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Abstract
A novel control mechanism is presented for rural microgrids, standing out in the current
literature with its advanced approach to load prioritisation and energy allocation. The
system's main goal is to maximise energy supply to essential loads while effectively
managing available resources. Distinct from traditional methods, this mechanism
dynamically classifies loads according to user‐defined priorities, adjustable based on the
control system's computational power and complexity. A critical feature is the utilisation
of the Particle Swarm Optimisation (PSO) algorithm to optimise demand side manage-
ment (DSM). This innovative approach leverages day‐ahead load and generation forecasts
to ensure optimal energy distribution across load levels, maintaining continuous power
supply to high‐priority loads and reducing blackout risks due to generation and load
fluctuations. Analyses under stochastic scenarios demonstrate the robustness of the
control action, with percentile‐based day‐ahead forecasting allowing for adaptation to
significant variations in renewable energy generation patterns. The implementation results
are significant, maintaining 100% supply continuity to essential loads throughout the day,
even with generation fluctuations up to ‐20%. This marks a considerable improvement in
load satisfaction, increasing it from 83% to 96%. A significant advancement in microgrid
control is contributed, providing an adaptive, user‐centric approach that enhances load
management and energy distribution, and facilitates more resilient and efficient microgrid
systems in the face of highly variable renewable energy sources (RESs).

KEYWORD S
distributed energy resources, particle swarm optimization, renewable energy resources, rural electrification,
stochasticity

1 | INTRODUCTION

Access to modern power is regarded as a crucial component
of sustainable development. However, 2.8% of urban resi-
dents and 17.5% of rural residents worldwide still lack access
to electricity, making up more than 9.5% of the population
[1]. Due to the uneven geographic layout, grid development in
rural areas faces a number of difficulties that have slowed the
rate of electrification. Even with grid extension as a possibility,
these isolated areas have a smaller population and inadequate
infrastructure, which leads to fewer prospects for institutional

investment and a low rate of return on investment [2, 3].
Among several options, renewable energy sources (RESs)
have been essential in electrifying rural areas in developing
nations [4]. Isolated renewable options for expanding access
to electricity in rural areas include independent microgrids
powered by micro‐hydro, solar PV, and wind [5, 6]. By
creating independent microgrids, local users can produce
electricity from renewable sources to power their homes and
even a few small businesses [7, 8]. By 2016, 133 million people
had access to lighting and other services thanks to isolated
renewable energy, of which 100 million used solar lights, 24
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million had solar home systems, and at least 9 million relied
on microgrids [5].

Due to a huge reduction in the cost of renewable energy,
consumers, municipalities, and utilities have begun to use
distributed energy resources (DERs) to produce their own
electricity. Solar PV module costs have decreased by more than
80% since 2009, while PV power costs have decreased by 73%
[5]. This is due to a sharp decline in the cost of the most crucial
isolated system components, which has further decreased pri-
ces and enhanced affordability, together with a quick increase
in the efficiency of modern appliances. Communities can create
microgrid systems to generate electricity by employing the idea
of leveraging DER. This infrastructure enables more flexible
power delivery with the help of DER assets located closer to
the load demand [9, 10]. It is a grid line concept that works
with both isolated and parallel connections to the grid, as well
as having a backup supply of its own. The microgrid can be
used to offer the necessary reactive power to the line to in-
crease the voltage supply when they are linked to the utility grid
in parallel. Additionally, they can be disconnected from the grid
in isolated case scenarios (sometimes referred to as grid failures
during parallel connection) to supply power to the customers
and, if possible, meet load demands. However, the unpredict-
ability of RESs like solar and wind raises concerns about the
system's ability to ensure a steady supply. Increases in demand
or decreases in a generation will change the system's ability to
handle its load, which could lead to a blackout. There is always
a cap on how much energy the system can supply, even with
the best generation‐side architecture.

For example, the electrification of Nepal's rural areas has
been made possible in large part by isolated RESs (i.e.,
microgrids) [11]. However, the unpredictable nature of the
sources and inadequate infrastructure for resource manage-
ment are the main problems with renewable energy, which
raises concerns about the system's reliability and security [12].
Table 1 presents the availability and reliability of five microgrid
systems in Nepal, where the supply deficit has occurred in
most of them. In addition, the availability of solar‐based
microgrids is observed to be very low. One of the major rea-
sons behind this deficit supply is that the installed generation in
Nepal's isolated microgrid is constrained in how much energy
it can produce. The capacity to ensure continuous supply is
constrained, particularly for storage‐based microgrids because

of the expense of installing the necessary number of gener-
ating, controlling, and storage components.

Considering the behaviours of user the domestic electric
load profile are usually cyclical in nature with typically a
morning and evening peak and lower based demand during the
night period [14, 15]. Various research has been conducted to
understand the consumption pattern of load for better imple-
mentation of demand response programs. With the technology
available to manage the load on the appliance level shifting and
shedding might help maintain stability in the system. Yet the
untimely shedding and shifting of load can result in to decrease
in user satisfaction. Multiple pieces of research tend to classify
the load to improve user satisfaction for the implemented de-
mand response. Researchers tend to perform classification of
the load based on user preference, energy demand, and their use
in flexibility [13, 16]. A study [17], classifies the load based on
their dependency on time, it discussed two different classes
considering static and dynamic behaviours to time. It imple-
mented user satisfaction levels based on time and devices to
achieve maximum user comfort based on the defined user
budget limit. Also, evolutionary placement algorithm (EPA)
based genetic algorithm has been implemented to generate
energy allocation patterns to yield maximum user conform to
the defined budget limit. Shedd‐able and unshed‐able classifi-
cations are as simple as they sound such that the loads are shed
if they fall into that category [18]. Through the implementation
of shedd‐able and unshed‐able loads, the paper demonstrated
how the prediction of total future demand can be used to
maintain the target peak at an optimal level [16]. Similarly, Ref.
[19] classified home appliances into three different categories
appliances with real‐time energy consumption modes, an
appliance with periodic nonreal‐time energy consumption
modes, and an appliance with non‐periodic nonreal‐time con-
sumption modes and presented two different algorithms dy-
namic priority allocation and scheduling algorithms. This paper
discusses the implementation of scheduling appliances to
improve the period to increase the utilisation of renewable
energy. A study [20], discusses a 2‐level classification of appli-
ances for 3‐bedroom residences in the city of Ibadan. The
author classifies the appliances in the household based on their
flexibility to use. Such load demand requires continuous and
instantaneous power with flexibility is addressed as critical load
and appliances with somewhat controllable and schedulable

TABLE 1 Availability and reliability of isolated microgrid of Nepal [13].

Indicators
Solar‐wind‐battery
microgrid, Bhorleni

Solar‐battery
microgrid, Dubung

Solar‐diesel‐battery
microgrid, Harkapur

Microhydro
microgrid,
Dhading

Haluwa Khola Minihydro
microgrid, Ramechhap

Availability (hours per
24)

<8 >23 8–15 16–22 >23

Reliability
(interruptions/
week)

4–14 3 4–14 3 3

Adequacy of the
electricity to meet
uses

Supply deficit Spare power Supply deficit Supply deficit Supply deficit
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appliances as uncritical load, which further uses priority arbi-
tration allowing room for discrimination in the satisfaction
within the load class. The papers show the effectiveness in
power distribution through improvement in the percentage of
user satisfaction on both classes of load for a standalone PV‐
Battery system. Results show that the load satisfaction for the
critical and uncritical loads can be increased from 49.8% and
23.7% to 93.8%, 74.2%.

As the grid system is transforming towards a smart grid,
various technologies have been developed and are being
improved in order to achieve smart grid objectives [21, 22].
With microcontroller‐based technology, more flexibility on the
load can be achieved with a decentralised control of the grid
energy [23] such that individual households are employed with
remote control technology to handle the consumption. Each
household smart meter is coupled with an energy management
system (EMS) or designed with an inbuilt EMS known as
advanced metering infrastructure (AMI) [24]. These controllers
are integrated with data acquisition system (sensors), compu-
tation and control technology (microcontroller/processor,
programable logic circuit) [25, 26], and communication tech-
nology (Zigbee, WIFI, LoWAN, Bluetooth) [23, 26–28], which
enable the controller to communicate with the local smart
meter, remote user controller, or/and central controller (i.e.
utilities). On the other hand, utilities or distribution system
operators (DSOs) are able to obtain accurate data on the
consumption pattern, enabling them to manage and better plan
their future management and investments in networks [29].
Recent research on smart gird technology show that imple-
mentation optimisation algorithm in combination with smart
technology to control load on the appliance level can reduce
peak load by 5.21%–7.35% [30].

With the available information in hand, a predictive model‐
based approach such as daily, hourly forecasting of load, and
generation can be implemented to predict the level variation in
load of the system that can occur. Many of the concepts for
DSM used in today's context rely on the predicted data of load
such as day ahead or hourly forecasted data [31]. In Ref. [32],
the research considers forecasting of load data and shifts the
load to suitable times to reduce the gap between the peak load
and average load by optimising the value of peak to average
ratio. Whereas, the method proposed by Hoffman, A. [16] first
predicts the load using the ARX (Auto Regression) model and
calculates the required kVA to be shed to keep the demand
below the current target peak. Ref. [33] proposes a stochastic
approximated framework, based on the probability density
function for the wind speed forecast and employs a control
index that takes into account the generation condition insta-
bility. Similarly, the model predictive control method in Ref.
[34] considers the stochasticity of demand and generation to
reduce peak load and balance the load to supply and maintain
the SoC of the battery. However, a question on what basis the
control action must be performed should be answered, for
example, various strategies are implemented such as to reduce
the cost of energy for individual consumers [35], to perform
peak shaving or load shifting [36–38], or to minimise carbon
emission [39] and to optimise the size of the storage unit, to

maintain battery life [40, 41] etc. DSM strategies with optimi-
sation processes such as Heuristic Optimization (HO) [30, 42],
Genetic Algorithm Optimization (GAO) [43], Hybrid Bacterial
Foraging (HBF) [44], Whale Optimization (WO) [45], Particle
Swarm Optimization (PSO) [46, 47], and Fuzzy Logics [48] are
implemented to find the optimal point for timely control ac-
tion to maintain user satisfaction at the same time.

Dynamic control of the electric load is now possible thanks
to technological advancements such as the smart meter, smart
grid, multiagent control, home energy management system,
building energy management system, and smart appliances
[48–52]. This creates possibilities for load management at the
appliance level. The residential sector is a major consumer of
energy in the case of Nepal as per the economic survey of
2019/20 at 43.3%, and the country followed by the industrial
sector at 36.3% [53]. Whereas in the case of an isolated
microgrid, 70% of the total energy used is from residential
loads. The majority of household load consumption occurs
during dawn and dusk when electricity generation is at its
lowest, which indicates that storage provides 70% of the en-
ergy used. If the energy in the store runs out, the system will be
forced into a total blackout. A continuous supply of anything
vital or of higher priority can be maintained by reducing the
consumption of superfluous or low‐priority items. To ensure
customer satisfaction and prevent a total blackout, load clas-
sification can be used to save energy for higher‐priority loads
[54]. As some loads or equipment have a greater impact on
people's daily lives than others, users can maintain a contin-
uous supply of the appliance they require during crucial gen-
eration hours in exchange for the unneeded load using the
DSM technique to classify loads on different levels of priority.
This paper focuses on the DSM technique to increase the
distribution efficiency of an isolated microgrid system as an
alternative to adding more generation, which increases the
system's capacity to maintain dependable supply. DSM can be
used to extend the boundaries of isolated microgrids a little
further, thanks to cutting‐edge technology like smart metering
and remote communication control capability. As a result, this
research offers a DSM technique to manage the load in order
to increase the isolated microgrid's maximum capacity. The
main area of this paper is the implementation of priority on the
appliance level of the load in the residential microgrid sector.
The paper showed a way to control demand for home load by
placing appliances in order of importance considering the
household load as the biggest consumer in rural areas.

However, even with the implementation of a forecasting
method to manage the load through DSM, stochasticity in the
load and generation pose a major drawback to efficiently
manage the load. Variations in the load and generation affect
the optimal control of load which can degrade the satisfaction
of control implemented based on forecasting [55]. To capture
the stochastic nature of the load, this paper presents a mech-
anism for implementing priority‐based DSM considering the
random nature of load and generation. This paper encapsulates
the stochastic nature of through forecasting using a time series
model, and random variation of generation up to 20% varia-
tion using the probability density function, and control index is
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framed in different percentile levels of the forecasted data. As
we know, fluctuations in load and generation can reduce the
efficiency of energy distribution with limited supply, especially
in rural isolated microgrids. Here, this paper proposes the
priority‐based shedding of load by encapsulating the nature of
load in each priority level through an optimally distributed
energy to maintain user satisfaction through optimisation using
particle swarm optimisation which helps to maintain supply to
higher priority load set by user and utility.

This paper contributes in three main areas to implement
direct load control‐based DSM in isolated microgrid systems:

a. Innovative load management through DSM: This paper
introduces a simple and practical approach for load man-
agement in isolated microgrid systems, particularly in rural
areas. This involves classifying electrical loads based on
user‐defined priorities and managing them dynamically to
optimise energy usage. It emphasises the use of advanced
DSM techniques that leverage smart metering and remote
communication technologies. This allows for a more effi-
cient allocation of limited energy resources, especially in
scenarios where RESs are the primary supply.

b. Stochastic forecasting and optimisation for energy man-
agement: A significant scientific contribution of the paper is
the implementation of stochastic forecasting models. These
models predict day‐ahead load and generation patterns,
considering the inherent unpredictability of RESs like solar
and wind. This paper employs advanced optimisation al-
gorithms, such as Particle Swarm Optimization (PSO), to
distribute energy effectively across different load levels.
This strategy is crucial in maintaining supply continuity to
high‐priority loads, even during significant fluctuations in
energy generation.

c. Integrating RESs in rural electrification: This paper con-
tributes to the field of rural electrification by demonstrating
how isolated microgrids, powered by RESs, can be effec-
tively utilised to extend electricity access to underserved
areas. It provides a comprehensive analysis of the economic
and technological viability of renewable energy solutions in
rural settings. The paper's insights into cost reduction
trends and the efficiency of renewable energy components
are particularly valuable for policymakers and stakeholders
in the energy sector.

The presented paper is organised with the following
structure. It begins by providing an overview of the issues that
have surfaced in rural microgrids and/or rural electrification
systems. The adopted approaches, architecture, and method-
ology are described in Section 2. In Section 3, the results of the
investigation are discussed. Finally, the conclusions have been
discussed in Section 4.

2 | METHODOLOGY

The cost of adopting or updating a new or advanced metring
system might be high for developing nations. A complex
control system might not be appropriate for the area, given the

limited resources in the rural areas, since the costs might
outweigh the advantages of adopted management strategies for
control. A straightforward metering control system could
satisfy the management requirements of emerging nations with
rural microgrids that have lower demand. By integrating col-
oured indications to show grid health and forbidding the usage
of major appliances during peak hours, Gridshare's pilot
project in Bhutan eliminates brownout problems [56]. Similarly,
different low‐cost metres have been created by businesses like
Sparkmeter and power colonies, which offer features like time
of use tariffs, current limitations, prepayment metering,
maximum daily energy limits, and also enable simple control
from power plants [57]. These metres are used in many
developing countries, including Nepal, where they are mostly
found in small, isolated microgrids. Retrofitting, which enables
remote control over the user load at a cheap cost, is an alter-
native to modernising the metering infrastructure [58]. In this
paper, we consider the use of smart metres with the microgrid
system based on their technological features for better distri-
bution of energy. It is based on the concept of direct load
control (DLC) and features AMI. The term “AMI" refers to a
metring technology that has been integrated with several other
technologies, including home area networks, advanced sensors,
control systems, standardised software interfaces, and infor-
mation management systems. AMI is also capable of bi‐
direction communication, allowing the gathering and dissemi-
nation of information between the user‐end and utilities. The
real‐time data or level of details within a data depends on the
sampling time defined in the system or the uplink transmission
capacity of the AMI systems typically use a communication
interval of 15 min to once per hour [59]. With the imple-
mentation of AMI metering utilities will be in continual
communication with customers, allowing utilities to transmit
real‐time control signals to prevent excessive energy demand
during a crucial moment. A detailed description of the pro-
posed architecture and the controlling methods are given in the
following sub‐sections:

2.1 | System architecture

This paper considers a smart metre‐based home automation
system that enables communication between the utility and
users for the implementation of DLC. Figure 1 depicts an
architecture that allows a DLC‐based system on various tiers
while considering the limitations of the current technology
available with Nepal's microgrid. The proposed DSM tech-
nique relies on darkening superfluous appliances at various
priority levels in exchange for maintaining power supply con-
tinuity to critical appliances. The proposed DSM system em-
ploys appliance shedding‐based control to load at critical times,
such as lower generation or higher demand periods and mea-
sures the energy required throughout the day to maintain
supply. The system considers controlling appliances via the
smart metre, with multi‐level control acting as a remote
controller inside each household, allowing a direct control link
for the utility to manage the consumption of specific sets of
appliances. The control can be accomplished utilising a home
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energy management system (HEMS) through IoT‐based con-
trol or other cutting‐edge load observation and control tech-
nology, depending on the communication technology
accessible at the site and location. The smart metre and AMI‐
based metering protocols both support Internet and GSM‐
based connectivity for the transmission of real‐time data and
control signals. It is considered that every home is required to
have an AMI‐connected smart metre that can communicate
with both appliances and the nearest communication centre.

Similarly, Figure 2 shows the working architecture of the
proposed DSM strategy. Through the use of a smart metre, the
control system coordinates two controllers (a central and a
real‐time remote controller). Based on the microgrid system's
generation and day‐ahead predictions, the central controller
uses an optimisation algorithm to determine the best course of
action. The energy‐based model was developed to do a 24‐h
computation of energy consumption based on potential de-
mand and generation for the day ahead. It is difficult to
accurately pinpoint the accurate generation throughout the day
together with the demand because generations that rely on
RESs are stochastic in nature. Therefore, the energy‐based
model created allows utility companies to estimate the con-
sumption, creation, and availability of energy in the storage on
an hourly, half‐hourly, or quarterly basis based on which
control action can be run. The algorithm determines the total
amount of energy that may be served to each set of appliances
and the minimal amount of energy needed to maintain a
continuous supply to the essential appliances based on the
anticipated data of generation and consumption. For isolated
microgrids, continual cloudy days can drain the battery to its
lowest level, causing supply deficit problems that can result in a

total blackout even though the system is optimally constructed
with multiple days of autonomy. When the minimum amount
of demand energy is recognised, it can be stored in battery
backups by taking the appropriate control measures, including

F I GURE 1 Proposed architecture for the implementation of DSM strategy.

F I GURE 2 Work architecture of proposed DSM strategy.

RAJBHANDARI ET AL. - 5
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cutting back on needless electric load. The model and pre-
dicted data are combined to create an optimisation problem
that assigns a minimal threshold point in the battery's state of
charge (SoC) that signifies the shifting or shedding of load.
The central control monitors the battery capacity in real‐time
based on the optimal load‐shedding point, and when it
crosses the lower bound of any priority level, it sends a signal
to the remote‐control unit, which is the implemented AMI
technology, to reduce or shift superfluous appliance energy
usage. Figure 3 depicts how a remote control operates on
various appliance sets. Each appliance set has a remote control
or individual control option. Considering the priority set and
level of control required metering technology allows remote
control of individual or set of appliances for optimal control of
electric load in the residential sector.

2.2 | System modelling

An energy‐based microgrid model has been considered from
the previous study, performed to examine the possible
implementation of priority‐based shedding in isolated [60].
This study examines the effectiveness of load control for a
standalone photovoltaic system using battery energy storage
technology (BESS). The PV solar cell, batteries, user loads, and
power electronic converters (PEC) are thus the system's main

components. The relationship can be stated as Equations (1)
and (2) in the condition of a stable energy system.

Pload þ PLoss ¼ Psupply ð1Þ

Psupply ¼ PGeneration þ Pstorage ð2Þ

The effectiveness of PECs and the operated appliances
determines the system's actual demand. Whereas it increases
the complicity in taking each appliance's efficiency into ac-
count. As a result, the model simply takes PEC efficiency into
account. Equation (3) provides the power demand of various
appliances considered at the current moment “t”. Here, Ede-
mand(t) is the energy demand, PowerAppliance(i) is the power demand of
ith appliance and n defines the number of appliances. The
capacity of the inverter determines the upper limit of energy
consumption. The energy flow through at a time interval of t
can be computed using Equation (4), which is the maximum
power that can flow through the inverter during t time. Simi-
larly, the boundary condition of energy used at interval time ∆t
is shown in Equation (5). Demand and generation determine
the system's charging and discharging for this system, where
EPV (t) is the energy produced by PV during the time range t,
and ηInverter defined the energy efficiency of the inverter as
shown in Equation (6).

EdemandðtÞ ¼
Xn

i¼1
PowerApplianceðiÞ�∆t ð3Þ

Emaxinveter ¼ P
max
inverter�∆t ð4Þ

EdemandðtÞ ¼
∆Emaxinveter if EdemandðtÞ≥ Emaxinveter

Edemand if Edemand <Emaxinveter

( )

ð5Þ

∆EðtÞ ¼ EPV ðtÞ−
EdemandðtÞ

ηInverter
ð6Þ

Similarly, Equation (7) defines the battery system's limita-
tion, where the SoC stands for the battery's state of charge.
The modelled battery's SoC should fall within the maximum
and minimum limits. However, if the discharging or charging
energy is particularly strong, the battery's SoC can reach its
limit in a matter of hours or even minutes. The inverter ca-
pacity and charger controller capacity are considered by the
system to restrict the amount of energy passing through the
battery. Equations (8‐11) can be used to compute the energy
charging and discharging rate. Where depending on the sys-
tem's location, ∆EmaxChargingðtÞ ) is the maximum charging energy,
BESSsize is the battery size, and TSH is the total number of
hours of sunlight. Similar to that, t designates the time frame
during which the energy calculation is made. Sometimes when
charger capacity is mentioned, the TSH can be an ambiguous
phrase. The inverter's capacity also determines the battery's
maximum power flow when it is in the discharging mode.

SoCmax ≥ SoC ≥ SoCmin ð7Þ
F I GURE 3 Remote control architecture.

6 - RAJBHANDARI ET AL.
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∆EmaxChargingðtÞ ¼
BESSsize
TSH

:∆t ð8Þ

TSH ¼
BESSsize

∆EmaxChargingðtÞ
� ∆t ð9Þ

EmaxChargingðtÞ ¼ P
max
charger � ∆t ð10Þ

∆E ¼
∆EmaxChargingðtÞ if∆E ≥ EmaxChargingðtÞ

∆EðtÞ if∆E≤ ∆EmaxChargingðtÞ

( )

ð11Þ

The battery powers the entire system at night and/or on
overcast days, therefore Equation 12 takes this into account by
regulating demand. Additionally, the charge controller directs
the flow of energy based on the battery's capacity for storage.
As a result, it is essential to prevent the battery system from
overcharging and over‐discharging. The charge controller sets a
time restriction on how much energy can be stored because the
battery SoC cannot be charged beyond 200% of its maximum
capacity. The energy that is on hand and kept in the battery
system is denoted by ∆AE(t). The SoCmax may change over a
longer period, but because the simulation is run for a shorter
period, the SoCmax is treated as constant. Similar to the pre-
vious situation, the battery is safeguarded by the circumstances
as specified by Equations (14) and (15) when the ∆E is
negative (i.e., in the discharging mode).

∆AEðtÞ ¼ SoCmax − SoC ðtÞ ð12Þ

∆E ¼
∆EðtÞ if∆EðtÞ≤ ∆AEðtÞ

∆AEðtÞ if∆EðtÞ> ∆AEðtÞ

( )

ð13Þ

∆AEðtÞ ¼ SoCðtÞ−SoCmin ð14Þ

∆EðtÞ ¼
∆AEðtÞ if∆EðtÞ≥ ∆AEðtÞ

∆EðtÞ if∆EðtÞ< ∆AEðtÞ

( )

ð15Þ

2.3 | Load prioritisation

Nepalese microgrids lack hourly appliance demand data.
Bottom‐up load modelling can generate hourly load patterns
based on survey data. Based on an on‐site survey, the model
uses the power consumption pattern of each microgrid appli-
ance to determine the daily load pattern. The model generates
a percentage‐based hourly appliance load demand. Each item
or collection of appliances might have a different priority level.
In our scenario, the bottom‐top load model is employed to
detect daily appliance or priority load penetration. Based on the
survey data, the algorithm identifies each appliance's total en-
ergy use. Equation (16) can be used to figure out how much
power each set of appliances needs.

PLoadðtÞ ¼ P1ðtÞ þ P2ðtÞþ…PnðtÞ ð16Þ

Where, P1(t) is to sum the power demand of each appliance for
n number of appliances in each priority set. Each priority set
can contain one appliance or set of appliance controls imple-
mented on each appliance based on their priority. P1(t) can be
calculated using Equation (17).

P1ðtÞ ¼
XN

i¼1
PowerApplianceiðtÞ ð17Þ

Similar to this, the energy demand for the T period can be
estimated as follows, where T is the sample period and 1 for
intervals of 60 min, and T/60 for other rates of measurement
T = 15/60, for example, stands for 15 min, and T = 30/60, a
30‐min interval. Equation (18) can be used to determine the
amount of energy used by each appliance or group of appli-
ances. The sum of the total energy demand for T time can be
used to compute the total energy consumed, as shown in
Equation (19).

EPn ¼ PnðtÞ � T ð18Þ

Etotal,t ¼
Xn

i¼i

PnðtÞ � T ð19Þ

In this paper, an appliance‐level remote survey was used to
build a load profile based on energy penetration. The survey
collected data on appliances' power usage, quantities, and 24‐h
consumption schedules. The load model was developed to
identify the percentage use of each appliance throughout the
day. Based on the survey data, the probability of use of each
appliance at each hour is developed. Ten residential families, 15
business loads, and two industrial users were surveyed out of
225 (i.e. 202 households, and 23 business and industrial con-
sumers) in the Sugarkhal microgrid. Sugarkhal microgrid is a
solar‐powered isolated microgrid with BESS, which is located
in the Mid‐western region of the country (GPS: 28.6306;
81.9388). The detailed specification of the Sugarkhal microgrid
is given in Table 2. Figure 4 depicts sector‐wise microgrid
energy utilisation based on the survey perform. Data collected
indicate that the majority of microgrid consumers are resi-
dential covering 64% of the load, followed by commercial
covering 19% followed by industrial load at 17% of total en-
ergy consumed in the system. Residential and commercial
loads are the microgrid's main consumers, so this study mainly
focuses on residential loads.

TABLE 2 Technical details of Sugerkhal microgrid.

Generation type Solar PV

Generation capacity 75 kW

Storage type BESS

Battery capacity 425 kWh

Grid type Isolated

Location Sugerkhal, Karnali

Supply household 202

RAJBHANDARI ET AL. - 7
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Based on the collected data from the Sugrekhal microgrid,
an analysis has been done on the system capacity that maintains
supply to the load. To perform the analysis and forecasting, data
are converted into hourly energy demand. The data faces
various null points which are caused due to load shedding in the
system. It is observed that fluctuation in a generation has a huge
impact on system reliability as a lower generation means a lower
availability of the energy to be served. During these days the
capacity of the system to server energy becomes lower even
with a battery as backup. Figure 5 shows the hours of blackout
faced by the system each day from January till August. We can
observe that the lower generation days result in lower SoC at the
end of the day resulting in multiple hours of blackout. We can
observe that the system faces up to 13 h of load shedding, from
the figure we can see the daily generation of the system such that
starting from mid‐June system faces multiple lower generation
days, which indicates the start of cloudy and rainy days in Nepal.
Similar to Figure 5(b), we can observe that during the lower
generation period, most of the day faces lower SoC resulting in
multiple hours of blackouts. As compared to the daily genera-
tion capacity of the system generation, the generation can

decrease by 70% percentage of the maximum generation ca-
pacity per day.

Table 3 shows the proposed priority categories for the
residential loads, which are suggested based on user preference
to trade off comfort and energy efficiency [60]. By limiting
customer usage, the utility is able to save energy. For example, in
the case of Sugrekhal microgrid, the grid can save 29.15% of the
total energy used throughout the day by cutting back on 50% of
the energy used by cooling appliances. A general overview of
the appliance set based on prioritising three levels is given.

2.4 | Load forecasting model

A critical first step in implementing DSM in any area of the
electrical market is comprehending the nature of demand.
Compared to industrial sector usage, residential customers
account for the majority of the demand in the Nepalese
microgrid [4, 61]. According to research [1], home consumers'
demand varies more than that of other industries. Similarly, the
demand variation is rather typical for a system where resi-
dential loads predominate. Hence, the utility can manage dis-
tribution in isolated microgrids efficiently based on the amount
of energy that is available by looking at past data to estimate
future load. The suggested DSM uses demand forecasting data
for the day ahead to assign the best energy based on the
appliance and prevent system blackouts. The system distributes
energy to each appliance or group of appliances using day‐
ahead forecasting. We see stochastic short‐term load fore-
casting as one approach to solve the load fluctuation problem
[62]. Utility companies rely on short‐term forecasting to
maintain generation balance while keeping costs low and pre-
venting system instability [42]. Here, the concept of using
predicted data is based on historical load data. It is impossible
to estimate the load on each priority level or appliance levelF I GURE 4 Sector‐wise energy demand of Sugerkhal solar microgrid.

F I GURE 5 (a) Generation of Sugerkhal microgrid (b) Minimum SoC and hours of blackout faced by the system.
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since historical data on how each appliance has been used is
not always accessible. As a result, the proposal is to anticipate
the hourly load on each priority level for utilities using survey
data on appliance‐level demand and historical data on overall
load. The forecasting that has been put into practice includes
hybrid top‐bottom and bottom‐top approaches to demand
forecasting. The overall flow of hourly demand predictions for
each appliance or priority is depicted in Figure 6. Both a
bottom‐up strategy based on appliance‐based load analysis [63]
and a top‐down strategy based on time series forecasting [64,
65] is used to look at the energy demand penetration of load
for the proposed hourly forecasting of load on the appliance
level. Where, the bottom top approach method helps deter-
mine the penetration level of each appliance within the total
energy demand of any household [63, 66], allowing them to
capture the behaviours of electric demand based on seasonal
and random behaviours of used appliances. With regard to the
classification of load, as discussed in the literature, a survey‐
based study on the application of rural microgrid along with
their classification and demand penetration of each appliance is
shown in Table 3.

In more detail, the Auto‐Regressive Integrated Moving
Average (ARIMA) model is used to forecast short‐term values

in a stochastic manner. In the ARIMA model formula, the
three main terms, p, d, and q, represent the autoregressive
term, the number of differences required to make the time
series stationary, and the moving average term, respectively [67,
68]. Figure 7 illustrates the steps taken to determine the values
for p, d, and q in order to identify the ideal ARIMA model [65].
Due to a lack of information on the numerous variables and
characteristics that affect the load, a time series forecasting
method is used. The forecasting is carried out using historical
data on the microgrid's electric load consumption. Since
forecasting is done on an hourly basis, a total of 24‐h data are
generated from 24 different models. To forecast the electricity
demand, 24 individual equations have been used for the
training. It can be mathematically represented by Equa-
tions (20–23).

Y 0t¼ cþ ϕ1 � Y
0
t−1 ð20Þ

Y 0t ¼ Y
f
t −Yt−1 ð21Þ

Y 0t ¼ Yt−1−Yt−2 ð22Þ

TABLE 3 Priority‐based energy penetration.

Priority level Appliance
Power demand
(Watts)

Average per
HHs/220 H/day Penetration rate

Priority based
penetration

Priority 1 (highest) Lighting load 5 5.64 4 7.4% 37.96%

Fan 55 2.68 3 29.15%

Mobile 10 2.04 1 1.3%

Priority 2 (medium) Refrigerator 180 0.32 6 22.8% 25.97%

TV 50 0.24 4 3.2%

Priority 3 (lowest) Iron 500 0.04 1 1.3% 36.07%

Fan 55 2.68 3 29.15%

Printer 400 0.08 1 2.1%

Photocopy 115 0.04 1 0.3%

Computer 200 0.12 2 3.2%

F I GURE 6 Priority‐based load forecasting flow.
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Y f
t ¼ Yt−1 þ µþ ϕ1 Yt−1−Yt−2ð Þ ð23Þ

This is an ARIMA (1,1,0) model, which is a first‐order
autoregressive model with one order of non‐seasonal differ-
ence and a constant term. Here, Y 00t refers to the first‐order
differencing performed to achieve stationary in the data, ϕ1

is the coefficient, and c is the constant term. Similarly, Y f
t

refers to the predicted data for the same hour and the days
earlier (i.e., Yt‐1 and Yt‐2). We create 48 different prediction
equations to build a model that can estimate the daily electricity
load with a half‐hour interval. Due to the lack of seasonality in
the ARIMA model, only the tendency component of the data
is considered. A years worth of data is needed to create a
forecasting model, but because there are not any available in
Nepal's microgrid, the model is created using only 7 months'
worth of data, with the remaining weeks' worth of data utilised
for comparison and analysis.

The difference between the observed value and the
matching fitted value is what is left over after a model has been
fitted, and this is known as the residual. It is possible to model
the residual from the training data set using the normal dis-
tribution. The model leverages the residual distribution from
the training model's potential forecast using Monte Carlo

simulation to get a prediction interval. Equation (24) is utilised
to calculate the error in forecasted values. In time series
analysis, residuals can be used to assess a model's ability to
detect trends in the data. A successful forecasting model will
produce residuals with a constant variance, zero mean, and no
correlation between them. It displays the residual histogram
that was derived from the fitted model. Equation (25) can be
used to express the residual's normal distribution function.
Here in Equation (25), μ indicates the mean of the residual and
σ is the standard deviation.

et ¼ Y 0t−Yt ð24Þ

f ðxÞ ¼
1

σ
ffiffiffiffiffiffiffi
2π
p e

1
2
x−μ

σð Þ
2

ð25Þ

2.5 | Optimisation model

The goal is to allocate optimal energy to higher‐priority loads
to preserve supply continuity for higher‐priority loads followed
by lower‐priority loads. During low‐generation periods, the

F I GURE 7 ARIMA forecasting model
development.

10 - RAJBHANDARI ET AL.

 25152947, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/stg2.12151 by H

O
G

SK
O

L
E

N
 I SO

R
O

ST
-N

O
R

G
E

 B
iblioteket V

estfold, W
iley O

nline L
ibrary on [10/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



system uses the battery, depleting its energy. To maximise
appliance service hours, a battery restriction point can be set
below which unneeded loads can be set to conserve wasteful
conversion. Maximising the hours of energy served on each
priority level is the goal of this optimisation issue. Model‐based
simulation can determine appliance and priority‐set energy
hours. The shedding‐based DSM optimisation method can
discover the optimum shedding point that maximises energy
served to the highest priority load. Figure 8 shows the opti-
misation flow. The model simulation uses anticipated load,
generation, and battery SoC. As per the predicted interval,
forecasted data is generated from the higher percentile, and
optimisation updates the SOC level based on priority. The
algorithm removes load from different levels of storage based
on the SoC, the amount of power expected to be made, and
how much power is used. The optimisation technique
employed in this paper is the PSO, which searches through
hyperspace for a specific solution using the particles specified
in the issue. PSO provides better flexibility in the addition and
reduction of objective points in a single hyperspace. Multiple
objective points can be identified by adding an axis to the
existing space for optimising a single variable. The vector

graphic in Figure 9 can be used to explain how a particle moves
within this optimisation technique.

Here in Figure 9,Xi
→
ðtÞ represent the position of ith particle

at time step t, similarly,G
→
ðtÞ represent the global best and Pit)

represents the personal best of ith particle at time step t. Vi(t)

F I GURE 8 Optimisation flow.

F I GURE 9 Vector representation of Particle motion to identify a new
position.

RAJBHANDARI ET AL. - 11
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defined the velocity of the particle during the time step t. The
new position of the particle can be calculated using two model
Equations as given by Equations (26) and (27).

Viðtþ1Þ ¼ w� ViðtÞ þ r1 � c1 � PiðtÞ−XiðtÞð Þ

þ r2 � c2� GðtÞ−XiðtÞð Þ ð26Þ

Xi
→
ðtþ1Þ ¼Xi

→
þVi

→
ðtþ1Þ ð27Þ

Here, Vi(tþ1) is the resultant velocity towards the new posi-
tion, w is the inertia coefficient, and r1 and r2 are random
values from 0 to 1. Using Equation (26), the velocity towards
the new position is calculated, the second term defines the
velocity towards the personal best position (the cognitive
component), and the third represents the velocity towards the
global best position (social component). Acceleration co-
efficients c1 and c2 are positive constants. The number of
variables depends on the number of optimum points.

2.6 | Objective function

DSM maximises energy use for the highest‐priority appliance.
The system calculates the objective function based on each
appliance's hours of service. The user or utility sets priority
level and appliance weight based on field, condition, and
customer agreement. Higher priorities are given more time,
followed by lesser priorities in order. Equation (28) calculates
the hourly service ratio, where PWN represents the appliance
weight/priority level for N controls, and SN represents the
hour of service to the N priority level. N is the number of
control priority levels, increasing the level of priority increases
computing complexity. Since the electricity supply must be
maximised for all appliances, load priority may vary from user
to user. Equation (28) calculates the objective function for N
appliances with weights PW1,PW2,PW3, …,PWN and hourly
consumption t1, t2, and t3.

PW 1 � S1 þ PW 2 � S2 þ PW 3 � S3 þ…þ PWN � SN
¼ objective f ucntion ðuser satisfactionÞ

ð28Þ

S1 ¼
t1
tSR

,S2 ¼
t2
tSR

,……… Sn ¼
tn
tSR

ð29Þ

Here in Equation (28), S can be calculated using Equation (29),
t1 is the hours of load served and tSR is hours of service
required for one day, if the model simulation is performed for
2 days it will be 48. Likewise, considering lower simulation or
period of served required on each appliance say 15 min than
considering a 1‐day simulation tSR = 96.

Similarly, the weight on each priority level is set by the user or
utility, to maximise the weight set with the following constraints,
PW1 > PW2 > PW3 >…> PWN, and PW1þ PW2þ PW3þ…
þ PWN = 1, (i.e., Objectivefucntion ≤1). The optimisation is

done to maximise the objective function, which is achieved
when S1,S2,S3,…,Sn = 1; that is, the ratio of total hours of load
served to total hours of required served is 1 for each priority
level. To test the working of optimisation simulation is per-
formed in a scenario considering three levels of priority control.
Here, the objective function is termed user satisfaction and is
addressed as so in further sections. The simulation of the overall
model has been done in MATLAB, along with optimisation,
forecasting, and analysis of the results obtained.

3 | RESULTS AND DISCUSSION

3.1 | A stochastic variation in demand

With the model mentioned in the previous section, a day‐ahead
stochastic model‐based demand management for the
Sugerkhal microgrid system is simulated and optimised. When
using a day‐ahead demand management plan, prediction errors
can lead to incorrect judgements and decreased customer
satisfaction. The stochastic load forecasting model implements
a day‐ahead forecasting‐based DSM that compares user
preference‐based satisfaction on load distribution on different
priority levels. We simulate a day with less storage and lower
generation on the Sugerkhal system. Forecasting is done using
an ARIMA (1,1,0) model and a Monte Carlo simulation to get a
bootstrapped residual‐based prediction interval. Figure 10
compares hourly load forecasts to actual load on different
percentiles considered within the prediction interval. Here,
MAPE ranges from 8.55% at the 50th percentile to 41.23% at
the 90th percentile. Comparing hourly load forecasts with
median spike variation shows a substantial demand variation
from hours 13 to 17. A rapid rise in energy consumption for an
hour or longer can reduce availability for the rest of the day. As
daily energy consumption is 207.03 kWh, the median projec-
tion forecasts 14.08 kWh of excess demand. The simulation
takes into account all nine forecasting percentiles to avoid
scenarios with high energy demand that is not balanced.

F I GURE 1 0 Percentile forecasting of load consumption in Sugarkhal
microgrid.
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The system calculates the objective function based on each
appliance's hours of service, that is, to maximise the hours of
service on the appliance with higher priority. The user or utility
sets priority level and appliance weight based on field, condi-
tion, and customer agreement. Higher priorities have higher
service time, followed by lesser priorities in order. The
objective function is maximised when the ratio of total hours
of load served to total hours of necessary served is 1, as dis-
cussed in section 2.6. Simulating three levels of priority control
is used to evaluate optimisation, where the system complexity
determines the priority level. In this paper, the simulation is
done using the penetration level of each priority. In three
different cases, load penetration is analysed to prove the al-
gorithm's effectiveness. The simulation is run for the different
penetration percentages of each priority in the daily load,
which are taken into consideration in Table 4. Here, the case
represents the daily energy penetration level of each priority,
considering cases where energy penetration of higher priority
load is higher compared to lower priority load (i.e. Priority 3) in
case 1 and equal penetration level in case 2 to lower penetra-
tion of higher priority load in case 3.

In Section 2.4 of the manuscript, the forecasted load model
incorporates a two‐tier priority control system, specifically
managing loads classified as P1 and P2. Table 4 details the
allocation of priority weights, assigning a value of 0.6 to P1 and
0.1 to P3, the lowest priority category. These weights, whose
sum equals 1 as explained in Section 2.6, were established
through an iterative hit‐and‐trial method. This process adhered
to the constraint (PW1 > PW2 > PW3) and was aimed at
enhancing the overall efficacy of the method. In scenarios
where the system requires varying or dynamic priority weights,
specialised optimisation algorithms can be applied to further
refine and maximise the method's efficiency. For the evaluation
of the optimisation model, data from the Sugerkhal microgrid
simulating a day with a maximum generation of 46% (i.e.,
35kW peak generation) were used. It was observed that on
days with lower generation, achieving a value of 1 for the
objective function (i.e., user satisfaction) established chal-
lenging. The data indicate that DSM through priority‐based
load shedding is more likely to maintain supply when higher
priority loads constitute a smaller proportion of the daily de-
mand. This is illustrated in Table 5, which shows the optimised
shedding points for each of the three control scenario levels, as
derived from the optimisation process. Compared to scenarios
without DSM, there is a noticeable enhancement in achieving
the objective function, indicative of an improvement in the
supply to higher‐priority loads.

Figure 11 illustrates how optimisation works as well as the
improvements made to the objective function. Two levels of
flexibility in regulating the load level of shedding could improve
the user experience. We can see that in all cases, priority 1 (P1)
and priority 2 (P2) are completely served, which is achieved by
shedding priority 3 (P3), and the figure on the right shows the
total energy served at each priority level. The optimisation
converter is set to the value that provides the maximum hours
of service on a higher priority load; the figures on the left show
the maximisation of the objective function concerning two
levels of shedding. Even if the system's penetration of higher
priority loads is greater than that of lower priority loads, it is
nevertheless able to achieve higher levels of user satisfaction by
providing higher hours of energy service to higher priority loads
despite the load's different levels of penetration.

To find the optimum point for shedding the load, the
optimisation is performed using PSO techniques as discussed
in section 2.5. The optimisation is performed with the fore-
casted value of generation and demand, and the initial state of
charge. The optimum point of shedding is obtained for 10th to
90th percentile‐based forecasting of load. Table 6 shows the
optimum points that have been identified.

For each percentile‐based forecasting, the simulation pre-
sents an expected user satisfaction or objective function ob-
tained using optimisation. Table 7 shows the expected user
satisfaction with each percentile of the forecasted load ob-
tained through simulation. The system with DSM implemented
is expected to achieve maximum user satisfaction till the actual
load is close to or lower than the 40th percentile of the fore-
casted demand condition with zero deviations in a generation.
Likewise, considering the deviation in the forecasted value it
can be seen that the best percentile forecasting is the 50th
percentile of the forecasting model here the model expects to
obtain 0.99 user satisfaction for the considered forecasted
generation. In case the demand increases above the expected
50th percentile of the forecasted load, user satisfaction de-
creases which shows lower energy demand served for a higher
percentile for the forecasted load. As in a higher percentile of
load, the demand on higher priority load is comparatively
more, as the optimisation algorithm sheds the lower priority to
achieve maximum hours of load served to higher priority loads.

3.2 | Stochastic variation on generation

On the other hand, forecasting errors may affect the proposed
system's capacity to achieve user satisfaction against expected

TABLE 4 Energy penetration of each priority set.

Priority level

Daily energy penetration

Priority weights (PWn)Case 1 Case 2 Case3

Priority 1 50% 33.3% 15% 0.6

Priority 2 35% 33.3% 35% 0.3

Priority 3 15% 33.3% 50% 0.1

TABLE 5 Optimised SoC and objective function.

case Objective function 1st level 2nd level

No DSM 0.8685 20.00 20.00

1 0.9583 43.33 20.00

2 0.9636 28.11 20.00

3 0.9726 24.45 20.00
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user satisfaction. In the case of reduced generation, the pre-
dicted generation decreases total energy availability when
shedding points are reached early. Since generation forecasting
is not part of the research, yet is a factor that affects the

system, we consider up to 20% generation fluctuation in the
forecasting of real generation data. Figure 12 illustrates the
considered solar generation based on predictions. All nine
generation situations are simulated. The microgrid model is
optimised with an initial battery SoC charge of 44%. The lower
SoC replicates the lower generation days till day 2. During the
sensitivity analysis, simulated errors of −20%, −15%, −10%,
−5%, 0%, þ5%, þ10%, þ15%, and þ20% are taken into
account. The total priority load provided throughout the day
shows the working or optimisation in priority‐based DSM.

In our scenario, the lowest potential generation is consid-
ered to be 20% lower than the predicted hourly load served.
The actual load demand percentage is calculated for different
percentile control settings. Figure 13 displays the energy sup-
plied by the system while taking into account a 20 percent
decrease in a generation. Even though all of the priorities are
met during the early hours, the system will still experience a
complete blackout for 4 hours if the priority‐based shedding

TABLE 6 Optimum Shedding point from 10th to 90th percentile.

10th 20th 30th 40th 50th 60th 70th 80th 90th

Level 1% 34.21 28.12 25.39 20.46 25.45 29.65 32.84 33.76 35.36

Level 2% 30.68 24.71 22.32 20.00 20.00 20.00 20.00 20.00 20.00

TABLE 7 Expected user satisfaction for the different percentile of
forecasted load.

Expected user satisfaction (objective function)

10th 20th 30th 40th 50th 60th 70th 80th 90th

User satisfaction 1.00 1.00 1.00 1.00 0.99 0.97 0.95 0.93 0.92

F I GURE 1 1 Optimisation and optimised hourly energy served for, (a) case 1, (b) case 2, and (c) case 3.
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strategy is not implemented, as shown in Figure 13a. However,
with the introduction of priority‐based DSM, the system is now
able to continue supplying priority 1 (P1) and priority 2 (P2)
throughout the day without interruption by offloading lower
priority loads. As part of the implementation of priority‐based
load shedding, the system is compelled to consume less en-
ergy, which frees up resources that may be put toward sustaining
the provision of power to loads with a higher priority over an
extended period of time. Additionally, the system will experi-
ence partial shedding during the fifth hour, trading the use of
lower priority demand and increasing the availability of storage.

In a similar manner, the scheduling pattern of the micro-
grid system has been evaluated for DSM, with many variations
of generations as indicated (for example, −15%, −10%, −5%,
0%, þ5%, þ10%, þ15%, and þ20% of simulation errors).
Figure 14 presents the findings obtained from conducting this
sensitivity analysis. As can be seen in Figure 14 (a–h), the
availability of the supply to all of the loads improves as the
generation capacity of the system grows. P1 and P2 appear to
be supplied in all of the situations, but P3 appears to be turned
off for the beginning cases when there is a minimum amount

of generation. The point of shedding the system is determined
based on optimisation and the shedding point implemented
can be seen in Table 8 for different generation conditions.
When a simulation error of −15% is applied, the P3 is turned
off for 13 h, as illustrated in Figure 14 (a–h). Similarly, when
the generation is less than 10 percent of the base case, P3 is cut
off for 8 hours, 7 hours when it is five percent lower genera-
tion, 4 hours when it is the base case, 3 hours when it is five
percent, and only 1 hour when it has 10 percent higher gen-
eration. However, when the generation is greater than 15
percent, all loads are supplied throughout the day. It implies
that when the generation is more than þ15%, the system can
achieve maximum user satisfaction by supplying the entire
energy by serving the total. This is because the system is able to
supply the total amount of energy. Table 8 shows the per-
centage of energy served on each priority while analysing the
sensitivity of the generation. In cases of 10% and 20% higher
generation, the complete load is served, resulting in maximum
user satisfaction achieved. As generation decreases user satis-
faction decreases as the shedding of lower priority load comes
into play.

F I GURE 1 2 Percentile forecasting of
generation in Sugarkhal microgrid.

F I GURE 1 3 (a) Load served without DSM (b) Load served with DSM, for 20% lower generation.
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F I GURE 1 4 Change in generation by percentage as: (a) ‐ 15%, (b) −10%, (c) −5%, (d) 0%, (e) þ5%, (f) þ10%, (g) þ15%, (h) þ20%.

TABLE 8 Comparison of the hours of served maintained by the proposed DSM under different generation conditions.

Priority

With DSM

Without DSM at −20%þ20% þ15% þ10% þ5% 0% −5% −10% −15% −20%

P1 100% 100% 100% 100% 100% 100% 100% 100% 100% 83.07%

P2 100% 100% 100% 100% 100% 100% 100% 100% 100% 83.07%

P3 100% 100% 96% 87% 83% 76% 56% 55% 52% 83.07%
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In light of the fact that the data for Figure 15 has been
plotted, we are able to see that when the generation variation is
þ10% or higher than the expected generation, taking the
control point from 40th percentile‐based forecasting into
consideration in our case, shedding load at 20.46% and 20.00%
of the load can obtain higher levels of user satisfaction. If the
system acquires a greater generation, it is preferable to set the
point of shedding at a minimum SoC because this will ensure
that the system does not experience any shedding that is not
necessary. On the other hand, if the fluctuation of generation is
between þ5% and 0%, applying the control point acquired
from the 50th or median forecast demonstrates superior user
satisfaction, which in our example is 0.98 and 0.99 for 0% and
þ5%, respectively. Also, for variations between −15% and
−20%, the 70th percentile shows a better achievement of user
satisfaction compared to implementing another percentile. In
the same vein, for higher percentile‐based forecasting, the
system is able to obtain higher user satisfaction for variations
up to −10%, and in our particular instance, this is accom-
plished by using a control point obtained from the 60th
percentile forecast. Since the system isn't producing as much
energy as expected, it's better to use higher percentile fore-
casting to make users experience better energy services
through the DLC strategy of DSM, which will keep the supply
going for higher priority loads. In all conditions, the optimi-
sation is able to maintain user satisfaction above 90% by
trading the supply in lower priority.

4 | DISCUSSION AND CONCLUSIONS

Supply deficit challenges will occur in isolated microgrid sys-
tems because of the rising demand trend and fixed generation
rating. The communities connected to rural microgrid systems
are forced to face blackouts during lower‐generation days and
critical periods. Such microgrids in developing or/and under-
developed nations may require additional investments to add

new resources, which may be unable to be made at that time.
This paper proposes a DSM‐based technique for extending
available resources and ensuring continued supply to critical
load types in order to address the concerns about system
supply shortfalls and blackouts. The direct control of load
through AMI technology is a key component of the proposed
DSM strategy, allowing the utility to maintain the supply of the
user‐preferred load by trading load consumption of lower
priority loads. The system used a smart metering system to
control the load and incorporated shedding‐based control into
the remote controller. This system is based on stochastic day‐
ahead load forecasting algorithms. The optimisation method
optimised the energy consumption for each appliance or
combination of appliances by locating an optimal shedding
point in the SoC of the battery, taking into account the isolated
microgrid based on BESS. The system recognises shedding for
three degrees of priority using the PSO algorithm, where the
degree of control can be extended as per the user or utility
requirements. Lower energy availability for lower priority loads
during a crucial period is caused by increasing penetration of
loads with higher priority.

Results show that the application of the proposed algo-
rithm to maintain a continuous supply of load through pri-
oritisation improves user satisfaction by maintaining continuity
in supply for higher priority load. The simulation is tested for
stochastic load and generation conditions. Here, analysis
through simulation shows that even during under‐forecasting
conditions, improved user satisfaction or higher service
hours to higher priority load can be achieved through opti-
mising control action by incorporating percentile‐based fore-
casted load data. In the presented conditions even in the worst
case when generation fluctuation is −20% lower than expected
the system can still archive 100% supply to both second and
higher priority loads. For under forecasting conditions, varia-
tion up to −10% obtains better user satisfaction with control
signal obtained from the 60th percentile, likewise, for variation
in a generation move upstream with higher generation lower

F I GURE 1 5 User satisfaction analysis under
different percentile of generation.
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percentile is more suited. With variation between −15% and
−20% 70th percentile shows better user satisfaction. For sto-
chastic forecasting of day‐ahead load and generation, the
research for implementing demand control through energy
allocation for isolated microgrid systems with battery storage.
The system can maintain user satisfaction higher than 0.9 by
supplying electricity to the load with the highest priority even
with higher demand in the respective load category during
major fluctuations in the generation of the renewable energy
system.

The implementation of prioritisation‐based load‐shedding
methods has been shown to be highly effective in managing
energy distribution during periods of reduced power genera-
tion, ensuring a consistent and satisfactory power supply for
high‐priority users. Future developments aim to enhance this
strategy by introducing additional layers of optimisation. This
includes developing specific energy models for individual ap-
pliances to better understand their consumption patterns,
analysing appliance storability characteristics to improve user
satisfaction, and incorporating the stochastic nature of energy
generation for more refined load control. Additionally, refining
forecasting models by integrating environmental factors is
planned to improve the accuracy of microgrid system control.
Furthermore, the strategy involves setting up microgrids in
laboratory environments, integrating energy management
testbed equipment, and communication technologies, both
wired and wireless sensor networks, to assess the effectiveness
of the proposed architecture in DSM.

It is essential to acknowledge the open challenges and
future outlooks in this field. Despite the progress made in
enhancing microgrid systems and implementing efficient DSM
strategies, several challenges remain. These include the need
for further optimisation of energy storage technologies to
handle the intermittent nature of RESs more effectively, and
the integration of more advanced predictive analytics for load
and generation forecasting. Additionally, there is a pressing
need to address the scalability and adaptability of these systems
in diverse geographical and socio‐economic settings. Looking
forward, the focus should also be on the development of more
robust regulatory frameworks and policy support to facilitate
wider adoption and integration of these systems. The future of
microgrid systems and DSM lies in harnessing emerging
technologies such as artificial intelligence and the Internet of
Things (iot) to create smarter, more responsive, and user‐
centric energy networks. This will not only improve energy
efficiency and reliability but also play a crucial role in advancing
global sustainable energy goals.
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