Rapporter fra Hggskolen i Buskerud nr. 41

RAPPORT

The Non Commutative Compactification
of r-bundles

Arvid Sigveland

LA

HOGSKOLEN

i Buskerud







Rapporter fra Hogskolen i Buskerud

Nr. 41

The Non Commutative Compactification of
r-bundles*

Av

Arvid Siqveland

Kongsberg 2003



HiBus publikasjoner kan kopieres fritt og videreformidles til andre interesserte uten avgift.

En forutsetning er at navn pa utgiver og forfatter(e) angis- og angis korrekt. Det ma ikke
foretas endringer 1 verket.

ISBN 82-91116-57-1

ISSN 0807-4488



The Non Commutative Compactification of

r-bundles*

Arvid Sigveland
email:arvid.siqgveland@hibu.no

December 8, 2003

Contents

1

2

Introduction

Deformation theory for Ox-modules

2.1
2.2
2.3
24

Affine deformations . . . . . . . . . ... ... ... ...
Non commutative obstruction theory in the Yoneda complex . .
The spectral sequence of Extx (F,G) . . ... ... ... .. ...
Global Deformation Theory . . . . . .. ... ... ... .....

Chern Classes and Stability

The Moduli Problem for Bundles

4.1
4.2
4.3

Introduction . . . . . . . . ... ...
A—GDModules . . . . .. ..
Invariant Theory of Bundles . . . . . . .. ... ... ... ....

The Grassmanian Scheme

5.1
5.2
5.3
5.4
5.5
5.6

Projective (n — 1)-space as formal moduli . . . . ... ... ...
Projective (n — 1)-space as noncommutative scheme . . . . . ..
Global computation of P™ . . . . . .. ... ... .. ... ...
The Grassmanian Scheme Grass(2,3) . . . . ... ... ... ...

The General Grassmanian scheme Grass(r,n) . . . . . ... ...
The action of G = Gl(n) on Grass(r,n) . . . . . ... .. .. ...

The N-subspace problem

6.1
6.2
6.3

G(L,132). oo
G(2,23) © o o
G(2,204) . . o o

*Mathematics Subject Classification 14A22



1 Introduction

We consider an n-dimensional variety X over an algebraically closed field k with
an ample invertible O x-module £ . Let

S8
MX,L (Ta Cly. .. 7cmin(r,n))

be the moduli space of rank r, semistable locally free O x-modules with chern
classes A
¢ € H¥*(X, 7).

When X is a smooth variety, This has been studied by Laura Costa and
Rosa M.Mir6-Roig in [1].
From geometric invariant theory, [2], we have the following:

Theorem 1. Fiz X, H, r and algebraic cycles ay,...,ar, k = min(r,s 1) up
to numerical equivalence (codima; = i). Then the set of semistable torsion-
free sheaves E with ¢;(E) numerically equivalent to a;, modulo the equivalence
relation € ~ F if gr& = grF is in a natural way the set of points of a scheme
U (r; a1, ..., ax) locally of finite type. If n = 2, r = 2 or char(k) = 0, U is
projective.

It is conjectured in [2] that USE(r; aq, ..., ax) is always projective. However,
we restrict our attention in this paper to char(k) = 0 and may therefore assume
that UY is projective.

With these assumptions, we can consider this as a compactification. That
is the following: Consider the diagram

M p(rics o Cmingrn)) —— USE(rs a1, .. ak)
Mx c(r,c1,- s Cmin(rn)) —— Ux (r; a1, ..., ax)

Here the moduli spaces without the superscript ss denotes the corresponding
not necessarily commutative moduli of all objects, i.e. not only the semistable
or stable ones. We are interested in the boundary of the semistable spaces in
the non commutative moduli.

We would like to consider these non commutative moduli as compactifi-
cations of the commutative ones, and as such we are interested in the local
structure, see [12] for a commutative example.

In this paper, k is always an algebraically closed field of characteristic 0 and
A denotes a finite type k-algebra.



2 Deformation theory for Oyx-modules

2.1 Affine deformations

Let V = {V4,...,V,} be right A-modules. Let S = (S,;) € g, be an r-pointed
artinian k-algebra, that is an artinian k-algebra S together with morphisms
satisfying the diagram

kT’

S

The deformation functor

is defined by
Der(S) = {S®kA—modules Ms|ki®sM5 >V, and Mg =, (Sij®ij) = S®kV}/ =

Notice that the condition S-flat in the commutative case is replaced by
Mg =4, (S;; ® V;) in the non commutative case ( here = means isomorphic as
k-vectorspaces ).

The obstruction theory for the non commutative deformation functor is given
by the following:

Let Mg € Defy(S). Then Mg =4 (S;; @k V;) and as such it has an ob-
vious structure as left S = (S;;)-module. The (right) A-module structure is
determined by the k-algebra homomorphism

AL Endk(MS) A4S Endk(Sij Rk V])

k 0
We let k" = and by k; we understand e; - k".
0 k
Now, o(a) : A — Endg(S;; ®& V) is induced by
Wi
ola) : (K" @x Vi) = [ 1 | — (Sij @k Vj).
Ve
Let vy, € V. The linearity of o(a) over S gives that o(a)(vg) = o(a)(ex - v) =
0 . 0
exo(a)(vg) € [ Sei®@x Vi -+ Skr ®k Vi | . Thus o(a) is completely deter-
0 . 0

mined by the morphisms

O'ij(a) Vi — Sij Rk V}



Going the other way, any k-algebra homomorphism induced by such o;;‘s com-
muting in the diagram

a,',j(a

V; — @ij QK Vj
&i(a)\\\\\
Vi
where 7;(a) is the given right A-module structure of V;, defines a deformation
of V to S.

Let Mg be the deformation of V' to S given by the k-algebra homomorphism
0% 1 A — Endy(S;; ® V;) inducing as above

aiy(a)

Vi — Sij @ Vj.
Let
(Rij) = R — S = (54)

be a small morphism, i.e. ker 7 -rad(R) = (I;;) - rad(R) = 0. We may lift 0;;(a)
in the diagram

UR(a

‘/;—”>1L'iij®k‘/j
‘ o5 (a) ‘
v, 20, @V

by adding to afj any k-linear morphism 6;; : A — Homy(V;, I;; ®; V;). The
obvious lifting is of course the trivial one, i.e. choosing # = 0. Choosing the
lifting o® this way, the morphism

A — Endy(Ri; @5 Vj)

is k-linear, and the one thing left for this to be an A-module structure on R® V'
is the condition of(ab) = o%(a)o?(b). Because this condition holds for S, we
get an element

YR (a,b) = o (ab) — o (a)a®(b) : Vi — Rij @1 V;
commuting in the diagram

Iij ®kV} .



Thus we actually have ¥%(a,b) : V; — I,; ®; V;. Because 7 is a small mor-
phism, we have I? = 0 and thus a - (b, c) = 0¥ (a)yf (b, c) and ¥ (a,b) - c =
PF(a,b)o(c).
Letting d be the Hochschild coboundary map, we now find
d(ﬂ)R)(a, b, C) = awR(ba C) - wR(aba C) + 1/)R(a, bC) - wR(aa b)C
= a(0"(be) — o™ (b)o"(c))
— (o (abe) — o™ (ab)a"(c))
+ o®(abe) — o (a)o’ (be)
— (0% (ab) — 0" (a)a " (b))e
= ao(bc) — o®(a)o R (be)
+0f(a)a"(b)c — ac®(b)o"(c)
ol (ab)o®(c) — oB(ab)c =0
Definition 1. Given a small morhism 7 : R — S between r-pointed artinian k-

algebras and Mg € Defy (S), we define the obstruction o(m, Mg) = (0i; (7, Mg))
for lifting Ms to R as the class of

i A®? — (Iij @) Homy (V;, V5))
in HH?(A, Homg (V, V).
Theorem 2. o(mw, Mg) = 0 if and only if there exists a lifting Mg € Defy (R)
of Mg. The set of isomorphism classes of such liftings is a torsor under
(Lij @1 Exty (Vi, V;)).
Proof. The complete proof can be found in [5]. We will just state what is
essential for this work:
Assume 0 = 0;; = tb;; € HH?*(A, Homy,(V;,V;)). Then ¢ = dg,
¢ € Homy(A, I;; ® Homy(V;, V;)). Put ¢/ = 0 + ¢. Then
o’ (ab) — o’ (a)o’ (b) = o(ab) + ¢(ab) — (o(a) + ¢(a))(c(b) + H(b))
= o(ab) — o(a)o(b) + ¢(ab) — o(a)¢(b) — p(a)o(b) — ¢(a)p(b)
= o(ab) —o(a)a(b) — (o(a)p(b) — ¢(ab) + ¢(a)a (b)) — d(a)p(b)

=9 —dp—0=0.
This is because as before I2 = 0 = ¢?> = 0, a - ¢(b,c) = o(a)p(b,c) and
¢(aa b) = ¢(a7 b) : J(C)' u

2.2 Non commutative obstruction theory in the Yoneda
complex

Even in the commutative case, we are missing a suitable reference. This non
commutative theory then includes the commutative case, and is essential for the
development of Massey products in the category of O x-modules. Let {V4,...,V,.}
be right A-modules. Choose free (projective) resolutions L.



Theorem 3. Let ¢ : R — S be a small morphism in the category of r-pointed
artinian k-algebras. Then Vg € Defy (S) can be lifted to Vg € Defy (R) if and
only if there exists a lifting of complezes

(Rij @1 L7) — (Sij @k L7).

Proof. The proof goes in various steps: First, we have to prove that every
Vs € Defy (S) has a resolution of the form

Vg «— (Sij Rk L])

k 0
This is obviously true for S = k" =
0 k
%1 0 Lt 0
0 «— . — . ,
0 vV, 0 Lr

so because S € ob(a,), it is enough to prove that if Vg € Defy (S) has a
resolution, then Vg can be lifted to Vi € Defy (R) if and only if the resolution
of Vg can be lifted to R. Consider the diagram

0 0 0 0
- 1 i ]
0—— (Lij @k Vj) —— (Ii; @ LJ) (Ii; Qk LJ) — Ly @k L) —— -+
! Lo
MR D — (sz Rk LJ) (R’L] (<A LJ) (le Sk LJ)
0 1
P PO
0 Mg = (Si @ Ij) o (8 @ L) = (55 ®% L3) ——
0 0 0 0

Assume first that a lifting Mp exists. Then by definition Mg & (Rij @k Lij)
and thus the first vertical column is exact. For the same reason, the top row
is exact. Then because L is projective, we can lift £g to eg. To continue
the process of lifting the bottom row to the middle, we must prove that kerep
maps surjectively to kereg. The surjectivity is proved the following way: Let
T = po(x) € ker(eg). Then p(er(x)) = 0 = er(x) = l(y') where ¥ = e1a(y)
for some y € (I;; @k L}). Then po(z —lo(y)) = = and er(z — lo(y)) = er(z) —



er(lo(y)) = er(z) —l(e1(y)) = er(x) — I(y") = 0. Given this surjectivity we can
lift d5 to dff. Continuing this process on the kernel, we can lift to a sequence of
morphisms d¥ such that (d%)2 = 0. We have not yet proved that the sequence
above is exact, but this follows from the converse argument: Assume conversely
that such a lifting as above exists, i.e. such that (d®)? = 0. The long exact
sequence gives

o ——Hi(I@y L) —— H(R&y L) —— H(S @4 L) —— -+ ——

HY(I®yL)—— H' (R®y L) —— HY(S® L)

HI®,L)——H'(R®, L) —— H(S®x L) ——0

The exactness of the top and bottom row then implies the exactness of the
middle row and the first column. In particular

Mpr = H°(R®y L.) = (Rij ®1 Vj).
O

See [13] for an extensive treatment of the affine obstruction theory in the
Yoneda complex for the non commutative case.

2.3 The spectral sequence of Extyx(F,9)

Let X be a n-dimensional scheme, F, § two Ox-modules. Then Ext’ (F,-) =
R'Homy (7,-) and Ext’ (T, ) = R*Homx(F,-). The category of Ox-modules
has enough injectives such that these homology groups are well defined. Now
these groups are important for computational aspects of our theory, and in
general for all moduli theory. The injective modules are not very well suited
for computations. On the other hand, projective modules, and in particular
free modules are very well suited for our computations. It is well known that
the category of O x-modules has not enough projectives, but restricting to quasi
coherent O x-modules we can solve the problem partially.

Lemma 1. Let U be an open cover of a scheme X. Assume that for each
open U € U we have given an Oy-module FU, for each couple U,V € U, an
isomorphism ¢y : 5U|Unv = CTV|UQ v. such that oyy = Id, ¢yy o dyw =
duw on UV W. Then the gluing of the family {FU}yey is

H°@U AT }vew)).
Proof. This is just the fact that HO(C(U, {FU }yey)) is a sheaf on X. O

Lemma 2. Every coherent Ox-module & on a quasi compact scheme X is a
quotient of a locally free O x-module.



Proof. The category of A-modules has enough locally free‘s, so for an open affine
cover U = {U; = Spec(A4;)} of X we can choose surjections

LYV — F)y, —0

of Oy,-modules where LU is locally free (projective) and compatible on the
intersections. Then the induced morphism

L = H(C(U,{L"}ven)) — H°(CU {Flu}vew) = F
is surjective. o

Lemma 3. Let 0 «—— F «— L be a locally free resolution of F. Then Ext’ (F,9) =
HY{(X,Hom(L,9)).

Proof. Hartshornel[4] O
Theorem 4. (Godement) There is a spectral sequence with

EPT~ HP(HY(X, ExtP(F,9))
such that EY? = Exty (7, 9).

Proof. All the details of this proof can be found in Godement[10].Let C** be
the double complex C*(U, Hom(F,J*)) where J* is an injective resolution of G.
Then 'EN? =" HP("HI(C**)) =" HP(U, ExtP(F,9)) = HP(X, ExtP(F,G)) and
"ERT ="HP(HY(C*)) = HP(HY(X, Hom(F,T*)). Thus

"EPY = HM(HO(X, Hom(F,7%))) = H"(Hom(F,J*)) = Ext’: (%, 9). O

Definition 2. Let X/k be a separated, noetherian scheme, F a quasi coher-
ent Ox-module. We will say that F has support strictly inside an open affine
subset Uy = Spec(A) if there exists an open affine covering U = {U;}ier of X
containing Uy such that F(Up N U,) = 0 when p # 0

Lemma 4. Let X/k be a separated noetherian scheme, I, G two quasi-coherent
Ox-modules. Assume that Ext'y (F,G) has support strictly inside an open affine
subset Uy = Spec(A). Then for any open U C X containing Uy, we have that

Ext’ (F,9) = Ext}, (F, 9).

Proof. Using Godement'‘s spectral sequence [10] on the Check-complex, we find
that
Extiy(F,9) = & ERf
p+q=1i
with EY"? = H?(X. Ext% (F,9)). Again, the Check complex applied to Ext% (F, G),
gives HP(X, Ext% (F,G)) = 0 when p > 0. This leaves us with Ext’y (F, §) = EO.%.
As B9 = HO(X; ext’y (F,9)) = HO(U; Exty; (F|u, §lu)) This finally gives

Ext’y (7, 9) = Exty, (F|v, Slv)



2.4 Global Deformation Theory

Here we recall the basic notions of global obstruction theory, that is the theory
of deformations of sheaves of O x-modules. The theory works in a much more
general setting, but here we will assume that X is a separated, noetherian
scheme, and that F is a quasi-coherent O x-module. Notice that Defy : [ —
Sets is given by

Defg(S) = {OXka — modules \rfs|3~5 Rs k(x) 2 F, Fg is S—ﬂat/} ~ .

Lemma 5. Assume that 0 — I — R — S — 0 is a small morphism in [,
and let Fg € Def5(S). Then

{Liftings Fr of Fs to R}§{0—>I®kff—>3~3—>3~5—>0}/f\a.

Proof. If Fg is a lifting of Fg to R, then Fg is R-flat, ie. 0 — I — R —
S—0=>0— IQrFr — RRRFr — SQrFr —0=0— IQrFr —
Fr — Fs — 0. This is because I @ g Fr 2 I Q% (k@r Fr) =1 Q1 F.

Conversely, if 0 — [ ®; F — Fr — Fg — 0 is exact, then Fg is R-flat
and the sequence

0 — IR, F)®rS —Fr®RrS —Fs®rS —0
is exact. But the image of (I ®; F) ®r S in Fr ®p S is 0, and
Fs@rS=Fs@r R/I =TFs.
Thus Fr ®r S = Fg. O

Corollary 1.
TDef,Jt = EXtﬁ( (?, EF)

Given now an Ox-module F on X (separated, noetherian over algebraically
closed field k), Choose a locally free resolution

0+—F— L.,

and choose an open affine covering U = {U; = Spec A4, }ier of X such that L, is
free for each p. For this setup we have:

Lemma 6. The following are equivallent
a) To give a lifting Fs of F to S € |
b) To give morphisms

di - L.(U;) @S — L.(Ui)(—1) @k S, ¢ij : L.(U;NU;) @k S — L.(U;NU;) @S

such that dz2 = 0, di ] (,Z%j - (,Z%j ] dj = 0, (,Z%j ] ¢jk - ¢ik =0.
¢) To give a lifting of double complexes

C(U@ S, L. @ S) — C(U, L.).



Proof. The proof follows as in the proof of theorem 3. Then the globalization
is taken care of by lemma 1 O

Proposition 1. Let 0 — R 2.8 — 0 be a small morphism in l. Then for
each Fg € Def5(S) there exists an element

(¢, Fs) € BExti (F, )

such that Fg can be lifted to R if and only if o(¢, Fs) = 0. Furthermore, if this is
true then Defg(R) is a torsor (principal homogeneous space) over Ext (F, F).

Proof. This is done completely in [12]. We will however write up the expression
for the obstruction in this case:

Consider the small morphism 0 — R 2,8 — 0 and let Fs € Defs(R)
be given by the morphisms

i)
a5

(3

- L.

U Ok S — L(_l)

U, @k S,
i)
¢;5; L.

These morphisms satisfies

vinu; @k S — L.lu,nu; @k S.

(d3)?=0foralliecl

S .8 S S _
di oy — ¢y 0d; =0

s s S _
ijo¢jk_ ik = 0.

We can lift these morphisms in the obvious (free) manner to df and qbﬁ.
Then the obstruction is given by

o=[(d)?,df o ¢t — ¢t 0 dF oF 0 ot — 0]i]

which is an element in

COX; Hom? (L., L. 1)) BCHX; Hom (L., L.@11))BC*(X; Hom® (L., L.@x ).
It follows that d(o) = 0 in the total complex C" of
C(X; Hom (L., L. @ I))
giving the class of the obstruction, that is
o€ H*(C) = Ext%(F.9) @ I.

Notice that this generalizes to the noncommutative situation exactly as in the
affine situation. O

10



Notice that we can use any resolving functor for lim™. Thus this can also
be done by using the functors of Laudal[8] or Godement[10].

For computations, we need the following: Let K be a double complex with
differentials

"

KP4 kpatl1
‘d ‘d
KPtla fept1lg+1

Ild

Then the total complex is

K" = ®pq=n K1
with differential d" : K™ — K"*' given by d" ='d + (-=1)""d.

Also recall that the Check complex is given by
C’p(u,ff’): H ?(UioﬁUilﬂ---ﬂUip).
i0<i1 <+ <ip

The differential is d? : CP(W; F) — CPTL(U; F),

p+1

(dpa)io,m,ipﬂ = Z(_1)kaio,...,ik,...,z‘p+1

k=0

UigN-+-NUsp, -

3 Chern Classes and Stability

Here we would like to recall the definition of Chern classes and stable sheaves.
Let X be an n-dimensional, non singular variety with a rank r-bundle JF, i.e. a
locally free O x-module of rank r. An m-cycle on X is an irreducible variety of
codimension m and the free abelian group generated by the m-cycles modulo
rational equivalence is called A™(X). For a morphism

f:X—X

we have the pushdown f. : A™(X) — A™(X’) and the pullback f*: A™(X') —
A™(X). An intersection theory on a class of abelian varieties is a pairing A" (X) x
A3(X) — A™3(X) which makes

to an associative, commutative, graded ring with identity, the Chow ring, such
that the obvious conditions holds (that are the ones inherited from the intersec-
tion theory of curves and surfaces). The essentials for the definition of Chern
classes is given by the following:

11



Lemma 7. Let £ € AYP(F)) be the class of the divisor corresponding to
Op)(1) and let m: P(F) — X be the projection. Then

™ AX) — A(P(T))
makes A(P(F)) to a free A(X)-module generated by 1,&,62,... &L
Definition 3. ¢;(F) € AY(X) is given by co(F) = 1 and

T

S (~l)imte(s F).€ =0

=0

T
Reuwritten, this is equivalent to &" = > (1) 1% c; (F).£7 "
i=1

As ¢ =1, AY(X) = 0 for i > n and ¢;(F) is defined for 0 < i < r, the Chern
classes of a rank r bundle ¥ on an n-dimensional variety is determined by ¢; (%),
0 < ¢ < min(r,n). Notice that the definition of Chern classes can be extended
to coherent sheaves by extensions with bundles (again we make use of the fact
that the category of coherent sheaves has enough locally frees).

In [2] the following definitions are given.

Definition 4. Let X be a smooth curve with a bundle E. Then & is stable
(respectively semistable) if

deg(cr(9)) < deg(ea (€)) - KD

) <
E) (respectively <)

for all proper sub-bundles ¥ C €.

Definition 5. Let X be a smooth n-dimensional projective variety with hy-
perplane section H. A torsionfree sheaf € on X is called stable (respectively
semistable) if

rk(F)
rk(€)

x(F(nH)) < x(E(nH)), for n >> 0 (respectively <)

for all proper sub-bundles F of €.

Notice that in 4 the deg prefix is not in [2]. I have added it so that the
definition makes sence and because it fits in with definition 5. Also it fits in
with the definition of Hartshorne in[4] if we define the degree of a bundle F as
deg(c1(F)) and use the Hirzebruch-Riemann-Roch theorem[4].

4 The Moduli Problem for Bundles

4.1 Introduction

If a moduli space is proved to exist, local neighborhoods can be found by or-
dinary deformation theory. Also, in cases where we do not have to few generic

12



points, the non commutative algebraic geometry can be used to glue the local
formal moduli together to a moduli space. The non commutative algebraic ge-
ometry is essential when it comes to those classes of modules where it is proved
that a moduli space does not exists because the properties of the orbits is not
satisfied under any reductive group action. That is, the objects corresponds to
points in a scheme X that is not stable in any form for any polarization. To
study the non commutative boundary of the semistable bundles, we have to
understand the construction of the schemes

uig(ra A1y -eny ak)'

Let X be a n-dimensional, smooth, irreducible, algebraic variety over C, and let
L be an ample divisor on X. Because X is an irreducible variety, X is integral,
and then every locally free O x-module is torsionfree. Thus

My, SMY  CUY,
and the general construction given or referred to in GIT[2] holds.

Example 1. Consider a smooth projective curve X. Then we know the exis-
tence of the Jacobian variety Jac(X). Then

My o € MY ¢ € Jac(X)

for a suitable group-action, and the problem can be solved by commutative meth-
ods.

Remark 1. Theorem 1.10 in GIT[2] states that
X*/G 2 X(y)/G

exists. The names (semi-) stable for bundles does not a priori mean that the
bundles are (semi-) stable for some reductive group-action. We are not supposed
to take the quotient, rather representing these bundles as the points in a quotient.

In the following we will try to work as general as possible. However, when
we need to, we restrict to the following case: X = P2, L = Ox (1) and we will
investigate MY (2,1, c2), the moduli space of rank 2 vector bundles on X with
Chern classes numerically equivalent to ¢; and cs.

4.2 A — G Modules

Let A be a k-algebra, G a group, M a (right) A-module. Assume that G acts
(dually) on A and M by

V:A— Autg(A), V: A — Endy(M).

Then M is called an A — G-module if for every g € G, V (ma) = Vg(m)Vg4(a).

13



Definition 6. An additive mapping ¢ : M — N where M and N are A — G-
modules is called g-linear, g € G, if ¢(ma) = ¢(m)V4(A).

Lemma 8. A g-linear morphism ¢ : M — N is determined by its values on

a set of generators. Moreover, given the composition M 2. N 2 P where

M, N, P are (right) A-modules. If one of ¢, are g-linear, the other A-linear,
then the composition ¢ o is g-linear.

Proof. ¢(> - mia;) = > ¢(mia;) = > ¢(m;)V4(a;) so that indeed the morphism
iel iel i€l
is determireled by qb(mi), m; € I. Geiven the composition. If ¢ is g-linear, v is
A-linear, then ¥ (¢p(m - a)) = ¥(d(m) - Vg(a)) = ¢ op(m) - Vy(a).
If ¢ is g-linear, ¢ is A-linear, then ¥ (¢(ma)) = ¥(d(m) - a) = Y(p(m)) -
Vg(a) = ¢op(m) - Vgy(a). L]

Definition 7. An A-linear morphism ¢ : M — N between two A — G-modules
is called a morphism (of A—G-modules) if p(Vg4(m)) = Vg(ep(m)) for allg € G,
m e M.

Lemma 9. Given a morphism of A — G-modules ¢ : M — N. Then ker ¢,
Im ¢, Coker ¢ are all A — G-modules.

Proof. Because the diagram

M——N

commutes, it follows that Vg|ker¢ : ker¢p — ker¢ and that ker ¢ inherits a
structure of A — G-module. Accordingly, Im¢ is an A — G-submodule. The
quotient N/Im ¢ is an A — G-module in the obvious way. O

Lemma 10. Let M, N be two A— G modules. Then Homy (M, N) is an A—G
module by Vy(p) = V-1 0¢0V,. Furthermore,

Homa_g(M,N) = Hom4 (M, N)©.
Proof.

Vy(da)(m) = Vg1 0aoVy(m) = V,(¢a(Vy-1(m)))
= Vy(0(Vg-1(m))a) = Vg ($(Vy
= Vy(9)(m)Vy(a) = V4(9)Vy(a)(m).

Thus V4(ga) = V4(¢)V4(a). Also, ¢ € Homa_q(M,N) = ¢ € Homu (M, N)
and Vgop=¢oV, e ¢p=V,10¢p0V,. O

We will use the following definition of reductive:
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Definition 8. The unipotent radical R,,(G) of G is the mazimal closed, con-
nected, unipotent, normal subgroup of G. G is reductive if Ry,(G) is trivial.

Lemma 11. If G is reductive, then the category of A — G-modules has enough
projectives.

Proof. Consider the A — G module M. As A-module M has a free A-module
mapping onto it. For each g € G we can lift Véw to Vg4 as shown in the diagram

0 M —— An
vy 2
0 M——— A"

If G is reductive, then Vg, oV, =V 4, Thus A" is an A —G module under
this action. To prove that A™ is projective with respect to this A — G action we
notice that because A™ is A-projective, there exists an A-linear v as shown in
the diagram below:

Vg
A" A"
1 ‘w
N n Q 0
Y, YV,

If G is reductive, this v can be chosen so that it commutes with V,. We prove
this for G = G,,, = k*. Then because ¢ is an A — G module homomorphism,
ker ¢ is an A—G module and so for n € ker ¢, V4(n) = an for some n € k*. Thus
v(Vg(e:)) = v(ae;i) = avy(ei), Vg(v(ei)) = By(e;) for some 3. Finally, because
0=¢(v(Vg(es)) — Vg(v(ei)) = (8 — a)p(e;), & = B whenever necessary O

Proposition 2. Let M, N be two A — G modules where G is reductive. Then
ExtYy (M, N) = ExtYy (M, N)¢.

Proof. Choose locally free resolutions and lift the g-action for each g € G:

0 M Amo Am e A
vy Vg0 Vg Vi
0 M Amo A™ e A™
Then

ExtYy_o(M,N) = hi(Homa_g(M,-)) = Ext'y (M, N)°,

where Ext’y(M,N) is an A — G module by the previous lemmas. Also notice
that the action on the Yoneda representation follows. O
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Now, the definition of Ox — G modules on a scheme X/k is clear, and that
the closure of any G-orbit is an Ox — G module. Thus classifying closure of
G-orbits is equivalent to classifying A — G modules. This will be clear and
exemplified in the following.

4.3 Invariant Theory of Bundles

Before we can make any computations at all, we must find a category of A — G-
modules for a ring A and a reductive group G such that the quotient exists
and corresponds to, or at least contains MY o(ryer, ..., cr) as a subscheme.
References for this can be found in Seshadri[i1], Gieseker[3],Maruyamal[6],[7].
More references to the applications of bundles can be found in GIT[2]. The two
main methods for studying bundles on projective spaces by geometric invariant
theory, are the following:

A. Choose a large number of points { P, ..., Py} C X and associate to each
rank r vector bundle € on X the family of linear maps

['(X,&(n)) — &(n)(P) — 0, (n>>0),
vi(s) = s(P;). Equivalently this gives N subspaces of codimension r
W, ={seT'(X,&n))|s(P) =0}

Let G = SI(T'(X, E(n))). If € is stable and n and P; are sufficiently chosen,
then P(W;) C P(I'(X, €(n))) is G-stable.

B. Suppose a line bundle £ on X is given. To each pair (€, ¢) consisting of
a rank r bundle € and ¢ : A"E =, L we associate the canonical morphism

N'T(X,E(n)) — T(X, L(nr)).
Choosing a basis this gives T'(X,L(nr)) = kM and thus I'(X,L(nr))Y —
(NT(X, E(n)))Y gives M elements wy, . ..,wp € (A"T(X, E(n)))V. If € is stable,
(w1,...,war) is stable with respect to G = SI(T'(X, £(n))).

In case A we can study moduli of sequences of linear subspaces of P(V)
under the action of G. Here we get

M?(r;eq,. .., cr) — (Grass)™ /G.

In case B we can study the moduli of representations associated to sequences of
linear morphisms. Then we have

M#(r;cr,...,¢) = repr /G.

In the following, these moduli spaces will be studied.
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5 The Grassmanian Scheme

We know that the Grassmanian functor is representable, and we know that the
Grassmanian scheme can be embedded in P™ for some n. The action of Gl(n) on
P™ needs a linearization of an invertible sheaf, and then we can study the action
of Gl(n) on Grass by the corresponding action on the pliicker coordinates. In
this chapter we will explain how the theory of formal moduli of A — G-modules
can be used to simplify this setup.

5.1 Projective (n — 1)-space as formal moduli

As a set, we have that P"~! corresponds bijectively to & — {0} /k*. However,
this geometric quotient does not exist as an algebraic scheme because the points
are not stable under the action of the reductive group k*. The problem of non
stability is solved in the non commutative case by adding more generic points.
Here the only extra generic point is at infinity, and we want to exclude it from
our computation. Thus we chose a worst point, we compute the local formal
moduli and hope that an algebraization of the local formal moduli and its versal
family will give us some open neighborhood in the moduli, and that we will be
able to glue an open covering to a complete moduli.

We consider the affine n-space under the action of the reductive group G =
k*. Consider the point e; = (0,...,0,1,0,...,0) € k™, that is a 1 at the i‘th.
place and 0 elsewhere. The orbit of this point is given by the A — G module

Vi = k[@]/(xlv"'7:Ci717xi+17"'7xn)~

Then this computation is justified by lemma 4 because as the modules in
question has support strictly inside an open affine.

Put a; = (@1,..., % 1,Tit1,. .., %), A = k[z]. We have that Extly ,(V;, V;) =
Ext) (V;, V)¢ = Homy(a;, A/a;). Thus a ¢ € Homg(a;, A/a;) is in Extly_o(Vi, Vi)
if and only if it is invariant for all g € G:

v Vv, -
ai—g>ai>A/a "—:A/a.

As ¢ is determined by its action on the generators, and as there are no rela-
tions on the generators in a, we get a basis for Extllq_G(Vi, V;) consisting of the
morphisms ¢;,

) T, p:J
?3(tp) = {0, p#J

Remark 2. Notice that when G is reductive, Ext_(Vi, Vi) = Ext*(V;, V;)C.
This can be seen for example by the fact that Spec(A)/G = Spec(A%) when A
is a finite type k-algebra, k algebraically closed and G reductive, [2].

As the projective n-dimensional space is smooth, we know that the local
formal moduli will be formally smooth. We are looking for an alternative way
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of computing with P, and thus we do the computation even if we do know the
answer.

Consider the Koszul-complex of V;. As A is regular, this complex is a free
resolution. We compute the cup and Massey products. We do the computation
for V1 = V. The case with V;, 1 <i < n follows by symmetry.

Xyeeey Ty d
0 1% ALz b e
(‘37/2/7~~~1$n) *//
0 \% A Al —— A" ——
where ds is given by the following matrix
T3 Ty o XTn 0
—x9 0 0 0
0 —x 0 0
0 0 0 0
do =
Tn
0 0 -+ —Zo - —Tp1

Then a translation of the basis for Extfq_G to the Yoneda complex is given by

{(ve; .15 0e; ,2) ;Z?‘l where a., 1 = z1€; and where a., 2 is given by the equation

n
xleidg = — Z Tj€j-1Qe; 2.
j=2

It is straight forward to compute that the cup products are all identically

zero, and so an obvious algebraization of Hy is
Hy = k[t1, ..., tn—1].

The versal family is then given by
M(t1, ooy tno1) = (22 @k 1+ 21 ®p t1, 23 @ 1+ 31 Qg oy ..., 2y @1 +21 Dpby1).

This parameterizes all zero sets of (x2 + t121, 23 + tax1,...,Tn + th—121), i€
all the lines

(x1,a121, @21, - . ., an—121) = 1(1, a1,a2,...,an-1).

This is obviously the open subset D, of projective n — 1-space, and gluing
the the local moduli and versal family in their intersections for V1, ..., V;,, we get
exactly P"~ 1.
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5.2 Projective (n — 1)-space as noncommutative scheme
we start by recalling the definition of Jacobson Topology:

Definition 9. Let ¢ be a diagram of A-modules. We define the Jacobson
topology on ¢ as the topology generated by

D(a) = {c € ob(c)|p(a) € End(c) is injective }
when a € A and p : A — End(c) is the A-module structure.

p(a) : ¢ — c is injective is the same as a ¢ Ann(c), and for simple modules
this is equivalent with p(a) being an isomorphism. This is in line with [9].

The Jacobson topology on a diagram of A-modules is in fact defined by
p(a) an isomorphism. Our objects here are the orbits, and the orbits in D(a)
is exactly those where G x {z} = G. that is Spec(k[zi,z; ']) x Speck =
Spec(k[z;,z;']). This correspond to our D(z;) defined above. The reason
for the different definition is that in our case we study the closure of the orbits
instead of the actual orbits.

Let ¢ be the set of lines through 0 in A™. That is all the orbits of A™ — {0}
under the action of G = k*.

Let A = k[z1,...,2,]. Then if L is a line through (a1, ...,a,) with a1 # 0,
the orbit (or line) is given by the quotient

as

a2
Af(ws — Loy ag — Doy — ).
al a1 a1

It is then easy to see that all the modules on the form

Af(z1 — arxi, w2 — gy, -+, By oo T — An—1T4)
are in D(z;). The computation in the previous sections then proves that
O(D(x;)) = k[t1,...,tn—1], because the versal family covers all of D(z;) exactly
once. This proves that P*~! is a scheme for the lines through 0 on A", and it
is not affine. Also, the limit O(c) = imO(D(x;)) = k because Az, zozy-z, = K,

k algebraically closed.

5.3 Global computation of P

We have computed P as an affine quotient, i.e. we have identified P with
(A"T1/E*)—{0}. Now P" is in fact not an affine quotient, P* = (A1 —{0})/k*,
and it is not trivial that these two are the same. From our computation however,
it follows that the affine computation is enough, but here we will use the global
computation to understand why.

Let A == k[x07 cee ,l‘n],

X =Spec(d) — {0} = D)= |J U
=0

Uveu
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We put M; = A/(zo,...,&iy...,2p), Fi = Mi|x,i =1,...,n, and in this
particular computation we may put M = My for simplicity. Then we find that
the exact sequence

0—— M T
with

To T3 Ty 0

—x1 0o - 0 0
0 -z --- 0 0
0 0 0 0

dy = .

0 0 . 0 .- 0
0 0 --- 0 --- Tn
0 0 —x1 —Xp—1

restricts to the exact sequence on X:

0 T Ox 0%t O’
As usual, we put Cp(l{ﬂ{om(Lq,?)) = CP4, and we denote by C™ the total
complex associated to CP9. Then we have that
Ext’ (F,9) = H'(C™).
We find
C%0 = @7 Hom (Lo, F)(D(z;)) = &g Hom(Ay,, (A/ (1, .-, Tn))ws
= @?:O(A/(xla .- 7xn)zL = Amo/(xlv cee 7:Cn)'

CY0 = @iy iy Hom (Lo, F)(D(wiy2i,)) = Bigeiy Hom(Ag, (A (@1, %n))ayy 2,
= Big<in (A/ (21, 7mn))xmxn =0.

O = @iy Hom(Ly, F)(D(w:)) = Bio Hom (A7, (A/ (21, 20))" 7!
=" (A (z1,...,20)2,)" = (Axio/(xl, oy my)) L
For exactly the same reasons, C>0 = C! and
CO%2 = (Ayy /(21 .., 20))".

Then the total complex is

(;cl,...,xn)T n— s;F r
Ago/(@1, . yxn) 5" (Agy/ (21, 2p)) 1—>(Ax0/(x1,...,mn)) ,

and Exty (F,F) = A,,/(z1,...,x,). Taking the G-action into account, this is
exactly as in the affine case. Thus we are through. Notice that globally or
locally we classify the orbits. Thus the two moduli spaces of orbits must be the
same.
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5.4 The Grassmanian Scheme Grass(2, 3)

We start by computing this special case. Then we will compute Grass(r,n) in
general later.

A 2-dimensional subspace of k2 is given by two linearly independent vectors.
That is a maximal rank 3 x 2-matrix A. A subspace is invariant under the usual
column operations, that is under the action of Gl(2). Thus we are considering
the quotient k[z;;], <i< 3/ Gl(2).

1<j<2
Letting

1 0 10 0 0
My=(0 1), My=1|0 0], Ms=1[1 0],
0 0 0 1 0 1
we can describe the closure of the orbits of these subspaces as

Vi=o0 (M) = A/(x31,232), Vo =0 (M2) = A/(x21,222), V3 =0 (M3) = A/(z11,212),

where we have put A = k[x;;] 1 < i < 3- By symmetry, it is sufficient to compute

1<j<2
the formal moduli with its versal family for one of the orbits. Thus we consider
V = V1 with Koszul resolution

()
T31,T 31
0 Yy A? A 0

.
+ »

0 V A A? A 0
(z31,232) <7m32>
31

Now we consider the action of G = G1(2) given by

v ¢ V_1
" (w31, T32) Af(z31, 232) —

A/($31, 1‘32) .

(3331, 5532)

We find a basis for Extly_o(V,V) = Ext'(V, V)¢ the following way:
First we notice that the action of G is given by

Tl T21 T3l Ti1 T21 T3l
—g-
(5512 T22 5632) (5612 T22 $32)
where g € G = G1(2), and where we have transposed the matrix of the Grass-
manian to be able to multiply from the left.
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Put ¢ = (fs1, f32). We consider the the conditions on ¢ under the action of
. . . 1
the generators of G. Firstly, ¢ must be invariant under ((); (1)) and (0 2)
Thus f31 and f32 must be homogeneous of degree 1. That is
f31 = a1 + @121 + Q12712 + Q22T92,
f32 = Briw11 + Bar721 + fr2z12 + B22Tos.

Secondly, ¢ must be invariant under g = ((1) é) this gives

J31 = Vg-1(f32) = Briz12 + Bor22 + Braw11 + Paawan
and similarly for fss Then

fa1 = iz + @211 + @12%12 + a2

fa2 = 1211 + 22221 + Q11212 + @21T22.

Cc

The last generators are g = (i ?) and g = ((1) )

), ¢ # 0. We compute the
action for the first of these, the second is similar.

¢ maps to

(w31, 232) > (231, 232+Cw31) = (f31, faat+cfsr) = (Vg-1(f31), Vg-1(faa+cfs1)).
The first condition gives

Q11711 + 2121 + Q12212 + Q2222 =
(a1 — a120)x11 + (@21 — (220)T21 + Q12T12 + Q22T20 =
12 = (X922 =0.
Thus
f31 = o111 + @211
f32 = o112 + Q21 222.

Then the second condition gives

11212 + 01022 = V-1 (11212 + 2122 + a1¢T11 + 116221
= a11(z12 — c@11) + @21 (22 — cx21) + Q11cT11 + Q1CT21

= (11712 + Q21T22,

which is already fulfilled.
All in all we might write

o = (f31, f32) = (1211 +a21221, 11Z12+ Q21 Z22) = 11 (211, T12)+ 001 (T21, T22).
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We have computed extl, ,(V,V) =2, and a basis is given by

_ _ [ %12
Qe 1 = (371173612), Qey 2 =

T11

o [ —T22
ey 1 = (352179622), Qe, 2 = .
T21

The cup-products are all identically zero, and so the (algebraic) local moduli
is k[t1,t2]. The local versal family is given by

d(ti,t2) = (231 @1+ 211 @1 + 221 @ 2,232 ® 1 + 12 @ t1 + 22 R ta),

with geometric points:

31 + a1r11 + agwe; =0 - 31 = —a1T11 — a2x21
T32 +a1T12 +ar22 =0 X33 = —a1T12 — 2722

r11 T12 11 T12

To1 X2 | = T21 22 =

T31 T32 —a1x11 — A2T21  —G1T12 — A2X22

1 0 0 1 0 0 0 O
r11 0 O0) +x12(0 0 + 221 1 O) +x92 10 1 s
—ay 0 0 —a —as 0 0 —as

which gives the two dimensional subspace corresponding to that point. This is
not the form we would like. This is solved in the next subsection, where we
compute the general Grassmanian.

Notice that this and the next computation is justified by Lemma 4 because
all the modules in question has support strictly inside an open affine subset.

5.5 The General Grassmanian scheme Grass(r,n)

The method illustrated in the previous section, illustrates the general case.
However, there is a more straight forward way to find the scheme Grass(r,n),
which will be developed here.

Put
A= k[xlv ""xn]v ‘/;17~~~7ir = A/ai17~~~7ir

where 1 < i1 < ... < i <nand a = (T1,...,&iyy ooy iy ooy ), 1.6 the ideal
generated by all z1, ..., z, except z;,, .., z;.. By symmetry it is enough consider
V =Via. . . r Exactly as in the case with P" 1 k* =G acts on A4, and V is an
A — G-module. Thus we can compute H (V) and its algebraization H (V).

To find a basis for Extly ~(V, V), we consider

v ¢
? (Tpg1yeees Tn)

v,
(Trg1y ey Tn) Af(Triy1, ey Tn) AJ(Trig1y ey Tn) -

23



It then follows that ¢ is invariant under k£* if and only if
d) = (fTJrlv .. 7fn)

T
where f; = > a;x;, i.e. homogeneous of degree 1. Thus dimy, Exti_G(V, V)=
i=1
7+ (n —r). The Koszul complex is

1y Ty) d
0 Vv AT e 2 g
0V —— AT s
where s = (n ; T) and
Try1  Try2 Tp 0 0 0
—Tr 0 te 0 Tr42 LTr43
0 e TR 0 —Tri1 0
d2=| o 0 - 0 0 -z
: : : : : : : Tn
0 0 A 0 0 e —mp

We find that a basis for Ext!y_~(V,V) in the Yoneda complex is given by
s
wo={on:
where a;;1 = xie5, 1 <i<r, 1 <j<n—rand a;;z is given by the condition
@ij1 - do = (Tpg1,. .., Tp) - Q2.
We compute and find that all the cup products are identically zero, and so
HV) = kltily <<,
I<j<n-—r
and the versal family is given by M /(t;;) =
(Tr 1 @121 @t 11+ -+ Ot -, Tn@UHTI O+ T2 @2 e - T Oty ).
The geometric points of this scheme are the zero sets

Trp1 = —t11xy — - — Lp12p

Tpn = —tipn—rT1— " —trpnrTr.
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which gives the points
x1(1,...,—t11, —t19,.. ., —tlyn,,,) +22(0,1,..., —to1, —taa,..., —tgm,r)
+ 420, 1, =t 1, —tr2, o —trn—r),
i.e. the subspace spanned by these vectors. This proves that we can glue the
7:) affine schemes Spec(H (Vj,...i,)) to get Grass(r,n).

Notice that the sets H(V;, .. ;) corresponds to D(xy - - - &4, - - - &), the open
sets in the Jacobson topology, proving that the prescheme H(V;, ;) is a
scheme for the Grassmanian. This is as it must be from general results.

Lemma 12.
Grass(r,n) = |_| Spec(H(Viy,...i))-
O
Because the Grassmanian is used to prove the projectivity of various moduli

spaces, the embedding of Grass(r,n) in P! for s = (2) is of importance. Let

v = (1,...,—tu,...,th,T),...,
Uy = (O, .. .,1, _tr,la .. -7_tr,n—r)-

n
r

VI ANV A ANv =er AN Nep + Zui(tij)pj
=2

Then

where the p;‘s are the pliicker coordinates, and thus polynomials in t.
Sending p; to u; gives a surjection k[pi,...,ps] — k[t;;] that respects the
versal families. This gives the pliicker embedding

Grass(r,n) — P71,

We hope that this discussion will give a way to study the N-subspace problem
intrinsic (without the projective embedding), i.e. without choosing a S1(3)-
linearization of an invertible sheaf.

5.6 The action of G = Gl(n) on Grass(r,n)

We are going to use the Grassmanian in the following way: Let X/k be an
algebraic scheme, M(z;7) = {Rank r-bundles}/ .
Choose n >> 0 and Py,...,Py € X. For €& € M(r) we have

0 — Wi — T(X,E(n) — Em)(P) — 0
which gives N subspaces of codimension r where n = dim; I'(X, E(n)). We get

¢ : M(x;r) — Grass(n —r,n)".
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For &€ 2 F we get

0 W§E (X, &(n)) &(n

L’N Y

wi I'(X,3(n)) F(n) 0

~
jan}

o o

0

where ¢ is induced by -, i.e. the diagram commutes. Thus the isomorphism
classes in M(X;r) corresponds to the orbits in Grass(r,n)™ under the Gl(n)-
action induced by the action on Grass(r,n) given by ¢ +— g - ¢. It is so because
given
¢

kN — k™.

This is sent to g¢ given in the diagram

kT L) kn .
N
9¢ "~
k’n

Now, this is so because change of basis on k" already is taken care of in
Grass(r,n). Notice that this is the reason for the action of

Sl(ry) x -+ x Sl(ry) x Sl(n)

on

Hom(k™ k™) @ - - -Hom(k™ k™)

on page 211 in GIT[2], and just the action of Sl(n 4+ 1) on Grass(r,n + 1) on
page 86 in GIT[2].

6 The N-subspace problem

Consider Grass /r,n). This is the set of n X r-matrices of rank r, i.e. maximal
rank, and can be considered as the open subset of A™ consisting of matrices of
rank 7. Let s;, .. ;. . be the cofactor determinant of a n x r-matrix, and put
Z=7Z( U Si,. i, then

] yeensbp—r
Grass(r,n) = (A" — Z)/ Gl(r)
in analogy with P* = Grass(1,n + 1) = (A"*! — {0})/GI(1). We push the
analogy further: Consider the affine cone over Grass(r,n), and let Gl(n) act

equivariant:

Grass(r,n) « A" — Z — A"
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A point z € Grass(r,n) is stable if o(Z) is closed in A" and dim o(%) = dim G
for one and hence all points & over x. It is semistable if o(£) (| Z = (). Otherwise

(ie. o(£)(N\Z # 0 ) the point x is called unstable. Notice that the pliicker
embedding of Grass(r,n) in PS71, s = (:), gives the setup

Grass(r,n) C As
Grass(r,n) — {0} C A — {0}
Grass(r,n) C Pps—1

Then the situation is no longer intrinsic but depends upon a polarization.
To work on the N-subspace problem, we study

Grass(ry,n) X - -+ x Grass(ry,n) = G(r1,...;rn)
by lifting the Gl(n)-action to
AT o AT

Notice that the following computations are justified by lemma 4 because all the
modules in question have suport strictly inside an open affine subset. This is
easy to see, but have to be considered in each separate case.

As is usual, we start with an example.

6.1 G(1,1;2).
Let us first consider only the Gl(2)-action: Then we consider A? x A2 = A%

We write the elements in A* on the form v € A%, v = Zl 21 , and
2 2
_ a1 b1 o ai b1
g € GI(2) acts by gv = (g (ag) g <b2>) =g (<a2> <b2>). There
are two orbits in Grass(1,2) in this case. The case where a = Zl , b= 21
2 2

are paralell, that is a = b, and the case where they are not. The orbit o(a, a)
is contained in Z(x1 — y1,z2 — y2) which obviously is the closure of this orbit.

So (a,a) is indeed an unstable point. The above orbit can be seen as o ((1) (1)) .

The the other point can be seen as o <(1) (1)) It is obvious that
1 1
cl(o (O 0)) = Z(r1 — y1,T2 — y2)),
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and because o ( O) = A% — Z(Det) is an open dense subset, it follows that

cl(o ((1) (1))) =A%

In particular, the point (a,b) is also an unstable point. Thus the situation we
consider is

1
0

A=Ek[xy,x2,9y1,12], Vi=A, Vo =A/(z1 —y1,22 — ¥2).

Given these objects, to construct the non commutative scheme, we start by
computing the non commutative prorepresenting hull. As we know, this starts
with a computation of the tangent spaces. Notice that as V; = A is free,

Exty o(Vi,V1) C Exty(Vi,V1) =0.

Also
Exthy o(V1,V) =0

of the same reason. We have that
Exty (V2,V1) =0

by writing up the syzygies, and we are left with Exty (Va,V2) as the only
thing to compute. Exti_G(Vg, V4) is given by the invariants ¢ in the diagram

Vg ¢ Vg1

Af(x1 —y1, 22 — y2)

(T1 — y1,22 — y2) (T1 — Y1, 22 — Y2) Af(x1 —y1, 22 — y2)

If ¢ = (f1, f2) is invariant for g = (g (1)) and g = (é 2) we must have

f1 = axy, fo = bxg for a,b € k. Then if ¢ = (awxy,bxs) is invariant under
0 1
g= (1 0), we have
(ax1,bx2) = VgV g1 = (brz,ax1)Vy-1 = (br1,axz)

implying that a = b. Thus ¢ = «a(z1,z2). We have to check that ¢ is invariant

dera— (1 OY o (10,
underg={ )97 =(__ |J

Vg1, 22)Vy-1 = (x1,22 + cx1)V -1 = (21,22 + cx1 — cx1) = (21, 22).

Thus ext!_(V2,V2) = 1. The Koszul complex gives
Ty — yz)
Y1 — 1

A A

.
P
R B

0 Va A A2 A 0

(z1—y1,22—92)

0 Va A
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where o = (x1,22) and § = ( "2

immediately zero, and so

). We compute that the cup-products are
1

"= <]5 k?ﬂ)'

Notice that This is not G(1, 1;2). Up to both actions, all pairs of non parallel
lines are equivalent, and all ”pairs” of parallel lines are also. Thus there is no
free parameter. We have to take both actions into account simultaneously.

az b
rank 1. The group GI(1) x GI(1) x Gl(2) acts on M, and we end up with two
possible orbits, o(M7) and o(Ms) where:

10 11
(o 1) = o)

We find that o(M;) = D(Det M) = cl(o(M;)) = A* and that o(Ms) =
Z(Det). This situation is the following:

Two lines in A2 is a 2 x 2-matrix M = (au b12> where both columns have

A = k[z11,y12, 021,721, y22], Vi = A, Vo = A/s, s = Det.
By writing up the syzygies it is obvious that
Ext} (Vi Vi) = Extiy (V1, Vo) = Ext}y (V, Vi) = 0,
and so also
Extly_¢(Vi, Vi) = Ext}y_g(V1,V2) = Exty_g(V2, V1) = 0.
We consider The sequence

v V,-1
§—"~5 ¢A/s .

Letting g1 = <g ?), g2 = ((1) 2) and ¢(s) = f we find that the only
possibility is f = s = 0 Thus also Ext}_5(Va, V2) = 0, and so

H(1,1:2) = <’S 2)

6.2 G(2,2;3)

The previous example was of course too simple. This is also. Here we consider
Grass(2,3) x Grass(2,3). That is, we consider the open subset of all 3 x 4-
matrices consisting of those on the form M = (V;|Vz) where V;, ¢ = 1,2 is a
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3 x 2-matrix of rank 2. The group action on Hom(k?, k) x Hom(k?, k3) that
we will consider is given by

G = GI(2) x GI(2) x GI(3),

v(gl,gz,gg)(‘/ll‘/Q) =93 (‘/1 'gl|‘/2 '92)-
Notice that this is not the Grassmanian, but a quotient of this.

Lemma 13. Every element in Grass(2,3) x Grass(2,3) is equivalent to ( is in
the orbit of ) a matriz in one of the forms

1 0 0 1 1 01 0
My=10 1 0 0], Ma=1{(0 1 0 1
0 01 0 0 00O
Proof. We start by proving that every element is in the orbit of one of the
following matrices:
1 0 01 1 0 00 1010
Mpy=1{0 10 A, Me=[0 10 1], Mg=[0 1 0 1
0 0 1 0 0 0 1 0 00 0 O
For Grass(2,3) we have the following possibilities:

1 0 a1 1 a O 010
01 az)” \0O 0 1) \0 0 1)°

Combining these to get G(2,2;3) we get nine possibilities. We will only prove
one of the possibilities, and leave the rest.

1 0 1 0 1 0 1 0 1 0 1 O
0o 1 0 1]~10 1 O 1 ~[(0 1 0 1| =M(e,co)
al as bl b2 0 0 bl—al bg—ag 0 0 C1 Co
i)
61=CQZO:>M(O,O):M
ii)
1 1 0 1 0 0
1 #0,c0=0=M(c;,0)~ [0 1 0 1|~[0 1 0 1] =M,
0 1 0 0 0 1
iif)
1 01 0 1 01 0 1 0 0 1
c1=0,c0#40=M(0,c5)~ [0 1 0 1] ~]0 1 0 ~[0 1 0 0
0 0 0 1 0 0 0 1 0 0 1 0
Mo
iv)
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1 0 1 0 1 0 0 O
c1 # 0,0 # 0 = M(ci,c2) ~ |0 1 0 1] ~ (0 1 0 1| ~
0 0 1 % 0 01 %

= M.

OO =
O~ O

1
0
1

o = O

Finally, we use the fact that there exists a linear transformation that sends
the two planes M) to M. Then we are through. O

As before, we consider G = GI1(2) x Gl(2) x GI(3) as the algebraic group
Spec[z11, T12, Ta1, T22, T31, T32, Y11, Y12, Y21, Y22, Y31, Y32] = Spec([z, y]) acting on

A(M(3,2)) x A(M(3,2)) = A2

We have two orbits, the orbit of two non parallel planes, and the orbit of two
identical planes. Let 01 = 0(V1), 00 = 0(Vao) where

10 01 1010
Vi={0 1 0 0)J,Vee=(0 1 0 1
0 010 0 0 0O

The closure of these two orbits is described algebraically by the following:
T11 T12 Y11 Y12
Let | x21 @22 Y21 Y22 |, Si, @ =1,...,4 be the determinant of the matrix

T31  T32 Y31 Y32
resulting from removing the i‘th column from M. The matrices in the orbit of
V; are given by the fact that the rank is 3, i.e.

o(Vi) = | D(s:) € A"

i=1

Because A'? is irreducible, it follows that cl(o(V1)) = A'2. Also, the orbit of V3
is given by the fact that the rank is 2 so that

4
0(‘/2) g ﬂ Z(S’L) = Z(81782; 33784)~

i=1

Now, because o(V2) = U, ; x (D(sijx)) is open, it follows as above that cl(o(V2)) =
Z(s1, 82, 83,54) C A2, This leads us to the following classification problem:

A= k[gvg]v M, = A; M, :A/(Sl,...,84).

Exth_o(My, My)

The action is given by the composition

vV, @ vV 4
(81752583754) A/(51582753)S4) -

(51582753584) A/(51752)S3754) .
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a 0 0
Let¢:(flaf27f3af4)7fi€Aaizla"'a4' Letg:(1d51d7 0 10 )
0 0 1
Then
g9 = VooV o1 = (afi(2a11, 2212, To1, T2, T31, T32, Y11, 2Y12, Y1, Y22, Y31, Y32))-
1 0 0
Because ¢ should also be invariant for g = (Id, Id, [ 0 « 0 |), it follows that
0 0 1

¢ =0.

Extl o (My, M)

From general principles, we know that this should be zero. Also it follows by
writing up the resolution of Ms. All other Extly (M;, M;) is obviously zero,

and so we get
k0
H(2,2;3) = (0 k)

6.3 G(2,2:4)

The last example G(2,2;3) is equivalent to two lines in affine 3-space, and is
as such well known. The last example proved that G(2,2;4) is a commutative
scheme, but it remains an open question if this is the case in general.

Going one step further, we are going to compute the quotient
Grass(2,4) x Grass(2,4)/ G1(4),

and we will do it the following way: Consider an element (V1, V3) € Grass(2,4) x
Grass(2,4) as an equivalens class of two linear morphisms of rank 2. That is
two 4 x 2-matrices, each of rank 2, modulo GI(2) x GI(2). Consider A'® as
the scheme of all 4 x 4 matrices. Let U be the open set consisting of all such
matrices (V1, Vo) where tkV; = 2, ¢ = 1,2. That is the following: Let

T11 Ti12 T13 Ti4
x x x x
M= 21 22 23 24
31 T32 T33 T34
T41 T42 T43 T44

Let f;; be the determinant of the matrix coming from M by removing the third
and fourth columns and the i‘th and j‘th rows, correspondingly for g;;, the
determinant of the matrix coming from M by removing the first and second
columns and the i‘th and j‘th rows. Then U C A6 consisting of the matrices
corresponding to 2 linear subspaces of dimension 2 is

U= (J D) (U Dlgin)

i#] i#]
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which certainly is open in A6,
Now, what we are going to compute, is

U/G
where G = G1(2) x GI(2) x G1(4), the action given by
(hlv h27 g) ! (‘/1; ‘/2) = g(vlhlv ‘/2h2)

U is not affine, and so we classify the closure of the orbits in A'6. This will
work properly because two different orbits have different closures.

Lemma 14. The orbits in U under the action of G are the orbits of one of the
following matrices

01 =

co o~
oo~ o
o~ oo
— o oo
co—~o
o~ oo
co o~
co o~
co—~o
co o~
oo~ o

that is, two planes intersecting in the origin only, two planes with a common
line and finally, two identical planes.

Proof. Follows by choosing the bases the suitable way O

The orbit of 07 consists of all matrices with rank 4, that is all matrices M
with det(M) # 0. Thus cl(o1) = cl(D(det(M))) = A6, The orbit of 0 consists
of every element in U of rank 3. Its closure is Z(det(M)). Finally, the closure
of 03 is contained in Z(s;;), and so cl(o3) = Z(s;;), where s;; is the ij cofactor
of M. The A — G-modules we are going to classify are

Vi=A, Vo= A/(s), V3 =A/(si5)

where A = k[z;;], s = det(M), s;; = ij-cofactor of M.

As always, the next step in the construction of the (not necessarily commu-
tative) local formal moduli, is the computation of the tangent space. This leads
to some combinatorial difficulties, as the computation below will show. First
notice that because G is reductive, when p C q are g-invariant ideals, then

Exth (A/p,A/q) = Ext}y_o(A/p, A/q)¢ = Hom(p/p* A/q)°.

We also would like to recall that the action of g € G on ¢ € Hom(p/p?, A/q) is
given by the composition

V,-1
P2 p -5 Afg 2 Al

Then we get the following computation.
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Extl_(Va, Vo). Consider the composition

T, (5) 2 AJ(s) 25 AJ(s),

(s)
and notice that V, is homogeneous for all g € G, and that all ideals in question
are homogeneous. Then we can work homogeneous. Moreover, ¢ is determined
by its value ons, thus we may write

o= f*
k=0

were f¥ is the homogeneous part of degree k. Assume that ¢ is invariant. Then
it is certainly invariant under g = (Id,Id, « - Id), thus

n

n 1 n
_ k _ 4 k __ 4—k pk
¢fvgo¢ovg_1@;)f kaan 71;00[ f*.

=0

This implies that f¥ = 0 for # 4, and we may write ¢ = f*, that is a polynomial
of degree 4.

Choosing a monomial basis for the monomials of degree 4, we understand
that all monomials that are not elementary products must be 0. Two entries
from the same row or column would destroy the invariance of multiplication of
that row or column with a constant o # 0, 1. Then, invariance under switching
of rows leads to f* = « - det(M), because then we are running through all
elementary products, changing signs, That is

extly_g(Va, V) = 0.

Ext_(Va, V3). Because of the diagram

N
2R
¢ ~

A/ (s15) = A/ (s5)

g—1

it follows that 0 < extl_(Va, V3) <extl ~(V2,Va) =0=

exty o(V2,V3) =0
Ext}_(V3,V3). We consider the composition
Vo ¢ Vo1
(si) = (si5) — A/(si5) — A/(si5)-
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We can write ¢ = (fi;) = > ( E), where i’; are homogeneous of degree k.

Assume that ¢ is invariant under the action of G,i.e. under the composition
above. Then in particular it is invariant under g = (Id, Id, « - Id), that is

n n 1 n
6=Vyo000Vym &Y (fl)=> (> =15 => (a®*ff).
k=0 k=0 k=0
This implies that f5 = 0 for k # 3, and we can write ¢ = (f) where each f3
is homogeneous of degree 3. For the same reason as above, the E’j‘s can not
contain two entries from the same row or column. Thus they are elementary
products. Switching rows now runs through all elementary products changing
signs, and so fi; = > a;;si;. This says
0.J

exth_o(V3,V3) = 0.
It is obvious that Exty o (V1,V;) = Exty_5(4,V;) = 0 for all j. Thus our

result is that the moduli problem G(2,2;4) is commutative:

k
H(2,2;4)= 10
0

o O
T O O
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