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Abstract

Carbon nanotubes (CNTs) have been intensively studied since their discovery more than
two decades ago. A lot of research has exploited their extraordinary properties and various
applications, meanwhile, revealed the challenges of fabricating the CNT-based device. Major
challenges concern the high temperature required for the CNT growth, and the difficulty in
handling and maneuvering the CNTs. An innovative approach to overcome these challenges
is to locally synthesize and directly assemble CNTs into devices. Following such approach,
this thesis developed a fabrication process with a high simplicity, a high controllability, and
a CMOS/MEMS compatibility for the local synthesis and direct integration of CNTs into Si
microsystems. This thesis covers the total process chain: from synthesis and integration of
CNTs, to characterization, and to testing of a proof-of-principle gas sensor.

The first key finding of this thesis is a simple and robust method to control the tempera-
ture for the growth of CNTs by using only electrical signals. During the growth process,
a localized hot region for the growth of CNTs is created by locally heating a Si microelec-
trode (Joule heating). The induced temperature is monitored through in-situ measurements
of the electrical resistance of the Si electrode. The measured resistance provides feedback
to control the input power for heating the Si electrode. This pure electrical control enables
a simple, automated and parallel process to synthesize locally and integrate CNTs directly
into microsystems.

The second key finding of this thesis is the diameter dependency for the effect of an applied
electric field on the growth orientation of CNTs. A statistical analysis of 1100 CNTs showed
that small-diameter CNTs (d < 5 nm) were straight and well-aligned with the applied electric
field, whereas the large-diameter CNTs (d > 10 nm) were curved and did not align. In the
transition regime, CNTs were moderately curved, but the average direction was at small
angle with the electric field direction.

The third key finding of this thesis is the correlation between local temperature and resulting
characteristics of CNTs. A high gradient of temperature along the Si microelectrode due
to Joule heating allowed for studying the effect of temperature. At the region where the
temperature is highest (∼900oC), the nanostructure of CNTs had the highest degree of order,
and the average diameter of CNT was smallest. At regions with lower temperatures, CNTs
had a higher degree of defects and disorder, and a lower average diameter. The density of
CNTs, however, was highest at the moderate-temperature region (∼850oC).

The other contribution of this thesis is preliminary results on the development of CNT-based
microsystems towards sensor applications. The preliminary results suggest that: (i) contact
resistance at the CNT-Si interface could be reduced by both techniques of local annealing
and local deposition of Platinum onto the CNT-Si contacts; (ii) thermal evaporation of metals
could be used to functionalize the CNTs in a microsystem where CNTs are suspended and
span two microelectrodes.

Key words: Carbon nanotubes, Local synthesis, Direct integration, Nanoscale assembly,
Gas sensors, Electric-field-assist growth.
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Chapter 1

Research Motivations and Contributions

1.1 Research context and motivations

Carbon nanotubes (CNTs) have been of great interest since their discovery by Iijima [1]
more than two decades ago. CNTs are allotropes of carbon with a cylindrical nanostructure.
A CNT can be conceptualized by wrapping one or several graphene sheets into a seamless
cylinder, as illustrated in Figure 1.1. CNTs are commonly classified into two types: single-
walled CNTs or multi-walled CNTs. A single-walled nanotube (SWNT) consists of a single
graphene sheet. A multi-walled nanotube (MWNT) consists of more than one graphene
sheet. SWNTs have a typical diameter of 1.0-1.5 nm [2]. MWNTs have typical diameters
ranging from 5 nm to hundreds of nanometers [3]. CNTs are also classified by their chirality.
The chirality of a CNT can be expressed as a pair of indices (n,m) that indicates the direction
of wrapping the graphene sheet to form the CNT (as depicted in Figure 1.1). If m = n, the
CNT structure is called "armchair" and the CNT exhibits metallic behavior. Otherwise, the
CNT exhibits semiconducting behavior with a bandgap ranging from very small to moderate,
depending on the indices (m,n). CNTs have a very high aspect ratio: their length can be 108

times greater than their diameter [4].

CNTs have become a de facto symbol of nanotechnology for their extraordinary properties
and applications in various fields. Some of their extraordinary properties are

(i) Young’s modulus on the order of 1000 GPa (experimental measurement [5, 6] and molec-
ular dynamics simulation [7]). Tensile strength can be up to 150 GPa (experimental
measurement [6], and molecular dynamics simulation [8]). Diamond has a comparable
strength with CNT, but it is about three times heavier than CNT.

(ii) Thermal conductivity can be greater than 3000Wm−1K−1 at room temperature [9] (com-
pared with 2000–2500 Wm−1K−1 for diamond [10]).

(iii) Current density can be higher than 109Acm−2 [11]. CNTs can exhibit ballistic transport
at room temperature [12].

(iv) Surface-to-volume ratio is extremely high. This property is ideal for sensor applications
[13, 14].
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Figure 1.1: Sketch of the CNT structure. A single-walled (or multi-walled) CNT is concep-
tually formed by wrapping a single sheet (or multiple sheets) of graphene. (a) A graphene
sheet: a monolayer of carbon atoms packed into a dense honeycomb crystal structure. (b)
A single-walled CNT. (c) A multi-walled CNT.

The properties of CNTs are being exploited in nano-electronic devices, gas/chemicals/bio
sensors and more [15–18] . Researchers have shown the extraordinary properties and appli-
cations of CNTs, and at the same time revealed the challenges of fabricating the CNT-based
devices. Major challenges concern the high temperature required for CNT synthesis and the
difficulty in handling and positioning CNTs into micro- and nano-systems.

A solution to these challenges is to localize the synthesis of CNTs and directly assemble
the CNTs into the devices. This approach is referred to as Local Synthesis and Direct In-
tegration of CNTs. Details about this approach will be presented in Chapter 2, section 2.4.
Following such an approach, this thesis aims to develop a well-controlled, single-step, auto-
mated, wafer-level and CMOS/MEMS-compatible process for the synthesis and integration
of CNTs into Si microsystems.

There are various methods for the synthesis of CNTs. Most methods are not well-suited
for the local synthesis and direct integration. A comparison of typical synthesis methods
is presented in Figure 1.2. Criteria for the comparison are: the controllability of the di-
ameter, the density, and the growth orientation of CNTs; as well as the possibility for direct
integration of CNTs into microsystems. Three main methods for CNT synthesis are Arc Dis-
charge [1, 19–22], Laser Ablation [23–28] and Chemical Vapor Deposition (CVD) [29–31].
Details about these methods will be presented in Chapter 2. Arc discharge and Laser Abla-
tion methods require a very high temperature for the growth of CNTs (>1000oC), and have a
low controllability of the characteristics and the location of CNTs. Accordingly, these meth-
ods are not well-suited for the direct synthesis and integration of CNTs into microsystems.
Regarding CVD method, there are a variety of modified techniques. Common CVD tech-
niques still require the entire synthesis chamber to be at a high temperature (>600oC), but
have a better controllability than Laser Ablation and Arc Discharge. These techniques are
commonly used for bulk synthesis of CNTs. Additional processes are thus required for han-
dling, maneuvering and assembling individual CNTs into microsystems after the synthesis
of CNTs. Such processes are normally complicated and expensive. In advanced CVD tech-
niques, these processes are no longer required, since CNTs are synthesized at a pre-specified
location, and are directly assembled into microsystems. Such advanced CVD techniques

2
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Figure 1.2: A comparison of the CNT synthesis methods, based on the following criteria:
controllability of diameter, density and growth orientation of CNTs, as well as the possibility
for the direct integration of CNTs into microsystems.

are referred to as "localized CVD synthesis". These techniques enable the localized growth
of CNTs by either localizing the position of catalyst, or localizing the thermal environment
for the growth of CNTs, or both. The former approach (referred to as "localized catalyst")
can only solve the problem of direct assembly of CNTs. The latter approach (referred to as
"localized heating") can solve both the problems of high temperature and the direct assembly.

A lot of research on the localized CVD synthesis has been reported. Addressing the "local-
ized catalyst" approach, Jungen et al. demonstrated a process using photolithography and
lift-off to localize the catalyst locations on a polysilicon microsystem [32–34]. By means
of a common CVD process, the authors then obtained a CNT-based device where the CNTs
located only at pre-specified locations. A similar technique was also implemented by Dong
et al.. Addressing the "localized heating" approach, Englander et al. [35, 36], Christensen
et al. [37] and Kawano et al. [38] used the resistive heating of Si microheaters to provide a
localized hot region for the growth of CNTs, while keeping the surroundings at room tem-
perature. This approach has also been applied by Engstrom et al. [39] and Kim et al. [40].
Zhou et al. [41] also used microheaters, but made of polysilicon instead of single crystalline
silicon. Being more differentiating, Dittmer et al. [42–44], Zhou et al. [45] and Lin et al. [46]
used metal microheaters, instead of silicon microheaters.

3
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The "localized heating" approach is, however, not limited to the resistive heating technique.
The utilization of laser-assisted [47–50], plasmon-assisted [51,52], or inductive heating tech-
niques [53] has also been demonstrated.

This thesis follows the approach of "localized heating". Both polysilicon and single-crystalline
silicon microheaters were used. Table 1.1 places this thesis in the context with the previous
studies. The main differentiation between this thesis and previous studies is the method of
monitoring and controlling the temperature at the region for CNTs to grow. Previous studies
have implemented the following techniques (either one or both):

(i) Numerical simulation of the relationship between the electric power and the induced
temperature due to joule heating of the microheater [35, 37, 42, 43] .

(ii) Optical analysis of the black-body radiation [53] or Raman spectra [39] from the micro-
heater to estimate the temperature.

The numerical simulation technique is not likely to provide high accuracy and repeatability.
Dittmer et al. found that their simulation overestimated the temperature because their model
had not correctly accounted for the heat transferred to the surrounding gases [43]. Moreover,
their model had not included any additional changes in the thermal conductivity or other
parameters due to physical or chemical changes in the microheater during synthesis. The
optical analysis can provide a higher accuracy, however, it requires optical equipment and
adds complexity to the synthesis process.

This thesis demonstrates a simple and robust method to control the synthesis temperature.
The temperature at the center of the Si microheater (T) is monitored through in-situ mea-
surements of the electrical resistance of the microheater (R). This method will be detailed
in Chapter 3, section 3.2. Briefly explained, the resistance of a Si microheater is correlated
with the temperature, since the resistivity of Si (doped) is highly sensitive to temperature. By
means of experimental calibrations, the relationship between the input power (P) for heating
the microheater and (R) and (T) was obtained. Since this P-R-T relationship is the nature
of the Si microheater, it remains identical regardless of the changes in environment. This
method uses only electrical signals, and allows for direct and fast feedback to control the
input power in order to obtain a desired temperature. In addition, this method allows for a
simple, automated, and parallel synthesis of CNTs

This thesis developed a process for the synthesis and integration of CNTs into Si microsys-
tems that has the following characteristics: (i) Room-temperature environment; (ii) Local-
ized growth and direct assembly of CNTs into the microsystems; (iii) Potential for batch
fabrication at a low cost. After such a process, a two-terminal microsystem consisting of
CNTs as the nano-functional element are produced. This system is referred as Si/CNTs/Si
system in the following. The CNTs in Si/CNTs/Si systems are suspended and span the two
Si microbridges. An example of a Si/CNTs/Si system is shown in Figure 1.3 (a & b). The
as-fabricated Si/CNTs/Si systems were demonstrated to work as a NH3 sensor, as presented
in Figure 1.3 (c & d).

4
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Table 1.1: Summary of previous studies on localized CVD synthesis and this thesis in con-
text.

UC
Berkeley,
USAa

ETH Zurichb University
of
Edinburghc

Other groups This thesis

Device
platform

SOI PolyMUMPs Metal on
Si

CMOS; SOI; Glass;
Metal on Si

SOI &
PolyMUMPs

Localized
parameter

localized
heating

localized
heating;
localized
catalyst

localized
heating

localized catalyst;
localized heating

localized
heating

Microheater Si Poly-Si W, Mo Pt, Poly-Si, Si, Mo,
Ti

Si & Poly-Si

Temperature
indication

Optical
analysisd

and/or
Numerical
simulatione

Optical
analysis
and/or
Numerical
simulation

Optical
analysis
and/or
Numerical
simulation

Optical analysis
and/or Numerical
simulation

Evolution of
resistancef

& one-time
calibration

Carbon
source

C2H2,
C2H4

CH4 C2H2,
C2H4

C2H2, CH4,C2H4 C2H2

Carrier gas None or Ar None Ar Ar or H2 or both or
none

Ar

Catalyst
preparation

Evaporation
Fe, Ni, Mo

Lithography +
Solution
drop-drying
Fe(NO3)3,
Mo, Al2O3

particles.

Evaporation
Fe, Mo, Ni

Solution
drop-drying:
Fe(NO3)3, Mo,
Al2O3;
Evaporation: Al,
Fe-Ni-Co;
Sputtering: Fe,
Al2O3

Evaporation
Fe, stacking
Fe-Ni

Reference [35–38,
53–56]

[32–34] for
localized
catalyst,
and [57] for
localized
heating

[42–44] for localized
heating [39–41,45,
46,48–52] and for
localized
catalyst [58]

Articles
listed in sec.
1.2.3. For
stacking
Fe-Ni, only
article P1.

a Liwei Lin and co-workers (Englander, Christensen, Kawano, Chiamori, Sosnowchik, and more)
at the University of California, Berkeley, USA. http://www.me.berkeley.edu/ lwlin/

b Christofer Hierold and co-workers (Jungen, Stampfer, Hoetzel, and more) at ETH Zurich, Switzer-
land. https://www.mavt.ethz.ch/people/professoren/chierold

c Eleanor E. B. Campell and co-workers (Dittmer, Mudgal and more) at the University of Edinburgh.
http://www.ecampbell.chem.ed.ac.uk/index.html

d Optical analysis of the light emitted from the microheater (either black-body radiation [53] or
Raman spectra [39]) to estimate the temperature.

e Numerical simulation of the relationship between the electric power and the induced temperature
due to joule heating.

f The temperature of the microheater is monitored by only direct measurements of the electrical
resistance of the microheater. The method will be detailed in Chapter 3, section 3.2.
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Figure 1.3: (a) Illustration of the local synthesis and direct integration of CNTs into microsys-
tems; (b) SEM micrograph of a resulting Si/CNTs/Si system; (c) Circuitry for a NH3 sensor
experiment; (d) Response of a Si/CNTs/Si system to NH3 [Article P6].

1.2 Research studies, contributions and publications

A list of research studies will be presented in the next section, followed by the lists of publi-
cations and contributions. Figure 1.4 show an overview of the research studies, in coupling
with the contributions and publications.

1.2.1 Research studies

Study 1: Demonstrate a method of pure electrical control for the local synthesis and direct
integration of CNTs into microsystem.

Study 2: Study the effects of synthesis conditions on the density, diameter, growth orientation
and nanostructure of CNTs.

Study 3: Study the CNT-Si contacts: their structure and electrical behavior.

Study 4: Further develop the fabricated Si/CNTs/Si system for sensor applications.

Details about the studies will be presented in Chapter 3 to Chapter 6.

6
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Figure 1.4: Distribution of publications with regard to studies and contributions of this thesis.

7
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1.2.2 Contributions

Main contributions of this thesis are:

Contribution C1: A method of pure electrical control that enables a simple, automated and
parallel process to synthesize locally and integrate directly CNTs into Si
microsystems.

Contribution C2: A demonstration of the above method on polysilicon structures. Polysili-
con is commonly used as a structural material of microelectromechanical
systems (MEMS) and CMOS devices.

Contribution C3: A discovery of the diameter dependency for the electric-field assisted
growth of CNTs.

Contribution C4: A discovery of the effect of local temperature on the resulting characteris-
tics of locally grown CNTs.

Contribution C5: Microscopic observations of the structure of locally grown CNTs.

Contribution C6: High resolution SEM characterization with transmission mode imaging of
the nanostructure of locally grown CNTs.

Contribution C7: Microscopic observations on the CNT-Si contact modes for locally grown
CNTs.

Contribution C8: A demonstration of using a resulting Si/CNTs/Si system after synthesis as
a NH3 gas sensor.

Contribution C9: A demonstration of using thermal evaporation to functionalize the CNTs
in the Si/CNTs/Si systems where CNTs are suspended and span two mi-
croelectrodes.

1.2.3 Publications

Publications enclosed in this thesis

P1: Bao Q. Ta, Nils Hoivik, Einar Halvorsen, and Knut E. Aasmundtveit, "Electrical control
of synthesis conditions for locally grown CNTs on polysilicon microstructure," Proceed-
ings of the 11th IEEE Conference on Nanotechnology, 374-377, Portland, Oregon, USA,
15-18 Aug. 2011.

P2: Bao Q. Ta, Einar Halvorsen, Nils Hoivik, and Knut E. Aasmundtveit„ "Diameter de-
pendency for the electric-field-assisted growth of carbon nanotubes," Applied Physics
Letters, 103, 123102-4, 2013.

8
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P3: Bao Q. Ta, Tormod B. Haugen, Nils Hoivik, Einar Halvorsen, and Knut E. Aasmundtveit,
"Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Tempera-
ture Distribution on Growth Structure," Materials, 6, 3160-3170, 2013.

P4: Bao Q. Ta, Quoc-Huy Nguyen, Nils Hoivik, Einar Halvorsen, and Knut E. Aasmundtveit,
"Observations on defects and contact modes for locally grown CNTs," Proceedings of the
12th IEEE Conference on Nanotechnology, 1-6, Birmingham, UK, 20-23 Aug. 2012.

P5: Bao Q. Ta, Anh V. Ngo, Huy Q. Nguyen, Nils Hoivik, Einar Halvorsen, and Knut
E. Aasmundtveit, "Deposition of Palladium on Suspended and Locally Grown Carbon
Nanotubes using Thermal Evaporation," Proceedings of the 13th IEEE Conference on
Nanotechnology, 1176-1179, Beijing, China, 5-8 Aug. 2013.

P6: Knut E. Aasmundtveit, Bao Q. Ta, Liwei Lin, Einar Halvorsen, and Nils Hoivik, "Direct
integration of carbon nanotubes in Si microstructures," Journal of Micromechanics and
Microengineering, 22, 074006, 2012.
My contribution: Did all experiments and all data analysis used in the paper, made all
figures and contributed to the writing.

Publications not enclosed in this thesis:

During the time of my doctoral studies, I have also contributed to the following publications:

I. Knut E. Aasmundtveit, Bao Q. Ta, Quoc-Huy Nguyen, Tormod B. Haugen, Nils Hoivik,
and Einar Halvorsen, "Direct Integration of Carbon Nanotubes in Si Microsystems –To-
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1.3 Thesis structure

Chapter 2 will present the background of the CNT synthesis methods, the electrical proper-
ties, and sensor applications of CNTs. Each chapter from Chapter 3 to Chapter 6 will present
a research study from Study 1 to Study 4 respectively. Chapter 7 will present the conclusion
of this thesis. Finally, the published papers are enclosed.
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Chapter 2

Background

2.1 Electrical properties of CNTs

2.1.1 Intrinsic properties

Both theoretical calculations and experiments have shown that electrical properties of CNTs
are dependent on the diameter, chirality and structural disorder of the CNTs [59–61]. The
chirality of a CNT can be expressed as the pair of indices (n,m) that indicates the direction
of (conceptually) wrapping the graphene sheet to form the CNT. Calculations [59] predict
that armchair CNTs (i.e. CNTs with n = m) are metallic. CNTs with n-m = 3N (N is an
integer) are mostly metallic; otherwise, CNTs are semiconducting. Wilder et al. [60], using
scanning tunnelling microscopy (STM) and spectroscopy, verified the theoretical prediction,
and found that the bandgap (Eg) of semiconducting CNTs is around 0.4 - 2.0 eV and de-
pendent on the tube diameter (d), Eg ∼ 1/d. Odom et al. obtained similar results by STM
measurements [61]. The band gap of MWNTs has been predicted to decrease with increas-
ing tube diameter, and a MWNT with diameter d≥10 nm is likely to be metallic rather than
semiconducting [59]. Bachtold et al. [62], using electrostatic force microscopy and scanned
gate microscopy, have found that:

(i) MWNTs with a diameter of 9 nm are diffusive conductors with a well-defined resistance
per unit length (∼10 kΩ/µm), while metallic SWNTs are ballistic conductors over mi-
crometer lengths.

(ii) The resistance of a semiconducting SWNT is dominated by a series of strong scattering
sites along the tube length. The origin of these scattering sites has not yet been found,
but the authors proposed that it could correspond to the local defects in the nanotube or to
the long-range electrostatic potential fluctuations associated with local charges or surface
contaminants.

(iii) The authors obtained a value of ∼60 MΩ for the resistance of a bundle of semiconducting
SWNTs (bundle diameter ∼3 nm, length ∼4 micrometers).
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However, Li et al. [63] obtained a resistance between 150 kΩ - 6 MΩ for a semiconducting
SWNT with a length of 20 µm (grown by CVD). The different results obtained by Bachtold
et al. and by Li et al. probably result from the difference in the structure and disorder
of the CNTs, since the electronic properties are strongly modulated by structural variations
[64–69].

The electronic properties of CNTs can be manipulated. A p-type semiconducting CNT may
be changed to behave as an n-type semiconductor by doping or annealing processes [70–73].
Derycke et al. found that a p-CNT field-effect transistor (FET) can be converted into an n-
FET by annealing in a vacuum at 200oC for 10 hours. Bockrath et al. found that CNTs can
change from p-type to n-type after being evaporated with potassium [73]. Conversely, an
n-type CNT can become p-type after exposure to oxygen [71].

2.1.2 Contact between CNT and Silicon

An important issue that prevents the CNT-based devices from reaching their excellent elec-
trical properties is the high contact resistance when connecting CNTs to the micro- and
macro-structures. Kawano et al. [38] reported the resistance of a Si/CNT/Si system was
∼2.5 MΩ. The CNT in this system was a MWNT with a length of ∼7.5 µm and a diameter
of ∼50 nm. According to Bachtold et al. [62], a MWNT with a diameter of 9 nm would
have a resistance per unit length of ∼10 kΩ/µm and that nanotubes with larger diameters are
more metallic. Thus, the intrinsic resistance of the above-mentioned CNT is expected to be
less than ∼75 kΩ, which is one order of magnitude smaller than the total resistance of the
Si/CNT/Si system (∼2.5 MΩ).

Schottky barrier exists at the CNT-Si contact, similar to the contacts between metal- semi-
conductor [74–76]. The Schottky barrier results in rectifying characteristics of the CNT-Si
contact. In the contact between metallic CNT and n-type Si, the Schottky barrier hinders
the electron flow from the CNT into silicon, but allows the opposite flow. If neglecting the
Fermi-level pinning from interface states and barrier lowering from image charges, the bar-
rier height ΦB is equal to ΦCNT - qχ [77]. The work function of CNT, ΦB, is likely to
be similar to graphite, which is 4.4 eV [78], and the electron affinity of silicon qχ is ∼4.0
eV [79]. The barrier height is thus about 0.4 eV. If the reverse bias is high enough for the
breakdown to occur, the contact will be conducting; otherwise, there will no significant cur-
rent. Using an avalanche breakdown model [80], we can estimate the reverse breakdown
voltage for CNT-Si to be in the range 2 - 8 V when the doping concentration of n-type Si is
on the order of 1018 cm3.

The barrier height is dependent on the doping concentration of silicon [80, 81]. For heavily
doped silicon, the barrier height is significantly reduced [77], the CNT-Si contact will then
behave as an ohmic or near-ohmic contact. The metal-silicon junction model [81] suggests
a specific contact resistivity of 10−5 - 10−8 Ωcm2 for a MWNT-Si (n-doped) contact, using
a barrier height of 0.4 eV and doping concentration of n-type Si at 1019 - 1020 cm−3. For a
CNT with a diameter of ∼30 nm and with tip-contact, the contact area is 10−12 - 10−11 cm2.
The calculated contact resistance for that CNT is thus in the range 107 - 103 Ω.
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Not only the CNT-Si contacts, but also the CNT-Metal contacts have a high resistance.
Liebau et al. reported that the contact resistance at the CNT-Metal interface is in the range
104 - 109 Ω [82–85]

2.2 CNT-based chemical gas sensor

2.2.1 Introduction

The electronic properties of SWNTs have been shown to be very sensitive to chemical en-
vironment [13]. Collins et al. [14] showed experimentally that the thermoelectric power
(TEP) and electrical resistance of SWNTs can reversibly change upon exposure to a small
amount of oxygen. Upon exposure to oxygen, semiconducting CNTs would apparently ex-
hibit metallic behavior. The mechanism can be explained by using the nuclear magnetic
resonance (NMR) study of SWNTs by Tang et al.: the spin-lattice relaxation rates of CNTs
could increased dramatically upon exposure to oxygen and the fast relaxation is attributed to
metallic characteristics [86].

Sumanasekera et al. [87] demonstrated experimentally that the electronic properties of SWNTs
can be very sensitive to inert gases at temperature T>100 K. It was explained that the resis-
tance change was caused either by the increased carrier scattering from dynamic defect states
associated with momentarily adsorbed gas, or by the nonthermal, localized phonons gener-
ated by the collisions of gas molecules with the CNT wall.

Kong et al. found that semiconducting SWNTs changed their conductivity over several
orders of magnitude under exposure to NO2 and NH3 at room temperature [88]. Within
10 seconds after exposure to 200 ppm NO2, the conductivity of the SWNT increased by
three orders of magnitude. Upon exposure to 1% NH3, the conductivity of the SWNT de-
creased by two orders within 2 min. These responses were proposed to result from the
charge transfer between the p-type semiconducting SWNT and the electron-donating NH3

or electron-withdrawing NO2 gas. When the SWNT absorbs (or adsorbs) NO2 molecules,
the NO2 molecules withdraw electrons from the SWNT, thereby increasing the hole carrier
concentration in the SWNT and causing an increase in conductance. The effect is opposite
with NH3 molecules: NH3 molecules donate electrons to the SWNT, thereby reducing the
hole carrier concentration in the SWNT and causing a decrease in conductance. Other gases
with electron donating or accepting capabilities could also produce similar effects as NH3

and NO2. Oxygen can cause dramatic changes in resistance of CNTs [14]. Other gases, such
as CO [89–91], CO2 [92], CH4 [93], ethanol [94–98], methanol [94, 99], acetylene [98],
SF6 [100], have been shown to be induce a change in the resistance of CNTs.

In general, existing chemical sensors use metal oxides and require a high temperature (up to
600oC) for the operations. In contrast, CNT-based sensors have significant responses at room
temperature. However, CNT-based chemical sensors normally have a long recovery time (up
to several hours) to release the analytes for another sensing operation. Poor recovery remains
a drawback for CNT-based chemical sensors [88].
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Table 2.1: Sensing performance of selected CNT-based chemical/gas sensors.

CNT type Analytes Detection limit Reversibilitya Response time
(s)

Reference

a single
SWNT

NO2, NH3 2 ppm (NO2)
0.1% (NH3)

Irreversible <600 Kong et al. [88]

SWNTs O2 Not-stated Reversible Not-stated Collins et al.
[14]

SWNTs NO2 44 ppb Reversible
(using UV
light)

600 Li et al. [101]

MWNTs NO2 5-10 ppb Reversible (at
165oC)

∼600 Valentini et al.
[104]

a Reversibility: The quality of being recovered, i.e. releasing the analyte before another sensing
operation.

Li et al. used a sensor that composes of CNTs network on an interdigitated electrode and
obtained a short recovery time (to the order of minutes) by using ultraviolet light [101].
The authors found that the variation in sensitivity between devices was about 6%, indicating
a superior reproducibility of CNT-based sensor to metal oxide or polymer-based sensors
[102, 103].

The sensing performance of selected CNT-based chemical/gas sensors is shown in Table 2.1.
Most CNT-based sensors are based on the change in the resistance of CNTs upon exposure
to chemicals or gases. However, the sensor configurations are not limited to that. Alternative
approaches have been demonstrated. Chopra et al. used a circular disk resonator coated with
degassed CNTs, and found that the CNTs changed their dielectric constant upon exposure to
CO, N2, He, O2 or Ar gas [90]. Their device achieved a sensitivity of ∼100 ppm, but required
a relatively high temperature (125oC) and a low pressure (10−5 Torr) for operation. Ong et
al. also used a CNT-based resonator to detect O2 and CO, and showed that their sensors
worked at room temperatures [92], thus indicating that the high temperature requirement is
not insurmountable.

2.2.2 Role of defects on the sensing properties of CNTs

The sensing characteristics of CNT-based sensors can be improved, even modified, by intro-
ducing defects along the sidewall of the CNTs. Valentini et al. showed that defective CNTs
exhibit a greater sensitivity toward NO2 compared to defect-free CNTs [104]. Theoretical
calculations predict that the defect sites on a CNT could result in a strong chemisorption
and charge transfer to NO2 molecules. Defect-free CNTs are normally less sensitive to gas
molecule due to the strong sp2 carbon-carbon binding in the CNTs. Robinson et al. in-
troduced carboxylic acid sites on SWNTs, and observed an improved sensitivity to various
analytes, such as acetone, methanol, hexane, toluene, H2O [105]. The authors hypothesized
that the increased adsorbate binding energy and charge transfer at the defect sites might im-
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prove the sensitivity. Watts et al. studied the responses of pristine MWNTs and acid-treated
MWNTs (treated by H2SO4/HNO3 mixture) to water vapor and oxygen [106], and found
that the acid-treated MWNTs had a higher sensitivity than the pristine MWNTs. The acid-
treated MWNTs increased 5% in resistance after 100 seconds under exposure to H2O vapor,
while pristine MWNTs sensors increased only 3% in resistance. The authors explained that
the oxygen-containing groups (e.g. the carboxyl -COOH) at defect sites withdraw elec-
trons from the CNT, then increasing the hole carrier concentration in the CNT, and thus
making the CNT become p-type semiconducting. Upon absorption of water molecules, the
electron-withdrawing ability of these groups is reduced, thus causing a decrease in the hole
carrier concentration, and accordingly causing an increase in the resistance of the CNT. Fu
et al. [107] demonstrated experimentally that carboxylated SWNTs are also sensitive to CO,
with a detection limit of 1 ppm, whereas pristine SWNTs did not respond.

2.2.3 Functionalization of CNTs with metal nanoparticles/nanoclusters

Pristine CNTs have a low specificity to different analytes, and have a low sensitivity to ana-
lytes that have a low affinity with CNTs. A solution for these shortcomings is to functionalize
CNTs with functional groups. The binding between a functional group and CNT can be co-
valent or non-covalent, depending on the linkages of the functional groups. The esterification
or amidation of carboxylic acid groups during acid treatment of CNTs can form function-
alized CNTs with covalent bonds [108, 109]. Functionalized CNTs that have non-covalent
bonds with the functional groups can be formed by supramolecular complexation due to ad-
sorptive and wrapping forces, such as van der Waals and π-stacking interactions [110, 111].
Most studies about the functionalization of CNTs for gas sensors used either organic poly-
mers or metal nanoparticles/nanoclusters. CNTs could also be functionalized with organic
polymers, but this is out of scope of this thesis, thus not being reviewed further.

Kong et al. demonstrated that SWNTs functionalized by electron-beam evaporation of Pd
(target thickness:∼0.5 nm) are excellent for detection of hydrogen at ambient conditions,
with a fast response, a high sensitivity and a high reversibility [88]. The authors reported
that the electrical resistance of the Pd-decorated SWNTs doubled when the SWNTs were
exposed to 400 ppm H2. Their proposed mechanism is that H2 molecules dissociate into
hydrogen atoms at the surface of a Pd nanoparticle, and dissolve into the particle, and then
inducing a decrease in the work function of Pd. As a result, more electrons can transfer from
Pd to SWNT. As the SWNT was p-type semiconducting, the hole carrier concentration in
the SWNT will be reduced when more electrons transfer from Pd to the SWNT, and hence
the resistance of the SWNT will increase. The response time of Pd-decorated SWNTs was
5-10 s, and the recovery time was ∼400 s. The sensor is reversible, because hydrogen atoms
in Pd can combine with O2 in air to form H20 that leave off the SWNT, thus recovering the
initial resistance.

Kumar et al. demonstrated good H2 sensors at room temperature, using MWNTs that were
chemically functionalized with Pt and Pd nanoparticles [112]. The formation of Pt (or Pd)
nanoparticles on MWNTs was realized by a solution treatment, using H2PtCl6 or PdCl2 and
a reduction agent such as NaBH4. The functionalized MWNTs had a high sensitivity and a
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high reversibility at room temperature to H2 gas. The authors proposed a mechanism that
was similar as proposed by Kong et al., presented in the previous paragraph.

The CNTs functionalized with Pd nanoparticles also have a good sensitivity to CH4, as
demonstrated by Lu et al. [113]. The deposition of Pd nanoparticles onto CNTs were realized
by sputtering of Pd with a target thickness of 10 nm. The authors found that Pd-decorated
CNTs can detect CH4 at a concentration of 6-100 ppm. The resistance of Pd-decorated CNTs
reduced upon exposure to CH4; this is opposite to the case of H2. The authors proposed a
mechanism that hydrogen atoms in CH4 withdraw electrons from Pd, resulting in more hole
carriers in the CNT. For p-type semiconducting CNTs, this effect will result in a decrease the
resistance of the CNTs. Most as-grown SWNTs were p-type semiconducting.

Sayago et al. demonstrated a solution-based method for the functionalization of CNTs with
Pd [114]. The authors used a palladium salt and used toluene as a solvent. Pd nanoparticles
(sizes of 3-10 nm) were uniformly attached to CNT sidewall. The resulting Pd-decorated
CNTs had good response to H2 at a concentration of 0.1%-2%, at room temperature.

Mubeen et al. used site-specific eletrodeposition technique to functionalize CNTs with Pd
[115]. The functionalized CNTs had a good sensitivity to H2 (0.42% resistance change per
ppm) with a detection limit of 100 ppm. Their sensors exhibited a linear response up to 1000
ppm at room temperature, but had a poor reversibility in Argon environment. The author
found that their sensors response faster in humid air conditions than in dry air conditions.

Young et al. [116] fabricated NO2 sensors using a SWNT thin-film coated with alkanethiol-
monolayer-protected gold clusters. Their sensors can detect NO2 at a concentration of 4.6
ppb at ambient conditions. The authors used ultraviolet light to accelerate the recovery pro-
cess of their sensors (i.e. to improve the reversibility).

Penza et al. functionalized MWNTs bundles with Au- or Pt- or Pd-nanoclusters for the
detection of NO2, NH3, H2S, and CO [117,118]. The MWNTs bundles were synthesized by
plasma-enhanced CVD on an alumina substrate. Pt- (and Pd-) nanoclusters were deposited
on the surface of the MWNTs by sputtering of Pd (and Pt) with a nominal thickness of
5 nm. The authors found that the Pd- and Pt-functionalized CNTs had superior sensing
characteristics, as shown in Table 2.2.

Functionalized CNTs are great elements of a sensor network that can detect different gases
at the same time. In such a sensor network, each sensor has a high sensitivity and selectivity
to a specific analyte. Star et al. fabricated a sensor array consisting isolated, individual CNT-
based sensors [119]. Each sensor was functionalized with a specific metal, such as Au, Pt,
Pd, or Rh. The functionalization was realized by site-selective electrochemical deposition.
A resulting sensor array could detect different gases: H2, CH4, CO, H2S, NH3 and NO2.
A combination of pristine CNTs, Au-decorated CNTs, Pd-decorated CNTs, and polymer-
coated CNTs have been demonstrated by Lu et al [120]. The authors fabricated a sensor
array by combining thirty-two CNT-based sensors. This sensor array could detect NO2,
HCN, HCl, Cl, acetone and benzene at a concentration on the order of ppm. This sensor
array also successfully discriminated the targeted gases. Table 2.3 presents a summary of
selected literature on CNT-based sensors using metal-funcationalized CNTs.
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Table 2.2: Sensing performance of Pd- and Pt-functionalized CNTs towards NO2, NH3, H2S,
and CO at a temperature of 200oC - reported by Penza et al. [117].

Test gas Mean sensitivity (%/ppm)a Detection limita

CNTs Pd-CNTs Pt-CNTs CNTs Pd-CNTs Pt-CNTs

NO2 3.2 3.8 3.9 19 ppb 9 ppb 3 ppb

H2S 1.3 1.6 3.7 46 ppb 23 ppb 4 ppb

NH3 0.008 0.02 0.07 3.8 ppm 1.7 ppm 0.2 ppm

CO 0.0007 0.0012 0.0039 90 ppm 32 ppm 4 ppm

a Mean sensitivity is defined as Sm = 1
n

∑N
i=1

(∆R/R)i
ci

(%/ppm), where (∆R/R)i is the percentage
relative change in resistance corresponding to the ith-measurement for gas concentration ci, for
N exposures to the same gas.

Table 2.3: Sensing performance of selected metal-functionalized CNT sensors.

Metal CNT type Target
gas/vapor

Functionalization
method

Detection
limit

Response
time
(s)

Reference

Pd a single
SWNT

H2 Electron-beam
evaporation

40 ppm 5-10 Kong et al.
[88]

Pd SWNTs H2 Chemical
solution;
Sputtering

1000 ppm Not
stated

Sayago et
al. [114]

Pd SWNTs CH4 Sputtering 6 ppm 120-
240

Lu et al.
[113]

Au, Pd,
Pt

MWNTs NO2,
NH3,
H2S, CO

Sputtering 3 ppb (NO2),
4 ppb (H2S),
0.2 ppm
(NH3), 4
ppm (CO)

<600 Penza
et al.
[117,118]

Au SWNTs NO2 Drop-coating
mono-layer Au
clusters

4.6 ppb Not-
stated

Young et
al. [116]

Pd SWNTs H2 Electrochemical
functionalization

100 ppm 600 Mubeen et
al. [115]

Pt, Pd MWNTs H2, NO2,
H2O

Chemical
functionalization

Not-stated 600-
1800

Kumar et
al. [112]

Pt, Pd,
Sn, Rh

SWNTs H2,
CH4,CO,
H2S

Electrochemical
deposition;
E-beam
evaporation

Not-stated 600 Star et al.
[119]
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2.3 Bulk synthesis of CNTs

2.3.1 Arc Discharge

The discovery of CNTs were from an arc discharge experiment [1] by Iijima in 1991. Figure
2.1 shows the schematic of the Arc Discharge synthesis of CNTs. A high temperature up to
∼4000oC) is created by passing a DC current (50 - 100 A) through two graphite electrodes
(at a separation of ∼1 mm. The discharge occurs and vaporizes the surface of one graphite
electrode (the anode), producing carbon vapors. The carbon atoms will then deposit at the
other electrode (the cathode), forming CNTs and various carbon products [1, 19–22].

The arc discharge technique can produce both SWNTs and MWNTs, depending on the com-
position of the anode. If the anode is pure carbon, MWNTs are produced [121, 122]. If the
anode contains metal catalysts, SWNTs are produced [19,123,124]. The reaction atmosphere
is a parameter to control the CNT diameter [20].

Figure 2.1: Schematic of the Arc Discharge synthesis of CNTs [19]. A direct current of 50
to 100 A, driven by a potential difference of approximately 20 V, creates a high temperature
between two electrodes of carbon rods at a separation ∼1 mm. The discharge vaporizes
the surface of one of the carbon electrodes. The carbon vapors condenses at the other
electrode, forming CNTs and various carbon products.

2.3.2 Laser Ablation

In Laser Ablation, a laser beam is used to vaporize the carbon source in an inert gas en-
vironment [23], at a temperature of 800-1200oC. The laser converts a small amount of the
carbon source into a plasma of carbon atoms and molecules. CNTs together with various
products will be produced in the plasma plume, and then follow the carrier gas to deposit at
the end of the chamber [23–28]. Examples of laser sources used in Laser Ablation are CO2

lasers [27,28,125] and Nd:YAG [24,125] lasers, either in continuous [27] or pulsed [125,126]
operation. Figure 2.2 shows a simple schematic of an apparatus for Laser Ablation synthesis
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of CNTs. Both MWNTs and SWNTs can be produced by Laser Ablation. MWNTs will
be the main product if the carbon source is pure graphite or boron-doped graphite [127].
SWNTs will be the main product if f the carbon source is doped with metal catalyst (such as
nickel, or cobalt) [23, 128–130].

Figure 2.2: Typical apparatus for the Laser Ablation synthesis of CNTs [126]. The laser
converts a small amount of the carbon source into a plasma of atoms and molecules. In the
plasma plume, carbon atoms will bind together and form CNTs and various carbon products.

2.3.3 Chemical Vapor Deposition (CVD)

Chemical vapor deposition (CVD) has become the most popular method for the synthesis
of CNTs. CVD growth of CNTs involves in the decomposition of a carbon-containing gas
or vapor (e.g. C2H2) at high temperature and presence of a metal catalyst. CVD growth
of CNTs was first demonstrated by Endo et al. in 1993 [29], although Baker et al. had
demonstrated the formation of carbon filaments by the decomposition of C2H2 in 1972 [131].

CVD has become the most widespread method since it has a relatively low cost, a large-scale
capability, a high versatility. Many variations of CVD techniques have been developed,
including thermal CVD (or conventional CVD) [30], plasma-enhanced CVD [31], water-
assisted CVD, [132,133] , oxygen-assisted CVD [134], hot-filament CVD (HF-CVD) [135],
microwave plasma CVD (MPE-CVD) [136,137] or radio-frequency CVD (RF-CVD) [138].
Each technique has advantages and disadvantages in terms of purity of the product, cost,
scalability, controllability.

Thermal CVD

Thermal CVD has high versatility, simplicity and wide process window of parameters. Com-
pared to other methods (e.g. plasma-enhanced CVD, oxygen-assisted CVD, etc.), thermal
CVD offers relatively inexpensive equipment and reactants. Generally, a thermal CVD pro-
cess is conducted in a reaction chamber held at a temperature of 550 - 1200oC [139, 140]. A
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mixture of carbon source gas (or vapor) and a carrier gas is fed into a reaction chamber for
the growth of CNTs. The carbon source gas is normally a hydrocarbon, such as acetylene
(C2H2), ethylene (C2H4), benzene (C6H6), methane (CH4), etc. [141–143]. The carrier gas
is normally an inert gas, such as nitrogen, helium, or argon. The carbon source molecules
will be decomposed by either the catalytic action of metal nanoparticles or by self-pyrolysis,
at elevated temperatures. For instance, pyrolysis of benzen in the presence of Ni catalyst
occurs at 900oC, and in the absence of Ni catalyst it occurs at 1140oC [144]. In CVD, the
growth of CNTs require the presence of catalyst nanoparticles; otherwise, other carbon prod-
ucts will be formed. CNTs grow from the catalyst nanoparticles, since the decomposition of
carbon-source molecules occurs at the surface of the catalyst particles. A simple schematic
of a thermal CVD apparatus is shown in Figure 2.3

Catalyst is a critical factor in CVD growth of CNTs. Common catalyst are metal nanoparti-
cles, such as Fe, Ni, Mo, Co and most of transition metals. The catalyst is typically deposited
on the substrate surface prior to the growth reaction, but can also be fed into the reaction
chamber simultaneously with the carbon source. The type and amount of catalyst affect the
yield, structure and diameter of CNTs [145–147]. CNTs grown by CVD commonly have a
higher degree of defect and disorder than CNTs grown by Laser Ablation or Arc Discharge.

Figure 2.3: Schematic of an apparatus for thermal CVD growth of CNTs [124]. The heating
coil provides high temperature for the decomposition of the carbon source gas at the metal
catalyst particles. Carbon atoms bond together and grow CNTs from the metal particles.

2.4 Localized CVD synthesis

Common CVD techniques require a high temperature reaction chamber for the CNT synthe-
sis, and require additional processes to maneuver and assembly CNTs into a device after syn-
thesis [148–150]. The transferring processes are normally complicated and time-consuming.
The high temperature requirement hinders the direct integration of CNTs into devices. Solu-
tions for these problems would be to either localize the thermal environment or the catalyst
position or both.

The approach of localizing the catalyst position allows for the direct integration of CNTs into
a device, since it allows for CNTs to grow only at specific locations [32–34, 151]. Jungen
et al. [32] reported a process flow consisting of 5 main step: (i) Spin coating photoresist
PMMA on a 2 mm × 2 mm chip that contains PolyMUMPs microsystems; (ii) Electron
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beam lithography to create openings with a feature size of 2 µm, which will serve as place-
holders for the catalyst; (iii) a droplet of iron nitride dissolved in methanol is placed onto
the chip, followed by a drying process; (iv) lift-off process to strip PMMA away, leaving
islands of iron nitride at the defined place-holders; (v) CVD growth of CNTs (in a furnace
at 900oC at ∼75 Torr, using CH4 as carbon feedstock); (vi) metallization (deposition of
metal for electrical connections); (vii) HF release and CO2 drying. The authors successfully
fabricated microsystems that contain CNTs as the active element. Dong et al. [58] also used
electron beam lithography to define the locations of catalyst (nickel), and achieved better
confinement of catalyst islands (in size of 50-150 nm). In general, the approach of localizing
the catalyst position solves only the problem of direct placement and assembly of CNTs into
a device.

In many cases, the device may contain temperature-sensitive materials that can be altered
or even destroyed at high temperature. For example, processed CMOS devices should not
be exposed to a temperature above 300-400oC. In such case, localizing only the catalyst
position is not enough. The thermal environment needs to be localized. In fact, when the
thermal environment is localized, both the problems of high temperature and direct assembly
are solved. The approach of localizing the thermal environment was first demonstrated by
Englander et al. [35]. The authors used a suspended Si microbridge as a microheater, which
is locally heated by the passage of an electric current (Joule heating) to provide a hot region
for the growth of CNTs. Their experimental setup is illustrated in Figure 2.4. The growth
of CNTs occurred when the microheater is heated to about 850-900oC in the presence of
a carbon source gas (C2H2 or C2H4) and catalyst nanoparticles. The induced temperature
was monitored through an analysis of the light emitted from the microheater (and one-time
calibration by temperature-indicating paint). The utilization of Si microheaters for localized
heating has also been demonstrated by other researchers [39, 41]. This is also the scheme
used in this thesis.

In a different route, Dittmer et al. used metals (W or Mo), instead of Si, for the micro-
heaters [42–44]. The metal microheaters were patterned directly on a Si wafer by using
standard photolithography, lift-off, and electron beam evaporation. The authors monitored
the induced temperature based on modeling and in-situ analysis of black-body radiation from
the heater. Lin et al. used Ti/Au microheaters, and also used modeling to control the induced
temperature [46]. Zhou et al. used Pt microheaters to locally synthesize and directly in-
tegrate SWNTs into a CMOS system. During synthesis, the temperature of the heater was
estimated based on the applied voltage. The relationship between temperature and voltage
was characterized by using infrared imaging technique.

The approach of localizing the thermal environment is not limited to resistive heating. Other
methods, such as laser-assisted heating [47,49], plasmon-assisted heating [51,52], induction
heating [53, 152] have also been demonstrated.
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Figure 2.4: Local synthesis of CNTs or Si nanowires, using resistive heating for localiz-
ing the high temperature region, demonstrated by Englander et al. [35]. (a) Initial SOI
(Silicon-on-Insulator) wafer. (b-c) Microstructure fabrication. (d) Maskless evaporation of
metal catalyst. (e) Wirebonds and electrical supply. (f) Resulting nanostructures (CNTs or
Si nanowires). (g) Schematic of the experimental setup in a chamber at room-temperature.

Laser-assisted heating is realized by focusing a laser beam onto a catalyst-coated surface,
producing a localized hot spot for the CVD growth of CNTs [47–50, 153].

Plasmon-assisted heating is realized when the metal catalyst particles are illuminated by a
laser with a wavelength close to the plasmon resonant frequency of the metal. The laser
excites surface plasmons in the metal particles, causing localized heating [51, 52].

Induction heating is realized by Eddy currents generated in a conducting substrate due to a
high-frequency magnetic field. The induced Joule heating could be confined within several
microns depths of the substrate [53].

The resistive heating method requires simpler experiment setups than other methods, as the
other methods require a laser and a transparent chamber that allows laser to illuminate the
microstructures.
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Chapter 3

Design and Fabrication

The method of local synthesis and direct integration of CNTs is demonstrated on Si mi-
crosystem. A microsystem consists of two suspended Si microelectrodes. After the syn-
thesis and integration process, a two-terminal microsystem that contains CNTs as the nano-
functional element is produced. The resulting microsystem (referred as Si/CNTs/Si system)
could work as a gas sensor.

The Si microsystems was fabricated by using commercial PolyMUMPs and SOIMUMPs
platforms. Such platforms were chosen to demonstrate that CNT-based device fabrication
is commercially feasible. PolyMUMPs is a three-layer polysilicon surface micromachining
process. SOIMUMPs is a silicon on insulator (SOI) micromachining process [154, 155].
Figure 3.1 shows the cross-section view of PolyMUMPs and SOIMUMPs structures. In a
PolyMUMPs microsystem, there are three structural layers made of polysilicon. In a SOI-
MUMPs microsystem, there is one structural layer made of single-crystalline silicon.

PolyMUMPs microsystem is the focus of this thesis, because polysilicon is commonly used
as the structural material for MEMS and CMOS devices. SOIMUMPs microsystem is an
alternative that enables direct characterization of CNTs by the transmission mode imaging
of a high-resolution SEM, because SOIMUMPs platform allows for making a through-hole
in the Si substrate below the microelectrodes where CNTs grow.
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Figure 3.1: Cross-section view showing all layers of the PolyMUMPs (a) and SOIMUMPs
(b) microsystems.

3.1 Design of the microsystem

3.1.1 PolyMUMPs microsystems

Basic design

A basic microsystem simply consists of two suspended Si microelectrodes. Each electrode is
a micro rectangular bar of Si, being elevated above the substrate. The microbar is supported
by two hanging arms, connecting to the anchors, as depicted in Figure 3.2. The feature
dimensions are presented in Table 3.1.

The width of the microelectrodes is an important factor, as it defines the region for the CNT
growth. A narrow microelectrode is favorable, since it provides a better confinement of the
location of CNTs. Because the minimum feature width in PolyMUMPs is 2-3 µm [154],
with a safety margin, a width of 5 µm was chosen for the microelectrodes. Two variations
were: 10 and 15 µm.

The length of the electrode (excluding the hanging arms) was chosen to be 160 µm, since
the size of contact pads is ∼130 µm and the separation between the pads required for wire
bonding is ≥30 µm.

The thickness of the microelectrodes can be either 2.0 µm or 3.5 µm [154]. Both options
have been investigated. It was found that most 2.0-µm-thick microelectrodes bent down and
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Figure 3.2: Basic design of the microsystems for demonstrating the method of local synthe-
sis and direct integration of CNTs into Si microsystems. Each microsystem consists of two
suspended Si microelectrodes. (a) Overview of an entire PolyMUMPs chip. (b) Sketch of a
microsystem. Selected dimensions will be presented in Table 3.1

Table 3.1: Dimensions of the basic microsystem shown in Figure 3.2

Dimension Symbol Values

Width at the region for CNT growth w 5, 10, 15 µm

Length of the region for CNT growth Lb 160 µm

Structural thickness t 3.5 µm

Height above the substrate h 2 µm

Separation between two microelectrodes g 5, 10, 15 µm

Length of the supporting arm La 60 µm

touched the substrate, whereas all 3.5-µm-thick microelectrodes were suspended above the
substrate and did not bent. Note that during the synthesis of CNTs, a microelectrode will
be locally heated (using Joule heating) to provide a localized hot region for CNTs to grow.
Thus, the microlectrodes need to be suspended to avoid the heat transfer directly to the sub-
strate.

Saw-like microelectrode

One of microelectrodes has pointing tips, as shown in Figure 3.3. The electrode looks like
a saw, thus being named "Saw-like microelectrode". This design is useful to investigate the
effect of an electric field on the growth orientation of CNTs. The local electric field between
the two electrodes, established by a bias voltage between them, would concentrate at the
pointing tips. If the growth orientation of CNTs follows the electric field, the CNTs will also
concentrate at the pointing tips. Results will be presented in Chapter 4, section 4.3).
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Figure 3.3: (a) Design of a microsystem with a saw-like microelectrode. (b) SEM micrograph
of such a microsystem at the marked area in (a).

3.1.2 SOIMUMPs microsystems

SOIMUMPs platform allows for making a through-hole in the Si substrate below the growth
region of CNTs. This through-hole allows for the transmission mode imaging directly on
the fabricated Si/CNTs/Si systems, as shown in Figure 3.4. The Hitachi S-5500 S(T)EM
at NTNU Nanolab, Trondheim, Norway was used. The S(T)EM imaging of CNTs was
performed directly on the Si/CNTs/Si microsystem after the synthesis process, without need
for complicated steps of sample preparation.

The design of SOIMUMPs microsystems was studied in a master thesis under my co-supervision
(T. B. Haugen [156]). This thesis used these microsystems for the synthesis and integration
of CNTs, and the S(T)EM characterization of CNTs.
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Figure 3.4: (a) SE-SEM image at 5 kV of an SOIMUMPs microsystem. (b) BF-S(T)EM
image at 30 kV of the region in-between the two microelectrodes of a microsystem; (c)
Illustration of the transmission mode imaging of locally grown CNTs by using the Hitachi
S-5500 S(T)EM; (d) BF-S(T)EM image at 30 kV of a helical CNT and (e) a straight CNT.
Abbreviation: SE = Secondary Electron, BF = Bright Field.
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3.2 Synthesis process

The process of local synthesis and direct integration of CNTs into a Si microsystem is briefly
described as follows. Prior to the synthesis process, a thin layer of Fe (thickness 3-5 nm)
was deposited on the microsystem by maskless thermal evaporation. During the synthesis,
one microelectrode (referred to as "growth electrode") was locally heated by the passage
of an electric current (Joule heating) to induce a temperature of 900oC at the center of the
electrode. At this temperature, the Fe layer transforms into Fe nanoparticles, which serve as
catalyst particles for the growth of CNTs. A mixture of acetylene (C2H2) and a carrier gas
(Argon), both at a flow rate of 50 cm3 per minute (ccm), was then introduced to the reaction
chamber to initiate the CNT growth. C2H2 molecules decomposed into carbon atoms at the
surface of a catalyst nanoparticle; the carbon atoms then bound together and formed CNTs.
To assist CNTs grow towards the other microelectrode (referred to as "secondary electrode"),
a local electric field was established by using a bias voltage between two microelectrodes.
The circuitry is shown in Figure 3.6. A self-made Labview program was used to control
the synthesis conditions: gas flow rates, electrical power for heating the growth electrode,
electrical in-situ measurements.

Figure 3.5: Experimental setup for the local synthesis and direct integration of CNTs into
a microsystem. The vacuum chamber has an electrical feedthough. C2H2 and Argon are
connected to the chamber through mass flow controllers (MFCs).

Figure 3.7 shows a resulting Si/CNTs/Si microsystem after the synthesis process. The CNTs
are suspended and span the two Si microelectrodes. The number of CNTs that span two
microelectrodes can be in-situ monitored during the synthesis through measurements of the
electric current passing the Si/CNTs/Si system (indicated by the amperemeter (A) in Fig-
ure 3.6). When a CNT connection was established, a step-increase in the electric current
occurred. Conversely, the loss of a CNT connection leads to a step-decrease in the electric
current. Each CNT connection might involve in one or more CNTs connecting the two mi-
croelectrodes within the measurement delay time (∼1 second). Figure 3.8 shows the in-situ
monitoring of CNT connections during a synthesis. In this experiment, the first step-increase
occurred around 50 seconds after C2H2 gas flow was initiated. Twenty-five seconds later, the
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Figure 3.6: Circuitry for the local synthesis and direct integration of CNTs into a Si mi-
crosystem. Electrical signals are supplied and/or measured through a Keithley 2602 Dual
channel. The Keithley and MFCs are controlled through a LabView program. The resistor
(r) is optionally used to limit the current going through the Si/CNTs/Si system.

first CNT connection was lost. A loss of CNT connection might be due to losing the contact
between CNT and Si microelectrodes, or due to breaking of CNTs. After 10 more seconds,
a new connection was established, but lost after several seconds. After ∼20 more seconds, a
new connection was established, and so on.

A key contribution of this thesis is a simple and robust method to control the temperature
for the growth of CNTs by using only in-situ measurements of the electrical resistance of
the Si microelectrode. Details about the method described above is presented in Article
P1. The principle is briefly explained as follows. In the following, T is referred to as the
temperature at the center of the growth electrode induced by Joule heating, and R is referred
to as the electrical resistance of this electrode. Since the resistivity of Si (doped) is highly
sensitive to the temperature, R is thus strongly correlated with T. The input electrical power
(P) is correlated with the induced temperature, and thus being correlated with R. This P-R
relationship has the following characteristics:

(i) at a low P: T is also low, an increase in P leads to an increase in T, which leads to
a decrease in the mobility of charge carriers (due to phonon scattering), then leads to an
increase in R.

(ii) at high P: T is also high, then an increase in P leads to an increase in the number of
charge carriers, dominating the scattering effect, thus leads to a decrease in R.
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Figure 3.7: SE-SEM micrograph of a PolyMUMPs microsystem after the synthesis process.
A CNT is suspended and span the two Si microelectrodes.

Figure 3.8: In-situ monitor of the CNT connections through measurements of the electric
current passing the Si/CNTs/Si system. Each step-increase (or decrease) is corresponding
to an establishment (or a loss) of a CNT connection.
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By means of experimental calibrations (using temperature-indicating paints), a P-R-T rela-
tionship was obtained, as shown in Figure 3.9. This relationship is as follows: T will be
700-750oC when R reaches maximum; T will be 800-850oC when R falls down ∼5% after
the maximum point; and T will be 900-950oC when R falls down ∼10% after the maximum.
Note that the exact value of the heating power varied from sample to sample, however, the
evolution as shown was similar for all samples. This P-R-T relationship could thus be applied
to all synthesis experiments.

Figure 3.9: The P-R-T relationship, between the input power for heating the growth elec-
trode (P) and the electrical resistance of the electrode (R), together with several data points
of the induced temperature at the center of the electrode (T ). Normalized resistance is de-
fined as the ratio R(P)/Ro where Ro is the initial resistance before heating. The exact value
of P varied from sample to sample, however, the evolution of R upon increasing P was
similar for all samples.

Using the P-R-T relationship, we can control the synthesis temperature by using only elec-
trical signals. The number of CNT connections is also monitored through electrical signals
only, as mentioned earlier. Accordingly, the entire synthesis and integration process is elec-
trically controlled. Pure electrical control has following advantages: (i) simple and robust,
and (ii) enable a simple, automated and parallel synthesis and integration of CNTs into Si
microsystems.
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Chapter 4

Effect of Synthesis Conditions on the
Characteristics of CNTs

4.1 Effect of temperature on diameter and density of CNTs

The distribution of CNTs along the growth electrode was found to be non-uniform. This is a
result of the temperature gradient created by Joule heating, as shown in Figure 4.1. Detailed
results and discussions are presented in Article P4. Briefly described, the density of CNTs at
the center of the growth electrode (where the temperature was ∼900oC) was ∼1 µm−2. This
region is referred to as Region D in the article. Away from the center, the density of CNTs
increased, reaching a maximum value of ∼57 µm−2 at half way to the end of the growth
region (referred to as Region B). At the end of the growth region where the temperature was
∼800oC (referred to as Region A), the density decreased to ∼50 µm−2. The average diameter
of CNTs at Region D was 8.0 nm, and increased to 10.8 nm at Region B, and continued to
increase to 13.7 nm at Region A.

Figure 4.1: Simulated temperature profile on the growth microelectrode resulting from Joule
heating (a finite element simulation).
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4.2 Effect of temperature on the growth structure of CNTs

The temperature gradient along the growth electrode allows for studying the effect of tem-
perature on the resulting CNT structure. A correlation between the local temperature and
the structure of CNTs was revealed: the higher the growth temperature, the higher the de-
gree of order in the CNT structure. Most regular CNTs were found at the center of the
microelectrode where the temperature is highest (∼900oC). At the lowest-temperature re-
gion (∼800oC), CNTs were found with the highest degree of disorder and defect, such as
bamboo-like CNTs or even carbon fibers. At the intermediate-temperature region (∼850oC),
CNTs were found with a moderate degree of disorder: fairly uniform diameter, but have
several broken and bent sites along the CNT length. Detailed results are reported in Article
P3.

4.3 Effect of the electric field on the growth orientation of
CNTs

4.3.1 The overall picture

The electric-field-assisted growth and alignment of CNTs have been well documented in lit-
erature [157–160]. This thesis also shows that the electric field affects the growth orientation
of CNTs. Figure 4.2 presents some examples of CNTs being well-aligned with the electric
field. It is, however, important to note that not all CNTs are aligned with the electric field
direction; and the next section will explain.

4.3.2 Diameter dependency for the electric-field-assisted growth of CNTs

A statistical analysis of 1100 CNTs revealed the diameter dependency of the effect of an
applied electric field on the growth orientation of CNTs: small-diameter CNTs (d < 5 nm)
are mostly straight and aligned with the electric field; whereas the large-diameter CNTs (d
> 10 nm) are curved and do not align with the field. In the transition regime, CNTs were
moderately curved, but their average orientation was at small angle with the electric field
direction. The overview picture of this finding is shown in Figure 4.3. Detailed results are
presented in Article P2.

Note on the effect of gas flow:

In the experiments presented above, the gas flow was parallel to the electric field direction.
It raised a concern that the gas flow might affect the growth orientation of CNTs. However,
by means of the following experiments, it was confirmed that the gas flow did not have an
effect:

(i) Experiments with arranging the gas flow perpendicular to the electric field direction, while
keeping similar synthesis conditions as in the experiments presented in Article P2.
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Figure 4.2: SE-SEM images showing many CNTs are aligned with the direction of the
applied electric field. (a) The electric field would concentrate at the pointing tips of the
secondary microelectrode, the CNTs appear to "concentrate" at pointing tips as well. (b-d)
CNTs connecting the two microelectrodes are well-aligned with the direction of the applied
electric field. Images (a-c) were taken by the SEM Philips XL30 at 5 kV; image (d) was taken
by the Hitachi S-5500 at 30 kV.
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Figure 4.3: The diameter-dependency for the effect of the electric field on the growth ori-
entation of CNTs. The CNTs were grown locally and integrated directly into a microsystem
of two suspended Si microelectrodes. ("A") Small-diameter CNTs appear to be straight
and well-aligned with the direction of an applied electric field; whereas ("B") large-diameter
CNTs are curved and do not align; ("C") Transition regime: CNTs were moderately curved,
but their average orientation was at small angle with the electric field. The electric field
strength E =∼ 1.5 V/µm.

(ii) Experiments with almost zero gas flow rate, while keeping similar synthesis conditions as
in the experiments presented in Article P2. The gas mixture (C2H2 + Ar) were introduced
into the chamber only for about 20-30 seconds at the beginning.

In all experiments, the orientation of CNTs were observed to be independent on the gas flow
configurations. Note that the gas flow rates used in all experiments were 50 ccm for both
Argon and C2H2. Different experimental setups may result in totally different outcomes, for
example, Huang et al. demonstrated a technique that uses the gas flow to assist the growth
orientation of CNTs [161].

36



Chapter 5

Electrical Characterizations of
Si/CNTs/Si systems

5.1 CNT-Si contact modes

There are three possible modes of contact between a Si microelectrode and a CNT. Figure
5.1 illustrates these three contact modes:

Mode (i): CNT-Si tip contact, i.e. the CNT makes contact with the Si electrode by its tip
only.

Mode (ii): Si-CNT side contact, i.e. the CNT makes contact with the Si electrode by lying
on the electrode.

Mode (iii): Si-Feparticle-CNT contact, i.e. the CNTs connects with the Si electrode through a
Fe nanoparticle.

At the growth electrode, if the CNT grows in the root-growth mode (i.e. the CNT grows on
an Fe particle that stays on the substrate), a contact of mode (iii) will be created. Otherwise,
if the CNT grows in the tip-growth mode (i.e. the CNT grows underneath the Fe particle that
is lifted away from the substrate), a contact of mode (i) or mode (ii) will be created.

At the secondary electrode, if the CNT grows in the root-growth mode, a contact of mode (i)
or mode (ii) will be created; otherwise, a contact of mode (iii) or a combine of mode (iii) and
(ii) will be created.

Detailed observations on the contact modes between CNTs and Si microelectrodes are pre-
sented in Article P4.

37



B. Q. Ta: Local Synthesis and Direct Integration of CNTs into Microsystems for Sensor Applications

Figure 5.1: Contact modes between a CNT and a Si microelectrode in a Si/CNTs/Si system.
(a) Mode (i): Si-CNT tip contact. This type of contact is formed when a CNT attaches to the
Si electrode by the CNT tip. (b) Mode (ii) Si-CNT side contact. This type of contact is formed
when a CNT lies on the Si electrode. (c) Mode (iii): Si-Feparticle-CNT contact. This type of
contact is formed when a CNT connects with the Si electrode through a Fe nanoparticle.
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5.2 Electrical properties of Si/CNTs/Si systems

Current (I)-Voltage (V) measurements were carried out to study the electrical properties
of the fabricated Si/CNTs/Si systems. The measurements were taken between the two Si
electrodes, as depicted in Figure 5.2. The measured resistance consists of both the intrinsic
resistance of the CNTs, and the contact resistance at the CNT-Si interfaces. The current data
were insufficient to distinguish these resistances. The intrinsic resistance of the CNTs could
be realized by using a nano-probing system, however, it is extremely challenging to probe all
individual CNTs in a Si/CNTs/Si system without breaking them or altering their electronic
properties. At the current stage, each Si/CNTs/Si systems was characterized as a whole.

At a later stage, an attempt to distinguish the intrinsic resistance of CNTs and the contact
resistance was conducted. All CNT-Si contacts in a Si/CNTs/Si system were locally covered
with Platinum (Pt) by using the local deposition function of the FEI Helios NanoLab Dual-
Beam FIB at NTNU NanoLab, Norway. The deposition of Pt could be localized at a spot
size of ∼300 nm × 300 nm. Preliminary experiments showed that the electrical behavior
of a Si/CNTs/Si system, which was initially Schottky diode-like, became near-ohmic after
the local deposition of Pt at all the contacts. This suggests that CNT-Si contacts may play
an important role in the electrical behavior of a Si/CNTs/Si system. Chapter 6, section 6.2.2
will present this preliminary result.

Figure 5.2: I-V measurements of a Si/CNTs/Si system were taken between the two Si
electrodes. The Keithley 2602 swept the source voltage and measured the current.

5.2.1 PolyMUMPs Si/CNTs/Si systems

Figure 5.3 shows the I-V measurements of selected PolyMUMPs Si/CNTs/Si systems. The
bias voltage was swept from -1 V to +1 V. Data for larger voltage values were not recorded,
since it could break the CNT connections. The values of the current (I) were averaged for one
CNT connection, by taking the measured values divided by the number of CNT connections
recorded during synthesis. Note that each CNT connection is associated with one or more
than one CNT that connect the two Si electrodes within the measurement delay time (∼1 s).
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Figure 5.3: I-V curves of selected Si/CNTs/Si systems (with polysilicon microelectrodes).
The obtained I-V curves are fairly linear, indicating a fairly ohmic behavior of the CNT-
polysilicon contact.

The exact number of CNTs could be determined by using a high-resolution SEM, however,
it requires a huge labor work to count all the CNTs. Moreover, my access to a high-solution
SEM was limited.

The obtained I-V curves were fairly linear, indicating the near-ohmic behavior of the CNT-
polysilicon contacts. The overall resistances of the selected Si/CNT/Si systems were in the
range 250-2000 kΩ. The overall resistance is defined as the inverse of the slope of the straight
line connecting two ends of a I-V curve.

The intrinsic resistance of a CNT is estimated to be ∼ 100 kΩ. The estimate was made
as follows. The CNTs in the selected systems had a diameter of 20-40 nm (measured by
SEM), thus probably being MWNTs. We have learned from literature (section 2.1.1) that
MWNTs with a diameter of 9 nm are diffusive conductors with a well-defined resistance per
unit length (∼ 10 kΩ/µm), and that the larger the diameter of a CNT, the more metallic the
electrical behavior of the CNT. Each CNT in the selected systems had a length of ∼10 µm,
and thereby would have an intrinsic resistance of less than 100 kΩ, or 105 Ω.

The contact resistance at a CNT-Si interface is estimated to be 103-107 Ω by using the metal-
silicon junction model (discussed in section 2.1.2). The following information was used
for the estimation: CNT diameter is ∼30 nm, polysilicon is n-doped with a concentration
of 1019-1020 cm−3. Table 5.1 summerizes the measured and estimated resistances that are
mentioned above. The data suggest that the contact resistance at the CNT-Si interface could
dominate the total resistance of a Si/CNT/Si system.

Note that the estimates were made with an assumption that the CNT structure is almost
perfect. One can see that the CNTs produced in this thesis were often defective (shown in
Article P3, and P4). However, note that the highly defective CNTs, such as bamboo-like
CNTs and helically coiled CNTs, did not span the two Si electrodes. Only the CNTs that
span two Si electrodes were included in the measured resistance of a Si/CNTs/Si system;
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Table 5.1: Measured resistance of a Si/CNT/Si system, and estimated resistance of a CNT
and a CNT-Si contact.

Si/CNT/Si system Intrinsic CNT CNT-Si inter-
face

Measured resistance 2.5×105 - 2×106 Ω N/A N/A

Estimated resistance <105 Ω 103-107 Ω

N/A - Not Available.

and these CNTs were mostly straight and had few defects. Therefore, the above estimates
are still be reasonable.

5.2.2 SOIMUMPs Si/CNTs/Si systems

Both near-ohmic and non-ohmic I-V curves were observed in SOIMUMPs Si/CNTs/Si sys-
tems. Figure 5.4 shows the I-V curves of near-ohmic systems. In fact, a CNT-Si contact
would behave as a near-ohmic contact when the Si is heavily doped [77]. The doping con-
centration of the silicon in SOIMUMPs microsystems is highest at the top surface (∼1020

cm−3), and decreases with distance down into the silicon. This suggests that the CNT-Si
contacts in near-ohmic systems were likely to locate at the top surface of the Si electrodes.
This scenario is illustrated in Figure 5.7.

Figure 5.5 and Figure 5.6 show the I-V curves of systems having rectifying or diode-like
behaviors. Some systems exhibited a behavior like one single Schottky diode, as shown in
Figure 5.5. Some systems exhibited a behavior like two Schottky diodes in a back-to-back
configuration, as shown in Figure 5.6. The breakdown voltages of these non-linear systems
were about 2 - 8 V, which is the typical range for the SOIMUMPs Si/CNTs/Si systems.

From the literature presented in Chapter 2, section 2.1.1, we learned that the breakdown
voltage of a CNT-Si contact is estimated to be 2 - 8 V when the doping concentration of

Figure 5.4: Near ohmic I-V curves of selected SOIMUMPs Si/CNTs/Si systems.
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Figure 5.5: I-V curves of selected SOIMUMPs Si/CNTs/Si systems that behave like a single
Schottky diode. The inset depicts a electrical model for these systems.

Figure 5.6: I-V curve of selected SOIMUMPs Si/CNTs/Si system that behave like two Schot-
tky diodes in a back-to-back configuration. The inset depicts an electrical model for this
system. The model was first proposed by Haugen et al. [162].

n-type Si is on the order of 1018 cm−3. This suggests that the CNTs in the selected systems
made contact with the Si electrodes at the positions where the doping concentration of Si is
∼1018 cm−3. Such a position is estimated to be ∼500 nm below the surface, as illustrated
in Figure 5.7(c). This estimation was made by using Fick’s Laws with the model "limited
source near the surface", and the following information: in SOIMUMPs, the Si layer was
doped by depositing a phosphosilicate glass layer and annealing at 1050oC for 1 hour in
Argon.

Details about the electrical properties of SOIMUMPs Si/CNTs/Si systems were reported by
Haugen et al. [162] and Haugen’s master thesis [156]. I am a co-author of the paper, and a
co-supervisor of the master thesis.
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Figure 5.7: Doping concentration varies along the depth of the Si microelectrodes. CNT-Si
contacts at different positions of different doping concentration would exhibit different elec-
trical behaviors. (a) Overview of a SOIMUMPs microsystem. (b) Cross-section illustration
of different scenarios for a CNT-Si contact. (c) An SE-SEM image showing two CNT-Si con-
tacts at positions below the surface. (d) An SE-SEM image showing a CNT-Si contact at the
top surface of a Si microelectrode. Abbreviation: SE = Secondary Electron.
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Chapter 6

Sensor Applications and Developments

6.1 Si/CNTs/Si systems as NH3 sensors

A NH3 gas sensor using a PolyMUMPs Si/CNTs/Si system is demonstrated. After the syn-
thesis process presented in Chapter 3, the as-fabricated systems were then tested for their
sensitivity to NH3 gas. The sensor experiments were carried out as follows: The chip con-
taining a selected Si/CNTs/Si system was placed in an evacuated chamber with an electrical
feedthrough. A voltage bias of 0.1 V was applied between the two Si microelectrodes of
the selected system, and the electric current through the system was recorded every second.
Figure 6.1 shows a SEM micrograph of the selected Si/CNTs/Si system and the circuitry for
the sensor experiment. A known amount of NH3 was introduced into the chamber. When
the response was settled, the chamber was evacuated before exposure to a new amount of
NH3. The effective concentration of NH3 in the chamber was calculated from the volume of
NH3 gas injected into the chamber. This volume was extracted by a syringe from a closed
flask containing NH3 gas. The amount of NH3 in the flask is determined by the amount of
NH3/ethanol solution injected into the flask. Figure 6.2 shows the response of the selected
Si/CNTs/Si system towards NH3. The electric current through the system decreased upon
exposure to NH3. For instance, the electric current decreased ∼1% upon exposure to NH3 at
a concentration of 442 ppm. The sensor had, however, a low reversibility: the recovery time
was greater than 500 seconds.

A simple technique to improve the reversibility of the sensor was found: switching the bias
voltage off while evacuating the chamber for the recovery of the sensor; switching the bias
voltage on again just before the next exposure. Figure 6.3 shows the response of the same
Si/CNTs/Si system that was presented in Figure 6.2. The reversibility of the sensor was
improved significantly. The obtained result has been published in Article P6.

CNTs in the selected system were probably metallic MWNTs as their diameters were larger
than 10 nm. NH3 groups are electron-donating, thus providing electrons to the CNTs. Ac-
cordingly, the electric current through the CNTs would increase upon adsorption (or ab-
sorption) of NH3. Since the current through the selected Si/CNTs/Si system increased upon
exposure to NH3, it is believed that the response resulted from the CNT-Si contacts, not from
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Figure 6.1: Circuitry for NH3 sensor experiments.

Figure 6.2: Response of a selected Si/CNTs/Si system to NH3. The chamber was evacu-
ated between successive exposures to NH3. The bias voltage was kept constant during the
experiment.
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Figure 6.3: Response to NH3 of the same Si/CNTs/Si system that was presented in Figure
6.2. The bias voltage was switched off during the evacuation periods.

the CNTs. In fact, previous studies in literature have shown that the contacts could play
the major role in the sensing performance of a CNT-based sensor. For example, Zhang et
al. [163] reported that their metal/CNTs/metal systems became insensitive to NO2 after the
CNT-metal contacts were passivated (by being covered with polymethylmethacrylate). Ac-
cording to Peng et al., the Schottky barrier modulation at the CNT-metal contact dominates
the sensing performance of a metal/CNTs/metal system, upon adsorption of NH3 [164].

6.2 Reducing the contact resistance

As discussed in Chapter 5, section 5.2, the contact resistance at the CNT-Si interface would
dominate the overall resistance of a Si/CNTs/Si system. This is unfavorable when using the
Si/CNTs/Si system in applications where CNTs are the active element of the system. The
CNTs are expected to change their resistance upon absorption (or adsorption) of analytes.
The resistance change will not be measurable if it is too small compared to the overall resis-
tance of the Si/CNTs/Si system, since the measurements are taken between the Si electrodes.
In another word, high contact resistance at the CNT-Si interface reduces the sensitivity of a
Si/CNTs/Si system. Thus, the contact resistance needs to be reduced.
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6.2.1 Local annealing of the contact

A simple and fast annealing technique to reduce the CNT-Si contact resistance has been
investigated. This work has been conducted in a collaboration with the CNT research group
of Professor Liwei Lin at the University of California, Berkeley, USA. The experimental
setups are illustrated in Figure 6.4. We implemented two setups. In the 1st setup, an applied
electric current goes through the Si/CNTs/Si system. High temperatures at CNT-Si contacts
on both Si microelectrodes will be induced by Joule heating, since the CNT-Si contacts have
a high resistance. In the 2nd setup, an applied electric current goes through the secondary
Si microelectrode and induces high temperatures for annealing the CNT-Si contacts only on
this electrode. Only the secondary electrode is chosen because the growth electrode was
already heated during the synthesis and thus the CNT-Si contacts on the growth electrode
were already annealed.

Figure 6.4: Experimental setup for local annealing of CNT-Si contacts to reduce the contact
resistance. (a) 1st setup: an applied electric current goes through the Si/CNTs/Si system
and induces high temperatures at the CNT-Si contacts on both Si microelectrodes. (b) 2nd

setup: an applied electric current goes through the secondary electrode and induces high
temperatures to anneal the CNT-Si contacts on this electrode only.

Heather Chiamori et al. [55] reported that this technique reduced the contact resistance for
60% of the samples, and the reduction in resistance ranged from 20% to 80%. The authors
also suggested that annealing with a higher power and a longer time would result in more
reduction in the contact resistance. I am a co-author of this publication.

In a continued collaboration with Heather Chiamori and Liwei Lin, this thesis has carried
out more experiments with high annealing powers, and also carried out the in-situ monitor
of the annealing process. The resistance reduction was found to be stepwise. Figure 6.5(a)
shows the in-situ measurement of the resistance of a Si/CNTs/Si system during annealing
(using the 2nd setup). The origin of the step changes has not yet been found. The I-V curves
of the above sample before and after annealing are shown in Figure 6.5(b). The annealed
Si/CNTs/Si system appeared to have lower resistance.
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More results will be presented in the upcoming publication, being written by Heather Chi-
amori, Bao Q. Ta, Knut E. Aasmundtveit, and Liwei Lin.

Figure 6.5: (a) In-situ monitoring of the resistance of a Si/CNTs/Si system during the an-
nealing process (using the 2nd setup). (b) I-V curves of the Si/CNTs/Si system before and
after annealing.
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6.2.2 Metal deposition at the CNT-Si contact via FIB

The first motivation for this work is to investigate whether the electrical properties of a CNT-
Si contact could be improved by locally depositing Platinum (Pt) at the contact. The sec-
ond motivation is to distinguish the contact resistance and the intrinsic resistance of CNTs.
The local deposition of Pt at the CNT-Si contacts were done by using the metal deposition
function of the FEI Helios NanoLab DualBeam FIB at the NTNU NanoLab, Norway. The
electron beam was used in the deposition process. The deposition of Pt could be localized at
a spot size of ∼300 nm × 300 nm, as shown in Figure 6.6.

Since the local deposition process for all CNT-Si contacts in a Si/CNTs/Si system required
a lot of labor work and my access to the equipment was limited, only a few experiments
have been done. Four Si/CNTs/Si systems have been studied, but three of them were broken
after the deposition process. The resulting electrical properties of these three systems were
undetermined. The other system clearly showed a significant change in its electrical prop-
erties. Before Pt deposition, this Si/CNTs/Si system exhibited a rectifying behavior, with a
breakdown voltage of 4 V. After Pt deposition at all CNT-Si contacts, the system exhibited
a near-ohmic behavior. This interesting preliminary result suggests that there is a need for
further studies.
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Figure 6.6: SE-SEM micrographs showing two CNT-Si contacts before (a) and after (b)
the local deposition of Pt. (c) I-V curves of a Si/CNTs/Si system before and after the Pt
deposition. For each I-V measurement, the voltage swept from 0 V to +5 V and backward to
-5 V and then to 0 V to finish a measurement.
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6.3 Functionalization of CNTs by thermal evaporation of
Palladium and Tin

Previous studies in literature have shown that functionalized CNTs with metal nanoparticles
have a better sensitivity and selectivity than pristine CNTs [165, 166]. Star et al. [119] have
shown great potential of functionalized CNTs with 18 metals/metal oxides (Mg, Al, Ti, V,
Cr, Mn, Fe, Co, Ni, Zn, Mo, Rh, Pd, Sn, W, Pt, Au and Pb) for sensor applications. Com-
mon techniques for functionalizing CNTs are involved in photolithography, lift-off, solution
treatment and sonication [88, 119]. Such processes, however, would destroy the CNTs in a
Si/CNTs/Si system where CNTs are suspended and span two Si electrodes. Alternative tech-
niques for functionalizing the suspended CNTs are electron-beam and thermal evaporation.
Zhang et al [167] have used electron-beam evaporation to coat Au, Pd, Fe, Al, and Pb on
suspended SWNTs. This thesis attempted to use thermal evaporation to functionalize the
CNTs in Si/CNTs/Si systems. Palladium (Pd) was first chosen for an investigation. Func-
tionalized CNTs with Pd nanoparticles attached to the CNT surface were produced, as an
example shown in Figure 6.7. Detailed results are presented in Article P5.

Thermal evaporation of Tin (Sn) on the locally grown CNTs was also investigated. This
work was conducted in a collaboration with a master project under my co-supervision [168].
Figure 6.8 shows the resulting CNTs with nanoparticles deposited on the CNT surface. Note
that the nanoparticles were probably in form of Tin oxide, due to the oxidation in air dur-
ing handling of samples. The target thickness of the deposition was 1.6 nm, as similar as
for Pd deposition. The resulting Tin oxide nanoparticles were ∼2 times larger than the Pd
nanoparticles, but the density of Tin oxide nanoparticles was about a half of the density of
Pd particles. The size difference could result from the oxidation of Sn particles, whereas
Pd particles were not oxidized. The density difference could result from the difference in
interaction, nucleation and diffusion rate of metal atoms on CNTs.

The resulting profile of Pd (and Sn) nanoparticles on CNTs are similar to the results of
previous studies in literature [113, 165, 166], despite that the functionalization methods are
different. Assuming that the sensing mechanism of Pd-CNTs (and Sn-CNTs) is identical,
the resulting Si/CNTs/Si systems can also detect H2, CO, O2, CH3CH2OH (ethanol) and
C2H4 (ethylene) gases as the CNT-based devices in the previous studies. Since the sensor
performance has not yet been tested, the present results are just preliminary results that
suggests a potential of using thermal evaporation of Pd (and Sn) to functionalize the CNTs
in a Si/CNTs/Si system where CNTs are suspended and span two microelectrodes.
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Figure 6.7: Deposition of Pd nanoparticles onto a locally grown CNT, by using thermal
evaporation of Pd with a target thickness of 1.6 nm. (Left) Before deposition. (Right) After
deposition.

Figure 6.8: Deposition of Tin/Tin oxide nanoparticles onto the locally grown CNTs, by us-
ing thermal evaporation of Tin with a target thickness of 1.6 nm. The nanoparticles were
probably in form of Tin oxide, due to oxidation in air.
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Chapter 7

Conclusion

This thesis has achieved the main goal, which is to develop a single-step, scalable up to
wafer-level, well-controlled process for the local synthesis and direct integration of CNTs
into Si microsystems. This thesis has also made significant contributions to the fundamental
understanding of the CNT growth.

Key contributions of this thesis are summarized as follows:

1. Developed a method of pure electrical control of the synthesis conditions. This method has
the following advantages: (i) simple and robust, and (ii) enable a simple, automated and par-
allel synthesis and integration of CNTs into Si microsystems. The as-fabricated Si/CNTs/Si
systems were demonstrated to be working as a NH3 sensor.

2. Revealed the effect of local temperature on the resulting characteristics of CNTs (diameter,
density and nanostructure). The obtained results are useful for designing the microsystems
and choosing appropriate temperature to produce CNTs with desired characteristics.

3. Discovered the diameter dependency for the effect of an applied electric field on the
growth orientation of CNTs. This finding contributes to a better understanding and engineer-
ing of the electric field-assisted growth of CNTs. Furthermore, the obtained statistical data
are beneficial for the study of the polarization of CNTs in an electric field. There is currently
a lack of experimental data in this research field.

This thesis has also provided interesting preliminary results for further studies. The results
suggest that: (i) a rectifying CNT-Si contact could be converted into an ohmic contact after
the local deposition of Pt at the CNT-Si contact; (ii) the reversibility of a NH3 gas sensor
using a Si/CNTs/Si system could be improved by switching off the bias voltage during the
evacuation periods; and (iii) thermal evaporation of metals could be used to functionalize
the suspended CNTs in the Si/CNTs/Si systems. However, the mechanism of the reversing
process in the NH3 sensor experiment has not yet been found, and the sensing performance
of the functionalized CNTs has not yet been tested. There is thus a need for further studies.
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