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Principles of Multivariate Image Analysis (MIA)

in remote sensing, technology and industry

ABSTRACT

Multivariate Image Analysis (MIA) is a set of inferdependent image analysis
procedures, encompassing both an explorative and pattern recognition mode, as well as
classification-related facilities. A synoptic overview of all elements in MIA is
presented by a series of different applications on a comparison data set, from
Montmorency Forest, Quebec (a high resolution, airborne spectrophotometric image).

We present extensive justifications for the specific MIA approach - contra a more
traditionalist image processing mode. MIA is specifically not a one-shot image analytical
method, but a set of optional, interdependent explorative analysis and classification tools
to be used by the informed analyst, according to the specific objectives of the image
analysis problem context. This overview will furnish the image analyst with an overview
of the principles of MIA4 needed to compose one's own flexible, problem-specific strategy
of multivariate image analysis: pixel class delineation in feature space (score space) by a
topographic analogy and an end-member/mixing class concept.

The exposition forms a wuser-oriented complement to the introductory book:
“Multivariate Image Analysis” (Geladi and Grahn 1996).

INTRODUCTION

Esbensen and Geladi (1989) and Lowell and Esbensen (1993) argued at length against
what was termed a “traditionalist” image analysis paradigm, more specifically the
universally adopted tradition of starting any image analysis in scene space. It was argued
that this necessarily must lead to sub-optimal class representations amongst other
deficiencies. This traditional approach is centred upon the concept of delineating scene-
space areas (objects, or part-object) that are as homogeneous and/or spatially coherent as
possible, in order to find "representative" training classes. It was shown that this is but an
optimistic /ope at best. In addition there often would appear to be a slight confusion in
this image analysis tradition by not always specifying clearly in advance whether one is
engaged in unsupervised (exploratory) or supervised (discrimination/classification)
undertakings; see in-depth discussion by Lowell and Esbensen (1993). We shall here add
only a few, but salient additional iconoclastic comments along the way of presenting the
MIA concepts and illustrations below.

MIA approach: synopsis

MIA takes its point of departure in feature space in general, in the so-called score space
in particular (Esbensen and Geladi 1989, Geladi and Grahn 1996). MIA can to a first
delineation be understood as a truncated principal component modelling of the multi-
channel image, producing sets of complementary score- and loading-plots. It was
argued that MIA’s main thrust is that the score-plot comprise the only valid starting
point for any image analysis, in that this is the only completely comprehensive
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delineation of the channel covariance structure(s) of the entire image pixel aggregation.
The score-plot visualises the entire image inter-pixel dispositions (pixel classes,
groupings, trends, outliers i.a.), while the complementary loading plot gives a graphic
illustration of the underlying channel covariance/correlations responsible for the score
dispositions.

DATA PRESENTATION

Master data set: rationale

The comparison data set to be used for all examples in this overview is an 8-channel
digital image, recorded with the Canadian MEIS II airborne spectrometer, with a spatial
pixel resolution of 70 cm, as described in McColl et al. (1984) and Esbensen at al. (1993).
While in satellite-based remotely sensed satellite imagery usually all fine textural detail is
lost at most of the presently available resolutions, digital analysis of the present type of
very high resolution airborne imagery of forested scenes have also been fraught with
difficulties, but here because the data is so highly variable that traditional pixel classifiers
have been more or less ineffective. With high spatial resolution, individual image pixels
(very) often tend to cover only minute fractions of the image objects and a pronounced
"smearing" of discriminable feature space classes is often observed. This is well-known
the mixed pixel problem.

This particular data set was chosen because it represents an easily manageable dimen-
sionality, 8 channels. While clearly at the low(er) end of what is representative for modern
remote sensing, or for technological/industrial imaging spectrometers, say 10 through 256,
512 channels or even more (be they laboratory instruments or otherwise), this
dimensionality still allows us to present all the principles and the potential of the MIA
approach. Perhaps more important, the data set was chosen because of it’s particularly
high resolution "overrepresentation” of mixed pixels, but it will serve equally well also in
relation to less resolved (as well for as even more densely sampled image types than the
present, such as in current medical, tomographic, chemical imaging). It is emphasized
however that this data set is primarily a vehicle for presenting the general MIA
approach, and that the various examples of MIA analyses below should not be
interpreted as specific for remote sensing type imagery - On the contrary, all our examples
and illustrations have been selected because of their relevance to the general MIA
application potential.

Montmorency Forest, Quebec, Canada — forestry background

This forest scene was acquired in September 1986 over the Montmorency experimental
forest belonging to Laval University, Quebec by the Canadian MEIS II airborne platform;
MEIS 1I is described in detail in Kramer (1996) (B.115). Table 1 list the pertinent
spectroscopic channel characteristics in the visible and near infrared.

Table 1. MEIS II channel characteristics
Band  Wavelength (nm) Bandwidth (nm)
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1 776 37.0
2 675 39.5
3 747 16.7
4 481 309
5 734 16.9
6 710 15.6
7 698 13.1
8 549 319

The Montmorency Forest is located 80 km north of Quebec City near the southern edge of
the Northern boreal forest that dominates much of Canada. This partly heavily terrained
forest contains mainly balsam fir, with minor white birch, white spruce and a small
number of red spruce, trembling aspen and some other species.

The site selected for this study contains a cutover which was cleared in 1975 and 1978,
and which has both natural and planted conifer regeneration resulting from the forest
experimental and observation campaigns in the ensuing period through 1986. Fig. 1 shows
the master Montmorency Forest scene, as depicted by MEIS-II channels 1:2:7 (R:G:B).

Figure 1. Composite scene display (R/G/B: 1/2/7)

The cut clearing is characterised by balsam fir stands around the perimeter, one white
birch stand in the central area, a small stream (bottom right), east-west trending dirt roads
and so on. The spatial and temporal regeneration history of this multiple cutover has been
the subject of several extensive Laval University Forestry Department studies and is
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accordingly very well understood. This scene is called the "Clear-cut Study" in the
illustrations that follow below. Further in-depth scene description and full background
forestry references i.a. was given by Esbensen et al. (1993). The specific scene history, as
will transpire below, turned out to be a particularly illustrative context both for illustrating
the comprehensive MIA approach as well as allowing a powerful insight into the
possibilities for spatio-temporal analysis of imagery characterised by emergent structures,
i.e. temporally and/or spatially evolving/growing/changing structures.

TOOLS IN MIA

MIA score space starting point

Figs 2 & 3 show the most relevant PC-component cross-plots pertaining to the
Montmorency Forest scene.

Figure 2. Standard MIA split-screen score plots (PC12,PC13,PC14,PC23)

Note how the main MIA score cross-plots specifically uses the same PC-component as
the X-axis; this usually is PC-1, although the image analyst may opt for any alternative
(e.g. PC-2 or PC-3), because of the well-known decreasing variance associated with an
increasing number of principal components calculated. In typical remote sensing
imagery and in many other comparative types of imagery, PC-1 often represents an
overall albedo/reflection/.... intensity, or contrast measure, that either may, or may not,
be well suited for this common X-axis role depending on the specific image analysis
context (hence the alternatives).

Every scene has it's own distinct score-space layout - although many similarities and
analogies eventually will be noted in building up one's own multivariate image analysis
experience. The integrity and individuality of each new multivariate image that is to be
analysed cannot be overemphasized. The score space layout cannot be anticipated in
advance, hence there is never any given a priori method (“algorithm”) for exploratory
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image analysis, - and neither for classification or for segmentation. This is the first main
difference between traditional image analysis and MIA.

Every scene has it's own distinct score-space layout - although many similarities and
analogies eventually will be noted in building up one's own multivariate image analysis
experience. The integrity and individuality of each new multivariate image that is to be
analysed cannot be overemphasized. The score space layout cannot be anticipated in
advance, hence there is never any given a priori method (“algorithm”) for exploratory
image analysis, - and neither for classification or for segmentation. This is the first main
difference between traditional image analysis and MIA.

Figure 3. Standard MIA split-screen loading plots (cmp. Fig. 2 for layout)

By way of contrast this paper endeavours to develop a meta-principle for a general
approach to multivariate image analysis — and it will be shown that a phenomenological
analogy with a topographic map will be very useful.

Fig. 2 shows the entire score space layout (first four principal components) of the
Montmorency Forest scene in question (all 512 x 512 pixels are included in the PC-
analysis). When a new image is to be analysed, the series of MIA score cross-plot is the
only systematic, comprehensive approach to the objective data structures present in the
feature domain. This score-plot array will necessarily display all there is to be learned
from inspection of the spectral data structure of the image, provided, of course, that all
pixels have been included in the analysis. The MIA approach is designed upon this central
concept of having access to all image pixels, which is (very nearly) always an easy task
with today’s PC-power. Without loss of generality we may assume that all pixels are
included in the analysis in the expositions below (but even when this cannot be achieved,
in some specific hardware configuration case, MIA’s design philosophy allows for easy
remedies, Esbensen & Geladi, 1989).

The PC-12 score plot always carries the largest fraction of variance modelled (see
standard principal components analysis theory) and is consequently always assessed first.
MIA analysts should always make due note of the relative proportions of the total
variance modelled by each component image. In the present case PC1 and PC2 "explain"
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(as this modelling parlance goes) 35% and 27% respectively, totalling 62% of the trace of
overall variance in the spectral covariance X'X matrix. The image analyst should always
take notice of the individual as well as the accumulated fractions pertaining to all score
cross-plots inspected so far, lest interpretations accidentally be based on a too meagre
residual variance. For the Montmorency Forest scene the decreasing variance fraction for
all eight components breaks down as follows: 35, 27, 10, 9, .... %, which is by and large
typical of a large number of multivariate imagery types.

Explained Variance
(Sum of Squares)
100 T

% Variance

0 L L L L L L
0 1 2 3 4 5 6 7

Principal Component

Figure 4. Variance modelled [%] per score-image.

The basic idea in MIA’s score cross-plot set-up is to have one comparison axis with
which to interrelate the whole series of cross-plots PC-12; PC-13, PC-14 etc. Adhering
to such a standard set-up, one will need only a small number of cross-plots (one less
the number of channels) in order to survey the gamut of all possible plots with e.g. PC-
1 as the common X-axis. However there is also an additional number of higher-order
cross-plots available of the type PC-23, PC24 ... PC-34, PC-35 .... through PC78 (in the
present master data set case). It is important, especially for high(er) multi-channel
work, not be unnecessarily bewildered by this potentially overwhelming array of
additional cross-plots however. In_principle everything there is to be known in
score-space has been shown in the standard series with the one common anchor-axis.
While it is indeed possible that certain higher-order cross-plots sometimes may serve to
depict (very) specific pattern - in special cases - usually the inexperienced new user is
greatly helped by first learning this systematic approach. Thus the standard cross-plot
set-up includes only one higher-order plot, PC-23, Fig 2. It will serve the novel MIA
user well specifically not to experiment with the higher-order option without some
reflection and experience.
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Colour-slice contouring in score cross plots - a 3-D histogram

All MIA score cross-plots employ a colour-slicing technique for depicting a
three-dimensional histogram rendition of the relative number of pixels with identical
score-pairs; for details see Esbensen and Geladi (1989) and Geladi and Grahn (1996).
From the outside (“black sea surrounding the island”), in the score cross-plots the
colour slicing grades olive/dark-green/green/yellow/orange/red/white, signifying that
0<5<15<45...>255 image pixels have been plotted at the same position in the pertinent
PC-cross-plot, i.c. at identical score-pair coordinates in this plot. The exact numerical
progression of the boundary values of these bins is actually only of minor interest; it's
the overall visual impression of the relative patterns and trends, which carries the
essential messages - very much in analogy to a topographic map, more of which
below.

Brushing: relating different score cross-plots

The specific choice of the single cross-plot that is to serve as the starting point for a MIA
analysis is very important. But what about the complementary cross-plots in which the
same classes of pixels can also be displayed? Brushing comes to the fore. If no
information to the contrary is present in a specific image analysis situation, it can be
assumed as a working hypothesis, that the PC12 cross plot carries the most dominating
(variance/covariance) information. This is so because these two first principal components
carry the largest and second largest fraction of the total spectral space variance. In specific
situations however, there is nothing against using any other, problem-specific combination
of principal components images as the starting score cross-plot. In the present remote
sensing example, if it was decided that we are specifically not interested in the overall
reflectance aspect of the original image, this could easily be compensated for, simply by
letting the analysis start out e.g. in the PC23 cross plot.

In this first illustration we shall make use of the standard PC12 cross-plot as the starting
plot. Fig. 5 shows the technique of brushing, i.e. transferring a score space pixel class to
the complementary other available score cross-plots. In this example we have delineated a
rather large class "K”. It will come as no surprise how the common PC-1 anchor axis in
the PC13 and PC14 plots strongly guides the brushed dispositions of all pixels in the
PC12 master class. One may perhaps appreciate the impression that in some of the plots
the brushed class is "floating" above the main histogram. Note how the brushed class
appears to "dilute" the complementary patterns in score space, as is quite possible,
because the class was indeed defined in another score cross-plot.

This is a fairly typical result in a situation where one decides to start the analysis with one
of the higher-order cross-plots, hopefully for a well-reflected reason (sic). With a little
careful consideration the marked disposition in the PC23-plot might actually easily have
been predicted directly from the PC13-plot.

With this standard powerful explorative brushing facility, it is possible to assess every
tentative MIA-class in the gamut of all other potential score cross-plots - indeed one
should always do so. Features observed only by brushing include "splitting" (one
apparently coherent class, actually splitting up into two, or more, classes in higher-order
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cross plots); "smearing" (obvious effect in the higher-order plots), "dilution" (illustrated
above) i.a. We shall show several illustrations below.

Figure 5. Brushing of MIA class “K”, delineated in upper-left quadrant in score plot PC12

Joint normal distribution - or not

From extensive data analytical and statistical experience with principal component
analysis, it is clear that only truly ellipsoidal pixel clusters in a// PC-combination
cross-plots can be said to meet the requirements of joint multi-normal distributions for all
channels. It is thus very easy and uncomplicated to decide whether a particular class
actually meets such requirements or not - and thus equally easy to find out whether
unacceptable breaking of the premises of quite a number of traditionalist pattern
recognition classifiers etc. will take place or not. Alas, we have yet to see many good
examples of truly joint multi-normally distributed classes in nearly all types of
multivariate imagery from science, technology and industry. True a very few have indeed
been noted in our combined experience, but these cases are vastly overwhelmed by the
many other types of strikingly non-normal distributions (multi-modal distributions), all of
which can easily be analysed with the standard MIA approach however. MIA allows the
user to make allowances for any specific class shape in the pertinent boundary
delineations. Fig. 6 shows a relatively complex score aspect layout from this realm, which
is a LANDSAT image from the Myvatn area in Iceland.
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Figure 6. Fig. 6. Example(s) of complex, multi-modal layouts in score space. Original class delineated in
the PC12-score plot (upper-left quadrant)

Local models/local modelling - the link to the classification modus

We are now in a position to introduce a major theme of MIA, that of so-called local
modelling. The image analyst may for instance be interested in using just a subset of a
scene, or of a score cross-plot aggregate, as a basis for a new, independent PC-model.
Subsets are often on the agenda when it is not the entire square image upon which we
wish carry out a new PC-decomposition in its own right. Geladi and Grahn (1996)
develops the theme of local modelling in some detail. Reasons for such a local PC-
modelling facility are invariably closely related to the specific image analytical objectives,
which of course will vary from image to image.

Image subclasses come in two distinct varieties only:
1. Sub-classes delineated in scene space (traditionalist fashion), or
2. Sub-classes delineated in score space as bona fide MIA-classes

In this paper we have nothing more to say regarding the sub-optimality of the first
category, which has been adequately denounced by Esbensen and Geladi (1989),
Esbensen et al. (1993), Lowell and Esbensen (1993) and Geladi and Grahn (1996).

On the other hand, it is a very simple matter to direct MIA's PCA-module to work only on
a selected score space class as an alternative to the entire image. Based on such a local
model it's equally simple to follow up and let MIA calculate scores for all pixels in the
image, said scores now corresponding to the covariance data structure of this local PC-
model only (not corresponding to the entire image any more). This of course also applies
to pixels in related scenes, images etc.

The concept of MIA local modelling is very useful for more advanced work, but proper
understanding and competence is dependent upon a thorough understanding and
experience of the basic MIA PC-modelling concepts first. Once this has been mastered
however, there is really only very little difference working with global or local models.
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The essential difference lies more with the specific reasons behind the need for local
modelling. MIA's main contribution here again resides with its design primacy of
delineating the appropriate local models in score space. Amongst other features, the local
modelling feature can be shown to open up for the second-generation MIA concept of
Multivariate Image Regression (MIR), which is a hot subject on the agenda for present
R&D work at our laboratories, to be presented elsewhere (Lied, Geladi and Esbensen
2000). For a first introduction to the topic of MIR, see e.g. Geladi & Esbensen (1991),
Esbensen et al. (1992).

Any local model, selected and delineated on the basis of a pertinent problem-specific
reason, may serve as a basis for a re-classification of the entire image. It is important
that completely new images (or relevant parts hereof) may now be classified, or re-
classified as the need may be, in a completely analogous fashion to that of any global
MIA model classification. This feature opens up for the complete range of
discrimination/classification facilities of well-known features such as pattern
recognition, SIMCA-classification etc. - which is an entire topic for itself and for a
sequel paper.

MIA ANALYSIS CONCEPT - MASTER DATA SET
ILLUSTRATIONS

The topographic analogy

In the following we shall adhere strictly to a topographic map terminology when
discussing how to analyse the series of MIA score cross-plots. We shall use
straightforward analogues: island, peninsula, peak, ridge, rise, flat, watershed, while also
making use of imaginary, or virtual, “brooks, or rivers” supposed to follow ditfo valley
bottoms etc. We shall rely heavily on the reader's imagination in this endeavour, which is
all-critical: The topographic analogy constitutes the core of the subject-matter of the
central MIA principles exposition below.

The colour-sliced score cross-plots, Fig. 2, are specifically designed to be viewed, and
interpreted, exactly like a topographic map. Thus e.g. white areas, which invariably will
be situated only in the centre of the “topographic highs”, signify the 3-D frequency
histogram peaks, 1.e. the highest densities of pixels with similar score-pairs. Uni-modal
and multi-modal pixel distributions are revealed with absolute unambiguity. In Fig. 2, one
thus observes three major topographic peaks (PC12 plot), more of which below. There is
never any question about where and how these topographic peaks are to be found — it is
not important that not all peaks boast a pixel density which necessarily results in white
“snow-capped” peaks; it’s dominantly the relative topographic expression which is
important in this first interpretation stage (in fact there happens to be no “snow-capped”
peaks in Fig. 2, but see later).

Much more important - more subtle pixel groupings and trends are also clearly outlined,
never mind that such phenomena may be outlined in "only" the smallest of relative density
terms, e.g. in the olive fringe areas only. A case in point in Fig. 7 is the very prominent
south-east trending "ridge" in the lower half of the PC12 quadrant, termed “B”. The
relative proportion of all pixels encompassed by this ridge is actually far less than 2% of
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the total number of pixels in the original image, while its covariance trend occupies a
much more significant part of this plot. MIA is i.a. designed towards the greatest possible
sensitivity w.r.t. this type of subtle features in the score space domain.

In fact, MIA's 3-D colour-sliced histogram score cross-plots often result in an "inverse"
mapping of the frequency manifestation of the dominating scene data structures, such that
these will be “compressed” into geometrically constricted “peaks” etc. in score space. Any
class of significant geometrical coherence in the score cross-plots by necessity must
represent a bona fide image pixel class, irrespective of the corresponding
spatial/geometrical disposition, or apparent size in the scene. Examples abound in which
there is very little, or no correspondence, between well-defined score space pixel classes
and the archetype, spatially coherent training classes defined in scene space. Note that this
situation is what prompted our critique of the “traditionalist image analysis” scene space
training paradigm (Esbensen and Geladi 1989), Lowell and Esbensen 1993), Geladi and
Grahn 1996), compared to which we here present the MIA alternative/complement.

A(ny) major histogram peak in the score-plot(s) necessarily corresponds to a (very) large
proportion of image pixels, but it is often not very illuminating to focus MIA's attention
on such prominent features - since they are simply manifestations of the (by far) most
dominating image structures, which are always very clearly observed in the scene space
anyway. A case in point is shown in Fig. 7, in which a MIA class of the absolutely most
dominating peak in the Montmorency Forest scene, the central “volcanic peak” of the
“volcanic island-like” PC12 score cross-plot analogy, termed “D”, has been mapped back
into the scene space. The forestry interpretation of this class is very clear: undifferentiated
clearcut re-growth. The first general MIA rule: all dominating peaks in score space
correspond to the dominating image space structures/segments. There is nothing new, nor
even particularly interesting were this the only MIA feature. In fact MIA merges with
“traditionalist” image analysts when these first-order, most dominating image
structures/objects/segments are the only items on the agenda.

But this is also where MIA parts with the traditionalist image analysis concept, which - by
definition - cannot delineate subtle class features by starting out in scene space, with
anything even remotely akin to MIA’s power, as shall be shown in full depth and detail
immediately. In this situation MIA rather presents itself as a most powerful complement
that specifically only claims rights of true superiority - and progressively so - when the
more and more subtle details in the image comes to the fore. MIA comes on very strongly
indeed for all weakly populated and/or subtly defined data structures in both scene as well
as score space. Exploratory MIA image analysis is especially aimed at finding and
highlighting exactly these types of subtle peak-structured or similar less well defined pixel
aggregates (e.g. isolated “islands”, “peninsulas”, “ridges” i.a.), that otherwise run the risk
of being swamped or drowned in the dominating structures and textures when delineated
in scene space. Almost the remainder of this exposition is devoted to showing one or other
aspect of exactly this, much more difficult-to-analyse image analysis situation, the subtle
class regimen.

MIA will now be presented in a series of practical image analytical sessions. Along the
way both an exploratory image analysis mode as well as a pattern recognition
(classification) mode shall be illustrated, as shall demonstrations of other related image
analysis objectives, which lends themselves naturally in the MIA context. The totality of
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image analysis objectives/operations to be displayed below need not all be put into use
simultaneously, nor always be all relevant for one particular image or scene. But we shall
deliberately, and quite literally, take the Montmorency Forest scene apart in every which
way in order to show to power of the general MIA approach.

MIA topographic score space delineation of single classes

MIA has been designed to allow the image analysts to focus on any "interesting" pixel
cluster, prominent or subtle, by convex polygons, five of which are delineated in Fig. 7.
Thus class “A” is the class encompassing all pixels with highest reflectance in the entire
scene. It is emphasized that the specific delineation of pixel classes has been designed to
allow for maximum freedom by the image analyst when outlining the enclosing perimeter
of the (convex) polygons. Usually this type of convex polygon follows the topographic
contours to a large extent, e.g. class “D”. By way of contrast, class B has a very different
geometric layout which suggest itself entirely by way of the covariance trend of the pixels
involved however.

Figure 7. Maximum intensity/albedo contrast axis (Classes B --> A). Red pixels in scene space: “A”.
White pixels in scene space: “B”. Insert: scene-space distribution of class “D” — undifferentiated re-
growth .

All score space pixel classes are followed by immediate back-projection into the scene
space. Either a simple binary mask is outlined with all designated pixels in white, as foe
class “D”, or usually MIA displays the original image fogether with the pertinent scene
space overlay (in any suitable monitor combination R:G:B). Fig. 7 also shows the
resulting spatial layout of this back-projection of the two pixel classes “A” and “B”. Upon
inspection, classes A vs. B turned out to represent the pixels in this particular scene with
the absolute highest radiometric reflectance, class A (for all channels), and the opposite
class of the absolute darkest pixels, class B. This latter class represent “shadow-pixels” -
easily enough appreciated when the entire scene is viewed with particular notice of the
general sun illumination direction (from NW), cmp. Fig 1. It is important to appreciate
how the user is accorded complete freedom to iferate and refine this type of (tentative)
class definition procedure as often as needed, should the first scene projection(s) indicate
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only a sub-optimal class representation, as revealed in scene space. Domain-specific
interpretation of the class masks in Fig. 7 may for example tell a forest expert who is
familiar with the imagery and the general features of all the prevalent tree types in this
particular context, that these resulting scene boundaries are not optimally delineated yet —
in which case one more iteration of the score space class delineation is called for etc.

This score space/scene space iteration constitute the most important design principle of
MIA in the explorative mode — an interactive interpretation stage, from score cross-plot
pixel class delineation(s), to projected scene space class outlines, complete with original
image underlay. It is up to the user, be it a domain specialist also versed in image analysis
or a two-person team covering both these fields, to carry out this interactive procedure to
as high an interpretation detail as deemed necessary by the image analysis objective(s).
MIA's on-screen capabilities have been designed such that this interaction
score-space/scene-space interpretation work can be as comprehensive and effective as
needed, Lied (1999).

Working systematically, MIA analysis of this particular forest scene will soon reveal five
primary classes in Figs 1 and 7, wiz. the dirt road, areas underlain by shadow, mature
forest stands, undifferentiated re-growth, and a somewhat specific type of class of high
albedo/reflectance.

Pixel class A: areas composed by high reflectance pixels
B: areas in shadow
C: road (dirt road, not metalled)
D: regrowth (undifferentiated), mainly in the clearcut areas
E: Mature tree stands, also single crowns of old trees

These primary class designations will play a central role when MIA’s next major image
analytical features are to be developed, the end-member mixing class concept.

The classifications revealed in Fig 7 are mainly based on a more-or-less comparable
equal-area basis in the score cross-plot. This type of grouping may however sometimes
lead to misrepresentations, when it is remembered that equal areas in the score plot may in
fact represent very large differences w.r.t. the actual number of pixels in the 3-D
histogram bins, with density differences as large as 5:255, or more. Usually this "inverse"
representation does not cause undue problems however, although it certainly pays to be
aware of it.

The above illustrations stress the point that careful — iferative - pixel class perimeter
delineation is of the outmost importance. We strongly believe that the topographic
analogy is natural, especially as regards peaks etc. It is most likely the topographic
expressions of "peakedness" that leads the human cognitive facility to form this type of
pattern cognition very easily. But there is another, equally “natural” type of MIA-class
now to be distinguished — an end-member series, or the mixing class series.

MIA delineation of end-member mixing classes

In Fig. 8 we have delineated three mixing class series. Note how the direction of these
class delineations are directly related to the topographic ridge patterns (watersheds). In the
case of class-series "X" and "Y" this terminology would appear obvious and very relevant.
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E.g. classes "Y1-Y3" are comprised of the "mixing" ridge between classes mature tree
stands "E" and the re-growth class "C" and likewise, class "X1-X6" can be seen as
representing a mixing series between end-member classes "C" (re-growth) and the road
class "D". We shall here also designate "Z1-Z3" a similar mixing class series, but now a
mixing between the manifest end-members re-growth (“C”) and a virtual high reflectance
end-member “H”. Observe how this similarity allows the image analyst to analyse a//
types of mixing-classes by relaying on only one common concept. Figs 9-10 shows two
examples of the gradual relationships displayed by these mixing classes, especially when
followed from one end-member fo its opposite in scene-space.

Figure 8. MIA mixing class concept (three mixing class series delineated). Each mixing class series
extends between two appropriate end-members (some of which may be virtual)

In this mixing class delineation we have at first only placed emphasis on identifying the
end-members making up the series extreme end points, but there are two additional much
more penetrating and powerful interpretative “hidden information principles” behind these
mixing-classes. Starting with the road class, following the “X” mixing series towards the
central re-growth class and immediately continuing along mixing series “Y” ending up
with the mature tree stand class — forestry interpretation of the entire spatio-temporal
sequence leads to the following hypothesis:

The dirt road is regularly swept clean of all incipient re-growth saplings, because of the
regular traffic of heavy duty forest machinery involved in the overall clear cutting
operations a.0. — consequently the scene space pattern class for “X1%, the first in the
direction of the central re-growth class per force must represent whatever incipient re-
growth can be observed in the scene. In other words, the first mixing sub-class
immediately adjoining the road class must represent the absolute youngest re-growth
saplings, with progressively older representatives forming the grading sequence of the
scene-space rendition in the mixing class series X along the watershed route, ending up in
the central re-growth class, “C”. This can be easily appreciated in the scene-space
rendition of Fig. 9.

By similar reasoning, the grading mixing class series Y can be parsed in a corresponding
fashion— in an identical spatio-temporal context - i.e. from “C” ending up with the oldest,
most mature trees standings in the scene, class “E”, as is laid out in detail in Fig. 10. The
longer one progresses along the Y-series (Y1-Y2-Y3), the older the trees delineated.
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Observe how one is actually able to follow this entire inferpreted growth process progress
in minute detail in this score space rendition, Fig. 8, and immediately have access to its
scene space dispositions, vide the sequenced imagery in Figs 9, 10.

Thus the entire ensemble of score space classes X;2>Xs>C>Y,2>Y; represent a spatio-
temporal slicing of what could be interpreted (and termed) the “re-growth process” in the
context of this particular scene. It is essential to appreciate that this interpretation takes
place by starting out in score space, but it is only when the resulting MIA-classes are
displayed in scene space, that full interpretation of their meaning is possible. Also this
interpretation is validated mostly by reference to other, already interpreted or well-
segmented features in the scene. In this particular dynamic, multi-temporally affected
scene, the biologic process of re-growth has be subjected to a kind of “stroboscopic”
time-slicing, delineated by the sequencing of juxtaposed mixing-classes.

Xs
Figure 9. Scene space disposition of mixing classes X1 - X6.

By this development of the end-member/mixing class concept it has been possible to shed
hitherto unimagined detailed light on this complex spatio-temporal re-growth process.
Clearly it is the informed interpretation of the domain specialist — and full command of
MIA’s capabilities — which underlies this powerful analysis. MIA allows a temporal-
spatial decomposition which is unparalleled in traditionalist image analysis; there is
simply no possibility to decompose the multivariate image in similar segments, were this
to start out from the scene space, in which the would-be “training classes” are hopelessly
far too disjunct and far too scantily distributed, as dramatically laid in their scene space
context, Figs 9, 10.

There is one more, phenomenologically identical, mixing series present in the score space
rendition of this scene, but with a distinctly different non-biologic interpretation, the
7,~>Z; mixing-series, situated in an almost “perpendicular” disposition w.r.t. to the re-
growth series. This series represents the ultimate span of the general low—>high intensity
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(comp. the above “shadow-reflectance” contrast phenomenon, Fig. 7), but in the present
context it can be seen as also tracking across the same central re-growth class. The
physical interpretation of this new axis remains the same: the “Z;>Z; vector” must
represent a generic, presumably mostly physical reflectance direction (in score space),
signifying gradations in the total reflectance recorded from within the confines of one
ground trace pixel size (70 cm x 70 cm). The reflectance in this type of imagery is surely
dependent on a composite set of factors, among which individual leaves, their colour,
angle w.r.t. the sun illumination, degree of moisture coverage i.a. plays important roles.

Figure 10. Scene space disposition of mixing classes Y1 - X3.

There are thus three general aspects of this detailed MIA analysis to be highlighted.

1. Observe how these two distinctly different compound mixing-series lie very close to
“orthogonal” to each other. This is of course no coincidence, but is simply an inheritance
from the underlying PCA analysis, the design purpose of which precisely is to decompose
covariance trends according to forced orthogonal axes (principal components). In this
particular case it is mainly PC1 which is rightfully interpreted as the dominating general
intensity (albedo) axis, though the slightly oblique direction of the “shadow-reflectance”
axis (Z,>Z;) bears witness to a slight involvement of PC2 as well in delineating the
direction of the overall increasing albedo.

2. Observe how both these genetically different series meet, or cross over, at the scene’s
singular most dominant class, the central re-growth class “C”. This hammers home the
message that class “C” is nothing but a veritable “mixed bag” of many “types” of re-
growth manifestations and this also explains why the simplest MIA-class analysis of
delineating the class C peak in this case results in an overwhelming number of scene
space pixels, drowning out most, if not all, possibilities of making detailed interpretations
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of the nature of this class - other than that of the standard forestry “undifferentiated re-
growth” category. In fact this type of cross-over class, this type of central, dominating
class is very often met with in MIA analysis of imagery, certainly not only from (high-
resolution) remote sensing, but from many other technological and industrial imagery as
well. MIA constitutes the only image analysis tool with sufficient power for these kinds of
complexities (sic).

3. We have now presented the two, partly alternative, partly overlapping meta-principles
for MIA pixel class delineations: individual “peaks” vs. “mixing classes”.

Which to use? — When? — How?

One should not dismiss the above “biologic growth interpretation mode” of analysis to
quickly even if this type of dynamic time-slicing may at first sight seem rather specific for
remote sensing in general, for change-detection in particular. Very probably however, this
type of ‘“change-analysis” constitute a generic type of interpretation, which can be
modified and applied in several other image type contexts as well. Certainly this is the
experience of the authors from a suite of very different technological and industry-related
types of imagery. In any event, the other “non-dynamic” mixing series more reflects a
static, scene-dependent physical phenomenon (albedo/intensity contrast/reflectance), the
like(s) of which will be present in almost any multivariate image from science, technology
or industry in which (natural or artificial) illumination plays a role.

In situations where this mixing-class concept would not appear to be useful, a return to the
simple “peak” delineation of what will surely always be representative, objective pixel
classes will often be quite sufficient then. The perhaps most interesting field here would
be the interplay between these two types of class delineation principles, but needless to
say, this problem will always be “scene-specific” to a very high degree. One must never
forget that each new multivariate image always should be analysed on its own accord.
However, experience with some several #ypes of multivariate images from a vast range of
different origins (remote sensing imagery, several types of technological imagery,
industrial...) reveals that the gamut is indeed made up of peaks and end-member/mixing-
classes, to more than 95%. - So when to use which approach: peaks vs. mixing series?

The resolution lies in the fact that all mixing-class series should be subjected to identical
mixing-class analysis as that presented above, and that any end-member always also
constitutes a legitimate single peak in its own right. By employing the concept of end-
member mixing/classes (directed along the watershed ridges, connecting peaks in the
topographic analogy setting) all types of connected peaks are in principle always open to
either type of analysis. But clearly it is the scene space knowledge that will determine
whether it will be possible to make meaningful interpretations of the “mixing-sliced”
subclasses.

In this paper we have delineated two generic types of mixing classes. We would probably
be grossly simplistic, were we to suggest that this is all there is; that still other “types” of
analogous analysis axes will not be found to be associated with other type(s) of imagery in
future applications, but we have actually not yet found the need for additional image
analysis concepts. We are by now fairly certain that the suggested concepts, or meta-
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principles, of end-member/mixing class vs. standard “peak” MIA analysis will be of very
general, perhaps even universal, applicability.

Scene-space sampling in score space — a final detail

Often the image analyst may need to sub-sample an entire image in the specific meaning
of a representative sub-sample of the image. This may be on the agenda for many
different reasons, e.g. for forest inventory purposes, where a forester would like
specifically to sample all known forest and growth classes present. One specifically needs
to be certain that all classification classes indeed are equally represented on a spatial basis.
Many procedures and sampling schemes have been developed over the years for this and
related purposes, all of which operate in the scene space in the image, or on the map.
There are many parallels to this sub-sampling situation from other types of imagery as
well.

Interestingly MIA may also here offer an alternative to this scene space tradition. Again
we illustrate using the clearcut study imagery. In Fig. 11 observe the extremely thin class
delineated in the lower left quadrant - actually this class is only one pixel wide. This class
is immediately brushed into the three complementary PC cross-plots. It is of significance
that we here have made use of the PC23 cross-plot for the class delineating purpose, for
reasons that will become immediately clear. Note first how this PC23-class covers a/l the
major classes present in score space - here we actually take advantage of the fact that most
of the major classes are non-resolved in the higher-order, e.g. PC23-plots. It is precisely
because of this judicious use of the PC-23 cross plot that we have been able to acquire a
representative, complete, equal-density sampling of the entire covariance data structure in
feature space by using the simplest of class delineations — a line, as is indeed substantiated
in the accompanying PC12, PC13 and PC14 cross-plots. It is especially gratifying to
observe the inherent "splitting" in the PC13 (upper right) plot. This one-pixel thin
sampling class has done a remarkable job sampling over all classes indeed!

Fig. 11 also shows the corresponding spatial projection. Indeed a uniform spatial
disposition of potential inventory localisations has been achieved, complete with a number
of denser structures present (major tree stands etc.). It is now a simple matter to overlay
this display with e.g. a road map or the like and to proceed with a logistical planning for
the forest inventory, in which a further weeding out of ““surplus” sampling sites no doubt
will form an integral part. It's really not a problem worth mentioning weeding down an
already acceptable spatial template - relative to the opposite case. Thus, for such sampling
purposes one might advantageously seek out the least structured score cross-plot.

There are other variations on this sampling feature of MIA, all invariably related to the
specific image analysis problems at hand and their special objectives, but we leave it to
the reader to associate freely from this generic example.
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Figure 11. Generic MIA sub-sampling concept. From score space to scene space: equal density sampling w.r.t.
the image covariance structure(s), not w.r.t. scene-space area density.

CONCLUSION

Multivariate Image Analysis (MIA) is a set of interdependent image analysis
procedures, encompassing both an explorative and pattern recognition mode, as well as
classification-related facilities. A synoptic overview of all elements in MIA has been
presented by a series of different applications on a comparison data set. We presented
extensive justifications for the specific MIA approach - contra the traditionalist image
processing mode.

MIA is a set of problem-dependent, interdependent explorative analysis and classification
tools to be used by the informed analyst, according to the specific image analysis
objectives. This review furnished a generic overview of the principles of MIA needed to
compose one's own flexible, problem-specific strategy of multivariate image analysis:
Mandatory pixel class delineation in feature space (score space) by a topographic analogy
and a dual end-member/mixing class vs. peak class delineation concept, of universal
applicability also in other image modes.

MIA constitutes a most powerful image analytical concept for dealing with any degree
of complex imagery: MIA’s design — and analysis principles are invariant w.r.t the
number of channels present. With MIA is not necessary to invoke massive, parallel
computer approaches in order to deal with even the most complex imagery (Lied,
Geladi & Esbensen 2000).
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SUMMARY

In the effort of analysing multivariate images, image PLS has been considered interesting. In this paper, image
PLS (MIR) is compared with image PCA (MIA) by studying a comparison data set. While MIA has been
commercially available for some time, image PLS has not. The kernel PLS algorithm of Lindgren has been
implemented in a development environment which is a combination of G (LabVIEW) and MATLAB. In this
presentation the power of this environment, as well as an early example in image regression, will be
demonstrated. With kernel PLS, all PLS vectors (eigenvectors and eigenvalues) can be calculated from the joint
variance—covarianceX(Y and Y’X) and association('Y and X’'X) matrices. The dimensions of the kernel
matricesX'YY'X andY’XX'Y areK x K (K is the number oX-variables) andM x M (M is the number ofr -
variables) respectively. Hence their size is dependent only on the numieamd Y -variables and not on the
number of observations (pixels), which is crucial in image analysis. The choice of LabVIEW as development
platform has been based on our experience of a very short implementation time combined with user-friendly
interface possibilities. Integrating LabVIEW with MATLAB has speeded up the decomposition calculations,
which otherwise are slow. Also, algorithms for matrix calculations are easier to formulate in MATLAB than in
LabVIEW. Applying this algorithm on a representative test image which shows many of the typical features
found in technical imagery, we have shown that image PLS (MIR) decomposes the data differently than image
PCA (MIA), in accordance with chemometric experience from ordinary two-way matrices. In the present
example theY-reference texture-related image used turned out to be able to force a rather significant ‘tilting’
compared with an ‘ordinary MIA’ of the primary structures in the original, spectral R/G image. Cop¥ytight
2000 John Wiley & Sons, Ltd.

KEY WORDS ~multivariate image regression; MIR implementations; multivariate image analysis; MIA; kernel
PLS

INTRODUCTION

Since the introduction of multivariate image analysis (MIA) in 1989 [1], multivariate image
regression (MIR) has not been developed to the extent one would have perhaps expected. The reasons
for this might be low interest within scientific society, few inspiring MIR applications and/or lack of

the required computing power. With the presentation of kernel PLS, however, Lindgren [2] has
shown that it is possible to reduce this last factor significantly. Computing the PLS loadings using
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only smdl covariance matrices insteal of large multivariate images reducesthe numter of
calcultionstremendously.

In traditionaltwo-waymultivariateimageanalysiseachpixel is looked uponasanobiject. In image
analyss the number of pixels (N) is oftenlarge,andastechnobgy developsconstany increasng.
Thushavinge.g.two milli on objects is not unusu& today. The numberof variables(K), e.g.image
channds, is usually very mucd lower, represating e.g. wavelength (colour), polarizing angle or
frequengy. Whenthesetypes of multivariate imagesare unfolded[3], we tendto getvery long and
narrow matrices. In MIA the loadings are usually calculated using SVD (singular value
decompotiion) on the covariance matrix X’'X [4], which is a K x K matrix. In kernel PLS the
loadingsare calculaed from the X"YY'X matrix, which is alsoa K x K matrix. Using only small
matricesin the updatingof this kernelmeanghatonedoesnothaveto carryarourd thelargeX andY
andlong latentvariablevectorsin the numercal calculatons.

MIA is first of all intendal for explorative image analyss purposesTrangorming multivariate
imagego theirmodg importantstructues(latentvariables)enabksadynamnic segmentadn apprach
with problemdependeninterpretaion of similar objectsin the entire image [1,4]. However, in
situatilns where extenal knowledg (Y-image) is available, image PLSR can now also be
consideed, basedon its power in guiding the decompotgion of the multivariate X-image. For
predictive purpo®s the useof somekind of regresion modelis required.Same very meanirgful
candidags are PCR [5] and PLSR [5-8]. In this paperan implemenation of multivariate image
PLSR, sone consideations of the methodand an early applicationexampé are presentedOther
applicaion exampesareavaiable [9]. Compaison of detdled resultsfrom PCRandPLSRwill be
presengédin a future paper.

METHOD

Traditiond algarithms [10] for calculatng PLS scoes and loadng weights for a given PC carry
around the large X and Y residud matrices and corresponihg paraneter vectors Because
multivariate imagesconskt of very large matrices, typically two milli on pixels by K variablesplus
oneor more Y -variable(s),thesealgorithmsconsumeenornousamountsof computermemoly and
procesaig time. Thusa differentapproachis desiredfor multivariate imagedata

In 1994, Lindgren[2] introduceda methoddesignedo reducethe matrix sizesduring calculaton.
Thismethodinitially calculateshreesmdl kernd matrices, X'X, XY andY'Y, andthemagerkernd
X'YY'X. Loadingsandweightsare calculaed usingthe maste kernel,which in turn is updaed for
eachcomponentcalculatd, using X’X and X'Y. Compaed with the traditional appraach, which
needsto updatethe large X and Y residud matrices, the kernd algorithm can savetremendous
amountsof memoy, asillustrated in Figure 1.

This approachs basednthefact thatscoresandloadngscanbe calculaedaseigenvetorsusing
squarekernel matrices:
X'YY'X)w

WA = w : PLS X-weights

( W,
gr2 = (YXX'Y)q, q:PLSY-weights
ths = (XX'YY')t, t : PLS X-scores
= ( )

YY'XX)u, u:PLSY-scaes

Becauge MIA andMIR operateon vectorizedmageswhere N > K, w is a preferied staring pointin
the calibraion procedureln situatimswhereK >> N, thisis notthe case becauseX'YY X becones
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K M M

XY

X :> XX

XYY'X

N N

K

Figurel. Thekernelapproactsavedots of computememoryrequiredfor calculatingtheweightsandloadings.
The actualamountsavedis dependenbn the N/K ratio.

verylarge. Instead XX'YY ' is used[11] for this purpo. In situatimswhereN =~ K, kernelPLSdoes
not give muchimprovement.In Reference[12], kernelPLSis comparedwith a similar algorithmfor
the singula value deconpositionof X'Y.

IMPLEMENTATION

It wasfoundconvenentto useLabVIEW asaprogranming environnentfor MIA/MIR. LabVIEW is
mainly usedfor userinteractons and file managementwhile MATLAB takescare of the actual
numbercrunchirg. Our choicewasmadebasedon prior knowledye of LabVIEW andMATLAB as
cost-efficent with regardto developnent time. The price we haveto pay is a slightly slower
algorithmthanwould be possble to obtainusing C/C++. Especiallythelink betwea LabVIEW and
MATL AB is slowwhenpassindargematrices.Thespeedbtainal is quiteadequée for R&D aswell
asroutine MIR, however.

LabVIEW (National Instrunments website: www.ni.com/bbview) is a graptical progmamming
environmentwrittenin C,whichin thelas few yeais hasgainedpopularty andusability in numeous
fields of applicatiors. As the environnent itself is becomng more stableand debuggd, different
toolboxes pop up arourd the world, introducing more and more pre-progammedfunctions, or VIs
(virtual instruments) as they are called in LabVIEW. Becaus LabVIEW usesa graphica

[File: Dialog|
bl
o} =)
]
i MAQ Create]  [iMA0 Readris] TMAD wWindDraw
error in [ho errar — IM“ UE E ut

Figure 2. LabVIEW usesgraphicalsymbolsfor differentfunctionsandsub-VIs,andthe programmeiconnects
thesetogetherusingwires. Usercontrolsandindicatorsalsoshowup assymbolsin the diagram.
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Zfunction [w' P0LSR,5Y Bl=kemelpls(<ps <pY ¥pY A) _ _
Mumber of Camponents SKERMELPLS [ P0,5%.5' Bl=kemelplsl<pd Xpy Y EY.A) ™
R ﬁJa'LuLIIaTtes the PLS of = on'" uzing the K.emel approach. [oEL]
% :
% Rpe: R
% RE R
Yy 0 [v-loadings
% & Scalar number of components [E] [oB1]
ZOUTPUT:
@‘ W' [k by Al loading wights
pid| % P [k by A)¥doadings _
Ioow] % O [ by &) Y-oadings P [#loadings
% 5% (j by A) Explained ¥-variance i [oBL]
% 5Y: [j by &) esplained Y-variance I
% B: [k by A) regrezsion coefficients
% - -
% (CJ1939 Thorbiom T Lied, TelT ek, NORWAY 5% [Explained X-variance
= 5 [oB1]
bp] % Ref: Lindgren, Geladi, ‘\wold:"The K.emel Algonthm for PLS"
[oB1] Ap
" : :
% Initialize return variables 51" [Explained Y-variance
i [oE1]
w'=zeros():
P=zeros(0];
(=zeros(0);
Sl
[oBL] P S =zeros(];
B=zeros(0); B [os]

Figure3. The actualdiagramfor the kernelPLSimplementationNote thatthe entirescriptis not shownasit is
insidea scrollablebox. The algorithmis found in Referencd?2].

progranming language calledG, anduserinterfaces aredrawndirecty in panes, LabVIEW truly isa
visual progmammingsystem(Figure 2).

MATLAB (MathWorks Inc. website: www.mahworks.com)was usedfor the core numeical
calcuhtions.

Therearetwo possbilities when combiningLabVIEW and MATLAB. Oneis to put MATLAB
scriptsdirectly in the LabVIEW diagram, the othe is to call externa scripts (m-files) from the
diagram.Thefirst alternaive waschosa here

Toreduetheamauntof datapassed betwea LabVIEW andMATLAB, it wasdecidedo calculate
theinitial kernelsin LabVIEW andpasstheseto MATLAB, whichin turn returnsloadings loadng
weightsandregressiorcomponers.

As in mog modernprogmammingenvironmens, in LabVIEW it is desiralte to build eachprogram
asacolledion of reusablesub-pogrars, or sub-Vis. Thismakeshe code,or diagrcams,easielto read
anddebug.andis of courseindispensablefor building complee dedicatedsoftwarepackaes.Figure
3 shows how LabVIEW passesgheinitial kernelsto MATLAB andcalls uponMATLAB to perform
the PLS calculation.

Onelevel higherin the program this VI is calleduponwith thekernd matrices asparameers.The
implementation of this is shown in Figure4.

Prior to the VI shownin Figure 4, scalingandcentringof X andY canbe applied if necesary.
Following this VI, X- andY-scoresare calculatedby projecing X andY on their correspading
loadings After this, we areread, to display scoreplots andscoreimages aswell asloadingplots,
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Figure4. How thekernelsarecalculatecandpassedo thekernelPLSVI. ThecurrentVI is typically calledupon
after scalingand/orcentringof X andY.

and/orto carry out further calculations,etc., very muchin the sane tradition aswith MIA [1,4-§.

While scoreimagesareshownin their original sizeandgeometry scoe plots arenot. A scoreplot
is a 2D histogam, or a scatte plot betwea two scome vectors Treatng eachpixel in thescenespace
asan object, andthusplotting eachobjectindividually, this scatte plot becomesunrealablewithout
usinganintensity colour-slichg map[1]. Scoreplotsareusedfor objectclassificaion (X-scaes,T),
while T vs U (Y-scaes) plots are usedfor evalating the predicion performane of the image
regresoon modd [5-8]. The differencebetwee scattemplotsandimageswill be moreevidentwhen
looking at anexanple.

APPLICATIONS

Becaug mog effort has beenput into the presentnew software developnent, a large range of
applicatiors is not yet available. Neverthelessan early exanple with threespectal channés in the
raw imageis presengd here.Although this is only a very modestmultivariate image, it senesthe
purposeof showing the principlesof MIR completely.

Therawimagewascapuredwith SILVACAM (VTT Automationwelsite: http://www?2.vtt.fi:82/
aut/rs/prodsilvacam.hinl), which is amodifiedRGB video cameravhere the blue channé hasbeen
replacedvith anNIR (near-infared)channé Thecomposie rawimage(R/G/NIR) is shown in Plate
1. In the presentexample however, the NIR channé did not contribute muchto the deconposition
andwastherebreremovedrom the datamatrix for thetexture derivatinsto be presentd below (in
orderto give moreroom for the latter).

Thisimagehasbeenspecificly designedo highlightbothspectrabswell asdifferenttexturaland
structurd differences betwea the differentobjectsin theimage.Thuswe haveconstrutedanimage
with only three principal objectspresent:

e highly textured cloth asbackground Canadian lumberjacket);
e flat plasticfragment(‘prison window bars);
e eight leadpencilsin four colours.

Theideabehindthisimageis thatthereareimportantdifferencedetweerthespectrdobjects(which

CopyrightD 2000JohnWiley & Sons,Ltd. J. Chemometcs 2000;14: 585-598



590 T. T. LIED, P. GELADI AND K. H. ESBENSEN

canbediscriminatedby a standardMIA spectradeconposition[1,4]) andthetextural objectswhich
will bethemainfocusof concen in this applicaion exampé (texturally thereis e.g.only onetype of
pencil, while therearefour spectralclassexorrespading to the four colours)

Observehow the greenimage appaently conveys more detail and focus than the red image,
especilly regading the definition of the highly textured backgroundFigure5). The imageis also
represatative of various forms of specularreflectance. This latter is directly depen@nt upon
illumination angkes, etc. For this construted image a partly asynmmetrical illumination was used,
produdng a clear light/shalow contastprimarily in the N-Sdirection.

Thus,while very simple in the numberof objecttypespresentthisimagein fact catchesnary of
the principal imageanaysis elementsand featues of technobgical images, a numter of different
spectraclassesmary or all with individual texture, illumination(light/dark/shadw) differencesetc.

The goal of this exampek is twofold:

(1) todiscriminatebetwea thes differenttypesof classespecificdly with helpfrom thetextural
information;
(2) to compareMIA vs MIR.

In orderto dothis,anewMIX (multivariateimagetexture analyss) conceptis introducedwherebya
seriesof texturalimagederivaivesis directly addedonto the seriesof spectal variables(from the
perspedte of bothMIA andMIR, thissimplyresttsin asetof addedX-channels).This will bedone
in threedifferentways in the presentcase

Thus,for eachof thetwo spectrachannés (redandgreen) threerelevar texturalderivaiveshave
beencalculakd, giving a total of K =2 x (1 + 3) = 8 channés (seeFigure 5). The following texture
filters wereapplied

e medianfilter;
e Laplacefilter;
e compoundfilter (scupture+ variance+ medan + inversion).

A reference Y-imageis of coure required for image PLSR. A ‘texture index’ Y-image(Tl) is
devisedFigure 6) which expresseghebasictexture differences betwee thethreetextureclassesn a
guantitaive mamer. Texturally the piece of plastc is almostcompletely ‘flat’ (TI =0-10); the
pencilsareslightly more conplextexturally speakingoctagorml cross-section)resuting in Tl = 20—
40; while the highly textured Canadianlumber-jacketcloth displays a very high texture index,
Tl = 225-255 Figure6 shows thesetexture relationshipsvery clearly. Thisis the type of informaton
that will be usedin order to introduce textural relationshipsin the image decompaitions, but
exclusiely asY -information.

The Tl imagewasconstructé in ImageProPlusfrom Media Cybernetics applying a conmbination
of texture-sendive filtersto the red channé in X. The combindion consistedof ‘sculpt’, ‘Sobel,
‘5 x median5 x 5’ andcontras enhanementwhich, whenappliedin the mentionedorder,gavethe
resultshown in Figure®.

Application MIA vs MIR—objectives

In orderto seehowimagePLSR(MIR) decomposedifferenty thanimagePCA (MIA), threecass
will be studied in which the PCA andPLSRalgorithmswill be appliedessatially to the sarre data
setbutin threedifferentways:

e casel—MIA  (without Y-referencein X);
e case2—MIAy (Y-referencencludedin X);
e case3—MIR (Y -referenceusedin Y -block).

Copyrightd 2000JohnWiley & Sons,Ltd. J. Chemometric2000; 14: 585-598



Plate 2. MIA, Scoreplots: 1-2, 2-3, 1-3 and 1-4.
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Plate 4. MIR Scoreplots: 1-2, 2-3, 1-3 and 1-4.
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Figure5. Two spectralchannelgred, top left; green,top right) andthreetextural derivativesof each.

CopyrightD 2000JohnWiley & Sons,Ltd. J. Chemometcs 2000;14: 585-598
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A

Figure 6. ReferenceY -imageexpressingll of the principal ‘texture objects’ # spectralobjects.

Tablel showsthe contens of X andY in the threecases.

Whencomparingthe threecase, the preprocesingmustof coursebeidertical. Thus,prior to the
calculationin this exampe, all pertinentimageswere autcscaled.

Casesl and 2—MA, and MIA.. In the first case,X confains eight variablesand appraimately
350 000 objects(pixels). Thus X'X is an 8 x 8 matrix. In the secom case Tl will be addedto X
from MIA as an extra variable. Thus X will have nine variables and appraimately 350 000
objectsand X’X will bea 9 x 9 matrix. The two modds proveto be very similar, soloadng plots
areshownonly for case2. Scoreplots, though,are shown for both cases.

Figure 7 shows the accumuétedexplainedvariane for casel. The numberof PCsto usein the
following discussio is not obvious from this plot, but usingthe standad four componers thatthe
softwareprovidesseens to be a fairly goodaltemative.

Thereis a very strong paimwise correltion betweenvariablesin thes two case. This canbe seen
from the loadingplots (Figure 8).

Onecanseethefollowing variable pairsin the loadingplots: 1-5, 2—6,3—7 and4—-8. An obvious
interpretationwould be that the texture filter operdions on both red and green are closely similar.
Fromtheseobsevations,onecouldfor exanple arguethatthe numter of variablescouldbereduced
to four in the X-matrix, e.g.variables1—4.If the computeris low on memoryor speedthis canbe
consideedto speedup the calculatons. In the following, however, all the initial variablesareused,
sincewe havea quite different purpo® thanvariableselectionwith the preentdecomposions.

Case3—MIR. In the lag casea regressionmodd betwea the X usedin casel (MIAg) andY
from Tl will be built using the kernel PLS algarithm. In this casethe modd will be actively
forced in the direction of textural informaion, presimably somewhat suppessingpure spectra
correhktions,chamacterisingthe MIA g andMIA ¢ case respectively.

Copyrightd 2000JohnWiley & Sons,Ltd. J. Chemometric2000; 14: 585-598
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Tablel. Contentsof X andY in MIA andMIR calculations

Channel MIA o MIAy MIR
Red X1 X1 X1
Redmedian X2 X2 X2
RedLaplace X3 X3 X3
Redcompound X4 X4 X4
Green X5 X5 X5
Greenmedian X6 X6 X6
GreenLaplace X7 X7 X7
Greencompound X8 X8 X8
Referencell image(Figure 6) — X9 Y

In MIR thereis still a correlationbetwea the samevariablepairs(seeFigure9), but notat all as
strongasin MIA. Thescoke image(seeFigure12) shows bettertextural detailsthanin the previous
casesThusputting the Tl imagein Y succasfully forcesthe algarithm primarily to enhancdexture
in the decompaition, asit ‘shoud’ consideringthe exclusive texture index natureof the Y-image.

In general of coursejt is to beexpectedhatMIA andMIR will decompos the samedataset(the
samemultivariateimage)differently, providedthatthepertinentY -referencanformationindeeddoes
addnewinformaton. It is interestingto seehow theseexpeded differencesmanifestthemselvs in
the loadng and scoreplots (Plates 2—4) of the preent exanple. Combiing the first three score
imagesinto ‘false colourcomposites’is alwaysa usefulway to comparealternaive deconpositions

100 —

SGX-MIAD

Figure 7. Explainedvariancefor casel, MIA withoutY.
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Figure8. MIA y loadings1—4.

(Figure10-12). The mog evidentdifferencebetwea the scoe imagesin thesethreecase, looking
beyonddifferences in colour, is the gradwal increa® in detail. The MIR scoreimagelooks much
‘sharpet, morefocused, thanthe MIA scoe images primarily becase of bettertextureanddetail
descrigion.

Figurel13 showsthe calibraed,explainedvariane for MIA o vs MIR [14,15]. It shows that,in this
case MIA performs betterin the first two componentgshanMIA. The third componenis not very
differentin the two caseswhile the fourth componentis a little betterin MIA thanMIR. Figure 14
delinedesy-variancemodelled.

CONCLUSION

In this paperit hasbeenshownthat image PLS addsa new dimensgon to the complex field of
analyshg multispectal images PLS was performed using the kernel algorithm, which is now
implemented in our prototype MIA/MIR software system The progranming was done in a
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Figure9. MIR loadingweights1-4.

combindion of LabVIEW and MATLAB using the best propertes of both programming
environmens. Using this approach,the calcuktions can be carried out on a standarddesktop
compute.

Applying this algorithmon a represatative testimagewhich shows mary of the typical features
foundin technicalimager, we haveshown thatimagePLS (MIR) decompossthe datadifferenty
than image PCA (MIA), in accodancewith chemonetric expeience from ordinaly two-way
matrices. In the presenexampk the Y -referencetexture-elatedimageusedturnedout to be ableto
force a rathersignificant ‘tilting’ comparedwith an‘ordinary MIA’ of the primary strucuresin the
original, spectralR/G image.

MIR requiresa different validation approachthan the convenional PLS approachMuch work
remains put the working prototypeis now successflly implemented.We arecurrently also working
on an extendedseriesof represatative applicaions.
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Figure10. MIA o scoreimagesl—2—-3(R-G-B).

Figure11. MIAy scoreimagesl-2—3(R-G-B).

Copyrightd 2000JohnWiley & Sons,Ltd. J. Chemometric000;14: 585-598
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Figure12. MIR scoreimagesl—-2—-3(R-G-B).

D
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Figure13. SSXMIA o vs SSXMIR.
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Figure14.Y-residualg(SSY)from the MIR case.
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Principles of MIR, Multivariate Image Regression - I:

regression typology and representative application studies

ABSTRACT

We present an introduction to MIR: Multivariate Image Regression with a selection of
illustrative application studies. Generalisation from 2-way multivariate calibration to
the 3-way regimen leads to - at least - three alternative image regression cases
depending on the nature of the available Y-data: IPLS-Y giscrim ; IPLS-Y grig 5 IPLS-Y o1 .

A systematic image regression typology is briefly introduced.

We here present the core of the principles of applied MIR: Two major MIR application
studies are worked through, a food mass product industrial inspection study (IPLS-
Y giserim) and a food product (fruit) storage stability image analytical monitoring (IPLS-
Ygria). These exemplifications are presented as archetypes, representing a much wider
range of potential industrial/technological application areas.

The present paper represents one major element of our work towards establishing a
complete, stand-alone facility for MIR (Multivariate Image Regression); the second
paper in this series deals with the development, implementation and extensive

exemplifications of a complementary cross-validation facility.

KEYWORDS: multivariate image regression; MIR; multivariate image analysis; MIA;
multivariate image texture analysis; MIX; 2-D images; 3-D image arrays; image

regression cases; applications






1.0 INTRODUCTION

The introduction of the Multivariate Image Analysis (MIA) concept in cheometrics
was not longer ago than Esbensen & Geladi (1989) [1]. In the intervening 10+ years
the development of MIA has been relatively slow, but would appear to begin to take to
speed more recently - the entire field was summarised in the comprehensive textbook
by Geladi & Grahn [2]. Much of the theoretical background for Multivariate Image
Regression (MIR) necessitates a thorough understanding of the principles and methods
in MIA, which we shall here assume known. It is especially important that the concept

of the multivariate image is well understood.

Because regression calculations on the extensive amount of data in multivariate images
easily can be a technical challenge (growing quadratically with the number of
variables, or channels), some important recent evolutions have made it more feasible in
the last few years. The continuously developing technical improvements in computer
hardware efficiency is of course a major contributor, but especially the KERNEL PLS
algorithm introduced by Lindgren et.al. in 1993 [3] has dramatically speeded up the
present type of calculations, as was outlined in detail in [5].

Despite of this, few studies has yet shown the true potential of MIR as a tool for
predicting quantitative features in multivariate image data. Hopefully, this condition

will be improved by the current paper.
1.1 Concepts

Several concepts are used in this paper, some of which may be relatively unfamiliar. A

brief introduction of these is given to help the reading of the article.

1.1.1 Multivariate Image (MI): The MI is a digital image of one scene, consisting of
many variables (channels), e.g. colour bands, channels. At the outset the simplest
situation is the one in which each image pixe!/ is treated as an object, which requires
rigid consistency in scene lay-out for all variables. An object in a given scene position
in one variable must be found in the same scene position in all other channels; for
regression cases also in the Y-image. MI’s are usually presented as a 3-D matrix, but
because the two object-ways can be treated as one way, the MI may also be
reorganized into a 2-D-matrix prior to modelling, and 2-way methods can be applied

[2] by way of the so-called unfolding operator.

1.1.2 MIR: Multivariate Image Regression [2, 4] builds regression models between the
multivariate X-image and the (uni-/multi-)variate Y-image. MIR is here performed



using KERNEL-PLS [3, 5] on reorganized Multivariate Images, i.e. each variable is
reorganised into a (very long) object vector. In this basic unfolded form, MIR uses only
the variable-signatures, i.e. the spectral information in the analysis and only indirectly
makes use of the spatial information analogous to MIA [1, 2]. But even though MIR
technically uses 2-way analytical methods, there is an enormous visualisation potential
in image data which is also used fully in MIR. Displaying results not only in score
space, but also in the so-called backfolded image space, enhances the insight in the data
structure and the models developed. Applying colour coding to score plots, MIA, or by
combining three score images in one composite ("R/G/B") colour image, it is often
possible to capture comprehensive model presentations of great interpretation value
etc..

1.1.3 MIX: Multivariate Image teXture analysis. MIX is an extended MIA-MIR
approach which includes spatial, especially textural, information in the analysis. In
cases where spatial information is important, this can be included in the MIR-model by
e.g. adding derived textural variables calculated from the original variables [6-8].
Sometimes enhancing details using e.g. edge-detectors is favourable, in other cases the
opposite (smoothing details) might be required etc. Also, combining textural filters
might often give very useful results. MIX has the potential for explosive data growth,
thus powerful means for variable selection are required. We do not treat the MIX
aspects in any depth in the present work however.

1.1.4 Regression typology

Perhaps surprisingly, going from the 2-way realm in which the concepts of multivariate
calibration is well-known - and need no further presentation here - there is a
corresponding three-fold multitude of analogous but in principle different image

regression modes, Figure 1.

1.1.4.1 IPLS-Y giserim: The Yes/No classificator/discriminator. In every position in the
Y-image, a pixel is either 1 (one) if it is part of a current class, otherwise 0 (zero). The
approach is suitable for classifying one class among (many) others. Used as a pre-
processor, this method can easily be taught how to pick out desired classes. This case is
also easily extended to cover several classes, by using several one-class Y-discrim

masks, Figure 1.

1.1.4.2 TPLS-Y yiq: If every Y-condition is not available in one image, several images
can be juxtaposed in a compound, so-called gridded image. This way the total

experimental design can be represented in one image, i.e. one model. Extensive



illustration of IPLS-Yi4 is given in this work. In some cases, especially when
predicting an overall value for each sub-image in the grid, the corresponding Y-image
will have a constant value within each sub-image. When this appears, some kind of
smoothing of each sub-image in X will usually be useful, i.e. reducing non-

classification related variations in X.

1.1.4.3 IPLS-Ya: When the entire experimental design is covered in one frame,
merging images together, as in the IPLS-Y 44 is not required. In these cases, each pixel
in X also has a separate, unique value in the Y-image. Typical examples come from
e.g. remote sensing. Because most of the still limited MIR-literature explicitly
discusses this kind of data, and because it is merely a special, extreme case of the Yy,
it will not be treated further in this paper

IPLS-R

IPCR

MODES

_

Y Adicorim Y arid Y tatal
Figure 1. The three different MIR modes, Y iscrim Ygria and Yo
1.2 Software

All calculations in this paper are performed using a self-developed program, described
in Lied, Geladi & Esbensen [5]. The software is available for Microsoft Windows ®
(9X NT 4+5) and is written in National Instruments’ LabVIEW v. 5.1. Both MIA and



MIR is implemented; for MIR regression calculations, KERNEL-PLS [3] is used

exclusively. '
2.0 APPLICATIONS

Below the terminology IPLS (Image PLS) is used throughout, but it is evident that
PCR may also be used alternatively should one so desire, albeit with the well-known
distinctions regarding PCR vs. PLS [9-10] etc. Here PLS is employed exclusively
because of its well-known chemometric advantages [9-14]. In both major examples
below, data are mean centred and scaled to uniform standard deviation. All variables
thus have equal variance weights, making the Kernel-PLS decompositions pertain to

correlations.
2.1 IPLS-Y 4iscrim : Discrimination Prediction.

Motivation: A pilot study of image analytical industrial inspection of a mass
production food article, Swedish crispbread ("knackebred") is presented. This item, by
nature of its mass consumption status, is produced in very large quantities in industrial
bakeries in many countries. Output from the industrial ovens are necessarily way
outside complete human inspection capabilities, for which reason an automated,
industrial image analytical system would be of considerable interest. This in turn could

form the basis for a truly 100% inspection system.

In our restricted pilot study involving some 10 pieces of crispbread, parallel
representative oven outputs are available, 5 with an "accepted" status and 5 with three
types of representative faults, typically encountered in the industrial production
situation. Figure 2 shows these three faults together with examples of the directly
acceptable product ("normal"). Technical details regarding this image is found in table
1.

! When developing this prototype, serious efforts were made to enhance the flexibility and user interaction
facilities. For large datasets, 10 M pixels or above, calculations starts to become slow however.
Development of a professional system is now under way. Contact the corresponding author for
instructions on how to download the freeware prototype.



Table 1. Technical Details of the crispbread case

Image Capture Camera Lens Focal Length
JVC 3CCD KYF-50 Micro Nikkor AF 105mm
Measures With (pixels) Height (pixels) # Variables
Total Image 1000 666 4
Sub Images 200 333 4
Spectral Variables Colour Wavelength Bandwidth
1 RED N/A N/A
2 GREEN N/A N/A
3 BLUE N/A N/A
Textural Variables Filter Window Size & Applied to
Passes
1 Variance

a

Figure 2. "Normal" and '"flawed" Scandinavian crispbread ("knekkebrod"). Three
representative types of flaws are displayed; broken, perforated and burnt cases.

Figure 3 shows standard MIA score plot set-ups for the crispbread case (figure 2) [1,
2].

In the interest of the wider application horizon for this specific IPLS-Y gisrim regression
example, a more general IPLS-Y giserim regression case will be set up. This is done by
using a Y-image mask of the areas of interest in the image which are recognised as
"rejects"”, i.e. areas which are underlain by those parts of the Y-image which depicts
flaws of the various type. Figure 4 shows this "flaw"-mask.




Figure 3. MIA standard score-plot for the crispbread case in figure 2.

Figure 4. Y-image mask of (0/1) discrimination areas. Note that by using a relevant background
discrimination feature, it is possible to zoom in only on the true flaws present in the gridded

calibration imagery, which have been designated white here.



Figure 5. IPLS-Y jiscrim t1-t4 score plots showing all three resolved classes in the crispbread
case: broken/perforated (top panel); burnt (middle) and "accepted” (lower). Note complete

discrimination. Also comp. with similar t1-t2 scoreplot from the MIA-solution

Figure 5 has been designed to bring forth the full potential of the IPLS-Y gisrim-case,
showing (in standard MIA-style) the corresponding tl1-t4 score plots versus the
original (raw) image domain layouts of three fault classes present in the fully
background-discriminated crispbread case: shadow (top); burnt (middle) and
"accepted" (bottom). It is gratifying to observe complete discrimination between all

relevant classes, i.e. all three types of rejects/accepted and the background as well. This
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successful discrimination points directly to the desired use of image-based prediction
of all these types crispbread. This pilot study, while extremely simple, allows full
conceptual delineation of a complete automated image analysis system, by way of the

relevant PLS-prediction facility, Figure 7.

= PRESS-plot =] E3

Figure 6. Calibrated X-variance (top) and Y-variance (middle) and validated PRESS (low) for

the crispbread case in figure 2.



Incidentally, observe that in this particular case, there would appear to be very little
"tilting" of the IPLS-solutions relative to the corresponding simpler PCA-solutions
(MIA), contrary to many other two-way experiences [4-5, 15-16]. In the present case
this reflects a rather direct correspondence of the X-block data structure with the Y-
structure(s), i.e. the information gathered in the image analytical X-decription
"happens" to be directly correlated to the guiding Y-discrimination dummy variable;
see also below however.

Figure 7. Pricted Y—imag szng 1 (n mont. oe A- the rkriodél distinguishes
clearly between faults/non faults.

While figures 4-6 gives the statistical facts in this case, figure 7 shows the actual
predicted image in scene space using one component. This figure demonstrates that the
model is excellent for predicting all the relevant types of faults. This result is, needless
to say, of a much larger generalisation potential than the specific crispbread example
chosen. The illustration in fact has merit as an archetype for IPLS-Y 4isrimy multivariate

image regression.

MIX-aside: In this example a variance filter (table 1) has in fact also been applied to
extract local textural variations in the X-image. While the background is flat, the
crispbread has a very distinct, regular texture. The variance filter, which returns the
local variance in a small window in every position in the image, will thus greatly help
to distinguish crispbread from background as well as textureless burnt parts, assisting

11
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the spectral information in the classification. The effect of this filter addition is
visualized in figure 8 which shows the loading weights(w) for this example. From this
figure, it can also be seen that X2 and X3 (Green and Blue) contains mostly the same

information, indicating that one of them could be left out in later calibrations etc.

o Load. W. 1vs. Load. W. 2 =] E3
o %1
axd
71
R

Figure 8. Loading weights 1 vs. loading weights 2 for the crispbread case. Note X-variables 2
(green) and 3 (blue) which seem redundant.

Note how judicious use of a relevant background (colour, texture) is essential to bring
about the successful discriminations in this case. As in all image analysis applications
illumination and colouring (not treated here) is often of equal importance compared to

the data analysis proper etc.

2.2 IPLS-Ygiia: Monitoring and estimating storage time for fruit
(bananas).

Motivation: The objective of this application example is to monitor storage stability by
a series of (multi-temporal) images of the same fruit(s), with great efforts to keep all
storage and imaging parameters constant, the only variable being time elapsed since
storage start. Successful monitoring will allow for quantitative storage deterioration

prediction directly from the captured multivariate X-images [5].

In this context, the calibration-parameter "storage time" shall be represented by
juxtaposed part-images, making up a complete, so-called gridded, multivariate image,

hence the suggested name for this second image regression mode: IPLS-Y iq. This
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example also serves as an archetype not only of multi-temporal studies but also of

analogous objectives, conf. below.

Figure 9 shows the compound, gridded multivariate X-image of a deteriorating banana,
for which the storage times involved are (from upper left to lower right): 1/2/3/6;
7/8/9/10; 13/14/15/20 days respectively. This gridded layout is necessary in order that
all storage times can be analysed together by MIA or MIR. It is emphasized that it is
the objective of the image analysis (in this case: storage stability monitoring) which
dictates that the individual grids represent a succession of different storage times. For
other image regression cases, these individual grid cells will often represent different,
typical "object-like" categorical entities to be similarly compared, e.g. a series of
different meats to be characterised, as was the case with Wold et al. [15] (in fact also

predicting a storage-related parameter, "harshness"), Geladi and Grahn [2] a.o.

Table 2. Technical Details of banana example

Image Capture Camera Lens Focal Length
SILVACAM Fujinon 120 mm
Measures With (pixels) Height (pixels) # Variables
Total Image 800 600 3
Sub Images 200 200 3
Spectral Variables Colour Wavelength Bandwidth
1 NIR 760 - 900 nm
2 Red 580 — 680 nm
3 Green 490 - 580 nm

Figure 9. Storage time aging of representative fruit (banana) in the interval 1-20 days.
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In figure 10, which shows the particular Y-image, the array of grid cells forms the
basis for an IPLS1. Observe how the deterioration process interval of 1-20 days has
been mapped into an image analytical appropriate grey-level interval, spanning 0-255.
Again it is the Y-image mask which makes the regression problem immediately
appreciable. In one sense, as soon as the multivariate X-image has been defined, it is
the Y-image which sets up the entire MIR.

Figure 10. IPLS-Y,q Y-image, delineating the problem-dependent Y-levels for the banana
deteriorating process. Figure 10 (Y-image) corresponds to figure 9 (X-block).

Figure 11 performs an identical role as figure 5, encompassing the essentials of the
IPLS-analysis. In the t1-t2 score plot (upper left panel) one may appreciate, in full
detail, the trace of the fruit deterioration process. > We have illustrated two
representative process stages along this trace, an intermediate stage and the
penultimate sad, almost totally rotten end of the banana development (upper right and
lower left panel respectively). With reference to MIA [1, 2, 17] the scene-space back-

2 We have elsewhere worked out a complete image analysis strategy, which - while originally presented as
related to MIA - also applies to the analogous t-t- score plots derived by an IPLS-solution [17]. As but an
example we there followed another biological process, albeit of considerable greater complexity, i.e. a
forest clearing regrowth process, using geomorphological analogies in order to characterise MIA score
plots. From this review [17] a range of interpretation guidelines for t-t score plots were developed, all of
which may also be applied to the present PLS-solutions. Observe that a slightly different modus operandi
applies to the t-u plots [18]. These subtle differences will be addressed in several sequel papers on a

comprehensive MIR strategy, which are in the works.
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projections of these two classes are self-explanatory in figure 11, especially when
compared with figure 9. Fig. 11 shows how it is possible to delineate the entire
deteriorating process in the X-space because the entire storage time calibration span

has been compounded in the one (X,Y)-image.

For IPLS solutions the t-u score plot allows valuable, indeed critical insight into the
effective regression relationships between the X- and the Y-space [18]. E.g. if already
the tl-ul relationships is (close to) linear, this is a certain reflection that a strong
prediction model will be achieved; likewise, smaller non-linearities in the t1-ul score
plots are usually "ironed out" by inclusion of one or a few, additional PLS-components
t2-u2, t3-u3 etc.

Figure 1 ] IPLS of the fruit aging process, in the IPLS-Y, orid regresszon case. Upper left: t1-t2
score plot, with two sets of corresponding scene-space (upper right and lower left panels).
Lower right: corresponding tl-ul score plot. Note discrtesation along the ul-axis,

corresponding to the Y-levels presented in figure 9.

For the present first presentation of the most used features in multivariate image

regression, these few aspects of the general use of the t-u- plot will be enough to allow
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appreciation of the way the IPLS-Yi-modelling works. Figures 11-13 represents
salient central aspects of our work leading up to a complete MIR strategy [5,19].

Figure 12. Complete predicted vs. measured (P/M) layout of the banana aging process IPLS-
Ygrid-analysis. The standard P/M assessment plot is shown for 1,2 and 3 IPLS-components,
while only the tl-ul scoreplot is shown (lower right). Significant improvement of prediction

precision using 3 components

For an assessment of the modelling strength of the IPLS-analysis, figures 11-13 will
also suffice. From these X-Y relationships it is evident that a satisfactory model can be
achieved using three IPLS-components. Observe e.g. how the P/M (predicted vs.
measured) relationships improves quite considerably when adding the second - and
third IPLS-components. From the tl-ul relationships alone it was however already
clear that this would per force result. We are also able to follow how one would go
about identifying outliers etc. by using the appropriate t-u score plots, following [18].
In the specific present plots in Figure 11 we did actually not have reason to perform

any outlier deletion, since none were found.



= X-variance M=l E3
" Y-variance !E E
= PRESS-plot =] B3

Figure 13. Calibrated X-variance (top) and Y-variance (middle) and validated PRESS (bottom)

for banana aging case.

17
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3.0 DISCUSSION AND CONCLUSIONS

The examples above represents our first presentation of a simulation of an automated

image-analysis monitoring system in the guise of IPLS: MIR (and MIX), in which we

focused on the general aspects of the IPLS-Y giscrim and the IPLSiq cases.

The specific choices of illustrative food article systems is not in any way an absolute
indication of the general applicability of this approach. What have been shown feasible
for perishable fruit articles, and for on-line food product characterisation, is of course
equally applicable to, say, cereals, bread, meat, fish - indeed the food and feed areas at
large are potentially opened up for a similar approach, e.g. the berries -, beverages, -

dairy sectors etc.

Continuing outside the human, and animal, food and feed areas, an analogous
automated image monitoring approach can of course equally well be envisaged for
quite different application areas, at first primarily within the general technological and
industrial sectors - but perhaps even further removed. One common denominator
could be any multi-temporal aspect, which would lend itself to an appropriately
modified image recording and - analysis approach, similar to the one illustrated here,
e.g. degradation studies: paints, coatings, corrosion inhabitation - industrial inspection
in general i.a. Within the field of remote sensing there is also a plethora of similar

multi-temporal objectives.

The on-line image monitoring example, while relatively simple in the crispbread case,
also has many, much broader applications potentials within much of the industrial
inspection realm, in which there is often a distinct need for automated image analytical

monitoring.

For the present feasibility studies we are satisfied with the above results for both the
IPLS-Y jiscrim and the IPLS-Y,,q approaches. We have shown that the multivariate image
regression approach (MIR) is now fully established. It bears in mind though, that there
is always a series of critically important specific associated image-analytical problems,
e.g. problem-specific illumination, shadows, reflections, non-constant object sizes i.a. -

Much interesting work remains.

The present first foray into the possibilities of multivariate image regression has
focussed on the ways-and-means of modelling (using bilinear IPLS) and prediction.
What remains is the equally important aspect of multivariate calibration, validation (in

the form of image-regression validation), which forms the subject-matter of the second



paper in this series, in which we also will make use of the third IPLS-regression case
only identified here: Yo [19].
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ABSTRACT

This paper deals with generic problems regarding segmentation for cross validation in
multivariate image regression. Multivariate images are characterized by a very large
numbers of pixels which usually are highly redundant. When several thousand (ten
thousand) pixels or more represent the same object, special considerations are required

for proper cross validation segmentation.

A new approach for guided segmentation is introduced, in which the validation
segments are specifically delineated by the informed user in score space. The practise
of "blind", automated segmentation, which is dominating 2-way cross validation, is
found to be useless in the 3-way MIA regimen. Problems concerning which order of
components to use for the segmentation delineation are illustrated and the necessary
precautions needed to ameliorate this approach are discussed. A general solution to the
problem, called higher-order components guided random sampling , is described in
detail, which may even also shed new light on current chemometric cross-validation

practises in the conventional 2-way realm.

This new cross-validation approach is illustrated with multivariate image data sets

which are known from the pertinent literature for easy comparison.

INTRODUCTION

This paper is the second in a series regarding Multivariate Image Regression, MIR,
which has been developed to create regression models between multivariate images
[1]. For a general introduction to this field, please see part 1 [2], in which the complete
phenomenology of the three principal cases of multivariate image regression was
detailed.

A multivariate image is a 3-D OOV matrix [3], i.e. two ways are objects (pixels in
rows and columns), while the variable-way is comprised by different channels, e.g.
colours. There are quite distinct differences between this 3-way domain and the
complementary OVV domain, well-known from the three-way decomposition. These
two domains do not in general make use of the same data modelling methods [2]. Here
we treat OOV (MIA, MIR) exclusively.



In any multivariate model that will be used for prediction, it is important to know the
predicting powers of the model. This is usually done by estimating the prediction errors
as a measure between known and predicted values. A popular prediction measure is
RMSEP (Root Mean Square Error of Prediction) which is defined as

Equation 1 Z ();, Y yref )2
RMSEP ==

n

where §; refers to the predicted value, and y; . is the known value [4].

The procedure of testing prediction performance is known as validation. To perform
this optimally, at least two sets of data are required, one for calibration and one for
validation. When a model has been established, using the calibration set, the validation
set is subsequently used for predicting the ¥-values of the validation set for
comparison, e.g. according to equation 1.

At least two variations for this type of validation exist, one is known as “fest set
validation”, the other as “cross validation”. In test set validation, a completely new,
independently sampled dataset is acquired, in addition to the calibration set. This

demands that an identical sampling procedure is used for both data sets.

If this is not feasible, a different, less optimal, approach will have to be resorted to.
Cross validation extracts a pseudo-validation set from the calibration set before
building the model on the remaining complement of data. The extracted data is now
used for validation. This approach may take several different forms, but all are closely
related, in that they per force must correspond to a number of so-called segments in the
list: 2,3,4,5...N, where N stands for the total number of objects in the original
calibration set. After prediction errors have been estimated for the one left-out
segment, it is replaced back into the modelling base and a new model is created in
which a different segment is being kept out of the modelling etc. This is continued until

every segment, and object, has been used for validated, hence the term cross validation
[5].

To get realistic validation estimates, it is important that the calibration and validation
datasets represent two independent samplings from the target (parent) population. The
degree of difference between them should reflect the variations that can be expected

associated with the future measurement situation in which the regression model is to be



used for prediction purposes [4]. It is easy to see that test set validation is the only

approach which honours all these requirements, ibid.

In 2-way chemometrics there are steadfast different opinions regarding how exactly to
divide the data in calibration and cross validation sets or segments [6]. From so-called
full cross validation (leave one out) on the one hand, to two-segment, so-called "test set
switch" on the other; the latter represent a singularly unsatisfactory choice of
terminology, as there is no "test set" present at all. It is always possible to use any
intermediate number of segments from the list: 2,3,4 ....N. The relationships between
test set validation and these systematics of cross validation remain an area of some
confusion in conventional 2-way multivariate calibration [4]. In multivariate image
analysis, however, distinct and special considerations are required to which this paper
is dedicated.

There are two major characteristics in image data that are rarely found in 2-way data.
Most striking is the number of “objects”. In a conventional video image (~500x700
pixels), there are more than 350.000 “objects”, i.e. pixels, in the range [0..255].
Removing any single object from this amount of data is not going to change the model
adequately to perform any useful validation [4]. Also, calculating 350.000 sub-models,
full cross validation, is not very tempting.

Secondly, and much more important to consider, is the large redundancy that exists in
image data. Pixels lying close together in the image space are likely to represent the
same object, and therefore often have closely similar values. Two-block data sets, for
example in which every second pixel, say, is to be used for validation, would
necessarily produce two almost identical images, clearly leading to inferior validation,
ibid. This would correspond to some spatial (image space) segmentation scheme. With
knowledge of object selection traditions in 2-way data analysis, the reader might well
alternatively ask: “Why not simply use random sampling then?” This would
correspond to a notion of a fair "blind", automated segmentation strategy. Again,
consider the very large amount of data (pixels) present. Sampling 50% randomly out of
350.000 objects would most likely again simply produce two practically identical
datasets. The last refuge from frustration of trying to generalise from the well-known
2-way regimen into the 3-way MIA/MIR realm will probably be to throw ones hands in
the air: "Then use a larger number of segments, 10 or so!" - We shall show below that
all such "blind" segmentation strategies are doomed to failure in the multivariate image
regimen, irrespective of the actual number of segments chosen - if not specifically

related to the covariance structure in the multivariate image.



In fact, multivariate image analysis requires a complete reconsideration of relevant
strategies for selecting relevant data sets for calibration and validation. A new a
strategy called “guided random sampling” is suggested below. In guided random
sampling the user decides how the data is to be divided into the pertinent sets. This is
neither done randomly, nor by a pre-specified "blind" number of segments, but with
very specific respect for the empirical data covariance structure present (in the score
feature space). A different angle from which to attack the data segmentation problem is
required. Following the MIA experience this angle is to be found in the score-space.

Nomenclature

The following notation is used:

X Matrix of predictor variables
Matrix of dependent variables
Y-vector

Matrix of X-scores

c = =< =

Matrix of Y-scores

CASE STUDIES

For illustration purposes, several examples mostly based on already published
multivariate image data sets will be used [7, 8]. The master dataset consists of a
512x512x8 image, the Montmorency Forest experimental data set [7, 8], where the
channel with lowest wavelength is here chosen as the Y-image in the present context.
This is not to be understood so that we suggest to predict this channel from the
remaining seven others (although this actually might be an excellent solution for
recovering a "corrupted" channel, which is often enough met with in remote sensing) -
rather we make good Y-use of this particular channel in order to illustrate the special

image regression case of Y-total, compare [2].

In figure 2 the pertinent T1-U1 score-plot from this application is shown. The cross
validation challenge is here to divide this plot in, say, two sets (segments) that both are
equally representative of the actually covariance structure present. A simple two-split
in this plot may easily give rise to a significant difference between the subsets if the

data structure does not comply well with a simple joint multivariate normal distribution



assumption. In multivariate image analysis we have yet to find such simple
relationships! Some objects in one set will not be equally represented (if at all) in the
other, and validation may easily tend to become unbalanced. A(ny) two-split - alone -
would almost always be in danger of being unbalanced.

MIR X _1X 2% 3

Figure 1. The scene space master image data which will be used for illustration, the
Montmorency Forest data set [7,8]. The image consists of 512x512 pixels in eight bands
(Channels, variables). Here it is represented by channels 1-2-3 as R-G-B.

To solve this problem, we suggest that the data set - generically - is divided in eight
segments, sampling both along as well as across the dominant covariance data

structures in the following way.

Initially the data is split in two halves along the main covariance direction. In figure 2
this would be a line passing through the two modes of the highest concentrations of
pixels with similar score signatures, i.e. topographic “peaks”, compare [3,8] (figure 3),
which are coloured red and orange in fig. 3. Each of these parts should now contain
approximately 50% of the objects, and all main classes should be represented - at least
the classes which go along to make up the dominating elongated covariance trend.
Secondly, intersecting the first line, a new line should be drawn representing the

second most important covariance direction, again as judged from the pertinent MIA



score cross-plot conventions, ibid. It is important that this second direction really
corresponds to what the user perceives as the second most representative part of the
overall covariance structure (more examples to be given below); thus there are no
requirements for orthogonality of these two salient user-delineated covariance
directions etc. This gives four segments, which each ideally should contain about 25%
of the objects - barring whatever "surprises" may be in waiting in the higher-order
components not captured in this first delineation. This, generally oblige, axis cross
delineation is all the user has to supply in order for our new cross validation procedure

to take over.

Figure 2. T1-UI scoreplot from the MIR analysis of the image in figure 1.

After the user has drawn this second line, the software draws the four lines between the
endpoints of these backbone intersecting lines. The software locates the intersection
point, and finally calculates the midpoints between the corners of the outer frame.
Lines are then drawn between the midpoints and the intersection point. An example of
a resulting eight-segment mask is shown in figure 3. This configuration illustrates a
generic eight-segment mask which it is the user's task to implement on top of a specific
T-U, or T-T score plot.

With this type of mask, there are three functional combinations of subsets consisting of
eight, four or two validation segments respectively. When selecting and combining
sets, they should be opposite with regard to the centre point. Figure 4 shows the two

compounded sets used in two-segment cross validation. In general each of these non-



overlapping two-fold division of the image covariance structure takes the form of a

Maltese Cross, illustrated vividly in fig. 4.

Notice in Figs. 3 & 4 how some obvious outlying features have been excluded already

in this first stage of cross validation segmentation (top right portions).

Line 1

Line 2

Figure 3. Left: Sketch of cross validation segment splitter initiated by two master lines drawn by
the user. Right: Example of eight cross validation segments defined in a score-plot, TI-Ul. Note

that outlying pixels can be excluded already when delineating this mask.

Case 1: Full Y-image

The first case is a study of what was found in [2] to be a comparatively rare situation in
image analysis; the full Y-image. In this situation, each object in X, each pixel, also
has a corresponding representation in Y. This furnishes a particularly illustrating
example of the new image analytical cross validation approach to be outlined. A more

usual situation is studied in case 3.

While figure 4 shows the two validation data sets in the scoreplot, figure 5 displays the
same data in image space. Pixels marked with white colour is used in the set.

Some outlying parts of the data was left out of the validation set entirely, because these
pixels were identified as outliers already when delineating the problem-specified
Maltese Cross region of interest. Alternatively this built-in outlier remover can be
refined by making a local model [3,8] prior to the cross validation, allowing only the

specific, problem-dependent objects of interest to be represented in the scoreplot.
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Figure 4. The two complementary “Maltese cross” validation data sets selected in the T1-Ul

scoreplot shown in figure 2. Note how both achieve good data structure representation.

Figure 5. The two complementary validation segments selected figure 4 projected to image

space. Note how both achieve satisfactory coverage and spatial representation.

Studying the images in figure 5, it should be fair to say that these two data sets
represents approximately the same objects at the scale of the overall, full FOW image,
with only a small difference at the most detailed levels. What you SEE in the score
space rendition, fig. 4, is exactly what you GET, fig.5. The user has the full ability to
iterate his or hers first tentative delineations of the Maltese Cross configuration by
careful inspection of the RESULTING disposition of the two compound, non-
overlapping scene space renditions, fig. 5, until a satisfactory results has been

achieved.



Figures 6 and 7 shows what happens if eight segments were to used independently as
in a conventional eight-segment cross validation. Obviously there are very great
differences between these eight datasets, in fact there is an absolute certainty that these
sub-models will be totally incommensurable with each other. This is a dramatic
illustration also of the general cross-validation "problem" when the relationships
between the X and the Y-space is more complex. In the present image analysis
example, it is evident what goes wrong, were one to use an eight-segment (12.5%)

cross validation scheme.

5 MIR T_1 vs. U_1 M= B3 M MIR T_1 vs. U_1 [-[O[=]

= MIR T_1 vs. U_1 [_ O[]

5 MIR T_1 vs. U_1 M MIR T_1 vs. U_1

5 MIR T_1vs. U_1 M=l B3 - = MIR T_1vs. U_1 mEE|

Figure 6. Eight individual validation segments in the T1-Ul scoreplot and the corresponding
image space. Note how none of these achieve neither data structure nor spatial representa-
tivety.
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Case 2: Problems

It is possible to run into problems with this approach if great care is not taken in the
CV segmentation step however. If the segments are too small, they will very probably
not be representative for the entire dataset. Another possibility, as will be shown in this
case, is failure drawing the optimal guiding lines. Figure 7 and 8 shows what happens
when the guiding lines split the data in a off-centred fashion. Clearly these two Maltese
Cross configurations are NOT making up a good, balanced 50/50 cross validation
bases. As can be seen even a small off-centred two-split has a dramatic effect on the
two relative datasets because of the very high number of similar pixels making up the
covariance backbone of the data structure. One dataset is provably very different than
the other with very obvious poor, non-representative validation results to be expected.
The current approach is thus very sensitive to the precision of - and the understanding

behind - the user-interaction.

X 1% 2%3 [_[O]

M MR T_1vs U_1

Figure 7. Corresponding scoreplot (T1-Ul) and image for off-centred Maltese Cross. The

complementary 50% segment is shown in figure 8.

Another potential problem is when the modes (the "peaks") in the scoreplot does not lie
on a straight line. If there are more than two peaks of interest, drawing a representative
two-split line through them is practically next to impossible. This problem is illustrated
well by a scoreplot from a different representative data set, also from [2], illustrated in
figure 9. This example illustrates with all clarity why multivariate image analytical
endeavours usually are of an order-of-magnitude more complex than in the ordinary

two-way regimen.
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= MIR T_1vs. U_1 [_ O[]

Figure 8. Corresponding scoreplot and image for off-centred Maltese cross. The contrary

segment is shown in figure 7.

MR T_1vs. 1_2

Figure 9. T1-T2 Scoreplot from a complex dataset showing a 7-8 mode (“peaked”) curved data
structure. Observe how it is apparently impossible to apply a Maltese Cross segmentation on a

data structure as complex as this.

Case 3: Y-grid

More commonly than the full Y-image, is when X and Y are constructed as grids from
several smaller images. This is a useful approach when making a reference dataset as a
basis for a regression model. A typical grid image is shown in figure 11. This image
consists of 6 smaller images of different sausages. The corresponding Y-image
contains the overall fat-content for each sub-image. The fat content is represented as a
grey-level as shown in figure 10. This data set-up was discussed extensively in [2]

where used as a vehicle for explaining the concepts of MIR, Multivariate Image
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Regression. In this particular case the objective is the be able to predict the average fat

content in the six heterogeneous sausages (left in fig. 10).

Figure 10. lllustration of the Y-grid MIR case. Six sausages, lefi: (X-image, variables 1, 2 and
3) and corresponding fat-content, right (Y-image).

As can be seen from the Y-image in figure 10, there is no unique Y-value for each
pixel in X. This phenomenon occurs when an overall value is to be predicted from an
image, and it has a somewhat negative effect on the T-U scoreplot. This effect is
shown in figure 11 the pertinent T1-U1 scoreplot from the sausage data.

MIR T_1 vs. U_1 H=] E3

Figure 11. TI-Ul scoreplot from the sausage fat prediction case. Each line represents a

specific Y-value, or sub-image, compare figure 10 (right).

In figure 12 it will be demonstrated that applying the eight segment Maltese Cross
scheme in a T-U plot, as the one in figure 11 is not at all straight forward. The nature
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of the T-U plot in grid cases will force an uneven distribution in the image-space,
almost no matter how the eight-fold segmentation mask is delineated. Also observed

how the score space delineations are very difficult to evaluate because of the extremely

discrete nature of the Y-levels present in a Y-grid case; for full details, see [2].

= MIR T_1vs. U_1 [_ O]

Figure 12. Y-grid case, two-block segments from selection in TI-Ul plot. Note extensive

unbalance in the image space (right).

In figure 12 it is evident that especially the two lower and the middle right X sub-
images are very poorly represented in the complementary validation segments. This is
even more so if eight individual segments were to be used, as was shown in the first

example in figure 6. To save space, this is not repeated for the current example.

Thus what seemed initially to be a good idea, i.e. the “Maltese Cross” eightfold cross
validation segmentation in the TU-score space, on further inspection has proved to be
at best a very sensitive approach - in fact in would be wrong to say that it has proved

its reason for existence convincingly.

It can be shown, however, that this is merely a question of application. The critical
point is not so much sow the lines are drawn in the plot, it is what plot the lines are

drawn in. So far, the procedure has been applied to plots where there are strong
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correlation in the data, and physical objects have specific locations too, i.e. the familiar
low-order score plot(s), e.g. T;-U; etc. which all play a very dominating role in
conventional 2-way multivariate calibration [4]. Chemometricians will be familiar
with the fact that in the score space, the first dimensions contain the most structured
parts of the data, while for the higher-order components there is bound to be less and
less variance etc.

With this in mind, the next, perhaps surprising step in the present image exploration
will focus explicitly on this higher-order score space.

Figure 13 shows T-scores 4 vs. 5 from the master Montmorency Forest example. What
is interesting in this plot, is that most of the structural information is now orthogonal
to the data delineated in this figure. This indicates that the current plot is wel! suited as

a starting point for the cross validation data segmentation.

MMRT_ 4vs T_5 |- (2] x]

Figure 13. Alternative higher-order components scoreplot (T4 vs. T5 ) from the
Montmorency Forest (figure 1).

Below, a Maltese Cross cross validation segmentation has been applied to the scoreplot
in figure 13. Figure 14 shows the resulting two non-overlapping segments both in score
space and image space. As can bee seen from the figure, there is now a very
satisfactory even distribution in the two segments (and only with very close
investigation, some minor differences can be found between the image-space

representations though, which have to do with shadows mainly).

In figure 15 this is further illustrated by examining the eight segments separately. The
conclusions from figs 13 - 15 are very clear: when delineating the new image analytical
eight-fold cross validation segmentation in some appropriate higher-order score space
rendition, in which most of the substantial data structure is orthogonal, the documented

sensitivity has been controlled completely.
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M MBT 4vs. T_5 =]

MMIRT 4+ T 5

Figure 14. . Maltese Cross validation segments selected in higher-order T4-T5 scoreplot in
figure 13. Note excellent data structure as well as image (spatial) coverage and

representativity.

It is still evident that an "even" rotation of the segments in score-space, leads to
extremely opposing unbalanced pixel divisions in the corresponding image space.
From this it is necessary to conclude that many such segments must always be
combined to form larger fractions of the entire field-of-view, e.g. two 50% segments as
in figure 14.

Stepping back to the difficult Y-grid example (sausage fat-prediction), it is now
interesting to see how this higher-order components approach will behave. Using T-
scores 5 vs. 6 and drawing the two lines that split this data set in as equally

representative fashion as possible produces the segments shown in figure 16.
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M MART 4vs. T 5 2 M MRT 4vs. T 5

AMRT_#vs T5 MIR T_4 vs. T_5

AMRT_#vs T5 IR T_4vs. T_5

AMRART 4vs. T 5 L AMRT 4vs. T 5

Figure 15. Eight segments from the T4-T5 scoreplot cross validation splitter shown in both
score- and image space. Note that an acceptable representation has now been achieved in both

score- and image space; compare figure 6.

Compared with figure 12, figure 16 now shows a strikingly more uniform distribution
of one validation segment in the image with respect to the complementary calibration
set - and there are only a few, minor differences. Overall, this partition should lead to a
realistic validation of the prediction model performance even for this very complex
difficult data structure.
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MMIRT 5vs T_6

MHMIRT 5vs T_6

Figure 16. Cross validation segments in [T5T6 | score- and[1,2,3] image space for the sausage
fat prediction example. Note that an acceptable representation has now been achieved in both

score- and image space. Compare figure 12.

Case 4: Cutting to the bone

One of the key features in image analysis, mentioned in the introduction, is the huge
redundancy in this type of data. Having 350.000 objects describing, say typically, 10-
20 classes is obviously an overkill. In MIR-cases where reducing this redundancy is
essential, it is possible to reduce the number of objects dramatically by a simple
procedure, compare also [8] in which this case was described for MIA. The suggestion
is shown in figure 17 in the form of the curved (hand-drawn) line, where the number of
objects have been reduced to a small fraction of the original, but deliberately covering
all the important classes of interest in the image. This is so because it has been drawn
specifically to "cover" the most dominating global covariance trend of the image
feature space. Since this mask is positioned directly along the "topographic" highs,
compare [8] for full details, it will - per force - be maximally representative for the
essential data structure present while at the same time allowing for the exclusion of all
similar pixels lying outside its width (typically 1-3 pixels wide) without any risk of
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loosing out on the most representative pixels. Observe how we have made use of this
feature in the so-called "pred-meas" plot (predicted vs. measured), well-known from
conventional 2-way multivariate regression validation. Thus for fig. 17 below:

5 RAW Y _1vs. “Y_2 [_ O]

= Local MIR T_1 vs. U_1

Figure 17. Freehand line covering the essential covariance structure in a Pred.-Meas. plot.
After a local MIR model has been created on this basis, the corresponding T1UI (lower left)
and the Pred.-Meas. (lower right) plots are shown, validating this type of representative
sampling of MIA/MIR data.

Starting out in the strongly correlated pred-meas plot, a one-pixel-wide line is drawn
covering the main data of interest. This line emulates the global covariance trend as
best as at all possible. All objects (pixels) covered by this line only, are then used as
objects in a new, local model [3,8]. This model will contain far less objects, and the
redundancy in the data will be strongly reduced. In figure 17, a T1-U1 plot is shown at
the lower left. This can now be used as a starting point for the cross validation
segmentation. The corresponding /local model pread.-meas plot is shown at the right in

the figure.

Some comments are required for the last figure. The points and line that can be observed in the
lower part of the plots, represent the objects that have been left out of the model. In the
calibration procedure, they have been removed from the data modelling, but for image
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displaying purposes, it is necessary to include these pixels. To avoid them from interfering with
the image, they are set to zero-value, and are displayed black in the image. The lower-left point
is hence the (0,0) coordinate, as all score-values are scaled in the range [0..255] to optimise
their display.

DISCUSSION AND CONCLUSIONS

We have shown that the new approach in which segmentation is done based on the
orthogonal data representation in higher-order score components, is of a powerful and
general nature, which in most cases will enable a realistic two-split cross validation
(approximately 50/50). Segmentation following this approach takes the form of two
non-overlapping “mirror” Maltese Cross configurations, each made up of four “arms”.
The Maltese Cross is designed specifically to allow equal (but non-overlapping)
neighbouring segments in parallel along both the user-defined axes of the mask (figure
3). This enables a near-optimal representative split of the training data set across all

covariance structure directions, precisely because of this compound nature.

We have also shown that considerable care is needed when employing this feature on
the alternative lower-order component plots available (e.g. T1-U1), in which a rather

large “off-centre” sensitive was demonstrated.

In general it is not recommended to use cross validation in multivariate image analysis
with a number of segments higher than two, and then on/y in the form of the Maltese
Cross (sic) - due to the much higher complexity of the covariance structures for this

type of data relative to the experiences from the conventional 2-way realm.

In multivariate image analysis, there is usually a high degree of redundancy in the data.
In such cases with relatively few physical objects (classes), data reduction with local
modelling should be considered prior to validation. We have delineated a simple
approach for this — the one-pixel-wide swath across the backbone of the dominating

data covariance structure(s).
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ABSTRACT

Selected two- and three-component mixtures are studied by image analysis plus
chemometric data analysis, specifically AMT (Angle Measure Technique), MIR
(Multivariate Image Analysis - and the recent extension termed MIR") and PLS-R
(Partial Least Squares Regression). The present studies comprise a first foray regarding
the possibilities of continuous mixing process - and product monitoring (homogeneity,
on-line mixing fraction quantification etc.) using image analysis as the primary data

capture facility.

We study three very different types of mixing systems, i.e. dry two-component powder
systems, frozen three-component vegetable mix systems and a minced meat mixing
system - the latter two of which constitute real-world industrial systems of current

economical interest.

Results show that the present line-up of chemometric image analysis and data analysis
methods are fully sufficient to outline a framework for automated process monitoring
systems. The two-component systems are also representative of a much larger study
(barely initiated) on the possibilities of predicting the ultimate propensity of mixing
systems, based only on standard image analysis characterisation plus the necessary

chemometric data analysis.

We conclude that both the AMT and the MIR" approaches are suitable for the realistic
tasks specified in the current studies, both with satisfactory relative prediction

accuracies and precisions as estimated from comparable cross-validations.
INTRODUCTION

Mixing, blending, homogenisation of granular poly-component materials is of great
importance in modern manufacturing and in large-scale process industries. These
processes have been studied intensively within the field of powder science and
technology. Despite it's importance, however, a full understanding of granular mixing
processes is surprisingly limited. Often quite unexpected segregation can occur, even
in what was thought to be well-designed mixers or blenders, for example when batches
are mixed just slightly "to fast" or for just a trifle "too long" etc. A recent overview
highlighted these difficulties graphically with great impact'!. Here was outlined in
detail the many factors involved in determining the ultimate outcome of a particulate
matter mixing. We have determined to begin a major effort of mapping the interplay
between these instrumental factors - only based on a direct image analysis

characterisation of the components involved plus whatever a posteriori intricate (or



simple) data analysis needed. I.e. we want to find out the possibilities - and limitations
- of being able to use only a standard, non-invasive image analysis recording technique
of the in-situ appearances of the end-member components involved - in order to be able
to predict the final outcome of physical mixing- and blending testing under real-world
conditions (this latter to be carried out in realistic full-scaled certified mixing
experiments of the type reported in ). For this predictive effort, as well as for the
presumably rather complex post-imaging data treatment necessary, we turn to
chemometrics, which has been used in connection with powder science and technology

only in the last five years, but with rather spectacular results > >*->,

As a first side-benefit of the above major experimental research program it was found
that a selected few of the many types of poly-component mixtures involved, also could
serve a more limited purpose of illustrating new, modern and efficient possibilities for
on-line mixing process characterisation, together with a few different, but closely
related, types of mixtures, all of which have very great significance as general
representatives of industrial systems in need of reliable, precise and accurate process
monitoring (mixing process monitoring). On the market today there are to be found
many types of such monitors to be sure, but they are all more-or-less rather dedicated

systems directed towards rather narrow classes of materials, powders etc.

We want to develop a completely generic image analysis cum_chemometrics system,
to be based on existing, inexpensive off-the-shelf digital video camera technologies
only. Thus the "new" elements in the system we are developing will mainly be the
problem-specific chemometric image data analysis (AMT, MIR") and related
quantitative prediction facilities involved (PLS). We shall use very simple digital video
imaging data capture in our studies, which never-the-less is of exact industrial

standards.

Specifically the present work attempts to predict quantitative mixing fractions on a
selected set of (very) different mixing series. We simulate on-line monitoring of
representative mixing processes, by preparing precise (v/v %) quantitative fractions of
the granular materials involved and subjecting them to the above camera under direct

industrial process monitoring conditions.

Of the methods employed here, the Multivariate Image Regression (MIR) approach is
used to establish a relationship between video imagery data (X) and functional granular
properties (Y) (here we limit ourselves to addressing quantification of the homogeneity

of mixings, but in the major research program mentioned above, we shall also address



a range of other, standard powder characterising functional properties). Images taken
of granular materials are bound to contain inherent information concerning the
geometric shape(s) of the individual particles, their sizes, or size distributions, surface
roughness, irregularities, smoothness, etc. This type of imagery will also contain
information related to the ensemble of particles, to the particulate aggregate, or powder
etc. as it were. Both these basic types of characteristics can be related to the bulk
granular functional properties and mixing fractions, using proper multivariate
calibration (PLS-regression), based on derived AMT-spectra® and/or MIR analysis
techniques . The major methodological objective of the present work will be to
compare these fundamental two (the AMT-based and the MIR-based) prediction

possibilities.

Two laboratory systems are studied below, a selected suite of four dry two-component
powder systems (representing very varying colour -, reflectance -, as well as
morphological contrast) and a system consisting of vegetable mixes of three end-
components. The first set is used to study the more fundamental factors governing the
mixing processes and - results, while the second set is a bona fide industrial mixing

process monitoring example.

In addition to this study of granular mixtures, a real-world food mixing process
involving minced meat (mincing meat and fat at industrial scales) is examined, using a
newly developed industrial standard mixer ("IDE-CON"). To be able to satisfy their
customers, producers of minced meat products are critically dependent upon reliable,
essentially real-time on-line measurements of fat content in their products, as only very
small deviations from the health authority specifications are accepted. Traditional off-
line fat measurements are time-consuming and certainly not continuous. Image
analytical on-line measurements would be very preferable, if feasible, also because of
the possibility of actually designing systems with an ability - in principle - to be totally
representative, i.e. image analysis solutions have the prospect of being able to inspect

the entire production output.

A few examples of sample preparation problems occurred when certain sample types
were introduced to the camera. Homogeneous mixtures would sometime segregate
slightly when being poured onto the sample presentation plate in front of the camera
etc. Flow - and transportation segregation is often a well-known problem in the
handling of particulate matter. We made serious efforts to curtail this heterogeneity-
increasing factor in the studies presented below, by standardising the specific sample

presentation process (presenting the sample to the camera) throughout. On the other



hand what (little?) pouring segregation variance remaining was accepted as it indeed
mimics correctly the identical problem facing industrial inspection systems. This
certainly introduced more realistic variation in the analysis results obtained over that

of otherwise "idealised" laboratory systems.
AMT (Angle Measure Technique)

The AMT transform, as a new signal analysis method, has shown potential in many
areas of science and technology since its debut in 1994. It characterises the scale-
dependent complexity of data such as time series, spatial data series, indeed any
generic measurement series, in a new domain - the scale domain. Applications include
image analysis, signal analysis, spectroscopy, analysis of drilling well log data,

measurement runs in quality control, etc ¥,

AMT has been applied on powder imagery in connection with multivariate calibration
in a series of recent studies resulting from our chemometric collaborations in powder

(26 AMT has shown a significant positive propensity as a

science and technology
salient pre-processing facility for quantifying the textural characteristics of images.
When derived AMT-spectra (see further below) are subjected to multivariate
calibration, e.g. in the form of PLS-regression modelling, a combined facility termed
MAR (Multivariate AMT Regression) has been shown to have a very wide
applicability. It is especially the combined facility of being able to quantify texture
features for both individual particles as well as for their aggregate (powder/mixture)
characteristics which comes to the fore in these applications, allowing for materials

characteristication simultaneously over all particulate scales.



Figure 1. A representative image of a mixture of particulate matter, to be unfolded and subjected to AMT-

characterisation
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Figure 2. AMT-derivation of the so-called MA angle measure (Mean Angle). The extensive reference litterature
explains parallel derivation of the MDY-measure as well .
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Figure 3. Illustration of representative AMT complexity-spectrum derived from a mixture image. Observe how the MA-
spectrum is calculated as the mean of all individual angle measures at all scales, two of which two have been
highlighted (scales = 10, 100). The horizontal axis represents "log S". MA displays a complexity "peak" corresponding
to a scale of approx. 10-30. When several AMT-spectra are collected into a common X-matrix, the (log S) scale is used
as the variable dimension. For full details of AMT >,



The most useful aspect of the AMT transform is that the compound (MA, MDY)
spectrum can be used as 1-D object vectors in multivariate data modelling (e.g. PCA or
PLS). For 2-D image objects it is the local texture of the field-of-view which is
transformed into a corresponding 1-D linear complexity spectrum. These complexity

spectra, implicitly carry a remarkable information richness related to all scale(s).

Multivariate AMT regression (MAR) has brought a new approach to extracting
information for prediction purposes from “measurement series” (of any kind), which in
the present context consist of wunfolded’ isotropic digital images. This approach
converts texturally isotropic images into 1-D multivariate AMT-spectra without loss of
fidelity. It views an image in a mathematically transformed way instead of by direct
visualization. The present work deals with granular powder and food particular
materials as well as minced meat imagery, but applies equally well in many other

similar situations.

Figure 4 below shows a schematic overview of the processes involved when using
AMT-spectra of images for multivariate calibration. The MAR approach requires
several steps when used for quantification of heterogencous mixtures. Regression
models must either be created based on images of pure mixing-components (classes),
or based on a series of "spiked" concentrations of one, or more of the end-member
fractions etc. The appropriate AMT-spectra are combined in a training data set related
to the multivariate calibration PLS-modelling. If possible a relevant test set should also

be prepared etc .

AMT PLS Ty
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Figure 4. Schematic overview of image processing with AMT before regression calibration, MAR
(Multivariate AMT Regression).

" Unfolded is here used to describe the operation of rearranging each image-channel from a 2D matrix to a long 1D

vector.



For a full description of the AMT approach, see *°. Suffice here to emphasise that the
AMT image processing approach deals with characterisation of contrasts in both
colour, reflectance, texture, individual grain forms and more. Thus it is not only the -
perhaps more conventional - geometrical texture interpretations which are codified.
Since derived AMT-spectra of an imaged material represent a unique scale-domain
complexity/texture pattern of the image, they are well suited for calibration of images
where changes in overall texture is an issue. Consider e.g. a series of fractions of two -,
three - (or poly-) component mixtures (used as a calibration data set for the present
studies). It will be seen that it is the totality of all these potential texture features which
is changed when the mixing fractions of one (or more) of the end-members are
changed. This shall be amply illustrated below. It bears to observe that it is not strictly
necessary to be able to understand in all details which of the individual different
contrasting texture factors are involved - nor how, or their supposed much more
complex potential interactions. We have shown in several of the precursor
investigations upon which the present work is firmly established *°, that the
compound AMT-spectra in a sense automatically codifies all relevant factors and that
it is the subsequent PLS-regression multivariate calibration which is responsible for
extraction of precisely those parts of these X-spectra which correlates most strongly to
the chosen Y-variable, which will be the pertinent mixing-fractions in all present
studies.

There is thus a well-reflected reason to expect that the AMT- approach also will be
successful in quantifying the mixing-fractions involved in the present experiments, but
it is an open question to what ultimate levels of accuracy and precision this will be
attainable. The AMT-approach will be compared below with the Multivariable Image

Regression alternative, MIR - especially in a novel, extended modification, MIR .

The MIR Concept

18,9, 10, 11]

MIR (Multivariate Image Regression) can also be viewed as a transformation

of images. In this case, the multivariate image is transformed from raw data to PLS-

1213141 called score-images. MIR is aimed towards being able to predict

[15, 16, 17]

components
Y-images based on a regression model . The predicted images may often
constitute the final result in themselves, but can also sometimes be used for further

feature extraction in several ways.

The MIR approach requires several steps when used for quantification of

heterogeneous mixtures. First of all, regression models should be created from images



of pure mixing-components (classes). These images are combined in a training data

set, as shown in Figure 5.

In this illustration three models are created, one for each class. It is possible to use
PLS2 to create one general model for all classes, but predictions will usually be
improved by using separate models ", Appropriate reference Y-images are generated
so as to maximise the grey-level intensity differences between the end members. The
Y-image contains the maximum grey-level value at the image positions of the training
object(s), and the minimum values in all other positions. For an unsigned, 8-bit image
these values are 255 (white) and O (black), respectively. The graphic illustration in
Figure 5 is probably much more directly telling....

Ytrain-A
Bl >
Xtrain Ytrain—B
PLS
Ytrain—C

Figure 5. Illustration of MIR training set-up for quantitative characterisation of classes A, B and C of heterogeneous

mixtures. A separate model is calibrated for each class, using dichotomous (white/black) reference Y-masks.

When acquiring new images of mixed classes - corresponding to taking an image of the
product to be characterised (f. ex. on the production conveyor belt etc.), these will be
Y-predicted with the models created above. If the training models have been created
successfully, and if the particular input-output relation is generally linear or can be
modelled by a bilinear PLS-regression model, pixels belonging to the current training
class in question will be characterised by bright grey-level values ("close to white"),
while all other pixels will usually be much more dark in their grey-level values. The
fraction of "bright pixels", suitably defined (problem-dependent), will thus be expected
to correlate to the overall mixing-fraction of the current class in the mixture. We have
recently published several extensive MIR descriptions with a wide variety of

laboratory and industrial illustrations elsewhere; see " for in-depth MIR coverage.
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While AMT mainly focuses on textural and spatial information like contrasts in shape
and pattern, MIR focuses on spectral information. This means that AMT has its
preferences if texture and spatial information is important, while MIR relies much
more on differences in colour etc. with which to classify and to quantify objects. It is
thus expected that it is not necessarily an easy given which method to apply in a given
situation. Clearly one needs a lot of experience with many, and diverse, problem-
dependent data sets and applications. If both spectral and spatial information is
valuable for the quantification, combining the results from AMT and MIR should be an

advantageous possibility.
Analysing the primary MIR prediction results

Three different approaches are discussed when it comes to correlating the MIR-
predicted images with the concentrations of the different mixing fractions. Two of

these are univariate, and the third method is based on multivariate calibration.

Thresholding

Thresholding is perhaps the most well-known “traditional” way of analysing the
frequency of bright pixels in an image. By converting the image to black and white at
some critical grey-level threshold-value and then counting the number of "white
pixels", an estimate of the concentration of the class can be calculated. If the black and
white image is binary (0’s and 1’s), calculating the mean value will give the mixing-

fraction directly.

Problems with this approach applies to noise in the data that f. ex. may result from sub-
optimal lighting conditions (highlights and/or shadows), which can lead to severe

misclassification etc.

The Mean Grey-level Value

Especially when dealing with two-component mixtures, in which one end-member is
predicted bright and the other dark, calculating the mean grey-level value will correlate
to the fraction of bright pixels in the image. This method does not give an answer in
fractions units though, and some further (linear) adaptation of the result will be

required.

Histogram Calibration - Extended MIR (MIR")

Instead of thresholding, or calculating a mean grey-level value for the image, the entire

grey-level histogram!'® of the predicted image can be used for multivariate calibration
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using PLS. This approach is the one most similar to the AMT approach, which also
depends on multivariate calibration of (complexity) spectra. Figure 6 shows how MIR
and 2-way PLS relates to the multivariate image X, the predicted Y-image and its
histogram. The MIR model being used for Y-prediction has been established earlier
using the approach outlined in Figure 5. The PLS-model used to predict the final
mixing fractions has been established on the basis of a calibration set of several
histograms with known Y-values. This is in fact a standard 2-way PLS multivariate
calibration, in which the initial MIR Y-image prediction cum histrogram derivation

can be viewed as an image pre-processing step.

This new compound MIR/Y-pred/histogram/PLS-approach is termed the extended
MIR: MIR".

—>| MIR |—| ¢ ':>Jk':> PLS |—> 329

X

Figure 6. The MIR* Y-histogram prediction approach. A Y-image is predicted from the Multivariate Image X using an
existing MIR model. The histogram of the Y-image grey-levels is used for training a traditional 2-way PLS-R model.

It might perhaps be argued that instead of predicting an image prior to mixing fraction
calibration, why not just use the raw image grey-level histograms directly? In some
simple cases this may indeed be possible, but certainly not as a general approach.
When working with a large number of video channels, it can be seen generally to be
difficult to isolate just one singular channel that optimally enhances a single class with
respect of all other classes, compare above. The powerful data compression that lies in
MIR (PLS), and the extended MIR", is most often much more effective for extracting
the kind of information needed for the calibration of a specific class or for quantitative

mixing fraction prediction.
DATA PRESENTATION

AMT and MIR has been applied in parallel to all the data sets presented briefly in the
introduction above. The data sets are further presented in a sufficient detail below -
with representative imagery and accompanying explanations - in order to be able to
serve as the common framework for comparing the alternative AMT and MIR"

quantifications below.
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Three different mixing product types were used: two-component dry granular mixtures,
three-component "wet" mixture and three different series involving mixing fat into

minced meat product types.
Two-Component dry Granular Mixtures

Four representative combinations of two-component granular mixtures was selected for
the present purpose - out of a significantly larger experimental design of nine mixing
series, which have been designed to span a maximum coverage w.r.t. the three
principal design variables: colour contrast; reflectance contrast and morphological
contrast. (These design variables represent critical material factors involved in image
analytical imagery, representing the primary image quality response(s) to the
illumination conditions etc.). This background study specifically only addresses the
AMT-prediction feasibility studies.

The four series chosen here represent both "easily AMT-modelled" systems, as well as
their distinct counterparts, i.e. systems which did not lend themselves to fair AMT-

modelling - perhaps potential candidates for the alternative MIR" approach?

The first dry two-component mixture consists of whole-grain black pepper and white
PVC-pellets, generally of similar grain size, Figure 7. This mixture was chosen
because of its marked high spectral - (large colour difference) and textural contrasts
(relatively large difference in grain form definitions). The data set contains 11 principal
mixing fractions, all imaged with four replicates. For one component the fraction was
[0%, 10%, 20%, ..., 100%], with complementary fractions for the other.

Figure 7. Whole-grain black pepper and white PVC-pellets. Training set-up of pure classes.

The second dry granular mixture involved a whole-grain coriander and ditto white

pepper mixture, illustrated below. This system was chosen as a "maximally difficult
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system". Thus a mixing system was deliberately designed to have maximally low
spectral and textural, as well as morphological contrast for both end-members, i.e. In
Figure 8 one observes the dramatic difference to the system in Figure 7. In this system
it is decidedly not easy to distinguish between the individual grains from either pure

end-member.

Figure 8. Whole-grain coriander (left) and ditto white pepper (right). Observe the dramatically smaller contrast
compared with Figure 7.

The additional two dry mixture systems were chosen so as to represent more
intermediate contrast ranges for the three design factors.

The third two-component mixture thus concerned grey and white PVC-pellets, Figure 9
with relatively high spectral contrast, but distinctly low textural contrast. There are
however some important differences w.r.t. the individual grain shapes, but their
average grain sizes are almost equal. Compared with Figure 7 & Figure 8, this system
is clearly intermediary, as is it's close companion, shown in Figure 10 (the same grey
PVC-pellets, but now mixed in with green beans).

Figure 9. Grey and white PVC-pellets (of different grain shapes)
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The last two-component mixture (grey PVC-pellets/green beans), Figure 10, was
chosen primarily for the marked (large) contrast w.r.t. to the two individual grain

shapes involved - every other contrast being in the intermediary/low range.

Figure 10. Grey PVC-pellets (left) and green beans (right). The NIR-Red-Green camera used (SILVACAM) is
responsible for the false colour appearance of the "green" beans in this rendition. Note especially high grain

shape/form contrast.

Three-Component Granular Mixtures

One major three-component example was selected for this study, a real-world
industrial mixing problem directly from the production line of a Norwegian producer
of vegetable mixes - in the present example we focused on an evergreen mix: green
peas/maize/carrot (cubes), Figure 11. The producer is concerned with on-line quality
control (just precise enough), which translates into an image analysis system, which
should be able to predict mixing fractions of two of the three components with a
precision of 8% (rel.) or better. In the laboratory experimental design used here, the
fractions of each component was varied in increments 0%, 25%, 33%, 50%, 67% 75%
or 100%. The imaging system is presented below, Figure 17.

For this three-component system we experienced occasional rather severe
homogenisation -, and especially critical pouring segregation when presenting the
mixed samples to the camera field-of-view, compare above ("Introduction"). It was
necessary to instigate a detailed sample handling and presentation protocol, to be very
strictly adhered to for all samples involved - and still some measure of residual
individual sample preparation variance could be observed. This we decided to keep as
it was however, for reasons of compliance with realistic on-line sample preparation in

the industrial realm.
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Figure 11. Green peas (left), carrot (middle) and maize (right) pure training classes(100%) respectively . SILVACAM s
false colours figures prominently here, but are of no consequence for the spectral contrasts involved.

On-line Minced Meat Mixing Fraction Specification Control

Applied Chemometric Research Group is presently involved in a long-term campaign
of particulate matter and powder application studies. One recent new avenue concerns
outlet quality control from a novel industrial mixer (the "IDE-CON" mixing concept),

which is briefly presented in Figure 12.

Figure 12.The IDE-CON continuous mixer. Note the two counter-rotating shovels of the new, proprietary IDE-CON
design.

The IDE-CON continuous mixer is presently used extensively in selected test industrial
sectors, amongst which mentioning of the following high-precision target examples
should suffice to illustrate the importance a reliable mixer-outlet product specification
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verification: on-site road tarmac mixing/blending from three raw materials (all at
elevated temperatures of about 85°C; several poly-component health product
manufacturing, with up to 10 components in concentrations ranging from, say 1000
ppm to typical filler status (50-90%).

The IDE-CON mixer has the added versatility of being able of continuous on-line
adjustment of the blending/mixing regimens as needed. Therefore it is also used in
industrial sectors and branches, for example the food - and feed producers etc. where
non-invasive (indeed sterile), strongly regulated, precise control facilities are required
by the authorities. As an example, from a leading Norwegian agricultural producer, our
last example is related to industrial production of minced meat products - in which
quick adjustment of the mixer is often required, (virtually instantaneous changes in the
current product specifications). Three different meat + fat mixture series was studied
directly in the IDE-CON mixer: bovine meat vs. fat (Figure 13), pork vs. fat (Figure
14) and (bovine + pork) vs. fat (Figure 15). The fat fraction to be added varied from
22% to 42 % in 4% steps in all three series.

Figure 13. Bovine meat with incrementally added fat. From left to right: 21%, 33% and 41%. SILVACAM false

colours.

Figure 14. Pork with incrementally added fat fractions. From left to right: 22%,34% and 42% fat. SILVACAM false

colours.
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Figure 15. ( Pork and bovine) with incrementally added fat. From left to right: 22%, 34%, and 42%. SILVACAM false

colours.

Representative 150g samples were taken at the outlet of the IDE-CON mixer (full
cross-sectional sampling) after identical mixing times (1 minute) for each new added
fat-content increment of 4%. Samples were transported in glass petri-dishes, Figure 16,
directly to our laboratory imaging setup presented below, Figure 17 with less than 20
minutes duration. There were no transportation segregation or similar in this type of

mixture samples due to the extremely high viscosity of the meat-fat mixtures.

Figure 16. Petri-dishes with meat/fat mixtures. From top to bottom: Bovine, Bovine/Pork, Pork and pure fat. Fat

content increases from lefi to right. Glass covers were removed just prior to imaging.

IMAGING SYSTEM

All studies reported here used a trusted, old-time friend of the Applied Chemometrics
Research Group, the "SILVACAM" NIR/R/G digital camera (modified from an
original JVC R/G/B television camera by the now defunct Finnish "Karelsilva"
company (B. Braam). Figure 17 below presents the laboratory SILVACAM set-up.
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Figure 17. The SILVACAM imaging system at ACRG. Modified JVC-camera, with two quasi-parallel 150W

illumination sources. Sampleholder (round) on sample table.

All image analysis systems are critically dependent upon a proper illumination system,
which we have commented upon in several of our earlier powder and mixture studies™
61 Sometimes the AMT-derivation is directly dependent upon a unilateral low-angle
illumination for example, while for other characterisations uniform multi-source
illumination fits the bill. Each image analysis characterisation problem in fact always
necessitates a thorough initial analysis of the proper illumination requirements for
example. We shall here refrain from further commenting on this fundamental problem
as all the examples used have been subjected to careful illumination optimisation
efforts.
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RESULTS

Results from applying the alternative AMT and MIR" approaches on the ten different
data sets introduced above will be presented in parallel below. Focus is on comparing
the optimal multivariate calibration models produced for each individual case; thus we
performed individual multivariate calibration outlier screenings, and model-
dimensional validations etc. for each model. For precisely this type of relative
comparison purposes full cross-validation comes to its right with full force " All
models were calibrated against the pertinent mixing fraction as y; variable (PLS1),
while the relevant AMT-spectra or the alternative MIR -spectra served as the X-data
block.

The number of objects (images) and replicates are equal in MIR" and AMT, but the
pretreatment used wary in the examples. In some cases all replicates are shown (Figure
18 left), while in other cases replicate-spectra have been averaged (Figure 18 right),
resulting in fewer objects in the model.

All AMT-spectra have been centered and scaled to uniform standard deviation (auto-
scaled). In some MIR" cases, scaling the data can blow up noise and is thus avoided
where possible. In other cases though, scaling the MIR" histograms was found a
necessity.

Two-component Granular Mixtures

Black Pepper and White PVC
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Figure 18. Black Pepper and PVC Pread-Meas plots. Left: MIR", Right: AMT

# Comp Slope Offset Correlation | RMSEP

MIR" 3 0.985 0.731 0.993 3.845
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AMT 2 0.951 2.389 0.986 5.367

In the high-contrast ("easy") black pepper vs. white PVC-pellets case, MIR" performs
slightly better with one additional component (fully significant according to the
validation) is used.

This is one example where scaling is applied to the MIR" histogram. The predicted
images are closely to a true black & white (one-bit) image, with information mainly in
the beginning and end of the spectra. Scaling the data allows also the middle part of the
histograms to influence on the model. Because of the very high contrast between the

elements, the current example could possibly also be solved directly with thresholding.

Coriander & White Pepper
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Figure 19. Coriander and White Pepper Pread-Meas plots. Lefi: MIR", Right: AMT

# Comp Slope Offset Correlation | RMSEP
MIR" 4 0.951 2.543 0.987 5.105
AMT 3 0.940 3.496 0.976 6.989

By using one more component, MIR" shows marginally better performance in the

"very difficult" coriander vs. white pepper example.

In this example, scaling the MIR" data was not required. Because there is almost no
contrast between the two classes, this example is not solvable using thresholding; a

more subtle approach is required, hence MIR".
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Grey and White PVC-pellets
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Figure 20. Grey and White Pread-Meas plots. Lefi: MIR", Right: AMT.

# Comp Slope Offset Correlation | RMSEP
MIR" 2 0.945 2.279 0.986 5.435
AMT 2 0.981 0.735 0.985 5.550

In the case of the grey and white PVC-pellets the results are practically equal, although
here AMT displays a clearly more comfortable slope (of a fitted "predicted vs.

measured" regression).

This is another example of high spectral contrast, especially in the predicted images.
Again, the data was scaled to extract information also from the middle parts of the
histograms.
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Grey PVC-pellets and green beans
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Figure 21. Grey PVC-pellets and green beans Pread-Meas plots. Lefi: MIR", Right: AMT.
# Comp Slope Offset Correlation | RMSEP
+
MIR 0.952 2.582 0.989 4.922
AMT 0.928 3.807 0.991 4.695

MIR" has a slightly better performance in the grey PVC-pellets/green beans example,

considering it uses less components.

In this example, the MIR+ histograms were not scaled. There is only small contrasts

between the two elements, and the model uses the major “shape” of the histogram, and

not so much the intermediate variables.




Three-Component Granular Mixture

PLS1 (v, : Peas mixing fraction)
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Figure 22. 3-component mixture modelled for Peas. Pread-Meas plots. Left: MIR®, Right: AMT.

# Comp Slope Offset Correlation | RMSEP
MIR" 0.976 0.716 0.992 3.866
AMT 0.964 1.721 0.988 4.936

Concerning pea mixing fraction predictions, MIR" is clearly performing best, using

two components vs. AMT which uses five.

In none of the three cases involving three-component mixtures, scaling were applied to
the MIR" data. In the plots above (Figure 22), notice that the number of elements differ

by a factor two. This is due to the use of a different averaging factor in the MIR" and

AMT models. Final comparison is not hampered by this.
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PLS1 (y; : Maize mixing fraction)
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Figure 23. 3-component mixture modelled for Maize. Pread-Meas plots. Left: MIR", Right: AMT.

# Comp

Slope

Offset

Correlation

RMSEP

MIR"

0.957

1.712

0.975

6.703

AMT

0.956

1.894

0.977

6.900

The maize prediction is difficult in both cases, and the results are almost identical. For

maize both estimates of RMSEP are the largest of all three vegetables. The only

difference is that MIR " uses one component, while AMT uses three.

PLS1 (y; : Carrot mixing fraction)
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Figure 24. 3-component mixture modelled for Carrots. Pread-Meas plots. Left: MIR", Right: AMT.
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# Comp Slope Offset Correlation | RMSEP
MIR" 3 0.955 1.546 0.981 5.063
AMT 3 0.951 1.936 0.997 2.843

In the carrot example AMT performs significantly better. The number of components
are equal. Carrot cubes are clearly of a significantly different shape than either peas or

maize.

Minced Meat

This example is organised in much the same way as the two above. MIR" training
images, (Figure 5) were acquired for 100% pure meat of the relevant types and pure fat
respectively, while in the experimental mixtures fat in the range of approx. 20-40% is
studied, which is in the representative industrial production range. Meat was calibrated
against a black Y-image, and fat calibrated against a white ditfo (compare Figure 5).
Starting at the reference minimum fat-content at 21%, the 4% fat increments (v/v) were
added successively in a standardised manner and three replicate-samples were removed
for each fat-level. For each of these parallel physical replicates, three images-
replicates were also acquired by rotating the sample container 120 deg. in front of the
camera. Thus there were a total of nine images representing each fat-level; there were
overall six fat-levels in total, wiz. 21%, 25%, 29%, 33%, 37% and 41%.

Bovine
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Figure 25. Minced Bovine meat and fat Pread-Meas plots. Lefi: MIR", Right: AMT.
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# Comp Slope Offset Correlation | RMSEP
MIR" 3 0.950 1.485 0.974 1.524
AMT 2 0.926 1.905 0.966 1.802

MIR" predicts the fat content in Bovine meat slightly better, using one more PLS-

component.
Pork
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Figure 26. Minced Pork meat and fat Pread-Meas plots. Left: MIR", Right: AMT.
# Comp Slope Offset Correlation | RMSEP
+
MIR 3 0.833 5.061 0.891 3.048
AMT 2 0.986 0.381 0.997 0.566

In the pork example AMT performs significantly better, also boasting fewer PLS-

components.
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Bovine & Pork
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Figure 27. Minced Bovine & Pork meat and fat Pread-Meas plots. Left: MIR", Right: AMT

# Comp Slope Offset Correlation | RMSEP
MIR" 2 0.912 3.050 0.979 1.490
AMT 2 0.972 0.426 0.967 1.830

In the combined meat (bovine and pork) vs. fat example, the results are practically
equal, except w.r.t. the slope of the fitted regression index; this makes AMT a potential

marginal winner here.

Discussion

Two-component mixtures - overview of results:

Essentially all models for both AMT and MIR" perform satisfactorily in this first
overview, but the MIR" models do perform best, or marginally best, in three out of four
detailed evaluations of the selected dry two-component mixture fraction prediction
studies; one medium contrast ("somewhat difficult") case has AMT as best. It is
encouraging that both the AMT - as well as the MIR" models essentially both are up to
the complicated image analysis job set up. The kinds of precisions obtained in these
first attempts are satisfactory: For all models the total span of validation-estimated
RMSEP ranges 3.845 - 7.866, while this range for the best four models corresponds to:
3.845 - 5.550. Based on an average mixing fraction of 50% these latter correspond to
precisions of 7.7% - 11.1% respectively (rel. %). The better end of this interval
comprise very respectable precisions for our first attempts image analysis approaches

(irrespective of whether one chooses to improve on the MIR" - or the AMT
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approaches; a rational choice demands a much larger factual results data base than the
one presently presented). It should be pointed out that the selected two-component
mixing systems deliberately includes both the supposedly easiest - as well as the
supposedly most difficult systems; also we were certainly surprised e.g. by the
unexpected success of the coriander - white pepper case. The complete study of
representative dry two-component mixing systems is far from finished at present, and
shall be reported on in its totality at a later occasion. The present results can only be
characterised as very encouraging as feasibility studies go.

Three-component vegetable mixtures:

Winners are about equal, wiz. one AMT- and one MIR" model, and one draw (maize).
Validation estimates of RMSEP are - peas: 3.866 (MIR"); maize: 6.703 (MIR'/AMT);
carrots: 2.843 (AMT), which translates to the following rel. % precision (+/- 1
RMSEP) - peas: 7.7%; maize: 13.4% and carrots: 5.7% respectively (all calculated
w.r.t. an average mixing fraction of 50% (abs.). Two of these three models,
characterised by very realistic sample preparation variances, actually reach below
industry's precision demand of 8% already from these first pilot studies (sic). Clearly
the troublesome maize prediction can be better handled by a simple constant sum

difference calculation! We term these pilot results as absolutely satisfactory.

Minced meat mixtures:

For the three best minced meat models, the validation RMSEP estimates translates to
4.9% (MIR"), 1.8% (AMT) and 5.9% (AMT) respectively (all expressed as relative %),
compared to a product fat specification range of 21-41% (rel. % calculated w.r.t. an
average of 31%). For a first pilot study of this relatively complex on-line mixing
system, precisions of 2-6 rel. % can only be characterised as excellent. Not only are the
outlet sampling procedures not fully optimised yet, neither are the imaging illumination
conditions etc. At this time it is only possible to say that there is certainly a significant

potential improvement to be gained here.

AMT or MIR":

If judgement would have to passed on the basis of the present results alone, the new,
extended MIR" approach merits very close attention. The degree of accuracy and
precision obtained for the present three very different sets of mixing systems is
impressing indeed. And AMT is a very close runners-up, which should also be related

to its recent history of well-documented successes, reported in several complementary
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powder/granular matter studies **

, in which AMT has shown similar degrees of
promising results. Thus we are not at all in a(ny) position to even try to chose between
these two powerful chemometric image analysis processing alternatives - on the

contrary: they will of course be extensively further explored in parallel.

The above discussion has presented more than enough evidence to leave this pilot
study in a very optimistic state. Much interesting real-world, industrial implementation
work awaits, as well as an enticing fundamental science, broad-scoped functional
powder mixing laboratory study - all with exciting potentials for industrial applications

and economic benefits.

Interpretations of alternative model structures: MIR" vs. AMT

We end this study by showing what kind of detailed interpretations is made possible by
systematic evaluation of the prediction models established. By focusing on the final
validated prediction results, we now examine the models from the perspective of their
comparative intrinsic data structures, as represented by their loading-weight

relationships.

At the same time we shall also honour the inter-comparison objective between AMT
and MIR", although the conclusions above would appear to rule out any unambiguous
winner. Thus this comparison shall mostly focus on the basic differences experienced
in their respective w-relationships. These two fundamentally different approaches to
quantification of mixture — and texture features will necessarily lead to very different
loading-weight spectra (they are de facto modelling quite different features) — while in
the final assessment they may well lead to almost identical prediction strengths, as

indeed demonstrated above.

Figure 28 shows the necessary interpretation background in the form of a small recap
of the raw images and their corresponding MIR" and AMT raw spectra respectively.
This juxtaposition will make it easy to appreciate the following interpretations.
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Figure 28. Data presentation of raw data (left), MIR" histograms (middle) and AMT-spectra (right).

Figure 28 shows a two-fold division in high-contrast (row A and C) and intermediate-
contrast mixing systems (row B and D). Individual MIR "-modelling lead to the use of
auto-scaled models for the former, while the latter were best serviced without. One

observes the very marked different raw MIR "-spectra for these opposing systems.

These observations makes for easy detection of a similar pattern in both the MIR" and

the AMT w-spectra below in Figure 29.
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Figure 29. 2-component mixture loading weight plots. Left: Mir", right: AMT. From top to bottom: Pepper/PVC,
Coriander/White Pepper, white/grey PVC and Beans/PVC.

MIR":

MIR "-modelling of the intermediate-contrast systems are distinctive (row B and D).
The first PLS-component, to a large extent, takes good care of the Y-modelling but
with a very significant addition from PLS-component 2 (row B). For both systems w;
mimics the raw MIR "-spectrum to a very high degree, while the second order
addendum from PLS-component 2 attest to a slight shift in the X-variable direction for
the coriander-white pepper system (row B); for row D system there is an even simpler

relationship with mixing fractions (Y) leading to only one significant PLS-component.
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For the more-simple-to-model Aigh-contrast systems (row A and C) one observes that
two PLS-components are also needed, but with only marginally improved Y -variances
for the second PLS-component (only first significant according to the validations). It
will be appreciated that the X-variance is utilised in a very effective fashion caused by
the auto-scaling.

AMT:

For AMT one observes a distinctly opposite pattern. For both high-contrast systems
(row A and C) there is now a very marked need for both PLS-components in order to
do the prediction modelling effectively (32% and 64% Y -variance accounted for
respectively by the second component). Both components are now highly significant
according to the validations. For both systems, their respective w;- and w,-spectra
shows essentially the same pattern (rare!), while for the opposing intermediate-contrast

systems (row B and D) there is only a small (10%) Y-variance addendum from w..

With due reference to the rather disparate four systems some underlying systematics
may perhaps be found. MIR" manages to combine most of the essential X-variance in
just one PLS-component (three out of four systems), while AMT would appear to
favour two-component systems, especially for the high-contrast cases. Our initial
classification into H, I and L-contrast systems may very well be further refined a.o.
also based upon this kind of systematic modelling of all systems in the background
study (nine systems covering the H, I, L-domain more fully).

X-loading Weight: X-loading Weights
040 — loading Weignts 020 — 9 Weig

0.15 —|

0.10

0.05

0 -

005

-0.156 —

X-variables 2010 7
T T T T T T g
0 100 200 300 400 500 . . . . . Xevariables
ert-avrg, PC(X-expl,Y-expl)1(71%,98%)2(25%,1% 100 200 300 400 500
IRtrippeltestEa. .., PC(X-expl, Y-expl)1 (94%,30%) 2(3%,33%)




33

X-loading Weights X-loading Weights
0.2 — g weig 0.05 — g el
7 ] [,,MW«”‘M«’“MM»N ) j'\(»\‘ﬂ‘w”‘w“w\"‘ o
| B / W
E 0 // ’I
0.1 4 ] / [l
E / J
] ] / (
El 0,05 - f’WM
0 ] | [
] 1 | |
3 0.10 o | )
| - ‘ [
| ] | |
01— b Vi
E \/ 015 — |l
0.2 - 020
X-variables 0.20 X-variables
T T T T T T T T T T
100 200 300 400 500 0 100 200 300 400 500
quirot-total, PC(X-expl,Y-expl) (50%,94%)2(14%.3%) IRtrippeltestGa..., PC(X-expl,Y-expl)1 (94%,36%)2(4%,61%)
X-loading Weights X-loading Weights
0.10 — g ey 0.15 — g Weig
0.05 — 0.10 —
Ch 0.05 —|
0.05 — 0~
0.10 —| ]
X-variables 005 X-variables
T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
mais-avg, PC(X-expl,Y-expl)1(87%,96%) IRtrippeltestMa...., PC(X-expl,Y-expI)1(89%,14%)2(9%,80%)

Figure 30. 3-component loading weights plots. Left: MIR", right: AMT. From top to bottom: Peas, Carrot and Maize.

For the three-component vegetable system we may use the above interpretation

systematics in order to simplify what would appear to be a more complex issue.

Inspection of Figure 30 again reveals an extremely simple relationship for MIR"
however. For both peas, carrot as well as maize prediction models, the first PLS-
component accounts for 98%, 96% and 94% Y-variance respectively, with barely
significant, very minor additions for the second components, a very clear one-

component trend.

In stark contrast to this, the AMT-relationships show marked multi-component
features, some using even more than two validated components, thus further
contributing to the overall MIR" vs. AMT relative pattern. MIR" is able to model even
these, clearly more complex systems, still basically using only one PLS-component —
no doubt primarily due to its underlying dichotomous 0/100 model-definition. AMT on
the other hand, while able to reach essentially identical prediction validation results,
does this in a distinctly more elaborate fashion in which several essential contrast

phenomena are found distributed over more PLS-components.
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The remaining meat-fat systems (Figure 31 below) are no doubt one order of
magnitude more complex still. But here again for MIR" we find the exact same
dispositions as for the vegetable — and the dry powder systems both: extreme reliance
on the first PLS-component accounting for 88%, 98% and 93% Y-variance
respectively, while AMT here shows especially complex multi-component patterns,
also between the different meat-fat mixing series internally. In fact there would appear
to be very interesting detailed interpretation possibilities for this latter system as
regards these internal AMT differences, which we shall never-the-less leave for an
other occasion since the overall comparative MIR" vs. AMT pattern remains the same
for this system as for the two above:

Considering the gamut of all the three pilot studies, covering a broad swath of relevant
real-world, industrial mixing two-component and three-component end-member

systems, the overall conclusion would now appear to have become clear:

MIR" can do with few — what AMT must do with more.

Following Occam’s razor, we then must point to MIR" as a very powerful new
complement to AMT in the family of multivariate image regression problem-dependent

pre-processing facilities, which we intend to develop much further with great interest.

AMT on the other hand, confirms its status of being able to model even very complex
systems with a detailed internal model structure, well suited for in-depth
interpretations.
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Figure 31. Minced Meat loading weight plots. Left: MIR', right: AMT. From top to bottom: Bovine, Pork and
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