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Abstract

A mechanistic nonlinear model of the wet end of paper machine 6 (PM6)
at Norske Skog Saugbrugs, Norway has been developed, and used in an MPC
application. In this paper we study if the model can be applied to other paper
machines (roll-out), and we discuss advantages and disadvantages of di erent
modeling approaches. The paper machines studied are PM4 at Norske Skog
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Saugbrugs, and PM3 at Norske Skog Skogn, Norway. PM6 is a new and modern
paper machine producing SC (Super Calendered) magazine paper. PM4 also
produces SC paper but the machine is older and smaller than PM6. PM3 pro-
duces newsprint and has a size comparable with PM6. Fitting and validation
of the model to PM4 and PM3 are very promising. No structural changes to
the model were introduced, and still the validation results were good. The time
spent on fitting and validating the PM6 model to PM4 and PM3 are approxi-
mately 1% of the time spent on developing the original model. This should be
a strong incentive for focusing on mechanistic modeling in industries were there
are many similar production lines or units.

1 Introduction

Many large- and medium sized industry companies have a number of more or less
similar process-units for processing of raw materials or production of finished prod-
ucts. An industrial company which has invested, or is about to invest, in advanced
model based control in one of their units / factories, would benefit economically if
the model and controller could be e ciently rolled-out at similar units. The main
idea of this paper is to investigate how a model and controller developed for a specific
industrial process can be applied to similar processes. A mechanistic model of paper
machine 6 (PM6) at Norske Skog Saugbrugs, Norway, has been developed in (Hauge
& Lie 2002), and used in a model predictive control (MPC) implementation (Hauge,
Slora & Lie 2002). In this paper we investigate if and how the model can be reused
at PM4, Norske Skog Saugbrugs, and PM3, Norske Skog Skogn, Norway.

The papermaking process is the only process studied in this paper, however the
field of roll-out should be of interest also to other industries. For example Borealis
(www.borealisgroup.com) has many polymer reactors for producing plastics raw ma-
terials, Norsk Hydro (www.hydro.com) has many plants for fertilizer production, and
Icopal (www.icopal.com) has many production lines for extrusion of plastic pipes.

The control method chosen for PM6 is model predictive control (MPC). The reason
for choosing MPC is that it is perhaps the only advanced model based control scheme
used to any extent in the industry, there are commercially available software systems
for implementation, and the reported payback time is low (e.g. 3 months in (Bassett
& Van Wijck 1999)).

A model of the process is the foundation for every advanced control algorithm.
Given a good model of a process, there are probably a number of algorithms that
will provide excellent control of the process, and given a poor model of a process,
there are probably no algorithms that will provide good control of the process. Also,
given a good advanced control algorithm, there are often no models available for the
specific process or process unit of concern. Thus, today the key factor for success in
advanced control is the development of a reliable and good process model, or as the
following closing sentence in a paper put it:

Nowadays control is easy, modelling will always be the nut to crack...
(Richalet, Estival & Fiani 1995, page 942).
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It should be emphasized that even if a perfect model is available, several limitations
to control performance may occur. These limitations may arise from e.g. input
constraints, and right half plane (RHP) zeros (Skogestad & Postlethwaite 1996). In
practice, the model is not perfect, and additional limitations due to model uncertainty
are always present.

There exists very little published material focusing on how to e ciently roll-out
models and controllers in the industry. However, the idea of e cient roll-out of
models is not entirely new, e.g. (Glemmestad, Ertler & Hillestad 2002) emphasize
the advantage of reusing the models developed at Borealis, and many commercial
simulators include model libraries of process units intended for reuse.

This paper is organized as follows. In Section 2, various approaches to modeling,
with advantages and disadvantages, are discussed. Section 3 summarizes the work on
modeling and model predictive control (MPC) carried out at paper machine 6 (PM6),
Norske Skog Saugbrugs. Roll-out of the model on PM4, Norske Skog Saugbrugs, is
described in Section 4, and similarly for PM3, Norske Skog Skogn, in Section 5.
Finally, some conclusions are given in Section 6.

2 Modeling approaches

Two basic modeling approaches are mechanistic modeling and empiric modeling.
An empiric model is entirely based on experimental data and an appropriate model
structure, and often requires little knowledge of the system to be modeled. In the
literature one often encounter terms like black box modeling, system identification,
time series analysis, and behavioral modeling. All these terms basically mean the same
as empiric modeling. Introductory and advanced text books on empiric modeling
are e.g. (Nelles 2001), (Ljung 1999), (Walter & Pronzato 1997), (Söderström &
Stoica 1989), and (Box, Jenkins & Reinsel 1994). A mechanistic model is a model built
from basic principles of physics, chemistry, biology, etc., by writing down conservation
or balance equations. Obviously this requires extensive knowledge of the process to
be modeled. In the literature one sometimes encounters terms like white-, and grey
box modeling, see e.g. (Sohlberg 1998). White box models are mechanistic models
based on complete knowledge of the process, i.e. where both equations governing the
behavior and the associated parameters are known a priori. Obviously, such models
are rarely found. A grey box model is a mechanistic model where the equations
governing the behavior are assumed known, but parameter values need to be estimated
using experimental or historical data. Throughout this paper we include grey box
models whenever we speak of mechanistic models.

Table 1 summarizes some general properties of mechanistic and empiric models,
although exceptions can easily be found.

The perhaps strongest argument for using an empiric model is that the time for
building such a model is much lower than for a mechanistic model. In (Foss, Lohmann
& Marquardt 1998) it is indicated that the development cost for an empiric model
is about 1�10 compared to a mechanistic model. Another positive feature of empiric
models is that they often have a simple structure (linear and time invariant) which
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Table 1: Mechanistic versus empiric models. Partly reproduced from Støle-Hansen
1998, and Walter & Pronzato 1997.
Properties Mechanistic Empiric
Utilize physical knowledge and insight yes no
The parameters have known range yes no
Number of unknown parameters low high
Time needed to develop a model high low
Resources needed to maintain a model low high
Easy to use for complex/unknown processes no yes
Amount of data needed low high
Applicability to control and training yes yes
Applicability to design yes no
Extrapolation properties good* bad
Increases process knowledge yes no
Complex yes (non-linear) no (often linear)
Simulation long/di cult quick/easy
Possible roll-out of model yes no
*if structure is correct.

leads to quick and easy simulation, analysis, and design of control algorithms. If
one has access to experimental data, and the operating region of the process is only
moderately nonlinear, then it seems reasonable to first try an empiric model.

The strength of a mechanistic model lies in its ability to capture known nonlinear
phenomena and thereby having extraordinary extrapolating properties, and the pos-
sible reuse of the model on similar processes. This and other features are emphasized
in the following quotation:

..., a model based on first principles can operate in a larger domain
than a black-box model. A model based on first principles will in general
contain fewer parameters and will therefore be more parsimonious. From
the parsimony principle we know that the best model is the simplest model
that adequately describes the process, since overparameterization will in
general lead to poor generalization. A consequence of fewer parameters, a
model based on first principles will need fewer experiments to be identified.
On the other hand, a black-box structure is easier to develop. ... To
identify our model (a mechanistic model — authors note) we have only
used history data from the plant. (Hillestad & Andersen 1994, page 42
and 45)

Consider the paper machine model implemented at PM6. This model has 19
parameters, including two biases and three initial ODE values, which are tuned to fit
the model to data. The model has three inputs, three outputs, three states, and four
measured disturbances. A linear (empiric) state space model of the same dimension
would consist of 63 parameters, including the direct input to output matrix and three
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initial ODE values. An empiric transfer matrix model would consist of minimum
42 parameters, corresponding to pure first order elements. That is one parameter for
the time constant, and one for the gain, in each element. If a step response model
or impulse response model is used, the number of parameters would increase even
more. In addition, the empiric models mentioned here have a limited operating range
and must either be adaptive or a set of models is needed. In (Kosonen, Fu, Nuyan,
Kuusisto & Huhtelin 2002), an approach where a set of adaptive empiric models are
used to cover the operating region of the paper machine, is described.

A point made by (Ogunnaike & Wright 1997, page 49), is that mechanistic model-
ing results in a small number of parameters that can intuitively be understood, thus
reducing long term support cost. Industrial processes do not remain static and it is
likely that the model, whether empiric or mechanistic, will degrade with time. An-
other point, which is often neglected in the literature, is that the un-manipulatable
nature of most measured disturbances makes it hard to model their e ect on the
model outputs empirically. Submodels from measured disturbances to model outputs
can in some cases be identified from experimental data, however in most cases the
data will not be informative enough and physical knowledge and insight must be used.

3 Modeling and MPC at PM6, Norske Skog Saug-
brugs

Norske Skog Saugbrugs in Halden, Norway, is one of the largest manufacturers of un-
coated super calendered magazine paper in the world. The total production capacity
of the mill is 550� 000 ton per year. The largest paper machine (PM) at the Saugbrugs
mill is PM6, accounting for more than half the total production capacity. PM6 was
build in the early 1990’s and produce paper with width of 8�62 meters, and with a
typical velocity of 1550 meters per minute.

Magazine paper is characterized by its glossy appearance due to a high content of
filler in the paper. The finished magazine paper typically consists of 65% fiber, 30%
filler, and 5% water. The main di erence between magazine paper and e.g. newsprint
is the content of filler. For newsprint the amount of filler is typically between 0-10%.
Due to the high filler content in magazine paper, the couplings between important
input and output variables are rather dominant.

3.1 Process description

A simplified drawing of PM6 is shown in Figure 1. Cellulose, TMP (thermomechani-
cal pulp) and broke (repulped fibers and filler from sheet breaks and edge trimmings)
are blended in the mixing chest. The stock is fed to the machine chest with a con-
trolled total consistency1. Between the mixing and machine chests, filler is added at a

1The total consistency is the weight of solids (i.e. filler particles and fiber) divided by the total
weight of solids and water.
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constant rate. The fillers used in paper production depends on the end-user require-
ments, however some of the typical fillers are kaolin, chalk, talc, and titanium dioxide
(Bown 1996). About two thirds of the filler particles used at PM6 is added to the
thick stock, the rest at the outlet of the white water tank. The flow to the machine
chest is large in order to keep the level of the machine chest constant, and an overflow
is returned to the mixing chest. The total consistency in the mixing and machine
chests are typically around 3 to 4%, which is considerably higher than consistencies
later on in the process, and thus the stock from the machine chest is denoted the
“thick stock”.

The thick stock enters the “short circulation” in the white water tank. Here, the
thick stock is diluted to 1-1.5% total consistency by white water2 and a recirculation
flow from the deculator. Filler is added to the stock just after the white water tank.
The first cleaning process is a five stage hydrocyclone arrangement, mainly intended to
separate heavy particles (e.g. sand and stones) from the flow. The accept from the first
stage of the hydrocyclones goes to the deculator where air is separated from the stock.
The second cleaning process is two parallel screens, which separates larger particles
(e.g. bark) from the stock. Retention aid is added to the stock at the outlet of the
screens. The retention aid is a cationic polymer which, amongst others, adsorb onto
anionic fibers and filler particles and cause them to flocculate. The flocculation process
is a key for retaining small filler particles (and small fiber fragments) on the wire,
although the significance of mechanical entrapment of non-flocculated filler and fines
seems to be somewhat controversial in the literature. For example (Van de Ven 1984)
found (theoretically) that mechanical entrapment was low, while (Bown 1996) reports
that mechanical entrapment can be a dominant mechanism. In the headbox the pulp
is distributed evenly onto the fine mesh, woven wire cloth. Most of the water in the
pulp is recirculated to the white water tank, while a share of fiber material and filler
particles form a network on the wire which will soon become the paper sheet. The
pulp flow from the white water tank, through the hydrocyclones, deculator, screens,
headbox, onto the wire and back to the white water tank is denoted the “short
circulation”.

In the wire section, most of the water is removed by draining. In the press section,
the paper sheet is pressed between rotating steel rolls, thus making use of mechanical
forces for water removal. Finally, in the dryer section the paper sheet passes over
rotating and heated cast iron cylinders, and most of the water left in the sheet is
removed by evaporation. The paper is then accumulated on the reel before it is
moved on to further processing.

3.2 The process model

The process model is described in detail in e.g. (Hauge & Lie 2002) and only a brief
description will be given here. Note that some modifications have been carried out to
the model detailed in (Hauge & Lie 2002), as compared to the model implemented at
PM6. The most prominent modification is that a first order empiric model that was

2White water is the drainage from the wire. It is stored in the white water tank.
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Figure 1: Simplified drawing of PM6, Norske Skog Saugbrugs.



Paper G: Roll-out of Model Based Control with Application to ... 271

added to capture neglected and unknown dynamics in the process, has been removed.
The model was originally developed with several ordinary and partial di erential

equations. The model was then simplified, and eventually fitted to experimental and
operational mill data. The “final” model consists of a third order nonlinear mech-
anistic model based on physical and chemical laws. The structure of the developed
process model is

·
�̄ = �̄(�̄� �̄� �̄� �̄) (1)

	̄ = 
̄(�̄� �̄� �̄� �̄),

with �̄ R� = R3, 	̄ R� = R3, �̄ R� = R3 and �̄ R� = R4. The bar above
the variable names indicate that these are the variables in their original units and
coordinate system. �̄ consists of several model parameters, tuned to fit the model
outputs to experimental and operational data.

The manipulated inputs �̄, the outputs 	̄, the states �̄, and the measured distur-
bances �̄ are

�̄� = [�̄�� � �̄� � �̄�	] (2)

	̄� = [	̄
� � 	̄�	� 	̄�
 ]

�̄� =
£
�̄������ �̄������� �̄�����

¤
�̄� =

£
�̄TS,tot � �̄TS,fil� �̄� �̄

¤
,

where the inputs are the amount of thick stock, filler added at the outlet of the white
water tank, and retention aid added at the outlet of the screens, and where the out-
puts are the basis weigh (weight per area), paper ash content (content of filler in the
paper), and wire tray consistency in the recirculation flow from the wire to the white
water tank. The basis weight and paper ash outputs are direct quality variables, while
the wire tray consistency is an indirect quality variable having significant e ect on
variability of other short circulation variables. �̄����� is the concentration of filler in
a reject tank in the hydrocyclones, �̄������ is the concentration of filler in the white
water tank, and �̄����� is the concentration of fiber in the deculator. The measured
disturbances accounted for in the model, are the total and filler thick stock concen-
trations �̄TS,tot and �̄TS,fil, the paper machine velocity �̄, and the paper moisture
percentage �̄ .

Note that the total- and filler concentrations in the thick stock flow are called
“measured disturbances”, although they are not measured. A model of the thick
stock area has been developed (Slora 2001), and implemented at PM6, providing
estimates of total- and filler concentrations in the thick stock.

3.3 Model fitting from experimental data

The developed model has many parameters. These parameters have physical interpre-
tations and thus it should be possible to measure them (e.g. the volumes) or estimate
them one by one from local measurements (e.g. measure the flows and concentrations
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in each stage of the hydrocyclones and calculate the associated parameters). This
approach would require a very large and detailed model, probably not suitable for on-
line use. The model used at PM6 is a simple approximation of a complex process and
the parameters in the model, although they have a physical interpretation, should not
be measured and/or estimated one by one due to the poor input-output properties of
the resulting model. Consider e.g. the deculator volume, which is important for char-
acterizing the time constant for the sub-model between the thick stock and the basis
weight. The real volume of the deculator is approximately 17m3 (right chamber),
however in the model it is many times larger. The deculator volume in the model
should be regarded as a lumped volume and not a single physical volume. The most
important properties of the model are the input-output properties, i.e. the response
on the outputs from changes in inputs. Thus, we want to estimate the parameters
in the model so that these properties are good. In principle we would therefore like
to tune the parameters so that the model outputs are equal to measured outputs.
However, due to the large number of parameters in the model we set some parame-
ters equal to values that seem reasonable, and estimate the rest, i.e. we estimate 19
parameters including two biases and three initial ODE values.

The function lsqnonlin in the Matlab Optimization toolbox is used for solving
the minimization problem

�̂ = argmin
�


(�), (3)

subject to the constraints
�min �̂ �max, (4)

where � is the parameter vector and �̂ is the estimated parameter vector. Thus, we
wish to find the parameter values (arguments) �̂ that minimize the criterion 
(�).
The criterion used is


(�) = �� (�) ·� · �(�), (5)

where � is a vector of errors, and � is a diagonal weighting matrix. The function
relies on the Levenberg-Marquardt algorithm in its search for the optimal parameter
values (The MathWorks, Inc. 2000). The errors � are calculated by simulating the
system, with only the initial conditions given. The error is then

�(�) = 	̂(�|0) 	(�), (6)

where 	(�) is the measured output at time �, and 	̂(�|0) is the model output at time
� given only the initial conditions. The error vector for output � is then

��� (�) =
£
��(1) ��(2) · · · ��(�) · · · ��(� 1) ��(�)

¤
. (7)

where � is the number of samples in the data set.
Traditional system identification (see e.g. (Ljung 1999)) is in most cases carried

out using a one-step-ahead predictor (corresponding to �(�) = 	̂(�|� 1) 	(�)), however
in our case we wish to emphasize the need for a model with good long term prediction
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abilities. The reason for this is that the model is used for model predictive control
(MPC). Then, it seems natural to use the simulation approach in the parameter
estimation algorithm. The simulation approach results in a deterministic model, and
it is also necessary to identify or model the noise.

The concept of scaling is very important for robust and rapid convergence to the
optimal parameter values (Betts 2001). Here, we will point at two simple methods
for scaling: scaling of parameters and scaling of the simulation error. Scaling of the
parameters can be achieved by introducing

� = � × �̃, (8)

where �̃ is the scaled parameter vector, � is the original non-scaled parameter vector,
� is a scaling vector, and × is the Hadamard product (an element by element multi-
plication). The scaling vector � may be chosen so that the assumed scaled parameter
values are close to unity. Consider e.g. the following assumed parameter vector

� = [10 5� 108].

Choosing
� = [10 5� 108],

gives the following scaled parameter vector

�̃ = [1� 1].

Any constraints or bounds on the parameters must be scaled accordingly.
The simulation error is defined in equation 6. The basis weight is measured in

g�m2 and has a value typically around 50 g�m2, paper ash is measured in % and has
a value typically around 30%, and the wire tray concentration in measured in % has
a value of approximately 0�6%. Based on this, it is easy to understand that the error
for the wire tray concentration is very small compared to the other to errors, thus
any model fitting routine would more or less ignore the wire tray concentration and
concentrate on fitting the basis weight and paper ash. To compensate for this one
may scale the simulation error or outputs, simply by multiplying with a weight. If
all outputs are regarded equally important, one may weight them so that the outputs
are approximately equal. For example, the wire tray could be multiplied by 50 to
make it approximately equal to the paper ash. However, in our case we define the
most important output to be the basis weight, the second most important output to
be the paper ash, and the least important output is the wire tray concentration. This
ranking of importance should thus also be reflected in the weighting of the outputs.

3.4 Validation and re-tuning of model

Validation is the method of checking how good the model really is. One may find a
model fitted almost perfectly to one data set, and totally failing to explain another
data set (failing to simulate outputs close to measured outputs). Many methods for
validation exist, however in our opinion any proper validation method should at least
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include testing of the model with a new data set. Using one half of the data set for
model fitting and one half for validation is not in our opinion a proper validation
method, as one will e.g. not discover whether slow varying disturbances, drifts and
trends, eventually will ruin the properties of the model. Ideally, data sets spanning
all operating conditions of the process should be used for validation, thus one would
have a fair chance to find areas where the model is not functioning properly.

Validating a model by comparing simulated and real outputs, is in general not
enough when the model should be used for control. The individual responses from
each input to each output are also very important. A procedure is presented next,
which is used and found to work well, for model fitting, validation and re-tuning of
the model. The procedure is also pictorially presented in Figure 2.

1. Make model.

2. Collect several data sets, at least one for model fitting and one for validation.
The data set used for model fitting should contain well excited data. The data
set for validation must also to some extent be excited. The length of the data
sets obviously depends on the process and size of the model. For the PM6 work,
the data sets ranged from 2 hours to several days. It is usually not important
whether the data are collected in open or closed loop since “a directly applied
prediction error method — applied as if any feedback did not exist — will work
well and give optimal accuracy if the true system can be described within the
chosen model structure” (Ljung 1999, page 434). Check the data for outliers
and that the units are correct, and also consider filtering of the data.

3. Set up tables of approximately expected gains and time constants from inputs
and measured disturbances, to outputs. These gains and time constants could be
found from discussions with process operators and engineers alone, but should
be supported by step tests carried out on the process, if possible.

4. Choose initial parameter values and fit the model to the data. Several re-
optimizations may be needed. For example if the optimal parameter values are
very di erent from the initial values, then the optimal values should be used as
initial values and optimized again (thus, a re-scaling is also carried out). Other
reasons for re-optimizing may be to try other initial parameter values, or other
parameter bounds. If reasonably good model fit is not obtained, changing the
model equations may eventually be necessary.

5. Validate the model by comparing simulated and measured outputs, using a
di erent data set than the one used for model fitting. If the result is not satis-
factory one should probably return to point 4, and try di erent initial values or
parameter bounds. Eventually one may need to change the model equations if
reasonable validation results are not obtained.

6. Simulate step tests on the fitted model, and compare the gains and time con-
stants with the expected results as found in point 3. If the gains and time
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constants are reasonably close to the expected ones, the model fitting and vali-
dation is finished.

7. If the gains and time constants in point 6 are too far from the expected values,
re-tune the model by changing parameter values that move the gains and time
constants towards the expected ones. When reasonable gains and time con-
stants are found, go to point 5 and compare simulated and measured outputs.
Eventually one may need to change the model equations if reasonable gains and
time constants are not found.

3.5 Model Predictive Controller (MPC)

A commercial MPC developed by Prediktor AS (www.prediktor.no), was chosen by
Norske Skog for implementation. The choice of MPC was based on (i) cost, and (ii)
the ability to add and develop certain features that were important. Special features
that were important were the abilities to

• utilize the non-linear model;

• specify future reference changes. This means that the process operators can
specify a setpoint change some time into the future, see how the controller will
respond, and let the controller do the grade change if they are satisfied with the
response. In many other systems, the setpoint is constant into the future, so
once a change in the setpoint is made, the controller will respond immediately,
giving the operators no time to consider how wise the response is;

• develop an interface that will gain operator acceptance of the MPC;

• use the MPC during grade changes, sheet breaks, and start ups.

The commercial MPC is part of a software package named Apis (Advanced Pro-
cess Improvement System), which also consists of a Kalman filter, subspace system
identification, and more. The Apis MPC was intended for linear models, based on
the infinite horizon objective function presented in (Muske & Rawlings 1993). For
the predictive controller implemented at PM6, several extensions were made to the
original MPC, such as

• online linearization at each sample;

• online estimation of key model parameters/biases;

• future setpoint changes, i.e. the process operators can submit new setpoints to
the controller some time ahead of the actual grade change;

• addition of a direct input to output term;

• inclusion of measured disturbances.
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The use of MPC, a nonlinear model, an extended Kalman filter, and linearization
at each sample, has also been suggested by (Lee & Ricker 1994), although with a
finite horizon criterion. Similarly, (Gattu & Zafiriou 1992) proposed an algorithm
for nonlinear MPC, with linearization at each sample, but with computation of the
steady state Kalman gain at each sample.

3.6 Results

The main objective of the project “Stabilization of the wet end at PM6” was to
increase the total e ciency by 0�47%. This objective can hardly be validated, due to
many factors a ecting the total e ciency. Thus, several sub-goals were defined which
were assumed easier to measure and validate. The sub-goals and results concerning
reduced variability are:

Variable Sub-goal (red. std. dev.) Result
Total cons. in the wire tray 60% Achieved
Filler cons. in the wire tray 50% Achieved
Total cons. in the headbox 50% Achieved
Filler cons. in the headbox 35% Achieved
Basis weight 20% Not achieved
Paper ash 20% Achieved
Paper moisture 20% Achieved

These sub-goals were defined in 1999 when the project was initiated. In 2001 a new
scanning device for measuring e.g. basis weight and paper ash was installed at PM6.
This significantly improved the control of the basis weight using the “old” controllers.
The results in the table above are calculated with the measurement devices as of 2002,
comparing the old control configuration with the MPC control configuration. Exact
numbers for the reduction in standard deviation are not given, as they vary from day
to day, and from operator to operator.

In addition to reducing the variation in key paper machine variables, several other
benefits are obtained using MPC. Some of these benefits arise from utilizing the devel-
oped model, not only for control purposes, but also as a replacement for measurements
when these are not available or not trustworthy.

Previously, grade changes were carried out manually or partly manually (the set-
points were changed a number of times before they were equal to the new grade) by
the operators. With a mechanistic model, applicable over a wide range of operating
conditions, the grade changes are carried out using the MPC. This has resulted in
faster grade changes and operator independent grade changes. During larger grade
changes, the use of MPC results in less o -spec paper being produced during the
change. Using a single mechanistic model, the grade change is handled in a straight
forward fashion, as there is no need to switch between various local models.

The basis weight and paper ash outputs can not be measured during sheet breaks.
Previously during sheet breaks, the flow of thick stock and filler were frozen at the
value they had immediately prior to the break. Usually the sheet breaks last less
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than half an hour, and the output variables are not far from target values when the
paper is back on the reel. However, occasionally the sheet breaks last longer periods
and there may be e.g. velocity changes during the break, leading to o -spec paper
being produced for a period after the paper is back on the reel. Another frequently
experienced problem are large measurement errors immediately after a sheet break.
With the MPC, the Kalman filter estimates the basis weight and paper ash during
sheet breaks, and these estimates are used in the MPC as if no break had taken place.
Thus, when the paper is back on the reel, the outputs are close to their setpoints.

Previously, the controllers were not set to automatic mode before the outputs were
close to the setpoints, following a start up. With a model based controller using a
mechanistic model with a wide operating range, the MPC is set to automatic mode
early during start ups. This results in faster start ups, and less o -spec paper being
produced.

Occasionally a special filler is added to the stock, to increase the brightness of the
paper. During these periods the consistency measurements are not trustworthy as
they are based on optical measurement methods. This problem is solved within the
MPC / Kalman filter framework by neglecting the measured consistency, relying on
the estimate alone. For each output, there is an option within the MPC to neglect
the updating of states based on this output. This is done based on experience with
periods of poor measurements, even when only standard filler is used.

The Kalman filter estimates are used in the MPC instead of the measurements.
This leads to smoother controller action, and eliminates the need for additional fil-
tering.

The model is augmented so that some key parameters/biases are updated auto-
matically. This reduces the need for model maintenance o -line. However, should
there be larger changes in the process, such as if the white water tank is removed, or
a new retention aid is used, then it will probably be necessary to re-tune the model
and controller.

4 Roll-out at PM4, Norske Skog Saugbrugs

PM4 at Norske Skog Saugbrugs in Halden, Norway, produce super calendered mag-
azine paper. PM4 started up in 1963 and was rebuild during a period between 1987
to 1993. The production capacity is 125� 000 ton per year, with paper width of 4�65
meters and with a typical velocity of 1� 250 meters per minute (Sandersen 1999).

4.1 Process description

A simplified drawing of PM4 at Norske Skog Saugbrugs is shown in Figure 3. Only
di erences between PM4 and PM6, described in subsection 3.1, will be commented on.
Note that both PM6 and PM4 at Norske Skog Saugbrugs produce super calendered
magazine paper, but PM6 is 30 years younger, and has more than twice the production
capacity of PM4.
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The largest di erences between PM4 and PM6 are probably found in the thick
stock area. At PM4, no filler is added to the thick stock. Thus the only filler present
in the thick stock area comes with the flow of broke and recovered stock. At PM6 disc
filters are used to reclaim usable fiber and filler particles from the white water tank
overflow, while another technology is used at PM4. Starch is a polymer of glucose
derived from e.g. corn and potatoes (Scott 1996). Starch is added to the thick stock of
PM4 through the TMP flow, while no starch is added at PM6. Starch is mainly added
to improve the dry-strength of the paper, however it may also improve fines retention
and drainage on the wire, and it may have a negative e ect on paper formation3

(Marton 1996).

At PM6 the thick stock pump is manipulated to control the flow of thick stock,
while at PM4 the thick stock pump is set at a constant speed and a thick stock valve
is manipulated. This di erence should be of no concern since the measured flow of
thick stock is the flow entering the white water tank in both cases, and the MPC
calculates the setpoint for this flow. Whether the lower level controller manipulates
a pump or valve to obtain the setpoint, is irrelevant for the MPC.

The accept from the second and third stages of the hydrocyclone arrangement goes
to the inlet of the white water tank via the deculator (left chamber) at PM6. At PM4
the accept goes straight to the inlet of the white water tank. This is probably not
an important di erence since the volume of the left chamber of the deculator is very
small. Finally, a di erence in the number of stages in the hydrocyclone arrangement
can be found; at PM6 a five stage arrangement is used, while it is a seven stage
arrangement at PM4.

4.2 Model fitting results

Figure 4 shows the first attempt to fit the PM6 model to a noisy and oscillating
operational data set collected from PM4 during October 18-19, 2002. Based on this
first attempt to fit the model, it was decided to carry out experiments to obtain more
informative data.

Open loop experiments were carried out during a 5-hour period on the 10th of
December 2002. These experiments were used to find approximate values for gains
and time constants in the process, and for model fitting, as described in Section 3.4
and Figure 2. Another data set was collected on the 12th of December 2002 for
validation of the model. The validation data set was collected partly in open loop
and with the process operators manually carrying out some step changes and a grade
change. The inputs are shown in Figure 5, and the measured and simulated outputs
are shown in Figure 6. Note that no state updating takes place during the validation,
and only the initial values are given. Some statistics from the validation are given
in Table 2. The term RMSE in Table 2 denotes the Root Mean Square Error value
defined by

3The distribution of fibres in the paper sheet.
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Figure 5: Inputs at PM4 on the 12th of December 2002. The data set were used for
validation of the fitted model.

Table 2: Statistics from validation of model with PM4 data.
Properties Basis weight Paper ash W.t. conc.
Bias 0�52 0�97 0�04
RMSE* 0�37 0�19 0�013
*Bias corrected

RMSE� =

vuut 1

�

�X
�=1

(	�(�) 	̂�(�))
2, (9)

where � is the number of observations, 	�(�) is the measured value of output � at
time �, and 	̂�(�) is the predicted or simulated value of output � at time �.

5 Roll-out at PM3, Norske Skog Skogn

Norske Skog Skogn is the largest producer of newsprint in Norway. The production
of newsprint started in 1966, and the mill has three paper machines as of today. PM3
is the largest and most modern paper machine at the Skogn mill. The production
capacity of PM3 is 227� 000 ton per year, with paper width of 8�47 meters, and with
a typical velocity of 1� 350 meters per minute. The basis weight has a more limited
range than the Saugbrugs machines; typical values are 42�5, 45, and 48�8 g�m2. PM3
started up in 1981 and had a major rebuild/updating in 1995. PM3 is the only paper
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Figure 6: Validation of fitted model. The outputs were collected at PM4 on the 12th
of December 2002. The validation is carried out by simulating the system with only
the initial state values given.
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machine in Norway using DIP4 for production of newsprint. The DIP content, or the
amount of recycled fiber, is approximately 50-55% (Norske Skog 2002), (Heggli 2002).

5.1 Process description

A simplified drawing of PM3 at Norske Skog Skogn is shown in Figure 7. Only
di erences between PM3 at Skogn and PM6 and PM4 at Saugbrugs, described in
subsection 3.1, will be commented on. Note that PM3 in Skogn produce newsprint
while both PM6 and PM4 at Saugbrugs produce super calendered magazine paper. In
terms of production capacity and paper width, PM3 at Skogn, and PM6 at Saugbrugs
are comparable.

Filler is added via the DIP and broke flows, thus no other filler is added to the
thick stock or short circulation. The thick stock flow is manipulated through the thick
stock valve, with the thick stock pump set to a constant speed. The number of stages
in the hydrocyclones are 6. The accept from the second stage of the hydrocyclones
goes to the inlet of the white water tank, and the accept from the third stage goes
to the white water tank. At PM6, the accept from the second and third stage goes
to the left chamber of the deculator. The screens and the deculator appear in reverse
order at PM3, compared to PM6 and PM4 at Saugbrugs. Also, the retention aid is
added before the screens, and not after as is done at PM6.

5.2 Model fitting results

Figure 8 shows the first attempt to fit the PM6 Saugbrugs model to data collected at
PM3 Skogn during December, 4th, 2002. The basis weight is the only output excited
to any extent in this data set, the paper ash and wire tray concentration being more
or less at rest. This is a general feature of PM3 due to the low filler content in the
stock. Thus, the multivariable PM6 model does not come to full appraisal at PM3 yet,
however there is an increasing trend of using more filler in newsprint, and test runs
at PM3 with filler added to the short circulation will soon take place (Heggli 2002).

Studying data from PM3, it is clear that there is not much to gain in terms of
stabilizing the process during normal operation. However, during start ups, sheet
breaks, and grade changes, e ciency may be improved. Figure 9 shows the inputs
during a grade change. Note that the filler input is zero throughout the data set
because no filler is added to the short circulation. At the beginning of the grade
change a sheet break occur. This is recognized in Figure 10 by the basis weight and
paper ash outputs being frozen at the values that they had immediately prior to the
break. When the paper is back on the reel, the measured basis weight is 52 g�m2,
while the setpoint is 48�8 g�m2. The simulated basis weight is close to the measured
basis weight when the paper is back on the reel, and the simulated basis weight follows
the measured basis weight closely during the whole simulation. The bias in the basis
weight is approximately 0�25 g�m2. If the controller had relied on the simulated model
output during the combined grade change and sheet break, the basis weight would

4DIP = De-Inked Pulp, i.e. pulp produced from recovered paper.
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Figure 8: First trial fitting of PM6 Saugbrugs model to data from PM3 Skogn. Data
collected at 4th of December, 2002, with 30 seconds sampling time (resampled from
5 seconds sampling time).



286 Paper G: Roll-out of Model Based Control with Application to ...

20 40 60 80 100 120 140 160 180 200 220 240

310

320

330

[l/
s]

Inputs.
Thick stock, Filler, and Retention aid

0 50 100 150 200 250
-1

-0.5

0

0.5

1
[l/

s]

20 40 60 80 100 120 140 160 180 200 220 240

0.03

0.04

0.05

0.06

[l/
s]

Time [min]

Figure 9: Inputs at Norske Skog Skogn PM3 on the 12th of December 2002 during a
grade change. The data set were used for validation of the fitted model.

probably have been close to the setpoint when the paper was back on the reel. Thus,
less o -spec paper would be produced.

Figure 11 shows the inputs during a start up, and Figure 12 shows the basis
weight and wire tray concentration outputs. The basis weight measurement is frozen
at 44�8 g�m2 during the first 330 minutes. In Figure 13, it is shown in detail what
happens to the basis weight measurement and simulated output when the paper is
back on the reel for the first time after the start up. The measured basis weight is
close to 49 g�m2, with the setpoint being 45 g�m2. This deviation was more or less
predicted by the model simulation, thus the basis weight could have been much closer
to the setpoint after the start up if the controller had relied on the simulated model
outputs when the measurements were not available.

6 Conclusions

A mechanistic nonlinear model of the wet end of PM6 at Norske Skog Saugbrugs has
been developed, and used in an MPC application. Variability in important quality
variables and consistencies in the wet end have been reduced substantially, compared
to the variability prior to the MPC implementation. The MPC also provides better
e ciency through faster grade changes, control during sheet breaks and start ups,
and better control during periods of poor measurements.

Data and information from PM4 at Norske Skog Saugbrugs, and PM3 at Norske
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Skogn PM3 on the 12th of December 2002 during a grade change. The validation is
carried out by simulating the system with only the initial state values given.
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Figure 11: Inputs at Norske Skog Skogn PM3 on the 11th and 12th of December 2002
during a start up. The data set were used for validation of the fitted model.
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Skog Skogn were gathered in order to investigate the possibility to roll-out the model
and controller on other paper machines. Fitting and validation of the model were very
promising. No changes to the model were carried out, except for tuning of parameter
values, and still the validation results were good. The time spent on fitting and
validating the PM6 model to PM4 and PM3 are approximately 1% of the time spent
on developing the original model. This should be a strong incentive for focusing on
mechanistic modeling in industries were there are many similar production lines or
units.
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