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Summary:  

In today’s industrial landscape, the necessity and usefulness of computer systems are undeniable. 

And with the need for computer systems and computer controller machinery, the interest in 

optimizing the efficiency of the computer system itself is highly emphasized.  

This project is centered around testing and comparing the more popular forms of control, mainly 

process reaction curve methods. The objective of this thesis to present the reader with general 

information about the control process as well as presenting the theory behind processes. In 

addition, these forms of control should be tested on the random state-space models in order to 

view each controllers results and compare the controllers against each other. 

This testing was done through the usage of MATLAB using seven different controllers for 

comparison. These controllers included the Ziegler-Nichols open-loop method, “megatunerplain”, 

“megatuner”, and two versions of both the “pidstd”- and “pidtune” methods. “megatuner” and 

“megatunerplain” being created by Christer Dalen.  

With varying results from the different controllers, the Ziegler-Nichols open-loop method and the 

PID-version of the “pidstd” showed unstable and poor results. The PI -version of “pidstd” and 

“megatunerplain” showed overall stable results with “megatunerplain” being slightly better 

overall. “Pidtune” and “megatuner” returned high stable performance across the different 

sampling times and system orders. “Megatuner” was the only method to not experience a 

crash/unstable control across the project and its testing.  
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1 Introduction 
In today’s industrial landscape, the necessity and usefulness of computer systems are 

undeniable. And with the need for computer systems and computer-controlled machinery, the 

interest in optimizing the efficiency of the computer systems themselves are highly 

emphasized. The interest in an optimized process control may be based on several factors, such 

as minimizing the system cost, minimizing the strain on the system, maximizing the 

productivity of the system, etc. In order to increase the proficiency of the computer systems, 

the controllers must be tested and compared against each other in order to distinguish each 

controllers’ flaws and benefits. The original task description is attached in Appendix A.   

This project is centered around testing and comparing the more popular forms of control, 

mainly process reaction curve methods. The objective of this thesis is to present the reader with 

general information about process control, including tuning methods and examples, as well as 

presenting the theory behind processes and how a typical state-space process is described. In 

addition, these forms of control should be tested on the described state-space models in order 

to view each controllers results and compare the controllers against each other. This process is 

mainly done in the coding language MATLAB, which will be explained more thoroughly later 

in the thesis.  

Previously, a master thesis written by Preben Sandve Solvang in 2019 named “State Space 

Model Based PID Controller Tuning” [1] compared several different controllers and tuning 

methods, however, that project was mainly based on the tuning process itself and the effects of 

the different controllers’ parameters, whereas this project will be centered around testing the 

controllers. David Di Ruscio and Christer Dalen has also written several reports on a delta 

tuning method which builds upon Ziegler-Nichols original process reaction curve method and 

is to be compared in this project. [2] In addition to the delta tuning principle, a continuation of 

the method has been created in the form of a function named “megatuner” which is also 

included in this project. The MathWorks patented function “pidtune” has also been chosen as 

a fitting controller method with a separate interest in seeing a direct comparison between the 

“megatuner” and the “pidtune”. [3] 

 

Chapter 2 will go through the theory behind the different parts of the project, such as different 

controllers, tuning methods, and state space models 

Chapter 3 goes over the usage of MATLAB and its implementation of the theory, as well as 

the MATLAB-specific controllers used in the project 

Chapter 4 displays the results from the MATLAB codes, and the comparisons between the 

controllers 

Chapter 5 discusses the different problems and changes in the project which were experienced, 

as well as general thoughts around the project and suggestions for further work   

Chapter 6 concludes the thesis with a general summary of the project and its outcome 
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2 Theory 
Seeing as the project revolves around the efficiency of system control from different 

controllers, it is important to understand the different parts of system control. Based on the 

actions done in this project, explained further in Chapter 3, the “Theory” chapter will explain 

the theoretical basis for the different elements of testing, such as the different control methods, 

system conversions, and the foundation for the systems themselves.   

2.1 PID Controllers 

A PID controller is a process control system which utilizes a closed loop system in order to 

achieve stability, and reaching a given setpoint, in a process. Due to being a closed loop system, 

the controller uses feedback as a way to calculate the error between the setpoint and the actual 

value. The PID controller is separated into three different terms, the P-term, the I-term, and the 

D-term.   

The P-term denotes a proportional response on the error, usually described as 𝐾𝑝𝑒(𝑡), where 

𝐾𝑝 is the proportional constant and the 𝑒(𝑡) is the error at the given time. The I-term is based 

on integrating the error, thereby being responsible for the process to reach the given setpoint, 

by minimizing the error. This is usually described as 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
, where the 𝐾𝑖 is the integral 

gain and ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
 is the integral which is minimizing the error. The D-term is a derivative 

term which introduces a dampening effect. This term is usually described as 𝐾𝑑
d𝑒(𝑡)

d𝑡 
, where 

the 𝐾𝑑 is the derivative gain and the 
d𝑒(𝑡)

d𝑡
 is the derivative of the error, resulting in the 

dampening effect.  

The full mathematical equation for the PID controller is given below, in equation 2-1. An 

alternate version of the mathematical equation is given below as equation 2-2. The alternation 

replaces 𝐾𝑖 and 𝐾𝑑 with 
𝐾𝑝

𝑇𝑖
 and 

𝐾𝑝

𝑇𝑑
, respectively. This is often done to signify the relationship 

between the I-term, D-term, and time, rather than having separate numerical constants for each 

term.  

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡 
 

2-1 

𝑢(𝑡) = 𝐾𝑝 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏

𝑡

0

+
1

𝑇𝑑

d𝑒(𝑡)

d𝑡 
) 

2-2 

 

A PID controller is often shortened to a PI controller, i.e., removing the D-term. This is done 

seeing as a PI controller is often enough to control a process, while the D-term may be 

responsive to noise/disturbances in the process, thereby increasing the chance for instability. 

The mathematical model for a PI controller is displayed in equation 2-3. 

𝑢(𝑡) = 𝐾𝑝 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏

𝑡

0

) 

 

2-3 
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The PI- and PID controller may also be described in a discrete manner. A discrete formulation 

of a PID controller is given in equation 2-4, while a discrete formulation of a PI controller is 

given in equation 2-5. [4] 

 

𝑧𝑘+1 = 𝑧𝑘 + Δ𝑡
𝐾𝑝

𝑇𝑖
𝑒𝑘 

𝑢𝑘 = 𝑧𝑘 + 𝐾𝑝𝑒𝑘 − 𝐾𝑝𝑇𝑑

𝑦𝑘 − 𝑦𝑘−1

Δ𝑡
 

 

2-4 

𝑧𝑘+1 = 𝑧𝑘 + Δ𝑡
𝐾𝑝

𝑇𝑖
𝑒𝑘 

𝑢𝑘 = 𝑧𝑘 + 𝐾𝑝𝑒𝑘 

 

2-5 

 

2.1.1 Ziegler Nichols Tuning 

The Ziegler-Nichols (ZN) tuning method is a closed-loop tuning method for PID controllers, 

which also works for P- and PI controllers, in which the goal is to create oscillations in the 

process signal and calculating the resulting controller settings from the time and amplitude of 

the oscillation. The settings for the different controllers are given below, in Table 1. Upon 

achieving steady oscillation in the process signal, the amplitude of the oscillations is described 

as 𝐾𝑢 while the period of the oscillations is described as 𝑃𝑢. An ideal process control, with the 

ZN-method, should result in a quartering of the amplitude for each oscillation. 

 

Table 1: Settings for ZN tuning [5] 

 Kp Ti Td 

P controller 0.5𝐾𝑢 0 0 

PI controller 0.45𝐾𝑢 0.8𝑃𝑢  0 

PID controller 0.6𝐾𝑢 0.5𝑃𝑢 0.125𝑃𝑢  

 

2.1.2 Process Reaction Curve Tuning  

There is also an open-loop tuning method for controllers. This method is called the ZN open-

loop method, but it’s also referred to as a Process Reaction Curve (PRC) method, or the ZN 

PRC tuning method. Instead of relying on oscillation in a closed loop system, the process is 

introduced to a step increase, or decrease, in the signal, and the resulting reaction is used as the 

basis for the tuning.  

The step response results in three variables necessary to tune the process according to ZN PRC. 

These variables are 𝑅, 𝐿, and Δ𝑚. 𝑅 is the reaction rate and is defined in equation 2-6. This is 
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dictated by the tangential slope of the process reaction. Both Δ𝑡 and ΔPV is read at two chosen 

points on the tangential line in order to calculate 𝑅. 𝐿 is the dead time, or lag, of the process, 

in minutes. [5] Δ𝑚 is the magnitude of the step change and is often set to “1” to simplify the 

tuning process. The tuning settings for the different controllers are displayed in Table 2.  

 

𝑅 =
Δ𝑃𝑉

Δ𝑡
=

[𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒]

[𝑀𝑖𝑛𝑢𝑡𝑒𝑠 𝑟𝑢𝑛]
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Table 2: Setting for ZN PRC Tuning [5] 

 Kp Ti Td 

P controller Δ𝑚

𝑅𝐿
  

0 0 

PI controller 
0.9

Δ𝑚

𝑅𝐿
 

3.3𝐿 0 

PID controller 
1.2

Δ𝑚

𝑅𝐿
 

2𝐿 0.5𝐿 

 

A graphical display of the PRC method, based on the different values and variables, is shown 

below in Figure 2-1. This figure shows a step increase of 15%, and the resulting response, with 

the different variables displayed.  

 

 

Figure 2-1: Graphical display of PRC method [6] 
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2.1.3 Delta Tuning 

Through several articles, written by Christer Dalen and David Di Ruscio, tuning rules for delta 

tuning, 𝛿-tuning, have been presented.  

The first report from Di Ruscio [7] introduces the concept with a PI controller and expands 

upon the concept to include double integrated time delay as well as a PD- and PID controllers 

[8]. The final two reports are based on implementing the 𝛿-tuning method with a PRC 

approach. This PRC approach is firstly done as a PID controller [9], then expanded to include 

a PI controller as well as testing for higher order systems [10].  

The first report results in 𝛿-tuning based on a ratio between the maximum time delay error and 

the time delay, given as 𝛿 =
𝑑𝜏𝑚𝑎𝑥

𝜏
, and a product parameter, given as 𝑐̅ = 𝛼𝛽. The 𝛼 and 𝛽 is 

further described as 𝛼 =
𝑎

𝛿+1
 and 𝛽 =

𝑐̅

𝑎
(𝛿 + 1), where 𝑎 is a constant in 𝑐̅̅. The resulting PI 

controller parameters are given as 𝐾𝑝 =
𝛼

𝑘𝜏
 and 𝑇𝑖 = 𝛽𝜏. 

The second report expands upon the previous work to include the derivative term. This term is 

given as 𝑇𝑑 = 𝛽𝜏 whereas the integral term has been changed to 𝑇𝑖 = γβ, where 𝛾 is defined 

as a relative integral derivative time ratio, and the proportional term is changed to 𝐾𝑝 =
𝛼

𝐾𝜏𝑇𝑑
. 

These findings result in a final PID controller describes as in equation 2-7.  

 

𝐾𝑝 =
𝛼

𝐾𝜏𝑇𝑑
  

𝑇𝑖 = 𝛾𝑇𝑑 

𝑇𝑑 = 𝛽𝜏 

𝛼 =
𝑎

𝛿 + 1
, 𝛽 =

𝑐

𝑎

̅
(𝛿 + 1) 
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The final two reports revolve around a PRC method for the 𝛿-tuning method, first proposed in 

Dalen and Ruscios report from 2018 [2]. This PRC method introduces the variable 𝐾, defined 

as 𝐾 =
𝑅

𝐿
 and is the gain acceleration, and defines the time delay as 𝜏 =

𝐿

2𝜋
. This is later 

expanded upon resulting in equation 2-8. While 𝜁 is defined between 0 and 10, the chosen 

values are either 1 or 6.  𝜁 = 1 is based on the original formulation, while 𝜁 = 6 is an alternative 

for processes with time delay approximately equal the system order, for 𝑛 > 3.  

 

𝐾 = ζ
R

L
 , 0 < 𝜁 ≤ 10 

𝜏 = 𝜂𝐿, 𝜂 =
1

2𝜋
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2.2 State-Space Models 

State-space models are models, based on differential equations, which represents a system. A 

state-space model consists only of 1st order differential equations, and the order of the system 

dictates the number of differential equations. These systems may be both linear and non-linear, 

as well as having a varying number of inputs, outputs, as well as states. The “states” refers to 

the innate variables of the system, which itself is unrelated to any measurement or physical 

quantity [11]. The number of inputs and outputs would also reflect whether the system is a 

Multiple-Input and Multiple-Output (MIMO), Single-Input and Single-Output (SISO), or a 

combination of the two. This project is centered around SISO-systems.  

2.2.1 Formulation of a State-Space Model 

This subchapter includes a formulation of a state-space model, and this formulation is based 

on Bernard Friedland’s formulation [11]. A state-space model consists of states, and the state-

equations, 𝑥, for a state-space model may be formulated as in equation 2-9, below. This 

description is done based on a k-order state-space model.  

 

𝑥1̇ =
𝑑𝑥1

𝑑𝑡
= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑢1, 𝑢2, … , 𝑢𝑙 , 𝑡) 

𝑥2̇ =
𝑑𝑥2

𝑑𝑡
= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘, 𝑢1, 𝑢2, … , 𝑢𝑙 , 𝑡) 

⋮ 

𝑥𝑘̇ =
𝑑𝑥𝑘

𝑑𝑡
= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘, 𝑢1, 𝑢2, … , 𝑢𝑙 , 𝑡) 
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In addition, a description of two separate vector, encapsulating the different 𝑥- and 𝑢-values, 

are displayed below, in equation 2-10. The resulting equation, based on the equations displayed 

above, is given in equation 2-11.  

 

𝑥 = [

𝑥1

⋮
𝑥𝑘

] , 𝑢 = [

𝑢1

⋮
𝑢𝑙

] 
 

2-10 

𝑥̇ =
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢, 𝑡) 

 

2-11 

 

The above formulation for 𝑥 is a time-variant system and may be converted into a time-

invariant system. This conversion is based on separating the coefficients of the input signal and 

the states in separate matrices, often named A and B.  

The output formulation, 𝑦, is similar to the input formulation, 𝑥, with a difference in the 

coefficient matrices, where the matrices is often named C and D. In addition, the D-matrix, the 
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coefficient matrix for the control signal in the output, is usually set to zero for control purposes 

to remove a direct connection between control signal, 𝑢, and the output, 𝑦. The continuous 

formulation for a state-space model, which includes both the input and output formulations, is 

given in equation 2-12, with the structure of the A- and B-matrices given in equation 2-13. In 

this formulation, each matrix is given a lowercase 𝑐 to signify that the matrices are for a 

continuous system.  

 

𝑥̇ = 𝐴𝑐𝑥 + 𝐵𝑐𝑢 

𝑦 = 𝐶𝑐𝑥 

 

2-12 

𝐴 = [

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑘

𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑘

⋮ ⋮ ⋱ ⋮
𝑎𝑘,1 𝑎𝑘,2 ⋯ 𝑎𝑘,𝑘

] , 𝐵 =

[
 
 
 
𝑏1,1 𝑏1,2 ⋯ 𝑏1,𝑙

𝑏2,1 𝑏2,2 ⋯ 𝑏2,𝑙

⋮ ⋮ ⋱ ⋮
𝑏𝑘,1 𝑏𝑘,2 ⋯ 𝑏𝑘,𝑙]

 
 
 
 

 

2-13 

 

 

A discrete formulation of the above system is given below in equation 2-14. Here, the matrices 

are given a lowercase 𝑑 to signify that the system is discrete. It is important to note that 𝐴𝑐 ≠
𝐴𝑑, which also goes for the other matrices.  

 

𝑥𝑘̇ = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘 

𝑦𝑘 = 𝐶𝑑𝑥𝑘 

 

2-14 

 

From the previously given formulas for a state-space model, a graphical representation may be 

given as in Figure 2-2. Here, the input vector, 𝑢, is multiplied with its coefficient matrix, 𝐵, 

and summed with the state vector, 𝑥, and its coefficient matrix, 𝐴. Then the term is integrated, 

resulting in the state vector for the next step, given as in equations 2-12 and 2-14. This state 

vector is then multiplied with the next coefficient matrix, 𝐶, resulting in the output vector, 𝑦. 

 

 

Figure 2-2: Block diagram of a state-space model 
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2.2.2 Transfer Functions 

In order to create PID controller based on state-space models, the models must be converted 

into a transfer function. The conversion is done through Laplace, and the model is then 

transferred into what is known as the “s-plane”. The transfer function is based on the systems 

impulse response, i.e., the correlation between the control signal, 𝑢, and the output, 𝑦. This 

correlation is described as in equation 2-15, below. 

 

𝐻𝑝(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
 

2-15 

 

From the continuous state-space model, displayed in equation 2-12, and the above equation, 

the model may now be Laplace transformed into the model shown below.  

 

𝑠𝑋(𝑠) = 𝐴𝑋(𝑠) + 𝐵𝑈(𝑠) 

𝑌 = 𝐶𝑋(𝑠) 

 

Seeing as the transfer function is based on 
𝑌(𝑠)

𝑈(𝑠)
, the 𝑋(𝑠) must be replaced in the function for 

𝑌(𝑠). This may be done according to the below formulation. 

 

𝑠𝑋(𝑠) − 𝐴𝑋(𝑠) = 𝐵𝑈(𝑠) 

(𝑠𝐼 − 𝐴)𝑋(𝑠) = 𝐵𝑈(𝑠) 

𝑋(𝑠) = (𝑠𝐼 − 𝐴)−1𝐵𝑈(𝑠) 

𝑌 = 𝐶(𝑠𝐼 − 𝐴)−1𝐵𝑈(𝑠) 

 

From the above formulation, a new equation for 𝑌(𝑠) is given, and when this function is divided 

by 𝑈(𝑠), according to the aforementioned equation 2-15, the resulting transfer function is then 

described as in equation 2-16.  

 

𝐻𝑝(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 

 

2-16 

 

As an addition to the above transfer function, the model may be multiplied with 𝑒−𝜏𝑠 to add a 

time delay.  An example of this is given below, in equation 2-17. 

 

𝐻𝑝(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
= 𝑒−𝜏𝑠(𝐶(𝑠𝐼 − 𝐴)−1𝐵) 

 

2-17 



 

 

16 

 

2.3 Numerical Comparisons 

There are several different factors which may have an effect on the outcome of the controllers. 

Different factor may also have different effects on each controller based on how the controller 

operates. In addition, seeing as most testing will be based on several runs and having the 

resulting average, tests such as standard deviation would be inefficient seeing as the system 

itself changes from iteration to iteration, unless the standard deviation is done on relative results 

rather than numerical results.  

This project will compare the performance of the different controllers based on the results from 

testing the controllers on random systems. This may include results like the speed of the 

controllers, possible overshoot from the controllers, and possible crashes of the controllers.   

There are also parameters for the systems which may affect the results from the controllers. 

These includes parameters such as the order of the system, the timestep/sampling time of the 

controller, possible time delays in the system, etc.  

In addition, the Integral Absolute Error (IAE) should be calculated in order to have a general 

understanding of the error of all controllers across the several systems. The formula for the IAE 

is given in equation 2-18. The 𝑟(𝑡) is the reference/setpoint at the timestep while the 𝑦(𝑡) is 

the system output at the timestep. A relative IAE should also be added by having the relative 

error in a time independent percentage, thereby giving grounds for utilizing standard deviation 

seeing as a fraction returns a more stable result regardless of the particular system used.  

 

𝐼𝐴𝐸 = ∫|𝑒(𝑡)|𝑑𝑡 = ∫|𝑟(𝑡) − 𝑦(𝑡)|𝑑𝑡 

 

2-18 
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3 MATLAB 
The main workload of this master’s thesis lies in the usage of MATLAB. MATLAB is a 

programming software, with a self-named programming language, owned, and created, by 

MathWorks. The programming language is centered around matrices, thereby the name 

MATLAB which is short for “Matrix laboratory”, and has a focus on simulation, mathematics, 

and manipulation of data. This focus allows for more compact programs without the need for 

unnecessary startup or configuration code. Seeing as the project revolves around controllers, 

for which MATLAB has several built-in functions, and their respective data, MATLAB is 

being utilized to create programs to manipulate this data, such as standard deviations, means, 

graphs, and other form of comparisons between the controllers.  

In addition to the standard MATLAB, a separate package, also created by MathWorks, has 

been added in order to support several of the necessary processes in this project. This package 

is named “Control System Toolbox” and adds functionality to MATLAB in terms of transfer 

functions, state-space models, and frequency analysis, as well as adding functionality for tuning 

SISO- and MIMO systems.  

3.1 State-Space Models 

As stated in the project goal, the controllers are to be compared based on their efficiency with 

random state-space models. Seeing as most models are discrete based on a set of sampled data, 

the general idea is to create a discrete system, which is then converted to a continuous system, 

reflecting most of industrial situations. These state space-models may be created through 

several different functions. The functions used in this project are the “drss” function, which 

stands for “Discrete random state space models”, and the “rss” function, meaning “Random 

state space models” and creates continuous models.  

The ”drss” function creates a random discrete state space model but may also involve non-

physical systems where one, or more, of the eigenvalues of the A-matrix is negative, which is 

impossible in a physical process. To circumvent this, the “rss” function has been used in order 

to create continuous systems, which are then converted into a discrete system, which in turn 

always results in a physical process due to the nature of the conversion between continuous to 

discrete instead of discrete to continuous.  

The relationship between a continuous system and a discrete system, as well as a more detailed 

formulation of the discrete system matrix, is shown in equation 3-1. This formulation of a 

discrete system shows that the 𝐴𝑑-matrix is formulated through the exponential 𝑒𝐴𝑐Δ𝑡, and 

seeing as the result of an exponential must be positive, the 𝐴𝑑-matrix may never be negative. 

This matrix may be randomly assigned a negative value through the “drss” function, resulting 

in the ensuing problems when converting to a continuous system.  

 

𝑥̇ = 𝐴𝑐𝑥 

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 

𝐴𝑑 = 𝑒𝐴𝑐Δ𝑡 

 

3-1 
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The “drss” function utilizes three parameters which determines the order, number of inputs, 

and number of outputs of the system, with input and output set to “1” as default creating a SISO 

system. This state space model is then created as four matrices, A, B, C, and D, with D being 

set to zero.  

The discrete state space model is then converted to a continuous state space model through the 

use of the function “d2c”, meaning “Discrete to continuous”. The conversion may be done 

through several different methods, but the project mainly revolved around the “zoh”-, zero 

order hold, and the “tustin” method. For the continuous systems, created through “rss”, the 

method “c2d”, meaning “Continuous to discrete”, is used to convert the system into a physical 

discrete system and then the aforementioned “d2c” is used.  

The “zoh” method creates continuous time inputs by holding the sampled values constant over 

the sampled times. The two limitations for this method are the inability to convert systems with 

poles at 𝑧 = 0, and when converting systems with negative poles, the order is increased in order 

to create pole conjugates which avoids imaginary values. [12] 

The “tustin” method is a trapezoidal conversion method, i.e., a “standard” integration-based 

conversion. This method is time-invariable and does therefore not affect the order of the system 

when converting the system. A limitation wo the “tustin” conversion is the inability to convert 

when a pole is 𝑧 = −1, and is general ill-conditioned when nearing poles at 𝑧 = −1. [12] 

The continuous state space model is then turned into a transfer function. This conversion is 

done with the “ss2tf” function, with the continuous matrices as parameters. This function 

converts continuous state space model, which is the reasoning behind the previously conversion 

from discrete. After the creation of the transfer function, the transfer function is multiplied with 

𝑒−𝜏𝑠, which acts as a time delay in the system.  

3.1.1 Physical System Example 

Based on the aforementioned code and functions in MATLAB, an example of the creation and 

conversion process of a physical system is to be displayed. Through the use of the “rss” 

function and the “c2d” function, the randomly created continuous system is displayed in 

equation 3-2, with the resulting discrete system displayed in equation 3-3. This particular 

system is a 1st order system. 

 

𝑥̇ = −2.152𝑥 − 1.161𝑢 

𝑦 =  2.377𝑥 

 

 

3-2 

𝑥𝑘+1 = 0.1162𝑥𝑘 − 0.4765𝑢𝑘 

𝑦𝑘 =  2.377𝑥𝑘 

 

3-3 

 

This conversion is done with the “zoh” method. However, since the continuous system may 

have poles approximating, or equal, zero, the code has a simple check of the system poles and 

utilizes the “tustin” method if there are poles approximating zero. As mentioned in chapter 

2.2.1, the D-matrix is set to zero, resulting in an output formula only consisting of the C-matrix, 
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which is then unchanged between the conversions. Finally, a transfer function was created 

using the “ss2tf” function and was multiplied with the 𝑒−𝜏𝑠, where 𝜏 = 0.1. The results from 

these executions are displayed in equation  3-4.  

 

ℎ𝑝 = 𝑒−0.1𝑠
−2.759

𝑠 + 2.152
  

 

3-4 

 

3.1.2 Non-Physical System Example 

From the previously mentioned differences between converting a continuous system into a 

discrete system and creating a discrete system directly from “drss”, an example is depicted 

through the use of both the “zoh”- and “tustin” method in order to exemplify these differences. 

Equation 3-5, below, depicts a randomly created state-space model using the “drss” function, 

which is a non-physical system seeing as the eigenvalues of the A-matrix, the singular value 

seeing av the 𝐴-matrix is a 1𝑥1-matrix in this example, is negative. In addition, the “ddcgain” 

function, specifically for discrete systems, was used for computing the system gain. This 

particular system is a 1st order system.  

 

𝑥𝑘+1 = −0.346𝑥𝑘 + 0.1719𝑢𝑘 

𝑦𝑘 = −0.04747𝑥𝑘 

𝐺𝑎𝑖𝑛 =  −0.0061 

 

3-5 

 

Firstly, the steady-state system was converted into a continuous system using the “d2c” 

function with the “tustin” method. The system gain was computed using the “dcgain”. Finally, 

a transfer function was created using the “ss2tf” function and was multiplied with the 𝑒−𝜏𝑠, 

where 𝜏 = 0.1. The results from these executions are displayed in  Table 3.  

 

Table 3: Result from state-space model conversion using "tustin" 

𝑥̇ = −4.116𝑥1 + 0.5257𝑢1 

𝑦 =  −0.1452𝑥1 + 0.01248𝑢1 

𝐺𝑎𝑖𝑛 =  −0.0185 

ℎ𝑝 = 𝑒−0.1𝑠
0.01248𝑠 − 0.02496

𝑠 + 4.116
  

 

Secondly, the steady-state system was converted into a continuous system using the “d2c” 

function with the “zoh” method. The system gain was computed using the “dcgain”. Finally, a 
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transfer function was created using the “ss2tf” function and was multiplied with the 𝑒−𝜏𝑠, where 

𝜏 = 0.1. The results from these executions are displayed in  Table 4.  

 

Table 4: Results from state-space model conversion using "zoh" 

𝑥̇ = [
−1.061 3.142
−3.142 −1.061

] [
𝑥1

𝑥2
] + [

0.1356
0.4013

] 𝑢1 

𝑦 = [−0.04747 0] [
𝑥1

𝑥2
] 

𝐺𝑎𝑖𝑛 =  −0.0061 

ℎ𝑝 = 𝑒−0.1𝑠
−0.006437𝑠 − 0.06668

𝑠2 + 2.123𝑠 + 11
 

 

The main differences between the approaches are visible in both the order of the continuous 

system, which is also reflected in the order of the transfer function, but also the gain of the 

system. The “tustin” method keeps the order of the system, but has a different gain, while the 

“zoh” method changes the order and keeps the same system gain. The order of the system is 

changed with the “zoh” method in order to have a continuous system with only positive 

eigenvalues for the A-matrix.  

From Table 4, it is seen that the order of the matrix has increased. This is due to the negative 

A-matrix, more specifically the negative eigenvalue, in the discrete system, resulting in the 

creation of a conjugate pair in the continuous system in order to avoid negative eigenvalues. 

This conjugate pair is reflected in the identical values of the new matrix, with possible opposite 

signs, in order to create positive eigenvalues. Table 5, below, shows another example of the 

conjugate pair creation from the “zoh” conversion method. The discrete system, created from 

“drss”, is a 3rd order system. Seeing as the 𝐴-matrix, for the discrete system, is 3𝑥3, there are 

three eigenvalues, given in the 𝜆-matrix. Seeing ass all three eigenvalues are negative, three 

conjugate pairs are created, resulting in a 6th order continuous system. If just one or two of the 

eigenvalues were negative, the resulting continuous system would be of 4th or 5th order, 

respectively. The conjugate pairs are also reflected in the similar values along the diagonals of 

the A-matrix. The values given as ≈ 0 is written seeing as MATLAB returned values as low 

as e-17, resulting in different values between the pairs due to being close to zero.  

 

Table 5: Conjugate pair example with higher order system 

 

𝑥𝑘+1 = [
−0.1721 0.004845 0.2187
0.004845 −0.08567 −0.1096
0.2187 −0.1096 −0.4978

] [
𝑥1

𝑥2
𝑥3

] + [
1.533

0
0

] 𝑢1 

𝑦𝑘 = [−0.2256 1.117 −1.089] [
𝑥1

𝑥2
𝑥3

] 
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𝜆 = [
−0.6263
−0.1088
−0.0205

] 

− − − 

𝑥̇ =

[
 
 
 
 
 
−2.494 0.5388 −1.091 1.345 −2.13 1.877
0.5388 −2.926 0.7697 −0.5758 −2.238 −2.128
−1.091 0.7697 −1.155 −2.78 −0.5669 −1.349
−1.345 0.5758 2.78 −0.468 ≈ 0 ≈ 0
2.13 2.238 0.5669 ≈ 0 −2.218 ≈ 0

−1.877 2.128 −1.349 ≈ 0 ≈ 0 −3.889]
 
 
 
 
 

[
 
 
 
 
 
𝑥1

𝑥2
𝑥3

𝑥4
𝑥5

𝑥6]
 
 
 
 
 

+

[
 
 
 
 
 

3.575
−0.9169
1.706
1.267

−2.945
2.819 ]

 
 
 
 
 

𝑢1 

𝑦 = [−0.2256 1.117 −1.089 0 0 0] 

[
 
 
 
 
 
𝑥1

𝑥2
𝑥3

𝑥4
𝑥5

𝑥6]
 
 
 
 
 

 

 

3.2 Controllers 

Through the usage of MATLAB, several different controllers have been utilized. These 

controllers include a ZN PRC controller, described in chapter 2.1.2, the PI- and PID-versions 

of the “pidstd”, PI- and PID-versions of the “pidtune”, as well as two functions, created by 

Christer Dalen, named “megatuner” and “megatunerplain”.  

3.2.1 Pidstd 

“Pidstd” is the original standard PID controller for systems in MATLAB and is primarily used 

as a controller with parameter inputs. The “pidstd” function allows for creation of  PID 

controllers, as well as P- and PI controllers, and allows for adding a filter constant. The function 

also allows the user to add a sample time, which in turn results in a discrete controller, rather 

than a continuous controller which is normally returned. The function has capabilities of 

converting a discrete dynamic system, which must represent a PID controller, into a standard 

PID controller formulation, in accordance with equation 2-2. [13] 

Since the function itself has no capability of auto-tuning a given process, an additional tuning 

function must be used in order to give “pidstd” the necessary parameters to successfully control 

a process. Seeing as the main focus of this project is the PRC method of tuning, the “pidstd” 

function is used in combination with a function created by Christer Dalen in order to calculate 

the relevant 𝐾𝑝, 𝑇𝑖, and 𝑇𝑑 and use these values as parameters for the PID controller. These 

methods were the “delta_prc_pi_tun” function for the PI controller, and the 

“delta_prc_pid_tun1” function for the PID controller. Both functions are a result from the 

aforementioned reports from Dalen and Di Ruscio, mentioned in chapter 2.1.3.  
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3.2.2 Pidtune 

“Pidtune” is a MATLAB function, created and patented by MathWorks. The function is a 

proprietary function which is used to create P-, PI-, or PID controllers tuned for the given 

system. The “pidtune” function allows for discrete and continuous system, as well as unstable 

and stable systems, and varying time delays. However, the system must be a SISO system. The 

function allows for an array of SISO systems, and thereby returns a similar array of controllers. 

The function also requires a “type” which determines the returned controller. This may be the 

various versions of PID controllers or 2-degrees of freedom (DOF) PID controllers, with or 

without a filter. The function also allows a weighing matrix and some customizable options. 

[3] 

There is also a function, created by MathWorks, named “pidTuner” which is an interactive PID 

controller for tuning systems, utilizing the “pidtune”,  and is used through a separate application 

page. In this application, several different parameters may be customized, such as frequency or 

time domain, parallel or standard controller, as well as response time and transient behavior. 

[14] A system may be imported, and a display shows a graph of the control of the system, and 

how the different parameters affect the control. A picture of the “pidTuner” application is 

displayed in Figure 3-1.  

 

 

Figure 3-1: A picture of the "pidTuner" application 

 

Seeing as the function is patented, the source code is unavailable. However, the patent itself, 

which may be found, depicts the general process of the function. This depiction, which is a 

flowchart, is displayed in Figure 3-2. It is also presented in the patent that the flowcharts, and 

other graphic documentation, are not universally relevant for all tuning of all systems, but that 

the general process is described through this documentation. Some of the earlier stages of the 

flowchart, in this case the linearization and system identification, may be skipped based on the 

given system. [15]  



 

 

23 

 

Figure 3-2: The function flowchart from the PIDTune patent [15] 

 

3.2.3 Megatuner 

Several different MATLAB functions has previously been created in order to perform the 

different versions of 𝛿-tuning and PRC 𝛿- tuning. From the Di Ruscio and Dalen documents 

[7] - [10], some of these methods include the documented “pi_tun_maxdelay”, 

“pd_tun_maxdelay”, delta_prc_pi_tun”, and “delta_prc_pid_tun1”. These methods are all 

based on in theory behind 𝛿-tuning, and as an undocumented, and unpublicized, continuation 

to this work, Christer Dalen has created another two functions, named “mftun” and 

“megatuner”.  

The ”mftun” function is not used in this particular process, however, a master’s thesis named 

“State Space Model Based PID Controller Tuning”, written by Preben Sandva Solvang, 

explains and tests the “mftun” function in comparison  with several other functions based on 

the 𝛿-tuning method, as well as standard tuning methods. [1] 

“Megatuner” is aptly named after its successful tuning of a million, mega, state-space models. 

The “megatuner” builds upon the “mftun” function, and as an extension the 𝛿-tuning principles, 

in an attempt to tune random steady-state systems with a focus on robustness and performance. 

Performance is referring to the accuracy of the controller, while robustness refers to the 

controllers ability to function and remain stable despite uncertainty in the different parameters.  
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The “mftun” utilizes either the 𝛿-PRC method or the general PRC method based on the 

eigenvalues. The “megatuner” expands upon this with a frequency analysis in order to create a 

controller with higher performance and robustness. A frequency analysis is based upon a 

varying input signal, which is the frequency analysis is a sinusoidal signal, in order to test the 

correlation between the system input and system output at steady state with a varying signal. 

[4] The input- and output signals are described in equations 3-6 and 3-7, where 𝑢0 and 𝑦0 are 

the signals, 𝛼 and 𝛽 are the phase shifts, and 𝜔 is the frequency of the sinusoidal signal.  

 

𝑢(𝑡) = 𝑢0sin (𝜔𝑡 + 𝛼) 3-6 

𝑦(𝑡) = 𝑦0sin (𝜔𝑡 + 𝛽) 3-7 

 

The sinusoidal input- and output signals are then used to calculate the phase margin (PM) and 

the gain margin (GM), which in turn is the basis for the system analysis in terms of stability.  

The equations for the GM and PM are given in equations 3-8 and 3-9.  

 

𝐺𝑀 =
1

|𝐻0(𝑗𝜔180)|
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𝑃𝑀 = ∠𝐻0(𝑗𝜔𝑐) + 180° 3-9 

 

In addition to the “megatuner” function, Dalen has also created a simplified function named 

“megatunerplain”. This function operates on the same basis as “megatuner” including both 𝛿-

tuning and frequency analysis, however the “megatunerplain” forgoes some of the more 

specificities of the “megatuner”, such as additional checks for optimal performance and 

stability. While the “megatunerplain” is a simplified version of the “megatuner”, the function 

has been tested together with the “megatuner”, and other controllers, in order to compare its 

results with the rest of the controllers.  

3.3 Testing 

In order to test the several controllers against each other, a MATLAB script had to be made in 

order to run each controller based on a randomly created state space model. A script named 

“demo” was supplied from the supervisor in which a random state space model was created, 

converted into a transfer function with a time delay of 𝑒−𝜏𝑠, and then gave the user to option to 

insert a number in order to choose which controller to run. The controllers included in this 

script was the ZN PRC-tuning method, both the PI- and PID-versions of the “pidstd” function, 

the “megatunerplain”, and the “megatuner”. The script would then print three figures. The first 

figure was the open loop step response, the second figure depicted the reference step response, 

and the third figure showed the input disturbance step response.  

This script was expanded upon to automatically run all five controllers and print the resulting 

15 graphs in a 5x3 plot array where each row represented a controller. In addition to the figures, 

the script also prints the IAE and the relative IAE, which is a percentage. The printout from the 
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expanded upon “demo”-script, now named “demo_V3”, is displayed in Figure 3-3. The code 

for the “Demo_V3” script is attached in Appendix B.   

 

 

Figure 3-3: Printout from testing each controller on the same random state space model. (1) is the ZN PRC-

tuning method, (2) is the PID controller from “pidstd”, (3) is the PI controller from “pidstd”, (4) is the 

“megatunerplain”, and (5) is the “megatuner”. 

 

The general process of the “demo_V3” script has been separated into several different functions 

in other to simplify the process of testing the controllers as well as creating a streamlined code. 

These functions include codes for creating a random state space model, the controller 

execution, and the printing of data. The testing has been done by running the functions from 

the “demo_V3” script in a loop and printing out the average results from the different values 

gathered.  

Based on the differences between physical- and non-physical systems, described in chapter 3.1, 

each test is done for 50 iterations on both “rss”- and “drss”-created systems, thereby doubling 

the number of tests. This is done to see the possible impact of having random systems with 

higher order or systems with negative 𝐴𝑑 matrices.  

In order to test the effect of varying the timestep, order, and possible time delay, a “standard” 

has been set with a timestep of 1 second and an order of 3 in order to vary one element at a 

time. This results in all controllers having a sampling time of 1 while testing different orders, 

and all systems having an order of 3 when varying the timestep. This standard is set as a semi-

arbitrary middle ground while still having reasonable realistic sizes of the systems created 

where the system itself is neither highly complex nor too simple and neither a particularly fast 

or slow.  

Different versions of the functions and scripts have been created in order to systematically test 

the different functions without changing much code, e.g., creating separate functions for “rss”- 

and “drss”-created systems, and different scripts in order to separate ZN PRC, “pidstd(PID)”, 

“pidstd(PI)”, “megatunerplain”, and “megatuner” from the “megatuner”, “pidtune(PID)”, and 

“pidtune(PI)”. The codes included in the appendices only displays one version of each code 

seeing as there are only minor differences between the different versions. The main script, with 
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relevant self-made functions, are attached in Appendix C. All results are displayed in graphs 

and tables throughout Chapter 4 as well as comments and comparisons of the result, with 

further discussion around the results, and the project, being written in Chapter 5.  
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4 Results 
This chapter will present and describe the result given from the methods presented in the 

previous chapters. These results include the comparisons between the controllers based on the 

different parameters previously given, and the efficiency of each controller. The results have 

been cleared of all outliers and the data portrayed is the final data, after clearing any outliers. 

In the tables displaying the results, the relative IAE is shortened to “Rel. IAE, “Average” is 

shortened to “Avg”, “Standard deviation” is shortened to “STD”, and “Number of crashes” are 

written as “# of crashes”. “STD. IAE” is the standard deviation of the relative IAE, not the IAE 

itself. The IAE is based on relative IAE times the time usage and is therefore proportional to 

the time usage. 

The relative IAE is based on the average error over the time used. This results in a time-

invariant number representing the overall slope of error, i.e., a lower number represents a 

longer time interval with little error, while a higher number represents overall more error in the 

control. This would then mean that a lower relative IAE means a quicker control to the setpoint 

with a slower stabilization while a higher relative IAE would mean a slower control which in 

turn stabilizes quickly upon reaching the setpoint.  

4.1 Comparison Between ZN, Pidstd(PID), Pidstd(PI), 
Megatunerplain, and Megatuner 

The first part of the controller comparison is between ZN PRC, “pidstd(PID)”, “pidstd(PI)”, 

“megatunerplain” and “megatuner” based on several different system tests. All five controllers 

were run on the same 50, randomly created, systems, first with varying timestep, then with 

varying order. All results are averaged from the 50 runs for that test.  

4.1.1 Timestep 

As a comparison between the effects of the timestep in the system, a run with 50 systems were 

executed for each timestep with “rss”-created systems. These timesteps included 0.1s, 0.5s, 1s, 

and 5s in order to test the different controllers and portray differences between each controller 

based on the speed of the system.  

The average time usage for each controller across the different sampling times is displayed in 

Figure 4-1, below. From this presentation, the time usage of the “pidstd(PID)” seems to be 

comparative with the four other controllers at both the 0.1s- and 0.5s-systems, with a slight 

deviation when the sampling time is set to 1s and a major deviation at 5s.  
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Figure 4-1: Test results of time usage (y-axis) from ZN, “pidstd(PID)”, “pidstd(PI)”, “megatunerplain”, and 

“megatuner” using “rss”-created systems with varying timestep (x-axis). See Figure 4-2 for addition details. 

 

Seeing as the “pidstd(PID)” has a final time usage of 92 000 per system when the timestep is 

set to 5s, a separate graph, excluding “pidstd(PID)”, is displayed in Figure 4-2. From this 

display, the “pidstd(PID)” seems to deviate already at a sampling time of 0.5s, “pidstd(PI)” 

averaging notably better while still taking longer than the ZN PRC, “megatunerplain”, and 

“megatuner”. The “megatunerplain” averages generally slower than the ZN PRC and 

“megatuner” but is unaffected by the timestep of the controllers. Both the ZN PRC and the 

“megatuner” returns low average time and appears to even quicken at the increased timesteps.  

 

 

Figure 4-2: Test results of time usage (y-axis) from ZN, “pidstd(PI)”, “megatunerplain”, and “megatuner” using 

“rss”-created systems with varying timestep (x-axis) 

 

In addition to the time usage, the IAE, peak, and number of crashes/unstable control is returned 

from the testing. A relative, time-invariant, IAE is also returned including the standard 

deviation for this relative IAE. This data is displayed in Table 6, segmented into each of the 

timestep tests. In this table, the relative IAE is shortened to “Rel. IAE, “Average” is shortened 

to “Avg”, “Standard deviation” is shortened to “STD”, and “Number of crashes” are written as 

“# of crashes”. From the table, the relative IAE varies from as low as 0.1583, for the 

“megatuner”, to as high as 0.3103, for the “pidstd(PID)”. In terms of crashes, neither the 

“megatunerplain” nor the “megatuner” experienced any crashes, with “pidstd(PI)” 

experiencing a couple sporadically. Both the “pidstd(PID)” and the ZN PRC experienced a 

higher number of crashes at lower timesteps, with decreasing instability as the timestep was 

increased. The “pidstd(PID)” experienced lower and lower peaks as the timestep increased 
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resulting in an average of 0.891 at 5s, which would mean the process did not stabilize at the 

setpoint. Both the “megatuner” and the ZN PRC showed increased peaks as higher timestep 

which is a typical trait of an oscillating process control. All controllers return relatively stable 

and low standard deviations, while the “pidstd(PID)” experienced high fluctuation between 

tests.  

 

Table 6: Test results from ZN, “pidstd(PID)”, “pidstd(PI)”, “megatunerplain”, and “megatuner” using “rss”-

created systems with varying timestep 

 ZN PRC Pidstd(PID) Pidstd(PI) Megatunerplain Megatuner 

Timestep=0.1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1954 

(4.36) 

0.2114 

(8.05) 

0.1738 

(16.05) 

0.2141 

(12.47) 

0.1897 

(1.95) 

STD. IAE 0.0461 0.1902 0.0397 0.0284 0.0658 

Avg. Peak 1.591 1.035 1.057 1.001 1.105 

# of crashes 7 11 1 0 0 

Timestep=0.5, Order=3 

Rel. IAE 

(Avg. IAE) 

0.2030 

(2.86) 

0.2389 

(121.82) 

0.1818 

(30.92) 

0.2117 

(10.25) 

0.1914 

(2.99) 

STD. IAE 0.0385 0.0129 0.0483 0.0344 0.0730 

Avg. Peak 1.695 0.998 0.999 1.001 1.107 

# of crashes 8 5 0 0 0 

Timestep=1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1974 

(5.32) 

0.2570 

(507.96) 

0.1752 

(22.18) 

0.2146 

(13.68) 

0.1885 

(2.73) 

STD. IAE 0.0319 0.0766 0.0224 0.0455 0.0718 

Avg. Peak 1.710 0.985 1.000 1.007 1.110 

# of crashes 6 2 1 0 0 

Timestep=5, Order=3 

Rel. IAE 

(Avg. IAE) 

0.2218 

(1.90) 

0.3101 

(28571.63) 

0.1864 

(90.96) 

0.2182 

(10.45) 

0.1583 

(0.86) 
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STD. IAE 0.0157 0.2333 0.0117 0.0216 0.0589 

Avg. Peak 1.869 0.891 0.996 0.998 1.144 

# of crashes 0 1 0 0 0 

 

The same test was then executed with “drss”-created systems. The average time usage for each 

controller across the different timesteps is displayed in Figure 4-3, below. Similar to the “rss”-

created systems, the “pidstd(PID)” deviates from the rest of the controllers when the sampling 

time is set to 0.5s, with the rest operating at comparable time usage.  

 

 

Figure 4-3: Test results of time usage (y-axis) from ZN, “pidstd(PID)”, “pidstd(PI)”, “megatunerplain”, and 

“megatuner” using “drss”-created systems with varying timestep (x-axis). See Figure 4-4 for addition details 

 

Seeing as the “pidstd(PID)” has a final time usage of 26 000, a separate graph, excluding 

“pidstd(PID)”, is displayed in Figure 4-4. Similar to previous timestep test, the “pidstd(PI)” 

generally performs slower than the rest, except “pidstd(PID)”, with the “megatunerplain” being 

slightly slower than the comparable ZN PRC and “megatuner”.  

 

 

Figure 4-4: Test results of time usage (y-axis) from ZN, “pidstd(PI)”, “megatunerplain”, and “megatuner” using 

“drss”-created systems with varying timestep (x-axis) 
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Similar to the results from the “rss”-based tests, a relative IAE with its standard deviation, as 

well as the IAE, peak, and number of crashes are returned from the testing. This data is 

displayed in Table 7, segmented into each of the timestep tests. From the below table, the 

relative IAE varies from 0.1767, from the ZN PRC, to 0.3508, from “pidstd(PID)”, where ZN 

PRC generally return a much lower relative IAE while “pidstd(PID)” returns a higher relative 

IAE, except for when the sampling time is set to 0.1s. Compared to the “rss”-systems, the 

“drss”-system test return much higher crash rate for the ZN PRC and “pidstd(PID)”, while the 

rest remains at one or zero crashes at 50 simulations. When it comes to the average peak, ZN 

PRC returns a higher average peak then the rest, with a decreasing peak of the “pidstd(PID”. 

The three remaining controllers shows some fluctuation, although remains fairly stable around 

the setpoint of 1. Both the “megatunerplain” and the “pidstd(PI)” returns low standard 

deviations, while both ZN PRC and “pidstd(PID) “ shows a continually increase in the standard 

deviation.  

 

Table 7: Test results from ZN, “pidstd(PID)”, “pidstd(PI)”, “megatunerplain”, and “megatuner” using “drss”-

created systems with varying timestep 

 ZN PRC Pidstd(PID) Pidstd(PI) Megatunerplain Megatuner 

Timestep=0.1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1800 

(2.61) 

0.1982 

(10.74) 

0.1981 

(16.89) 

0.2115 

(20.31) 

0.2214 

(1.77) 

STD. IAE 0.0358 0.0453 0.0279 0.0264 0.0600 

Avg. Peak 1.118 1.033 1.026 0.998 1.064 

# of crashes 11 28 0 0 0 

Timestep=0.5, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1847 

(11.75) 

0.2746 

(29.87) 

0.1904 

(71.75) 

0.2167 

(23.57) 

0.2069 

(6.41) 

STD. IAE 0.0429 0.1687 0.0252 0.0237 0.0677 

Avg. Peak 1.410 0.947 1.005 0.998 1.049 

# of crashes 25 10 3 0 0 

Timestep=1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1767 

(4.67) 

0.2616 

(816.92) 

0.1870 

(47.63) 

0.2112 

(16.44) 

0.1936 

(5.35) 

STD. IAE 0.0554 0.1181 0.0223 0.0391 0.0802 
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Avg. Peak 1.592 0.973 1.012 1.006 1.098 

# of crashes 11 8 1 0 0 

Timestep=5, Order=3 

Rel. IAE 

(Avg. IAE) 

0.2064 

(13.74) 

0.3508 

(9083.51) 

0.1959 

(217.96) 

0.2092 

(107.28) 

0.1905 

(23.80) 

STD. IAE 0.0538 0.2703 0.0315 0.0230 0.0658 

Avg. Peak 1.651 0.888 1.001 1.000 1.055 

# of crashes 15 13 0 0 0 

 

4.1.2 Order 

The controllers were then tested across systems with different orders. The orders tested were 

1st-, 3rd-, 5th-, and 7th order systems. Due to problems during the testing with 7th order systems, 

further explained in Chapter 5, the 7th order systems were converted from regular transfer 

functions into another type of transfer function named Zero-Pole-Gain models (ZPK).  

The first test was based on “rss”-created systems. The average time usage for each controller 

across the different orders is displayed in Figure 4-5 below. From the graph, the “pidstd(PID)” 

shows a higher time usage for the 1st order systems with a decrease and stabilization as the 

order is increased.  

 

 

Figure 4-5: Test results of time usage (y-axis) from ZN, “pidstd(PID)”, “pidstd(PI)”, “megatunerplain”, and 

“megatuner” using “rss”-created systems with varying order (x-axis). See Figure 4-6 for addition details 
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Seeing as the “pidstd(PID)” averages a lot higher time usage, a separate graph, excluding 

“pidstd(PID)”, is displayed in Figure 4-6. From the graph, all controllers show an overall 

increase in computational time as the order is increased, with both the ZN PRC and the 

“pidstd(PI)” showing a great decrease when using the ZPK system.  

 

 

Figure 4-6: Test results of time usage (y-axis) from ZN, “pidstd(PI)”, “megatunerplain”, and “megatuner” using 

“rss”-created systems with varying order (x-axis) 

 

Similar to the results given from the “rss”-based testing in the previous chapter, the relative 

IAE with its standard deviation, as well as the IAE, peak, and number of crashes are returned 

from the testing and displayed, below, in Table 8. The results from each test are segmented 

based on the order of the system used. When it comes to the relative IAE, and its standard 

deviation, all controllers return overall stable values, with some exceptions at the 1st order test, 

with the “pidstd(PID)” returning a higher relative IAE than the rest. At 1st order, no controller 

experienced any crashes, with an increasing number of crashes for the “pidstd(PID)” and ZN 

PRC, with two overall crashes for both the “pidstd(PI)” and the “megatunerplain”. Each 

controller returns similar peaks no matter the order, with ZN PRC having the highest peaks at 

around 1.7, “megatuner” returning peaks of around 1.1, with the rest stabilizing at around 1, 

with “pidstd(PID)” being under the setpoint.  

 

Table 8: Test results from ZN, “pidstd(PID)”, “pidstd(PI)”, “megatunerplain”, and “megatuner” using “rss”-

created systems with varying order 

 ZN PRC Pidstd(PID) Pidstd(PI) Megatunerplain Megatuner 

Timestep=1, Order=1 

Rel. IAE 

(Avg. IAE) 

0.2229 

(0.52) 

0.2500 

(706.14) 

0.1842 

(12.38) 

0.2186 

(6.56) 

0.1853 

(0.54) 

STD. IAE 0.0076 0.0060 0.0370 0.0069 0.0743 

Avg. Peak 1.760 0.996 0.998 0.997 1.1277 
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# of 

crashes 

0 0 0 0 0 

Timestep=1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1974 

(1.58) 

0.2570 

(507.51) 

0.1752 

(22.18) 

0.2146 

(13.68) 

0.1885 

(2.13) 

STD. IAE 0.0319 0.0766 0.0224 0.0455 0.0718 

Avg. Peak 1.710 0.985 1.000 1.007 1.110 

# of 

crashes 

6 2 1 0 0 

Timestep=1, Order=5 

Rel. IAE 

(Avg. IAE) 

0.2063 

(2.90) 

0.2419 

(485.49) 

0.1853 

(27.90) 

0.2199 

(11.80) 

0.1782 

(2.88) 

STD. IAE 0.0356 0.0116 0.0374 0.0372 0.0525 

Avg. Peak 1.644 0.997 0.997 1.005 1.103 

# of 

crashes 

8 6 0 1 0 

Timestep=1, Order=7, ZPK-systems 

Rel. IAE 

(Avg. IAE) 

0.1918 

(1.16) 

0.2643 

(631.48) 

0.1725 

(19.28) 

0.2058 

(10.16) 

0.1672 

(2.70) 

STD. IAE 0.0586 0.1143 0.0281 0.0459 0.0770 

Avg. Peak 1.688 0.9747 1.001 1.002 1.112 

# of 

crashes 

9 6 1 1 0 

 

The controllers were then tested with “drss”-function. The average time usage for each 

controller across the different orders is displayed in Figure 4-7 below. Like the time usage for 

the “rss”-systems, the “pidstd(PID)” is slower than the rest and shows a decrease in time usage 

after the 1st order systems.  
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Figure 4-7: Test results of time usage (y-axis) from ZN, “pidstd(PID)”, “pidstd(PI)”, “megatunerplain”, and 

“megatuner” using “drss”-created systems with varying order (x-axis). See Figure 4-8 for addition details 

 

Seeing as the “pidstd(PID)” averages a lot higher time usage, a separate graph, excluding 

“pidstd(PID)”, is displayed in Figure 4-8. The four controllers all show an increase at the 3rd 

and 7th order. The main difference between the time usage from the “drss”-systems with 

varying order compared to the rest of the testing is the difference between ZN PRC and 

“megatuner”, where the “megatuner” shows a notably slower result than the ZN PRC.  

 

 

Figure 4-8: Test results of time usage (y-axis) from ZN “pidstd(PI)”, “megatunerplain”, and “megatuner” using 

“drss”-created systems with varying order (x-axis) 

 

The relative IAE with its standard deviation, as well as the IAE, peak, and number of crashes 

are returned from the testing and displayed, below, in Table 8. The results from each test are 

segmented based on the order of the system used. Note that the 7th order run is still using a 

ZPK-model for the system. The relative IAE is stable for the “pidstd(PI)” and the 

“megatunerplain” with a decrease in the “megatuner” as the order increases. The ZN PRC 

return increasing standard deviation and relative IAE, except for 1st order systems, as the order 

increases, while “pidstd(PID)” displays varying relative IAE with greatly increased standard 

deviation as the relative IAE increases, as well as varying peaks. ZN PRC shows a general high 

number of crashes, while “pidstd(PID)” increases the number of crashes with the order and 

“pidstd(PI)” varies between 1-3 crashes.  
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Table 9: Test results from ZN, “pidstd(PID)”, “pidstd(PI)”, “megatunerplain”, and “megatuner” using “drss”-

created systems with varying order 

 ZN PRC Pidstd(PID) Pidstd(PI) Megatunerplain Megatuner 

Timestep=1, Order=1 

Rel. IAE 

(Avg. IAE) 

0.2031 

(0.71) 

0.2487 

(835.75) 

0.1879 

(23.75) 

0.2118 

(8.96) 

0.1971 

(2.11) 

STD. IAE 0.0323 0.0174 0.0250 0.0116 0.0575 

Avg. Peak 1.770 0.999 1.006 0.996 1.066 

# of 

crashes 

18 0 2 0 0 

Timestep=1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1767 

(4.67) 

0.2616 

(816.92) 

0.1870 

(34.42) 

0.2112 

(16.44) 

0.1936 

(5.35) 

STD. IAE 0.0554 0.1181 0.0222 0.0391 0.0802 

Avg. Peak 1.592 0.9732 1.012 1.006 1.098 

# of 

crashes 

11 8 1 0 0 

Timestep=1, Order=5 

Rel. IAE 

(Avg. IAE) 

0.1863 

(1.70) 

0.2366 

(649.69) 

0.1824 

(22.85) 

0.2062 

(15.25) 

0.1779 

(6.73) 

STD. IAE 0.0627 0.0100 0.0283 0.0404 0.0784 

Avg. Peak 1.637 0.999 1.010 1.005 1.059 

# of 

crashes 

18 16 3 1 0 

Timestep=1, Order=7, ZPK-systems 

Rel. IAE 

(Avg. IAE) 

0.2164 

(11.50) 

0.2654 

(713.63) 

0.1932 

(48.04) 

0.2072 

(26.33) 

0.1798 

(20.23) 

STD. IAE 0.1647 0.1234 0.0439 0.0345 0.0728 
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Avg. Peak 1.618 0.988 1.014 1.016 1.062 

# of 

crashes 

15 16 2 0 0 

 

4.2 Comparison Between Megatuner, PIDTune(PID), and 
PIDTune(PI) 

The second part of the project’s controller comparison is between the “megatuner”, the 

“pidtune(PID)”, and “pidtune(PI)” and is mainly done with an interest in seeing the efficiency 

of the MathWorks created “pidtune” function as well as comparing it to the “megatuner”, which 

has been created in order to compete against the “pidtune”. All three controllers were run on 

the same 50, randomly created, systems, first with varying timestep, then with varying order. 

All results are averaged from the 50 runs for that test.  

4.2.1 Timestep 

Similar to the previous comparison between the controllers, the effects of changes in timestep 

have been tested. Code runs with 50 systems was executed for each timestep with “rss”-created 

systems. These timesteps included 0.1s, 0.5s, 1s, and 5s in order to test the different controllers 

and portray differences between each controller based on the speed of the system. The average 

time usage for each controller across the different timesteps is displayed in Figure 4-9, below. 

Both versions of the “pidtune” increases its time usage with the increase in timestep, while the 

computational time of the “megatuner” decreases with a peak at the systems with 1s timestep.  

 

 

Figure 4-9: Test results of time usage (y-axis) from “megatuner”, “pidtune(PID)”, and “pidtune(PI)” using 

“rss”-created systems with varying timestep (x-axis) 

 



 

 

38 

The general data from the testing, with “rss”-systems, such as the aforementioned relative IAE, 

the average IAE and peak, as well as the number of, if any, crashes has been documented, and 

are presented in the table below, Table 10. The results from each test are segmented based on 

the timestep of the system used. When comparing the three controller against each other, all 

results display stability across the different timesteps, with an increase in the IAE which is 

proportional with the increase in time usage. Both the “megatuner” and the “pidstd(PI)” shows 

a decrease in the relative IAE, with a greater decrease for “megatuner” at 5s timestep. The 

“pidtune(PID)” displays a lower average peak than the other two, however, all three controllers 

return a peak above 1.  

 

Table 10: Test results from “megatuner”, “pidtune(PID)”, and “pidtune(PI)” using “rss”-created systems with 

varying timestep 

 Megatuner Pidtune(PID) Pidtune(PI) 

Timestep=0.1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1925 

(1.50) 

0.1952 

(2.10) 

0.2074 

(2.59) 

STD. IAE 0.0640 0.0510 0.0556 

Avg. Peak 1.109 1.059 1.091 

# of crashes 0 0 0 

Timestep=0.5, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1832 

(1.56) 

0.1921 

(2.20) 

0.2051 

(2.47) 

STD. IAE 0.0623 0.0423 0.0514 

Avg. Peak 1.110 1.055 1.092 

# of crashes 0 0 0 

Timestep=1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1807 

(2.26) 

0.2011 

(2.44) 

0.2004 

(3.09) 

STD. IAE 0.0643 0.0639 0.0580 

Avg. Peak 1.105 1.054 1.084 

# of crashes 0 0 0 

Timestep=5, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1558 

(1.53) 

0.2002 

(4.21) 

0.1919 

(4.67) 

STD. IAE 0.0576 0.0613 0.0536 

Avg. Peak 1.132 1.061 1.105 

# of crashes 0 0 0 
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Additional timestep-based testing was done, however, this time the “drss”-systems were used. 

The same timesteps were used, i.e., 0.1s, 0.5s, 1s, and 5s. The average time usage for each 

controller across the different timesteps is displayed in the below figure, Figure 4-10. From the 

figure, all three controller shows comparable time usage for the 0.1s, 0.5s, and 1s timesteps, 

where “megatuner” shows a lower computational time for the 5s timestep, while 

“pidtune(PID)” shows a lower time usage than its PI-counterpart.  

 

 

Figure 4-10: Test results of time usage (y-axis) from “megatuner”, “pidtune(PID)”, and “pidtune(PI)” using 

“drss”-created systems with varying timestep (x-axis) 

 

Table 11, below, displays the various data resulting from the testing done with the controllers. 

The results from each test are segmented based on the timestep of the system used. Based on 

the data all three controller return higher relative IAE at 0.1s timestep, with a decrease in 

relative IAE where the lowest value is returned from the 5s systems test. “Megatuner” returns 

an overall lower standard deviation of the relative IAE, while both “pidtune”-controllers return 

similar standard deviation with the exception of the 5s system test. The average peak of all 

controllers shows a steady return between 1.039 and 1.085.  

 

Table 11: Test results from “megatuner”, “pidtune(PID)”, and “pidtune(PI)” using “drss”-created systems with 

varying timestep 

 Megatuner Pidtune(PID) Pidtune(PI) 

Timestep=0.1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.2375 

(0.83) 

0.2549 

(0.64) 

0.2628 

(0.68) 

STD. IAE 0.0562 0.0620 0.0664 

Avg. Peak 1.064 1.071 1.065 

# of crashes 0 0 0 

Timestep=0.5, Order=3 
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Rel. IAE 

(Avg. IAE) 

0.1973 

(6.45) 

0.2300 

(5.73) 

0.2267 

(5.61) 

STD. IAE 0.0747 0.1021 0.1035 

Avg. Peak 1.061 1.039 1.055 

# of crashes 0 0 0 

Timestep=1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1971 

(8.48) 

0.2372 

(8.02) 

0.2362 

(8.27) 

STD. IAE 0.0865 0.1111 0.1150 

Avg. Peak 1.056 1.040 1.052 

# of crashes 0 0 0 

Timestep=5, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1763 

(17.77) 

0.1986 

(31.87) 

0.1966 

(35.35) 

STD. IAE 0.0689 0.0949 0.0680 

Avg. Peak 1.085 1.060 1.069 

# of crashes 0 0 0 

 

4.2.2 Order 

The three controllers were then tested across systems of varying order. The orders tested were 

1st-, 3rd-, 5th-, 7th-, and 10th order systems. The 10th order was included seeing as both the 

“megatuner” and the “pidtune” have a reputation of being robust. None of the systems were 

replaced with a ZPK-system when using “megatuner” and “pidtune”. Firstly, the testing as 

done with “rss”-created systems, much like the other tests. Figure 4-11, below, shows the 

comparison between each controller across the different system orders. From the figure below, 

all controllers return comparable times, however, the “megatuner” operates slightly faster than 

the ”pidtune”-controller, with the “pidtune(PI)” operating slightly faster than its PID-

counterpart.  

 

 

Figure 4-11: Test results of time usage (y-axis) from “megatuner”, “pidtune(PID)”, and “pidtune(PI)” using 

“rss”-created systems with varying order (x-axis) 
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From the order-based testing of the controllers, the relative IAE, the standard deviation of the 

relative IAE, the IAE, and the peaks of each controller are displayed in Table 12, below. The 

results from each test are segmented based on the order of the system used. The relative IAE 

from all three controllers decrease as the order of the systems increase while the standard 

deviation for both “pidtune”-controllers increase as the order is increased, except for the 10th 

order “pidtune(PID)”. “Megatuner” averages a higher peak at around 1.1, with “pidtune(PI)” 

hovering at 1.085, and “pidtune(PID)” has the lowest overshoot at around 1.050-1.060.  

 

Table 12: Test results from “megatuner”, “pidtune(PID)”, and “pidtune(PI)” using “rss”-created systems with 

varying order 

 Megatuner Pidtune(PID) Pidtune(PI) 

Timestep=1, Order=1 

Rel. IAE 

(Avg. IAE) 

0.1983 

(0.49) 

0.2026 

(1.32) 

0.2114 

(1.82) 

STD. IAE 0.0627 0.0385 0.0399 

Avg. Peak 1.143 1.064 1.108 

# of crashes 0 0 0 

Timestep=1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1807 

(1.60) 

0.2011 

(2.44) 

0.2004 

(3.09) 

STD. IAE 0.0643 0.0639 0.0580 

Avg. Peak 1.105 1.054 1.084 

# of crashes 0 0 0 

Timestep=1, Order=5 

Rel. IAE 

(Avg. IAE) 

0.1803 

(1.66) 

0.1893 

(2.46) 

0.1937 

(2.98) 

STD. IAE 0.0916 0.0774 0.0626 

Avg. Peak 1.106 1.053 1.080 

# of crashes 0 0 0 

Timestep=1, Order=7 

Rel. IAE 

(Avg. IAE) 

0.1727 

(2.07) 

0.1973 

(3.10) 

0.1995 

(3.23) 

STD. IAE 0.0825 0.0916 0.0761 

Avg. Peak 1.108 1.063 1.088 

# of crashes 0 0 0 

Timestep=1, Order=10 

Rel. IAE 

(Avg. IAE) 

0.1548 

(3.07) 

0.1911 

(4.18) 

0.1867 

(3.86) 
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STD. IAE 0.0764 0.0827 0.0773 

Avg. Peak 1.102 1.055 1.085 

# of crashes 0 0 0 

 

Secondly, the three controllers were tested against “drss”-systems. The resulting average time 

usage for each controller across the different orders are displayed in Figure 4-12. The 

“megatuner” displays a lower average time usage at 1st order with a higher time usage at 3rd, 

5th, and 7th order. Both “pidtune”-controllers displays a stable increase in the time usage with 

the order increase, with “pidtune(PI)” being slightly slower than the “pidtune(PID)”.  

 

 

Figure 4-12: Test results of time usage (y-axis) from “megatuner”, “pidtune(PID)”, and “pidtune(PI)” using 

“drss”-created systems with varying order (x-axis) 

 

In the same vein as the other tests, the resulting data is displayed in a table below, namely Table 

13. The test results from each order tested is separated in segments. The relative IAE, the 

standard deviation of the relative IAE, the IAE, and the peak of each controller is displayed in 

Table 12, below. “Megatuner” displays a decreasing relative IAE as the order increases while 

standard deviation fluctuates between 0.0541 and 0.0950. Both “pidtune”-controllers shows a 

decreasing relative IAE with an increase at the 3rd order as well as comparative fluctuation in 

the standard deviation, ranging from as low as 0.0283 to as high as 1.1150. “Pidtune(PID)” 

experienced a crash at the 1st and 10th order test, while “pidtune(PI)” returned a crash at the 1st 

and 7th order test. All three controller display a similar peak, although “pidtune(PID)” displays 

a slightly lower peak during its testing.  

 

Table 13: Test results from “megatuner”, “pidtune(PID)”, and “pidtune(PI)” using “drss”-created systems with 

varying order 

 Megatuner Pidtune(PID) Pidtune(PI) 

Timestep=1, Order=1 

Rel. IAE 

(Avg. IAE) 

0.1937 

(2.67) 

0.1910 

(5.62) 

0.1948 

(5.80) 

STD. IAE 0.0541 0.0287 0.0283 

Avg. Peak 1.063 1.037 1.067 

# of crashes 0 1 1 
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Timestep=1, Order=3 

Rel. IAE 

(Avg. IAE) 

0.1971 

(8.48) 

0.2372 

(8.02) 

0.2362 

(8.27) 

STD. IAE 0.0865 0.1111 0.1150 

Avg. Peak 1.056 1.040 1.052 

# of crashes 0 0 0 

Timestep=1, Order=5 

Rel. IAE 

(Avg. IAE) 

0.1879 

(9.50) 

0.2076 

(7.20) 

0.2155 

(8.98) 

STD. IAE 0.0950 0.0662 0.0814 

Avg. Peak 1.072 1.053 1.061 

# of crashes 0 0 0 

Timestep=1, Order=7 

Rel. IAE 

(Avg. IAE) 

0.1758 

(8.04) 

0.1936 

(7.22) 

0.1919 

(7.38) 

STD. IAE 0.0556 0.0705 0.0705 

Avg. Peak 1.051 1.055 1.066 

# of crashes 0 0 1 

Timestep=1, Order=10 

Rel. IAE 

(Avg. IAE) 

0.1636 

(9.56) 

0.1869 

(10.92) 

0.1812 

(11.24) 

STD. IAE 0.0780 0.0931 0.0850 

Avg. Peak 1.099 1.077 1.092 

# of crashes 0 1 0 

 

4.3 Time Delay Comparisons 

Seeing as all previous testing has been with “rss”- and “drss”-created system, all having a time 

delay of 𝑒−𝜏𝑠 where 𝜏=0.1, a separate test was done to check the effects of the time delay, and 

how it affected the different controllers. This testing was done on the ZN PRC, “pidstd(PID)”, 

“pidstd(PI)”, “megatunerplain” and “megatuner” with all tests consisting of 50, randomly 

created, systems created by the “drss”-function. The testing was done 𝜏=0.01, 𝜏=0.1, being the 

time delay used throughout the project, 𝜏=1, and 𝜏=0, i.e., no time delay. All results are 

averaged from the 50 systems for that specific test.  

Similar to the testing done in the previous subchapters, the relative IAE, with its standard 

deviation, as well as the IAE, average time usage, peak, and number of crashes is returned from 

the testing and displayed, below, in Table 14. Based on the results from the data displayed 

below, “pidstd(PI)”, “megatunerplain”, and “megatuner” all show an increase in the relative 
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IAE as 𝜏 increases, while “pidstd(PID)” shows a decline as well as a decreasing standard 

deviation. “Pidstd(PI)”, “megatunerplain”, and “megatuner” also shows a stable, if not 

decreasing, peak close to the setpoint of 1, with “pidstd(PID)” shows an increase in the peak, 

from 0.697 to 1.034. Neither “megatunerplain” nor “megatuner” experiences any crashes, with 

“pidstd(PI)” returning a decreasing number of crashes. Both ZN PRC and “pidstd(PID)” return 

high number of crashes, reflective from the previous tests with “drss”-systems, however, ZN 

PRC and “pidstd(PID)” has a decreasing number of crashes as the 𝜏 increases, with an 

exception for “pidstd(PID)” at 𝜏=1. ZN PRC, “megatunerplain”, and “megatuner” shows an 

increase in time usage as 𝜏 increases, all having an exception when there is no delay, while 

“pidstd(PID)” show a steady decline in its time usage, also with an exception at no time delay.  

 

Table 14: Test results from ZN, “pidstd(PID)”, “pidstd(PI)”, “megatunerplain”, and “megatuner” using “drss”-

created systems with varying 𝜏 in the time delay 

 ZN PRC Pidstd(PID) Pidstd(PI) Megatunerplain Megatuner 

Timestep=1, Order=3, 𝝉=0 

Rel. IAE 

(Avg. IAE) 

0.1236 

(2.72) 

0.3953 

(355.39) 

0.1241 

(13.14) 

0.1503 

(8.19) 

0.1213 

(3.15) 

STD. IAE 0.0452 0.4073 0.0267 0.0482 0.0653 

Avg. Time 22.03 899.03 105.92 54.48 25.95 

Avg. Peak 1.294 0.697 1.013 1.009 1.078 

# of crashes 21 14 3 0 0 

Timestep=1, Order=3, 𝝉=0.01 

Rel. IAE 

(Avg. IAE) 

0.1981 

(0.21) 

0.3281 

(1292.19) 

0.1885 

(21.86) 

0.2083 

(8.17) 

0.1843 

(3.14) 

STD. IAE 0.0441 0.2611 0.0285 0.0305 0.0825 

Avg. Time 1.08 3938.39 115.99 39.20 17.05 

Avg. Peak 1.555 0.869 1.003 0.998 1.044 

# of crashes 22 11 2 0 0 

Timestep=1, Order=3, 𝝉=0.1 (used in all other tests) 

Rel. IAE 

(Avg. IAE) 

0.1767 

(4.67) 

0.2616 

(816.92) 

0.1870 

(47.63) 

0.2112 

(16.44) 

0.1936 

(5.35) 

STD. IAE 0.0554 0.1181 0.0223 0.0391 0.0802 
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Avg. Time 26.43 3122.79 254.69 77.84 27.63 

Avg. Peak 1.592 0.973 1.012 1.006 1.098 

# of crashes 11 8 1 0 0 

Timestep=1, Order=3, 𝝉=1 

Rel. IAE 

(Avg. IAE) 

0.1934 

(16.76) 

0.2309 

(97.64) 

0.1984 

(13.64) 

0.2107 

(19.19) 

0.2300 

(6.56) 

STD. IAE 0.0452 0.0623 0.0203 0.0253 0.0451 

Avg. Time 86.65 422.87 68.77 91.10 28.50 

Avg. Peak 1.112 1.034 1.002 1.006 1.060 

# of crashes 5 24 1 0 0 
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5 Discussion 
As a discussion on the project, Chapter 5 is centered around the various subjects presented in 

Chapter 2, as well as its implementation in Chapter 3, and the resulting data depicted in Chapter 

4. Any changes done in this project, and the reasoning for decisions made, will be presented in 

this chapter.  

From the data presented in subchapter 4.1, various conclusions may be made in terms of the 

advantages and disadvantages of the different controllers. While the ZN PRC, “pidstd(PI)”, 

“megatunerplain”, and “megatuner” all had relatively low and comparative time usage, the ZN 

PRC and “megatuner” appears as the clear quicker methods, however, the ZN PRC method 

returns high peaks, reaching 1.869 for slower systems, which would be a problem for systems 

where overshoot is expensive or in general non-ideal. The ZN PRC method had a fairly high 

number of crashes, especially when using the “drss”-function, reaching as high as 25 crashes 

out of 50 runs. The “pidstd(PID)” balanced between a high number of crashes, with a total of 

28 at 0.1s for 3rd order systems, and a high time usage at slower systems averaging 92 000s and 

26 000s from the two 5s system tests ran. The “pidstd(PI)” returned fairly stable values, both 

in terms of its efficiency, such as the relative IAE and peaks, and the number of crashes it 

experienced across the different tests. Both the “megatunerplain” and the “megatuner” shows 

great response to the random system, with the “megatunerplain” being slightly slower than the 

“megatuner” but also displays a lower peak. “Megatunerplain” experienced a total of three 

crashes during the several hundred runs while the “megatuner” experienced none.  

From the data presented in Chapter 4.2, all three controllers show comparable responses to the 

random systems. In terms of crashes, both “pidtune”-controllers returned two crashes using the 

“drss”-systems. The “megatuner” averages overall lower time usage, with some deviation when 

testing higher order “drss”-systems. In resemblance to the “pidstd(PID)”, the “pidtune(PID)” 

averaged lower peaks than the both “megatuner” and “pidtune(PI)”, however, in contrast to the 

other PID controller, “pidtune(PID)” averaged peaks above the setpoint of 1 and did not show 

significant increase in time usage at slow system, being even faster than its PI-counterpart 

overall.  

From the data presented in Chapter 4.3, the difference in time delay made significant changes 

in the response from each controller. Due to using “drss”-systems, the controllers displayed 

more crashes than the “rss”-versions, however, except from ZN PRC at 𝜏=1, PRZ ZN, 

“pidstd(PID)”, and “pidstd(PI)” all showed increased number of crashes when using a different 

𝜏 than the 0.1 used during other testing. In addition, each controller appeared to display 

significantly different results when there was no time delay compared to the differences 

between the varying time delay. While “megatunerplain” showed an increase in time usage, 

both “megatuner” and “megatunerplain” displayed rather stable results across the different time 

delay, including the test without delay. Due to the sporadic changes in time usage between the 

controllers at different tests, a graph was not created, and the time usage was included in Table 

14 instead.  

From the data presented, it was also noticed that the average peak of the “pidstd(PID)”-

controller became lower and lower as the timestep increased, resulting in a peak as low as 

0.888. This would mean the controller is not able to stabilize at the reference step response 

setpoint which is 1. Why this problem occurs may be due to the dampening effect, D-term, 

seeing as this problem does not occur with the “pidstd(PI)”-controller, and could possibly be 

explained by having a dampening effect stronger than the error integral, I-term, thereby 

inhibiting the process in reaching its setpoint.  



 

 

47 

Due to a recurring problem with the internal delay model appearing to be non-causal, which 

occurred during the 7th order testing on ZN PRC, “pidstd”, “megatunerplain”, and “megatuner”, 

the transfer function was replaced with a ZPK-version of the model. The idea for this change 

came from a discussion on the error on one of MathWorks’ help forums and returned data 

comparable to the standard transfer function testing previously done, although appearing 

slightly favorable. In addition, while it was not documented, the problem appeared to occur 

mainly for the “pidstd”-controller, which is why the ZPK-conversion was not done for the 

“megatuner” and “pidtune” comparison, and the order was even increased to include 10th order 

systems. The error printout is displayed in Figure 5-1, below. The comparable data between 

the used transfer function system and a ZPK model is displayed in Appendix D.  

 

 

Figure 5-1: Error description based on the exact time delay 

 

It was also discussed if the exact time-delay, 𝑒−𝜏𝑠, should be replaced by an approximation, 

e.g., Pade- or Skogestad approximation presented in equations 5-1 and 5-2, respectively. [4] 

However, from the testing done when comparing both approximations to the exact delay, 

neither approximations returned data close to the results from using the exact delay. The 

comparable data between the exact time delay and the two approximations are attached in 

Appendix D.   

 

𝑒−𝜏𝑠 ≈
1 − 0.5𝜏𝑠

1 + 0.5𝜏𝑠
  

5-1 

𝑒−𝜏𝑠 ≈ 1 − 𝜏𝑠 5-2 

 

It is clear from the testing that the usage of “rss”- and “drss”-systems created far different 

results, with the “drss”-function returning more crashes and overall higher time usage, with the 

exception of “pidstd(PID)” as 5s timestep. Based on the information displayed in chapters 3.1.1 

and 3.1.2, the “drss”-function created systems may have negative eigenvalues in the 𝐴-matrix 

resulting in a higher system order and an average of the resulting order of the “drss”-based test 

has been calculated in order to give a better understanding of the different results. The average 

order from each test, using “drss”, is depicted in Table 15.  

 

Table 15: Calculated average order using the "drss"-function, with  percentage increse in parenthesis. "1st 

Comp." refers to ZN PRC, "pidstd", "megatunerplain, and "megatuner", while "2nd Comp." refers to the 

"megatuner" and "pidtune" comparision 

Order 

 1st 3rd 5th 7th 10th 
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1st Comp. 

Avg. Order 

1.5 

(50%) 

3.8 

(26.7%) 

6.6 

(32%) 

9.12 

(30.3%) 

NA 

2nd Comp. 

Avg. Order 

1.48 

(48%) 

4.02 

(34%) 

6.68 

(33.6%) 

8.92 

(27.4%) 

12.68 

(26.8%) 

 

From the above table, the average increase in order starts at 48-50% and decreases for each 

order, with an exception for the 3rd order for the 1st comparison, which could be explained in a 

Gaussian distribution of the possible order increase, where maximum increase is doubling the 

selected order thereby having a single order increase affect the 1st order percentage more than 

higher order system, e.g., 7th order.   

However, despite the order increase, when comparing the higher order “rss”-results with the 

comparable lower order “drss”-results, the “drss”-systems seems to still affect the systems 

harder in terms of time usage and crashes, including the two crashes for both “pidtune”-

controllers, implying that despite the increased order to remove the negative eigenvalues in the 

𝐴-matrix, the “drss”-function creates overall more challenging systems.  

All results are gathered from the several tests documented throughout Chapter 4 and an average 

of the collected data is used as the comparative factor. Seeing as the data from the testing was 

prone to outliers, the median values from the testing would have been the optimal solution. The 

data presented in this report has been cleared of outlier; however, this was done by manually 

checking all raw data and look for extreme values among the datasets.  

During the testing of “megatuner”, “pidtune(PID)”, and “pidtune(PI)”, both “pidtune”-

controllers experienced two crashes each when using varying order of “drss”-systems, with the 

1st order “drss”-system causing a crash for both. The transfer function causing this crash is 

presented in equation 5-3. The reasoning, or theories, for why the “pidtune” crashed on this 

system is not discussed in this report. From the previously mentioned master thesis by Preben 

Sandva Solvang, Chapter 4.1.4 describes to most common causes for “pidtune” instability, with 

the main reason being double integrated systems. [1] 

 

ℎ𝑝 = 𝑒−0.1𝑠
−0.001809𝑠 − 15.74

𝑠2 + 0.002268𝑠 + 9.87
  

5-3 

  

Finally, in terms of further work, or a general enhancement of the project, all testing for a 

specific parameter and system, e.g., “rss”-systems with varying timestep, should be executed 

in the same script in order to simply the data display be being able to create graphs in MATLAB 

directly rather than using the raw data and creating graphs separately. In addition, the error-

checking should be expanded upon to include possible non-causal delay error, which stopped 

the script execution in this project, crashes/instability, possible timeouts if controllers take too 

long, etc., as well as separating each error for documentation purposes. 
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6 Conclusion 
This project is a master thesis as a part of the Master of Science in Industrial IT and Automation 

with the name “Tuning PID Controllers: From process experiments, general linear state space 

models and tuning PID controllers via Process Reaction Curve Methods”. The goal of this 

project was to compare different controllers against each other based on randomly created 

systems. From the various testing done several observations has been made. The overall 

performances of the ZN PRC and the “pidstd(PID)” are unstable, slow, or experiences a lot of 

crashing. The ZN PRC results in high overshoots while the “pidstd(PID)” appears to struggle 

with reaching the setpoint, both being a problem in process control. The “pidstd(PI)” is overall 

an acceptable PI controller with low numbers of crashes and general low time usage, however, 

seeing as the function requires a separate tuning method, the performance may be heavily 

affected by the tuning as well.  

The “megatuner” displays great performance across all tests with generally the lowest time 

usage, slight overshoot, and no crashes across the couple thousand tests run in total including 

the tests displayed in this report, which may prove its origin of name correct. The 

“megatunerplain”, being a simplified version of the “megatuner”, displays similar, although 

slightly worse, results than the “megatuner”, being slower and experiencing three overall 

crashes during testing. This difference was expected seeing as the “megatunerplain” forgoes 

some of stability testing done in the “megatuner”.   

MathWorks’ “pidtune” delivers similar, if not slightly worse, performance as the “megatuner” 

seeing as the “pidtune” experiences two crashes from both the PI- and PID controller. All over, 

the “pidtune” returns low time usage, low peaks, and overall stability between systems, which 

is reflected in the generally low standard deviation of the relative IAE. The source code for the 

“pidtune” is secret, however, based on the results from the “pidtune” and “megatuner”, the 

process of using PRC and frequency response may be similar between the methods.  

When having to use a controller for a process, both the “megatuner” and “pidtune” are great 

methods. Depending on the system, both methods appear to be just as viable, with “megatuner” 

returning slightly higher peaks but in return appears more robust. The main problem with each 

controller is the secrecy around the “pidtune” source code, limiting the understanding and 

control of the method, and the lack of public access to the “megatuner” function seeing as it 

has been created by Christer Dalen and there are yet to come any official report on the 

“megatuner”. With “megatuner” only needing the system as a parameter and “pidtune” only 

needing the system and a controller-specification, i.e., ‘PI’, ‘PID’, etc., both methods are easy 

to implement and use as tuning methods.  
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Appendix A 

 

Task Description 
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FMH606 Master's Thesis 
 

Title: Tuning PID Controllers: From process experiments, general linear state space models 
and tuning PID controllers via Process Reaction Curve Methods 

 

USN supervisor: David Di Ruscio 

 

External partner: None 

 

Task background:  The Ziegler-Nichols (ZN) methods for tuning PID controllers involves a 
Process Reaction Curve (PRC) method based on a step response from the plant. Such PRC 
methods may give simple and useful methods for tuning the PID controller, both 
experimentally and numerically. General due to noisy data, detailed linear state space 
models are usually identified from more informative input experiments. An idea is to tune 
the PID controllers directly from more general n-th order linear models. One such method is 
the patented MATLAB pidtune algorithm and other recently published papers. 

 

Task description:   

1. Give a literature survey of methods for tuning PID controllers, both tuning from 
general linear models as well as the Ziegler Nichols PRC method and related. 

2. Recently similar PRC methods are published. Investigate these algorithms and 
possible differences from and between the ZN methods. 

3. Compare the different methods by simulation experiments using MATLAB or similar 
(Octave/Python). Random SSMs generated from the MATLAB rss.m or drss.m 
functions may be used in order to generate models for tuning the PI/PID controllers.  

4. Give a detailed survey of the subject of tuning PID controllers from measured 
process experiments. This task may be combined with the introductory task above. 

 

Student category: IIA students 

 

The task is suitable for online students (not present at the campus): Yes 

 

Practical arrangements: Individual guided work. 

 

Supervision: 

As a general rule, the student is entitled to 15-20 hours of supervision. This includes 
necessary time for the supervisor to prepare for supervision meetings (reading material to 
be discussed, etc). 
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Signatures:  

 

Supervisor (date and signature):  

 

Student (write clearly in all capitalized letters): 

 

Student (date and signature):  
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Appendix B 

 

MATLAB Code, Demo_V3 
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Demo_V3-script code 

% demo tests for pi(d) tuning methods 

% random generated stable state space models. 

% Integrator processes will be handled by delta_prc_pi_tun 

clear all 

close all 

clf, clc 

 

n=3; % order  

tau=0.1; % time delay 

dt= 1; % sample time 

s=tf('s'); 

dsys = drss(n,1,1) % random discrete stable SSM  

dsys.Ts = dt; dsys.D = 0;  

 

% converting from discrete to continuous and adding (possible) time delay 

csys = d2c(dsys,'zoh'); 

[b1,a1]=ss2tf(csys.a,csys.b,csys.c,0); 

hp=tf(b1,a1)*exp(-tau*s); 

 

while(any(abs(eig(hp))<0.0001)) % i.e. no integrators in this demo 

     dsys = drss(n,1,1); 

       dsys.Ts=dt; dsys.D=0; 

       csys = d2c(dsys,'zoh'); 

       [b1,a1]=ss2tf(csys.a,csys.b,csys.c,0); 

       hp=tf(b1,a1)*exp(-tau*s); 

end 

 

m = 5; 

n = 3; 

[Y,T]=step(hp); 

 

%Ziegler Nichols 

[hc,Kp,Ti]=zn_pi(hp); 

[Yr,t]=step(hp*hc/(hc*hp+1)); 

[Yv,t2]=step(hp/(hc*hp+1)); 

ZN_error = sum(abs(Yr-1)); 

ZN_total_error = ZN_error/length(Yr)*t(end) 

ZN_relative_error = ZN_error/length(Yr) 
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plotter(T, Y, t, Yr, t2, Yv, m, n, 1) 

 

%PID-tuner 

zeta=1; 

delta=2.3; 

[Kp,Ti,Td]=delta_prc_pid_tun1.... 

(T,Y,dt,delta,zeta);hc=pidstd(Kp,Ti,Td);rho=delta; 

[Yr,t]=step(hp*hc/(hc*hp+1)); 

[Yv,t2]=step(hp/(hc*hp+1)); 

PID_error = sum(abs(Yr-1)); 

PID_total_error = PID_error/length(Yr)*t(end) 

PID_relative_error = PID_error/length(Yr) 

 

plotter(T, Y, t, Yr, t2, Yv, m, n, 4) 

 

%PI-tuner 

zeta=1; 

delta=2.3; 

[Kp,Ti]=delta_prc_pi_tun... 

(T,Y,dt,delta,zeta);hc=pidstd(Kp,Ti);rho=delta; 

[Yr,t]=step(hp*hc/(hc*hp+1)); 

[Yv,t2]=step(hp/(hc*hp+1)); 

PI_rel_IAE = sum(abs(Yr))/sum(length(Yr)); 

PI_error = sum(abs(Yr-1)); 

PI_total_error = PI_error/length(Yr)*t(end) 

PI_relative_error = PI_error/length(Yr) 

 

plotter(T, Y, t, Yr, t2, Yv, m, n, 7) 

 

%Plain Megatuner 

rho=2; kp_alt=1; 

hc=megatuner1plain(hp,rho,kp_alt); 

[Yr,t]=step(hp*hc/(hc*hp+1)); 

[Yv,t2]=step(hp/(hc*hp+1)); 

Plain_rel_IAE = sum(abs(Yr))/sum(1*length(Yr)) 

Plain_error = sum(abs(Yr-1)); 

Plain_total_error = Plain_error/length(Yr)*t(end) 

Plain_relative_error = Plain_error/length(Yr) 
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plotter(T, Y, t, Yr, t2, Yv, m, n, 10) 

 

%Megatuner 

[hc,rho]=megatuner1(hp); % heuristic ... 

[Yr,t]=step(hp*hc/(hc*hp+1)); 

[Yv,t2]=step(hp/(hc*hp+1)); 

Mega_rel_IAE = sum(abs(Yr))/sum(length(Yr)) 

Mega_error =  sum(abs(Yr-1)); 

Mega_total_error = Mega_error/length(Yr)*t(end) 

Mega_relative_error = Mega_error/length(Yr) 

 

plotter(T, Y, t, Yr, t2, Yv, m, n, 13) 

 

 

 

Plotter-function code 

function plotter(T, Y, t, Yr, t2, Yv, m, n, i) 

 

subplot(m, n, i); 

plot(T,Y) 

xlabel('Time [s]'),ylabel('Output, y') 

grid 

title('Open loop step response') 

 

subplot(m, n, i+1); 

plot(t,Yr,'-r') 

xlabel('Time [s]'),ylabel('Output, y') 

grid 

title('Reference step response') 

 

subplot(m, n, i+2); 

plot(t2,Yv,'-r') 

grid     

title('Input disturbance step response') 

xlabel('Time [s]'),ylabel('Output, y') 

 

end  
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Appendix C 

 

MATLAB Code, Result_Script 
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Result_Script-script code 

% main script for results from “drss” systems 

% delta_prc_pi_tun/delta_prc_pid_tun1/MEGATUNER1/MEGATUNER1PLAIN 

% on random generated stable state space models. 

% Integrator processes will be handled by delta_prc_pi_tun 

%  

warning('off') % unnecessary warnings of order increase 

clear all 

close all 

clf, clc 

 

n = 3; % order  

dt = 1 ;   % sample time 

m = 5; 

i_max = 50; 

 

disp(['Order = ', num2str(n)]); 

disp(['Timestep = ', num2str(dt)]); 

disp(['Runs = ', num2str(i_max)]); 

 

for i = 1:i_max 

    disp(['i = ', num2str(i)]); 

    hp = final_create_random_hp(n, dt) 

    [Y,T]=step(hp); 

    if n>5 

        hp = zpk(hp); 

    end 

    [rel_IAE(i, :), IAE(i, :), time(i, :), peak(i, :)] = controller_executions(hp, 
dt, Y, T); 

    pause(0.5);  

end 

 

rel_IAE 

num2str(time) 

 

ctrl = ['ZN   '; 'PID  '; 'PI   '; 'Plain'; 'Mega ']; 

for i = 1:5 

    controller_result_display(rel_IAE, IAE, time, peak, i, ctrl(i, :)); 

end 
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Final_Create_Random_Hp-function code 

function hp = final_create_random_hp(n, dt) 

 

    tau=0.1; % time delay 

    s=tf('s'); 

 

    dsys = drss(n,1,1); % random discrete stable SSM  

    dsys.Ts = dt; dsys.D = 0;  

     

    % converting from discrete to continuous and adding (possible) time delay 

    csys = d2c(dsys,'zoh'); 

    [b1,a1]=ss2tf(csys.a,csys.b,csys.c,0); 

    hp=tf(b1,a1)*exp(-tau*s); % converting into a transfer function with delay     

    while(any(abs(eig(hp))<0.0001))  

         dsys = drss(n,1,1); 

            dsys.Ts=dt; dsys.D=0; 

            csys = d2c(dsys,'zoh'); 

            [b1,a1]=ss2tf(csys.a,csys.b,csys.c,0); 

            hp=tf(b1,a1)*exp(-tau*s); 

    end 

end 

 

Controller_Executions-function code 

function [rel_IAE, IAE, time, peak] = controller_executions(hp, dt, Y, T) 

 

    %Ziegler Nichols 

    [hc,Kp,Ti]=zn_pi(hp); 

    [Yr,t]=step(hp*hc/(hc*hp+1)); 

    ZN_time = t(end); 

    ZN_peak = max(Yr, [], 'all'); 

    ZN_error = sum(abs(Yr-1)); 

    ZN_rel_IAE = ZN_error/length(Yr); 

    if ZN_rel_IAE > 1 || isnan(ZN_rel_IAE) 

        ZN_rel_IAE = -1; 

    end 

    ZN_IAE = ZN_rel_IAE*ZN_time; 
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    %PID-tuner 

    zeta=1; 

    delta=2.3; 

    [Kp,Ti,Td]=delta_prc_pid_tun1.... 

    (T,Y,dt,delta,zeta);hc=pidstd(Kp,Ti,Td);rho=delta; 

    [Yr,t]=step(hp*hc/(hc*hp+1)); 

    PID_peak = max(Yr, [], 'all'); 

    PID_time = t(end); 

    PID_error = sum(abs(Yr-1)); 

    PID_rel_IAE = PID_error/length(Yr); 

    if PID_rel_IAE > 1 || isnan(PID_rel_IAE) 

        PID_rel_IAE = -1; 

    end 

    PID_IAE = PID_rel_IAE*PID_time; 

 

 

    %PI-tuner 

    zeta=1; 

    delta=2.3; 

    [Kp,Ti]=delta_prc_pi_tun(T,Y,dt,delta,zeta); 

    hc=pidstd(Kp,Ti); 

    rho=delta; 

    [Yr,t]=step(hp*hc/(hc*hp+1)); 

    PI_peak = max(Yr, [], 'all'); 

    PI_time = t(end); 

    PI_error = sum(abs(Yr-1)); 

    PI_rel_IAE = PI_error/length(Yr); 

    if PI_rel_IAE > 1 || isnan(PI_rel_IAE) 

        PI_rel_IAE = -1; 

    end 

    PI_IAE = PI_rel_IAE*PI_time; 

     

    %Plain Megatuner 

    rho=2; kp_alt=1; 

    hc=megatuner1plain(hp,rho,kp_alt); 

    [Yr,t]=step(hp*hc/(hc*hp+1)); 

    Plain_peak = max(Yr, [], 'all'); 
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    Plain_time = t(end); 

    Plain_error = sum(abs(Yr-1)); 

    Plain_rel_IAE = Plain_error/length(Yr); 

    if Plain_rel_IAE > 1 || isnan(Plain_rel_IAE) 

        Plain_rel_IAE = -1; 

    end 

    Plain_IAE = Plain_rel_IAE*Plain_time; 

     

    %Megatuner 

    [hc,rho]=megatuner1(hp); % heuristic ... 

    [Yr,t]=step(hp*hc/(hc*hp+1)); 

    Mega_peak = max(Yr, [], 'all');  

    Mega_time = t(end); 

    Mega_error = sum(abs(Yr-1)); 

    Mega_rel_IAE = Mega_error/length(Yr); 

    if Mega_rel_IAE > 1 || isnan(Mega_rel_IAE) 

        Mega_rel_IAE = -1; 

    end 

    Mega_IAE = Mega_rel_IAE*Mega_time; 

 

    rel_IAE = [ZN_rel_IAE, PID_rel_IAE, PI_rel_IAE, Plain_rel_IAE, Mega_rel_IAE]; 

    IAE = [ZN_IAE, PID_IAE, PI_IAE, Plain_IAE, Mega_IAE]; 

    time = [ZN_time, PID_time, PI_time, Plain_time, Mega_time]; 

    peak = [ZN_peak, PID_peak, PI_peak, Plain_peak, Mega_peak]; 

 

end 

 

Mega_Pidtune_Controller_Executions-function code  
(Alternate function)  

function [rel_IAE, IAE, time, peak] = mega_pidtune_controller_executions(hp) 

     

    %Megatuner 

    [hc,rho]=megatuner1(hp); % heuristic ... 

    [Yr,t]=step(hp*hc/(hc*hp+1)); 

    Mega_peak = max(Yr, [], 'all'); 

    Mega_time = t(end); 

    Mega_error = sum(abs(Yr-1)); 

    Mega_rel_IAE = Mega_error/(length(Yr)); 
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    if Mega_rel_IAE > 1 || isnan(Mega_rel_IAE) 

        Mega_rel_IAE = -1; 

    end 

    Mega_IAE = Mega_rel_IAE*Mega_time; 

 

    %PID 

    hc=pidtune(hp, 'PID'); 

    [Yr,t]=step(hp*hc/(hc*hp+1)); 

    PIDtune_peak = max(Yr, [], 'all'); 

    PIDtune_time = t(end); 

    PIDTune_error = sum(abs(Yr-1)); 

    PIDtune_rel_IAE = PIDTune_error/(length(Yr)); 

    if PIDtune_rel_IAE > 1 

        PIDtune_rel_IAE = -1; 

    end 

    PIDtune_IAE = PIDtune_rel_IAE*PIDtune_time;  

 

    %PI 

    hc=pidtune(hp, 'PI'); 

    [Yr,t]=step(hp*hc/(hc*hp+1)); 

    PItune_peak = max(Yr, [], 'all'); 

    PItune_time = t(end); 

    PITune_error = sum(abs(Yr-1)); 

    PItune_rel_IAE = PITune_error/(length(Yr)); 

    if PItune_rel_IAE > 1 

        PItune_rel_IAE = -1; 

    end 

    PItune_IAE = PItune_rel_IAE*PItune_time;  

 

    rel_IAE = [Mega_rel_IAE, PIDtune_rel_IAE, PItune_rel_IAE]; 

    IAE = [Mega_IAE, PIDtune_IAE, PItune_IAE]; 

    time = [Mega_time, PIDtune_time, PItune_time]; 

    peak = [Mega_peak, PIDtune_peak, PItune_peak]; 

 

end 

 

Controller_Result_Display-function code 
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function controller_result_display(tot_rel_IAE, tot_IAE, time, peak, index, ctrl) 

 

%Finding the crashes in the matrix 

crash_idx = tot_rel_IAE(:, index) < 0; 

 

%Calculating the average relative IAE 

non_crash_rel_IAE = tot_rel_IAE(~crash_idx, index); 

avg_rel_IAE = sum(non_crash_rel_IAE)/length(non_crash_rel_IAE); 

 

%Calculating the average IAE 

non_crash_IAE = tot_IAE(~crash_idx, index); 

avg_IAE = sum(non_crash_IAE)/length(non_crash_IAE); 

 

%Calculating average time 

non_crash_time = time(~crash_idx, index); 

avg_time = sum(non_crash_time)/length(non_crash_time); 

 

%Calculating average peak 

non_crash_peak = peak(~crash_idx, index); 

avg_peak = sum(non_crash_peak)/length(non_crash_peak); 

 

%Calculating STD of relative IAE 

std_rel_IAE = std(non_crash_rel_IAE); 

%Calculating STD of IAE 

std_IAE = std(non_crash_IAE); 

%Calculating STD of Time 

std_time = std(non_crash_time); 

 

%Printing the results 

disp([ctrl, ' average IAE = ', num2str(avg_rel_IAE)]); 

disp([ctrl, ' IAE = ', num2str(avg_IAE)]); 

disp(['Time average = ', num2str(avg_time)]); 

disp(['Peak average = ', num2str(avg_peak)]); 

disp(['STD of relative IAE = ', num2str(std_rel_IAE)]); 

if sum(crash_idx) > 0 

    disp(['# of crashes for ', ctrl, ': ', num2str(sum(crash_idx))]); 

end 

disp(' '); 
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Appendix D 

 

Additional Data for Time Delay and ZPK Model 
Comparison 
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Comparison Between Exact- and Approximate Time Delays 

The below table, Table 16, shows the resulting data from testing the exact time delay, 𝑒−𝜏𝑠, 

with the two approximations, Pade and Skogestad, on the “megatuner” controller. The goal 

was to replace the exact time delay with a solution which resembled its results, and from the 

below table, it may be seen that the difference between the exact time delay differs significantly 

from the exact time delay. However, the result from the approximations resembles each other 

and would be suitable for replacing the other approximation.  

 

Table 16: Test results from “megatuner” using “drss”-created systems with exact time delay, and Pade- and 

Skogestad approximation of the time delay 

 Exact Pade Skogestad 

Rel. IAE 

(Avg. IAE) 
 

0.1834 

(1.89) 

0.1250 

(1.53) 

0.1337 

(1.48) 

STD. IAE 0.0721 0.0479 0.0636 

Avg. Time  9.99 11.24 11.36 

Avg. Peak 1.117 1.110 1.094 

# of crashes 0 0 0 

 

Comparison Between Transfer Function and ZPK-Model 

The above table displays the results from testing the exact time delay with two approximations, 

however, seeing as neither approximation resembles the exact time delay, the system, with the 

exact time delay, was converted into a Zero-Pole-Gain-model (ZPK model). From the table 

below, Table 17, the results from both the original transfer function and the ZPK model 

conversion are displayed across the five controllers. The results show comparable results, with 

the main difference being the number of crashes for the PRC ZN controller and the 

“pidstd(PID)” controller.  

 

Table 17: Test results from ZN, “pidstd(PID)”, “pidstd(PI)”, “megatunerplain”, and “megatuner” using “rss”-

created with the transfer function and a ZPK-model 

 PRC ZN Pidstd(PID) Pidstd(PI) Megatunerplain Megatuner 

Transfer Function 

Rel. IAE 

(Avg. IAE) 

0.1974 

(1.58) 

0.2570 

(507.51) 

0.1752 

(22.18) 

0.2146 

(13.68) 

0.1885 

(2.13) 

STD. IAE 0.0319 0.0766 0.0224 0.0455 0.0718 
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Avg. Time 8.02 1976.51 126.59 63.75 11.31 

Avg. Peak 1.710 0.985 1.000 1.007 1.110 

# of crashes 6 2 1 0 0 

ZPK-Model 

Rel. IAE 

(Avg. IAE) 

0.1984 

(1.53) 

0.2810 

(578.77) 

0.1837 

(39.73) 

0.2108 

(7.74) 

0.1930 

(2.70) 

STD. IAE 0.0390 0.1587 0.0270 0.0438 0.0616 

Avg. Time 7.71 2059.67 216.27 36.70 14.00 

Avg. Peak 1.608 0.958 0.997 1.011 1.104 

# of crashes 3 7 1 1 0 

 

 
 

 


