the quantification, combining the results from AMT and MIR should be an 
advantageous possibility. 

Analysing the primary MIR prediction results 

Three different approaches are discussed when it comes to correlating the MIR-
predicted images with the concentrations of the different mixing fractions. Two of 
these are univariate, and the third method is based on multivariate calibration. 

Thresholding 

Thresholding is perhaps the most well-known “traditional” way of analysing the 
frequency of bright pixels in an image. By converting the image to black and white at 
some critical grey-level threshold-value and then counting the number of "white 
pixels", an estimate of the concentration  of the class can be calculated. If the black and 
white image is binary (0’s and 1’s), calculating the mean value will give the mixing-
fraction directly. 

Problems with this approach applies to noise in the data that f. ex. may result from sub-
optimal lighting conditions (highlights and/or shadows), which can lead to severe 
misclassification etc.  

The Mean Grey-level Value 

Especially when dealing with two-component mixtures, in which one end-member is 
predicted bright and the other dark, calculating the mean grey-level value will correlate 
to the fraction of bright pixels in the image. This method does not give an answer in 
fractions units though, and some further (linear) adaptation of the result will be 
required. 

Histogram Calibration - Extended MIR (MIR+) 

Instead of thresholding, or calculating a mean grey-level value for the image, the entire 
grey-level histogram[18] of the predicted image can be used for multivariate calibration 
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MIR Ŷ
X 

PLS 3.2%

using PLS. This approach is the one most similar to the AMT approach, which also 
depends on multivariate calibration of (complexity) spectra. Figure 6 shows how MIR 
and 2-way PLS relates to the multivariate image X, the predicted Ŷ-image and its 
histogram. The MIR model being used for Ŷ-prediction has been established earlier 
using the approach outlined in Figure 5. The PLS-model used to predict the final 
mixing fractions has been established on the basis of a calibration set of several 
histograms with known Y-values. This is in fact a standard 2-way PLS multivariate 
calibration, in which the initial MIR Y-image prediction_cum_histrogram derivation 
can be viewed as an image pre-processing step. 

This new compound MIR/Y-pred/histogram/PLS-approach is termed the extended 
MIR: MIR+. 

 

 

Figure 6. The MIR+ Ŷ-histogram prediction approach. A Ŷ-image is predicted from the Multivariate Image X using an 
existing MIR model. The histogram of the Ŷ-image grey-levels is used for training  a traditional 2-way PLS-R  model. 

It might perhaps be argued that instead of predicting an image prior to mixing fraction 
calibration, why not just use the raw image grey-level histograms directly? In some 
simple cases this may indeed be possible, but certainly not as a general approach. 
When working with a large number of video channels, it can be seen generally to be 
difficult to isolate just one singular channel that optimally enhances a single class with 
respect of all other classes, compare above. The powerful data compression that lies in 
MIR (PLS), and the extended MIR+, is most often much more effective for extracting 
the kind of information needed for the calibration of a specific class or for quantitative 
mixing fraction prediction. 

DATA PRESENTATION 

AMT and MIR has been applied in parallel to all the data sets presented briefly in the 
introduction above. The data sets are further presented in a sufficient detail below - 
with representative imagery and accompanying explanations - in order to be able to 
serve as the common framework for comparing the alternative AMT and MIR+ 
quantifications below.  



   12

Three different mixing product types were used: two-component dry granular mixtures, 
three-component "wet" mixture and three different series involving mixing fat into 
minced meat product types. 

Two-Component dry Granular Mixtures 

Four representative combinations of two-component granular mixtures was selected for 
the present purpose - out of a significantly larger experimental design of nine mixing 
series, which have been designed to span a maximum coverage w.r.t. the three 
principal design variables: colour contrast; reflectance contrast and morphological 
contrast. (These design variables represent critical material factors involved in image 
analytical imagery, representing the primary image quality response(s) to the 
illumination conditions etc.). This background study specifically only addresses the 
AMT-prediction feasibility studies.  

The four series chosen here represent both "easily AMT-modelled" systems, as well as 
their distinct counterparts, i.e. systems which did not lend themselves to fair AMT-
modelling - perhaps potential candidates for the alternative MIR+ approach?  

The first dry two-component mixture consists of whole-grain black pepper and white 
PVC-pellets, generally of similar grain size, Figure 7. This mixture was chosen 
because of its marked high spectral - (large colour difference) and textural contrasts 
(relatively large difference in grain form definitions). The data set contains 11 principal 
mixing fractions, all imaged with four replicates. For one component the fraction was 
[0%, 10%, 20%, …, 100%], with complementary fractions for the other. 

 

Figure 7. Whole-grain black pepper and white PVC-pellets. Training set-up of pure classes. 

The second dry granular mixture involved a whole-grain coriander and ditto white 
pepper mixture, illustrated below. This system was chosen as a "maximally difficult 
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system". Thus a mixing system was deliberately designed to have maximally low 
spectral and textural, as well as morphological contrast for both end-members, i.e.  In 
Figure 8 one observes the dramatic difference to the system in Figure 7. In this system 
it is decidedly not easy to distinguish between the individual grains from either pure 
end-member.   

 

Figure 8. Whole-grain coriander (left) and ditto white pepper (right). Observe the dramatically smaller contrast 
compared with Figure 7. 

The additional two dry mixture systems were chosen so as to represent more 
intermediate contrast ranges for the three design factors. 

The third two-component mixture thus concerned grey and white PVC-pellets, Figure 9 
with relatively high spectral contrast, but distinctly low textural contrast. There are 
however some important differences w.r.t. the individual grain shapes, but their 
average grain sizes are almost equal. Compared with Figure 7 & Figure 8, this system 
is clearly intermediary, as is it's close companion, shown in Figure 10 (the same grey 
PVC-pellets, but now mixed in with green beans). 

 

Figure 9. Grey and white PVC-pellets (of different grain shapes) 
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The last two-component mixture (grey PVC-pellets/green beans), Figure 10, was 
chosen primarily for the marked (large) contrast w.r.t. to the two individual grain 
shapes involved - every other contrast being in the intermediary/low range.  

 

Figure 10. Grey PVC-pellets (left) and green beans (right). The NIR-Red-Green camera used (SILVACAM) is 
responsible for the false colour appearance of the "green" beans in this rendition. Note especially high grain 
shape/form contrast. 

Three-Component Granular Mixtures 

One major three-component example was selected for this study, a real-world 
industrial mixing problem directly from the production line of a Norwegian producer 
of vegetable mixes - in the present example we focused on an evergreen mix: green 
peas/maize/carrot (cubes), Figure 11. The producer is concerned with on-line quality 
control (just precise enough), which translates into an image analysis system, which 
should be able to predict mixing fractions of two of the three components with a 
precision of  8% (rel.) or better. In the laboratory experimental design used here, the 
fractions of each component was varied  in increments 0%, 25%, 33%, 50%, 67% 75% 
or 100%. The imaging system is presented below, Figure 17. 

For this three-component system we experienced occasional rather severe 
homogenisation -, and especially critical pouring segregation when presenting the 
mixed samples to the camera field-of-view, compare above ("Introduction"). It was 
necessary to instigate a detailed sample handling and presentation protocol, to be very 
strictly adhered to for all samples involved - and still some measure of residual 
individual sample preparation variance could be observed. This we decided to keep as 
it was however, for reasons of compliance with realistic on-line sample preparation in 
the industrial realm. 
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Figure 11. Green peas (left), carrot (middle) and maize (right) pure training classes(100%) respectively . SILVACAM’s 
false colours figures prominently here, but are of no consequence for the spectral contrasts involved. 

On-line Minced Meat Mixing Fraction Specification Control 

Applied Chemometric Research Group is presently involved in a long-term campaign 
of particulate matter and powder application studies. One recent new avenue concerns 
outlet quality control from a novel industrial mixer (the "IDE-CON" mixing concept), 
which is briefly presented in Figure 12. 

 

Figure 12.The IDE-CON continuous mixer. Note the two counter-rotating shovels of the new, proprietary IDE-CON 
design. 

The IDE-CON continuous mixer is presently used extensively in selected test industrial 
sectors, amongst which mentioning of the following high-precision target examples 
should suffice to illustrate the importance a reliable mixer-outlet product specification 



   16

verification: on-site road tarmac mixing/blending from three raw materials (all at 
elevated temperatures of about 85°C; several poly-component health product 
manufacturing, with up to 10 components in concentrations ranging from, say 1000 
ppm to typical filler status (50-90%). 

The IDE-CON mixer has the added versatility of being able of continuous on-line 
adjustment of the blending/mixing regimens as needed. Therefore it is also used in 
industrial sectors and branches, for example the food - and feed producers etc. where 
non-invasive (indeed sterile), strongly regulated, precise control facilities are required 
by the authorities. As an example, from a leading Norwegian agricultural producer, our 
last example is related to industrial production of minced meat products - in which 
quick adjustment  of the mixer is often required, (virtually instantaneous changes in the 
current product specifications). Three different meat + fat mixture series was studied 
directly in the IDE-CON mixer:  bovine meat vs. fat (Figure 13), pork vs. fat (Figure 
14) and (bovine + pork) vs. fat (Figure 15). The fat fraction to be added varied from 
22% to 42 % in 4%  steps in all three series. 

 

Figure 13. Bovine meat with incrementally added fat. From left to right: 21%, 33%  and 41%. SILVACAM false 
colours. 

 

Figure 14. Pork with incrementally added  fat fractions. From left to right: 22%,34% and 42% fat. SILVACAM false 
colours. 

 



   17

 

Figure 15. ( Pork and bovine) with incrementally added  fat. From left to right: 22%, 34%, and 42%. SILVACAM false 
colours. 

Representative 150g samples were taken at the outlet of the IDE-CON mixer (full 
cross-sectional sampling) after identical mixing times (1 minute) for each new added 
fat-content increment of 4%. Samples were transported in glass petri-dishes, Figure 16, 
directly to our laboratory imaging setup presented below, Figure 17 with less than 20 
minutes duration. There were no transportation segregation or similar in this type of 
mixture samples due to the extremely high viscosity of the meat-fat mixtures. 

 

Figure 16. Petri-dishes with meat/fat mixtures. From top to bottom: Bovine, Bovine/Pork, Pork and pure fat. Fat 
content increases from left to right. Glass covers were removed just prior to imaging. 

IMAGING SYSTEM 

All studies reported here used a trusted, old-time friend of the Applied Chemometrics 
Research Group, the "SILVACAM" NIR/R/G digital camera (modified from an 
original JVC R/G/B television camera by the now defunct Finnish "Karelsilva" 
company (B. Braam). Figure 17 below presents the laboratory SILVACAM set-up. 
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Figure 17. The SILVACAM imaging system at ACRG. Modified JVC-camera, with two quasi-parallel 150W 
illumination sources. Sampleholder (round) on sample table. 

 

All image analysis systems are critically dependent upon a proper illumination system, 
which we have commented upon in several of our earlier powder and mixture studies[2-

6]. Sometimes the AMT-derivation is directly dependent upon a unilateral low-angle 
illumination for example, while for other characterisations uniform multi-source 
illumination fits the bill. Each image analysis characterisation problem in fact always 
necessitates a thorough initial analysis of the proper illumination requirements for 
example. We shall here refrain from further commenting on this fundamental problem 
as all the examples used have been subjected to careful illumination optimisation 
efforts.  
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RESULTS 

Results from applying the alternative AMT and MIR+ approaches on the ten different 
data sets introduced above will be presented in parallel below. Focus is on comparing 
the optimal multivariate calibration models produced for each individual case; thus we 
performed individual multivariate calibration outlier screenings, and model-
dimensional validations etc. for each model. For precisely this type of relative 
comparison purposes full cross-validation comes to its right with full force [7]. All 
models were calibrated against the pertinent mixing fraction as y1 variable (PLS1), 
while the relevant AMT-spectra or the alternative MIR+-spectra served as the X-data 
block. 

The number of objects (images) and replicates are equal in MIR+ and AMT, but the 
pretreatment used wary in the examples. In some cases all replicates are shown (Figure 
18 left), while in other cases replicate-spectra have been averaged (Figure 18 right), 
resulting in fewer objects in the model. 

All AMT-spectra have been centered and scaled to uniform standard deviation (auto-
scaled). In some MIR+ cases, scaling the data can blow up noise and is thus avoided 
where possible. In other cases though, scaling the MIR+ histograms was found a 
necessity.  

Two-component Granular Mixtures 
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Figure 18. Black Pepper and PVC Pread-Meas plots. Left: MIR+, Right: AMT 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 3 0.985 0.731 0.993 3.845
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AMT 2 0.951 2.389 0.986 5.367

In the high-contrast ("easy") black pepper vs. white PVC-pellets case, MIR+ performs 
slightly better with one additional component (fully significant according to the 
validation) is used. 

This is one example where scaling is applied to the MIR+ histogram. The predicted 
images are closely to a true black & white (one-bit) image, with information mainly in 
the beginning and end of the spectra. Scaling the data allows also the middle part of the 
histograms to influence on the model. Because of the very high contrast between the 
elements, the current example could possibly also be solved directly with thresholding. 
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Figure 19. Coriander and White Pepper Pread-Meas plots. Left: MIR+, Right: AMT 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 4 0.951 2.543 0.987 5.105

AMT 3 0.940 3.496 0.976 6.989

By using one more component, MIR+ shows marginally better performance in the 
"very difficult" coriander vs. white pepper example. 

In this example, scaling the MIR+ data was not required. Because there is almost no 
contrast between the two classes, this example is not solvable using thresholding; a 
more subtle approach is required, hence MIR+. 
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Grey and White PVC-pellets 

-20

0

20

40

60

80

100

0 20 40 60 80 100
 pvcHitGrå-tot-a…, (Y-var, PC): (*,2) 

12

3
456

7
8

9

10
111213

1415

1617181920
21

222324

25
2627

282930

3132
33

Elements:
Slope:
Offset:
Correlation:
RMSEP:
SEP:
Bias:

 33
0.945042
2.279379
0.985595
5.434818
5.498538

-0.468514

Measured Y

Predicted Y

 
-50

0

50

100

0 20 40 60 80 100
 Ihgpvcavr, (Y-var, PC): (*,2) 

1

2

3

4 5

6
7

8

9
10

11
Elements:
Slope:
Offset:
Correlation:
RMSEP:
SEP:
Bias:

 11
0.981401
0.734976
0.984573
5.550007
5.817303

-0.194983

Measured Y

Predicted Y

 

Figure 20. Grey and White Pread-Meas plots. Left: MIR+, Right: AMT. 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 2 0.945 2.279 0.986 5.435

AMT 2 0.981 0.735 0.985 5.550

In the case of the grey and white PVC-pellets the results are practically equal, although 
here AMT displays a clearly more comfortable slope (of a fitted "predicted vs. 
measured" regression). 

This is another example of high spectral contrast, especially in the predicted images. 
Again, the data was scaled to extract information also from the middle parts of the 
histograms. 
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Grey PVC-pellets and green beans 
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Figure 21. Grey PVC-pellets and green beans Pread-Meas plots. Left: MIR+, Right: AMT. 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 1 0.952 2.582 0.989 4.922

AMT 2 0.928 3.807 0.991 4.695

MIR+ has a slightly better performance in the grey PVC-pellets/green beans example, 
considering  it uses less components.  

In this example, the MIR+ histograms were not scaled. There is only small contrasts 
between the two elements, and the model uses the major “shape” of the histogram, and 
not so much the intermediate variables.  
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Three-Component Granular Mixture 

PLS1 (y1 : Peas mixing fraction) 
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Figure 22. 3-component mixture modelled for Peas. Pread-Meas plots. Left: MIR+, Right: AMT. 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 2 0.976 0.716 0.992 3.866

AMT 5 0.964 1.721 0.988 4.936

Concerning pea mixing fraction predictions, MIR+ is clearly performing best, using 
two components vs. AMT which uses five. 

In none of the three cases involving three-component mixtures, scaling were applied to 
the MIR+ data. In the plots above (Figure 22), notice that the number of elements differ 
by a factor two. This is due to the use of a different averaging factor in the MIR+ and 
AMT models. Final comparison is not hampered by this. 
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PLS1 (y1 : Maize mixing fraction) 
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Figure 23. 3-component mixture modelled for Maize. Pread-Meas plots. Left: MIR+, Right: AMT. 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 1 0.957 1.712 0.975 6.703

AMT 3 0.956 1.894 0.977 6.900

The maize prediction is difficult in both cases, and the results are almost identical. For 
maize both estimates of RMSEP are the largest of all three vegetables. The only 
difference is that MIR+ uses one component, while AMT uses three. 

 

PLS1 (y1 : Carrot mixing fraction) 
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Figure 24. 3-component mixture modelled for Carrots. Pread-Meas plots. Left: MIR+, Right: AMT. 
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 # Comp Slope Offset Correlation RMSEP 

MIR+ 3 0.955 1.546 0.981 5.063

AMT 3 0.951 1.936 0.997 2.843

In the carrot example AMT performs significantly better. The number of components 
are equal. Carrot cubes are clearly of a significantly different shape than either peas or 
maize. 

 

Minced Meat 

This example is organised in much the same way as the two above. MIR+ training 
images, (Figure 5) were acquired for 100% pure meat of the relevant types and pure fat 
respectively, while in the experimental mixtures fat in the range of  approx. 20-40% is 
studied, which is in the representative industrial production range. Meat was calibrated 
against a black Y-image, and fat calibrated against a white ditto (compare Figure 5). 
Starting at the reference minimum fat-content at 21%, the 4% fat increments (v/v) were 
added successively in a standardised manner and three replicate-samples were removed 
for each fat-level. For each of these parallel physical replicates, three images-
replicates were also acquired by rotating the sample container 120 deg. in front of the 
camera. Thus there were a total of nine images representing each fat-level; there were 
overall six fat-levels in total, wiz. 21%, 25%, 29%, 33%, 37% and 41%. 
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Figure 25. Minced Bovine meat and fat Pread-Meas plots. Left: MIR+, Right: AMT. 
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 # Comp Slope Offset Correlation RMSEP 

MIR+ 3 0.950 1.485 0.974 1.524

AMT 2 0.926 1.905 0.966 1.802

MIR+ predicts the fat content in Bovine meat slightly better, using one more PLS- 
component. 
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Figure 26. Minced Pork meat and fat Pread-Meas plots. Left: MIR+, Right: AMT. 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 3 0.833 5.061 0.891 3.048

AMT 2 0.986 0.381 0.997 0.566

In the pork example AMT performs significantly better, also boasting fewer PLS-
components. 
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Bovine & Pork 
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Figure 27. Minced Bovine & Pork meat and fat Pread-Meas plots. Left: MIR+, Right: AMT 

 # Comp Slope Offset Correlation RMSEP 

MIR+ 2 0.912 3.050 0.979 1.490

AMT 2 0.972 0.426 0.967 1.830

In the combined meat (bovine and pork) vs. fat example, the results are practically 
equal, except w.r.t. the slope of the fitted regression index; this makes AMT a potential 
marginal winner here. 

Discussion 

Two-component mixtures - overview of results:  

Essentially all models for both AMT and MIR+ perform satisfactorily in this first 
overview, but the MIR+ models do perform best, or marginally best, in three out of four 
detailed evaluations of the selected dry two-component mixture fraction prediction 
studies; one medium contrast ("somewhat difficult") case has AMT as best. It is 
encouraging that both the AMT - as well as the MIR+ models essentially both are up to 
the complicated image analysis job set up. The kinds of precisions obtained in these 
first attempts are satisfactory: For all models the total span of validation-estimated 
RMSEP ranges 3.845 - 7.866, while this range for the best four models corresponds to: 
3.845 - 5.550. Based on an average mixing fraction of 50% these latter correspond to 
precisions of 7.7% - 11.1% respectively (rel. %). The better end of this interval 
comprise very respectable precisions for our first attempts image analysis approaches 
(irrespective of whether one chooses to improve on the MIR+ - or the AMT 



   28

approaches; a rational choice demands a much larger factual results data base than the 
one presently presented). It should be pointed out that the selected two-component 
mixing systems deliberately includes both the supposedly easiest - as well as the 
supposedly most difficult systems; also we were certainly surprised e.g. by the 
unexpected success of the coriander - white pepper case. The complete study of 
representative dry two-component mixing systems is far from finished at present, and 
shall be reported on in its totality at a later occasion. The present results can only be 
characterised as very  encouraging as feasibility studies go.  

 Three-component vegetable mixtures:  

Winners are about equal, wiz. one AMT- and one MIR+ model, and one draw (maize). 
Validation estimates of RMSEP are - peas: 3.866 (MIR+); maize: 6.703 (MIR+/AMT); 
carrots: 2.843 (AMT), which translates to the following rel. % precision (+/- 1 
RMSEP) - peas: 7.7%; maize: 13.4% and carrots: 5.7% respectively (all calculated 
w.r.t. an average mixing fraction of 50% (abs.). Two of these three models, 
characterised by very realistic sample preparation variances, actually reach below 
industry's precision demand of 8% already from these first pilot studies (sic). Clearly 
the troublesome maize prediction can  be better handled by a simple constant sum 
difference calculation! We term these pilot results as absolutely satisfactory. 

Minced meat mixtures: 

For the three best minced meat models, the validation RMSEP estimates translates to 
4.9% (MIR+), 1.8% (AMT) and 5.9% (AMT) respectively (all expressed as relative %), 
compared to a product fat specification range of 21-41% (rel. % calculated w.r.t. an 
average of 31%). For a first pilot study of this relatively complex on-line mixing 
system, precisions of 2-6 rel. % can only be characterised as excellent. Not only are the 
outlet sampling procedures not fully optimised yet, neither are the imaging illumination 
conditions etc. At this time it is only possible to say that there is certainly a significant 
potential improvement to be gained here.  

AMT or MIR+: 

If judgement would have to passed on the basis of the present results alone, the new, 
extended MIR+ approach merits very close attention. The degree of accuracy and 
precision obtained for the present three very different sets of mixing systems is 
impressing indeed. And AMT is a very close runners-up, which should also be related 
to its recent history of well-documented successes, reported in several complementary 
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powder/granular matter studies [2-5], in which AMT has shown similar degrees of 
promising results. Thus we are not at all in a(ny) position to even try to chose between 
these two powerful chemometric image analysis processing alternatives - on the 
contrary: they will of course be extensively further explored in parallel.  

The above discussion has presented more than enough evidence to leave this pilot 
study in a very optimistic state. Much interesting real-world, industrial implementation 
work awaits, as well as an enticing fundamental science, broad-scoped functional 
powder mixing laboratory study - all with exciting potentials for industrial applications 
and economic benefits. 

Interpretations of alternative  model structures: MIR+ vs. AMT 

We end this study by showing what kind of detailed interpretations is made possible by 
systematic evaluation of the prediction models established. By focusing on the final 
validated prediction results, we now examine the models from the perspective of their 
comparative intrinsic data structures, as represented by their loading-weight 
relationships. 

At the same time we shall also honour the inter-comparison objective between AMT 
and MIR+, although the conclusions above would appear to rule out any unambiguous 
winner. Thus this comparison shall mostly focus on the basic differences experienced 
in their respective w-relationships. These two fundamentally different approaches to 
quantification of mixture – and texture features will necessarily lead to very different 
loading-weight spectra (they are de facto modelling quite different features) – while in 
the final assessment they may well lead to almost identical prediction strengths, as 
indeed demonstrated above. 

Figure 28 shows the necessary interpretation background in the form of a small recap 
of the raw images and their corresponding MIR+ and AMT raw spectra respectively. 
This juxtaposition will make it easy to appreciate the following interpretations. 
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Figure 28. Data presentation of raw data (left), MIR+ histograms (middle) and AMT-spectra (right). 

Figure 28 shows a two-fold division in high-contrast (row A and C) and intermediate-
contrast mixing systems (row B and D). Individual MIR+-modelling lead to the use of 
auto-scaled models for the former, while the latter were best serviced without. One 
observes the very marked different raw MIR+-spectra for these opposing systems. 

These observations makes for easy detection of a similar pattern in both the MIR+ and 
the AMT w-spectra below in Figure 29. 
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Figure 29. 2-component mixture loading weight plots. Left: Mir+, right: AMT. From top to bottom: Pepper/PVC, 
Coriander/White Pepper, white/grey PVC and Beans/PVC. 

MIR+: 

MIR+-modelling of the intermediate-contrast systems are distinctive (row B and D). 
The first PLS-component, to a large extent, takes good care of the Y-modelling but 
with a very significant addition from PLS-component 2 (row B). For both systems w1 
mimics the raw MIR+-spectrum to a very high degree, while the second order 
addendum from PLS-component 2 attest to a slight shift in the X-variable direction for 
the coriander-white pepper system (row B); for row D system there is an even simpler 
relationship with mixing fractions (Y) leading to only one significant PLS-component. 
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For the more-simple-to-model high-contrast systems (row A and C) one observes that 
two PLS-components are also needed, but with only marginally improved Y-variances 
for the second PLS-component (only first significant according to the validations). It 
will be appreciated that the X-variance is utilised in a very effective fashion caused by 
the auto-scaling.  

AMT: 

For AMT one observes a distinctly opposite pattern. For both high-contrast systems 
(row A and C) there is now a very marked need for both PLS-components in order to 
do the prediction modelling effectively (32% and 64% Y-variance accounted for 
respectively by the second component). Both components are now highly significant 
according to the validations. For both systems, their respective w1- and w2-spectra 
shows essentially the same pattern (rare!), while for the opposing intermediate-contrast 
systems (row B and D) there is only a small (10%) Y-variance addendum from w2. 

With due reference to the rather disparate four systems some underlying systematics 
may perhaps be found. MIR+ manages to combine most of the essential X-variance in 
just one PLS-component (three out of four systems), while AMT would appear to 
favour two-component systems, especially for the high-contrast cases. Our initial  
classification into H, I and L-contrast systems may very well be further refined a.o. 
also based upon this kind of systematic modelling of all systems in the background 
study (nine systems covering the H, I, L-domain more fully). 
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Figure 30. 3-component loading weights plots. Left: MIR+, right: AMT. From top to bottom: Peas, Carrot and Maize. 

For the three-component vegetable system we may use the above interpretation 
systematics in order to simplify what would appear to be a more complex issue. 

Inspection of Figure 30 again reveals an extremely simple relationship for MIR+ 

however. For both peas, carrot as well as maize prediction models, the first PLS-
component accounts for 98%, 96% and 94% Y-variance respectively, with barely 
significant, very minor additions for the second components, a very clear one-
component trend. 

In stark contrast to this, the AMT-relationships show marked multi-component 
features, some using even more than two validated components, thus further 
contributing to the overall MIR+

 vs. AMT relative pattern. MIR+ is able to model even 
these, clearly more complex systems, still basically using only one PLS-component – 
no doubt primarily due to its underlying dichotomous 0/100 model-definition. AMT on 
the other hand, while able to reach essentially identical prediction validation results, 
does this in a distinctly more elaborate fashion in which several essential contrast 
phenomena are found distributed over more PLS-components.  
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The remaining meat-fat systems (Figure 31 below) are no doubt one order of 
magnitude more complex still. But here again for MIR+ we find the exact same 
dispositions as for the vegetable – and the dry powder systems both: extreme reliance 
on the first PLS-component accounting for 88%, 98% and 93% Y-variance 
respectively, while AMT here shows especially complex multi-component patterns, 
also between the different meat-fat mixing series internally. In fact there would appear 
to be very interesting detailed interpretation possibilities for this latter system as 
regards these internal AMT differences, which we shall never-the-less leave for an 
other occasion since the overall comparative MIR+ vs. AMT pattern remains the same 
for this system as for the two above:  

Considering the gamut of all the three pilot studies, covering a broad swath of relevant 
real-world, industrial mixing two-component and three-component end-member 
systems, the overall conclusion would now appear to have become clear: 

 

MIR+ can do with few – what AMT must do with more. 

 

Following Occam’s razor, we then must point to MIR+ as a very powerful new 
complement to AMT in the family of multivariate image regression problem-dependent 
pre-processing  facilities, which we intend to develop much further with great interest. 

AMT on the other hand, confirms its status of being able to model even very complex 
systems with a detailed internal model structure, well suited for in-depth 
interpretations. 
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Figure 31. Minced Meat loading weight plots. Left: MIR+, right: AMT. From top to bottom: Bovine, Pork and 
Bovine+Pork. 
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