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Preface

This study concerns interaction between organisms. Such interactions are often studied 

through organism abundances over periods of time (time-series). Time-series reflect both 

internal (biological) and external (environmental) factors and the separation of these factors 

from time-series is a non-trivial task.  

The first two papers represent an introductory stage where a new approach to time-series 

analysis is presented and where two-species interactions are explored with synthetic data 

obtained from model simulations and lake plankton data. Paper 3 reports on time-series 

analysis of an experimental ecological system in which interactions are studied in greater 

detail. Paper 4 covers experiments testing the stability of demographic trade-offs in 

microcosms. By doing nearly equivalent analyses within a range of “ecological realism” of 

the time-series, this thesis puts the suggested method through a systematic test and explores 

some basic assumptions in time-series analysis.  

The first part of the thesis consists of a summary where this work is presented and discussed 

in the context of current time-series analysis. The second part contains the four papers. 

The theoretical work has been carried out at the Department of Environmental Sciences at 

Telemark College, Norway with Professor Knut L. Seip as supervisor. The laboratory work 

has been carried out at the Department of Biological Sciences at Stanford University, USA 

with Professor Brendan Bohannan and postgraduate Christine Jessup as supervisors. My deep 

gratitude is extended to all of them. Also, my appreciations go to Dr. Harald Pleym for 

valuable assistance on Maple programming and Dr. Kim Esbensen and Dr. Sigmund Kalvenes 

(all at Telemark College) for guidance on statistical issues. 

Høydalsmo, March 1, 2004 

Gunnar Sandvik 
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Introduction.

“Patterns of abundance in nature are an important 

source of insight into the processes that determine 

the structure and function of communities and 

ecosystems”.

      Orlando Sarnelle  

The study of interactions among organisms is central to ecology. Ecological interactions are 

of many types, but are taken here to imply the detectable change in the abundance of one type 

of organism in response to a detectable change in the abundance of another type of organism. 

For simplicity, this summary refers to organism in terms of species (species interactions) 

although other classifications of organisms may often prove relevant. Changes in abundance 

(changes in population size) also result from intraspecific (within species) factors, which are 

not the focus of this work. To interact, the species must live in the same geographical space 

over relevant periods of time.  

Some species interactions have been defined mathematically. Among the most important 

interactions are competition and prey-predator.  Competition occurs when two species share 

limited resources and therefore the growth in one species has a negative impact on the growth 

in the second species. Volterra (1926) and Lotka (1924) defined competition mathematically. 

Prey-predator is the species interaction occurring when one species is the predominant prey of 

another species and the predator depends on its prey for reproductive success. The reduction 

in the prey population is followed by a reduction in the predator population giving the prey 

population a new opportunity to increase and thus leading to a cyclic pattern of growth and 

decline in the two populations. Volterra (1926) and Lotka (1924) independently formulated 

the prey-predator interaction mathematically. Mutualism means that growth of the population 

in one species has a positive impact on the growth of the population in another species and 

vice versa. Mutualism is well documented (e.g., pollinator and flower, algae and fungi in 

lichens) in various ecosystems (May 1976, Boucher et al. 1982 and Wright 1989), but is less 

developed mathematically because, if unconstrained, it implies autocatalysis or unlimited and 

accelerated growth (Roughgarden 1998). Facilitation is the re-allocation of resources by one 

species causing population growth in another species (Thayer 1979, Naiman et al. 1988, Jones 

et. al. 1994 and Lawton & Jones 1995). Examples are beavers diverting water for the benefit 
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of other species or woodpeckers producing nesting sites for other species. Mathematical 

formulations for each of the four interactions are given in paper 1. 

This thesis focuses mainly on prey-predator and competition, which are by far the most 

studied of the species interactions.  

What is the significance of knowing species interactions?

The motivation for studying species interactions has two main aspects. Firstly, an individual 

species live in dynamic relationships with other species. Thus, to further increase the 

knowledge about individual species as well as the ecological systems they live in, science 

must look at interactions. Secondly, with the increased understanding of ecological principles, 

it has become apparent that efforts to protect single- or multiple species, must rely on a 

thorough understanding of species interactions.  

If species interactions and their strengths could be identified with reasonable certainty from 

time-series, it would be useful to both science and management. 

Inferring process from pattern

The hypothesis of this thesis is that ”unique signatures” for different species interactions are 

imbedded in time-series and that these “signatures” are largely invariable across ecologic 

systems. Such tacit “signatures” are termed signals in this thesis and a signal and its strength 

are defined mathematically (papers 2 and 3).  

There are fundamental differences between the interactions of prey-predator and competition 

and these differences are reflected in phase portraits (two dimensional plot with counts or 

biomasses of species 1 on the x-axis and species 2 on the y-axis, Fig 1 below). Theory 

predicts that in a phase portrait the biomasses of a stable prey-predator pair will show 

sustained oscillations (limit cycles) with certain amplitude and period as well as a 

counterclockwise rotational direction if prey is depicted as the x-axis species and predator is 

depicted as the y-axis species (Lotka 1924, Volterra 1926 and Case 2000).  On the other hand, 

theory of (resource) competition (Lotka 1924 and Volterra 1926) predicts the extinction of 
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one species in most situations. Experimental results have supported this prediction (Gause 

1934 and Tilman 1981).

Prey-predator     Competition 

Figure 1. Schematic phase portraits illustrating typical theoretical predictions for the prey-

predator and competition interactions. Different initial conditions in terms of combinations of 

high and low biomasses give different results. In the prey-predator interaction a circular 

motion is predicted, while in competition all arrows are predicted to wind up in point A (i.e., 

extinction of the inferior competitor). Note: with certain combinations of carrying capacity 

(i.e., population size where population growth is zero) and  values (i.e., degree to which 

species 1 inhibits the growth of species 2) the species may coexist or the superior competitor 

may even become extinct. 

Based on theory the prey-predator interaction may therefore be easier to identify than 

competition since a strong prey-predator interaction is expected to produce recurrent 

dynamics while a strong competitive interaction is not (pronounced continual cyclic pattern 

vs. transient pattern).  

However, the observation that species obviously exist over long time-scales implies that 

competition must be viewed in the context of other factors than those included in the Lotka-

Volterra model. One important factor is the ecological niche (i.e., a species has a number of 
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requirements in terms of resources and living conditions). Appreciating that extinction is not 

the rule in real ecological systems, Hutchinson (1959) developed the concept of “limiting 

similarity” (i.e., how different two species have to be in terms of niche requirements to 

coexist). MacArthur & Levins (1967) provide a theoretical framework for this principle using 

a three-species Lotka-Volterra model.  

In ecological systems, resources and living conditions often vary continuously. For a pair of 

similar species, we may expect alternating periods of strong, intermediate, and weak or no 

competition (McCann et al. 1998 and Matveev 1995) as well as variation in the relative roles 

of different interactions (Bohannan and Lenski 2000b). Also, in most natural systems 

interactions between pairs of species do not form closed “sub-systems” (predators alternate 

between different prey, and prey is killed by various predators). 

One of the best-studied ecological time-series involves lynx and snowshoe hare (Elton & 

Nicholson 1942).  Both the ecological roles of these species (the carnivore lynx and the 

herbivore hare) as well as their overlapping geographical distributions, strongly suggest that 

prey-predator dynamics are reflected in the time-series, but this finding is debated (Gilpin 

1973 and Boutin et al. 1995). This does not imply that lynx does not prey on hare; the 

discussion is rather about our models of prey-predator dynamics and how well they are 

supported by the data. 

Exploitative competition (i.e., individuals of one species suffer a reduction in growth rate 

from the growth of a second species due to their shared use of limiting resources) has been 

observed in natural systems when an external superior competitor is introduced to the habitat 

(i.e., living area that satisfy the niche requirements of a species) of an inferior competitor. The 

spread of (initially five) introduced muskrats from Prague in the Czech republic (Elton 1958) 

and the spread of Argentine ants around San Diego, California (Erickson 1971) provide 

illustrative examples. These competitive exclusions (spread of invasive species) would be 

detectable from relevant time-series, but what about the more common situation in most 

ecological systems where competing species live alongside for long periods of time?  

Population cycles in voles and lemmings have long been debated as being either predator 

controlled (“top down”) or resource controlled (“bottom up”) (i.e., whether the time-series 

represent prey-predation or not), (Turchin et al. 2000 and Stenseth 1999). Similarly, the 
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relative contributions to time-series by “top down” and “bottom up” forces are discussed in 

lake studies (McQueen et al. 1986 and Matveev 1995) and laboratory systems (Bohannan & 

Lenski 1997 and 2000a). Identification of prey-predator and competition from time-series is 

an area of active research in ecology.     

Additional challenges associated with identifying interspecific interactions from ecological 

time-series come from external factors (noise) such as environmental stochasticity 

(randomness) and seasonal forces (predictable fluctuations) which influence population 

dynamics  (Chesson & Huntly 1997). The question addressed in this thesis, is how species 

interactions (prey-predator and competition) can be identified from relevant pairs of time-

series without making assumptions about the mechanism of the interactions. The thesis tests 

the suggested methodological approach with three fundamentally different types of time-

series data (i.e., model, experiment and lake) to evaluate the relevance and robustness of the 

approach.

Methodological approaches to time-series analysis in ecology

Several methodological approaches have been proposed for the study of species interactions, 

but a major distinction is made between statistical analysis of time-series and mechanistic 

modeling. The statistical analysis approach studies properties of time-series assuming that 

they reflect the species interactions and that irrelevant information can be “filtered out”. The 

mechanistic modeling approach makes assumptions about crucial process mechanisms and 

aims at predicting relevant future time-series (Kretzschmar et al. 1993, Scheffer et al. 1997 

and Murdoch et al. 1998). Mechanistic models are limited by being strongly dependent on 

knowledge about biological model parameters and by becoming mathematically complex 

when the number of species increases (Roughgarden 1998, Kristoffersen 2001 and Moe 

2001). Statistical approaches use well-developed statistical tools. These approaches make 

fewer assumptions about the ecological processes, but may be criticized for being biologically 

naive, because they treat time-series only as “strings of numbers” (Kendall et al. 1999). 

Applying the “goodness of fit” criterion to only one or a few time-series also involves the 

additional risk of these “realizations” not being representative of the ecological process under 

study (Jost & Arditi 2000). 
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The most common approach to present time-series analysis in ecology is various 

autoregressive models. In such statistical models the biomass of a species is seen as a delayed 

function of the same species’ biomass at earlier time points in a time-series (Matveev 1995, 

Stenseth et al.1997 and Berryman & Turchin 2001). Time-series have also been analyzed as 

regressions between biomass measures of species with different ecological roles (McQueen et 

al. 1986, Sarnelle 1994, Mazumder & Havens 1998 and Matveev 2003). More pattern-

oriented approaches are statistical analyses of peak shapes and frequencies and the use of 

Kendall and Stuart’s test (Kendall & Stuart 1966) for detection of regularities in time-series 

(McCauley & Murdoch 1987 and Turchin et al. 2000). Other recent approaches combine 

statistical modeling with mechanism-based models (Kendall et al. 1999, Jost & Arditi 2000, 

2001, Kristoffersen 2001 and Turchin et al. 2003).  

The AFM approach and how it relates to other approaches

The new methodological approach suggested and tested in this thesis is graphical and 

statistical (the angle frequency method, AFM).  AFM is a further development of the 

traditional study of phase portraits in ecology combined with principal component analysis 

(PCA) (Seip 1997 and Seip & Pleym 2000). The rationale for this approach is the assumption 

that various types of ecological interactions will show unique signals in phase portraits. 

In a phase portrait, synoptic pairs of observations of the density (abundance) of two species 

are merged into one (“two dimensional”) point of a trajectory. Each phase portrait is divided 

into four quadrants (see fig. 1 and fig. 2.). Quadrant 1 (upper right) represents all sections of 

the trajectory in which both species show abundances above their average abundance. 

Quadrant 3 (lower left) represents the opposite situation (both species below their average 

abundances). Quadrants 2 and 4 represent sections of the trajectory where one species is 

above and one species is below their average abundances. The AFM approach increases the 

“analytic resolution” of traditional analysis of phase portraits by focusing on species 

trajectories in four quadrants (for the present, four, it could be more). Within each of the four 

quadrants the AFM defines 21 sectors (21 by choice) of a full circle (see fig. 2 below). 
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Signal 4 5 6 8 11 13 18 24 30 31 32 

Frequency 1 3 1 1 2 1 2 3 1 2 1 

Trajectory GH FG,NO,OP EF F HI,RS PQ JK,ST AB,BC,KL MN DE,LM CD 

Figure 2. Phase portrait showing an example prey-predator time-series (2 cycles). For 

illustration purposes, each quadrant has only 8 sectors of a circle (the real AFM has 21 

sectors).  Letters show time points (pairs of successive biomass values). The table shows 

angles of vectors (trajectories connecting pairs of successive time points) and the frequency of 

these occurrences for this particular time-series. Only the non-zero sectors (signals) are 

included in the table.   

The first step in the analysis of a phase portrait is the identification of relevant sectors (termed 

“angle brackets” in paper 1 and signals in papers 2 and 3) and the frequencies by which these 

signals occur in a given pair of time-series (i.e., phase portrait). This first step may be viewed 

as converting individual phase portraits into signal frequency tables (fig.2). This is a 

computerized operation (Maple V, Release 5, Waterloo Maple, Inc., 1998).   

The second step is a comparison of phase portraits by their signal frequencies (table in fig. 2). 

Such comparisons are done by principal component analysis, PCA (Unscrambler, version 

6.11 b, CAMO ASA, 1997). PCA is concerned with reducing the total spread in the values of 
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a variable (variance) and transforming the linear relationship between variables (covariance) 

in a data set into a few linear combinations of the original variables (Johnson & Wichern 

1992).

PCA is primarily used for data reduction (i.e., reduce total data variability into a few principal 

components containing almost the same information) and interpretation (i.e., detect “hidden” 

information from complex data sets) (Johnson & Wichern 1992 and Esbensen 2000). The first 

principal component PC1 is the maximum variance direction in a data “swarm”. If, for 

example, three original variables are strongly correlated, the effective dimension may not be 

three, but closer to one and therefore PC1 may be a good approximation. Similar correlation 

structures may be identified for successively lower directions of variance (i.e., PC2, PC3, 

etc.), but the total number of PC’s is nearly always much lower than the number of variables 

in the original data (Esbensen 2000). The principal components are uncorrelated (orthogonal). 

The PCA input data is a matrix consisting of objects (rows) and variables (columns). In our 

application the variables are the 84 possible signals and the objects are individual phase 

portraits. Each entry (cell) of the data matrix is the frequency of a signal for a particular phase 

portrait. 

The next step of the AFM analysis is a comparison of two (tentative) groups of phase portraits 

(e.g. groups expected by the analyst to represent either prey-predator or competition 

interactions). 

The relevant PCA outputs are the scores and the loadings (defined below). The scores 

quantify the relationship between objects (phase portraits) along a principal component. The 

first principal component is the direction of highest variance in the data, thus if the largest 

difference between phase portraits is due to interaction (i.e., prey-predator or competition) this 

would be reflected in the scores.  

In order to estimate how well interactions are separated from each other by their signal 

frequencies (i.e., how well the tentative grouping is supported), we define percentage 

discrimination along a principal component as (1).  
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(1) 
nR

DD 100
%

D% is a measure of the distance, D (equation 2) between the average scores in each of two 

clusters of scores expressed in percent of total range, Rn (equation 3) of scores along the 

relevant PC axis. A D% value of ~100 implies that scores are separated as two distinct groups 

at opposite sides along the PC axis. A D% value of ~ 0 represents no grouping in the scores. 

D% values in the range 10-15 are found to be visually detectable by inspection of score plots. 

(2) 21 ggD

D is the absolute center - center distance; g1 is the average score of group 1 and g2 the average 

score for group 2 along a given PC-axis. 

Figure 3. Example score plot with D value calculated along PC1, for a pair of group averages. 

(Exact figure Dd1-d2= |-71.435-88.279| = 159.714). 

(3) minmax ggRn

Rn is the range of scores. Where g min is the lowest score and g max is the highest score 

(irrespective of groupings among scores) along a given PC-axis. 

D = |g1-g2| ~ 160 
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Figure 4. Example score plot with Rn value calculated along PC1. (Exact figures Rn= 5.655-(-

3.070) = 8.725). A,B,C,……K scores. 

For instance, high discrimination along PC1 would be the result if phase portraits assumed to 

represent competition largely show negative score values while phase portraits assumed to 

represent prey-predator interaction largely show positive score values. If discrimination is 

good (i.e., the PCA analysis supports our tentative grouping of phase portraits) we want to 

know, which signals in a given analysis, are associated with prey-predator and competition 

respectively?  

PCA loadings relate the variables to the score. The variables represent each of the 84 signals.  

g maxg min

Rn = |g max-g min| ~ 8.7 
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Figure 5. Example score plot and loading plot. The score cluster g1 is associated with 

variables (signals) 1, 6 and 18. The score cluster g2 is associated with variables 3,17 and 19. 

Based on loadings (lower panel in fig 5) associated with g1 and g2 scores (upper panel in fig 

5), we define the signal strength Ss. High Ss values point to signals that are good candidates 

for identifying a given interaction type. For a signal to have a high Ss value for competition, 

the signal loading must occur frequently in association with score clusters assumed to 

represent competition. The mathematical definition and further explanation of this parameter 

is given in papers 2 and 3. 

Unlike autoregressive models, the AFM approach does not make the assumption that the 

biomass at time point t can be predicted from biomasses at earlier time points (Nt = F (Nt-1, Nt-

2,.., Nt-d). A critical factor in such analyses is the identification of relevant time lags 

representing the biological feedback process (how an earlier time point influences a later time 

point) or the number of previous time steps to include in the analyses (Berryman & Turchin 

2001).

g2g1
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Regression models suffer from the prerequisite that the response variables should be largely 

uncorrelated, which they most often are not in time-series from the same ecological system 

(Kristoffersen 2001). The linear autoregressive models assume linear relationships between 

response and predictor variables (e.g., a linear relationship between biomasses at time points t 

and t-1), both assumptions are often violated in natural time-series (Berryman & Turchin 

2001 and Kristoffersen 2001).  

Some studies assume that interaction between two species can be identified from the time-

series of only one species (e.g., Turchin et al. 2000 and Berryman 2001). By simultaneously 

studying two time-series (one phase portrait) we avoid assumptions about how pairwise 

interactions are reflected in one-species time-series.  

The strength of the AFM approach is that it does not make any a priori assumptions about 

dynamic properties of the time-series; clustering will occur if there are inherent similarities 

between species pairs that partake in similar interactions. 

Study systems

A major goal of this study is to test whether the same signals of prey-predator and 

competition can be identified both in model simulations, experimental microcosm systems 

and in observed lake data. It would support the hypothesis if species interactions were 

identified by the same signals in these different study systems.  

The mathematical models used here representing the species interactions, prey-predator, 

competition, mutualism and facilitation are all relatively simple (“Lotka-Volterra type”), 

including inter- and intraspecific density dependence (see Seip & Pleym 2000 and paper 1).  

Simulations of these basic models are modulated using a simple approximation to seasonal 

cycles by using a Gauss function producing regular variability in conditions for growth over 

one simulated year (i.e., seasonal forcing, details in paper 1). Such seasonal forcing is a crude 

proxy for all the environmental parameters that limits population growth in a cyclic manner in 

real seasonal ecosystems (e.g., temperature, day length, irradiation, wind speed, etc).  
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The mathematical models serves two purposes in this thesis. Firstly, they render a systematic 

study of the influence of seasonal forces on the structural stability of modeled species 

interactions (reported in paper 1). Secondly, by imposing seasonality and by varying key 

parameters (testing sensitivity), model simulations produce time-series relevant for a 

comparison with time series from seasonal lake and microcosm time-series (reported in the 

discussion of this thesis).

Competitors are simulated as being equal in terms of their resource requirements, but different 

in their response to seasonal forces. Predators are simulated with a standard type II functional 

response (i.e., if the number of potential prey rises, the number of actual prey also rises at a 

decreasing rate toward a maximum). 

Mathematical models in ecology are always approximations (they do not establish “laws” of 

ecology), but they may be highly useful tools in the formulation and discussion of ecological 

theory (Roughgarden 1998). 

The microcosm studies use experimental glucose limited (Tilman 1977, 1981) chemostat 

cultures (Chao et al. 1977, Lenski 1988b and Bohannan & Lenski 1997). These systems are 

suitable for producing time-series because they are continuous (resources are supplied and 

excrements and dead organisms are removed at constant rates). In these highly controllable 

systems several experiments were carried out (papers 3 and 4). The organisms used to 

represent prey and competitors in this study are bacteria, which are primitive prokaryote 

organisms. Bacteria are mostly unicellular organisms with a metabolic machinery fixing 

energy from various chemical reactions (a few have photosynthesis) (van den Hoek et al. 

1995). The bacteria we use are strains produced by experimentally induced evolution from 

ancestral Escherichia coli B (papers 3 and 4). 

The organisms used to represent predators are bacteriophage (phage). Phages consist of 

genetic material (DNA) or (RNA) encapsulated in a protein coating and are primitive 

organisms. These minute parasites invade plant-, animal- and bacteria cells and use their 

metabolic machinery to complete their own life cycle (Wallace et al. 1986). The viruses we 

use are T-series bacteriophage (especially T4, T2 and T7).  T-series bacteriophage adsorbs to 

the surface of E. coli cells where they insert their DNA. Phage DNA ”reprograms” the 
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bacteria cell to start producing phage progeny (Lenski 1988b, Goldberg et al. 1994 and 

Bohannan & Lenski 2000b).

A trade-off between competitive ability in the bacteria and resistance to the phage is 

maintained to stabilize the population dynamics in the microcosm studies (Lenski 1988a, 

1988b and Simms 1992).  This trade-off is a result of most phage-resistant strains achieving 

their resistance through the loss or modification of the receptor molecule to which the phage 

initially binds. These modifications often simultaneously reduce the cell’s competitiveness 

because the receptor molecules are also involved in bacterial metabolism such as the uptake 

of nutrients (Lenski 1988a).

Although viruses are strictly parasitic, their interaction with bacteria is viewed as a good 

approximation to a prey-predator interaction (Levin et al. 1977, Chao et al. 1977, Lenski 

1988b and Carlson & Miller 1994).   

The lake study (paper 2) analyses plankton time-series from three temperate seasonal lakes

(Lakes Mjøsa and Farris in Norway and Lake Washington near Seattle in the USA). 

Plankton is subdivided into phytoplankton (mainly algae and cyanobacteria) and the 

zooplankton (animals of plankton size), mainly Protozoa, Rotatoria, Cladocera and 

Copepoda) (Cole 1983). Phytoplankton organisms mainly drift in the water because they are 

too small or too weak to have a significant motion of their own. Zooplankton can move 

somewhat, at least vertically. In general, the phytoplankton produces biomass that is 

consumed by the zooplankton. 

Plankton in temperate seasonal lakes has alternating low growth rates in the autumn/winter 

and high growth rates in the spring/summer. Seasonal variation in the availability of limiting 

nutrients is a strong community-shaping factor (Tilman et al. 1982). Each season in such 

lakes consists of a succession where populations of several plankton species increase and 

decline in a sequential order. The order may vary substantially among the years (Makulla & 

Sommer 1993).  However, the empirically based PEG model identifies “typical” stages of 

the seasonal succession, in which larger groups of plankton play important roles (e.g., the 

“spring bloom” in phytoplankton occurring in early spring when resources are ample, but 
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before resource scarcity (due to competition) and grazing (from zooplankton) reduce total 

phytoplankton numbers) (Sommer et al. 1986).  

Because most lakes are complex natural systems (i.e., high numbers of species occurring 

simultaneously) there is no direct way of controlling whether a pair of time-series actually 

represents the interaction we would assume on the basis of theory and experiments in the 

laboratory.
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Summary of the papers.

Paper 1: An anatomy of interactions among species in a seasonal world.

In this paper, synthetic time-series were generated from standard models representing four 

species interactions (prey-predator, competition, mutualism and facilitation). To study the 

influence of seasonal forces on these interactions, the growth rates of the models are modified 

by a simple approximation to a seasonal cycle. Measured as system variability (i.e., variance 

of AFM angle frequencies) prey-predator dynamics is strongly affected by seasonality, while 

the dynamics of the three other interactions are moderately affected. When difference in 

growth optima is introduced (i.e., niche difference), competition intensifies, while mutualism 

remains unchanged. Following a 20% variation in key parameters, interactions could still be 

separated and characteristic signals identified by PCA.   

Paper 2: Extracting signals of predation and competition from paired plankton time-series. 

Plankton time-series from three seasonal lakes were analysed by AFM. The aim of the paper 

is to search for signals identifying species interactions (competition and prey-predator) across 

lakes. The paper also explores various methods of data aggregation aiming at signal 

amplification. Prey-predator and competition (phase portraits) are separated, but high levels of 

noise in the data, give relatively weak signals. Prey-predator signals identify the predator 

collapse at low prey density and a counter-clockwise rotation (i.e., supporting the Lotka-

Volterra model). Signals assumed to represent competition are difficult to interpret within the 

framework of classical competition theory.  

Paper 3: Using the angle frequency method to detect signals of competition and predation in 

experimental time series.

Experimental time-series with bacteria and bacteriophage from continuous chemostat cultures 

were analysed by AFM. The aim of the paper is to identify signals of prey-predator and 

competition interactions in time-series from communities, where both these interspecific 
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interactions occur simultaneously, as is common in real ecosystems.  A secondary aim is to 

evaluate the usefulness of the AFM approach in studying other aspects of time-series, (e.g., 

detecting effects of invasion and resource enrichment).  Prey-predator interactions gave 

several strong signals. The strongest signal was the predator collapse at low prey density.  By 

using competitors of known fitness (competitive strengths), we also identify relatively strong 

signals of competition. However, competition signals are sometimes difficult to distinguish 

from indirect effects of the simultaneous prey-predator interaction. Effects of invasion and 

resource enrichment were also detected.  

Paper 4: Trade-offs and coexistence in microbial microcosms

In this paper we use microcosms with the bacterium E.coli and T-type bacteriophage to study 

and discuss various aspects of ecological trade-offs. In this experimental system, the trade-off 

arises when the bacterial resistance to predation (from the phage) comes with a cost in 

competitive fitness of the bacteria (high cost implies large trade-off). Such trade-offs tend to 

stabilize community dynamics and secure long-term coexistence of competitors. The 

experiments show that the cost of resistance depends on environmental factors such as 

resource levels, type of limiting resource and environmental stability (batch culture vs. 

chemostat culture). Thus, the magnitude and nature of such trade-offs may serve as predictors 

of how ecological communities respond to various environmental changes.  

Discussion

In paper 1 we observed interference from seasonal rhythm with the biological processes. The 

finding, that prey-predation is strongly influenced by periodic forcing (i.e., seasonality) 

supports other findings (Hastings et al. 1993 and Tømte et al. 1998). When periodically 

forced, simple prey-predator models may show a range of behaviours and therefore periodic 

forcing should be an essential ingredient in the study of prey-predator models, if we want to 

use them to understand this interspecific interaction in real world seasonal systems (Scheffer 

et al. 1997).  
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Synthetic time-series (prey-predator, competition, mutualism and facilitation modulated with 

periodic forcing and simulated over a range of parameter selections) could all be distinguished 

by AFM. 

The search for signals in time-series has lead to another interesting result. Comparisons of 

papers 1 to 3 show that prey-predator and competition are separable in all three types of time-

series. As expected the methodological trade-off between realism and control (i.e., in 

ecological studies high control usually means low realism while high realism correspondingly 

implies lower control) is reflected in the results. The grand average discrimination between 

prey-predator and competition is 88 in the model (paper 1), 42 in the experiment (paper 3) and 

26 in the lake study (paper 2) (a discrimination of 100 means full separation and a 

discrimination of 0 means no separation or randomness).  
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Figure 6 Strong signals identified from time-series in papers 1-3. Rows give type of time-

series (model, experiment and lake). Phase portraits in column 1 show prey-predator signals, 

phase portraits in column 2 show competition signals. The circle gives the angles of arrows. 
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Despite the relatively large difference in overall discrimination among the systems discussed 

in the individual papers, the same signals were largely identified as strong for the prey-

predator interaction.  Fig 6 shows a considerable similarity in prey-predation signals across 

types of time-series. All signals are in agreement with the counter-clockwise rotation of 

trajectories (Lotka 1924 and Volterra 1926). Furthermore, one signal (downward facing arrow 

in quadrant 2, i.e., the predator collapse at low prey density) is a strong identifier of the prey-

predator interaction in all three types of time-series (see papers 1 to 3). Signals from lake and 

experimental time-series fit better with model assumptions (i.e., Lotka Volterra) than the 

analysed model time-series, suggesting that the combination of seasonal forcing and 

parameter modifications have masked relatively much of the underlying dynamics. 

For competition, the results are not equally comparable because competitors are more 

heterogeneous and also defined somewhat differently in the papers. In the model study the 

two competitors are identical except from one being the “early starter” (see paper 1). In the 

microcosm study the competitors are similar, but differ in fitness and sensitivity to predation 

(see paper 3). In the lake study the competitors are different species of phytoplankton 

included in the analysis, because they occur several months each growth season and in each 

year of the time-series. 

 No single signal identifies competition in all types of time-series.  However, a signal that 

would be expected on the basis of theory, is found to be strong in both model and lake time-

series. This signal (downward facing arrow in quadrant 1) shows that when both competitors 

occur in high densities, they decline at approximately equal rates. This is what would be 

expected when competitors are equal or similar (competitors have equal competition 

coefficients in the model time-series) and when both populations are high.

These results indicate that competition signals are more difficult to identify from time-series 

than signals of prey-predator. A probable reason is the oscillatory nature of prey-predator 

interactions. For competition no such cyclic or repetitive pattern is predicted. Resource 

competition for one or two limiting resources between two species (Tilman 1981), if not 

balanced by external forces like prey-predator (Chase et al. 2002) or environmental factors 

(Chesson & Huntly 1997), will normally produce one winner and one loser. In the time-series 
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analyzed, the prey-predator interaction (papers 2 and 3) and seasonality (papers 1 and 2) 

modulated competition and probably (masked) its signals in the time-series.  

In paper 3, signals of the prey-predator interaction are strengthened by enrichment. This 

supports classical theory predicting that enrichment can destabilize a prey-predator 

interaction, leading to increased amplitude and period of population oscillations (Rosenzweig 

1971) and experimental results (Bohannan & Lenski 1997, 1999 and 2000a). 

Small differences in bacterial fitness are identified from experimental time-series in paper 3, 

but similar competitors gave weaker signals of competition than more dissimilar competitors. 

This supports classical theory and experiments, which predict (Lotka 1924 and Volterra 1926) 

and demonstrate (Gause 1934 and Tilman 1981) more drastic effects on populations, when 

competitors are different (i.e., extinctions or considerable depression of the inferior 

competitor in systems with one limiting resource). On the other hand, the result contradicts 

the limiting similarity principle (Hutchinson 1959), which assumes that the strongest effects 

of competition (i.e., extinction or severe depression of the inferior competitor in systems with 

one limiting resource) will occur when competitors are similar. A recent review article notes 

that there is considerable confusion as to how to define strength or intensity of competition in 

the scientific literature (Chase et al. 2002). 

  Conclusion 

This thesis demonstrated that prey-predator and competition interactions can be discriminated 

in the three different types of time-series (model, experiment and lake) and that the prey-

predator interaction is identified by largely the same signals in all types of time-series. These 

signals correspond well with theoretical predictions (classical prey-predator dynamics). The 

thesis failed to identify a similar type of signals for the competition interaction. The signals 

that were identified could plausibly be explained as combined effects of competition and 

seasonal forces (paper 2) and combined effects of competition and predation (paper 3). The 

thesis also demonstrated that the magnitude of the trade off between relative fitness and 
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susceptibility to predation in E.coli bacteria is dependent on environmental factors including 

the type and concentration of limiting nutrient and on environmental stability. 
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