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Abstract 

‘Continuous tracking of blood sugar’ represents a primary target in the quest to identify 

more efficient therapeutic regimes that can meet the increased global prevalence of diabe-

tes without burdening the health system further. Continuous monitoring forms the principal 

means of preventing long term physiological complications due to an elevated glyceamic 

index (as measured by the HbA1c level) as a result of persistent hyperglycemia. By record-

ing hyperglycaemia in real time, immediate steps can be taken to reduce and maintain the 

blood sugar at normal levels. Automatic monitoring will also improve the patient’s quality 

of life by making it easier to live with and treat the disease by implementing automatic 

alarm settings that warn of imminent hyper as well as hypoglycaemic events. Continuous 

recordings will also be useful for diagnostic purposes and to prevent the onset of diabetes 

in risk groups by detecting pre-diabetes in its early stages. 
 

This project has addressed the technological aspect of developing a novel glucose sensor 

that is capable of tracking glucose continuously through the recording of osmotic pressure. 

The principle of utilising the diffusion of water down its own concentration gradient ena-

bles an inherently simple sensor design in which the generated pressure is a function of the 

glucose concentration. The exceptionally power-conservative nature of the detection pro-

cess as well as the absence of any toxic by-products that slowly degrade sensor function 

makes this technology feasible for both miniaturisation and long-term operation.  

 

For the first time it has been shown that an osmotic pressure sensor equipped with an affin-

ity assay of concanavalin A and dextran, is capable of conducting long-term continuous 

measurements of up to 4 weeks without any recorded change in sensor performance, while 

being capable of rejecting key metabolic and dietary components known to generate fluc-

tuating osmotic pressures in blood and plasma. The osmotic sensor is capable of recording 

a dynamic concentration range of 2 - 40 mM while offering a resolution down to 0.89 mM. 

The response time spanned 0.07 to 2.63 hours depending on the type of nanoporous (semi-

permeable) membrane used as well as the absolute concentration change that the sensor 

was subjected to. The commercial membranes used in this project identified nanoporous 

aluminium oxide as the most suitable candidate offering the best retention rate of the af-

finity assay components versus the permeability of glucose. The assembly and modifica-

tion of the sensor for in vivo application as well as other aspects of future work have been 

suggested. 
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1. Introduction 

1.1 Diabetes  

1.1.1 Motivation 

According to the World Health Organization (WHO), there are at present more than 220 

million people worldwide suffering from the metabolic disorder diabetes mellitus. This 

number is expected to increase to 366 million by the year 2030 [1], showing the 

epidemic proportions at which diabetes is spreading. This increasing prevalence (which 

also includes the developing world) is illustrated in the World Diabetes Map issued by 

the WHO (fig. 1).  

 

Figure 1 Prevalence of diabetes in the world. Figure and data from WHO [1] 
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The countries with the highest number of cases with diabetes are India, China, and USA 

[1], whereas the mortality caused by diabetes represents more than 8 % of the annual 

death toll in the USA, Canada and Middle East [2, 3]. Although the cause of diabetes is 

poorly understood, the rapid growth has been related to lifestyle changes as a result of 

economic development and increased urbanization of society. Diets contain more 

processed food that is low in dietary fibre and rich in carbohydrates, the amount of 

physical activity has reduced, and the general level of overweight people is increasing 

[4]. In addition, genetic predispositions may exist and it has been reported that certain 

ethnic groups have an increased risk of contracting the disease [5]. The majority of 

people suffering from diabetes are in the age group 45 - 64 years, a tendency that is 

shared both in the industrial and the developing world (fig.2).  

 

 

Figure 2 Number of people suffering from diabetes according to age group. Figure and data 
from Wild et al., [6]    
 
An early diagnosis combined with a continuous control of blood sugar is a prerequisite 

to maintaining good health while living with this disease. Uncontrolled hyperglycaemia 

(high blood sugar level) increases the risk for long term complications arising from 

coronary heart disease, stroke, microvascular disorder leading to blindness, amputations 

and nephropathy [7] as well as peripheral neuropathy with reduced functional status and 

emotional distress [8]. Acute hypoglycaemia (low blood sugar level) increases the risk 

of developing acute complications that affect the nervous system (promote convulsions, 

coma) as well as cardiac effects such as arrhythmias, silent myocardial ischemia and 

cardiac failure [9].  
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Methods which can effectively detect, monitor and control this disease in real time, 

require the development of new implantable instrumentation that can function inside the 

body. The application of micro- and nanotechnology holds promise of a device small 

enough for injection with little or no perturbation of the measurements-environment, 

and to be able to perform direct measurements of the glucose level in vivo. Building on 

this concept, the work described in this thesis has focused on the design aspects of an 

osmotic glucose sensor that is suitable for miniaturization by micro- and 

nanotechnology.  This work has formed a central part of a larger industrial research 

project funded by Lifecare AS the goal of which is to develop a new miniaturized blood 

sugar reader small enough for injection under the skin without the use of surgery. The 

industrial project constituted the following 6 areas of research: 

 Phase 1: Membrane (in house nanoporous membrane) 

 Phase 2: Osmotic sensor 

 Phase 3: Sensor control system 

 Phase 4: Power and transmission 

 Phase 5: Packaging 

 Phase 6: Biomedical (immune system activation) 

 

The work presented in this thesis contributed to Phase 2 – ‘Osmotic Sensor’, which 

developed a sensor design, investigated membrane dynamics of nanoporous candidates 

and implemented a biochemical assay used to identify glucose from other components 

in the blood. Consequently, the work was divided up into the following 6 sub-topics: 

 

 Sensor and instrumentation design (macroprototypes) 

 Identification of commercial nanoporous membranes (semipermeable 

membrane) 

 Membrane dynamics (sensor response, confluence of glucose/assay 

components) 

 Feasibility study of the affinity assay 

 Impact from interfering metabolites in blood 

 Assembly and modification of the sensor for in vivo application (future work) 
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1.1.2 Glucose metabolism  

Glucose is the key energy source for all living systems, and its metabolism is regulated 

by two main hormones, insulin and glucagon. Insulin, a 51 amino acid protein [10] that 

is secreted by the β-cells of the pancreas, facilitates the transport of glucose into the 

cells. Glucose that is not utilized is stored as glycogen or converted into fat. In contrast, 

glucagon, a 29 amino acid protein produced by the α-cells of the pancreas, is 

responsible for glucose catabolism. As the plasma glucose level becomes lower (fasting 

state), glucose is released from glycogen and the blood sugar level is restored [10]. This 

is a tightly regulated process in which the secretion of insulin suppresses the production 

of glucagon and vice versa [11]. A second hormone that is produced by the pancreatic 

β-cell is amylin. This hormone works together with insulin and complements its effect 

by suppressing glucagon secretion as well as regulating the rate at which nutrients are 

delivered from the stomach [10, 12]. In people suffering from diabetes the inability to 

produce or utilize insulin disturbs this tightly regulated process. 

 

1.1.3 Types of diabetes mellitus 

Diabetes mellitus is a metabolic disorder that results in abnormally elevated or 

suppressed blood glucose (BG) values due to the inability or reduced ability of the body 

to metabolize glucose. Diabetes is classified into the following conditions:  

 

Type 1 (previously referred to as insulin-dependent diabetes) affects 5-10% of the 

diabetic population as well as 1 in 500 children (under the age of 18) in the U.S [13].  

The autoimmune destruction of the β-cell of the pancreas [14] results in insulin not 

being produced. This type of diabetes requires frequent daily monitoring of the BG 

level as well as daily injections of insulin. There are several factors that may lead to the 

destruction of the β-cells: 

(i) Genetic syndromes manifest themselves in families with a strong history of 

contracting Type 1 diabetes. This is especially predominant in neonatal diabetes 

mellitus which affects children below 6 months of age and maturity-onset diabetes of 

the young which affects young people under the age of 25 [15, 16]. Moreover, some 

genetic diseases can induce a higher prevalence for diabetes, such as Downs, 

Klinefelters, and Turners syndromes [14]. 

(ii) Drug- or chemical-induced diabetes can be caused by medication such as antibiotics 

or immune system suppression drugs therapy following organ transplants (post-
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transplant diabetes mellitus). The trigger mechanism is related to the toxicological 

effects that these drugs have on the pancreas and subsequently also the β-cells [17, 18]. 

 (iii) Virus–induced diabetes can cause β-cell destruction following a virual infection by 

for example coxsackievirus B4 [19], cytomegalovirus, adenovirus, rubella virus [14] 

and also the mumpsvirus, where diabetes in severe cases is one of the complications 

[20-22].  

 

Type 2 (previously referred to as non-insulin-dependent diabetes) is the most common 

type of diabetes which affects around 90-95% of the diabetic population. In Type 2 

diabetes, insulin production is sustained, but the hormone has either lost its ability to 

regulate BG or its production has become too low. Quite often both conditions are 

present at the same time [22]. The development of the Type 2 condition is governed by 

genetic factors, ethnicity, obesity, decreased physical activity, an aging population and 

diet [23]. For instance a high level of fatty tissue in the body may make the organism 

less sensitive to insulin. 

 

Gestational diabetes (GDM) is a condition which can appear during the 24th – 28th 

week of pregnancy [22]. At this time, pregnancy hormone levels increase; this partially 

decreases the function of insulin. Thus, a larger production of insulin is required to 

compensate for its lower affinity. This extra load on the pancreases may, in combination 

with others risk factors develop into Type 2 diabetes, but in most cases, it disappears 

after the child is born. 

 

Impaired Glucose Tolerance (IGT) and Impaired Fasting Glycaemia (IFG) are so called 

pre diabetic Type 2 stages since they are reversible if diagnosed in time. WHO defined 

IGT and IFG as a condition with a generally elevated BG concentration that is lower 

than that of diabetes but higher than the healthy level [22].  The IGT is diagnosed with a 

glucose level between 7.8 and 11.8 mmol l-1 at a time of 2 hours after a 75 g oral dose of 

glucose has been taken [14]. The IFG is diagnosed with a glucose concentration of 

between 5.6 and 6.9 mmol l-1 at the fasting stage [24].  A more detailed description of 

the glucose concentration in conjunction with IGT and IFG is presented in table 1.  
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1.1.4 Diagnosis of diabetes mellitus 

Symptoms of having diabetes include polydipsia (extreme thirst), polyuria (large 

production of or passage of urine), sudden weight loss, and recurrent skin infections 

caused by yeast, virus and bacteria (for example Staphylococcus aureus, Candida 

albicans). However, additional factors need to be analysed in order to perform a 

diagnosis. The measurement of Hb1Ac indicates the average level of BG over a time 

period and is used to track the level of hyperglycemia. Further, the  family history and 

ethnicity (genetic predispositions) as well as age, blood pressure and lipid profile is 

required in addition to absolute blood glucose measurements performed several times a 

day according to a present protocol [22, 25]. The WHO has thus determined a range of 

blood glucose values used to confirm diagnosis of diabetes and related categories of 

hyperglycaemia (table 1). This is based upon a series of BG measurements taken at the 

fasting state (min. 8 h after food ingestion) or in the glucose load state, where 75g oral 

glucose is ingested 2-h before measurements [14, 22]. 

 

Table 1: BG values used for diagnostics of diabetes mellitus and related 

hyperglycaemia. Table from WHO [22] 

Glucose concentration, mmol-1 (mg dl-1) 

                                           Venous                           Capillary                       Plasma Venous 

Diabetes Mellitus:  
Fasting or 
 
2h-post glucose load 

 
≥6.1 (≥110) 
 
≥10.0 (≥180) 
 

 
≥6.1 (≥110) 
 
≥11.1 (≥200) 

 
≥7.0 (≥ 126) 
 
≥11.1(≥200) 

Impaired Glucose 
Tolerance (IGT) 
Fasting (if measured) 
 
2h-post glucose load 

 
 
<6.1 (<110)  
 
>6.7 (≥120) 
 
 

 
 
<6.1 (<110)  
 
≥7.8 (≥140) 
 

 
 
<7.0 (<126)  
 
≥7.8 (≥140) 
 

Impaired Fasting 
Glycaemia (IFG) 
Fasting  
 
 
2h-post glucose load  
(if measured) 

 
 
≥5.6 (≥100) and  
<6.1(<110) 
 
<6.7(<120) 

 
 
≥5.6 (≥100) and  
<6.1(<110) 
 
<7.8(<140) 

 
 
≥6.1 (≥110) and 
<7.0 (<126) 
 
<7.8(<140) 
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1.1.5 Therapeutic treatment of diabetes  

The treatment of diabetes depends on the type, disease progression and the physical 

condition of the patient. For instance, the management of type 2 sometimes requires 

only a special diet combined with physical activity, whereas GDM can be controlled by 

diet or insulin therapy alone. However, Type 1 and some Type 2 conditions that have 

progressed to a stage where the disease cannot be controlled by diet or physical activity 

alone, require a strict insulin therapy (table 2) combined with other medication such as: 

sulfonylureas to stimulate insulin secretion, metformin to decrease hepatic glucose 

production in addition to patient specific drugs [26]. 

 

Table 2: Disorders of glycaemia-etiological types and clinical stages. Table from 
American Diabetes Association [14] 

Types/ Normoglyce
mia 

Hyperglycemia 

Stages Normal 
glucose 
regulation 

Impaired Glucose 
Tolerance or Impaired 
Fasting Glucose (Pre-
Diabetes) 

Diabetes Mellitus 

Non-insulin 
requiring 

Insulin 
requiring  for 
control   

Insulin 
requiring  for 
survival    

Type 1 

Type 2 

Other 
Specific 
Type  

GDM 

   

 

The only means of treating diabetes in the past was to impose strict limitation on the 

glucose intake. Yet many people died from this disease and Type 1 was considered 

terminal. However, the discovery of insulin by the Canadian scientist Frederick Banting 

in 1922, enabled many lives to be saved, as for example that of Leonard Thompson, the 

first diabetic using insulin [27]. Consequently the birthday of Frederick Banting (14th 

November) has been named the World Diabetes Day by the International Diabetes 

Federation and the World Health Organization [1].  
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A key instrument in the treatment of diabetes is the blood glucose meter, which 

determines the BG value by external sampling (finger-pricking) of blood. An example 

of such an instrument is demonstrated in figure 3. 

 

 

 

Figure 3 Measurement of the blood glucose level by external sampling requires three steps: (i) 
Insert the sensor test strip in the reader; (ii) Puncture the skin by a lancet; (iii) Sample the blood 
drop. Figure from Newman and Turner [28]. 
 

The condition of the patient will determine the number of external sampling and 

measurements of the BG that are required to be performed each day. However, 

infrequent measurements will fail to track large variation in blood glucose 

concentration, and the benefit of a continuous monitoring system in contrast to external 

sampling (finger-prick) is demonstrated in figure 4. 

 

 

Figure 4 Variation of the blood glucose level during the day. Figure from Medtronic Diabetes  

[29]. 
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This ‘oscillatory’ nature of the blood glucose value of a person with diabetes during the 

course of a day illustrates the importance of conducting continuous measurements that 

indicate dangerously low and high values that could be avoided by more timely 

therapeutic intervention. The challenge of controlling the level of BG at night when a 

person is sleeping has hitherto required the patient to wake up very early in the morning 

(e.g. 4 am) to test the BG (fig. 4). A continuous monitoring system will permit a person 

to sleep in peace and only be awoken if the BG level becomes dangerously low. 

 

1.2 State of the art in glucose measurement 

An  excellent  review  of  the  current  state  of  the  art  in  diabetes  monitoring  was  given  by 

Newman and   Turner [28]. This chapter  is partly based on this review article and expanded 

with additional literature by the author of this thesis. 

 

1.2.1 History of glucose measurement instruments 

The word “diabetes” comes from Greek and means to siphon (diabetics have excessive 

urination), whereas “mellitus” comes from Latin and means honey (due to the sweet 

taste of serum and urine from diabetic patients). Ants were used in ancient times to 

indicate the presence of sugar in the urine, and a positive test was determined if the ants 

showed an interest in it. Still, it was not until 1766 that Mathew Dobson described in 

more technical terms that serum and urine from people with diabetes contained sugar. 

The presence of sugar in the urine was determined by evaporation [30], and until the 

eighteenth century, the sweet taste of urine was the only means used to diagnose 

diabetes (excepting of course the ants used in ancient times). Consequently, the first 

analytical methods used to determine the glucose concentration were also based on 

urine samples. These were first described in 1870 by the French physiologist Claude 

Bernard [31] and revolved around: (i) polarimetry (rotation of polarized light),  (ii) CO2 

as a product of glucose fermentation, and (iii) application of the Barreswill/Fehling 

solution where the presence of reducing sugars (such as glucose) reduced Cu(II) to the 

Cu(I) which then precipitates [32]. Based on the method of Cu (II) reduction, more than 

half a century passed before Miles Laboratories (now Bayer) started their production of 

the urine sugar testing tablets Clinitest® in 1941 [33]. The glucose level in urine was 

estimated by comparing the test sample with a standard representing normoglycemia 

(normal BG level). However, this was not a precise method of evaluating BG values. 

The absolute concentration of BG was still unknown and hypoglycaemia (low level of 
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glucose) could not be discriminated from normal conditions since the urine would not 

contain any excess glucose. The key events in the development of recent glucose 

detecting instruments are listed in table 3. 

 

Table 3: Some defining events in the history of commercial glucose sensor 

development.  

Date Event 

1941 Miles Laboratories (Bayer) develop the Clinitest based on Cu reduction. Data from [32]. 

1962 Clark and Lyons invents the enzyme biosensor. Data from [34]. 

1971 The Ames reflectance meter: Optical evaluation of a colorimetric change. Data from [28]. 

1973-1975 First commercial enzyme biosensor: Yellow Springs Instruments no. 23. Data from [28]. 

1976 Miles Biostator: first bedside artificial pancreas. Data from [28]. 

1982 Development of the first fibre optic-based biosensor for glucose. Data from [35].  

1982 First implantable electrochemical needle type continuous glucose measurement system 
(CGMS) by Medical Research Group, Inc. Data from [36]. 

1984 First mediated amperometric glucose biosensor: ferrocene used with glucose oxidase for 
the detection of glucose. Data from [28].  

1987 Launch of the MediSense ExacTech blood glucose biosensor. Data from [28]. 

1991 Glucose sensor technology based on the “Redox Polymers” developed by E.Heller and 
Company.  Data from [32]. 

1992 i-STAT launches hand-held blood analyser. Data from [28]. 

1998 Launch of LifeScan FastTake blood glucose biosensor. First electrochemical device 
designed specifically for an active lifestyle by excluding the use of a lancet. The drop of 
the blood is extracted automatically. Data from [36]. 

1998 Medtronic MiniMed get a first FDA approval for the first commercial CGMS System 
GoldTM. Data from [32]. 
 

1999 DexCom is formed based on the use of reusable glucose oxidase membranes as the basis 
for a new implantable continuous glucose sensor. Data from [32]. 

2006 DexCom get FDA approval for their 3 day CGMS  (STSTM). Data from [32].  

2007 DexCom get FDA approval for their 7 day CGMS  SEVENTMSTS®. Data from [28].  

2008 Abbott get FDA approval for the FreeStyle Navigator. Data from [32]. 

 

The first patented mass produced blood glucose meter was the Ames Reflectance Meter 

from 1971 (Ames was a department of Miles Laboratory, now Bayer [28]). This glucose 

meter (fig. 5a) used an enzyme test strip where the blood drop was applied (Dextrostix, 

Bayer) and then washed away. The colour change as a function of glucose concentration 

was then read by the meter [37]. This instrument was expensive, relatively large and 

heavy (~1kg), required a relatively large amount of blood (sensor area measured approx. 

3/8x1/4 inch), and the requirement of a wash process meant that it had to be used 
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stationary in a doctor’s office. It became the prototype for subsequent reflectance 

colorimeters such as the Eyetone (1972) and the Ames Glucometer.  

 

                         

Figure 5 (a) The Ames reflectance meter (Elkhart, Indiana, USA); (b) The YSI 23 A glucose 
analyzer based on enzyme biosensor technology (Yellow Springs Instrument Company, Ohio, 
USA). Figure from Newman and Turner [28]. 
 

In 1975, Clark and Lyons developed a commercial glucose analyzer (YSI 23) based on 

the detection of glucose using an enzyme catalysed process (fig. 5b). This biosensor 

technology utilized the oxidation of glucose, and subsequently the oxidation of the 

hydrogen peroxide formed during the initial reaction, by glucose oxidase and 

horseradish peroxidise respectively [28]. It required a 25 L whole blood sample and 

improved on the accuracy compared to the Ames reflectance meter. Despite being a 

stationary model linked to the doctor’s office, the sensor technology become the basis 

for state-of-the-art handheld devices for home monitoring with an increasing amount of 

new products entering the marked every year. 

 

However, it was not until 1987 that MediSense produced the ExacTech® strip, which 

was the first commercially successful blood glucose meter for home application. While 

based on the enzyme biosensor technology of Clark and Lyons, it utilized an integrated 

electrochemical ferrocene-derivative mediator as the electron acceptor (in contrast to 

oxygen used in earlier sensors) [38]. As MediSence became a part of Abbott 

laboratories in 1996, these biosensors strips hit production numbers of 1 billion annually 

[28, 32]. 

a  b
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Since the beginning of the twenty-first century, only four commercially available 

continuous blood glucose monitoring systems (CGMS) have been approved by the 

American Food and Drug Administration (FDA) [32]. These are all based on Clark and 

Lyons enzyme sensors technology and constitutes Gold®/Guardian RT® 

(Minimed/Medtronic), the GlucoWatch Biographer (Cygnus/ Animas),  DexCom STS 

(DexCom), and  FreeStyle Navigator (TheraSense/Abbott) [39, 40]. These sensors have 

a lifetime spanning from 3 to 7 days, a start-up initialization time ranging from 2-10h, 

and require several daily calibrations to ensure proper operation [32, 41]. All of these 

devices require transcutaneous insertion of the sensor into the interstitial fluid under the 

skin, while the associated electronics rests on the skin surface. There is a danger of 

infection using this technology, as well as impaired lifestyle and discomfort (showering 

and swimming should be minimised for example). The sensor technology suffers from 

temperature changes in close proximity to the skin, whereas oxygen limitation and 

analyte (glucose) consumption may impose a problem in the close geometric 

confinement of the sensor in vivo.  

 

GlucoWatch (Animal Corporation, West Chester, USA) represented an alternative 

transdermal sensor technology and was approved by the FDA in 2001 [42, 43] (fig.6).  

 

 

Figure 6 Transdermal device for glucose monitoring (GlucoWatch). Figure from Smith [31]. 
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This technology extracted interstitial glucose through the skin by reverse iontophoresis. 

A low electrical current was applied through the skin between two electrodes, and the 

electroosmotic effect was utilized to transport neutral molecules including glucose from 

the anode to the cathode electrode [44]. Measurements were taken every 10 min 

employing a traditional electrochemical enzyme biosensor embedded in the cathode for 

periods of up to 13 h. However, the glucose meter suffered from several disadvantages 

such as a long calibration (start-up) time 2-3 h, skin irritation, lag time compared to the 

blood glucose value, and malfunction due to motion or sweat [45, 46]. It was 

discontinued in 2007. 

 

1.2.2 Current glucose measurement instruments 

Current glucose measurement instrumentation is classified as either continuous or point 

sample sensors (finger-pricking) with associated sub-groups presented in (fig.7): 

 

 

Figure 7 Current glucose sensor technology. Figure adapted from Oliver et al.,[42]. 

 

Devices capable of conducting continuous blood glucose measurements provide the 

most complete picture of the blood’s glucose variations during the course of the day and 

prevent the onset of dangerous events by triggering an alarm function when the blood 
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glucose moves beyond what are considered safe levels. This is especially important 

when the patient is sleeping or not being able to look after themselves. In spite of them 

being the most effective method of monitoring glucose, the transcutaneous nature of the 

sensor patches, combined with limited sensor lifetimes and long start-up periods, has 

meant that the single use sensor for manual point sampling remains the most popular.  

 

Glucose can be measured not only directly from the blood but also from different body 

liquids extracted from the patient such as tears, saliva, and urine. However, the 

advantages of measuring glucose in body liquids other than blood are limited due to the 

lag time before any changes in BG becomes apparent [47] combined with low 

sensitivity [48, 49]. The most potent glucose sensing technologies are summarised 

below. 

 

1.2.3 Point sample glucose meter 

The most popular detection method is the point sample (finger-prick) glucometer which 

is based on electrochemical sensors that were first invented by Clark and Lyon in 1962 

and first commercially realised in 1975 [28]. A drop of blood is extracted from the 

finger and placed on the sensor, which is located at the end of a disposable test strip (fig 

8).  

 

Figure 8 Measurements of the blood glucose level by a mobile glucose meter. Figure from 

Nancy et al.,[50]. 

 

The analysis of the result is made by the reusable reader in which all the electronic 

processing takes place. The glucose is oxidized by an enzyme, chiefly glucose oxidase 

(GOX), to the product gluconic acid (equ. 1) releasing electrons in the process that are 
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captured by the electrode creating an amperometric current that is proportional to the 

glucose concentration: 

 

Glucose + O2  + (GOX)  →    Gluconic acid + Hydrogen peroxide                        (1) 

 

The product of this reaction, hydrogen peroxide, can also be used for the determination 

of the glucose level, by its direct measurement (fig.9 a) [51] or by conversion using 

horseradish peroxidise (HRP). Since this reaction is oxygen limited, the catalytic rate is 

dependent on the oxygen concentration in the media. A low oxygen tension may trigger 

complications, which are alleviated by including a mediator (electron acceptor). As 

glucose is oxidized to gluconic acid in the presence of GOX, the electron acceptor part 

of the enzyme - the flavin adenine dinucleotide (FAD) is reduced to FADH2. The 

FADH2 then donates its electrons to the mediator which interacts with the electrode and 

is oxidized, generating a current proportional to the glucose concentration (fig.9 b) [51, 

52]. 

  

Figure 9 a) 1st generation electrochemical glucose sensor; b) 2nd generation of mediator based 
electrochemical glucose sensor. Figure from Newman and Turner  [28]. 
 
The implementation of a mediator is applied in the biosensor test strips of for example 

Accu-Chek TM and Comfort Curve TM, where the ferrocyanide and ferricyonide is used 

as the oxidized and reduced form of the mediator respectively [53]. A direct current 

transfer between the enzyme and the electrode can be achieved by embedding the 

enzyme in a conducting polymer, such as poly(3,4 ethylenedioxythiophene-

poly(styrene-sulfonate) [54]. The bioactivity (high catalytic activity) can be further 

augmented [55, 56] by taking advantage of the catalytic properties of embedded 

nanoparticles such as gold (nanoparticle)-chitosan composite film [57]. Even so, the 

bioactivity of enzymatic sensors depends on physiological parameters such as pH, 

temperature and the presence of biological components  (ascorbic acid) that may be 

difficult to control [51]. 

a b
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Although point sample glucose meters have found widespread applications for home 

care and self-tests in vitro due to the relative ease of use and the small amount of blood 

used in a single test (0.3 – 4 uL) (fig.10), it remains a cumbersome and inconvenient 

method that cannot always be used (e.g. outdoors in the winter, while driving, or during 

physical exercise). The additional painful experience of piercing the fingertip with a 

needle can further limit the number of measurements performed per day. The precision 

of the measurements also depends of the experience of the operator [58].  

 

Figure 10 A common blood-glucose sensor strips: One Tought Ultra, Arkray, Ascensia 
Contour, BD Test Strip, Free-Style, Precision Xtra, TrueTrack, Smart System, and Accuchek 
Aviva. Figure from Heller et al., [45]. 
 

1.2.4 Non- invasive glucose sensors 

Non-invasive glucose sensors aim to track the BG concentration indirectly from an 

external sensor that does not puncture the skin. These devices are mainly based on 

optical or transdermal methods, where the signal is recorded through the skin without 

imposing damage.  

 

1.2.4.1 Optical 

Spectroscopic techniques represent the major optical method used to detect BG by 

determining the quantity of light which is either absorbed, transmitted or emitted as a 

function of glucose concentration (fig 11) [31].  

 

 

Figure 11 Schematic diagram of different measurement configurations: a) transmission; b) diffuse 
reflectance; c) transflectance and d) photoacoustic. Figure adapted from Cunningham et al., [32]. 
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Mid-infrared spectroscopy (MIR) utilizes light in the range from 2.5 to 50 m [42]. This 

method can be used to identify glucose which exhibits a distinct absorption peak 

between 8382-9708 nm [46, 59]. Consequently, by transmitting MIR light through a 

tissue skin fold, the absorption signature can be measured as a function of glucose 

concentration. The main disadvantages of this method is that light has a limited path 

length and cannot penetrate far into the tissue [42, 60].  Moreover, the signal exhibits 

noise from other molecules as for example water and non-glucose metabolites which 

modulates the magnitude of the absorption peak of glucose [42, 60]. This technology 

has been utilized in the EU project “Clinicip” (Graz, Austria), which use MIR to 

monitor glucose in intensive care units (ICU).   

 

Near-infrared spectrum (NIR) utilizes light with a wavelength () of 0.7-2.5 m to 

detect glucose (chromoscopy) [32]. The work made by Pan S. at el. by Nicolet 740 FT-

IR spectrometer [61] demonstrated that the infrared spectrum from  wavenumber 5000 

to 4000 cm-1 ( of 2-2.5 m) contained information about the glucose range in a 

concentration spanning 1 to 20 mM. Although the absorption signature of water is less 

profound in this method, the signal related to glucose is weak compared to the MIR 

technology [31, 46, 60] and powerful computer algorithms are required to interpret the 

sensor data. The NIR technology has been applied by Sensys Medical (Wilmington 

New Castle, Delaware, USA), NIR diagnostics (Campbellville, Ontario, Canada), 

Medicontract with Diabetic Trust (Sohland, Germany) and Biocontrol Technology (Fort 

Lauderdale, Florida, USA) [46]. 

 

Raman spectroscopy applies the light of one wavelength, where the identification and 

quantification of BG is judged by the change in frequency of the reflected light as a 

result of inelastic scattering in the glucose molecule. The main advantage  of raman 

spectroscopy is its high molecular specificity, with a smaller degree of overlap from 

interfering molecules than other optical methods [32]. However, a laser radiation source 

is required with the impending danger of triggering photo thermal damage (laser can 

damage the skin cells) to the subject. Another drawback of this method is that the signal 

is relatively weak and thus any interaction with different tissue components as well as 

background noise is apparent. In this respect it has been found that a lower degree of 

interference has been demonstrated by measuring the spectrum from the eyes [46, 62].  
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Photoacoustic spectroscopy utilizes ultrasonic waves caused by the absorption of 

infrared light to measure the glucose concentration [63]. The research made by 

Mackenzie, HA., at el. demonstrated that the optimal wavelength for glucose detection 

is 9.676 m [64]. This method has the advantage of using diode lasers with levels of 

optical radiation that are several orders of magnitude below pain or tissue damage 

thresholds as well as utilising components that permit a compact portable sensor design 

to be made [32]. Although this technology suffers from the noise that is created from 

non-glucose blood components (which needs to be excluded from the measurements), it 

has nonetheless been utilized by Glucon (Boulder, Clorado, USA) [46, 64].  

 

Polarized light can be used to detect glucose from the aqueous humor of the eye, which 

exhibits a minimal absorption and scattering effect. This technology makes use of the 

degree of rotation of the polarization vector that is proportional to the glucose 

concentration. Work done by B. H. Malik and G. L. Cote demonstrated the potential of 

applying this method towards non-invasive monitoring of glucose in vivo [65]. The use 

of a single laser wavelength bypasses the use of complex multivariate calibrations [32], 

but a weakness of this method is the requirement of an external laser scanner which has 

to be accurately positions in front of the eye. This method also suffers from sensitivity 

towards temperature and pH variations. Additionally there is a lag time of about 5 min 

before a change in the blood glucose concentration is observed in the eye. Due to safety 

limitations this method has not yet undergone human trials [42, 66]. 

Thermal emission spectroscopy is based on measuring the temperature variation and IR 

signal from the tympanic membrane in order to correlate this signal to the BG 

concentration. The human body emits infrared radiation, and a special filter permits 

only the wavelength specific for glucose to pass to a detector. The intensity of the 

wavelength specific to radiation for glucose mirrors its concentration in blood [67]. 

However, thermal emission measurements are dependent on a constant body 

temperature which can otherwise affect the results [59, 68]. The process is also sensitive 

to motion [69]. This technology has been used by Infratec (Dresden, Germany) [46]. 

 

Fluorescence detection methods are based on the level of fluorescent light that is 

emitted for a given glucose concentration, for example in combination with the 

concanavalin A (Con A) - dextran affinity assay [70]. The binding between Con A and 

dextran is mediated by glucose which attaches to Con A, and displaces dextran in a 
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competitive manner. The displacement of dextran removes the fluorescence quenching 

dye attached to the dextran thereby releasing the fluorescent light from the fluorophore 

attached to Con A. In this manner, a frequency shift in the emitted spectra can be 

detected based on the fluorescence resonance energy transfer (FRET). Examples of 

some sensors based on the fluorescence methods are Ophthalmic glucose monitoring by 

Abbott (Libertyville, Illinois, USA) [71],  SCOUT DS  test by Veralight (Albuquerque, 

New-Mexico, USA) and Biotex Inc. (Houston, Texas, USA) [46]. The main drawbacks 

from this technology are the limitations due to photostability of the fluorophore and the 

loss of recognition capability from the limited fluorescence lifetime [32, 42, 72]. 

 

In general, all optical glucose sensors suffer from ambient environmental factors such as 

temperature, skin moisture and motion, which perturb the optical path of the excitation 

light. The technology is also user specific given that the tissue composition (and optical 

path length) will vary from one individual to another. The selectivity towards glucose is 

further challenged by the overlapping absorption/emission spectra from other blood 

borne or tissue components in vivo [28, 40], requiring complex algorithms to extract the 

glucose relevant data. 

 

1.2.4.2 Transdermal 

Bioimpedance spectroscopy determines the dielectric properties of the tissue by passing 

a small constant current at a fixed frequency between two electrodes and determining 

the voltage change between these electrodes as a function of glucose concentration. The 

main benefit of this method is the continuous nature of the measurement protocol (the 

Pendra Non-Invasive Glucose Monitoring Device displayed the glucose level every 

minute), simple implementation and safety due to its non-invasive nature [28, 73].  

However, this technology suffered from high cost and a prolonged calibration period of 

about 60 min. The Pendra Glucose Monitor (Pendragon Medical, Ltd., Zurich, 

Switzerland) introduced in 2000 and CE marked in 2003 had a price tag of 

approximately € 3000 each [46, 73] but suffered serious inaccuracy limitations that 

could expose the user to potentially dangerous situations[74]  
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1.2.5 Minimally invasive glucose sensors  

Minimally invasive glucose sensors are mainly based on the extraction of a drop of 

blood or interstitial fluid and to make this extraction process as painless as possible they 

penetrate the upper layers of the skin without touching the nerves. Microneedles can be 

used, as exemplified by the technologies of LifeGuideTM (Integ, St.Paul, MN, U.S) 

where 1L of BG is collected by using a microneedle [28] (fig.12), and Kumetrix 

(Union City, California, USA) which extracts only 100 nL of blood by employing a 

microneedle of comparable size to that of the human hair [75]. The use of microneedles 

offers a pain free alternative to current point sample glucose meters.  On the downside, 

they do not permit continuous measurements to be performed, and there is a comparable 

risk of infection and irritation using this technology as for any transdermal glucose 

sensing technologies [46, 72].  

 

 

Figure 12 Silicon micro-needle. Figure from Newman and Turner  [28]. 
 

1.2.6 Invasive glucose sensors  

An invasive sensor is classified as “implantable” if it resides in the body for more than 

30 days [46, 67], [42]. No such glucose sensor exists on the market today; the closest is 

the on-going development of an implantable insulin pump (MiniMed, Sylmar, 

California, USA) which has to be refilled every 3 months. It is still awaiting FDA 

approval [76], and if complemented by a glucose sensor (not yet available) the pump 

would form part of a complete blood glucose regulation system (artificial pancreas) 

permitting strict control of diabetes [28],[42].  
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Current invasive glucose sensors form part of CGMS and can reside in the body for up 

to 3-7 days [32]. These instruments consist of several parts: an enzyme biosensor, an 

insertion device that locates the sensor under the skin, and a receiver, which collects and 

displays the measurement data (fig.13). An additional calibration device is included to 

permit recalibration of the CGMS when required.  

 

 

Figure 13 Illustration of a real-time continuous glucose monitoring device (CGMS) by Dexcom 

a) external receiver unit; b) sensor transmitter; c) sensor delivery unit; d) skin patch and sensor. 

Figure from Cunningham et al., [32]. 

 
1.2.6.1 Electrochemical 

Current invasive continuous glucose sensors are mainly based on electrochemical 

enzyme transducers [42]. Currently there are four such main systems on the market: 

MiniMed Guardian (Medtronic, Northridge, California, USA) and MiniMed Paradigm 

(REAL-Time System),where the insulin pump is integrated to the glucose monitoring 

system;  DexComTM SevenTM (Dexcom, San Diego, California, USA); and the Abbott 

FreeStyle Navigator (Abbott, Illinois, USA) [32]. Their characteristics are presented in 

table 4. Both the Guardian (REAL-Time System), the Paradigm (REAL-Time System), 

as well as DexComTM SevenTM make use of GOX linked to production of hydrogen 

peroxide which is oxidized by the electrode system. This renders them dependent on 

and limited to the supply of oxygen which may affect the sensor readings. The Abbott 

FreeStyle Navigator is an exception as it uses an integrated mediator as the electron 

acceptor, which permits the sensor to function independent of the oxygen supply.  

 

 

 

a 

b

c 

d
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Table 4: Continuous Glucose Sensors. Data adapted from Cunningham et al., [32] 

Feature Abbott 
FreeStyle 
Navigator 

MiniMed 
Paradigm REAL-
Time System 

MiniMed Guardian 
REAL-Time System 

DexComTM Seven TM

Photos 

 
 
 
 
Figure from [77] 

 
 
Figure from [78] 

 
Figure from [78] 

 
Figure from [32] 

FDA 
approval 

March 13,2008 
for adults 18+ 

March 23, 2007 
Children 7-17 and 
adults 18+  

March 8,2007 
Children 7-17 and 
for adults 18+  

Mars 2006 for adults 18+ 

Sensor life Five-day wear 
indication 

FDA approved for 
72 h;  

FDA approved for 72 
h; 

FDA approved for 7 days 

Length of 
sensor probe 

6 mm 12.7 mm 12.7mm 13 mm 

Start-up 
initialization 
time  

10 h 2 h 2h 2h 

Calibration Calibrate at 10, 
12, 24 and 72 h 
after insertion 

1st is 2 h after 
insertion2nd 6 h 
after the 1st , and 
then every 12 h 

1st is 2 h after insertion 
2nd 6 h after the 1st , 
and then every 12 h 

Must calibrate with One 
Touch Ultra-cannot be 
entered manually. 1st 
includes 2 within 30 min 
of each other, when 
every 12 h 

Alarms  Yes Yes Yes Yes 
Measurement  Every 1 min Every 5 min Every 5 min Every 5 min 
Sensor 
storage 

Room 
temperature; 4 
months life 

36-80oF; 6 months 
life 

36-80oF; 6 months life Room temperature; 4 
months life 

 

The limitations that electrochemical sensors are subject to in vivo are mainly due to 

oxygen limitations (for those not using a separate electron mediator), poor enzyme 

stability, corrosion of the electrodes, biofouling and fluctuating sensitivity due to 

changing pH [47]. The consumption of glucose during analysis reduces the analyte 

concentration around the sensor, which may deem the measured concentration lower 

than what it actually is. Additional external calibration that is required shares the same 

drawbacks as using the point sample glucose meter.  

 

1.2.6.2 Microdialysis 

There are two companies in Europe that offer glucose sensors based on microdialysis. 

These are A. Menarini Diagnostics (Florence, Italy) through their product “Glucoday” 

and CMA Microdialysis AB (Stockholm, Sweden) [32]. These devices consist of a 

microdialysis fibre, which is filled with an isotonic fluid and an electro chemical GOX 

based sensor. The glucose from the fibre is pumped to the electrochemical part of the 
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device for analysis. This technology is used to treat and monitor unstable diabetes in 

ICU and is not suitable for home use[42]. While this technology requires a lower 

number of calibrations and has a more stable signal compared to current CGMS for 

home use, it suffers from a lag time between the sensor response and changes in BG 

because the sensor is located ex vivo and the dialysate has to be pumped to it. Additional 

fluid (perfusate) which is a component of the device makes it unsuitable for 

miniaturization. Moreover, inter-individual differences have a strong effect on the 

measurement results (e.g. density of the capillary per unit tissue, thickness of skin and 

body fat) leading to a calibration routine that has to be tailored the individual [32, 42, 

43]. 

 

1.2.6.3 Viscous metric 

The viscous properties utilising the Con A - dextran affinity assay have been reported 

since 1994 [79]. The bonding between Con A and dextran forms a viscous solution in 

low concentrations, or the absence of, glucose. As the glucose concentration is 

increased, glucose will start to bond to Con A, and competitively displace the much 

larger dextran molecule. By technically splitting a large macromolecular complex (Con 

A/dextran) into two smaller units (Con A/glucose + free dextran) the viscosity of the 

solution will decrease accordingly. This change in viscous properties is then used to 

detect the concentration of glucose. The technology platform is still considered 

immature and there is ongoing research to transport these methods into implantable 

microelectromechanical system (MEMS) devices [80]. The main drawback is the use of 

a relatively energy demanding actuator required to move the viscous solution around the 

sensor. 

 

1.2.7 Sensor Accuracy Requirements 

Prior articles have proven that preventing the onset of hypo- and especially 

hyperglycemic events reduces the danger of contracting long term complications as a 

result of diabetes [47, 81]. At present there are two protocols used to determine the 

accuracy of the glucose sensor. One is defined by the International Organization for 

Standardization (ISO) and the second is the Cark “error grid”.  The ISO have 

determined that an in vitro glucose sensor should be able to detect glucose concentration 

above 75 mg/dL, and that 95% of the measurements should be within +/-20% of the 

reference instrument. For glucose concentrations below 75 mg/dL, any measurement 
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must be within +/-0.83 mM (or 15mg/dL). There are no current ISO standards for the 

CGMS [32, 42, 82]. The “error grid” presented by W.L. Clarke in 1987 [83] is a 

diagram where the measured value by a sensory device is plotted against the referenced 

BG level (fig. 14). 

 

Figure 14 The Clarke error grid: A- “Clinically Accurate”; B- “Benign Errors, Clinically 

Acceptable”; C- “Overcorrection”; D- “Dangerous Failure to Detect and Treat” E- Erroneous 

Treatment , Serious Error”. Figure from Oliver et al.,[42]. 

 

The error grid is divided up into five separate regions representing the working 

condition of the glucose meter. Region A is denoted “Clinically Accurate”, region B is 

denoted “Benign Errors, but Clinically Acceptable”, region C is denoted 

“Overcorrection”, region D is denoted “Dangerous Failure to Detect and Treat”, and 

region E is denoted “Erroneous Treatment, Serious Error”. The target zone of 

commercial glucose meters lies within A and B (“Clinical Accurate” and “Benign”) [31, 

42]. The more a sensor monitoring system deviates away from these two zones, the 

more dangerous it can become for the patient. For example, if the BG level is low and 

the sensor shows that it is high the patient may inject insulin in an attempt to lower the 

BG further, resulting in dangerous acute hypoglycaemic events. 

 

1.2.8 The glucose sensor market 

The rapidly increasing prevalence of diabetes makes the glucose sensor one of the 

leading medical biosensor devices sold on the market. In 2004, the biosensor reached 
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$2.34 billion USD, in 2008 it achieved $4.38 billion USD [84], and this number is 

expected to increase to $16.5 billion USD by 2017 where the glucose meter represented 

more than 85 % [85]. 

 

Current companies involved in the commercial exploitation of glucose sensors are 

MediSence with their ExacTech device and Precision Plus QID, which utilize 

biosensors equipped with GOX [86]. The branded glucose sensors CareSens (i-Sens) 

and StartStripTM (by Nova Biomedical) offer some of the best performances with 

reported errors of less than 5 % [87, 88]. PolyMedica Corporation with Precision Xtra 
TM offers a combination of both glucose and ketone body measurements, due to 

ketoacidosis, which is often developed as a result of diabetes. The FreeStyleTM BGM 

system (by TheraSense), is based on the enzyme pyrroloquinoline quinone glucose 

dehydrogenase, which has lower glucose specificity than GOX, but which is 

independent of the oxygen concentration [89]. It is interfaced with the FreeStyle 

ConnectTM data management system to enable BG data to be stored directly on a PC to 

keep a record of the BG values, perform statistical analyses that improve the (insulin) 

dosage regime and diet, as well as sending the data directly to the doctor’s office or 

third party.  

 

There are currently four corporations that dominate the glucose monitoring market. 

Johnson & Johnson LifeScan controls 40-45 %, Roche (20-25 %), Bayer (10-15 %) and 

Abbott (10-15%). Other companies have a combined market share of up to 20 % [28, 

36]. Moreover the electrochemical enzyme sensor is still the dominating sensor 

technology with demands expecting to increase by 7.4%  each year [90]. Despite the 

low cost of the test strip of about 50 cents each, the large production volume [45] and 

consumption of this disposable sensor has a major impact on the costs associated with 

the treatment of this disease (fig.15). Only anti-diabetic drugs and insulin are 

consuming more money. The US alone accounts for 38 % of the world-wide glucose 

management market [91]. 
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Figure 15 The U.S. Diabetes Market, where the size of the circles represents the Diabetes 
market growth projected for 2009-2018. Figure from MedMarket Diligence [91]. 
 

1.3 Osmotic sensor 

1.3.1 Limitations and drawbacks of existing sensor technology 

The pain and discomfort experienced with manual point sample devices compromises 

such self-testing regimes. Incomplete numbers of measurements taken during the course 

of a day results in the average person with diabetes spending 4.8 h per day in a 

hyperglycaemic state and 2.1 h in hypoglycaemia. Both these conditions are potentially 

dangerous and can contribute to vascular damage, mental confusion and even death 

[32].  

 

The benefits of competing sensing technologies come with major disadvantages as 

outlined in the section above, and hence there are currently no real commercial 

alternatives to the point sample method. Continuous sensor technologies have a limited 

operational lifetime and require frequent calibrations using external point sample 

meters. The electrochemical enzyme biosensors consume glucose during the 

measurement, which may become critical if the availability is limited. The enzyme 

stability (GOX and dehydrogenase) suffers from the by-products generated in the 
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catabolic process. Alternative technologies suffer from a host of negative factors: 

Complicated, more power consuming structures (optical) that are less sensitive to 

glucose and more sensitive to ambient environmental factors such as temperature, skin 

perspiration and motion. Excessive size (microdialysis), using technology sensitive to 

individual host variations and finally current CGMS comes with a high price tag as well 

as a long start up time. 

  

1.3.2 Benefits and challenges of the osmotic glucose sensor 

Detecting glucose by the principle of osmotic pressure holds promise of a glucose 

sensing technology that is suitable for both miniaturisation and long term continuous 

monitoring in vivo without causing patient discomfort or reducing quality of life. It also 

offers several major advantages compared to current BG measurement technologies: 

 

 No reagent consumption: The osmotic pressure sensor uses a lectin 

(Concanavalin A or Con A) as the glucose recognising element in a reversible 

chemical process in which the glucose is ‘released’ after use. This is an 

important parameter to consider in small volume spaces enclosing the sensor in 

vivo with a limited diffusional supply of glucose. 

 No generation of poisonous byproducts: Glucose enters a competitive bonding 

reaction between Con A and dextran, which is a fully reversible concentration-

dependent process.  

 High glucose specificity: Con A offers a high glucose specificity comparable to 

GOX but with the absence of generated toxic by-products. The affinity to 

mannose is of lower importance due to the low physiological concentration of 

this sugar. 

 Long term stability: Con A is a protein with a high structural and functional 

stability [32]. The reversible nature of the binding mechanism permits long term 

continuous operation of the sensor. This project is limited to the intrinsic sensor 

design, and potential clogging of pores by external factors that might bear an 

impact on long term stability have not been considered. 

 Universal calibration: The sensor does not consume any reagents and is less 

dependent on the variability of vascularisation in subjects. An initial follow up 

would be required in the first 3 weeks whilst the wound caused by the sensor 
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implantation heals and affects membrane dynamics and sensitivity due to 

potential biofouling.  

 No additional start-up time:  Current electrochemical transducers require a 

start-up time before the diffusional flow of reactants (and hence sensor signal) 

becomes constant. The osmotic pressure generated from the diffusion of glucose 

and its interaction with the assay components will be independent of the sensor 

being turned on or off. Therefore, the sensor will measure the pressure instantly 

once turned on without the need of any additional start-up time. This will 

shorten the time the sensor is using power to conduct a measurement, reducing 

power consumption, and thereby the size, of the implant. 

 Miniaturisation: This sensor technology is inherently simple and fully 

compatible with silicon microfabrication, which will harvest additional benefits 

such as an ultra-compact low power sensor design and low cost production. 

 Unobtrusive: A miniaturised implantable sensor technology will not be visible 

and permit the user to live a normal active life void of potential infections 

caused by current transcutaneous CGMS. 

 Implantation by injection:  A miniaturised sensor technology will permit 

implantation by injection minimising patient discomfort and reducing the 

implantation time compared to an ordinary surgical procedure.  

 Real time continuous operation: The ultimate aim of any implantable glucose 

sensor technology is to be able to conduct long-term continuous measurements 

on the BG level and to predict the onset of hyper and hypoglycaemic events 

before they occur. The reversible nature of the affinity assay makes this a 

reusable technology that will contribute towards realising this aim.   

 

Although the benefits from recording glucose by osmotic pressure are clear, this 

technology would need to overcome the following technical challenges: 

 

 Sensitivity: Translating the glucose concentration to a concentration difference 

in dextran reduces the net concentration difference giving rise to an osmotic 

pressure. The sensitivity is also governed by the stoichiometry of the assay 

solution as well as deviations in the preparatory procedures.  

 Sensitivity to other osmotic active components: Osmotic sensors will measure 

a pressure proportional to the transmembrane concentration difference in 
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dissolved particles. Hence, the ability of the membrane to discriminate between 

particles size will determine the accuracy of the sensor. Although this issue will 

be resolved by incorporating a glucose specific assay of Con A and dextran, the 

sensitivity of this assay itself governs the overall specificity of the device against 

other metabolic active agents.   

 Retention of assay components: Any membrane with physical pores would 

need to be assessed with relation to its capability to retain components that are 

important for the functional operation of the sensor. The danger being that pores 

larger than the molecular weight cut-off (MWCO) may allow sensor 

components to escape, thereby reducing the sensitivity over time. 

 Sensor response time: Commercial nanoporous membranes offer a diffusion 

barrier that slows down the sensor response in addition to any delays imposed by 

the sensor design and biological transducer mechanism. The sensor has to be 

designed to limit the pathway length of any diffusional transport. A membrane 

that offers a low diffusion barrier is essential for successful operation. 

 

These issues would need to be considered in the design of the osmotic sensor, as well as 

the investigations undertaken to demonstrate the feasibility of the sensor technology. 

This is reflected in the focus of this research project and the 6 different areas of research 

(section 1.1.1.) that specify the challenges that needs to be resolved. The universal 

challenge of biocompatibility and biofouling related to the in vivo function through an 

open porous interface is shared with other potential implantable glucose sensors and 

will form the basis of subsequent work.  

 

Lifecare AS is the application holder of the implantable osmotic glucose sensor and 

holds a family of patents in the field of osmotic sensing of BG using osmotic pressure: 

WO1998028605, “Method for monitoring the level of an osmotically active component 

in body fluid and device for carrying out said method”, by Olav Ellingsen; 

WO2004107972, “Sensor in vivo measurement of osmotic changes”, by Olav Ellingsen, 

Bård Kulseng and Helge Kristiansen; and WO2009025563, “Apparatus and method for 

measuring augmented osmotic pressure in a reference cavity”, by Erik Johannessen. A 

detailed description of the mechanism of the osmosis process, main components of the 

affinity assay, and potential interferents (glucoses competitors) are presented below.  
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1.3.3 Osmotic pressure 

Osmosis (Greek “push”) is a process in which a solvent passes through a semipermeable 

membrane (solvent permeable) based on the concentration gradient of a solute that is 

impermeable to that membrane fig.16 [92]. 

 

 

Figure 16 The principle of osmosis shown with a membrane permeable only for water 
molecules. 
 

The membrane separates a dilute phase that has a higher chemical potential from a 

concentrated phase. This chemical potential difference creates a flow towards the 

concentration gradient, which results in a corresponding hydrodynamic pressure - 

coined the osmotic pressure [93]. An example of this process is illustrated by using a 

solution of glucose that is separated from deionized clean water by a semipermeable 

membrane. The glucose molecules decreases the free energy of the solution, triggering 

the water molecules to move through the membrane and towards the glucose solution 

until the chemical potential on both sides of the membrane is equal [94]. The osmotic 

pressure is described by the following equation: 

                                                              RTicM                                                                 (2) 

 

The osmotic pressure,  (Bar) is expressed as the total concentration of dissolved 

components, cM (solute) expressed in molar (mol L-1), adjusted for the van Hoffs factor, 

i, the universal gas constant, R, (0.08314 L·bar·mol-1·K-1), and the absolute temperature, 

T (Kelvin). By keeping the other parameters constant, the pressure is proportional to the 

concentration of solutes [95].  

 

The real osmotic pressure may deviate from the ideal if surface interactions between the 

dissolved molecules becomes predominant due to parameters such as solvent 
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concentration, molecular size and the pH of the solution [71-73]. In this case the 

osmotic pressure can be described by the virial expression (Equ.3) [96, 97]: 

 .....3
3

2
2  cAcAc

M

RT
    (3) 

where  (bar) is the osmotic pressure, c is the concentration of solute (g L-1),  M the 

molecular weight (g mol-1), R is the universal gas constant, (0.08314 L·bar·mol-1·K-1), T  

is the absolute temperature (degrees Kelvin), whereas the terms A2 and A3 are denoted 

the second and third virial coefficients respectively. 

 

Osmotic pressure is detected by an osmometer, the first being constructed back in 19th 

century by the French researcher Rene Joachim Henri Dutrochet [98]. Current 

applications related to this discovery is found in water purification systems (reverse 

osmosis), in medicine (dialysis) and in biology (protein purification), and more 

recently for the detection of BG, as the work in this thesis presents [99-101]. 

 

1.3.4 Sensing Mechanism 

The osmotic sensor developed in this project is based on the osmotic pressure generated 

by the competitive bonding between the sugar binding lectin Con A and the long 

chained polysaccharide dextran, which forms a large macromolecular complex. Lectins 

are a group of proteins that have special binding sites for carbohydrates [102], and the 

Con A attaches strongly to both glucose and mannose. The competitive binding between 

Con A, dextran and glucose have been known to science for the past century, but have 

only recently been exploited in biosensor applications [70], [72], [79], [77-79]. The 

present studies exploited the osmotic effect generated by the competitive bonding of 

Con A and dextran in the presence of glucose. As the concentration of glucose is 

increased, more of the larger Con A-dextran macromolecular complexes are split up 

into the smaller Con A-glucose and free dextran ‘sub units’. In this manner the number 

of free particles inside the sensor is increased as a function of glucose, leading to a 

corresponding rise in the osmotic pressure fig.17. 
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Figure 17 a) Con A is attached to dextran; b) Glucose competes with dextran to bind to Con A, 
and as the glucose concentration is increased, more of the Con A binds to glucose displacing 
free dextran molecules in the process. Figure from Johannessen and Krushinitskaya [103]. 
 
This process is reversible and as the glucose concentrations falls, the Con A reattaches 

back to the dextran forming a large macromolecular complex from the Con A and 

dextran ‘sub units’. The corresponding decrease in the number of free particles triggers 

the osmotic pressure to fall.  

 

It is important to remember that glucose is only one of many dissolved molecular 

components in blood (and the interstitial fluid). The osmotic effect from small 

components such as salts can be cancelled out by letting them pass unhindered through 

the membrane. In contrast, metabolites those are of a comparable size or larger than 

glucose represents a challenge considering exclusion by pore size alone. By employing 

a lectin as the glucose selective element, the large molecular weight of the protein 

compared to that of the monosaccharide facilitates a sensor design based on current 

membrane technology. The pore size distribution permits the larger protein molecules to 

be retained while offering an unhindered passage of glucose (and potential interfering 

metabolites), which cancel out the direct osmotic effect that otherwise would have been 

sensed by these. 

 

1.3.5 Affinity assay 

The lectin Con A is isolated from the jack bean Canavalia ensiformis. Despite its 

origins from the plant kingdom, it is known to exhibit long term chemical stability at 

physiological body temperatures [104, 105]. However, both the stability and solubility 

can be further enhanced by modification with poly-ethylene glycol (PEG) [106]. The 

configuration of Con A depends on the pH. Monomeric subunits are formed at pH 4-6 

in the presence of 2-propanol, dimeric at pH 4.5-6.5, whereas the tetrameric structure is 

formed at a pH higher than 7 [107-109]. The size of the Con A monomer is 

a b 
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approximately 42x40x39 Å [110]. The molecular weight of one such subunit range from 

25500 Da [111] to 27000 Da [112] depending on the literature reference that is 

consulted. One subunit contains one binding site for glucose or mannose, and 

considering the tetrameric structure, such a molecule would have a total of 4 binding 

sites. The tetrameric structure of the Con A is illustrated in figure 18 [108]. 

 

 

Figure 18 Illustration of the Con A tetramer (4 subunits). Every subunit has a carbohydrate 
binding site with affinity towards glucose or mannose. Figure adapted from Berman et al., 
[113]. 
 

The affinity towards carbohydrates is governed by a metal ion binding site that both 

activates Con A for saccharide binding as well as modulating its stability [107]. Both 

Ca2+ and Mn2+ are normally required, but the Mn2+  ion can be replaced by Co2+ , Ni2+ , 

Zn2+ and Cd2+ [114]. The binding activity of Con A may be inhibited by methyl α-D-

mannopyranoside [115]. The subunits with the binding site for the metal ions indicated 

are presented in figure 19. 

 

Figure 19 Illustration of the asymmetric Con A monomer (left). Close up (right) showing the  
manganese (Mn2+) and calcium ion (Ca2+) binding site. Figure adapted from Berman et al.,  
[113]. 
 

Carbohydrate binding site 

Mn2+

Ca2+ 
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The biotoxicity effect of Con A was examined by Ballerstadt et al.[105] who 

demonstrated the dose-response relationship of in vivo exposure to the protein. 

Although the Con A is retained by a semipermeable membrane, an accidental release 

due to a rupture may trigger an acute toxic event. However, when considering 

microfabricated implants such as the glucose sensor containing in total 0.007 mg Con 

A, this translates to less than 1 x10 -4 mg Con A/kg in humans (considering say a 70 kg 

male). The risk of hepatic or heratogenic effects is therefore considered to be extremely 

low since the LD50 dose of Con A is reported to be 2.2x10-2 mg/kg [105].  

 

Dextran is another important component of the affinity assay. This glucose based 

polysaccharide is produced by Leuconostoc or Streptococci bacteria [116, 117], and 

contains mainly α-1,6 linked D-glucopyranose residues and α-1,2 α-1,3 α-1,4 branched 

chains fig.20 [117].  

 

Figure 20 Chemical formula of dextran. Figure from Mehvar et al., [118]. 

 

The branching of dextran can be from 0.5-60%, with the solubility decreasing as the 

branching is increased. Dextran with more than 43% branching is water insoluble with 

the molecular weight of dissolvable dextran spanning 4-2000 kDa. The polymer can 

tolerate mild acidic and basic conditions [118] and has found wide applications in the 

industry and medicine over the past 50 years. The nontoxic nature of dextran [116] has 

made it applicable for plasma volume expansion, peripheral flow promotion and anti-

thrombolytic agents. It is a good candidate for a drug delivery agent, as in for example 

intravenous iron dextran, additionally the dextran has a stabilizing effect on the protein 

[118-120].  
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2. Sensor design and instrumentation 

This chapter presents the instrumentation developed and used in this project to 

investigate the challenges related to the sensor’s design and the concept of measuring 

osmotic pressure. This includes an assessment of the membrane dynamics and the 

implementation of the glucose specific biochemical assay. Although osmotic pressure is 

a well described and characterised phenomenon from literature, the different means of 

using this method to detect glucose is novel. One of the aspects assessed in the design 

process was to implement microfabricated components that could later be translated into 

a miniaturised sensor device, and to simulate the physical diffusion distances 

encountered in this miniaturised device (to keep the response time to a minimum). Our 

initial working hypothesis  was based upon the ability to detect a molecular component 

that has been dissolved at different concentrations in a solvent, by measuring the 

osmotic pressure it generates in an isovolumetric enclosed cavity (chamber) using an 

integrated microfabricated pressure transducer and a commercial semipermeable 

membrane. The goal of our initial sensor design was to prove this working hypothesis 

(Prototype 1).  

 

But the limitations of the early design soon became clear. The prototype 1 sensors were 

fragile single use devices that were prone to signal drift and which only worked for one 

specific non-replaceable membrane. An intermediate design employing a separate metal 

frame suffered from a response time that was too slow for practical use. Therefore, in 

order to expand the working hypothesis to include the effect of membrane dynamics on 

osmotic pressure performance, the design was developed into a more robust reusable 

sensor backbone based on commercial strain gauges (Prototype 2). This sensor design 

permitted the use of industrial standard disc shaped 25 mm diameter membranes 

permitting a variety of commercial membranes to be investigated. Since the same 

reusable sensor backbone was employed, the sensor performance could be directly 

related to a specific membrane.  

 



O .Krushinitskaya: Osmotic sensor for blood glucose monitoring applications 

36 
 

The absence of a bleeding-valve (for pressure equilibration) meant that any excess 

pressure trapped in the sensor as a result of the O-ring seal being compressed during the 

assembly process had to escape through the membrane by hydraulic transport of 

solution through its pores. This resulted in long start-up times before the signal 

stabilised to a level that permitted the sensor to be used. Incorporating a bleeding valve 

in the sensor base reduced the start-up times (prototype 3), but the size constraints 

prompted a return to a smaller MEMS based differential pressure transducer. Allowing 

for these modifications, the prototype 3 sensor exhibited a similar performance to 

prototype 2.  

 

Sensor prototypes 2 and 3 were used in all the major parts of the work presented in this 

thesis. It is important to note that they were constructed for laboratory bench tests (ex 

vivo experiments) only, and required the use of an external 50 mL test solution, and 

about 5 mL sample solutions to fill the internal reference chamber of the device 

(although the absolute volume of this chamber was much lower). In order to reduce the 

waste of expensive assay media, a miniaturised version of the osmotic sensor was 

designed (Prototype 4) employing 12 mm circular membranes and equipped with an 

integrated MEMS pressure transducer. The amount of sample solutions used to fill the 

internal reference chamber was less than 1 mL, and the smaller size would permit 

potential in vivo experiments based on an animal model. The schematic illustration of 

the sensor prototypes are presented in figure 21. 
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Figure 21 Schematic illustrations of a) prototypes 1 and 3, and b) prototypes 2 and 4. 

 

Detecting the direct osmotic pressure of glucose requires a membrane with pores that 

offers a MWCO lower than 180 Da (table 5). However, indirect pressure contributions 

from the affinity assay as a function of glucose requires membranes with a MWCO 

larger than 180 Da since glucose needs to pass through and interact with the assay 

components inside the sensor (table 5). Consequently Prototype 1 equipped with 

dialysis membranes (MWCO > 2 kDa) was only used in pilot studies on albumin 

(though in principle it could work with the affinity assay), whereas prototypes 2, 3 and 4 

using replaceable membranes could be used in both direct and indirect measurements of 

glucose.   

 

Table 5: Detection of the glucose by osmosis 

Measurement 
configuration  

Membrane 
characteristics 

Affinity 
assay 

Detection principle  Prototype 

Direct  Pore size <180Da - Selectivity of membrane 2, 3, 4 
Indirect  Pore size > 180Da + Selectivity of affinity 

assay 
1, 2, 3, 4 

 

A more detailed description of the sensor design and fabrication protocols of the sensor 

prototypes are presented in section 2.1 below. 
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2.1 Osmotic sensors 

2.1.1 Prototype 1: Dialysis cassette sensor 

The early prototype sensor was based on a commercial 0.5 mL dialysis cassette offering 

a membrane with a MWCO of 2 kDa (Slide-a-lyzer, Pierce Biotechnology, USA). This 

unit consisted of a pre-made package module with a chamber and integrated membranes 

(Prototype 1a) that could easily be modified into an osmotic sensor. The dialysis 

cassette consisted of two horizontally opposed dialysis membranes (approx. 1 cm2 

surface area) separated with a silicon rubber spacer (approx. 5 mm thick) moulded 

inside a thermopolymer frame. One of the two membranes of the cassette was removed, 

and replaced with a silicon carrier with an integrated differential 1 bar pressure 

transducer (MS761, Intersema, Switzerland) attached using an epoxy adhesive  

(Araldite 2020, Vantigo, Switzerland ) and sealed with polydimethylsiloxane (PDMS). 

The MS761 pressure transducer was a potential candidate for the implantable sensor due 

to its small size, dynamic pressure range of 1 bar and its ability to be mounted by flip 

chip thermo compression bonding (one bonding pad allocated in each corner of the 

chip). The latter was required to secure the compact package of an implantable device. 

The flexible nature of the PDMS (Sylgard 184, Silicone Elastomer, Dow Corning USA) 

permitted ambient pressure perturbations to be ‘seen’ at the reverse side of the pressure 

transducer and thereby cancel out atmospheric and hydrostatic pressures of non-osmotic 

origin.  

 

The second version (Prototype 1b) was based on a stainless steel frame designed by 

Lifecare AS and manufactured by their Swiss partner CSEM (Appendix 1A). This 

package permitted the pressure transducer (and chip carrier) to be attached to a reusable 

backbone, while interchanging the dialysis cassettes and membrane of interest. 

Prototype 1b had a reinforced steel mesh that prevented expansion of the dialysis 

membrane as the osmotic pressure increased in order to improve the response times. 

However, it also made the effective surface area of the membrane smaller which 

resulted in a slower response time overall. 

 

 2.1.1.1 Architecture and components 

The dialysis cassette based sensors consisted of the four main components that are 

required to build an osmotic pressure sensor: 



O .Krushinitskaya: Osmotic sensor for blood glucose monitoring applications 

39 
 

(i) Piezoresistive Pressure transducer: Piezoresistive elements are incorporated 

inside a thin (approx. 5 m thick) silicon diaphragm. These elements are subject 

to compressive and tensile strain that changes their resistance as the diaphragm 

moves under an applied pressure.  Incorporating these elements into a 

Wheatstone bridge configuration translates these resistive changes into a 

voltage signal proportional to the applied strain/pressure [121]. A pressure 

transducer can be packaged as an absolute differential or gauge device 

according to the type of pressure it is measuring. In this project differential and 

absolute pressure transducers have been used.   

Consequently, this unit records the osmotic pressure at any given time inside an 

enclosed reference chamber of the sensor. Since the silicon made device 

conformed to the size constraints of the implantable device, this was selected as 

the pressure transducer for the initial prototype.  

(ii)  Chip carrier: This unit provides the interface between the pressure transducer 

and electrical communication to the external world (interconnection).  

(iii)  Semipermeable membrane: This unit governs the nature of the osmotic 

pressure by selecting which particle(s) will be retained and which are allowed to 

pass through. The membrane acts as a barrier between the test and internal 

reference solutions. 

(iv)  Sensor package: This unit combines the other three components and provides 

the framework for the (iso) volumetric chamber which contains the reference 

(assay) solution and in which the osmotic pressure is generated. The plastic 

package of the dialysis cassette acted as the sensor package in this early 

prototype (later replaced with a metal holder). 

Although the pressure transducer was sourced commercially, the chip carrier was made 

from a double sided polished 4’’ (100 mm) diameter silicon wafer with a lattice 

orientation of <100>. This crystal orientation permitted processing by anisotropic wet 

etching in order to create a hole in the centre. This hole was required to permit access of 

the osmotic pressure to the transducer chip. The fabrication process consisted of several 

steps described in detail in table 6 and illustrated in the fig.22. The wafers were first 

thermally oxidised with 600 nm SiO2 acting as both etching mask and a dielectric layer 

to the underlying silicon before being subject to a sequence of fabrication steps (table 

6). 

 



O .Krushinitskaya: Osmotic sensor for blood glucose monitoring applications 

40 
 

Table 6: The fabrication protocol for the chip carrier used in the dialysis cassette sensor 

Step Process Parameters  Location Supplier  
1 Thermal oxidation of Si to SiO2 

on 4” silicon wafer <100> 
orientation 

0.6 m film thickness Front and 
reverse sides 

OSI optoelectronics 
AS (Horten) 
 

2 Metal deposition:  
Au 
NiCr( adhesion layer) 
 

 
500 nm 
50 nm 

Front side OSI optoelectronics 
AS (Horten) 
facility; 

3 Spin deposition of S1828 
(positive photoresist) 
 

4000 rpm for 60 s 
 

Front side Shipley, (USA) 

4 Patterning with photolithography: 
- at low contact pressure between 
mask and sample  

Exposure time of 15-
20 s 
≈5 bar 
 

Front side  

5 Development with 5% 
tetramethylammonium hydroxide 
(TMAH)  

 
 
40 seconds 

Front side VWR (Norway) 

6 Gold etching in Gold-etch 22196 
 
 

25 oC for 5 min 
 

Front side Sunchem, 
(Sweden) 

7  NiCr etching in the NiCr -etcher 
and 

photoresist stripping by Stripper 
1112-A 

28 C for 1 min. 
 
for 1 minute 

Front side Sunchem,( 
Sweden) 
 
Shipley, (USA) 

8 Spin deposition of  S1828 4000 rpm for 60 s 
 
 

Front and 
reverse sides 

Shipley, (USA) 

9 Reverse side mask alignment and 
patterning by photolithography  
 

Exposure time of 15-
20s 
≈5 bar 

Reverse side  

10 The top SiO2 layer  removed by 
wet etching in Buffered oxide 
etcher (BOE solution) 
 

10 minutes Reverse side  Sunchem, 
(Sweden) 

11 Front side pattern protected with  
ProTEKTM photoresist prior to 
bulk micromachining in TMAH 

1500 rpm for 30 s 
 

Front side  Brewer Science, 
Inc., Rolla, (USA) 

12 The wafer was then etched in 25 
% TMAH  
 

70 C for 14 hours Reverse side  VWR (Norway) 

Step Process Parameters  Location Supplier  
13 Remaining SiO2 on the front side 

removed by BOE solution 
For 10 minutes Reverse side Sunchem, 

(Sweden) 
14 The ProTEKTM resist was 

stripped off in ProTEKTM 
remover 100 

1 minute Front side Brewer Science, 
Inc., Rolla, (USA) 

 
The fabrication steps (table 6) are illustrated in figure 22 below. 
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Figure 22 Illustration of the process flow for the fabrication of the chip carrier: (step 1-2)  
Thermal oxidation; (3) metal deposition; (4) photoresist spin for patterning by photolithography; 
(5) resist development (6) metal etching ; (7) both side patterning by photolithography; (8-9) 
silicon oxide etching from the reverse-side; (10) photoresist stripping; (11) coating the patterned 
front-side of the wafer with ProTek and silicon wet etching in the TMAH solution; (12) 
stripping of the ProTek; (13) removal of residual SiO2 membrane by Buffered Oxide Etch. 
 
The pressure transducer was attached with a two component epoxy resin (Araldite 2020, 

Vantigo, Switzerland) and wire bonded to the chip carrier. The bonds were electrically 

insulated and strengthened with thermal glue Epotek H70-2 (Epoxy Technology Inc, 

Billerica, Massachusetts, USA) which also permitted the soldering of external wires 

onto the nearby contact pads. The sensor and carrier assembly was then attached either 
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Metal 
holder  

Cassette with 
membrane  

to the reusable sensor holder made from 316L stainless steel (fig. 23 and appendix1) or 

directly to the dialysis cassette (fig. 24). 

 

 

 

 

 

 

 

 

 

 
 

Figure 23 Prototype 1b permitted the silicon transducer to be reused while testing the 
disposable dialysis cassettes with the integrated semipermeable membranes. Removing one of 
the membranes allowed the attachment of the chip carrier to the cassettes during the sensor 
assembly. (a) Chip carrier attached to one face of the steel holder; (b-c) the pressure sensor 
attached to the carrier with insulated bonds, (d) steel holder opened to illustrate the replaceable 
dialysis cassette.  
 
While the steel sensor holder was immersed into beakers containing the test solutions, 

the prototype 1a was equipped with a circular vessel (made from a 35 mm cell culture 

dish) attached directly to the dialysis cassette with silicone adhesive (Dow corning 

3145, Dow Corning Corporation Midland, Michigan, USA). A second vessel acted as a 

foot protecting the sensor assembly and wires during test and measurements. The first 

vessel acted as a reservoir in which the osmotic test solution was contained (fig. 24). 
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a 

b 

c

1mm 

10mm 
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Figure 24 Prototype 1a. Removing the membrane on one face permitted the pressure 
transducer/chip carrier to be attached directly to the cassette. The sensor/carrier formed one end 
of an internal reference chamber with the second intact semipermeable membrane formed the 
other end. (a) Top side showing the membrane and reservoir. (b) Reverse side of the vessel 
showing the sensor/carrier assembly. (Paper V)  
 

2.1.1.2 Electronics  

A custom made pre-amplifier circuit was used to power the MS 761 pressure transducer 

and to amplify the output signals. The amplifier was made through a collaboration 

project with the Department of Informatics (IFI), at the University of Oslo (UiO). The 

output from the amplifier was fed into a data acquisition card (USB 6009, National 

Instruments, USA) connected to a PC running a LabVIEW (National Instruments) 

routine (figure 25).  

 

 

 

 

 

 

 

Figure 25 (a) The osmotic pressure sensor, connected to the (b) pre-amplifier circuit, with the 
output signal sampled by the (c) data acquisition card (NI USB-6009). 
 

2.1.2. Prototype 2 and 3: Laboratory test sensors 

The prototype 1 sensors demonstrated the concept of measuring osmotic pressure from 

the given sensor architecture. However, this sensor architecture did not permit studies 

using interchangeable membranes, and the steel prototype was limited to the 

membranes offered by the different dialysis cassettes only. The flexible nature of the 

semipermeable membrane (bulging out in response to increased osmotic pressure) and a 

diffusion distance of 5 mm resulted in a response time that was measured in hours. This 

a  b 

c

10mm  10mm 

a  b
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made it difficult to discriminate between the actual osmotic pressure changes that were 

recorded and the drift that was present in the system. The origins of the drift most likely 

resulted from the thin (approx. 0.4 mm thick) silicon chip carrier that was used and 

which enclosed the entire reference chamber at one end. The structural rigidity of this 

carrier may not have offered sufficient support to restrain the increased osmotic 

pressures generated in the reference cavity.  Bending of the carrier as a result of the 

induced strain from the pressure would then be transferred to the attached pressure 

transducer changing the resistive values of the integrated piezoresistive elements. This 

drift may have been further augmented by a (suspected) swelling of the epoxy resin 

used to attach the transducer to the carrier which was in direct contact with the internal 

aqueous reference solution.  

 

It became clear that a more rugged reusable sensor design was required in order to 

explore the competitive affinity assay and to enhance the response times. The 

identification of a suitable membrane was of paramount interest, and the potential of 

applying an affinity assay to identify glucose from other suspected interferents in blood 

would have to be prioritised. Given that the sensor response time was governed by the 

(constant) speed of diffusion of water and glucose, the best way of improving this 

parameter would be to enlarge the surface to volume ratio of the design. Consequently, 

the area of the semipermeable membrane was enlarged from 1 cm2 to 4.9 cm2 while the 

volume of the reference chamber was reduced from 0.5 mL to 0.2 mL. In this respect, 

the height of the reference chamber (and thus the distance that a molecular species 

would need to diffuse to equilibrate), was decreased from 5 to 0.5 mm. This would 

correspond to decreasing the response time from 3.5 hours in the initial design to 2.1 

minutes in the new design (equ. 4). 

 

                                                         D

x
t

2

2


                                                                         (4) 

 

Where t time for a species to move a distance x based on diffusion coefficient D.
 

This assumption considered a diffusion coefficient in water of 10-5 (cm-2s-1) and no 

additional diffusion barriers created by the membrane or the reference solution. 
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The requirement for reliable operations over extended periods in order to compare 

membranes and to test out the affinity assay performance prompted the experimental 

silicon transducer used in the original design to be replaced by industrial pressure 

transducers. Hence, prototype 2 was equipped with a stainless steel membrane strain 

transducer 19CO15A7 (Honeywell, USA) certified for measuring absolute pressures up 

to 15 psi (equivalent to 1.03 bar) above ambient in both aqueous and gas phases. This 

absolute pressure transducer required a second identical transducer to be implemented 

to subtract the ambient pressure perturbations from the measurement. In contrast, 

prototype 3 was instead equipped with a differential silicon pressure transducer 1.03 

bar, 40PC (Honeywell, USA) that more closely resembled the original sensor, but which 

came pre-packaged with an integrated amplifier in a sturdier sensor package. The 

volume occupied by the sensor channel was filled with liquid paraffin to protect the 

sensor seals from moisture ingress as well as providing an efficient means of separating 

this channel from the volume of the reference chamber.  

 

The membrane was protected by a laser cut steel support plate that prevented it from 

bulging out as the pressure inside the sensor increased. This permitted the volume inside 

the reference chamber to remain constant at different pressures. The sensors were 

compatible with commercial 25 mm diameter membrane samples, which permitted a 

variety of membranes to be explored (as well as custom-made versions cut from larger 

sheets). The incorporation of a bleeding-valve in prototype 3 reduced the equilibration 

time after sensor assembly. Corrosive resistant grade 316L stainless steel was chosen as 

the sensor material given its sturdiness, chemical resistance and machinability.  

 

2.1.2.1. Architecture and Components  

The prototype 2 and 3 osmotic sensors (appendix 2, 3) were constructed based on the 

design criteria outlined from the experiences obtained with the prototype 1 devices 

above.  The sensor components are presented in table 7 below.  

 
 
 
 
 
 
 
 



O .Krushinitskaya: Osmotic sensor for blood glucose monitoring applications 

46 
 

Table 7: Sensor components of prototypes 2 and 3 

Components Specification Osmotic 
sensor 

Supplier 

Absolute 
pressure 
transducer 

19CO15A7, 1.03 bar absolute, x 2 Prototype 2 Honeywell, 
USA 

MEMS type 
differential 
pressure 
transducer  

1.03 bar, 40PC 
the access channel leading into the silicon transducer 
was shortened to conform to the sensor base. 

Prototype 3 Honeywell, 
USA 

O-ring ID x d:  22x1.6mm, perfuoroelastomer(Kalrez)  Prototypes 
2and 3 

 DuPont, USA 

Membrane 
support plate 

OD: 25mm, thickness 0.3 mm, laser cut stainless steel Prototypes 2 
and 3 

EasyCad o.y., 
Finland 

Semipermeable 
membranes 

Pore size Thickness 
μm 

Membrane Prototypes 2 
and 3 

 

MWCO Da nm 
0 0 177* Polyamide RO 

(PA) 
Sterlitech, USA 

100 0.6 0.1-0.5 µm 
high density 
on 100 µm 
porous 
polypropylen
e support 

Cellulose Ester 
(CE) 

Spectrum 
Laboratories,  
USA 
 

500 0.8 

1000 1 

5000 1.5 

10000 2.5 

20000 3 
50000 5 1 µm high 

density on 50 
µm support 

Anodic 
Aluminium 
oxide (AAO) 

Synkera  
Technologies, 
USA 
 

500000 15 6 µm Polycarbonate Whatman, 
USA 

 

Prototype 2 relied on two embedded pressure transducers, one of which measured the 

osmotic pressure in the reference chamber, the other the ambient atmospheric pressure. 

Since the transducer that records the osmotic pressure also picks up ambient pressure 

perturbations, it was found that subtracting the ambient pressures from the measurement 

yielded the osmotic pressure only. The differential pressure transducer of prototype 3 

measured the osmotic pressure directly by excluding the ambient fluctuations in its 

intrinsic design (which is also intended to be implemented in the implantable Lifecare 

sensor). An illustration of prototype 2 and 3 is given in figure 26 and figure 27. 
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Figure 26 A: Prototype osmotic sensor with a reservoir for the test solution (A). The front plate 
(B) secures the nanoporous membrane to a support plate (C) through the aid of 8 screws (2.5 
mm). The amplifier in the compartment (D) houses the integrated pressure transducer and its 
reference (E). B:  Cross sectional view of the osmotic sensor. A silicon pressure transducer is 
integrated in the base of the sensor case (F) incorporating a bleeding-valve for pressure release. 
An O-ring forms the walls and seals of an extremely shallow 0.5 mm thick reference chamber in 
between the membrane and the base plate. All units in mm. Sourced from paper III 
Krushinitskaya et al.,[101]. 
 

The sensors detected osmotic pressure from a difference in the concentration of osmotic 

active particles across the membrane. This pressure was recorded in the solution of the 

reference chamber. A membrane support prevented deformation of the membrane under 

increasing trans-membrane pressures. As mentioned above, a pressure release valve was 

incorporated into prototype 3 to release any over-pressures generated from the 

compression of the O-ring during the assembly process in which the front plate was 

secured with 8 attachment screws (Appendix 3). In prototype 2, the lid was attached 

prior to mounting on the pressure transducer (Appendix 2) and no bleeding channel was 

required. However, the excess pressure generated as the sensor head was secured to the 

base of the pressure transducer and accompanying O-ring resulted in long start-up time 

before the sensor could be used. A more detailed description of the laboratory test 

sensor construction is given in paper I and III.  
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Figure 27 (a) Sensor prototype 3 located in the bottom of the test vessel used to contain the test 
solutions. (b) The reverse side of the front plate shown with an attached nanoporous cellulose 
ester membrane and O-ring (Paper I).  

Commercial membranes from different suppliers were used. These were based on 

materials such as polyamide (PA), cellulose ester (CE), anodic aluminium oxide 

(AOO), and polycarbonate. The pore size ranged from 0-500 kDa (0 - 15nm). The 

combination of the pore size and material properties permitted a detailed investigation 

to be performed with respect to the permeation rate of water, glucose and albumin (as a 

model for the affinity assay components) which indicated the response time for a given 

membrane as well as the performance of the affinity assay. The membranes used during 

this research work are presented in table 7. Although these membranes have found 

widespread applications in medicine, biotechnology and chemical food industries 

concerning distillation, purification and separation processes, they were investigated in 

this project as potential semipermeable membrane candidates for use in the osmotic 

glucose sensor.  

 

2.1.2.2 Electronics  

The pressure transducer was operated by a constant voltage supply in which the balance 

potential from the Wheatstone bridge sensory output was amplified through a standard 

instrumentation preamplifier. The preamplifier was custom built from discrete 

components through the collaboration with Lifecare AS concerning the absolute 

pressure transducer (19CO15A7 Honeywell) used in prototype 2, whereas it formed part 

of the proprietary differential MEMS transducer (40PC, Honeywell) used in prototype 

3. The output signal from both sensors was recorded as a DC voltage and fed into the 

analogue input of a DAQ card. The custom made amplifier schematic for prototype 2 is 

presented in appendix 4. 

 

  

10mm10mm 
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2.1.3 Prototype 4: Implantable sensor  

A miniaturized version of the laboratory test sensor was developed to reduce the reagent 

consumption and to explore the potential for in vivo applications (Appendix 5). The 

smaller size makes this sensor portable with the potential to be used as a short term 

implantable device in (pre-clinical) animal studies.  

 

2.1.3.1 Architecture and Components  

This sensor was based on a modified version of an earlier prototype developed by 

NTNU [122]. The separation distance between the membrane and sensor base was kept 

unchanged from the sensor 2 and 3 prototypes (0.5 mm) but the membrane diameter 

was decreased from 25 mm to 12 mm. The bleeding-valve was incorporated from the 

prototype 3 sensor whereas the dual transducer configuration from prototype 2 was used 

due to the absolute pressure nature of the SW415PRT MEMS transducer (SensoNor 

ASA, Norway). The first transducer was located in the osmotic sensor, whereas the 

second was embedded in the TDD 2010 ConventorCard (see 2.1.3.2) containing the 

sensor drive electronics. The SW415 pressure transducer (appendix 6) has a small size  

(length 2480 μm;  breadth 1980 μm;  and high 1450μm) and can measure a pressure of 

up to 1 bar which corresponds to the dynamic range of the previous sensors used in this 

project. The sensor was equipped with a ‘break resistant teflon coated wired connection’ 

that was integrated through the sensor housing. The flexible wire allowed the prototype 

to be locked in position and minimally perturbed if the wire was moved - a property that 

is considered useful for the purpose of implantation. The sensor components of 

prototype 4 are presented in table 8.  

 

Table 8: Sensor components for prototype 4 

Components Technical data Supplier 
Absolute pressure 
transducer  

2x SW415PRT, 1 bar SensoNor (Norway) 

Chip carrier Fabrication protocol identical to the carrier of  
prototype 1 (table 5) 

 

Teflon coated wire 10 lead medical cable D =2.06 mm Wire Technologies (Lisbon. 
NH, USA) 

O-ring D = 10x1.0mm, perfuoroelastomer (Kalrez)   DuPont, USA 
Membrane Support D =12mm; thickness 0.3 mm stainless steel EasyCad o.y., Finland 

 

The sensor enclosure was bulk machined from 316L stainless steel and incorporated a 

recess for mounting the pressure transducer which reduced the length of the sensor 
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channel by 0.5mm compared to earlier designs. The incorporation of a bleeding-valve 

releases the excess pressures due to compression of the O-ring when the lid is tightened. 

The sensor utilized 12 mm diameter custom made circular membranes while the total 

diameter of the enclosure was 16 mm. The manufacturing flow is demonstrated in 

figure 28. The architecture is described in more detail in Paper II.  

 

Figure 28 Components of prototype 4. a) The sensor chip carriers are manufactured on a 
common 4’’ (100 mm) diameter silicon wafer with lattice orientation  <100>. b) The pressure 
transducer is attached and wire bonded to the chip carrier. c) Soldering of external wires directly 
onto the carrier. d) The sensor carrier assembly is embedded into the holder and sealed with a 2 
component epoxy resin. 
 

The transducers were first tested after the wire bond procedure in order to check their 

integrity. After passing the 1st control test the external wires were soldered and a 2nd test 

performed prior to assembly into the sensor holder (Figure 29). In this manner, the 

sensor functionality was controlled at every assembly step. 

 

 

 
Figure 29 (a-b) Assembly of the miniaturized sensor prototype 4; c) Front view of the sensor 
showing the steel membrane support protecting a 12 mm circular AAO membrane fitted below; 
d) The pressure transducer attached to the chip carrier and metal holder covered with PDMS 

a  b  c
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c 

d
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2.1.3.2 Electronics  

The fabricated miniaturized sensor was wired to the TP-USB Converter  (MEMSCAP, 

Norway)  which collected the data from all the sensors connected to the system and 

transferred them to a custom made LabVIEW program for data acquisition (National 

Instruments, USA). The osmotic pressure was recorded by subtracting the atmospheric 

pressure measured by a reference absolute pressure transducer embedded in the TDD 

2010 ConventorCard (M90085 rev00, MEMSCAP, Norway). This card amplifies the 

signal from the pressure transducer, and transfers all data to the TP-USB Converter 

(figure 30). 

 

 

Figure 30 Miniaturized osmotic sensor (A) connected to (B) the TDD 2010 ConventorCard 
M90085 rev00, MEMSCAP and (C) the TP-USB Converter (MEMSCAP, Norway) for 
amplification and recording of the signal from the osmotic sensor.   
 

2.2 Data acquisition  

The amplified signal from the osmotic pressure sensors were collected by the TP-USB 

Converter (MEMSCAP AS, Norway), and recorded on a computer running a LabVIEW 

routine developed in house from their proprietary software (National Instrument, USA) 

by MEMSCAP AS. The saved data was analytically processed for presentation using 

MATLAB (MathWorks, USA).  

 

2.3 Sensor calibration  

The sensor prototypes were calibrated using an external hydraulic source (PV411HP GE 

Druck, USA). A solid metal disk with an integrated single orifice replaced the 

membrane and support plate in order to seal off the integrated sensor cavity during the 

calibration procedure. A hypodermic needle was attached to the orifice with epoxy 

resin, and the excess length of the needle was cut off at the plane of the metal disk in 

A 

B 

C
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order to create an inlet channel to the sensor. A pneumatic plastic tube was connected 

between the external source and this inlet channel and the whole system was then 

primed with DI water (fig. 31). The external pressure was applied in discrete 0.1 bar 

increments (table 9) that spanned the dynamic range of the sensors. The linear output 

voltage corresponding to this pressure formed the basis of calibration equations for the 

respective sensors. 

 

Figure 31 External hydraulic source (a) used to calibrate the sensor. (b) A metal disk is 
mounted in the sensor instead of the membrane and support plate, to permit the external applied 
pressure to be channelled from the generator, through the plastic tube, and into the sensor 
cavity.  
 

The calibration data for the sensors is presented in table 9. All prototypes exhibit a 

linear response and the applied regression fitting illustrates the relationship between 

pressure and voltage as well as the linear nature of the sensor response. The variation in 

the intersection during the prototypes calibration was due to the different zero-pressure 

set of the sensors, whereas the slope was governed by the responsivity of the individual 

transducers as well as the gain set in the amplification stage. The sensor response is 

registered by the DAQ card, and a mismatch between the amplifier zero and the zero of 

the card results in the negative voltages (as seen in prototype sensor 3).  

 

 

 

 

 

 

 

a  b 
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Table 9: Calibration data of the prototypes  

Prototype Mean 
Pressure, 
[Bar] 

Mean 
Voltage,[V] 

Regression analysis 

Prototype 1  
 
 

0 

0.1 

0.2 

0.3 

0.4 

0.5 
 

3.506 

4.221 

4.668 

5.178 

5.699 

6.264 
 

  P=(V-3.537)/5.440;    R2=0.9995 

 
Prototype 2 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 
 

1.315 

2.772 

 4.238 

 5.710 

 7.180 

 8.626 

10.057 

11.506 

12.910 

14.310 

15.192 
 

P=(V-1.437)/14.184;        R2=0.9987 

 
Prototype 3 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 
 

-0.841 

-0.270 

0.081 

0.340 

0.738 

1.131 

1.527 

1.924 

2.318 

2.712 

3.100 
 

  P= (V+0.763)/3.846 ; R2=0.9982 

 
Prototype 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.1 

0.2 

0.3 

0.4 

0.5 

0.7 

0.8 
 

1.293 

2.869 

4.515 

6.730 

8.385 

11.542 

13.103 
 

      P=(V‐0.4862)/15.802; R2=1 

 



O .Krushinitskaya: Osmotic sensor for blood glucose monitoring applications 

54 
 

The calibration equation for prototype 1 is P=(V-3.537)/5.440,  where V is Voltage [V]; 

P is pressure [Bar] and the inherent noise ±3Ϭ (where the Ϭ is the standard deviation)   

of 6.3mBar (0.25mM). The correlation between pressure and voltage for prototype 2 

(19CO15A7 transducer) is, P=(V-1.437)/14.184 noise ±3Ϭ is 0.7mBar (0.028mM); 

prototype 3 (40PC transducer), P= (V+0.763)/3.846  noise ±3Ϭ is 1.82mBar (0.07mM). 

As can be shown, both noise and stability were successively improved in the later 

generations of the laboratory sensor prototypes (table 10). Prototype 4 has the following 

correlation between the pressure and voltage P=(V-0.4862)/15.802; R2=1 where the 

noise level is 0.5 mBar (0.02 mM).  

 

Table 10: Results from the calibration of the prototypes 

Sensor  = slope  
[V/bar] 

B = y value at zero pressure 
[V] 

±3Ϭ, where Ϭ 
standard deviation 
mBar mM 

Prototype 1 5.440 3.537 6.3 0.25 

Prototype 2 14.184 1.437 0.7 0.028 

Prototype 3 3.846 -0.763 1.82 0.07 

Prototype 4 15.802 0.4862 0.5 0.02 

 

Testing the sensors equipped with a 5 kDa MWCO CE membrane and containing a 1 

mM solution of albumin in the reference chamber, showed that the prototype 4 sensor 

exhibited a response time (the time taken for the sensor signal to stabilise after a 

solution change) of approx. 3 hours. The prototype 2 and 3 sensors equipped with the 

same CE membrane had a response time of 4.71 h. The size difference between 

prototypes 3 and 4 and the smaller prototype 4 were compensated by the large active 

surface area of the larger ‘sisters’ while keeping the height of the reference chamber 

similar (0.5 mm). This resulted in “comparable” response times between sensors 2, 3 

and 4. 
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3 Materials and Methods 

The experimental protocols are designed to test out the working hypothesis of using 

osmotic pressure to detect BG. The initial experiments were conducted on albumin as a 

model component due to its abundance in blood and its relatively large molecular size 

(which would let the membrane retain the particle). Osmotic sensors based on dialysis 

membranes were used to verify this concept. The working hypothesis was then 

expanded to explore the impact of membrane design and pore size on the response time. 

Albumin was again used as a model component to investigate the water permeability of 

the membrane. Measurement of glucose was introduced for the first time to verify if 

sensors equipped with membranes with a MWCO lower than the MW of glucose could 

perform direct quantitative analysis of the glucose concentration. The permeability of 

glucose in those membranes with a larger MWCO was also explored. Since the MW of 

albumin is also close in size to the components of the affinity assay, any leakage or 

confluence of this molecule would also be indicative for any potential loss of the assay 

components from the sensor.  

 

The major challenge in conducting direct measurements on glucose relies firstly on 

identifying a membrane that is capable of separating glucose from other components in 

blood based on the MW. Still if such a membrane exists, there would be components 

that are of a comparable MW to that of glucose which would be capable of changing 

their concentration up to the resting level of BG. These would give osmotic pressure 

perturbations that would interfere or mask the pressure signature of BG. Hence, the 

requirement of a separate glucose selective mechanism prompted the exploration of an 

affinity assay that would permit membranes with a larger MWCO to that of glucose 

(and its interfering components) to be used. The working hypothesis was therefore 

expanded to include ‘the incorporation of a reversible competitive affinity assay based 

on Con A and dextran that would be able to selectively identify glucose from other 

interfering components in blood.’  
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3.1 Materials 

The materials used in support of the experimental protocols are specified in table 11 

together with the supplier and product number. 

 

Table 11: Materials used to support the experimental protocols 

Supplier  Product number  Description 

Sigma –Aldrich, USA T7693-100G Trizma Pre-set crystals 

G7528-1KG Glucose, D (+)- anhydrous 

A9418-50G Albumin bovine fraction v 

C2010 Con A Type IV 

00892 Dextran 80 

LAA-21 KT Amino Acids (kit of 21 essential amino acids) 

L7022/7178 Sodium L-lactate 

S7653 Sodium chloride 

A5960 L-Ascorbic acid 

P3813 Phosphate buffered saline (PBS) 
VWR, USA 2331408 Calcium chloride dehydrate  

2318696 Manganese Chloride tetrahydrate 

2151855 Sodium hydroxide 

Kemetyl, Norway 600068  Ethanol 

 - DI Water (Laboratory) 

 

 

3.2 Methods 

3.2.1Albumin tests (0-1mM) 

Albumin dissolved in DI water was used to investigate the absolute osmotic pressure 

generated in the reference chamber, the membrane dynamics with respect to the 

response time (water permeation), and the confluence/flux of albumin through the 

different semipermeable membranes. Albumin was used in all the prototype sensors in 

concentrations of either 0.5 mM or 1 mM.  

 

Prototype 1 (Paper V): Albumin at a concentration of 1 mM was first injected inside the 

reference chamber. Test solutions ranging from 0 mM, 0.5 mM to 1 mM albumin was 

then poured into the test vessel (prototype 1a) or by immersing the sensor in the test 

solutions (prototype 1b).  The sensor was exposed for the test solution in periods of up 

to 3 hours to allow the signal to stabilise before the solution was replaced. Each 
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experiment was repeated in entirety 3 times before changing the albumin reference 

solution inside the chamber in between.  

 

Prototype 2, 3 (Paper III and Paper VI; VII ) 

The reference solution, which consisted of 1 mM Albumin, was filled into the reference 

chamber of the sensors following protocols as described in chapter 2. This test was used 

to classify the membranes listed in table 7 with respect to response time (diffusion of 

water through the membrane) as well as the confluence of albumin (leakage of albumin 

through the membrane). Maintaining a 1 mM albumin test solution in the vessel outside 

the sensor (transmembrane concentration gradient of 0 mM) permitted the sensor to 

pressure equilibrate for 6 hours, before the external reference solution was replaced with 

DI water (the test vessel having been rinsed 2 times with DI water to remove any 

residual albumin) and letting the experiment run for another 8 h. Each test was repeated 

3 times.  

 

Albumin was also used to perform long term confluence tests of the sensor of up to 1 

week.  This permitted the long term stability of the sensor to be investigated with two 

different membranes (5 kDa CE and 50 kDa AAO), which would pinpoint pressure 

variations with respect to confluence, temperature and external barometric pressure. 

 

Prototype 4: A reference solution of 1 mM albumin was used to investigate the response 

characteristics of sensor prototype 4 equipped with a 5 kDa cellulose ester membrane. 

The sensor was submerged in a 1 mM test solution of albumin and left to equilibrate for 

3.5 hours. Although the use of a pressure release valve reduced the equilibration time of 

the sensor, the extended time recording at “zero” pressure was used to investigate the 

stability of the signal prior to the test.  The sensor was then removed from the albumin 

test solution, rinsed and placed in the DI water for 5.5h.    

 

3.2.2 Direct glucose tests  

Direct measurements on glucose were conducted on prototype 2 and 3, which permitted 

the use of interchangeable membranes. The experimental protocols below therefore 

reflect the use of these two sensors only. Pure glucose solutions dissolved in DI water 

were used. 
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The sensitivity test: This experiment was conducted to record the ability of the sensor to 

measure small physiological concentration changes of glucose around the resting value 

of 5 mM (paper IV). A reference solution of 5 mM glucose was maintained in the 

reference chamber, and the external test solution was cycled above or below this value 

every 24h. The external test solution ranged from 4 mM, 4.5 mM, 4.75 mM, 4.875 mM, 

5 mM, 5.25 mM, 5.5 mM to 6 mM (see table 12). Every measurement was repeated 3 

times. A PA membrane with a pore size rated to zero (MWCO) by the manufacturer was 

used.  

 

Table 12: Concentration of the different glucose solutions during the sensitivity test 

Glucose Solution  Membrane 

External test solutions  Internal  reference solution 
4 mM  5 mM 

 
            PA 

4.5 mM  
4.75 mM  
4.875 mM 
5 mM  
5.25 mM 
5.5 mM 
6mM 
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(ii) The response time and component permeability (flux) was characterised using the 

sensor equipped with the different membranes as listed in table 13.  

 

Table 13: Concentration of the glucose solution during the direct glucose test 

Membrane Pore size External test solutions 
(mM) 

Internal  reference 
solution (mM) MWCO (Da) nm 

Polyamide RO (PA) 0 0 40  
0* 

40  

Cellulose Ester 
(CE) 

100 0.6 40  
0* 

40  

100 0.6 40** 
30** 
20** 
10** 
0** 

40** 

500 0.8 40  
0*   

40  

1000 1 40  
0*   

40  

5000 1.5 40  
0*   

40  

10000 2.5 40  
0*  

40  

20000 3 40  
0*   

40  

Anodic Aluminium oxide 
(AAO) 

50000 5 40  
0*   

40 

Polycarbonate (PC) 500000 15 40  
0*   

40  

*   DI water 
** Dissolved in 10 mM PBS 

 

During this experiment, a reference solution of 40 mM glucose dissolved in DI water or 

PBS solution was used. PBS solution was used because the same solution had been 

applied for the affinity assay for the comparison of those glucose detection methods 

(based on the membrane selectivity 100 Da and affinity assay). The sensors were 

equilibrated in 40mM glucose for 12h. The osmotic pressure changes caused by the 

concentration variation in the test chamber over a concentration range from 40 mM to 0 

mM and from 0 to 40mM were recorded over a period of at least 12 hours for each test. 

The time taken for the glucose to fully equilibrate would be indicated by the pressure 

returning back to zero. Any reduction in pressure would indicate a net efflux (flux) of 

the components stored in the reference chamber (paper I and III).  
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3.2.3 Indirect glucose test (affinity assay) 

The indirect glucose test evaluated the ability of the affinity assay to perform the 

‘glucose selective action’ of the sensor. The membrane does not possess any glucose 

selective properties, and it is instead used to retain the affinity assay components inside 

the reference chamber. Sensor prototypes 2 and 3 were used in these experimental 

protocols and replaceable membranes permitted investigations of the affinity assay and 

sensor response with the different commercially available membranes.  

 

3.2.3.1 Preparation of the affinity assay solution 

The affinity assay solution was prepared using two different experimental protocols. 

The first protocol was based on dissolving 3 mM Con A  directly into 0.01 M phosphate 

buffered saline (PBS) (paper I), based on a literature reference which stated the good 

dissolution properties of Con A in PBS [123].  Dextran 80 was dissolved separately in 

DI water to the concentration 0.5 mM prior to mixing into the PBS. However, it was 

found that the dissolved Ca2+ (from CaCl2) combines with the phosphate from the PBS 

and forms calcium phosphate, which precipitates out of the solution. The removal of 

Ca2+ prevented activation of the Con A and unreliable results triggered the protocol to 

be changed in subsequent studies. 

 

The second method is according to the protocol described in Paper III [99].  An amount 

of 500 mg dextran 80, corresponding to 4% (0.5 mM), was first dissolved for 12 hours 

in a 10 mL solution of 10 mM Tris buffer containing 150 mM NaCl, 10 mM MnCl2 , 10 

mM CaCl2 and 40 mM glucose (table 14).  

 

Table 14: The composition of the affinity assay solution  

Components  Concentration  
Tris buffer pH 7.4  10mM 

Glucose  40mM 

MnCl2 10mM 

CaCl2 10mM 

NaCl 150mM 

H2O - 

Dextran ~ 0.5mM (4%) 

Con A ~ 3 mM (8 %)* 

* Monomer concentration 
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An amount of 1 g Con A, corresponding to 8% (3 mM), was then gradually added and 

mixed for a time period of 12 h at room temperature. The pH of the solution (approx. 

pH 5.5 which means that Con A existed in its monomeric phase) was raised to 7.4 by 

titration with a 50 mM solution of NaOH at a speed of 10μL min with aid of a peristaltic 

pump (Watson-Marlow, Wilmington, MA, USA), as illustrated in figure 32. The pH 

was controlled by pH meter (Lab.870; 663-0093; VWR, Norway). The ready mixed 

affinity assay solution (12 g) was stored at 40C for 24 h prior to use. 

 

 

 
Figure 32 Preparation of the affinity assay solution: (a-b) Dextran is dissolved in the Tris buffer 
(c-d) Con A is then added and gradually dissolved in the solution; e) Adjusting the pH during 
affinity assay preparation with 50 mM NaOH. (A) The peristaltic pump, (B) affinity assay 
solution, (C) micro-pH electrode, and (D) vessel containing the NaOH solution. 
 

3.2.3.2 Assay protocol 

All measurements performed with the affinity assay used a standard solution made 

from a 10 mM Tris buffer containing the components that are presented in table 15. 

This permitted us to investigate only the variations in glucose given that the standard 

solution contained the exact same chemical composition as the affinity assay solution 

that was retained inside the reference chamber. Test solutions of glucose were made by 

adding a monosaccharide to reflect the range of the sensor: (0, 10, 20, 30 and 40 mM) to 

e
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the standard solution. Concentrations of 2, 5 and 10 mM were used to investigate the 

physiological response characteristics of the sensor. 

 

Table 15: Composition of the standard solution for the experiment with the affinity 

assay  

Components  Concentration  
Tris buffer pH 7.4  10mM 
MnCl2 10mM 
CaCl2 10mM 
NaCl 150mM 
H2O - 

 

The membranes offering the best compromise between the permeability of glucose and 

the retention of the albumin (5 kDa CE and 50 kDa AAO membranes) were chosen for 

the affinity assay experiments. The affinity assay solution was located inside the 

reference chamber of the sensor and used to successfully detect the osmotic pressure of 

glucose over a time-period of up to 4 weeks without adding any chemical conservation 

agents. 

 

Dynamic range: (i) The dynamic range of the affinity assay was tested by cycling 

glucose solutions of 2, 10, 20, 30 and 40 mM every 12 hours. This time interval allowed 

glucose to diffuse across the membrane and fully interact with the affinity assay 

components, permitting the pressure changes to become stable. In addition to 

investigating the dynamic range, the reversibility of the assay was determined by 

observing the pressure signal returning back to its initial value for a given 

concentration. Any discrepancies would be an indication of hysteresis (where the value 

of the signal is dependent on the previous value). These experiments also permitted the 

response time of the sensor to be determined. The experiment was conducted 3 times 

(papers I, III).  

 

Physiological range: (ii) This experiment was performed to investigate the sensors 

ability to detect small changes of glucose in the physiological range spanning hypo and 

hyperglycaemic events. This test was done continuously over a period of 70 hours. The 

glucose concentration was cycled between 5, 2, 5, and 10, 5 to 2 mM in which the 

glucose concentration started at the normal physiological level (5 mM) and fell to a 

simulated hypoglycemic level (2 mM) before rising back through the normal to the 
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hyperglycaemic level (10 mM) threshold. Following the protocol for the test of the 

dynamic range, the absolute pressure, reversibility, hysteresis and response time of the 

sensor was investigated (paper III; VI).  

 

3.3 Interfering metabolites and dietary components 

The value of designing an osmotic sensor capable of identifying one key component 

(glucose) from other osmotic active particles of comparable molecular size was assessed 

by testing the device against a selection of key metabolites and dietary components 

known to generate osmotic pressure signals on their own. These were identified as 

ethanol, lactate, amino acids and ascorbic acid. Mannose was also considered due to its 

known affinity towards Con A. For this purpose a two-step procedure was used. (i) 

Firstly, a nanoporous membrane offering a MWCO of zero was integrated into the 

sensor. This membrane should (in theory) allow passage of DI water only and was used 

to detect the direct osmotic pressure contribution from those selected components. The 

references were taken to their physiological concentration range (or in cases of extra 

low concentration, the amount was amplified 10 to 100 times to generate a measurable 

signal). Thus the following solutions mixed with DI water were prepared (Table 16):  

 

Table 16: Test solutions of interfering metabolites and dietary components 

Components  MW 
(g/mol) 

Concentration of 
the test solution 
(mM)  

Concentration of the 
reference solution  
(mM) 

Physiological 
value 
(mM) 

Mannose 180 0  
3  
6  

6  0.05 

Sodium lactate 112.06 0   
10  
20  

20  1-20 

Ascorbic acid 176  0  
7  
14  

14  0.14  

Ethanol 46 0  
3.44 
8.60 
17.20 

17.2  0 

Amino Acids 75-204  2.2 
4.4 

4.4 2.2 
 

 
The test solutions of mannose were made in concentrations (< 6 mM) that were 

comparable to the physiological level of glucose, which permitted investigations of the 

affinity assay performance as compared to glucose. However, in order to yield a 

comparable signal, these concentrations were still more than 120 times higher than its 
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physiological value (50 uM). Test solutions of sodium lactate (0, 10 and 20mM) were 

selected to cover the physiological value of lactate. The concentration of ascorbic acid 

(0, 7 and 14 mM), was chosen to provoke a measurable signal but was still 100 times 

higher than its maximal physiological value if 1000 mg vitamin C should be taken by a 

person of 70 kg body mass. The values of ethanol (0, 0.2, 0.5 and 1 ‰) should cover the 

range of normal alcohol intake and where 0.5 ‰ would be corresponding to two drinks 

(approximately 300 ml of wine). 

 

The concentration of amino acids of 0.3 and 0.6g/L (equiv. to 1.1 and 2.2mM 

considering an average MW 139 g/mol), reflected the normal physiological range. The 

amino acids were dissolved by heating the aqueous solution to 50 0C and slowly 

increasing the pH to 9.1 by titration of NaOH. A more detailed protocol is described in 

paper IV.  

 

Finally, a CE nanoporous membrane offering a MWCO of 5 kDa was used in similar 

studies with the sensor equipped with the affinity assay. The same components were 

tested in order to investigate if any unwanted osmotic effects were triggered from these 

components using the affinity assay. The viability of the assay to detect glucose at the 

beginning of every experiment was checked by replacing the initial 40 mM glucose test 

solution with a solution containing 5 mM. At the end of the experiment, the test solution 

containing 5 mM glucose was replaced with a solution containing 40 mM glucose. The 

osmotic pressure changes caused by the tested components were recorded continuously 

over a period of 200 hours (paper IV).  

 

3.4 Sensor assembly and preparation 

The membranes used in this project were introduced in the instrumentation section 

(table 7).  All the membranes except from the AAO were hydrated in DI water for 24 

hours prior to use.  

 

3.4.1 Prototype 1: Dialysis cassette sensor 

The dialysis cassette was hydrated prior to use and the reference chamber were filled 

with 0.5 mL reference solution containing 1mM Albumin (fig. 33) using a syringe and 

needle. The solution was injected very slowly through a port equipped with a self-
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sealing silicone gasket according to the instructions given by the manufacturer. Air 

bubble formation was avoided by the slow speed of which the chamber was filled 

whereas trapped air in the chamber was successively withdrawn by holding the syringe 

and chamber vertical. In this manner, expelled air would flow to the back (top) of the 

syringe.   

 

Figure 33 Filling the prototype 1a sensor with a reference solution. As liquid was injected, 
trapped air had to be removed in an iterative manner [100]. The same procedure was used for 
prototype 1b. (Paper V) 
 

3.4.2 Prototype 2 and 3: Laboratory test sensors  

3.4.2.1 Prototype 2 

The membrane support was first attached to the (inverted) front plate with the hydrated 

membrane on the metal support (coarse layer facing the metal support). The O-ring was 

inserted and the front plate was then secured to the base with the 8 screws tightened in a 

cross diagonal manner (uniform strain). The reference solution to be kept inside the 

reference chamber of the sensor (albumin, glucose, metabolites and affinity assay) was 

administered with a syringe through the hole in the base located by the transducer, until 

it slowly filled the whole reference chamber. Then the whole sensor head was attached 

to the transducer embedded at the bottom of the test chamber, keeping the latter inverted 

until the sensor was tightly attached (figure 34).  
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Figure 34 Assembly of prototype 2: (a) The base plate; (b) Inverted front and base plate filled 
with the affinity assay and secured with the 8 screws; (c) The top of the pressure transducer 
was covered with affinity assay solution to prevent any trapping of air bubbles during the 
assembly process. 
 

After completing this process, the device was turned around and the external test 

chamber was filled with the standard test solutions of the experimental protocol (fig.35), 

and the system was left to equilibrate with the ambient pressure and temperature. Since 

this sensor had no bleeding-valve (the O-ring was compressed prior to assembly) care 

had to be taken to avoid excess pressures when tightening the sensor to the transducer. 

The pressure in the reference chamber was controlled by an external voltmeter (fig 35 

C). The experiment commenced only after the pressure had returned to zero (within 12 

hours). The temperature in the test chamber was controlled by a temperature sensor (fig 

35 E).  The volumes of the test solutions were maintained at 50 mL. 
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Figure 35 The experimental setup of prototype 2: (A) The osmotic sensor with the chamber 
containing the test solution; (B) The sensor bridge amplifier; (C) Voltmeter; (D) Data 
acquisition card; (E) Temperature sensor. 
 

3.4.2.2 Prototype 3 

The hydrated membrane (which was in DI water for 24h) was placed on the membrane 

support attached to the front plate of the sensor. The membrane was placed with the 

coarse layer facing the membrane support, and attached by inserting the O-ring into the 

sensor head. At the same time, the reference chamber was filled with the reference 

solutions consisting of either: (i) glucose, (ii) albumin, (iii) metabolites, or (iv) affinity 

assay (figure 36). The whole test chamber of the sensor was filled with the reference 

solution (100 mL), before the front plate with the assembled membrane was gently slid 

vertically into the solution (avoiding the trapping of air bubbles) and carefully attached 

on top of the sensor base using the 8 attachment screws.  During this process, the 

bleeding-valve was left open to avoid excess pressures from building up inside the 

sensor (generated by compressing the O-ring when attaching the front plate to the base). 

After tightening the screws in a cross diagonal pattern (to avoid uneven pressures on the 

membrane and O-ring) the bleeding-valve could be gradually closed when the induced 

pressure had been normalised back to zero. The reference solution in the test chamber 

was then removed and replaced with the required test solutions according to the 

experimental protocol at a fixed volume of 50 mL. 

 

The higher viscosity and lower volume of the affinity assay permitted a different filling 

procedure to be used. The membrane was first assembled to the front plate as described 

above and fixed by the O-ring. The bottom of the reference chamber as well as the 
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inverted front plate was then separately filled with the affinity assay solution to reduce 

the amount used as well as avoiding air bubbles when the two halves are joined (figure 

36). The front plate was then slowly placed on the sensor base and secured with 8 

screws. Spilled affinity assay solution was then washed away by rinsing the test vessel 

in DI water twice and removed by suction before pouring in the test solutions. 

 

 

Figure 36 Assembly of the prototype 3:(a) pressure transducer and (b) AAO membrane filled 
with the affinity assay.   
 

3.4.3 Prototype 4: Implantable sensor 

A modified protocol based on that of prototype 2 was applied in preparation of 

prototype 4. Due to its small size it was possible to use a plastic holder made from the 

cap of a 10 mL centrifuge tube to fill the sensor with the reference solution. The 

membrane support was first placed on the (inverted) front plate of the sensor, which was 

then positioned inside the plastic holder. The hydrated membrane was placed onto the 

membrane support (coarse side facing the support) and attached by inserting the O-ring 

into the front plate. The reference solution was then filled into the front 

plate/membrane/plastic holder assembly before the back plate of the sensor was 

attached to the front plate using 8 attachment screws (figure 37). Only a small amount 

(less than 1 mL) of reference solution was used in the process. Keeping the bleeding-

valve open permitted excess fluid (and pressure) to be removed from the system as the 

O-ring became compressed. As the induced pressure returned to 0, the bleeding-valve 

was closed. Before starting any experimental work, the assembled sensor was 

equilibrated in 1mM albumin solution at room temperature for at least 3.5 h before 

conducting the experiment.   
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Figure 37 Assembly of the implantable sensor: (a) The front plate with the 5 kDa CE 
membrane attached is located in the bottom of a holder made from a 15 mL test tube cap; (b) 
After filling the cap with reference solution (1 mM albumin) the base is inverted and secured to 
the front plate; (c) The assembled sensor is placed in a test solution of 1 mM albumin, and left 
to equilibrate (d).  
 

3.5 Experimental Set-up  

The experimental set-up is presented in fig. 38. The signal from each prototype sensor 

(in the block diagram denoted the “osmotic sensor”) was amplified (denoted 

“amplification of the signal”) by either a built in amplifier (prototype 2 and 3) or by 

connection to an external amplifier (prototype 1 and 4). A wired connection using 

standard banana plugs was used throughout. The amplified signal was then collected by 

a data acquisition card (“DAQ”). The sensor prototypes 1, 2 and 3 used the DAQ USB 

6009 (National Instruments, USA) whereas sensor prototype 4 used the TP-USB 

Converter (MEMSCAP, Norway). All data were recorded by a LabVIEW routine 

(National Instruments, USA) installed on a DELL Latitude stationary computer 

(denoted “PC”) running Windows XP. The collected data was further processed using a 

software routine in MATLAB (MathWorks Inc., US) and presented in a numerical or 

graphical format.  

 

 

5mm

5mm 
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Figure 38 The measurement configuration. The signal from the osmotic sensor is amplified and 
recorded by a USB DAQ connected to a PC running a LabVIEW routine.  
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4. Results and discussion 

The following results cover the development work conducted on the prototype osmotic 

sensors (paper I, II, III, V, VI), the detection principle based on the Con A – dextran 

affinity assay (papers I-IV), and the sensor function in the presence of key metabolic 

and dietary components known to generate fluctuating osmotic pressures in blood and 

interstitial fluid (paper IV).  

 

Some of the results presented contain measurements restricted to three points as a 

compromise between the time taken to conduct each experiment and the minimum 

scientific requirement needed to view an observable trend. Although three points may 

suggest any potential deviation from linearity or an observable trend, care should be 

taken against drawing too firm conclusions. Also, in the cases where the concentration 

of a solute have been increased in order to obtain a measurement, care should be taken 

extrapolating this result to a different (smaller) concentration of solute although the 

expected result can be suggested. 

 

4.1 Prototype 1: Dialysis cassette sensor 

The first published work regarding the osmotic prototype sensor developed in this 

project was presented in paper V, entitled “Osmotic sensor for biomedical research”. It 

demonstrated the initial working hypothesis of detecting osmotic pressure from a 

transmembrane concentration gradient as well as the ability of implementing MEMS 

based transducer to record this pressure as a function of the concentration of a biological 

sample. Osmotic pressure was recorded as -20.4, -33.6, -43.8 mBar in response to a 

transmembrane concentration gradient of 1, 0.5, and 0 mM of albumin dissolved in DI 

water respectively (see the table 17). 
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Table 17: Recorded osmotic pressures based on transmembrane albumin concentrations 
(Paper V). 

Transmembrane 
concentration [mM] 

Pressure [mBar] 

mean median Standard 
deviation. 

0 -43.8 -43.8 1.1 

0.5 -33.6 -34.1 3.2 

1 -20.4 -20.5 0.9 

 

The negative sign of the recorded output voltage (pressures) was due to the zero 

reference point being placed at a higher potential. This experiment constituted a pilot 

test demonstrating the potential of using a dialysis cassette and a MEMS transducer to 

detect the osmotic pressure from a sub-mM concentration of solute. It was anticipated 

that the affinity assay, yielding similar concentrations of dissolved components, would 

generate comparable pressures.  The total pressure change of 23.4 mBar was less than 

the theoretical calculated pressures for the given solute concentration, and considerably 

smaller than the pressures obtained by later generations of sensors. This is due to the 

fact that the 2 kDa regenerated cellulose membrane of the dialysis cassette did not have 

a support structure to prevent expansion of the membrane. This resulted in a volume 

increase in the internal reference chamber that in turn reduced the effective 

concentration of albumin inside the sensor. Further, since a differential pressure 

transducer (Intersema MS761) was used it would ideally have required a free moving 

membrane in contact with a non-solid material. The moulding of PDMS at the reverse 

side of the transducer could therefore have obstructed some of the movement of the 

transducer membrane, thereby reducing the signal generated from the transducer in 

response to the net osmotic pressure. Although the recording represents only a 3-point 

measurement, the results suggests that the recorded osmotic pressure was proportional 

to the concentration variation of the albumin solution in the test reservoir. The results 

demonstrate that osmotic pressure can be recorded from a simple structure based on a 

dialysis cassette with a fixed membrane of 2 kDa MWCO. However, the rated pore size 

is too large to conduct direct osmotic pressure measurements on glucose, and the non-

interchangeable nature of the membrane required modifications in order to explore 

osmotic active particles that are smaller than 2 kDa. This basic sensor architecture was 

therefore reconstructed into a new sensor design that permitted interchangeable 
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membranes. Other drawbacks of the design that were addressed included the 

incorporation of a membrane support plate, to prevent outflexing and potential rupture 

of the membrane as pressure increased inside the reference chamber, and the reducing 

diffusion distance between the membrane and the sensor base to improve response time. 

 

4.2 Prototype 2 and 3: Laboratory test sensors 

4.2.1 Initial studies 

The first published work regarding the new osmotic prototypes (sensor 2 and 3) and a 

demonstration of their initial performances was presented in paper I, entitled “Novel 

Osmotic Sensor for a Continuous Implantable Blood Sugar Reader”. This paper, which 

was printed in the proceedings of the pHealth conference (IEEE) also included an early 

description of the affinity assay.  

 

The use of a dual sensor configuration (sensor 2) or a true differential transducer (sensor 

3) excluded any ambient pressure perturbations. The integration of an amplifier into the 

sensor base excluded any additional noise picked up from the external wires, as was the 

case with the previous prototype. The replaceable nature of the membranes permitted 

membranes with different pore sizes to be investigated with ease. Consequently, the 

experiment based on the direct osmotic pressure generated from glucose dissolved in a 

PBS solution used the sensor equipped with a CE membrane with a MWCO of 100 Da. 

The results demonstrated that the osmotic pressure changed from 2, 7.6, 10.9, 14.8 and 

27 mBar according to an external concentration change of 40, 30, 20, 10 and zero mM 

glucose. The first experiments with the affinity assay dissolved in PBS used the sensor 

equipped with a CE membrane with a pore size corresponding to a MWCO of 5 kDa. 

The osmotic pressures recorded according to a glucose concentration change of 2, 20 

and 40 mM corresponded to 0, 5 and 7.5 mBar respectively. The response time of the 

sensor was determined to approx. 3.5 hours (figure 39). 
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Figure 39 (A) Direct osmotic pressure measurement from a 0-40 mM transmembrane 
concentration gradient of glucose; (B) Indirect osmotic pressure measurement from 2-40 mM 
glucose based on an affinity assay of 8% ConA and 4% dextran. Arrow 1, 2, 3 show the 
initial osmotic effect caused by the glucose solution changes.  
 

 

These early experiments on glucose exhibited lower osmotic pressures than what would 

have been expected from the theoretical value as well as those recorded in later 

experiments. The maximum pressure increase of 25 mBar in response to a 40 mM 

transmembrane concentration gradient of glucose were initially thought to be attributed 

to some sort of pressure efflux either through the membrane, O-ring or bleeding-valve. 

However, later experiments showed that the 100 Da CE membrane used in the 

experiments did not retain glucose in a sufficient manner. And with glucose escaping 

through the membrane, the concentration of glucose in the reference chamber is 

reduced, lowering the transmembrane concentration gradient in the process, and 

consequently the osmotic pressure. The inverse proportional relationship between the 

generated osmotic pressure (27; 14.8; 10.9; 7.6; 2 mBar) and the external glucose 

concentration (0, 10, 20, 30, 40 mM) was in agreement with theory since a rising 

external glucose concentration would reduce the transmembrane concentration gradient 

considering that the concentration of glucose in the reference chamber was maintained 

at a constant level. 

The pressure of 7.5 mBar attained from the affinity assay used a different membrane (5 

kDa CE), and although a potential efflux of assay components could give rise to the 

osmotic pressures that were more than 2 times lower than those seen in later 

experiments, the inactivation of some of the dissolved Con A due to PBS was a more 

likely explanation. This is because some of the Ca2+ (from CaCl2) used to activate Con 

A could combine with the phosphate from PBS into Ca3(PO4)2  (as has been described in 

A  B
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3.2.3.1). In contrast to the results obtained from the direct osmotic pressure 

measurements above, the proportional relationship between the osmotic pressure and 

the external glucose concentration can be explained by glucose migrating into the 

reference chamber through the larger pores of the 5 kDa CE membranes. Once inside 

the reference chamber, glucose interacts with the ConA-Dextran complex by binding to 

Con A and displacing dextran in a competitive manner. The free dextran is increasing 

the net particle concentration inside the sensor, and the increase in dissolved particles 

will in turn trigger more water to diffuse into the sensor thereby increasing the net 

osmotic pressure in the process.  

 

The significance of this work was the demonstration of two different methods used to 

detect glucose by the principle of osmotic pressure. The first one is based on membrane 

selectivity, in which pore sizes smaller than glucose permit a direct detection of glucose. 

The second is based on the selectivity of the affinity assay, which offers an indirect 

measurement of glucose.  

 

4.2.2 Membrane studies 

The second published work on the prototype sensors 2 and 3 investigated a selection of 

commercial nanoporous membranes as addressed in paper III, entitled 

“Characterization of various nanoporous membranes for implementation in an osmotic 

glucose sensor based on the Concanavalin A-dextran affinity assay”. After 

demonstrating the functionality of the new osmotic sensor design as well as the 

functionality of the affinity assay, the next step was to identify the most suitable 

membrane candidates to be used in the sensors. Several types of membranes from the 

fields of ultrafiltration, nanofiltration, and reverse osmosis were tested offering a pore 

size ranging from 0 to 500 kDa. The membranes were evaluated both with respect to 

their abilities to retain glucose and the larger components of the affinity assay, as well 

as the permeable properties of glucose. Generally speaking, the membrane offering the 

highest ratio of glucose flux versus albumin flux would be the best candidate for use in 

an osmotic sensor based in the Con A-dextran affinity assay.  

 

The following results were observed with the sensor primed with 1 mM albumin in the 

reference chamber prior to exposure to an external solution of pure DI water. The 
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response time varied from 0.82 hour (500 kDa polycarbonate membrane) to 9.27 hours 

(100 Da CE membrane) and is presented in figure 40 and table 17. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 40 Permeability of water (rising pressure) and albumin (falling pressure) through a 
selection of different nanoporous membranes. A reference solution of 1mM albumin is retained 
in the sensor reference chamber with the external solution changed to pure DI water at time t = 
6 h (arrow). (a) Polyamide membrane with a MWCO of 0 Da; (b) cellulose ester membrane of 
100 Da; (c) 500 Da; (d) 1000 Da; (e) 5000 Da; (f) 10,000 Da; (g) 20,000 Da; (h) AAO 
membrane of 50,000 Da; (i) polycarbonate membrane of 500,000 Da (n = 3). 
 

The results presented in figure 41 as well as table 18 were observed with the sensor 

primed with 40 mM glucose in the reference chamber prior to exposure to an external 

solution of pure DI water. The response time varied from 0.07 hour (AAO with 50 kDa 

pore size) to 2.63 hours (PA with a MWCO of zero). 
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Table 18: Membrane characteristics from a gradient of 1 mM albumin and 40 mM 

Glucose 

 2) Albumin (1 mM) 3) Glucose (40 mM) 
Membrane Pore size  

Da 
Response 
time full 
signal [h] 

Maximum 
Pressure 
[mBar] 

Flux 
[mol m-2    
s-1 bar-1] 

Response 
time full 
signal [h] 

Maximum 
Pressure 
[mBar] 

Flux 
[mol m-2   
s-1 bar-1] 

Polyamide  0 5.63 128.55 7.06 x10-8 2.63 566.36 8.07 x10-8 
Cellulose Ester 100 9.27 90.20 4.53 x10-8 1.94 101.85 9.20 x10-7 
 500 8.75 79.63 8.03 x10-8 1.03 33.80 1.84 x10-6 
 1000 4.62 76.98 1.07 x10-7 0.97 33.54 2.13 x10-6 
 5000 4.71 59.62 1.60 x10-7 0.66 9.36 2.47x10-6 
 10 000 5.32 60.42 1.55 x10-7 0.28 5.11 4.82 x10-6 
 20 000 4.51 52.97 2.28 x10-7 0.18 2.61 4.63 x10-6 
AAO 50 000 0.95 79.50 1.48 x10-7 0.07 1.26 1.01 x10-5 
Polycarbonate  500 000 0.82 37.32 1.95 x10-7 - - - 
1) Sensor - - 130 4.86 x10-10 - 504 6.72 x10-8 

1)   Inherent self-leakage from the sensor excluding membrane permeance. 
2)  All flux rates determined between 13 and 14 hours, except for the 100 and 500 Da membranes in which 

the flux rates were determined between 19 and 20 hours.  
3)   All flux rates determined between 13 and 14 hours, except for the 5000 - 50 kDa membranes in which 

the flux rates were determined between 7 and 8 hours. The 500 kDa membrane gave no recordable 
signal. 

 

The maximal recorded pressure ranged from 37 mBar (polycarbonate) to 129 mBar 

(PA) using experiments on albumin (figure 41), and from 1 mBar (AAO of 50 kDa) to 

566 mBar (PA with MWCO of zero) using experiments based on glucose (figure 41).  

Figure 41 Permeability of water (and glucose) through commercial nanoporous membranes of 
different MWCO (Da) retaining a 40mM glucose reference solution (n = 3); A:(a) polyamide 
membrane of 0 Da; (b) cellulose ester membrane of 100 Da; (c) 500 Da; (d) 1000 Da; (e) 5000 
Da; (f) 10,000 Da; (g) and 20,000 Da; (h) AAO membrane of 50,000 Da; (i) polycarbonate 
membrane 500 000 Da. B: Scaled up for (e) cellulose ester membrane of 5000 Da; (f) 10,000 
Da; (g) 20,000 Da; (h) AAO membrane of 50,000 Da; (i) polycarbonate membrane of 500,000 
Da. Arrow denotes change of external solution to RO water after 6 h. 
 
The observed osmotic pressure from glucose was smaller than theory (equ.2), whereas 

the pressures measured from albumin were larger than theory. This can be explained by 
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glucose exhibiting an efflux through the membranes, which caused the pressure to 

decrease. In contrast, the elevated pressures from albumin can be explained from the 

high mass concentration of this biopolymer, in which solute –solvent interactions have 

to be taken into consideration.   

 
This paper demonstrated that membrane parameters such as pore size, pore structure 

and membrane thickness affect the results. The optimal pore size was determined as a 

compromise between impermeability to the affinity assay components (in order to retain 

these in the reference chamber) and permeability to smaller dissolved osmotic active 

components such as glucose. By using albumin as a model for the affinity assay 

components, the retention of albumin could be measured directly by the pressure drop 

over time (when normalised to standard atmospheric pressure). Conducting direct 

measurements on glucose would reveal the equilibration time for glucose to permeate 

across the membrane (also normalised to standard atmospheric pressure). The optimal 

membrane would thus be the unit offering the highest ratio of glucose versus albumin 

permeation or flux. 

 

In addition to the pore size, it was also found that a well-defined cylindrical pore 

structure (not a fibre structure) and a small thickness of the membrane were also 

important attributes that would help decrease resistance towards dissolved components. 

A cylindrical pore would reduce the effective length of the pore compared to the 

membrane thickness (tortuosity) while the membrane thickness in return would govern 

the length of the pore. Optimising these two factors would reduce the diffusion distance 

and hence the time taken for a component to pass through the membrane. Taking the 

three contributing factors into account (pore size, cylindrical pore structure and 

membrane thickness) it was found that the optimal characteristic for the bioassay 

application were identified to be the 50 kDa AAO membrane which exhibited the best 

compromise between the response time (quick passage for the glucose and water 

molecules) as well as its ability to hold the larger assay molecules inside the reference 

chamber. Hence, the AAO membrane was chosen as the preferential membrane 

candidate to be explored in subsequent studies. In contrast, the 5 kDa CE membrane 

exhibited comparable characteristics although the permeation rate (flux) of glucose was 

lower. This can be explained both by the smaller pore size, higher tortuosity of the pores 

due to the cross diagonal nature of the pore structure as well as the thicker membrane. 
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Although the 10 kDa CE membrane offers better performance than the 5 kDa unit, the 

difference was marginal and the readily available 5 kDa membrane made this the 

preferred cost effective option to the more expensive AAO membrane.  

 

After identifying two suitable membranes (50 kDa AAO and the 5 kDA CE), the 

experiment on the affinity assay was conducted with a glucose concentration spanning 2 

to 40 mM. The maximal osmotic pressure response ranged from 17.4 to 42.5 mBar, 

depending on the batch of affinity assay used (figure 42). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 42 Osmotic pressure changes generated by the affinity assay subject to changing glucose 
concentrations from 40 down to 2 mM. The result is recorded as a pressure drop since a 
decrease in glucose triggers the assay components to recombine thereby reducing the number of 
osmotic active dextran particles in the sensor. (A) Batch 1 with 5 kDa cellulose membrane (n = 
1), and (B) batch 2 with 50 kDa AAO membrane (n = 3). Averaging reduces the overall baseline 
noise in (B).  
 

The recorded pressure (fig.42) shows that the initial osmotic effect caused by the 

retention of glucose inside the 5 kDa CE membrane (arrow, fig. 42 A) was cancelled out 

in the 50 kDa AOO membrane (arrow, fig.42 B). However, a comparable response time 

of the assay equipped with the same sensor and two very different membranes suggests 

that this could be an effect of the affinity assay itself and not the membrane. Further 

studies should seek to corroborate this since the observed equilibration time of glucose 

could be the result from hydraulic mediated transport processes in which glucose is 

transported across the membrane by means of liquid flow down a pressure gradient in 

contrast to transport by diffusion. 

 

5 kDa CE membrane 50 kDa AAO membrane 
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Figure 43 Calibration curve illustrating the response characteristics from two different batches 
of affinity assay solutions. Solid circles, batch 1 used with the 5000 Da membrane; open circles 
batch 2 used with the 50kDa membrane. Regression curve fitting is shown with the pressure 
(mBar) expressed as “y” as a function of the glucose concentration (mM) expressed as “x”. 
 
This work also demonstrated that it is possible to use the affinity assay to detect large 

concentration differences of glucose in order to test out the dynamic range of the sensor 

as well as sensing small changes in glucose closer to the physiological range 

corresponding to normal sensor operations (fig.43; fig.44). Detecting small variations 

around the physiological range permitted simulations of hypo and hyperglycaemic 

events as well as demonstrating that the affinity assay could respond to small changes in 

glucose as well as large. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 44 (A) Cycle tests of the affinity assay subject to changing glucose concentrations with 
the sensor equipped with a 50 kDa AAO membrane (n = 1): (a) from 40 to 2mM; (b) from 40 to 
10mM; (c) from 40 to 20mM; (d) from 40 to 30mM. A single batch of affinity assay was used 
within the experimental timeframe of almost 2weeks; (B) Osmotic pressure changes (a) of the 
affinity assay  subject to small variations of glucose concentration within the range of 2–10mM 
(arrows). Recording (b) of ambient temperature fluctuations  
 

A  B
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The results in figure 44 show the cyclic/reversible nature of the affinity assay 

performance with a negligible hysteresis within the measurement period as 

demonstrated with the signal returning to the baseline level corroborated with a 

specified concentration of glucose.  Although the response characteristic was not linear 

(the responsivity decreased as the affinity assay saturated at high glucose 

concentrations) the higher responsivity at lower physiological concentrations would 

prove beneficial by offering improved resolutions in conjunction with detecting hyper 

and hypoglycemic events. The experiments also demonstrated that detecting glucose at 

these concentrations and pressures was not sensitive to small fluctuations in temperature 

(figure 44 B). 

 

The experimental results suggest that the response time is determined not only by the 

membrane thickness but that there may be a contributing factor from the affinity assay 

itself (figure 42). If the affinity assay is a time limiting factor, one has to consider that 

the response time is dependent on the time taken for glucose to diffuse into the solution 

and substitute the dextran from the Con A-dextran complex. The observed phenomenon 

that the response time decreases from 12 to 2.5 h when the concentration changes 

decrease (figure 42 and 44), can only be attributed to the lower degree of reorganisation 

partition/assimilation of dextran required at lower concentrations of glucose.  

 

4.2.3 Interfering metabolites 

In order to prepare the sensor for studies involving potential interfering substances in 

vivo, the effect of potential interfering metabolites and dietary components was 

previously investigated in paper IV, entitled “The assessment of potentially interfering 

metabolites and dietary components in blood using the osmotic glucose sensor based on 

the concanavalin A – dextran affinity assay”. This paper evaluated the possible osmotic 

effects caused by different metabolites on the glucose monitoring system based on the 

osmotic sensor and the affinity assay.  

 

First the absolute osmotic effect from these interferents was assessed using the sensor 

equipped with a PA nanoporous membrane with a MWCO of zero. 

 

(i) Initially, the resolution was investigated by cycling a small change of glucose around 

the physiological normal level of 5 mM. The results demonstrated that decreasing the 
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concentration from 5 to 4 mM increased the pressure by about 12 mBar, while 

increasing the concentration from 5 to 6 mM decreased the pressure by 4.5 mBar (figure 

45 a). This can be explained by examining sensor kinetics when the external glucose 

concentration is raised or lowered. By increasing the external concentration of glucose 

beyond the reference value inside the sensor, solvent molecules (water) are compelled 

to migrate from the internal reference chamber to the external test solution in an attempt 

to equilibrate the concentration difference. This reduces the osmotic pressure in the 

reference chamber, which can permit dissolved gaseous components to expand and form 

air bubbles - preventing further reduction in the osmotic pressure. In contrast, reducing 

the external concentration of glucose promotes a diffusional influx of water, which 

raises the osmotic pressure without any dangers of air bubble formation. This 

experiment clearly demonstrates that the glucose concentration in the reference chamber 

should be maintained at a higher level than the expected concentration from the external 

test solution. The osmotic pressure achieved in this experiment is lower than its 

theoretical prediction (equ.2) ± 24.5mBar (±1mM). This relates to previous experiments 

that suggest that the glucose migrates through the PA membrane by either diffusive or 

hydraulic transport (see 4.2.2).  

  

(ii) Changing the external ethanol concentration by up to 1 ‰ (22 mM) resulted in a 

maximum pressure change of 3.5 mBar while keeping a reference solution of 1 ‰ 

ethanol in the sensor (figure 45 b). The non-linear response characteristics are more 

pronounced at larger transmembrane concentration gradients and the generated pressure 

is markedly lower than the theoretical estimated osmotic pressure (equ.2) of 540mBar 

(1 ‰). This can be explained by the membrane being confluent to ethanol due to its 

small molecular size (46 Da) which makes it difficult to retain the 1 ‰ reference 

solution inside the sensor. Evaporation from the external test vessel could also be a 

contributing factor towards decreasing the transmembrane concentration gradient.  

 

(iii) Changing the external lactate concentration from 0 to 20 mM gives a maximum 

pressure change of 395 mBar while keeping a reference solution of 20 mM lactate in the 

sensor (figure 45 c). The three measured points lie on a straight line, indicating a linear 

response for the generated osmotic pressure, as predicted by the theory. However, as 

there are only three points, no firm statement about linearity can be made. The larger 

molecular size (89 Da) results in lactate being less permeable and the membrane is thus 
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able to maintain a transmembrane concentration gradient that is more stable with time 

compared to ethanol. However, the observed maximum osmotic pressure of 395mBar 

was approx. 25 % lower than theoretical calculated value  equ.2 (492 mBar). This could 

be due to lactate partly escaping through the semipermeable membrane. Lactate is 

approximately twice as small as glucose (which has been demonstrated to penetrate the 

PA membranes used in the study, see section 4.2.2).The large osmotic response from 

lactate suggests that this component could potentially disturb the detection of glucose in 

a sensor that conducts direct osmotic pressure measurements.  

 

(iv) Changing the external amino acids concentration up to a transmembrane 

concentration gradient of 0.6 g L-1 (4.4 mM considering avg. amino acids of 139 g mol -

1) while keeping a reference solution of 4.4 mM inside the sensor, generated a maximal 

osmotic pressure response of 79 mBar (figure 45 d). Similarly to lactate, the three points 

seem to lie on a straight line, indicating that the response characteristic of amino acids is 

linear. However, no firm statement about linearity can be made from only three points. 

Still, the membrane was able to retain the amino acids and generate a stable pressure 

signal, but the size distribution (75-204 Da) suggests that the smaller components may 

have migrated faster than the larger ones. This was reflected in the measured value of 

the osmotic pressure being 37 % lower than the theoretical calculated value (equ.2) of 

108 mBar. The result suggests that amino acids will generate osmotic pressures capable 

of disturbing the detection of glucose conducted by direct osmotic pressure 

measurements.  

 

(v) Changing the external ascorbic acid concentration from 0 to 14 mM while keeping a 

reference solution of 14 mM inside the sensor, resulted in a maximum pressure change 

of 180 mBar (figure 45 e). This was approximately 50% of the theoretical prediction 

(equ.2) of 345 mBar suggesting that the membrane was permeable also for this 

component with an MW comparable to that of glucose. However, the osmotic pressure 

response was recorded at a concentration of ascorbic acid that was 100 times higher 

than the physiological value. The linear pressure response suggested that scaling down 

the ascorbic acid concentration towards the physiological value would make the 

pressure response negligible and would not make any significant disturbance to the 

detection of glucose. This was corroborated by performing direct measurements on the 
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physiological concentration levels of ascorbic acid in which the pressure signal was 

below the detection level of the system.  

 

 (vi) Changing the concentration of mannose from 0 to 6 mM yielded an osmotic 

pressure change of 24.6 mBar while keeping a reference solution of 6 mM inside the 

sensor (figure 45 f). However, due to the low physiological concentration of this 

monosaccharide, the test solution was more than 100 times higher than the 

physiological level. In this respect, the osmotic pressure signature of mannose would be 

negligible in direct pressure measurements, which was also corroborated by conducting 

measurements on physiological concentration values. 

 

 

 

Figure 45 (a) Recorded pressures from test solutions illustrating small physiological changes of 
glucose concentration cycled from 5 mM; (b) Pressure changes as function of the external ethanol 
concentration from 0 to 1 ‰ ; (c) from 0 to 20 mM lactate; (d) from 0 – 0.6 g L-1 amino acids; (e) 
from 0 to 14 mM ascorbic acid; (f) from 0 – 6 mM mannose;  

c  d

e  f
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These interferents were tested out on the osmotic sensor equipped with the 5 kDa CE 

membrane and using the affinity assay as the sensing element. The functionality of the 

affinity assay was verified before and after the experiment by first changing the glucose 

concentration from 40 mM down to a physiological value of 5 mM maintained 

throughout the experiment. The initial spike observed (arrow, fig. 46 a) was due to the 

inherent diffusional delay of the membrane in which the higher concentration of glucose 

retained by the membrane causes an initial influx of water into the sensor. Once the 

membrane has equilibrated with the external glucose solution, the efflux of glucose 

from the sensor triggers a recombination between the Con A and dextran and the 

pressure falls to the signature of physiological glucose concentration. Reversing the 

concentration back to 40 mM (arrow, fig. 46 a) creates an initial negative spike due to 

the larger external glucose concentration triggering an efflux of water from the sensor 

until the membrane equilibrates with the external solution. Once glucose starts to enter 

the sensor, dextran dissociates from Con A and the pressure increases. These pressure 

changes following the concentration change in glucose would not be visible if the 

affinity assay was inactive (only the spikes from the diffusional delay of the membrane 

would be recorded). 

The rapid permeation rate of ethanol meant that any inherent diffusional effects of this 

component would be small and trigger negligible pressure signatures in response to the 

concentration changes spanning 0 to 1 ‰ (fig. 46 a). The net pressure signature of 

ethanol was also inconclusive (fig. 46 b) as the pressure change was below the detection 

limit of the system. In contrast, repeating the experiment with amino acids (fig. 46 c), it 

was clear that these larger MW components triggered an inherent diffusional delay in 

the membrane resulting in pressure spikes that were similar in nature to that observed 

for glucose, but scaled down in magnitude due to the smaller absolute concentration 

changes taking place. However, the different concentrations of amino acids did not 

change the overall osmotic pressure recorded from the sensor (fig. 46 d). These results 

show that neither ethanol nor amino acids trigger any significant osmotic pressure 

changes from a functional affinity assay. 
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Figure 46 Osmotic sensor preloaded with the affinity assay and equipped with a 5 kDa 
membrane. (a) The osmotic pressure (1) has been normalized to the affinity assay conditioned 
with Tris containing 5 mM glucose with the temperature presented in (2). The numbers indicate 
the concentration of glucose (40 mM) and the subsequent exposure to ethanol (0–1‰). (b) The 
sensor response characteristics to ethanol. (c) The sensor exposed to amino acids (0–0.6 g L−1), 
with the pressure presented in plot (1) 
and temperature in plot (2), (d) The sensor response characteristics to amino acids. 
 

It was shown that a membrane with a pore size as small as 5 kDa would allow both 

ethanol and amino acids to be fully equilibrated across the membrane and cancel out 

any osmotic effect they may have generated independently. Likewise, both lactate and 

ascorbic acid did not exhibit any osmotic pressure response using the affinity assay and 

the 5 kDa membrane (figure 47 a, b). Neither was it expected that these non-sugar 

molecules would represent competitors for glucose considering the carbohydrate 

specific action of Con A. In contrast, the results did demonstrate that mannose is a 

competitor to glucose, (see the introduction) and would have had a comparable effect on 

the assay components to that of glucose (figure 47 c). However, experimental work 

based on the physiological level of mannose did not demonstrate any detrimental 

influence on the assay, due to its low concentration in the blood of 50 uM, (figure 47 d). 

The concentration used in the experimental protocol was up to 120 times higher in order 

to provoke a signal from the affinity assay.  



O .Krushinitskaya: Osmotic sensor for blood glucose monitoring applications 

87 
 

 

 

 

Figure 47 Osmotic sensor preloaded with the affinity assay and equipped with a 5 kDa 
membrane. The sensor response to physiological levels of (a) lactate and (b) ascorbic acid. (c) 
The sensor response to elevated levels of mannose; (d) the physiological levels of mannose 
 

The results presented in this paper demonstrated that the selected interfering 

components at physiological concentrations would have no reported influence on the 

glucose sensor equipped with the Con A – dextran affinity assay, despite its high 

sensitivity and specificity towards glucose.  

 

There is however a potential limitation in the current methodology since the sensors 

were never used or tested in more complex biological solutions such as blood, plasma or 

serum. The reported tests assays constitute a simplification of the components that have 

been considered as major interfering species in blood or plasma. Only investigations in 

real body fluids may either confirm the accuracy of the current methodology explored in 

this thesis, or the potential for interference from other components (such as albumin) 

related to changes in the hydration/ dehydration level of the body. 

 

c  d
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4.3 Prototype 4: Implantable sensor 

The implantable prototype sensor was a miniaturised design that explored the possibility 

of developing an implantable version of prototype 3. This sensor was first presented in 

paper II entitled “Osmotic Glucose Sensor for Continuous Measurements in vivo”. This 

paper describes the design and construction of prototype 4 and the improved affinity 

assay protocol based on the Tris buffer solution. In this work, the affinity assay 

generated an osmotic pressure of -4.2, -7.7 and -16.5 mBar following a decreasing 

glucose concentration change from 40 mM (zero baseline) to 30, 20 and 10 mM 

respectively. A response time of 11.5 hours was observed for the affinity assay, with the 

sensor equipped with a 5 kDa CE membrane. The results were compared to the 

pressures attained from direct osmotic pressure measurements using the 100 Da CE 

membrane for similar concentrations of glucose. 

 

By replacing the PBS with a Tris buffer, the Ca2+ ions that are required to activate the 

Con A would not be lost due to the reaction with the phosphate from the PBS, as 

described previously (section 4.2.1).  A depletion of Ca2+ from the solution combined 

with the large concentration of Con A used, could result in only a small fraction of the 

protein working. 

  

4.4 Microfabricated glucose sensor 

The implementation of all the previous results and investigation towards a 

microfabricated continuous glucose monitoring system based on osmotic pressure was 

presented in paper VI entitled “Toward an Injectable Continuous Osmotic Glucose 

Sensor”. This paper also relates the work described in this thesis to the industrial 

research project of Lifecare AS. The results demonstrate the miniaturizable nature of the 

osmotic pressure system, its insensitivity to other operating factors such as atmospheric 

pressure changes, and its sensitivity to the physiological glucose level variation from 2 

to10 mM – especially towards the lower concentration levels of glucose. The 

continuous glucose monitoring system is designed to detect glucose changes from the 2 

to 40 mM, which would satisfy the US FDA requirement (detection limit 2-20 mM) 

[124]. The correlation between the glucose concentration and detected osmotic pressure 

is exponential due to an impending saturation of the affinity assay at higher glucose 

concentrations. It was also noted that when the sensor was exposed to a larger 
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concentration difference in glucose, the response time was prolonged because the Con 

A as the affinity assay becomes increasingly saturated at higher glucose concentrations.  

The resolution was determined to be ± 16mg/dL (± 0.89 mM) and the response time was 

measured to be around 2 h for the sensor when exposed to glucose variations at the 

physiological level (2-10mM). The paper also presented the other components of the 

MEMS sensor (ASIC control system, transmission protocol, chip carrier, sensor and 

initial work developing a thin film silicon glass membrane). The final nanoporous 

membrane would be MEMS production compatible and would offer an improved 

response time due to the reduced film thickness and pore tortuosity while maintaining 

the same pore densities as its commercial equivalents. 
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5. Conclusions  

This project focused on developing an osmotic glucose sensor that was capable of 

detecting glucose without recording other tested interfering osmotic active components 

in blood and plasma. This was achieved by investigating the different components of 

the sensor through the development and iterative improvement of several sensor 

prototype designs. The first generation sensors demonstrated the possibility of using 

integrated MEMS based pressure transducers to detect the osmotic pressure of albumin 

generated in a dialysis cassette equipped with a semipermeable membrane. Later 

generations of the sensor prototypes enabled measurements to be performed on a variety 

of membranes and to compare these against each other to identify the most desirable 

candidate for use with the glucose specific affinity assay based on Con A and dextran. 

The sensor and membrane technologies that were explored in the project can be 

miniaturised to the forthcoming in vivo prototype (sensor 4) and the microfabricated 

glucose sensor of Lifecare. The height of the reference chamber in the final sensor 

designs was maintained at 0.5 mm in order to simulate comparable performances for a 

given membrane independent of sensor size. 

 

Of the commercial membranes available, the AAO membrane exhibited the best 

compromise between the glucose confluence and the retention of the assay components 

through this membrane. A well-defined pore geometry, a high pore density, largest 

possible pores retaining the assay components (50 kD), a low thickness of 1 um high for 

the dense layer, and 50 um for the porous support (paper III) are all attributes to 

consider when developing future improved membranes (such as the thin film silicon 

oxide/nitride membrane under development by Lifecare) that may offer a reduced 

diffusion barrier for glucose and water.  

 

The incorporation of an affinity assay transferred the glucose selective mechanism from 

the sensor membrane to a biochemical assay. The affinity assay would ‘recognize’ a 

glucose concentration variation and generate osmotic pressure change in the reference  
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chamber, which were recorded continuously up to periods of 4 weeks. The modification 

of the affinity assay preparation technology described in this project improved the 

sensor stability and allowed us to receive a sensors response which is dependent on the 

glucose concentration only. 

Finally, it has been demonstrated that the sensor is not sensitive towards potential 

interfering components in vivo having the capability of filtering out these osmotic active 

components    from blood, plasma and the interstitial fluid using a sensor equipped with 

the Con A – dextran affinity assay. The challenges remaining to transform the sensor 

into a small and reliable industrial product are suggested in the ‘future work’ section.  

 

The results presented in this thesis show that osmotic pressure is a viable alternative to 

conventional amperometric glucose sensor technology, harbouring the same specificity 

to glucose through the use of the affinity assay. The issues addressed in section 1.3 were 

investigated, the most important finding being the sensor’s ability to reject other 

potential osmotic active components in blood and interstitial fluid. The response time 

was improved by reducing the physical diffusion distances from the membrane to the 

pressure transducer and by optimising the surface to volume ratio of the design. In pure 

glucose solutions the AAO membranes were capable of a response time of 0.07 hours 

(4.2 min) whereas the PA membrane gave a sluggish 2.63 h before the peak signal was 

reached. The response time was more consistent when the sensor was loaded with the 

affinity assay, suggesting that not only the hydraulic effects in the membranes but also 

the affinity assay itself was responsible for the large time difference observed, 

especially for the AAO membrane (40 min – 2.5 hours). However, carefully selecting 

membranes from AAO with cylindrical pores of low tortuosity removed any local 

osmotic effects (diffusional delay) caused by the membranes, and the retention of assay 

components was demonstrated over continuous experimental periods of up to 4 weeks 

without any apparent loss in sensitivity.  The sensitivity was measured to be comparable 

to current blood sugar readers based on the amperometric method, but benefitted from 

improved sensitivity at lower concentrations of glucose around the physiological normal 

range of 5 mM. The demonstrated dynamic range of 2- 40mM complies with the US 

FDA requirement (2-20mM) [124]. Additionally, this technology is suitable for 

miniaturization, due to its simple construction based on components that can be readily 

integrated on silicon. Unlike many glucose sensor technologies existing today there is 
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no additional sensor dependent start up time. A sensor based on simple transducer 

architecture is a prerequisite for the ultra-low energy consumption required for a 

miniaturised sensor system. 
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6. Future work 

This work has demonstrated the ability to employ an osmotic sensor to continuously 

record changes in external glucose concentrations without interference from other blood 

borne components based on the Con A/ dextran affinity assay. Future work should focus 

on completing a miniaturised sensor that is capable of performing pre-clinical trials in a 

real “in vivo” setting that may corroborate the results presented in this thesis. Further 

development of an industrial product that permits implantation by injection alone would 

be required prior to clinical investigations. In order to accomplish these tasks, the 

following work would need to be considered: 

 

(i) Completion of the in vivo prototype (sensor 4) that has been designed in this project. 

Although initial tests were performed in vitro, noise induced or picked up by the electric 

cable running from the sensor head to the amplifiers perturbed the raw pressure signal 

which in turn compromised the resolution of the system. This “antenna effect” of 

external leads can be avoided by integrating the amplifier in the sensor head which 

would reduce the physical distance between the sensor and the amplifier. This would 

also permit the application of a wireless system would render the entire sensor to be 

enclosed under the skin during the pre-clinical trials. 

 

(ii) The industrial product (microfabricated glucose sensor) that would have transformed 

this sensing technology into an injectable sensor device was not fully realised. 

However, the sensor technology developed in this project would be transferrable to such 

a microimplant. The silicon transducer can be readily implemented without increasing 

the implant size, the sensor electronics can be miniaturised for integration on silicon, 

and the membranes can be integrated as they are by modifying the geometry and sensor 

support to fit with the size of the implant. The current response time could be improved 

by improving the surface to volume ratio by decreasing the thickness of the membrane, 

membrane support and reference chamber and increasing the pore size and distribution 

of the membrane support. 
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(iii) Improving the sensitivity and solubility of the affinity assay (and improving the 

stability between batches) could be achieved by using PEG, which excludes the 

intermolecular interaction between the Con A molecules [106]. The long term stability 

of the affinity assay could be improved by chemical modification (by for example 

methylated Con A with e.g. formaldehyde and NaCNBH3 [125]).  

(iv) The developed affinity assay can be used as it is, or modified with preserving 

agents for increased lifetimes. Extending the lifetime beyond 4 weeks can be achieved 

using a preservative  agent, for example sodium azide, that suppresses the growth of 

microorganisms under non-sterile laboratory test conditions [126]. 

    

(v) The biocompatibility of the materials used for the in vivo prototype as well as the 

microfabricated sensor would need to be assessed before applying these devices in vivo. 

The most compatible materials used in the sensor were shown to be PDMS (Sylgard 

184, Silicone Elastomer, Dow Corning USA); silicone adhesive (Dow corning 3145, 

Dow Corning Corporation Midland, Michigan, USA) and the polycarbonate membrane 

(Whatman, USA) [127-129].   

 

(vii) Long-term in vitro and in vivo testing should be undertaken to assess the time 

taken before the sensor functionality is compromised by pore clogging, as well as 

making a comparable analysis of the use of protective coating that may extend 

membrane functionality. 
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Appendix 1A: CAD of the sensor based on the dialysis 

cassette   

 

 



 

 

 

 



 

 

 

 



 

 

Appendix 2: CAD of laboratory sensor 2 (laboratory test 

sensor) 

 

 

 

 



 

 

Appendix 3:  CAD of laboratory sensor 3 (laboratory test 

sensor) 

 

 

 

 



 

 

Appendix4: Schematic of the pre-amplifier circuit used 

in laboratory sensor 2 

 

 

 

 

 

 



 

 

Appendix 5: CAD of laboratory sensor 4 (in vivo 

prototype) 

 

 

 

 



 

 

Appendix 6: Electrical diagram of the SW415PRT MEMS 

chip from SensoNor (Norway) 

 

 

 

 

 

 

 

 

 

 

 

 


