University of
South-Eastern Norway

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

FMH606 Master's Thesis

Title: Development of a predictive maintenance application for packaging machines
USN supervisor: Nils-Olav Skeie

External partner: Goodtech AS

Task background:
Goodtech AS develops machines and lines for handling packaging, for among others the food

and pharmaceutical industries. The operation of these packaging machines includes, among
others several types of air cylinders and variable-frequency drives (VFDs). These devices are
connected to a Programmable Logic Controller (PLC) located in the packing machines. The
PLC will record the operations of these devices, including the counting of the stroke of air
cylinders. A WizX (IoT) will be the connection point for the packaging machines and may
also have any additional sensors connected. The application will collect this information, store
the information in a cloud-based database (intranet or internet) and present maintenance
information on a user interface. The application will compare the maintenance information
with the specifications and/or requirements, to detect any need for replacement of any
devices. The application will detect and inform the user about the status before it needs to be
replaced. This will reduce the maintenance cost and risk of unexpected breakdowns. Another
benefit of the application is that the process system will change from the need for regular
inspections to continuous monitoring.

Task description:
The application has been analysed and a proof of concept (PoC) made from the master

project, and the master thesis will be a continuation of this project. The sub tasks for the
master thesis will at least be:

¢ Evaluate solutions for the cloud-based database based on existing vendors. Choose a
cloud-based database for your system.

e Give an overview of the software development process at Goodtech AS and compare
this process with the Unified Process (UP).

o Develop a data model for the database with functionality for data from both the
packing system and additional sensors and include the flexibility to handle several
packing systems for each customer, and several customers.

e Discuss the security aspects of this database and suggest any solution for cyber
security for the cloud-based database.

e Give an overview of the dataflow in the system with focus on the information needed
for the predicted maintenance for the packing machines.

e Design and develop the application using an object-oriented design approach,
collecting the information from different WizX systems, store the information in the
cloud-based database, and present important maintenance information on the GUI.

e Give an overview of machine learning methods, with focus on neural networks (AN),
that can be used for predictive maintenance based on time series data.

e Make a test plan that will be used for testing the application.

Student category: Available for Industry master students at Goodtech AS only (lA student)

Is the task suitable for online students (not present at the campus)? No

Practical arrangements:
Packing machines with the WizX system will be available at Goodtech AS for testing.

Supervision:

As a general rule, the student is entitled to 15-20 hours of supervision. This includes
necessary time for the supervisor to prepare for supervision meetings (reading material to
be discussed, etc).

Signatures: % 4 LA
Supervisor (date and signature): /{/% %,{Lﬁ/{f O?? M’J -)'1

Student (write clearly in all capitalized letters):

Student (date and signature): %DQ/%\\(LUL»(/\ /5 w llﬁ@b - X/L

WIZX

goodE=ch

low cost lloT module

Measuring, logging and presentation
of data

Minimum Installation Cost
Easy to configure

Support large amount of sensor types
and communication protocols

Based on Open Source Software

Secure Communication Protocols

Ll =

SCADA

Da

Lule

5

) :
(o) i
tabas

HMI/PAD

ra

Temp ... {11 ... pLC

Level " " Machine

Any sensor

low cost lloT module

v 12C

v' One Wire
v SPI

v’ 0-10V

v 4-20mA

v' SCADA system
v' IMS/MES systems

v" ERP systems

Vi

v" Bluetooth Low Energy
v’ RF 868/434 MHz

v 4G

v Modbus

v' Canbus

v' NB-IOT
v’ LoRa

v' OPC UA
v" ProfiBus

v" ProfiNet

Appendix C: This appendix contains SQL syntax used in the local database and SQL script for
generating database tables used in Microsoft Azure for MySQL Server.

SQL syntax is used in the local database

The following SQL syntax is used to create a hypertable for the taghistory_data table and column
t_stamp in order to make storing and querying time-series data more efficient and efficient:

SELECT create_hypertable('taghistory_data’, 't_stamp');

The taghistory_data table stores data only for one week. This is done by creating a data retention
policy for data that is older than one week:

SELECT add_retention_policy('taghistory_data', INTERVAL '1 week');
Database tables used in Microsoft Azure for MySQL Server

The SQL script is generated using MySQL Workbench, which gives an overview of the different
tables with columns and data types used in the Application for storing data in Microsoft Azure
for MySQL Server.

-- MySQL Workbench Forward Engineering

SET @OLD_UNIQUE_CHECKS=@ @UNIQUE_CHECKS, UNIQUE_CHECKS=0;

SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;

SET @OLD_SQL_MODE=@@SQL_MODE,

SQL_MODE='ONLY_FULL_GROUP_BY,STRICT TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ER
ROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION';

-- Schema packagingMachineApp

CREATE SCHEMA IF NOT EXISTS “packagingMachineApp™ DEFAULT CHARACTER SET utf8;
USE “packagingMachineApp” ;

-- Table “packagingMachineApp". packaging_machine’
CREATE TABLE IF NOT EXISTS “packagingMachineApp°. packaging_machine’ (
“packagingMachine_Id" INT NOT NULL AUTO_INCREMENT,
‘packagingMachine_Tag" VARCHAR(45) NOT NULL,
“description” VARCHAR(45) NULL,
UNIQUE INDEX “packagingMachine_Tag_UNIQUE" (*packagingMachine_Tag" ASC) VISIBLE,
PRIMARY KEY ("packagingMachine_Id"))
ENGINE = InnoDB;

-- Table “packagingMachineApp . cylinders’

CREATE TABLE IF NOT EXISTS “packagingMachineApp’. cylinders” (
“cylinder_Id” INT NOT NULL AUTO_INCREMENT,
“cylinder_Tag" VARCHAR(45) NOT NULL,
“Unit VARCHAR(45) NULL,
“description” VARCHAR(45) NULL,
‘packagingMachine_Id" INT NOT NULL,
UNIQUE INDEX “cylinder_Tag_UNIQUE" (‘cylinder_Tag" ASC) VISIBLE,
PRIMARY KEY (‘cylinder_Id"),
INDEX ‘fk_cylinders_packaging_machine_idx" (‘packagingMachine_Id" ASC) VISIBLE,
CONSTRAINT “fk_cylinders_packaging_machine’
FOREIGN KEY (*packagingMachine_Id")
REFERENCES “packagingMachineApp . packaging_machine” (*packagingMachine_Id")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

-- Table “packagingMachineApp . vfds’
CREATE TABLE IF NOT EXISTS “packagingMachineApp". vfds" (
“vfd_Id" INT NOT NULL AUTO_INCREMENT,
‘vfd_Tag" VARCHAR(45) NOT NULL,
“Unit’ VARCHAR(45) NULL,
“description” VARCHAR(45) NULL,
‘packagingMachine_Id" INT NOT NULL,
UNIQUE INDEX ‘vfd_Tag_UNIQUE" (‘vfd_Tag" ASC) VISIBLE,
PRIMARY KEY ('vfd_Id),
INDEX ‘fk_vfds_packaging machinel_idx" (‘packagingMachine_ld" ASC) VISIBLE,
CONSTRAINT “fk_vfds_packaging_machinel’
FOREIGN KEY (*packagingMachine_Id")
REFERENCES “packagingMachineApp . packaging_machine” (*packagingMachine_Id")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

-- Table “packagingMachineApp . sensors’
CREATE TABLE IF NOT EXISTS “packagingMachineApp". sensors” (

“sensor_Id" INT NOT NULL AUTO_INCREMENT,

“sensor_Tag' VARCHAR(45) NOT NULL,

“Unit’ VARCHAR(45) NULL,

“description” VARCHAR(45) NULL,

“packagingMachine_Id" INT NOT NULL,

UNIQUE INDEX ‘sensor_Tag_UNIQUE" (‘sensor_Tag" ASC) VISIBLE,

PRIMARY KEY ('sensor_Id"),
INDEX “fk_sensors_packaging_machinel_idx" (‘packagingMachine_ld" ASC) VISIBLE,
CONSTRAINT *fk_sensors_packaging_machinel’
FOREIGN KEY (*packagingMachine_Id")
REFERENCES “packagingMachineApp . packaging_machine’ (packagingMachine_Id")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

-- Table “packagingMachineApp . log_data’
CREATE TABLE IF NOT EXISTS “packagingMachineApp°.'log_data" (
‘logData_Id" INT NOT NULL AUTO_INCREMENT,
‘cylinder_Id" INT NOT NULL,
“cylinder_value® FLOAT NOT NULL,
“vfd_Id™ INT NOT NULL,
‘vfd_value® FLOAT NOT NULL,
“sensor_Id" INT NOT NULL,
“sensor_value® FLOAT NOT NULL,
“timeStamp” VARCHAR(45) NOT NULL,
PRIMARY KEY (‘logData_Id"),
INDEX “fk_log_data_cylindersl_idx" (‘cylinder_ld" ASC) VISIBLE,
INDEX “fk_log_data_sensorsl_idx" (‘sensor_Id" ASC) VISIBLE,
INDEX “fk_log_data_vfdsl idx" ('vfd_Id" ASC) VISIBLE,
CONSTRAINT “fk_log data_cylinders1®
FOREIGN KEY (‘cylinder_Id")
REFERENCES “packagingMachineApp . cylinders™ (‘cylinder_Id")
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT “fk_log data_sensors1’
FOREIGN KEY ('sensor_Id")
REFERENCES “packagingMachineApp . sensors” (‘sensor_Id")
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT *fk_log_data_vfds1®
FOREIGN KEY (‘vfd_Id")
REFERENCES “packagingMachineApp . vfds™ ('vfd_Id")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

-- Table “packagingMachineApp . userdatabase’

CREATE TABLE IF NOT EXISTS “packagingMachineApp°. userdatabase” (

“id” INT NOT NULL AUTO_INCREMENT,

‘username’ VARCHAR(45) NOT NULL,

“password’ VARCHAR(250) NOT NULL,

PRIMARY KEY ('id’),

UNIQUE INDEX ‘username_UNIQUE" (‘username’ ASC) VISIBLE)
ENGINE = InnoDB;

SET SQL_MODE=@O0LD_SQL_MODE;
SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;
SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;

Appendix D: Application Packaging Machine Sequences Diagrams.
Collect and Store Data Sequence diagram

Figure 1 illustrates the SD diagram for the Collect & Store Data use case. The startup sequence is
outside the Application PM, as it is assumed that external modules, The OPC UA server, the MQTT
broker, and the Azure cloud exist and run in Docker Containers when the application is running.

After the powring up of the system, the Docker Containers will start, and the Collect & Store Data will
start reading data from the PLC and the air pressure sensor every 60 seconds and defines them with
the tag name and data type. The collected data are checked for if the value changes, and then they are
stored as a global variable using global.Set() function. If not, the operation of storing data is stopped.
Using an MQTT Client, the collected data (metrics) are formatted and sent with a defined topic
namespace (Edge Nodes/WizX/Wizx01/PackgingMchine_id/device_id) to the MQTT Broker within the
same loop. The OPC UA Server integrated with the Sparkplug interface subscribes to the same topic in
the MQTT Broker, and then the Broker publishes the topic to the OPC UA Server. This operation is
executed as an external module of the Collect & Store Data program, which is why it is not illustrated
in the SD. Within the loop, there is a 7-second delay. This is to make sure that all the updated metrics
are within the OPC UA Server. An MQTT Client uses the browser function, browses the OPC UA Server
for all updated metrics, and stores them in the taghistory_te table using wizxCore Config updater Node
within Timescale DB. A new loop for storing data in the Azure cloud DB starts by first checking the
connection with the Azure cloud DB. If the Azure Cloud (MySQL Server) connection is false, the
program displayed Azure Cloud DB disconnected on the Node-RED Ul. While if the connection is true,
the program will retrieve the stored and updated data as a global variable using global.Set() function
and store data associated with the timestamp in the cloud DB. The sampling time for this loop is 60
seconds.

SD for Collect and Store data use case.

Figure 1

3 J i e R |
|
B o v . A i v T v o o v ot e o o T | v)
2 | | : 4 _
: | | g
: f i
: § 2
g | 1383 _
T _I\._mw _ _
| BRI R | e SR AR 1L
b | S | ko
3 | |8 ¥ _ 24 _
el 33 % ..m o |
! | -
— | o] (R |
j | (o) (e |
| | e st e T LEE t
8 _ _ _
= | | 1
2 | | L e Ak LB
i [| 5] e B |
. | B [of
- | i
2] | % | Ll -
= | ol 4 | 8 %
815 O SN NS SN S X & . U T S 1 R
i) | [
: | d | 7 9 2
|4 _ i T 7
S = 5 | by L
@ Rl _ i _ ey .m i @
gl |2 i & aloEE| &
Bl 3 g R
8 . ST SR R Lo el R T oo 01 s Bk ey son ok Lo bonbers by b cnl o
iller | 8 | o4 a3 £
SRR PR Bt
CRE | 8§ | L8 54l
] ' i = i il M\ m =
L1 & Wy 2.8 B
il _ 1f | gl B o
- ST e i E :
o : g s 2. 8
i _ wmu i _ M H_A ; mm _m
: ol =] Mai Bl
e A 0 R S o =t e TR
B] = J
8 S 4 B
[| B m
A1 nﬁnnui— 3 | |..\ |||||||||||||||||||||||||| 2
= I M s _ i 2
1 A 3 - bl 2 4 & =
114 g I N H : g
o o a 1} 8 I & =
g0 5o i g .
gl T L SR R R Al s g dglo b
i _ 3 W
8 =S ol g HERR:
& 91,7 ¢ : YA
7 R la . IERE
Slere | |58 g7 HER R
! | .2 _m o i 2.0 Ol¢| 8 &
; i3 8 2% HBER
3 al |5 2 _ : 5| = = § 288 .8
m i i Fn_x a m“ <
k- £l i -5 0 -1y h
8 E Eg B
g g £5 4
P £ 3
¥
&

Handle Alerts

As stated in the analysis phase, handling alerts are done in the Grafana. Thus creating alerts and
notifications channels are defined and configured in Grafana. The SD diagram for the Handle Alerts use
case presented in Figure 2 illustrates the program for handling alerts in Grafana. The admin user has
the administration role in the Grafana that creates and manages the alerts in the application. Alert
states are presented in the Alert list and Graph panel. The program defines and configures alert rules
and notifications for each air cylinder, VFD, and air pressure sensor in the graph panel. The alert rules
are then stored in the Rule Engine. After configuring the alert rules and email notification channel, the
program then gets real-time series data (LastData) in a loop every minute. The program is then getting
the configured alerting rules and a notification channel. The program evaluates the rules, in this case,
every 20s for executing the alert rules and conditions. If the LastData is less than the threshold value
for 10s, the retrieved data state will be set to the 'Ok’ alert state in the Alert list and Graph panel. While
if the retrieved data is above the threshold value for 10s, then the state will be set to a 'Pending' alert
state in the Alert list. If the value of the lastData is still above its threshold for the 20s, the state will
change to the 'Alerting' alert state in the Alert list Graph panel. The program sends a notification alert
via email. In addition, if lastData has the value of null or if an error occurs in the evaluation rules, the
lastData state to set to the 'Alerting' alert state in the Alert list.

|PDst e e | = Ale¢5| |Rule Engine| ‘ Timer | |w | ‘ Errai HAIert list & Graph panel |
: : <<reate>>
<<oréatess : 3 ‘ : |_|
; U <<crestes> |
: »
ConfigureAlertRules() : |__|

Air oylinder, VFD adn sensor data i
‘ — H ConfigurelotificationChannel()

L

loop Get LastData J : i]
y lastData := getData()

EgetC\nﬁgureAIertingRuIe() :

If the lstData for 10s
is obove the threshold value

GetConﬁgNotiﬁcationChanne\ .

EvaluatingRuleEve ri'[zﬂsj

seq Alert Rules & Conditions T

State := 0K state()
[if LastData'=< threshold value] i

[if LastData > threshold value] : : : : ;

E During the Pending state,

:|the program watts for 20 seconds. : : ;

:|If the Last value remains above the threshold, Sttt iRt e | State := Aldrting state()
:| the state changes to Alerting. H | H ;

Mo Data & Error handling & ___‘________,'.____;_____.IL_____,_____,__

[if LastData = Null or ff execution error] ! : : : State := .-\E_rting state()

‘WaitSampling Time({1m)

Figure 2: Handle Alerts Sequence Diagram (SD).

Maintain Configuration of Azure Cloud database server

The maintain configuration use case aims to maintain the configuration of the dashboards in Grafana
and the cloud-based database in Microsoft Azure Server for MySQL DB. The SD for Maintain
Configuration use case is divided into two SDs; Maintain Configuration for cloud-based DB and
Maintain Configuration within Grafana.

The configuration of the cloud-based database is performed through the Node-RED dashboard
included in the Azure CloudDB flow. As illustrated in Figure 3, the SD of Maintain Configuration for a
cloud-based database is shown. Upon powering up the Docker Containers, the maintain configuration
program included in the Node-RED container runs the Azure Cloud DB and Dashboard flow. The
dashboard can be accessed using the same URL as the Node-RED administrator but with the addition
of /ui. After entering the path of the url in a web browser, the Node-RED Ul interface appears on the
Registration page. For any configuration within the cloud database, a valid user name and password
must be entered. A user database table is included in the MySQL cloud database, where the user name
and hashed password are stored. The user database table contains admin and operator users, along
with their hashed passwords. After a user name and password (userlnput) have been entered, the
program is able to verify them in the user database table with the registered user. In the event that
the username or password is incorrect, a message will appear on the status page of the registration
page indicating "Error! Username or password is incorrect”. In the event that only the user name is
correct, but the password is incorrect, the program displays "Please try again!". Once both username
and password are correct, the program displays the status as "Login successful". Users with
administrator privileges have full control over the user interface and are able to modify the database
by creating, updating, or deleting packing machines, air cylinders, VFDs, and user tables, whereas an
operator user is only permitted to modify the packaging machine, air cylinder, VFD, and sensor tables.
In order to register a new user, the password must be repeated twice. If the repeated password is not
identical, the program displays the status "Password does not match!". The new user is provided with
Ul control by updating the Ul user control flow in the program. When updating a user's password both
the old and new passwords must be entered twice. In case the old password is incorrect, the program
displays "incorrect old password!" In case the repeated password is incorrect, the program displays
"new password does not match".

Power UP (Docker Confainer’ ‘ ‘ Maintain Configuration | |Dahata;e SettlngF
Start() i i .

i "]

Reqistration Page

Cloud DB (MySQL

Register{userinput)

; Input praram includes 3. .. P
] username and password : R s

login, the status wil be Please try againj_

are stored in the userdatabase tabl

Username and hashed password j
]

*ry userTable := Ver'rfyiJserInput(]

alt Check Parameters from Register inuut)

[If the user and password not valid]

[1f the user and password is valid] i

i adminAndOperator := userInput()

] Berypt node is used for encrypting Dasswurﬁ

The password must be repeated for new users.
If the password is incorrectly repeated,
the program displays "Password does not matcht!”|

Update the UT user cnntm____ ,,,,,,,,,,,,,,,
] for the new user.

If the old password is incorrect,

the program displays "Incorrect old password!”

If reapeated password is incorrect,
the program displays "new password does not match” 7

admin := usérInput(]

E status := Display|

S S N, RS R O [P S S IS PR PR S)

i status ;= Display(Login successful)

(Error! Username d:r password is Incorrect)

4

packagingMachineTable := AddNewPackagingMachirie()

airCylinerTable := AddNewAirCylinder()

-],

VfdTable := AddiewVFD()

¥

"'----sensor'i'ahle := AddMewSensor()

----.._userTable := AddNewlser()

¥

-t -] ol

r

- - willserCoptrol := UpdateUIControl()

r

packaglngMachlneTah'!e := DeleteOrUpdatePackagingMachina(}

-]

airCylinerTable::= DeleteOrUpdateAirCylinder()

¥

vfdTablé := DeleteOrUpdateVFD()

¥

sensorTabI'a := DeleteOrlpdateSensor() H

--userTzkble :?_DeleteOrUpdateUSer(]i

r

Figure 3: SD for Maintain Configuratin from Node-RED UL

Maintain Configuration within Garfana

Figure 4 illustrates the SD for Maintaining Configuration within the Grafana. When the Docker
Container gets powered up, the Grafana container runs. Grafana can be accessed using any web
browser as a client using the IP address followed by port 3000. The log-in page will appear, where a
user name and a password must be typed in. If the user name or password is not correct, the
registration page displays an incorrect password or user name, while if the correct user name and
password are typed in the Home dashboard, it will appear. Currently, two users are registered; admin,
operator, and guest. Both the admin has the admin role, and the operator has the editor role, while
the guest user has only the viewer role. When it comes to the application configuration within the
Grafana, the admin user can configure both users in the Admin Server and the rest of the application
dashboards, while the operator can only configure the content within the dashboards. Thus, if the user
name is an admin user, it can create, update and delete a user. If the user input is either admin or
operator, the application dashboard content such as adding, updating, and deleting a dashboard, air
cylinder, VFD, or pressure sensor. In addition, the sampling time range and auto-refresh screen time
for the dashboard and panel can be set as default for all dashboards and panel

‘ Powerlp (Docker Container) HMamm Configuration ‘ ‘ Log in Page (Web Client) | ‘ Server Admin ‘ 1Gmuh Stats & Gauge Panel ‘ |Dashhnard Hsmu Alert| ‘ Time

Start :

register(userInput)

seq; Check userInput parameters

[15the tfeor and pasword not vold]:_| Display(incorrect passwotd or username)

[1F the user and password. are valid

seq Checks the userlnput

[if User is admin and not operator = true]
serverAdmin := AfdHewlser()

serverAdmin = updateUserRole()

serverAdmin

eleteliser()

[If User is admin or operator = true]
dashboard := AddNewPackagingMachine()

dashboard := DeletePackagingMachine() Ll

The change or update for L _ time := changeSampling TimeRange()

time range and auto refresh screen time o
sets as default for all dashboards and panek. |

---- 4imd := changeAutoRefrashTime(
setupAlert {= addNewalert() U

setupAlert := DeleteAlert()
panels := addNewsensor() L

panels := deleteSensor()

panels := addNewVFD()

panels := deleteVFD() I

pahels := addNewAirCyinder()

panels := deleteAirCylinder()

Figure 4: SD for Maintain Configuratin from Grafana dashboards.

Appendix E: Packaging Machine dashboard screenshots
Login page

Once the Docker Container that includes the Grafana server is up and running, one can navigate the
Grafana application dashboards using the IP address to the Raspberry Pi followed by the 3000 port

number using any web browser. Figure 1 illustrates the login page in Grafana using the Chrome web
browser.

Welcome to Grafana

Figure 1: Login to Grafana Packaging Machine Application dashboards.

Dashboards

The packaging machine application consists of three dashboards; Home Dashboard, Packaging Machine
01 Dashboard (Test Celle), and Packaging Machine 02 Dashboard (Simulation Packaging Machine).

Home Dashboard

Once the user logs in successfully, the Home dashboard will appear, as Figure 2 illustrates the Home
dashboard. The Home dashboard aims to present and visualize information regarding alerts from the
packaging machine dashboards.

General / Home #

Dssnbords Time And Date
Application Packaging Machine .
30-04-2022
8

Home 8 . 10:24:19

Figure 2: Home Dashboard.
The dashboard has the following section for presenting information regarding alerts:

- Displays the application the dashboard's name in the text panel (1).

- The Grafana menu bar (2).

- Dashboard list (3).

- The last change table panelist. It shows the last change on the dashboards' alerts listed in
descending order by timestamp. As it can be seen in the figure, at this moment, A3/Air
Cylinder/Packaging machine 02 is in the alerting state with a 'breaking heart' Symbole, which is
followed by the pending state of the same cylinder (4).

- Display the 'Ok' alert list panel in descending order by timestamp that is symboled with a green
heart symbol (5).

- Present No data list panel. In case of some reason, no data are retrieved (6).

- Paused panel list shows the alerts that are paused. This functionality is useful, especially during
maintenance, where an alarm can be paused after maintenance (7).

- Executing error panelists present information during the rule engine evaluation error or
timeout errors (8).

- Alerting panelists will contain air cylinders, VFDs, or air pressure sensors in alerting state (9).

- Time and data (10).
- Screen refresh time (11)
- Time picker dropdown (12)

Packaging Machine 01 (Test Celle) Dashboard

Figure 3 shows the screenshot of the dashboard taken under testing the application in the Goodtech
department Moss. It displays the real-time data from pneumatic air cylinders, VFDs, and simulated air
pressure sensors that simulates the pressure level for central compressed air within the Test Celle
machine.

= ca rire o1 # o ,
22042022
Test Celle 09:38-29

Figure 3: Screenshot of the Packaging Machine 01 (Test Celle) taken under the testing of the applciation in Moss.

Figure 4 shows the actual photo of the machine taken during the testing of the application.

Figure 4: Test Celle machine.

Query real-time data

Once the data source for PostgreSQL is added to the dashboard, the real-time series data must be fetched
from the TimescaleDB database tables and visualized in panels. This is done using For SQL syntax query
as shown in Figure 5 shows the edit panel window for air cylinder A508. At the bottom of the figure is
where the SQL query is written for querying data from the PostgreSQL data source that queries the metrics
from the taghistory_te and taghistory_data within the theTimescaleDB. The air cylinders' data type is
defined as a real data type from PLC. Thus, the float data type is used within the application, and the
approximately operating life service for the air cylinder is set to be 10,000 km stroke distance. To visualize
the value to in percentage, the value is divided by 0,10, as can be seen in the query syntax. The tag path
Edge Nodes/Wizx/Wizx01/PMO02/A508 for the air cylinder is used that fetch metrics from the database.

& Packging Machine 02 / Edit Panel
[Fill

@ AS508 - Air Cylinder Life Service Trend

100.00%

80.00%

= Edge Nodes/WizX/Wizx01/PM02/AS508 89.00%

Last air cylinder /

value

6 Query 1

Datasource &} PostgreSQl Query option M Query inspector

R

Data source

SELECT
A.t_stamp AS “"time",
A.floatvalue/6.18@,

IN taghistory_data as A ON A.tagid = B.opc_nodeid SQL Query

Time series ~

Figure 5: Graph panel for A508 air cylinder shows the query tab window
that fetchs real-time data from data source.

Alerting Configuration on Graph panels

Figure 4 shows the alert configuration for the A508 air cylinder on the packaging machine 02. In the Alert
tab (1) of the graph panel for A508, alerts are configured by first giving a name to the alert rule (Rule
Engine) Name field (2) displayed in the Home dashboard. The second field (3) in the alert rule is Evaluate
every, which in this case is every 20s. This means that the Rule Engine should evaluate the alert rule every
20s. The following configuration field that must be defined is For (4). This means for how long the Rule

Engine should evaluate the rule for the query, which in this case is set to be 20sound. The following
configuration part that must be set up is the conditions of the alert (5). This condition specifies the
threshold for an alert. The threshold in the case of the A508 cylinder is the following; When the last value
of the query data from the cylinder is above the threshold (95 %) of its operating service life for 10 seconds
for the first time, then the alert state changes from the 'OK' to 'Pending' alert state in the Rule Engine.
Suppose the value is still above the threshold for 20 sounds. In that case, the alert changes to the 'Alerting'
state and triggers its notifications to the graph panel, alert list in the Home Dashboard, and the email
notification channel; Alerts from Grafana (8).

Furthermore, if there is a scenario where the query in the graph panel gets a NULL value or no data value
from the data source (PostgreSQL), an alert will arise on the graph panel and the Home dashboard.
Likewise, if an execution error or timeout occurs during the Rule Engine evaluation of the alert, an alert
will be generated (6) (7). The orange dashed vertical line on the graph panel illustrates the 'Pending' alert
state (9), while the red line presents the 'Alerting' alert state (10).

& Packging Machine 02 / Edit Panel

'Alerting’ ¢ asoe- e cynder e service e
alert state

1 (9) 'Pending’ /

o Nen alert starts

(10) 'Alerting' alert
satte starts

Figure 6: Alert configuration window for A508 air cylinder.

Figure 7 shows the configuration of notification channels implemented for the application.

Alerting

4 Notification channels

Edit notification channel

Name

Alerts from Grafana

Type

Email
Addresses

galalipeshawa77@gmail.com

Optional Email settings

¥ single email

Notification settings

Figure 7: Configuration of Email Notification channel.

Configuration of Organization and
User Authorization within dashboards

Figure 8 shows the Server Admin page, showing the created organization groups. The main organization
is owned by Goodtech, while the customer owns the Customer organization.

U Server Admin

v/
& Orgs

Edit organization
Name

Main Org

Update

Created under
testing the
application.

Organization users

Figure 8: Screenshot of the Server Admin page in Grafana shows the Mian Org. with created users (gjest, operator and admin)
and their roles. The test user was created durring the testing in Moss.

Figure 9 illustrates the main organization (Main Org.) and customer for packaging machine applications.

Server Admin

Name

Customer

Main Org

Figure 9: Main org. and Custumer organization created users and their roles.

Appendix F: Node-RED flows.
In Data flow implementation

Figure 1 shows the nodes used in a simulation of a packaging machine within In Data flow, demonstrating
nodes for a pressure sensor with the tag name P02, two VFDs with the tag names A3 and A4, and two air
cylinders with the tags A506 and A508, which use inject nodes to define tag names and trigger data every
minute. A random node simulates the pressure sensor, generating a value between 70.1 and 80.2 when
triggered by the trigger node. VFD inject nodes generate integer values from 0 to 30000 and 40000, which
simulate the running hours for VFDs. For cylinder simulation, the inject nodes (A506 and A508) simulate
float values between 0 and 10 km. This means that those two cylinders have a service life of 10 km. The
random node and inject node are connected to the sub-flow PM02 (Packaging Machine 02), where the
devices (P02, A3, A4, A506, and A508) are prepared and formatted before being sent to the MQTT broker.

Simulstion Packaging Machine

randam — - sparkplug
\ Fngz ; B connected Spatiplug -

Air Compressure Pressure Sensor

POz

VFDs Store gloabal vanabels
ATu
funcion

4w

filter function
Alr cyfindars

B50e et < ~~ fiter
Service life: 10 km stroke distance P function
A508 T
fitter
function

fiiter

funcfion

Figure 1: Simulatiuon Packaging machine 02 flow.

Sub-flow is then connected to the Sparkplug node using the MQTT client for the purposes of sending
metrics from devices associated with the timestamp of the MQTT broker. The link node transfers metrics
to the (admin) Wizxcore flow.

Data from the PLC and air pressure sensor simulator are simultaneously filtered, with changing data
passing only if it changes, and stored as global variables using function nodes. At this point, the data is
ready to be retrieved by Azure DB flow to be stored within the cloud database.

Figure 2 shows the implemented nodes for collecting data from the PLC and simulated air pressure sensor.
For reading data from PLC, the S7-comm node is used. The first step is to define the communication
between the PLC and Node-RED (S7-comm node). The S7-comm node uses the RFC 1006 communication
protocol to read and write data from the PLC. For this application, only the read node is used. To establish
the connection between the S7-comm node and the PLC, the IP address of the PLC and default port, which
is 102, must be typed in during the configuration of the S7-comm node. The next step is to define the tag
from the PLC (Test Celle machine) that must be read. The tag name for cylinders are A502 and A504 with

float data types, and the tag names for VFDs are Al and A2 with integers as the data types. The S7-comm
is connected to the switch node to switch the metric of the PLC to payload signal into the sub-flow (PLO1).

Within the sub-flow, they are prepared and formatted before being sent to the MQTT broker.

random <

funetion
function

function

function

function

Stare glosbal values

Figure 2: Node-RED flow for collecting data from the PLC, air pressure sensor simulator and sends to MQTT Broker and at the
same time stored a global variables.

At the same time, data from the PLC and air pressure sensor simulator are filtered with passing data only
if it changes and stored as global variables using function nodes. At this point are prepared to be retrieved

by Azure DB flow to be stored within the cloud database.

(admin) wizxcore flow

Figure 3 shows the three separated flows within the (admin) wizxcore flow. In the first flow, where the
OPC UA server asks for rebirth from all device metrics, and there is 7s a delay, the OPC UA server gets all
the device metrics. Once the OPC UA server has all the device metrics, in the second flow, the OPC UA
client scan the OPC UA server, and the wizxCore-Config-updater node updates the local database
(TimescaleDB). The third flow deletes all subscriptions for metrics that the OPC UA client has subscribed
to before and commands to subscribe to metrics that are history enabled. And then injects the database
with metrics history enabled using the WizxCore-inserter node.

Trigger birth of all devices

S0 £ 1 Lo | global.nodeBirth = true _L 7 global.nodeBirth = false J

b4 ==rebirth? >~ trigger 10s i delay 2s

=4 . (—
comment comment

‘,7 delay 55 O—
-0 —
comment
Scan OPC UA Server and update the database
= O Ve
O et R 5, Warcaeotossio (< oo — JERREUROREAIE]
= (@) sedbowse ;—/ = =3

= delefe_wbsawmnm/:\
/i‘i delete_subscription 7-# WizxCore-Subscriber (—— -’E
55 N\ _ e o—d iy

[I s ==

Figure 3: admin wizxcore flow.

Azure DB flow/Node-RED Dashboard
The Azure DB Flow/Node-RED dashboard is divided into the following sub-flows different subflow.

Figure 4 illustrates the flow that checks the connection with the Microsoft Azure cloud every minute. If

the database server is not running, a dialog on the screen will pop up with information, and, at the same
time, the color of the led will change from green to red. |

Ckecks the Azure connection / m
[s o — (L — /W
@ oK W (
catch: 1 l —_— false {
notification el filter

7" show dialog |__J

Figure 4: Flow that checks the connection with the database server in Azure.

Store data in the Azure for MySQL DB

Figure Sillustrates the flow of writing data to logdata tables within the packaging machine cloud database.
The inject node (sampling time) is used for triggering the function node every minute. Within the function
node, javaScript programming code is used for retrieving the global variables using global.Get() function.
Data are then stored in the log data table using SQL syntax script. The function node is connected to the
MySQL node (packgingmachineapp) where the connection with the database in the Azure cloud is created.

Store data values in the Azure for MySQL D8

f Write MySQL ID1 1
5 B C—

@ connected 7\ /
Write MySQL D2

@ connected

Figure 5: : Storing data in the cloud-based database for the application.

Node-RED dashboard flows

Figure 6 shows the flow for registering a user.

" Regatration 5 tunction »—m : f ir G Varisbie - 5 wsert —4—
&l 5 il § &l i il 9 L P
connected — Y 7 |
LIl \ a— a9
Lt T D
e w
= 0 funcon ¢
0 delay 3s A
(1= i

Figure 6: User registreation flow..

Figure 7 shows the flow that verifies the user name and hashed password with the database table.

e S

Verdying Logn

TGy %
R, e

1 togow ——— 7 Geealv ¢

Figure 7: User loging verfication

Figure 8 shows the flow for updating a user password.

Update password =
== P
s . s W) [oo
et 7 st (R i — (YRR s — [T s — (R ~—
E— e =N
———

T gparesans —)

Figure 8: Update user password.

Figure 9 shows the flow for controlling the Node-RED Ul for the admin and operator users

o —]
Ot =

Figure 9: Ul control flow.

Figure 10 illustrates the flow for database configuration

[msertquery
Adding new packging machine into the LySOL DB

[
GL-L‘%\
et

— Adding new ax ofinder info the MySQL DB
Clem o T b
Adsing new VFD ito the MySOL DB
_/-> insen{;
[hml [
[Agsing new sensor nto e MysaL DB |
F i sen 3
fem—
/
.—§ —§ e
}Cm G o §
-Fdew ©
J

Emmu G ot

/|
Sm—§a an" r‘,w
| Update querys VFD table.
— Lﬁ_

(

(] sy v IE_ 15
L = | Descrgton (5 Goat c —
EEEEN — ai.gw...,..u Ly, O
S Co— ekl sepuiis=s: iia waw—-w o
([oy j T Zt:mw;.w o’ | R
77 ovee {7 osere - | \‘\
| \\\ -+
| [-~ ";_\——gm et &
" L] Tl — o= ¢
! Update querys for Sensors e
] o s o ! T T - e
v) e e, e EEIE— T —— O B
i R = PR — pl— ﬁ%* oo s
 gramm— Wu—«@_ Gt T & s
R — e — O zL / mm i,
e sy Feedback forupaatequery — |7 T S
==
Figure 10: Node-RED flow application packging machine configuration

Appendix G: Test Case document

Test Cases
Testing of application functionalities of the application for packaging machine.
Login to Grafana
No. Test description Comment
1 Dose created users; admin, operator, and guest can log in? 0K
2 Create a new user with a password that will have an editor role. Olt
3 Test the guest user. Can you do anything within the dashboards except O l"<
view them?
Dashboard (Grafana)
No. Test description Comment
1 Does the Home tab in the Grafana Home page link to the application's
Home page? OK
2 By clicking the Packaging Machine 01, does it take to the Test Celle
dashboard? oK
3 By clicking the Packaging Machine 02, does it take to the simulation of a
packaging machine dashboard? 0 | (
4 Can the sampling time of the dashboards be changed to a different
sampling time? O ({
5 Does the navigation in the dashboards to the air cylinders, VFDs, and
sensors work? oK
6 Can you resize the stats panels and graph panels and move them? K
7 Can the alert rules condition be changed and work? O
Alerts in Dashboards
No. Test description Comment
1 Is the Home page's alert list synchronized with alerts from Packaging
Machine 01 and 027? 0 "\/
2 Does the alert appear on the graph panels in all dashboards? C K
3 Do the stat panels for air cylinders and VFDs change it cooler when
alerting? O k
4 Can the alert rules condition be changed and work? [#A(¢
5 Dose email notification works? Yes, the
notifications
appear in the
trach inbox.
Configuration of Cloud-based database using Node-RED Ul
No. Test description Comment
1 Login into the Node-RED Ul using admin and operator user. Does it work? 0K
2 Update the admin and operator passwords. Does it work? 0K
3 Does the refresh button updates the user table? O
4

Delete users. Does it work?

0K

s

FLog in with the operator user. Does the operator user has access to the

_O%

user table?
6 Type in wrong user or password, Dose the message Please try again! Pops 0
up on status of log in window? k
6 Add new packaging machine, air cylinder, VFD, and sensor. Dose the
tables in the database update with new information? . o L(
7 Update and delete the new infarmation you just added to the tables.
Does it work? — G |<
8 Check the above test cases with the MySQL Workbench tool to verify the
| changes in Azure. Does itwork? o K
9 Disconnect the Azure MySQL Server. Does the LED on the main page of
the Node-RED Ul gets red, and a notification windew pops up with a 0O l(_
message; Azure Cloud DB is disconnected?))
Monitoring live data using pgAdmin 4 and UaExpert software
No.] Testdescription Comment
1 Can the live data from the air cylinders, VFDs, and sensor be monitored |
_using the pgAdmin and UaExpert? .
Adding a new simulation packaging machine using Node-RED
No. Test description | Comment
1 Add a new simulated packaging machine within the Node-RED with one 4‘
air eylinder using inject node to simulate. Deploy the Node-RED flow with) f["
a new packaging machine. Does the program works
2 Create one graph panel with a new dashboard in the Guarana to visualize |
the data from the air cylinder. Save the dashboard. And refresh the "
dashboard screen. Can you see the trend of the air cylinder data within v "{
L the graph panel?
3 Create an alert rule for the air cylinder you just added with the following
settings in the Alert Config:
* Give the alert aname.

s Set evaluate every to 20s and for 20s.
+ Configure the query condition for the alert to when the last() last
value of query(A, 10s, now) is above 20.
s Apply the changes, save the dashboard, and refresh,
The change the value of the air cylinder in Node-RED to be above the
| limit value (e,g., 30} in the alert rule. Are you getting any alerts?

Appendix H: Screenshots from the Application PM during the testing.

Figure 1illustrates the Node-RED flow for Test Celle, and the new simulated packaging machine 03 (PMO03)
consists of a VFD (A5).

PLOGT

D 1 in.min A1
:
‘

timestamp L

]
]
]
&

i minut
ID 2 in secound
Cyfinder 1D

filar

As o
Figure 1: Node-RED flow for Test Celle machine and simulated Packaging Machine 03 (PMO03).

Figure 2 displays the SQL query in the graph panel created for A5, used for fetching real-time data from
the PostgreSQL data source.

Datasource @ PostgreSQL g ©) > Query options

SELECT
A.t_stamp AS “"time",
A_intvalue,
B.tagpath as metric

FROM taghistory_te as B
INNER JOIN taghistory_data as A ON A.tagid = B.opc_nodeid
WHERE
tagpath in('Edge Nodes/WizX/Wizx@1/PMB3/A5")
group by 1 B.tagpath
ORDER BY 1,2

Time series -~ Query Bu

Figure 2: SQL syntax query for fetching real time data from PostgreSQL data source for A5.

To test the alert on the created dashboard, an alert rule with the condition if the last value of A5 is above
20 for 20s seconds, an alert should arise. Figure 3 shows the time-series graph panel for A5 where an alert
has arisen.

88 General / Packaging Machine 03 ¢ «2

A3- Running Hour

Figure 3: A5 in Aletring alert state.

Figure 4 illustrates the Home dashboard where the alert on A5 has appeared in both the Last Change
and Alerting table.

Time &na Date

Application Packaging Machine *
22042022

Home 14:00:18

ackaging Machine 03

oA

“ ALERT LIST

N0 DATA

XECUTION ERROR ALETTING

Figure 4: Home dashbord illustatting A5 in alerting state.

Figure 5 illustrates the MySQL Workbench screenshot where the packaging machine (PM03) is added to
the packaging machine table within the cloud-based database.

userdatabase logdata packaging_machine cylinders userdatzbase packaging_machine

b == f ﬁ_f ﬁ OB @ € Limtto 1000rows ~ | 95 | & Q (1] (2

1e ISE!.ECT * FROM packagingmachineapp.packaging_machine;

L 4
| ResuitGrid | HH 4Y Fiter Rows: || edt: @) B B | eportfimpont: 5 & | Wrap Cel Conten
packagingMachine_Id packagingMachine_Tag description
r |1 PMO1 Test Celle
2 PMO2 Wraparound Compact
3 PMO3 Test
. [

Figure 6: Select SQL query for packaging machine table MySQL Workbench is used.

Figure 6 illustrates the VFD table where A5 is added to the table.

SQLFile 5 sensors packaging_machine userdatabase logdata cylinders m_
e ¥y¥yao0 s ,_.Lirﬂto1000mws'<,“64(l®@

1e FELECT * FROM packagingmachineapp.vfds;

<
| ResultGrid |] 4% mm:l:“m:é] Eb EL | export/import: B & | wrep Cell Content: T2
| vidId vfdTag Unit description packagingMachine_Id
> |1 Al Hr Name or location of the VFD 1
2 A2 Hr Name or location of the VFD 1
‘3 A3 Hr Servo motor 1 2
! AS Hr Test 3
.

Figure 5: Select SQL query for VFD table MySQL Workbech is used.

Figure 7 illustrates the Node-RED Ul when the operator user is logged in. From the figure, it can be seen
that only the registration and database setting tabs are available on the Ul.

Configuration of Azure Database for MySQL

BE Registration Login

B3 Database Settings Azure MySQL DB
ure My:

e}
Current logged in user

Login
Username -
Password *
LOGIN CANCEL
Status

LOGOUT

Figure 7: Node-RED Ul when operator user is logged in.

Figure 8 shows the Node-RED Ul when the admin user is logged in. All the tabs appear on the dashboard
when the admin user is logged in.

Configuration of Azure Database for MySQL

m Registration Login

BE Database Settings Azure MySQL DB
ure My

®
BE User Settings
Current logged in user @

Login

Username *

Password

LOGIN CANCEL

Status

LOGOUT

Figure 8: Node-RED Ul when the admin user is logged in

Figure 9 shows the screenshot of the User Settings page.

Configuration of Azure Database for MySQL

m Registration Update password Registration of new user

WY Database Settings

Status
BE User Settings
Current logged in user admin Status
Change password Registration
old password * Username *
new password " Password *
repeat new password - repeat password

UPDATE CANCEL REGISTER CANCEL

Figure 9: Node-RED Ul User Settings window.

Figure 10 shows the screenshot of the Database Settings page.

Configuration of Azure Database for MySQL
pdate/Delete V i

8§ Registration Add new VFD VFD Table
85 Database Settings
- l M] CEEIRN 0 Tag | Unit Description ‘ Packaging Machine Id
85 User Settings g 1AM H Name or location of the VFD 1
o
b 2 A2 Hr Name or location of the VFD 1
. unt
Unit Hr 3 A3 Hr Servo motor 1 2
Description Sgrmon 4 A5 Hr Test 3
Packaging Machine Id agiaang ez e
Add new Air Cylinder Update/Delete Air Cylinder Air Cylinder Table
» D EERERN D | Tag | Unit Description Packaging Machine Id
% 1 AS0Z km What s the function? 1
Air Cylinder Tag eg ;
2 AS4 km Function of the Air Cyfinder? 1
Unit Unit 3 A58 km Simulation Packaging machine 2
Description Description

P hi 2
ackaging Machine Id Packaging Machine Id

— o

Add new sensor Update/Delete Sensor Sensor Table

i [} S2REES 0 Tag | Unit Description Packaging Machine id
1 POl % Air pressure sensor 1

Tag Tag

- 2 P02 % Air pressure 2

Unit* Unit

Description Description

Packaging Machine Id*
rackaging Mectne X Packaging Machine Id

—

Figure 10: Database Settings Node-RED Ul page.

Figure 11 shows when the database server on the Azure is not running, the green led becomes red, and
a message window with Azure MySQL Connection is Disconnected pops up on the Ul.

... GEETTTTTE

Home >

= 2
@

Azure Database for MySQL single server

83 Registration
Database server not =
running! X "

1

§ Database Settings

[2 search cut+n a e (@ Delete O Restart AP Feedback B3 User Settings
& Overview o~ Essentials e
E Activity log Resource group (move)
8 Access control (IAM) Status : Stopped
Location : North Europe

@ Tags

& Diagnose and solve problems

Subscription (mave) Azure subscription 1

Subscription ID

Settings Server name
© Connecti i Server admin login name
MySQL version 180 Azure MySQL Connection

Performance configuration : Basic, 1 vCore(s), 20 GB

Disconnected

SSL enforce status : DISABLED
, - Mo
i
1l Properties Show data for last: (Mg 24 hours 7days | Aggregation type: | Avg Vv
a Resource utilization /@-
Locks

Figure 11: Notification on the Node-RED Ul that notifyes that the Azure MySQL Connection status is disconnected.

Figure 12 shows when the database server on Azure is running, and a notification appears on the Node-
RED Ul with Azure MySQL Connection connected.

e

Home >

a 2
Azure Database for MySQL single server

[2 search (ctrl+/) | «

& Overview -

W Activity log

fa Access control (IAM)

@ Tags

& Diagnose and solve problems

Settings

© Connection security
&> Connection strings
£ Server parameters
a4 Active Directory admin
 Pricing tier

{Il Properties

@ successfully started the MySQL server

Successfully started the server app-mysqldb

4 Resetpassword 'O Restore [i] Delete ' Restart &7 Feedback

AEssentials
Resource group (move)
Status

Location

Subscription (move)
Subscription 1D

Server name

Server admin login name
MysQL version
Performance configuration

SSL enforce status

Tags (edit)

Show data for last 24hours 7days)

Resource utilization

JSON View

: Available

North Europe

80
: Basic, 1 vCore(s), 20 GB
: DISABLED

™ More (1)

Aggregation type: | Avg v |

<

83 Registration
83 Database Settings

83 User Settings

Azure MySQL Connection

Connected

Figure 12: Notification on the Node-RED Ul that notifyes that the Azure MySQL Connection status is connected.

