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Extracting signals of predation and competition
from paired plankton time series

Gunnar Sandvik, Knut L. Seip' and Harald Pleym
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Abstract: Although competition and predation among plankton in seasonal aquatic
systems must be ubiquitous, it remains a challenge to actually identify these interac-
tions and to evaluate their relative strengths. Based on paired time series for zooplank-
ton and phytoplankton in three lakes: Mjgsa (12 years), Farris (2 years) and Lake
Washington (29 years), we construct phase portraits and quantitatively analyse their
trajectories in an attempt to characterize interaction types and strengths. Because we
can infer the type of interactions each pair partake in a priori (e.g., a phytoplank-
ton/zooplankton pair is a prey/predator pair), we hypothesize that it is possible to dis-
tinguish trajectories resulting from a pair that compete from those of a pair constituting
a prey/predator pair. We found that competition and predation can be distinguished
based on the time series of the interacting species’ biomass. Break points in population
trajectories (i.e., population collapse) and the counter clockwise rotation of the trajec-
tory in the phase portrait give the strongest signals of predation and the signals corre-
spond to what we expect from classical predation theory. For competition we can only
give plausible biological interpretations of identified signals, since signals from graz-
ing, seasonality and competition are confounded.

Key words: time series, predation, competition, plankton, seasonal, simulation.

Introduction

Quantitative identification and determination of the strength of species interac-
tions, like predation and competition, have proven difficult in most natural
systems (SARNELLE 1994, THOMPSON 1999). An important reason for this is
that deterministic and stochastic physical forces interfere with the biological
interactions (SEIP & REYNOLDS 1995). Chemostat studies have shown that
even simple 2-3 species systems of algae and bacteria can display different
interaction patterns with only incremental changes in nutrient supply and/or
light intensity (MEGEE 1972, GURUNG et al. 1999).
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Despite the high complexity of biological interactions in lakes that are dri-
ven by seasonal forces, several authors have found patterns in biomass time
series that are suggestive of particular types of interactions (MCCAULEY &
MuRrDOCH 1987, MATVEEV 1995, JosT & ARDITI 2000, 2001). This study aims
to develop and test a method that can distinguish “signals” that indicate the
type and strength of interactions based on time series for pairs of organisms.

SEIP (1997) developed and tested a method for characterizing ecological in-
teractions from observed data. The method presented here, the angle frequency
method (AFM), is an extension of the former. In a modelling study, SANDVIK
et al. (2002) found that four standard two species interactions (competition,
predation, mutualism and facilitation) could all be distinguished by their bio-
mass trajectories. Furthermore, signals in the trajectories that were characteris-
tic for each interaction type could be identified. However, this was a determi-
nistic study and results are not automatically relevant here.

In the present work, we study biomass time series data obtained from three
lakes undergoing seasonal changes: mesotrophic Lake Mjgsa, Norway, (1986—
1998), the mesotrophic to oligotrophic Lake Farris, Norway, (1982-1983), and
Lake Washington, USA, (1962-1992), the latter had recovered from heavy
eutrophication by 1975 (EDMONDSON & LEHMAN 1981).

Under the condition that each pair of plankton biomass time series a priori
represents predation or competition, our hypothesis is that one can, based on
these time series only, distinguish between signals generated by competition
among phytoplankton species (PP) and predation by zooplankton on phyto-
plankton (ZP; i.e., that there are “events” in the time series being characteristic
for each interaction type). In this study, we know a priori which time series
represent predation and which represent competition. We examine if the ability
to distinguish between two interaction types would be highest in data based on
frequent samples at the species level or in aggregated data. We analyse indi-
vidual species biomass (B = 0) for phytoplankton and zooplankton data, ag-
gregated at a functional group level (e.g., Cyanophycea, Baciallariophyceae,
iCladocera), (B = 1), as biomass of phytoplankton subdivided into large
(>50um) and small (<50 um) species (B = 2), and lastly, as total biomass of
phytoplankton (large and small) and zooplankton, (B = 3). The time series are
based on monthly samples, (T = 0) and on annual averages, (T=1).

Materials and methods

The systems analysed, 3 seasonal lakes and 1 simulated seasonal
system

Data from Lake Mjgsa are obtained from the station Skreia, in a large-scale national
monitoring program (KJELLBERG 1986—-1998). Plankton counts (mixed samples from
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Fig. 1. Phytoplankton biomass as function of time, a) for the dominating phytoplank-
ton species in lake Mjgsa (full line is Asterionella formosa, dashed line is Tabellaria

fenestrata, b) the same data presented as monthly averages over the period 1986 to
1998.

the upper 10m) are all reduced to arithmetic averages over one month, giving us 6 an-
nual counts (May—October). Biomass time series are plotted for two of the most abun-
dant species in Lake Mjgsa, demonstrating high variation in magnitude and timing of
maximal annual biomass (Fig. 1). Using this data set, we test the effect of biological
and temporal data aggregation (B=0to B=3 and T=0 and T=1).

Data from Lake Farris are taken from routine water quality surveillances in 1982
and 1983 (HoLTAN et al. 1985). Mixed samples from the upper 10 m are taken monthly
from May to September. These data are analysed at species level (B = 0) and with
monthly sampling (T = 0) to see if predation and competition can be detected in a data
set that is representative for most lake studies, (sampling for only 2 consecutive years).

The time series from Lake Washington is very long (1962-1991; EDMONDSON
1996), but of relatively coarse biological resolution (i.e., crustaceans, blue greens, rota-
toria). These data are analysed at the functional group level (B = 1) and with monthly
sampling (T = 0). Since the biological composition of Lake Washington changed with
time as a result of nutrient abatement efforts for this lake, the main analysis is for the
data divided into four time periods (1962—1969, 1970-1976, 19781983 and 1984—
1990) and for the year 1979, which represents a year well after the nutrient abatement
measures had been initiated.

We include two simulated prototype phase portraits of competition (C-S) and pred-
ation (P-S) in all our analyses. We obtain these “standards” by averaging biomass data
from two sets of simulated time series (one for predation and one for competition),
each set with eight parameter selections, varying carrying capacities, competition coef-
ficients and niche differences (details in SANDVIK et al. 2002).

Selection of species

From Lake Mjgsa and Lake Farris we select dominant species that occur each year and
each month of the growing season. For the numerous species that occur sporadically
and only for short periods, we cannot establish paired data sets. Table 1 shows the
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Table 1. Months when species in Lake Mjgsa and Lake Farris reach their maximum
biomass, their number in the seasonal phytoplankton and zooplankton successions and
their maximal biomass during the respective period of observation.

Lake Mjgsa Lake Farris

Species Month of  No. in Max. Biomass Species Month of  No. in Max. Biomass

maximum  seasonal P in (mm*/m?) maximum  seasonal P in (mm*/m?)

biomass succession  Z in (mg dw/m?) biomass succession Z in (mg dw/m?)

(P#,Z#)* (0-50m) (P#,Z#)  (0-50m)

Asterionella  July P2 P(164) small June P2 P(106)
formosa chrysomonades
Tabellaria September P 3 P(291) large May P1 P(21)
fenestrata chrysomonades
Rhizolenia July P2 P(7) Gymnodinium  May P1 P(8)
longiseta cf. lacustre
Rhodomonas  June P1 P(59) Rhodomonas May P1 P(16) May
lacustris lacustris September P 3 P(18) September
Eudiaptomus ~ August 72 Z7(1148) Holopedium July 72 Z(14)
gracilis gobberium
Mesocyclops  August Z2 Z7.(723) Cyclops May Z1 Z.(46) May
leuckarti scutifer September Z 3 Z.(47) September
Bosmina July 71 7.(1200) Eudiaptomus May Z1 7.(34)
longispina gracilis
Dapnia September Z 3 7(281) Bosmina July 7?2 Z.(30)
longispina longispina

* P = Phytoplankton nr; Z = Zooplankton nr.

months when the species reach their maximum during the season, their number in the
seasonal succession (among species analysed here), and the maximal seasonal average
biomass they obtain. Table 2 shows a list of the phase portraits analysed and the pairs
of species (or units of higher biological aggregation).

Not all pairs of species in a lake are likely candidates for showing competition or
prey predation patterns. We want to restrict our study to only relevant pairs (i.e., phyto-
plankton species that bloom in May to July and zooplankton that reach seasonal max-
ima in July or later). For instance the algae Tabellaria fenestrata, found at high popula-
tion densities in Lake Mjgsa, normally blooms very late in the season (Table 1).

The zooplankton species Bosmina longispina in Lake Mjgsa and Eudiaptomus gra-
cilis in Lake Farris achieve, for zooplankton, high densities very early, and phase por-
traits combining these zooplankton species with a phytoplankton that blooms later in
the summer will not reflect a prey/predation interaction. For lake Mjgsa, for example,
removing pairs including T. fenestrata or B. longispina reduces the number of pairs
from 22 to 12.

The angle frequency method (AFM)

To analyze the time series data, we use the angle class frequency method (AFM) de-
veloped in an early version by SEIP (1997) and further developed and described ip full
by Seip & PLEYM (2000) and SANDVIK et al. (2002). The rationale for the AFM is the
assumption that various types of interactions will show unique signals in phase space.
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For example, predation as defined by the Lotka Volterra equations, shows a counter
clockwise rotation when the prey is depicted on the x-axis and the predator on the
y-axis (GILPIN 1973, SEIP 1997, SEIP & PLEYM 2000).

Firstly, the phase portraits are divided into quadrants, these being defined by the
average reading along both axes in the phase portrait. Secondly, we identify the angle
formed by the trajectory between observations at two consecutive sampling times and
the x-axis. These angles are distributed into classes of 18°, yielding histograms with 21
bars per quadrant. We use the term signal when referring to these classes of angles
(one class is one signal). The histograms generated (one per pair of time series) are
compared to identify signals associated with the interactions.

We use principal components analysis (PCA) to analyze these data (Unscrambler,
version 6.11b, CAMO ASA, Maple V, Release 5, Waterloo Maple, Inc.). From PCA,
scores and loadings are obtained.

PCA scores give the relative distribution of objects (here, data from each of the
paired time series) along PC1 and PC2. From these scores we calculate the centre-
centre distance, D, for any two groups of data to be compared:

D =g+ gl ()

where g is the average score of group 1 and g, the average score for group 2 along a
PC-axis. The score range, R,, is then calculated as:

R, = 8max — 8Emin )
where g, is the lowest score and g, is the highest score (irrespective of groupings

among scores) along a PC-axis. The percentage discrimination, D, is calculated as:

D=100
= 3
% R, 3

A Dy, value of = 100 implies that scores are separated as two distinct groups at op-
posite ends of the PC axis. A Dg, value of ~0 represents no clustering of scores. Dy,

v - a b
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Fig. 2. Simulated prey-predation a) and competition b) in seasonal environments and
expressed as phase portraits demonstrating the vectorized trajectories by the A_FM. The
arrows show rotational direction of trajectories. Right table shows the sensitivity of the
method to stochastic noise (observation error). With increasing stochastic noise appl_ied
to angle frequencies (expressed by coefficient of variation, CV). The discrimipatlon
measure, Dy, PC 1, shows how well prey-predation is discriminated from competition.
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values in the range 10—15 are found to be visually detectable by inspection of score
plots.

PCA loadings relate the variables (here the 84 angle classes) to the PCA scores.
Based on loadings associated with g; and g, scores evaluated for each separate analysis
we define signal strength (S;):

Sy =Ry xE 4)
where R, is representability and Ey is exclusivity of a signal over the lakes analyzed.

fy

R (5)
A N
where ng is the number of lakes in which a certain signal is characteristic. N is the

number of lakes analyzed (here 3). R (range 0—1) give weight to signals that occur fre-
quently.

comp
Ecomp — ng (6)
s ~ _pred ’
ni+1
pred
- ns
Ef'ed = cm;p (7)
n™ +1

where ng°™P is the number of lakes in which a certain signal is characteristic for com-

petition and nf™® is the corresponding number for predation. E, (range 0—N) gives

high weight to signals that are characteristic for only one interaction. High S values
g g g y g

(range 0-3) point to signals that are good candidates for identifying a given interaction

type.

Results

To reduce the number of figures we show selected score plots, which represent
the three lakes and that show the best discrimination between predation and
competition. However, the degree of discrimination, D¢, is reported for all
analyses.

Fig. 3 shows three typical phase space trajectories, two for competition and
one for prey/predation. Lower graphs show full time series and upper graphs
show aggregated time series. The full time series trajectories suggest that it is
not evident that scores based on competition can be distinguished from scores
based on prey/predation interactions.

Analyses of PCA scores, irrelevant pairs of species removed

We first run an analysis at the species level and with monthly samples (B = 0,
T = 0) for Lake Mj@sa and for Lake Farris, and at the aggregation level (B =1,
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Fig. 3. Phase portraits of lake Mjgsa data, for competition PP1 (Asterionella vs. Tabel-
laria) and PP3 (Asterionella vs. Rhodomonas) and predation ZP1 (Asterionella vs.
Daphnia). The first species of the pair (i.e., Asterionella) is depicted on the x-axis. Ar-
rows show direction of rotation. Upper part of the panel trajectories shows average and
normalized (1/SD) seasonal dynamics for the years 1986—1998 (each point in the upper
phase portraits represents successive months from May to October). The lower panel
shows the corresponding complete time series.

T = 1) for Lake Washington, since species level data are not available for the
latter lake.

Lake Mjgsa phase portraits analysed with only relevant species pairs and
without the prototypes P-S and C-S yield competition, PP, scores largely to the
left and predation, ZP, scores largely to the right of the PCA score plot
(D, PC1 =52 and D¢, PC2 = 14, Fig. 4). The figure also shows the relationship
between scores and loadings to be discussed below.

The Lake Farris data are analysed similarly and we obtain D¢,PC1 =49 and
D¢, PC2 =16 (Fig.5).

Lake Washington data analysed as separate time periods (1-4) give low Dy,
values along PC1, (8, 11, 13, 6) and PC2, (20, 18, 2, 0), respectively. Score
plots are not shown for this and the following analyses. Also for the randomly
selected year 1979 we find the same trend, (Dg,PC1 = 2 and DgPC2 = 22).
When we analyse the entire data set (1962— 1991) we also receive low Dy, val-
ues (Dg,PC1 = 1.4 and Dg,PC2=1.2).

Analyses of PCA scores for all pairs in Lake Mjasa

We analysed data from Lake Mjgsa in combinations of various aggregated
forms B=0toB=3and T=0to T =1) by visually inspecting PCA score
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Fig.4. Lake Mjgsa (B =0, T = 0). The Principal Component Analysis, PCA bi-plot for
full time series data without Tabellaria fenestrata and Bosmina longispina, shows
predation by zooplankton species on phytoplankton species (ZP) and competition
between pairs of phytoplankton (PP). Number following the pairs of letters refers to
pair identification in Table 2. Model simulation of predation is included as P-S. Mod-
eled competition C-S gave very different response and was not included in the plot to
avoid compressing all other points into a corner. Angle brackets are identified by the
numbers 1 to 4 for the quadrants, and by the numbers + 180 for the mean angle within
the quadrant (see text). The first principal component, PC1, explains 27 % of the var-
iance, and the second component, PC2, explains 13 %.

plots and calculating Dg, values. All Dg, values are calculated from separate
analyses without the simulated prototypes C-S and P-S included. Thus, the Dy,
values cannot always be read directly from graphs where the prototypes are in-
cluded for reference. We do not show the graphs, but summarize the results for
separation, Dg, in Fig. 6. At the highest level of data aggregation (T=1, B =2
and B = 3) the scores for competition (PP) were positioned to the left and the
three scores for prey/predation (ZP1 to ZP3) to the right. The scores for the
two prototypes were not positioned consistently with the scores based on ob-
servations. The ZP scores are not independent at this level of aggregation, but
the result remains that PP and ZP are at different ends of the PC1 axis (Dq, =
97). At the same level of biological aggregation (B = 2), but with no temporal
data aggregation (T = 0), the scores give a lower discrimination between PP
and ZP. Dy, is 45 along PC1 and 76 along PC2.

At the medium level of biological aggregation (functional group level), but
without the temporal variability (B = 1, T = 1), the score plot separates the
competition scores (PP1 to PP3) from the three prey/predation scores,
(Dg,PC1 =25 and D¢ PC2 = 46), here, it is PC2 that best picks up the signals
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Fig. 5. Lake Farris (B = 0, T = 0). Principal component plot, PCA score plot for full
time series data (T = 0) for the two consecutive years 1982 and 1983. The figure shows
predation by zooplankton species on phytoplankton species (ZP) and competition
between pairs of phytoplankton species (PP). Number following the pairs of letters
refers to pair identification in Table 2. Model simulations of predation and competition
are included as P-S and C-S, respectively. Loading plot not shown. The first principal
component, PC1, explains 15 % of the variance, and the second component, PC2,
explains 10 %.
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Fig. 6. Dy, PC1 results for lake Mjgsa analyses using various biological and temporal
aggregations. BO is no biological aggregation, B1 is aggregation at the functional
group level, B2 is phytoplankton divided into small and large sizes, B3 is total bio-
mass of phytoplankton and zooplankton. TO is full time series and T1 is the genera-
lized year.

from the interactions. The positions of P-S and C-S in the score plot indicate
that at this aggregation level the model represents lake data fairly well. When
temporal variability is included (B = 1, T = 0), the discrimination increases
along PC 1, but decreases along PC2 (Dg,PC1 =37 and Do, PC2 =21).
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At the species level (i.e., no biological aggregation), but with temporal ag-
gregation (B =0, T = 1), we find low discrimination and a slight tendency to-
ward negative PP scores and positive ZP scores in the PC1 dimension (D4PC1
=20 and D¢,PC2 = 3). Finally, when there is no aggregation in the data (B =0,
T = 0), the PCA analysis shows even lower discrimination between predation
and competition (D¢ PC1 = 18 and D¢, PC2 = 6). ZP scores have more negative
values than PP scores along PC1. We also find that P-S is closer to the centre
of ZP scores than to the centre of PP scores. C-S, however, represents com-
petition poorly.

Figure 6 shows a summary of the effects of temporal and biological aggre-
gation on Dg,PC1 values in the Lake Mjgsa data. All these results suggest that
data aggregation can amplify relevant signals and sort out noise.

Analyses of PCA loadings

With only relevant pairs included, a number of angle classes are identified as
indicative of competition and predation in the three systems analysed. Due to
the low discrimination and high biological aggregation in the in Lake Wash-
ington data, we cannot a priori remove irrelevant species. We therefore re-
moved PCA scores systematically from the set where all four-time periods
were included until predation and competition clusters appeared in the plot,
ending up with 16 pairs out of 55 pairs. Although this procedure is partly cir-
cular, when PCA loadings associated with these clusters are compared, signals
became largely the same as for lake Mjgsa and Lake Farris (see Table 3).
When we use signal strength Sg = 0.7 as a minimum criterion for selecting
strong indicative angles, three predation signals and five competition signals
result. (This Sy value is about 23 % of maximal possible S value with 3 sys-
tems, Sgmax = 1% 3). Predation is associated with three angle classes of equal
RE values (S = 0.7, Table 3); Signal P1, [-145 to —128] in the upper right
quadrant (i.e., when both prey and predator are abundant the prey decline
slightly faster than the predator), signal P2, [-111 to —94] in the upper left

Table 3. Summary of signals (angle brackets) of predation and competition identified
for all lakes and sorted after decreasing S values. Ry = representability, E, = exclusi-
vity, M = Lake Mjgsa, F = Lake Farris, W = Lake Washington.

Predation Competition
Signal Signal
Angle bracket ID # Ry E; Sy Lakes Angle bracket ID # R, E; S, Lakes
Q-1[-145t0—-128] P12 0.7 1 0.7 MW Q-IlI[-180to—162] C1 3 1.0 3 3.0 FM,W
Q-Il[-111to-94] P2 2 0.7 1 0.7 FEEM  Q-III [43 to 60] c2 2072 13 FM
QII[-25t0-8] P3 2 0.7 1 07 FFM Q-II[60to 77] C3 2072 13 FEM
Q-TII [77 to 94] C4 2071 07 FM
Q-IV[-180to-162} C5 2 07 1 0.7 M,W
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Fig. 7. Phase portraits for predation and competition divided into quadrants. The
arrows show the approximate angle of the most characteristic angle brackets for each
interaction (see text). Roman letters I, II, III and IV designate quadrant numbers.
Arrows show angle that are characteristic for each interaction type in each quadrant
(see Fig. 8 for a biological interpretation in terms of paired time series).

quadrant, (i.e., when predator is abundant and prey is rare the predator decline
fast while the prey decline slowly), signal P3, [-25 to —8] in the lower left
quadrant, (i.e., when both predator and prey are rare the prey grows fast, while
the predator decrease slowly). Fig. 7 summarizes the results from the PCA
loadings.

Five angle classes identify competition (Table 3). Four of these are found
in the lower left quadrant (i.e., when both competitors are rare). The strongest
competition signal C1 (Sy=3.0) in angle class [-180 to - 162] describes a situ-
ation where the competitors decline at different rates (early starter declines ~9
times faster than the late starter). The signals C2-C4 are adjacent angle clas-
ses. The signal C2 (S, = 1.3), with angle class [43 to 60] describes a situation
where both competitors increase (at approximately equal rates). The signal C3
(S, = 1.3), with the angle class [60 to 77], describes a situation where the late
starters increase about three times faster than the early starters. The signal C4
(S, = 0.7), with the angle class [77 to 94], describes the situation where the late
starter increases about ten times faster than the early starter. The fifth signal
characteristic for competition C5 (S, = 0.7) is angle class [-180 to —162] in
the lower right quadrant (i.e., when the early starter is abundant and the late
starter is rare, the early starter declines fast while the late starter declines
slowly).
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Discussion and conclusions

Maintaining only those species that are reasonable candidates for showing
competition or predation, discrimination improved about threefold for Lake
Mjgsa and Lake Farris data compared to data sets with all species included.
This finding supports the existence of characteristic signals for the two inter-
action types. Biological and temporal aggregations appear to improve the re-
sults if primary data at the species level are aggregated and when all pairs of
species are included (i.e., the case B = 0 and T = 0). The results indicate that
two growth seasons are sufficient to extract the relevant signals, even with
monthly averages based on 1-3 samplings (Lake Mjgsa and Lake Farris). If
data only can be obtained on the functional group level, as for Lake Washing-
ton, our results suggest that the strength of the signals is low and that the
strength does not increase with length of time series in the range analysed here
(1-30 years). We find that the species time series B = 0 is much less con-
clusive (in terms of Dg,PC1) than the biologically aggregated time series B>0.
This may be due to the lower overall error in the mean when there are several
measurements of the species (c.f., results of sensitivity analysis in Fig.2).

Interpretation of interaction signals

Each angle class discussed here represents the cumulative response (S¢ value)
for plankton in all three-lake systems and prey and predator biomass are
scaled to about the same biomass range. This implies that it is not possible to
go back to individual time series to support the interpretation of the angle clas-
ses identified here.

Below, we interpret the angle classes found from examining the phase
portraits by qualitatively relating them to central aspects of the PEG (Plankton
Ecology Group) model of seasonal succession of planktonic events in fresh
waters (SOMMERS et al. 1986) and the standard Lotka Volterra prey-predator
model (Fig.8a and b). Although not explicitly stated, the PEG model incorpo-
rates “early starters” and “late starters”. The former are r-strategists, growing
fast in the spring, and are tolerant to environmental harshness, but they are
weak competitors and susceptible to grazing. The “late starters” (K-strategist)
grow slower in the spring and are sensitive to environmental harshness, but
they grow faster and are strong competitors and less susceptible to grazing
during midsummer (a strongly competitive environment in most seasonal
lakes). The eight angle classes identified as strong signals (Sg >0.7) in this
study fit plausibly to the standard descriptions of competition and predation
(Fig. 8), thus supporting the biological relevance of the identified signals.

The three angle classes identified as typical of predation are consistent
with the classical counter-clockwise rotation of prey-predation trajectories
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Fig. 8. Schematic time series showing prey-predator cycle (a) and competition between
a pair of phytoplankton with niche difference (“early starter” and “late starter”) in a
seasonal lake (b). Symbols P1-P3 and C1-C5 associate sections of the time series with
angle brackets. P1 = [—145 to —128] in the upper right quadrant, P2 =[-94to—111] in
the upper left quadrant, P3 = [-25 to —8] in the lower left quadrant, C1 = [-162 to
—180] in the lower left quadrant, C2 = [43 to 60] in the lower left quadrant and C3 =
[60 to 77] in the lower left quadrant, C4 = [77 to 94] in the lower left quadrant and C5
=[-162 to —180] in the lower right quadrant. The horizontal line shows approximate
demarcation line between “high” and “low” biomass.

(see Fig.7). First, when both prey and predator are abundant, prey declines
slightly faster than the predator. This signal (P1 in Table 3) may represent the
predator being on the verge of collapsing because the prey (still in relatively
high densities) is declining (Fig. 8 a, vertical line P1). Secondly, when predator
is abundant and prey is rare and the predator declines approximately 3 times
faster than the prey, the situation may correspond to a point in the predator-
prey cycle where the predator is in the early collapse phase and the prey is still
declining (Fig. 8 a, vertical line P2). Third, when both prey and predator have
low densities, the prey grows relatively fast while the predator is still declin-
ing. This situation may represent the late predator collapse where the prey has
regained positive net growth (Fig. 8 a, vertical line P3).

Considering angle classes indicative of competition, biological explana-
tions appear less clear. However, given the analytical design and an under-
standing of the studied systems, we offer biologically plausible explanations
for the five indicative angles we identified. Recall that we always designate
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the species that reach its seasonal maximum first (early starter) as competitor 1
(x-axis).

First, when both competitors are rare, the early starter declines nine times
faster than the late starter (signal C1, Table 3). There are two periods when
both competitors normally have low and declining biomass: late spring bloom
when both algae are grazed upon, and autumn when seasonal forces causes
their decline. The huge difference in the rates of decline suggests that this an-
gle class describes late spring bloom, because here the early starters have
reached high populations, and (at vertical line C1, Fig. 8 b) virtually collapse
because of heavy grazing leading to the “clear water phase”. A relative shift in
environmental state with time (to the benefit of the late starter) and potentially
lower edibility in the late starter may also contribute to the large difference in
the rates of decline. In late autumn, we would expect more similar rates of de-
cline because reduction in light energy would impact the growth of all phyto-
plankton species negatively, as suggested by step 21 in the PEG model.

Second, when both competitors are rare, three adjacent angle classes indi-
cate a range from almost equal growth rates in both competitors to the late
starter growing much faster than the early starter. This may be the situation
when the post “clear water” growth starts, (Fig. 8 b, vertical lines C2-C4). This
interpretation is supported by the late starter growing faster than the early star-
ter indicating a relative shift with time between environmental state and niche
optimum favouring the late starter assumed to be a K-strategist. In accordance
with the PEG model, step 5, the late starter may also be a less “edible” phyto-
plankton having a growth advantage after the “clear water” phase.

Third, when the abundant early starter decreases fast, the rare late starter
decreases slowly (Fig. 8 b, vertical line C5). This signal is suggestive of an
earlier section of the late spring bloom than expressed by signal C1. Again,
heavy grazing and difference in susceptibility to grazing (late starter is as-
sumed to be less susceptible) may give the biological rationale for this signal.

General conclusion

We show that the AFM can successfully be used to study phase portraits repre-
senting biomass data from real ecosystems. For the lake Mjgsa data, we dem-
onstrate that discrimination increases with both temporal and biological aggre-
gation of data. For competition we found one signal, C1, that is common for
all three lakes analysed (Table 3).

Predation can probably be distinguished for most pairs by inspection of
clusters in PCA score plots and their accompanying loadings. Collapse in
predator population at low prey densities seems to give the strongest signal of
predation. Also the counter-clockwise rotation of identified signals suggests a
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good correspondence between the Lotka—Volterra model and our results. For
competition we can only give plausible biological interpretations of the signals
that are identified as important. Competition signals are sensitive to the type of
competitors represented by the axes in the phase portrait (i.e., r-strategist or
K-strategist and susceptible or resistant to grazing). One of the five angle clas-
ses identified as important shows nearly equal growth from low populations of
both competitors. This corresponds to the standard assumptions in a two spe-
cies Lotka—Volterra competition model. Our results, however, also suggest
that effects external to the interaction, like grazing and seasonality (see Fig. 8,
b) are confounded with the effects of competition in our data. These latter ef-
fects can, however, be reasonably well accounted for when the assumed com-
petition signals are interpreted in the context of the PEG model, since this
model also incorporates these external effects.

Results are preliminary, but if additional analyses lend further support to
our conclusions, this method has the potential to become a valuable tool for

ecologists and environmental managers seeking to characterize important in-
teractions in natural systems.
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