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Introduction
Algebraic varieties 

In this introduction, we use Hartshornes classical book on algebraic 
geometry [2] as reference. We consider the free polynomial algebra over
=k k , Char k = 0, A=k [t1… td]. The affine n-space is the set of points 

in =n nk , an algebraic set is given by an ideal ⊆a A as the zero set
( ) { | ( ) 0 }= ∈ = ∀ ∈a anZ P f P f . The algebraic sets are the closed sets in 

a topology on n  called the Zariski topology, and an algebraic, affine 
variety is a closed, irreducible (i.e. it is not a union of two proper closed 
subsets, equivalently, every open subset is dense), subset of ⊆ nV . One 
basic term in algebraic varieties is an arrow-reversing correspondence 
from closed subsets ( ) ⊆ a nZ to radical ideals ⊆a A . The ideal of a 
closed subset is ( ) { | ( ) 0 }= ∈ = ∀ ∈I V f A f P P V

Thus ( ( )) ,= aI Z V the radical of a.

There is a close connection between differential geometry and 
algebraic geometry, and because differential geometry is seen as a tool 
for applications (physics), the same is true for algebraic geometry. The 
topology in differential geometry is the smallest topology making the 
analytic functions continuous. In algebraic geometry, we work with 
polynomials rather that power-series, so we use the smallest topology 
that makes rational functions continuous. That is the Zariski topology 
defined above.

In the Zariski topology, we have the definition of regular functions: 
Let ⊆ nU  be an open subset. A map ᴪ:u→k is called regular if there 

exists polynomials f, h such that ( )( )
( )

ψ =
f PP
h P

with ( ) 0≠h P for all

∈P U .

Definition 1: The ring of regular functions defined over an open 
subset ⊆ ⊆ nU V is the ring ( ) { : |  is regular on },ψ ψ= →V U U k U with 
its natural ring operations.

Definition 2: (Inductive and Projective Limits). A directed set (I, 
≤) is a partially ordered set I such that every finite subset of elements 
has an upper bound, or equivalently, that for each pair a,b Є I there is a 
c Є I such that a ≤ c and b ≤  c. Consider a small category a.

        a) A projective system of elements in a is a family of objects 
{ }∈i i IA together with transition morphisms :ψ →ij j iA A for each pair 
i ≤ j Є I with the properties that, for each ,ψ∈ =iii I id , and if i ≤ 
j ≤ k then .ψ ψ ψ° =ij jk ik The projective limit of the projective system 

is defined as an object lim
∈
←

∈
i I

iA a a with morphisms : limψ
∈
←

→
i I

i i iA A

for each i  such that for all ,ψ ψ ψ≤ = °i ij ji j , and such that if ( , )φY is 

another object with corresponding properties, then there is a unique 
morphism : limρ

∈
←

→
i I

iY A such that ψ ρ φ° =i i . In a small category, to 

prove the unique existence of projective limits, we let

lim { | ( ) for all }.ψ
∈
←

∈

= ∈ = ≤ ∈∏
i I

i i i ij j
i I

A a A a a i j I

b) An Inductive system is the dual of a projective: It is a family of 
objects { }i i IA ∈  together with transition morphisms :ψ →ij i jA A for 
each pair ≤ ∈i j I with the properties that, for each ,ψ∈ =iii I id and 
if i ≤ j ≤ k then .ψ ψ ψ° =jk ij ik  

The inductive limit of the inductive system is defined as an object 
lim

∈
→

∈
i I

iA a with morphisms : limψ
∈
→

→
i I

i i iA A for each i  such that for all i≤j 

ψ ψ ψ= °j ij i and such that if ( , )φY is another object with corresponding 
properties, then there is a unique morphism : limρ

∈
→

→
i I

iA Y such 

that φ ρ ψ° =i i . In a small category, to prove the unique existence of 
inductive limits, we let

lim / ~, ~ ( ), ( ) for some ,ψ ψ
∈ ∈
→

= ⇔ = = ≥


i I

i i i j i ki k j kj k
i I

A A a a a a a a k i j

For the definitions in this text, we notice that the family of open 
subsets is a directed set partially ordered by inclusion. The ring of 
regular functions locally at P is , lim ( )

⊆
→

= 
U V

V P V U , and by duality, we also 

have the other way around: ,( ) lim
∈
←

= 
P U

V V PU .

By this we have that the coordinate ring of the variety V is
( ) ( ) / ( )=V V S V A I V ,

And that the ring of locally regular functions in P is

, ( ) m
PV P S V

Where 1 1( ) ( , , )= = − … −P d dI P t P t P is the maximal ideal 
corresponding to P
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Abstract
Ordinary commutative algebraic geometry is based on commutative polynomial algebras over an algebraically 

closed field k. Here we make a natural generalization to matrix polynomial k-algebras which are non-commutative 
coordinate rings of non-commutative varieties.
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The final definition of the category of affine varieties in the 
commutative situation is the definition of morphisms. Morphism 
between two affine varieties V,W is a continuous map :φ →V W such 
that the induced map # 1: ( ) ( ( ))φ φ−→ W VU U is well defined for each 
open ⊆U W , that is φ°f f  is regular on V.

Local Categories 
Everything in this section and the next can be found in M. 

Schlessinger's classical work [7]. Let 


denote the category of local 
artinian k-algebras with residue field k. That is diagrams

with A local, artinian. The morphisms in  are the k-algebra homo 
morphisms commiting in the diagram. We let 

̂

denote the 
procategory, which is the category of projective limits in l. For any 
covariant functor f꞉C→ Sets we have the following lemma:

Lemma 1 (Yoneda): For any object C Є C there is an isomorphism
( ) (MorMor ( , ), )

ψ
→ −

C

F C C F

Given by ( )( )( ) ( )( )ψ ξ φ φ ξ=C A F , with inverse 1( ) ( )(id) ( )ψ φ φ− = ∈C C F C

The lemma extends to procategories, and is true for contra variant 
functors when we replace mor(C,-) with mor(-,C) . In particular: 

Lemma 2: Let f꞉l→ Sets be a covariant functor. Then for every 
ˆ ∈R  there is an isomorphism

ˆ
ˆ ˆ ˆ ˆ: ( ) (Mor( , ), )ψ → −R F R Mor R F

As usual 2[ ] [ ] / ( )ε ≅k k x x denotes the algebra of dual numbers. An 
epimorphism π: R→S in l is called small if ker 0π ⋅ =mR where mR is the 
maximal ideal in R . Finally, a transformation of functors f,g꞉l→Sets is 
smooth if for any small morphisms R S , in the diagram

if objects ( ) ( )∈ S SF S x y G S  and ( ) ( ),∈ R SG R y y G S there is an 
object ( )∈Rx F R mapping to both Sx and Ry   

The following concept is the one we generalize in this text:

Definition 3: The couple ˆˆ( , )ξR is said to prorepresent F if ˆ
ˆ( )ψ ξR  

is an isomorphism. The couple is said to be a prorepresenting hull, or 
R̂  is said to be a formal moduli with proversal family, ˆ,ξ if ˆ

ˆ( )ψ ξR is 
smooth and an isomorphism for [ ]εk , (usually and reasonably) called 
the tangent level.

Lemma 3: A prorepresenting object is unique up to unique 
isomorphism. A prorepresenting hull is unique up to non unique 
isomorphism.

Global to Local Theory 
Let f꞉sch∕k→s Sets be a covariant functor. Assume there exists a 

fine moduli space for the set F (k) (which can be interpreted by the 
"family"-functor being representable). This means that there exists 

a scheme M/k and a universal family uЄF(M) such that, with the 
notation above, ( )ψ  is an isomorphism. Let M Є F (Spec k) be an 
object represented by the closed point [ ]∈M , and define a covariant 
functor , ; →



MF Sets by

, ( ) { (Spec ) | (Spec )( ) }.= ∈ → =
 M R RF R M F R F k Spec R M M

Because M is a fine moduli, 

,[ ] ,
ˆMor( , ) ( , )− ⇒ −


   M MF Mor F . 
This says that  

,[ ] [ ]( , ) M M  prorepresent ,̂ MF  and so is unique up 
to unique isomorphism.

We call , MF the local deformation functor. The idea is the 
following:

The local formal moduli represent the local, completed rings of the 
moduli scheme, and can be used to analyse, or to construct, the moduli 
scheme.

Algebraic Varieties Revisited (Defined by local theory) 
Let 1[ , , ] /= … adA k t t be a k-algebra. Then Spec A is fine moduli for 

its closed points (maximal ideals). A point A∈m  Spec A corresponds 
to a unique morphism :Specφ →m k SpecA , i.e. 

Hom(Spec ,Spec ) Pts(Spec )k A A .

Definition 4: Let M be an A-module. Then : →MDef Sets is 
defined by

S S( ) { modules | is S-flat, k M M}/ ~,= ⊗ − ⊗ M k S SDef S S A M M

where two deformations are equivalent if there is an isomorphism 
~

′→S SM M  commuting with the fibre, i.e.

The earlier discussion shows that if /= mM A for ⊂m A maximal, 
then ˆ

mA pro represents /A mDef . Thus the affine theory can be defined 
as before, but with the local rings replaced by local formal moduli in 
each point. This is, by the way, the way we use deformation theory to 
construct moduli.

Notice that we have an injection /
ˆι

→ mAA H  by definition, because 
an ⊗kH A  -structure on / mA , at over S, is a homo morphism

( / ) , ι→ ⊗  mH kA End H A H A im .

Non Commutative Affine Algebraic Geometry 
For the ordinary, commutative affine algebraic geometry, the 

basic object is the polynomial algebra in d Є N variables. In the non 
commutative situation, we take the matrix polynomial algebra as our 
basic object. That is:

Let ( ) (N)= ∈ij rD d M  be an ×r r -matrix. Then the matrix 
polynomial algebra [ ]k D is the r r× matrix polynomial algebra 
generated by the idempotents ,1≤ ≤ie i r  together with the matrix 
variables (1), , ( )… =ij ij ij ijt t d t for 1 ≤ i, j ≤ r. We use the notation

11 12 1( 1) 1( )

21 22 2( 1) 2( )

1 2 ( 1)

[ ]
[ ]

[ ]

[ ]

−

−

−

〈 〉 〈 〉 〈 〉 
 〈 〉 〈 〉 〈 〉 =  
  〈 〉 〈 〈 〉 





    



r r

r r

r r r r rr

k t t t t
t k t t t

k D

t t t k t

.
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Notice that we use the commutative polynomial k -algebras on the 
diagonal. This is not the natural free object in the category, but we use it 
because it is simpler to give a (naive) geometric interpretation.

Also notice that this notation implies that the multiplication of 
( ) 'ijt l s are given by matrix multiplication.

Example 1: 11 11 12

21 21 22 22

[ (1), (2)]
(1) (2) [ (1), (2)]

 
=  + 

k t t kt
A

kt kt k t t

Differential geometry was generalized to noncommutative 
geometry by Connes and Marcolli [3], and further developed by 
Dubois-Violette in [4]. 

Generalization of differential geometry to matrix algebras is given 
by Dubois-Violette, Kerner and Madore in [5]. 

We use results from the above referred articles in the generalization 
of algebraic geometry. Before we are ready to define the noncommuative 
analogue of the ring of dual numbers:

Definition 5: The non commutative ×r r k -algebra of dual 
numbers, also called the test algebra, is the algebra 2[ ] /= mT k D

where D is the r×r-matrix with 1 in every entry, and m is the ideal 
generated by all the variables 

.ijt

The rest of the results in this section can be found in the work of 
Arnfinn Laudal [6].

Definition 6: The category ar is the category with objects Artinian 
algebras fitting in the diagram

and such that ( ) : ker 0ρ= =n nI S for some ,∈n and with morphisms the- 
Kr-algebra homo morphisms commuting with the above diagrams.

Definition 7: Let 1{ , , }= … rM M be a set of ∈r  right A
-modules, and put 

1 .== ⊕r
i iM M Then we define Def : a →M r Sets by

(S) {  mod | , }/ ,= ⊗ − ⊗ ⊗ ≅  r
r

M k S S S S S k
Def S A M k M M M S M

the relation ≅ being the one corresponding to the commutative 
situation. We must assume SM to be an s ─ a abi module on which k
acts centrally.

Notice that the property ⊗ rS S k
M S M  says that the isomorphism 

is as S-modules. This is equivalent to MS being S-flat, but we take that 
into the definition.

Definition 8: HM is called the semilocal formal moduli with 
formally versal family M if ( )φ 

MH is smooth, and an isomorphism 
for the test-algebra.

Lemma 4: The non commutative deformation functor
Def : a →M r Sets has a semi local moduli determined by some well-
defined Generalized Massey Products. That is to say, it can be 
constructed. Also, the construction gives a well-defined injection [6].

( ).→ ⊗ rMH M k
A End H M

Proof: See Eriksen [1] or Siqveland [8] for a constructive proof. A 
proof of existence can be given by generalizing the classical proof of 
Schlessinger in [7] verbatim. 

Now we have all the needed tools necessary to define the 

noncommuative affine space. 

Definition 9: Consider a matric polynomial algebra [ ]=A k D , 
( ) ( )= ∈ ij rD d M . The affine algebraic space D of this algebra is the 

disjoint union of the affine spaces on the diagonal, that is
1=

=


  ij
r

dD

i

, 

with the product (Zariski) topology. Each (closed) point in this space 
corresponds to a maximal ideal on the diagonal in the matrix algebra, 
which again corresponds to one-dimensional representations of A. For 

each finite set of (closed) points 1{ , , }= … ⊂ D
sV V V , we let 

1
,

=

=∑
s

i
i

V V and 

we define the semi local ring of D in V as , ( ) .= ⊗  rVV H V Vk
End H V H

The generalized concept of localization immediately gives 
the natural generalizations of affine varieties, regular maps, and 
morphisms. A lot of result needs to be established, which we will do in 
forthcoming work. Also, the deformation theory can be removed from 
the discussion, by defining the semi-local rings by their generalized 
Massey Products which can be given intrinsic.

Also, as algebraic geometry can be seen as a simplification of 
differential geometry for physical models, the noncommutative theory 
is needed for physical models involving entanglement.

For more examples, see the author’s articles [9-11] where more 
examples appear as resulting algebras of noncommutative deformation 
theory.
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