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Abstract

Identifying interactions among organisms is central to the study of ecology. The Angle

Frequency Method (AFM) allows the detection of interactions in time series data. The

AFM takes pairwise data plotted in phase diagrams and identifies signals (vector

directions in phase diagrams) associated with particular interactions. Using microbial

experimental systems consisting of predators (bacteriophage T4) and prey/competitors

(strains of Escherichia coli), we demonstrate that the AFM can identify predator–prey and

competitive interactions. The level of control afforded by such microbial experimental

systems allows direct tests of the utility and robustness of the AFM. Signals of predation

were distinct from signals of competition, with the strongest signal of predation

corresponding to the collapse of the predator population at low prey densities. Signals of

competition reflected the difference in competitive strength between the superior and

the inferior competitors. In addition, the effects of invasion and resource enrichment on

interactions in the laboratory communities were detectable using the AFM. Our analyses

support results from model simulations and analyses of lake time series by identifying

similar sets of signals characteristic of predation and competition, and demonstrate that

the AFM is an effective tool in rigorous studies of time series.
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I N TRODUCT ION

Interactions among organisms form the cornerstone of

community ecology, yet identifying and quantifying interac-

tions in a particular community can be challenging. Multiple

interactions, weak interactions, indirect interactions, and

environmental forcing can mask pairwise interactions in

many natural systems. To tease apart interactions in such

complex systems, researchers have applied two approaches.

First, manipulations such as removal experiments can

identify key direct and indirect interactions (Paine 1974;

Lubchenco 1978). However, such manipulations are not

feasible in most natural systems, and even when feasible,

their results can be difficult to interpret (Raffaelli & Moller

2000). The second approach involves the analysis of time

series data from long-term monitoring programs by fitting

mechanistic models (e.g. Kretzschmar et al. 1993), using

statistical approaches, or both to identify patterns that are

indicative of particular interactions (e.g. Stenseth et al. 1997;

Jost & Arditi 2000, 2001; Turchin et al. 2000; Berryman

2001; Berryman & Turchin 2001). However these

approaches either require substantial information about

the community of interest (e.g. to parameterize mechanistic

models), or rely on simplifying assumptions (e.g. linear

relationships between response and predictor variables) that

are often violated in ecological time series. Recently, an

approach – the Angle Frequency Method (AFM) – has been

proposed that avoids these difficulties (Seip & Pleym 2000).

The AFM builds upon the rich tradition of graphical

analysis of predation and competition in ecology (Lotka

1925; Volterra 1926; Rosenzweig & MacArthur 1963;

MacArthur 1972). The AFM involves the analysis of time

series data plotted as phase portraits (Gilpin 1973; Seip

1997; Seip & Pleym 2000), diagrams in which the densities

of two populations are plotted as points in the positive x)y
space (e.g. where x represents prey density and y the

predator density), and a line is drawn connecting successive

points. The rationale for this approach is that different types
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of ecological interactions will show unique patterns in phase

portraits. Thus, from time series data, signals associated with

a particular interaction can be identified.

Consider the interaction between predators and prey.

Figure 1 shows the successive steps in applying the AFM to

a typical simulated predator–prey interaction. Because

predator–prey population cycles are often out of phase

(prey increase before predators; Fig. 1a), phase portraits of

predator–prey time series exhibit counter-clockwise rotation

when the prey is depicted on the x-axis and the predator on

the y-axis (Gilpin 1973; Seip & Pleym 2000; Fig. 1b). This

phase portrait can be divided into four quadrants that meet

at the average abundance of each population. In each of

these quadrants, the direction of vectors between successive

time points is measured relative to the positive x-axis (see

Fig. 1 legend for details). These vector directions are then

sorted into angle classes and summarized in histograms,

which serve as �fingerprints� for interactions (Fig. 1c). By

applying multivariate statistics, we are able to determine the

degree of clustering or separation between phase portraits

and we can identify signals associated with particular

interactions.

The AFM takes relatively qualitative patterns (e.g.

rotation of a trajectory), and distills this information into

quantitative signatures of a predator–prey interaction. For

example, consistent counter-clockwise rotation in a phase

portrait is indicative of a predator–prey interaction, and this

trend is reflected in the distribution of angles in the angle

histograms generated for each quadrant. In the case of two

populations competing for a shared resource in a constant

environment, we expect the superior competitor to ulti-

mately exclude the inferior competitor. Seasonality can

impose rotation in a phase portrait of two competitors;

however, unlike phase portraits of predation, there is no

predominant direction to this rotation. Based on these

fundamental differences in interactions, as well as more

subtle differences in the shape of the phase portrait

trajectories, the AFM is capable of differentiating predation

and competition. The method is also capable of identifying a

lack of interaction in paired time series data. A pair of non-

interacting species would yield a time series in which points

are randomly distributed, which would, in turn, yield a

uniform distribution of angles and a lack of clustering in the

subsequent statistical analyses.
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Figure 1 The successive steps in applying the AFM to a typical

simulated predator–prey interaction. (a) Simulated predator–prey

population cycles with prey represented by the solid line and

predator by the dashed line. (b) The simulated time-series data

converted into a predator–prey phase portrait, showing the

vectorized trajectory. This phase portrait can be divided into four

quadrants delineated by the steady-state average population

densities (Prey* and Pred*), calculated here as the average

abundance of populations. In quadrant 1 (upper right), the

abundance of both species is above their average abundance and

in quadrant 3 (lower left), both species are below their average

abundance. Quadrants 2 and 4, represent regions of the time series

where one species is above and the other below its average

abundance. In each of these quadrants, the direction of vectors

between successive time points (measured with reference to the

positive x-axis) is determined. In this example, predator–prey

interactions are predicted to generate positive angles of 120–140�
in the first quadrant and negative angles of c. )70 to )90� in the

second quadrant. The arrows indicate the approximate average

angle for each of the four quadrants (see protractor to estimate

angle). (c) The vector directions are sorted into angle classes

(sectors of 18�) and summarized in histograms, which serve as

�fingerprints� for interactions. For predator–prey interactions using
simulated data, the angle histograms reveal primarily positive angle

classes in the first and fourth quadrants and negative angle classes

in the second and third quadrants of the phase portrait, due to the

counter-clockwise direction of a prey–predator trajectory (Sandvik

et al. 2002).
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The AFM successfully differentiated predation, competi-

tion, mutualism and facilitation in simulated time series that

were based on simple Lotka Volterra-type models in a

seasonal environment (Sandvik et al. 2002). However, the

ability of the AFM to distinguish interactions in biological

systems requires further testing. The first attempt to apply

the AFM to real data involved analysing observational lake

plankton data (from several lakes) to determine whether

predation and competition could be differentiated. The

results suggested the existence of unique predation and

competition signals in these time-series, but these signals

were difficult to interpret (Sandvik et al. 2003). Signals in

lake time series data identified by the AFM could be due to

biotic interactions (e.g. an increase in zooplankton causing a

decrease in phytoplankton) or dynamic abiotic forces (e.g.

lower temperatures later in the season), and resolving these

different forces is challenging. We sought to test the AFM in

a system without these potentially confounding abiotic

factors and look for robust signatures of biotic interactions

in real time series data.

Microbial experimental systems offer the ability to

conduct controlled, replicated experiments over relatively

long time periods and at large relative spatial scales (Jessup

et al. 2004). Microcosms can be inoculated with defined

communities and defined resources. Communities of

organisms with known characteristics (e.g. strong compet-

itors, weak competitors, and predators) can be assembled,

and populations are readily sampled and enumerated.

Microorganisms can have short generation times and attain

large populations in the laboratory, allowing direct explo-

rations of long-term (multi-generational) ecological interac-

tions. Here, we apply the AFM to laboratory communities

to determine if there are general signals that consistently

distinguish interactions, and to determine whether the AFM

is sufficiently sensitive to detect changes in these interac-

tions. In addition, the level of control in these experimental

systems, combined with modelling, permits exploration of

the robustness of the method. For example, we added

different levels of error to actual time series data to

determine whether signals of interaction can be differenti-

ated in the presence of sampling error and environmental

variability. If the method works in these more controlled

experimental systems, our conviction that the AFM is a

valuable tool for detecting ecological interactions and shifts

in interactions in field data is strengthened.

We used microbial communities consisting of bacterio-

phage and bacteria to generate time series data for pairs of

species in these communities. We assembled three-popula-

tion communities containing two competitors and a

predator that attacks one of the competitors. There are

several reasons for this design. First, it allows us to work

with relatively complex communities, where pairwise inter-

actions are imbedded amidst other interactions. The second

reason for this choice of communities is practical. Long-

term coexistence between competitors is facilitated by a

predator feeding on the superior competitor. Finally, these

types of systems have been previously studied and there are

clear predictions for the effects of perturbations on

community structure and dynamics. For example, increasing

resource levels in a community consisting of only sensitive

bacteria and phage, yields a large increase in the phage

population, a slight increase in the sensitive bacterial

population and a destabilization of both populations

(Bohannan & Lenski 1997, 1999; Bohannan et al. 2002).

In contrast, the effect of enrichment on a community

containing phage-resistant bacteria, phage-sensitive bacteria

and phage, yields an increase in the resistant population, no

change in the abundance of phage or sensitive bacteria,

destabilization of phage and sensitive bacteria, and stabil-

ization of the resistant population (Bohannan & Lenski

1999). Mathematical models show that the magnitude of the

cost of predator-resistance has important implications for

the response of these communities to enrichment

(Bohannan et al. 2002).

We evaluated the utility of the AFM in four ways. First,

we explored whether the AFM can distinguish predation

from competition in time series and whether we can identify

the main signals (characteristic angles) from these analyses

and evaluate their strength. Second, we explored the limits

of the AFM. This was accomplished by determining

whether the AFM can distinguish signals of competition

and predation over long time scales in complex communi-

ties with transient dynamics, and whether the AFM can

detect interactions in time series amidst artificially imposed

error. Third we used the AFM to study ecological issues that

are important in community ecology and ecosystem

management. We studied the effects of resource enrichment

on the signal strength and quality by comparing commu-

nities that differ in resource input. We also explored

whether differences in relative competitive ability result in

signals of different strength in a mixed community. Finally,

we investigated the ability of the AFM to detect invasion

from experimental time series. Throughout these analyses,

we demonstrate not only that the AFM is a robust method

for distinguishing interactions in mixed communities, but

also that it is capable of detecting subtle shifts in

interactions.

MATER IA L S AND METHODS

Organisms

Our experiments used the virulent bacteriophage T4 as a

model predator and three strains of Escherichia coli that differ

in their competitive ability and bacteriophage vulnerability.

We designated the E. coli strains as �competitor-1�, which is
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susceptible to T4 (REL607; Lenski et al. 1991), �competitor-

2�, which is invulnerable to attack by T4 (REL6584;

Bohannan & Lenski 1999) and �competitor-3� (derived from

REL606; Lenski et al. 1991), which is also invulnerable to

T4. Resistance to bacteriophage often confers a competitive

cost in the absence of bacteriophage (Lenski & Levin 1985;

Lenski 1988). The competitive disadvantage for the invul-

nerable strains used in this project was determined through

competition with the phage-sensitive ancestor in phage-free

glucose-limited chemostat environments (Bohannan &

Lenski 1997). Based on these competition experiments,

the three competitors used in this study can be ranked in

order of decreasing competitive fitness with competitor-1

(T4-sensitive) as most fit, competitor-2 (T4-resistant)

exhibiting intermediate competitive fitness, and competi-

tor-3 (T4-resistant) as least fit. Additionally, competitor-1

harbours a competitively neutral genetic marker conferring

the ability to utilize the sugar arabinose (Lenski et al. 1991;

Bohannan & Lenski 1999). The ability to utilize arabinose

allowed the T4-sensitive competitor (competitor-1) to be

distinguished from the two T4-resistant competitors

(competitor-2 and competitor-3).

Laboratory model system

Communities of bacteriophage and bacteria were main-

tained under continuous culture conditions in glucose-

limited chemostats, as described by Bohannan & Lenski

(1997). Briefly, chemostats were supplied with Davis

minimal broth supplemented with glucose and 2 lg L)1

thiamine hydrochloride. Chemostat volumes were main-

tained at 30 mL and the dilution rate at 0.2 turnovers per

hour. Temperature of the chemostats was maintained at

37 �C.
All chemostat communities contained populations of

bacteriophage T4 and the T4-sensitive superior competitor

(competitor-1) in addition to a T4-resistant population

(either competitor-2 or competitor-3) (Fig. 2a). The T4-

sensitive and T4-resistant bacterial populations competed

for the limiting resource (glucose) while bacteriophage T4

attacked the superior competitor (competitor-1). Chemo-

stats contained one of three possible community configu-

rations, which we labelled 2H, 2L, and 3H. The numeric term

refers to whether the T4-resistant competitor in the

community is competitor-2 or competitor-3, and the �H�
and �L� indicate the input concentration of limiting resource,

where �H� represents high input concentration 0.5 mg L)1

and �L� represents a low glucose concentration of

0.1 mg L)1. For example, configuration 2H communities

contain competitor-2, competitor-1 and bacteriophage T4

with a high input concentration of the limiting resource.

Chemostat runs consisted of blocks of six to eight

chemostats run simultaneously. Chemostats in a run were

inoculated at the same time and replicate communities

received resources from the same reservoir of media.

Community configurations were replicated two- or threefold

within a chemostat run. We analysed three chemostat runs

described as �short-term�, which were run for 159–191 h

(c. 32–38 predator generations), and one �long-term� run that

was maintained for 631 h (c. 126 predator generations).

Population densities of bacteria and bacteriophage were

determined twice daily by diluting samples and plating on

selective media (as described in Bohannan & Lenski 1999).

In brief, competitor-1 was enumerated by dilution and

plating on Davis minimal agar supplemented with 2 lg L)1

thiamine hydrochloride and 4 · 103 mg L)1 arabinose. This

media allows the growth of competitor-1, which can utilize

arabinose but prevents the growth of competitors-2 and )3,
which are unable to utilize arabinose. Samples were mixed

with heat-killed REL607 cells to inactivate free bacterio-

phage (Carlson & Miller 1994; Bohannan & Lenski 1999).

Competitors-2 and-3 were plated on Davis minimal agar

supplemented with 2 lg L)1 thiamine hydrochloride and

4 · 103 mg L)1 glucose in the presence of concentrated

bacteriophage T4 lysate, which killed T4-sensitive cells (i.e.

competitor-1; Bohannan & Lenski 1999). To plate T4,

samples were first treated with chloroform to kill bacterial

cells and then plated on a lawn of T4-sensitive bacteria,

where individual viral particles formed countable clearings

in the lawn or �plaques� (Carlson & Miller 1994).

Analytical methods

To analyse the time series data, we used the Angle

Frequency Method (AFM) originally developed by Seip

(1997), and described in full by Seip & Pleym (2000) and

Sandvik et al. (2002). Briefly, we generated phase portraits

from the time series data for pairs of species in a given

interaction. In each of the four quadrants delineated by

average population density, we identified the angle formed

by the trajectory between two time points and the x-axis

(Fig. 1b). These angles were sorted into angle classes

(sectors) of 18�, yielding frequency distributions with 21 bars
(one bar representing one signal and the height of the bar

suggestive of signal strength, details below) per quadrant

(Fig. 1c). The resulting histograms (four generated per pair

of time series) were then compared to identify relevant

signals (vector directions in phase portraits, associated with

particular interactions). We used principal component

analysis (PCA) to analyse these angle histograms (Unscram-

bler, version 6.11 b, Waterloo, Canada, CAMO ASA; Maple

V, Release 5, Waterloo Maple, Inc.).

From the PCA scores generated by the AFM we

calculated centre–centre distance (D) and score range (Rn)

for any two groups of data to be compared. D was

calculated as

4 G. Sandvik et al.
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D ¼ g1j j þ g2j j; ð1Þ
where g1 is the average score of group 1 and g2 is the average

score for group 2 along a given PC-axis. Rn was calculated as

Rn ¼ Sminj j þ Smaxj j; ð2Þ
where Smin is the lowest score and Smax is the highest score

(irrespective of groupings among scores) along a given PC-

axis. Discrimination (D%) was then calculated as

D% ¼ D � 100

Rn

: ð3Þ

A D% value of 100 indicates that scores are separated as

two distinct groups at opposite sides along the PC axis. A

D% value of 0 represents a random distribution of scores.

D% values in the range 10–15 were found to be visually

detectable by inspection of score plots.
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Figure 2 Experimental design and represen-

tative time series data. (a) Design of the

three microbial system configurations ana-

lysed. A solid line between E. coli strains and

phage T4 indicates that the strain is sensitive

to the phage. The lack of connection

between a bacterial strain and phage indi-

cates that the strain is fully resistant to phage

attack. (b–e) Log (base 10) population

densities ( y-axis) over time (x-axis) repre-

senting typical chemostats from short-term

chemostat runs (b and c), and long-term

runs (d and e). Solid squares represent the

predator, bacteriophage T4; grey circles

represent T4-vulnerable competitor-1; solid

triangles represent T4-resistant competitor-3

(lowest competitive fitness); open triangles

represent T4-resistant competitor-2 (inter-

mediate competitive fitness). Individual

points represent one sampling. Labelled

regions of the time series (e.g., P1, P2)

correspond to regions where interaction

signals were identified and are discussed in

the text.
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PCA loadings relate the variables (here the 84 angle

classes) to the scores. Based on loadings associated with g1
and g2 scores evaluated for each of eight systems analysed,

we defined signal strength (Ss):

Ss ¼ Rs � Es; ð4Þ
where Rs is representability and Es is exclusivity of a signal

over the systems analysed. Rs was calculated as

Rs ¼ ns

N
; ð5Þ

where ns is the number of systems in which a certain signal

was characteristic. N is the number of systems analysed.

Thus, higher Rs values (range 0–1) indicate that a signal

occurs frequently. Es was calculated as

Ecomp
s ¼ ncomp

s

n
pred
s þ 1

; Epred
s ¼ npreds

n
comp
s þ 1

; ð6Þ

where ncomp
s is the number of systems in which a certain

signal was characteristic for competition and npreds is the

corresponding number for predation. Es (range 0– N) gives

high weight to signals that are characteristic for one inter-

action but not the other.

Signal strength (Ss) measures the degree to which a

particular signal is representative of an interaction (predation

or competition, in this study) and exclusive to one interaction

and not the other. High Ss values (range 0–8 here) point to

signals that are good candidates for identifying a given

interaction type. To compare dynamics before and after a

potential shift we use cumulative Ss values (RSs):

RSs ¼
Xj

i

Ssi ; ð7Þ

where i is the Ss value of the ith signal associated with the jth

interaction (predation or competition). RSs values measure

cumulative strength of signals in particular �sub-analyses�
(e.g. segments of time series) relative to the Ss values iden-

tified from several analyses of full length time series. For

example, high RSs before a shift in dynamics and low RSs
after a shift in dynamics suggest that signals of interactions

decay (or become less typical).

Robustness of the AFM

To address whether the AFM method can distinguish

predator–prey from competitive interactions we applied the

AFM to eight sets of time series generated from our

experimental communities. Six sets came from the short-

term chemostat runs (2H and 3H communities in each of

three blocks) and two sets from the long-term chemostat

runs (2H and 2L communities).

To determine whether the length of time series affected

discrimination between predator–prey and competitive

interactions, we compared time series data generated from

short-term and long-term chemostat runs. To explore the

effect of time series length on the detection of interaction

signals we applied the AFM to segments of data from the

long-term configuration 2H time series, using data from t ¼
313 to t ¼ 631, which reflects c. 3.5 predator–prey cycles,

where the dynamics are fairly stable.

To explore the effect of time series length on our analyses

of enrichment, we generated angle frequencies for both full-

length time series and time-series segments at low and high

resource levels and averaged these across time-series length

and nutrient level. Signals from high- and low-productivity

communities were averaged across replicate chemostats for

both segments of time series and the full-length time series.

Because time series from microbial experimental systems

are relatively clean compared with those generated by

observational field data, we added different levels of random

error to experimental data to test whether the AFM could

differentiate interactions in the presence of sampling error

and environmental variability. We focused on the high

nutrient, full-length time series (2H), which yielded the best

discrimination values of all our analyses (D% PC1 ¼ 88)

and offers a baseline for studying how increased levels of

error influence results of the AFM. Both constant and

proportional error was imposed on the full-length time

series from the 2H communities. Constant error, independ-

ent of population densities, was imposed on the time series

by selecting from a normal probability function with a mean

of zero and different levels of standard deviation (SD),

expressed in the original data units [colony forming units

(cfu)] and as a percent of the grand average density of each

of the three populations across replicate runs. Proportional

uniform error (dependent on the magnitude of each time

point) was imposed with a random number generator using

the whole numbers over the range ()5 to +5); if the random

number was 0 the time point was unchanged, if it was )5
the time point was maximally reduced and if it was five the

time point was maximally increased. First, the random

number was multiplied by a relevant fraction of a given time

point (e.g. 3%), producing a positive or negative �error� of
up to 15% (3 multiplied by 5) of the original value. In the

second step, this �error� was added to the original value. The

AFM was applied to the resultant time series to determine

discrimination between predation and competition.

Detecting shifts in interactions

To determine the effect of nutrient enrichment on signal

strength and quality, we compared community configura-

tions differing in resource input concentration. We analysed

three replicate 2L communities and two replicate 2H
communities to explore the effects of enrichment. (We only

analyse two replicate 2H communities, because in the third
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replicate, the density of bacteriophage repeatedly cycled

below the detection limit, thereby preventing the generation

of angle-frequency histograms for this community.)

To determine whether differences in bacterial competitive

ability can be detected in time series by AFM, we compared

competition phase portraits from low-competitor-fitness

(configuration 2H) communities with those from high-

competitor-fitness (configuration 3H) communities (Fig. 2a).

To determine whether AFM is able to detect invasion, we

analysed several chemostat runs in which we observed a

dramatic shift in population dynamics that was likely due to

invasion by an evolved bacterial strain. The shift was

consistent with the expected dynamics following invasion by

a derivative of competitor-3 exhibiting higher competitive

fitness (Bohannan & Lenski 1999; Bohannan et al. 2002).

We applied the AFM to sections of these time series, before

and after t ¼ 80 h, at which time a visible change in the

dynamics occurred in the configuration 3H communities

(Fig. 2b).

RESUL T S

Population dynamics

All chemostat configurations exhibited visually recognizable

patterns of prey–predator dynamics (i.e. prey and predator

densities oscillated with the same period, but with a slight

lag between the predator and prey trajectories) (Fig. 2b–e).

Similarly, for competition, one competitor’s trajectory had a

tendency to be the mirror image of the other competitor’s

trajectory (see Fig. 2c). The competitive fitness of predator-

resistant bacterial strains appeared to significantly affect

population dynamics. Competitor-2 has a higher competit-

ive fitness than competitor-3 and this difference translated

into distinct community dynamics in configurations 2H and

3H respectively. In configuration 2H communities, popula-

tions exhibited stable oscillations (Fig. 2c); 3H communities

exhibited oscillations of decreasing amplitude and con-

verged to the stable coexistence of all strains (Fig. 2b). The

effects of resource enrichment on population dynamics

were visible in long-term chemostat runs from configura-

tions 2H and 2L (e.g. compare Fig. 2d,e). Oscillations of

predator and prey populations were much more pronounced

and the average population density of phage-resistant

bacteria was tenfold higher in the enriched communities.

Identification of predation and competition signals

Scores for predation and competition formed distinct

clusters in PCA plots. For the short-term chemostat runs,

we found that D% PC1 values were high, indicating good

discrimination between predation and competition scores

(range 52–70, Table 1).

For the long-term chemostat runs, communities in

chemostats with low glucose input concentration (configur-

ation 2L) scores clustered poorly along PC1 (D% PC1 ¼
17). In contrast, scores from communities at high glucose

input concentration (configuration 2H) clustered well along

PC1 (D%PC1 ¼ 77).

Several signals distinguished predation from competition.

The strongest distinguishing signal was P1 (Fig. 3a, quadrant

II), which reflects the early stage of the predator collapse,

when the predator decreases rapidly from high numbers

while the prey also declines. Signal P2 reflects the late stage

of the predator collapse, when both populations are low and

the rate of predator decline is low while the rate of prey

growth is high. Signal P3 reflects the early predator build-up

stage (i.e. the predator grows very fast when prey numbers

are high). In general, the predator–prey signals confirmed

the counter-clockwise rotation in phase portraits for a

predator and its prey.

The strongest signals of competition were C1 and C2

(Table 2 and Fig. 3b). Signal C1 reflects the situation when

both competitors are rare and the superior competitor

Table 1 Summary of discrimination between predation and

competition. PCA scores from short-term and long-term chemo-

stat runs

Glucose level (mg L)1):

Duration of chemostat run

Short-term run

Long-term

run

0.5 0.5 0.1 0.5

Community configuration 3H 2H 2L 2H
Replicate communities (n) 8 8 3 3

Discrimination between predation and competition scores

Segment of time series

D% PC1 55–70 52–62 17 77

D% PC2 21–42 21–52 10 5

Full-length time series

D% PC1 55–60 47–73 61 88

D% PC2 4–45 2–57 18 10

D% PC1 and D% PC2 indicate level of clustering in PCA scores

along principal component 1 (PC1) and principal component 2

(PC2), respectively. Higher D% values reflect better separation of

PCA scores. A D% value of 100 indicates that scores are separated

as two distinct groups at opposite sides along the PC axis. A D%

value of 0 represents a random distribution of scores. For short-

term chemostat runs, data are summarized as ranges of discrim-

ination values from three blocks of chemostat runs, with each

community replicated two- or threefold in each block. For the

long-term runs, discrimination values are presented as single values

reflecting discrimination between competition and predation scores

for communities replicated threefold within the experiment.

Detecting signals of competition and predation 7
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increases rapidly while the inferior competitor remains

relatively constant. Signal C2 originates from the situation

where the superior competitor decreases rapidly from high

population density while the inferior competitor also

decreases, but from low density. Signal C3 reflects the

situation where both competitors decrease at low population

densities, but the inferior competitor decreases much faster

than the superior. Signal C4 reflects slow growth of the

inferior competitor paired with rapid decline of the superior

competitor at low densities of both populations.

Effects of enrichment on signal strength

Community configurations 2H and 2L differed only in the

input of the limiting resource, with the input concentration

for 2H communities fivefold higher than that for 2L
communities. Discrimination was more than four times

higher in the enriched communities (D% PC1 ¼ 77) than

in the low productivity communities (D% PC1 ¼ 17)

(Table 1). This reflects differences in dynamics that were

readily observed in the time series (Fig. 2d,e). PCA loadings

showed that the best identifiers of interactions in the

enriched communities were signals P2 for predation and C3

for competition. For the low productivity communities, no

signals could be identified from the time-series data because

of the lack of clustering in PCA scores, as mentioned above.

Effect of differences in bacterial competitive fitness
on system dynamics and signals

Competition and predation showed distinct signals in phase

portraits from both low-competitor-fitness (configuration

2H) and high-competitor-fitness (configuration 3H) commu-

nities; discrimination between competition and predation

signals was relatively high and quite similar in both

configurations (D% PC1 ¼ 69 and 67 in configuration 2H
and configuration 3H chemostats, respectively; Table 3).

Comparing competition phase portraits from low-com-

petitor-fitness (configuration 2H) communities with those

from high-competitor-fitness (configuration 3H) communi-

ties revealed that competition between competitors-1 and-3

could be distinguished from competition between compet-

itors-1 and-2 (D% PC1 ¼ 75) (Table 3). This result is

consistent with the observation that competition time series

differed between these two configurations with 3H com-

munities exhibiting pronounced oscillations. The presence
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Figure 3 Predation and competition signals

identified in by the AFM. (a) Predation

signals identified by applying the AFM to

short-term time series data. (b) Competition

signals revealed by similar analysis. The

arrows show the approximate angle of the

most characteristic angle brackets identified

for each interaction (see text and Fig. 1). I,

II, III and IV designate quadrant numbers.

Coordinates for angle measures provided in

quadrant I.

Table 2 Signals of predation and competi-

tion and their signal strength (Ss)
Predation Competition

Quadrant

[range of angles]

Signal

ID

Number of

time series Ss

Quadrant

[range of angles]

Signal

ID

Number of

time series Ss

II [)111 to )94] P1 6 4.5 III [)8 to 8] C1 4 2.0

III [)25 to )8] P2 5 1.6 IV [)180 to )162] C2 4 2.0

IV [94 to 111] P3 3 1.1 III [)111 to )94] C3 3 1.1

II [)94 to )77] 3 0.6 III [145 to 162] C4 3 1.1

III [)94 to )77] 3 0.6 III [)180 to )162] 2 0.5

III [)77 to )60] 2 0.5 III [43 to 60] 2 0.5

Number of time series reflects the number of time series in which a given angle bracket was

identified out of the eight systems. Signals with Ss values > 1 are given signal IDs and are

discussed in the text.
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and strength of competition signals also differed between

the two configurations. RSs values were higher for confi-

guration 3H communities (signals C1 and C2), than for

configuration 2H communities (Table 3), however a shift in

dynamics (discussed below) may have contributed to the

weaker signal strength in 3H communities.

A similar analysis of the predator–prey interactions in

communities 2H and 3H revealed only subtle differences

(D% PC1 ¼ 9). Predation was characterized by a few

strong signals in both configurations (P1 and P2; Table 3).

The strength of predator–prey signals was similar in 2H and

3H communities when segments of time series were

analysed; analysis of full-length time series revealed higher

signal strength in 2H communities (Table 3).

Detection of changes in dynamics following invasion

In all of the configuration 3H chemostats containing lower-

fitness competitor-3, we observed a shift in the dynamics of

predator, prey and competitor approximately halfway

through the experiment (Fig. 2b). Discrimination between

configuration 3H competition phase portraits generated

before and after t ¼ 80 was high (D% PC1 ¼ 71); a similar

comparison of predation phase portraits also revealed high

discrimination (D% PC1 ¼ 55). Configuration 2H commu-

nities exhibited lower discrimination between phase por-

traits before and after t ¼ 80 (D% PC1 ¼ 42 for compe-

tition and D% PC1 ¼ 33 for predation).

Evidence for a change in the configuration 3H commu-

nities was further supported by a shift in signals and signal

strength. Signals identified before t ¼ 80 were consistent

with typical signals identified above (P1, P2, C1 and C2) and

exhibited high cumulative Ss values (RSs ¼ 5.6 for compe-

tition and RSs ¼ 6.7 for predation). However, after t ¼ 80,

signals of competition could not be identified and signals of

predation were atypical and weak (RSs ¼ 0.6). In contrast,

when configuration 2H communities were analysed similarly,

signals were the same (P1, P2 and C1) and of similar

strength before and after t ¼ 80 (RSs ¼ 6.1 for predation

and RSs ¼ 2.0 for competition, before and after t ¼ 80).

Robustness of the AFM

We found that increasing the length of the time series

analysed increased discrimination. Analyses that included

0.5, 1, 1.75 and 3.5 predator–prey cycles yielded discrimin-

ation values of D% PC1 ¼ 29, 25, 38 and 83, respectively.

Discrimination between predation and competition was

higher at the higher resource level for segments of the time

series and for full-length time series (i.e. separation between

corresponding competition and predation scores was larger

at higher resource levels; Fig. 4). Discrimination was also

higher for full-length time series than for segments of time

series. In summary, nutrient level had the largest effect on

discrimination between competition and predation, but the

length of the time series analysed was also important.

The effects of competitor fitness on community dynam-

ics were largely unaffected by length of time series analysed.

The discrimination between competition scores from the

two configurations was similar in time series segments (D%

PC1 ¼ 75) and in full-length time series (D% PC1 ¼ 68)

(Table 3). Discrimination between predation scores from

the two community configurations was slightly higher for

full-length time series (D% PC1 ¼ 29) than for segments

of time series (D% PC1 ¼ 9). Within-configuration dis-

crimination between predation and competition was similar

for time-series segments (D% PC1 ¼ 67) and full-length

time series (D% PC1 ¼ 65) for configuration 2H, and the

Table 3 Effects of competitor fitness on predator–prey and competitive dynamics. Summary of discrimination values (D% PC1 and D%

PC2) for competition and predation signals within and between community configurations and cumulative signal strength (RSs) for segments

of time series and full-length time series

Interaction discrimination Cumulative signal strength (RSs)

Within community

configurations

Between community

configurations Configuration 2H Configuration 3H

C2H · P2H C3H · P3H C2H · C3H P2H · P3H C P C P

Segment of time series

D% PC1 67 69 75 9 0.29 9.30 7.00 8.83

D% PC2 11 13 21 55

Full-length time series

D% PC1 65 55 68 29 0.92 9.47 4.18 3.92

D% PC2 19 26 1 34

C represents competition and P represents predation. For example, C2H · P2H compares discrimination between competition and predation

in configuration 2H communites. Higher D% values reflect better separation of PCA scores.

Detecting signals of competition and predation 9
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results were similar for discrimination between competition

and predation in configuration 3H communities (D%

PC1 ¼ 69 for segments and D% PC1 ¼ 55 for full-length

time series) (Table 3).

Analysis of time series modified to simulate sampling

error and environmental variability suggests that the AFM is

fairly robust. The results of imposing the same level of

constant error to each time point in nine time series showed

that predation could be distinguished from competition at

error levels up to c. 50% (Table 4) and signals were

unchanged as long as D%PC1 values are above 10–20.

Analyses of time series with proportional error showed high

discrimination between predation and competition at all

error levels analysed. It did not seem possible to distort the

underlying pattern by using proportional error.

D I SCUSS ION

In our analyses, we have shown that the AFM systemat-

ically distinguishes predation from competition in experi-

mental time series data from assembled microbial commu-

nities containing multiple interactions. Our results also

demonstrate that events that are predicted by theory, such

as the effects of invasion, enrichment and competitor

fitness on population dynamics, can be detected by the

AFM. We have identified typical signals for predation and

competition based on the frequency at which signals for a

particular interaction occur. We were able to identify

several signals that are consistent with demographic

processes. For example, strong signals of predation were

observed in regions of the trajectory where predator

populations collapsed at low prey densities. Furthermore,

the method provides new insight into the functioning of

such systems. While signals of competition were not as

strong as signals of predation, they were associated with

regions in the phase portrait trajectory where the superior

competitor increased rapidly while the inferior competitor

remained rare.

Some of the signals identified in this study (e.g. predation

signals P1, P3 and P4) have also been identified as important

signals in simulated data (Sandvik et al. 2002) and in time-

series data from freshwater populations of zooplankton

(Sandvik et al. 2003), suggesting the presence of universal

signals for some interactions. In the freshwater time series

data, signals of predation could have resulted from a

decrease in the prey population due to increased predation.

However, lower temperatures could also have contributed

to decreased prey, resulting in the same signal. These abiotic

and biotic forces could not be distinguished in such

complex field systems.

Long-low C
Short-high P

Long-high P

Long-high C

Short-low P 

Short-low C

Long-low P 
Short-high C

–4 –2 0 2 4 6

4

2

0

–2 PC1

PC2

1

42

3

Figure 4 PCA score plot for the enrichment analysis (configura-

tions 2H and 2L). The x-axis is PC1, the principal component that

explains the highest portion of variation in the data (53% in this

analysis); the y-axis is the second most important PC dimension

(20%). Labels indicate the length of time series (short-term or long-

term), nutrient level (high or low) and ecological interaction

[predation (P), competition (C)]. Arrows reflect corresponding

signals (i.e. predation–competition pairs). Arrow 1 is the long-term

time series from high productivity chemostats, arrow 2 is the short-

term time series from high production chemostats, arrow 3 is

short-term time series from low production chemostats and arrow

4 is long-term time series from low productivity chemostats.

Table 4 Robustness of the AFM to the

addition of constant and proportional error

in time series data

Constant normally distributed error Proportional uniform error

Average level of error added

to a given time point (%) SD D% PC1

Range of error added to

a given time point (%) D% PC1

0 (No error) 88 0 (No error) 88

3 5689 81 3–15 82

30 56891 70 10–50 84

50 94819 46 30–150 76

70 132747 30 100–500 80

100 189638 25

200 379276 11

Discrimination between predation and competition (D% PC1) was determined for time

series data with different levels of constant and proportional error (see Methods for details).
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In general, predator–prey interactions yielded stronger

signals (higher Ss) than competitive interactions. Competi-

tion signals appear to be less universal and strongly

affected by predation. While the strongest signals associ-

ated with competition are biologically probable, indirect

effects from predation on the competitively superior

phage-sensitive strain (competitior-1) appeared to mask

the signals we expected from competition. For example, in

the absence of predation, one would expect signal C1 to be

the strongest signal of competition – this signal reflects the

situation where the superior competitor increases rapidly

while the inferior competitor remains constant. However,

in our communities, predation on the sensitive strain

allowed the inferior competitor to benefit from reduced

competition for nutrients during periods of intense

predation on the superior competitor. Signal C4 (Fig. 3b),

which occurs when the superior competitor declines rapidly

from low density while the inferior competitor increases

from low density, reflects this process. Signal C4 is

probably due to the bacteriophage preying upon the

sensitive strain, which led to a decrease in density of the

sensitive strain that would not have occurred in the

absence of a predator.

We also observed situations where signals could not be

identified from segments of time-series data, such as in the

low-productivity communities, where scores for predation

and competition clustered poorly. This result was not

surprising given the lack of obvious oscillations in time

series segments from these communities (see Fig. 2d).

However, the lack of clear signals does not suggest the

absence of interactions. Our results suggest that a minimum

of approximately two full predator–prey cycles (4–7 data

points with two samplings daily) is required for relevant

signals to be detected in our experimental systems (D%

PC1 ¼ 50 generally allows identification of signals from

PCA loading plots). For signal identification the sampling

frequency must capture essential dynamics. It is also

important to note that for time-series segments where

signals were detectable, signals were often similar and of

comparable strength in full-length and shorter segments of

time series.

Our comparison of systems with high and low resource

levels showed that differences in dynamics due to enrich-

ment (Bohannan & Lenski 1997, 1999, 2000) were readily

detected by the AFM. The more pronounced oscillations

observed in the enriched system (configuration 2H) yielded

higher discrimination between predator–prey and competi-

tion. Signals of predation in the high-productivity systems

were strong and corresponded well with what one would

anticipate for predator–prey interactions (i.e. counter-clock-

wise rotation in a phase portrait).

We have also demonstrated that small differences in

bacterial competitive fitness can have detectable implica-

tions for system dynamics and that these effects could be

detected by the AFM. Competitors with the largest

difference in competitive fitness (competitor-1 and -3)

showed the most typical and strongest signals of compe-

tition. This result is consistent with the prediction that the

strain of lower competitive fitness (competitor-3) recovers

more slowly from low population density than the higher-

fitness competitor (competitor-2). Because the AFM meas-

ures the degree to which organisms affect one another and

because the effects of competition are more severe for

inferior competitors, signals of competition are stronger

when the fitness differences between competitors are larger.

The observation that signals of competition between two

populations for a shared resource could be distinguished

between communities containing different populations

demonstrates the utility of the AFM.

Predator–prey models predict that small differences in

bacterial competitive fitness not only affect competitive

dynamics, but also predator-prey dynamics. Laboratory

experiments with simple communities have demonstrated

that the presence of a population invulnerable to predator

attack results in a smaller predator-sensitive population and

dampened predator-prey cycles, effects that can be explained

by the dynamics of the shared resource (Bohannan & Lenski

1999; Bohannan et al. 2002). In our comparison of two

communities differing in the competitive fitness of the

invulnerable population, we expect the competitor of higher

fitness to reduce resource levels to a greater extent than the

competitor of reduce fitness. With lower resource levels

available to support the edible population (competitor-1) we

expect a lower growth rate of prey and, thus, a smaller

predator population. Despite these clear predictions, the

effects of differences in competitive fitness on the predator–

prey interaction were weaker and more ambiguous than

their effects on competition. Discrimination between

predator–prey interactions in the two community configu-

rations was very low along PC1 (D% PC1 ¼ 9) and

moderate along PC2 (Table 3), suggesting that the dynamics

of both the bacteriophage and its prey (competitor-1) were

largely insensitive to the apparently weak competitive force

posed by the invulnerable competitor (competitors-2 and -

3). Furthermore the difference in cumulative signal strength

for predation signals between the two configurations

(RSs ¼ 9.30 vs. 8.83; Table 3) was smaller than that for

competition (RSs ¼ 0.29 vs. 7.00; Table 3).

Finally, the AFM was capable of detecting the invasion

we observed in several communities containing the com-

petitor of lower fitness (3H). The results of the AFM

analyses suggest that mutants of higher competitive fitness

arose in the competitor-3 population and affected popula-

tion dynamics. Analysis of signal strength before and after

the time of presumed invasion by a mutant of higher

fitness (around t ¼ 80 h) further supports this conclusion.
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Cumulative signal strength of competition signals was high

before the time of invasion, but competition signals were

absent after invasion. This trend is similar to that observed

when comparing communities with a lower fitness compet-

itor (2H) with a higher fitness competitor (3H). Consistent

with theoretical predictions, signals of predation were also

much weaker after the time of invasion. This may appear

inconsistent with the fact that such a trend in predator–prey

signals was not observed when 2H and 3H communities were

compared, however, it is possible that the difference

in fitness in the resistant population before and after t ¼
80 is much greater than that between competitor-2 and

competitor-3.

We have demonstrated that the AFM is robust to

sampling error and environmental variability, showing

gradually decreasing discrimination with increasing constant

error and consistently high discrimination with the addition

of proportional error. The result of relatively constant

discrimination with the addition of proportional error may

appear counterintuitive, but it is likely that the relative

differences between time points are more or less unchanged

at these levels of error. Overall, these results show that the

method is robust to measurement error and environmental

variability. The highest levels of error here are larger than

measurement errors found in many systems. A strength of

PCA is its ability to extract the underlying pattern in the

data; these patterns may be difficult to distort, especially if

error is proportional.

There are several ways in which the AFM could be

applied to field systems. The AFM can be used as a tool to

further explore systems that are well-characterized. For

example, the AFM can be used to detect shifts in

interactions, as in our studies of well-characterized microbial

experimental systems. The AFM can also be used to explore

systems that are only partially characterized. For systems in

which the populations that produce time series are known

and characterized, but their interactions are unknown, the

AFM facilitates the development of testable hypotheses

about interactions between populations. Populations that

interact similarly should cluster in PCA plots, and traits that

are common to these populations can be further explored to

elucidate their interaction. Finally, the AFM can be used to

explore time series data from uncharacterized systems. The

AFM could be applied to selected pairs of populations from

such a system and the degree of clustering, or lack thereof,

for particular pairs would identify which populations are

interacting. Further exploration of characteristics shared by

populations that yield clustering may suggest the type(s) of

interactions. A caveat common to all these analyses is that

because the AFM detects patterns in time series data,

different interactions that affect populations similarly cannot

be differentiated (e.g. direct and indirect interactions like

competition and apparent competition).

In summary, we have shown that the AFM can yield

much information from relatively few time points. Other

approaches to detecting interactions in time series data (e.g.

autoregressive models) generally require many more time

points to establish assumed regularities in pairs of time

series. Furthermore, while conventional approaches for time

series analysis use the time series to develop general and

predictive models for system behaviour, our approach

focuses on the time series itself and how system behaviour is

reflected directly in the pairs of time series. This allows the

identification of interaction signatures. Statistical approaches

to analysing time series data are sometimes criticized for

being biologically naı̈ve, because they treat time series data

only as �strings of numbers� (Kristoffersen 2001). However,

the strength of the AFM approach is that it does not make

any a priori assumptions about dynamic properties of the

time series; clustering will occur if there are inherent

dissimilarities between interactions.

We have demonstrated that the AFM is robust in

identifying signals of pairwise interactions from multi-

species systems. The method is capable of distilling relevant

information from time series data as well as distinguishing

shifts in interactions due to invasion and enrichment. This,

in combination with the modest data requirements, suggests

that the AFM approach is both analytically tractable and

applicable in typical situations where only limited data are

available. These interaction signals can potentially be used in

several ways. For example, the identification of signals in

phase diagrams may allow researchers to identify interac-

tions in a community for which they have only limited data.

Finally, having identified these interactions, the AFM can

allow the detection of shifts in interactions due to biological

or environmental change.
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