
www.usn.no

FMH606 Master’s Thesis 2022
Industrial IT and Automation

Automatic data collection, visualization and

predictive maintenance during probe

calibration in CNC machines

Walter Johansson

Faculty of Technology, Natural Sciences and Maritime Sciences

Campus Porsgrunn

http://www.usn.no

2

www.usn.no

Course: FMH606 Master’s Thesis 2022
Title: Automatic data collection, visualization and predictive maintenance dur-

ing probe calibration in CNC machines
Pages: 97

Keywords: CNC machines, Probe calibration data, Automatic data collection, Ma-
chine learning, Predictive maintenance, Principal component analysis

Student: Walter Johansson
Supervisor: Håkon Viumdal

External partner: Kongsberg Terotech AS, GKN Aerospace Norway AS

Summary:
GKN Aerospace is a world leading supplier of engine parts in the aerospace industry, for
both military and commercial engine programs. One of GKN’s 51 manufacturing locations
is GKN Aerospace Norway AS (GAN), located in Kongsberg. GAN has numerous CNC
machines that produces engine parts with strict tolerances. To measure parts and machine
tools the CNC machines contain several measuring probes, needing frequent calibration. The
visualization of the calibration data for analysis is a manual job that needs to be automated.
Further, possibilities to utilize the calibration data for predictive maintenance would be
useful for GAN. The objectives of the project is therefore to define a system for automatic
collection and visualization of the calibration data, and to investigate possibilities regarding
the use of Machine Learning (ML) to predict machine- or equipment health. In collaboration
with GAN, a 5-axis vertical machining center (M5081) was chosen as the concept machine.
A new log type with a uniform notation and setup was developed an tested on M5081. The
system defined was tested locally with the same tools used in the CoPilot environment at
GAN. CoPilot is GAN’s chosen application for monitoring, where the new functionality is
thought implemented. Regarding predictive maintenance a Nonlinear Autoregressive Neural
Network was trained to predict future values of a trigger constant. The resulting prediction
was found insufficient for predicting time until the next machine stop. To investigate possible
correlations between the calibration data and available temperatures in the machine, PCA
was performed. Considering the correlations found here and the possible implementation
of a spindle vibration sensor at GAN, it is concluded that a Nonlinear Autoregressive with
External Input Neural Network should be tested with temperatures and spindle vibration
as inputs, to possibly obtain better predictions.

The University of South-Eastern Norway accepts no responsibility for the results and
conclusions presented in this report.

http://www.usn.no

Preface

This report is written by Walter Johansson, a student attending the Industrial IT and
Automation Industry Master program at the University of South-Eastern Norway. This
report describes the work and research done regarding automatic collection and visualiz-
ation of probe data, and possibilities to use machine learning for multistep prediction, in
collaboration with GKN Aerospace Norway AS (GAN). The thesis is written for operat-
ors and engineers at GAN to increase understanding and utilization of probe calibration
data, as well as investigate possibilities to monitor machine health. Prerequisite know-
ledge about CNC machines, programming and machine learning are assumed prior to
reading this report.

The software used for planning, pre-processing and storage of data, visualization and
machine learning in this project are: MS Project, Node-RED, Grafana, Visio, Visual
Studio Code, pgAdmin, MATLAB and Overleaf implementing LuaLaTeX compiler. The
task description and source code are attached as appendices.

The front page photo has been taken by Walter Johansson and shows a LC50 Digilog
laser and Blum master tool under calibration in M5081.

Special thanks are directed to: Stefan Köwerich, CADCAM Engineer at GKN Aerospace
Norway AS for the supply of data, specifications, NC-programming and other contribu-
tions to the project. Main supervisor Associate Professor Håkon Viumdal at University
of South-Eastern Norway, for guidance through the project.

Kongsberg, 16th May 2022

Walter Johansson

5

6

Contents

Preface 5

Contents 8

List of Figures . 10

List of Tables . 11

1 Introduction 15

1.1 Background . 15

1.2 System description . 16

1.3 Objectives and Predictive Maintenance . 17

1.4 Methods . 18

1.5 Report structure . 19

2 Machine description 21

2.1 Machine geometry . 21

2.2 Measuring principles . 24

2.2.1 Part probe . 24

2.2.2 Tool probe . 26

2.2.3 Blum laser and cube . 27

2.2.4 Light sensor . 29

2.3 Calibration logs . 30

3 Automatic collection of probe data 37

3.1 File transfer . 37

3.2 Node-RED application . 37

3.3 PostgreSQL database . 40

4 Visualization of calibration data 41

5 Machine learning in CNC machining 47

5.1 Machine learning overview . 47

5.2 Previous work on machine learning for CNC machines 48

5.3 Machine health monitoring . 49

5.4 Exploring Machine learning models at GAN 51

5.4.1 Multistep Prediction with a Nonlinear Autoregressive Neural Network . 51

7

5.4.2 PCA . 57

5.4.3 Spindle vibration data . 60

6 Discussion 61

6.1 Machine theory and automatic collection and visualization of probe calibration

data . 61

6.2 Previous work and machine learning at GAN 62

6.3 NAR neural network and PCA . 63

7 Conclusion 65

Bibliography 67

A Task Description 69

B Node-RED 73

C JSON Model Node-RED 79

D PostgreSQL 85

E CreateTargetKubelog.m 89

F NARkubelog.m 93

G kubelogPCA.m 97

8

List of Figures

1.1 System sketch describing the existing manual functionality for transferring
and visualizing log files. 16

1.2 System description of desired automatic functionality. 17

2.1 CAD model of the Forest Linè V 1250 FA (M5081) machine. [3] 22
2.2 CAD drawing of M5081 with the green cart containing the rotational and

straight spindle head. [3] . 23
2.3 Renishaw RMP600 High-Accuracy machine probe and the calibration ring

gauge.
Photo: Walter Johansson . 25

2.4 Master tool for calibration and the Renishaw LP2H tool probe with a
30x30mm cube. Photo: Walter Johansson 26

2.5 CAD drawing showing placement of the Blum laser and tool probe. 27
2.6 Master tool and Blum TC76 tool measuring probe with a 6x6mm cube.

Photo: Walter Johansson . 28
2.7 Visualization of the light sensor at GAN. 29
2.8 Trigger points on the calibration ring gauge. 30
2.9 Sketch of the master tools for the Renishaw and Blum probes with trigger

points marked in green. 31
2.10 Trigger points for the Renishaw and Blum cubes. 32
2.11 Trigger points on the laser beam with the Blum master tool. 33
2.12 Trigger points on the light sensor with the Blum master tool. 33

3.1 Part 1 of Filewatcher-flow in Node-RED. 38
3.2 Part 2 of Filewatcher-flow in Node-RED. 39
3.3 The tables created in the PostgreSQL database. 40

4.1 The dashboards for the different log types created in Grafana. 41
4.2 Dashboard setup with drop-down menus for environmental variables and

rows for panels. 42
4.3 Dashboard setup for global time range and links to other dashboards. . . . 42
4.4 x2 trigger constant plotted versus the nominal limits. 43
4.5 Query for the panel showing x2 vs the nominal limits. 43
4.6 Table for the x2 trigger constant and nominal limits. 44
4.7 The difference x2 − x3 versus nominal limits. 44

9

4.8 Calculated skew on part probe in the x-direction. 45
4.9 Calculated skew on part probe in the y-direction. 45
4.10 The machine-, ambient-, coolant- and spindle oil temperatures for M5081. 46

5.1 Closed loop architecture of the NAR Neural Network with four feedback
delays and ten neurons in the hidden layer. 52

5.2 Process overview after training the neural network with Bayesian regular-
ization backpropagation algorithm. 53

5.3 Plot of the autocorrelation function after training the neural network with
Bayesian regularization backpropagation algorithm. 53

5.4 Regression plots of training set and test set after training the model with
Bayesian regularization backpropagation algorithm. 54

5.5 Error histogram between targets and predicted values after training the
nonlinear autoregressive neural network. 55

5.6 Plot of the predicted output versus the real targets extracted from the time
series, and the model error. 56

5.7 The eight loadings and scores along principal component 1 and 2. 57
5.8 Percentage of total variance explained by each of the principal components. 58
5.9 The eight loadings and scores along Principal component 1 and 3. 59

10

List of Tables

2.1 New log format: CALIB_LOG. 36

11

12

Nomenclature

Symbol Explanation

ABS Absolute value
ANN Artificial neural networks
API Application programming interface
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CNC Computer numerical control
ERD Entity relationship diagram
FFT Fast Fourier transform
GAN GKN Aerospace Norway AS
GAS GKN Aerospace Sweden AB
GUI Graphical user interface
HCA Hierarchical cluster analysis
I4.0 Industry 4.0
IOT Internet of Things
IPG In-process gauge
JSON JavaScript object notation
KTT Kongsberg Terotech AS
LAN Local area network
MES Manufacturing execution system
ML Machine learning
MSE Mean square error
M5081 Abbreviation for Machine number 5081
NAR Nonlinear Autoregressive
NARX Nonlinear Autoregressive with External Input
NCU Numerical processing unit
PCA Principal component analysis
RMS Root mean square
RUL Remaining useful life
RPC Remote procedure call
SVM Support vector machine
SQL Structured query language
TCP/IP Transmission control protocol/Internet protocol

13

Symbol Explanation
UTF-8 Unicode transformation format - 8 bit character encoding

14

1 Introduction

This chapter gives an introduction to the background of the project, a system description
of the desired automatic data collection, objectives for the project including predictive
maintenance and methods used to achieve this. The structure of the report is listed at
the end of the chapter.

1.1 Background

GKN Aerospace is a global business in the aerospace industry and the world’s leading
multi-technology tier 1 aerospace supplier with facilities all over the world, serving over
90% of the world’s aircraft and engine manufacturers. GKN consists of 51 manufacturing
locations in 14 countries, including 14 manufacturing sites only in Europe. Among these
14 manufacturing sites is GKN Aerospace Norway AS (GAN), located in Kongsberg,
with about 350 employees. GAN manufactures several components for jet engines and
gas turbines for the world’s largest air craft manufacturers. GAN participates in several
commercial and military engine programs and specialises in production of shafts, cases,
turbine exhaust cases, turbine rear frames and vanes. [1]

When manufacturing these high precision parts with strict tolerances for customers in the
aerospace industry, high precision CNC-machines are needed. GAN holds about 100 dif-
ferent CNC-machines in their factory, including milling, turning and grinding machines
among others. These CNC-machines produces parts with tolerances down to 1 micro-
meter. To be able to deliver parts that satisfies these strict tolerances the CNC-machines
are equipped with different types of probes for measuring the tools in the machines and
the parts being produced. To ensure accurate measurements and machining, these probes
are calibrated several times a day. These calibrations forms the basis for the work and
research in this project.

When running the measurement cycles for calibrating these probes machine coordinates
are read and stored. In this context these values are called trigger constants. Meaning
the position of the machine axes when the probes triggers at fixed points. These trigger
constants are logged in a file on the machine after every calibration run for further inspec-
tion. The logs are then collected manually and visualized using Microsoft Excel. GAN
would like to continue using these log files, but the process of collecting and visualize them

15

needs to be automated for the data to be utilized by the operators and engineers at GAN.
Further GAN would like to know if collection and visualization of this data can be used
for predictive maintenance purposes, considering that maybe this repetitive measurement
data can give a status on the machine- or equipment health.

1.2 System description

The system GAN wants to achieve is a continuation of the system they have today, but
with additional functionality for collection and visualization of the calibration data. The
main reasons for this is to remove the time consuming job it is to gather the data, as well
as increase utilization of the data by making it available for the operators and engineers.
Figure 1.1 shows the steps in the prevailing process from development of calibration data
logs to manually visualize the data. The calibration cycles are run in the machine, which
for this project is machine M5081. The programmers programming the CNC-machines
(NC-programmers) writes the appropriate trigger constants from the different calibration
methods to log files for each calibration method. These log files are stored locally on a
computer on the machine. From here the files are copied manually to a shared network
drive on one of GAN’s servers by a GAN employee, and further visualized in a MS Excel
sheet.

Machine
(M5081)

Log generation
Manual

visualization

Figure 1.1: System sketch describing the existing manual functionality for transferring and visualizing log
files.

16

1.3 Objectives and Predictive Maintenance

To be able to fulfill GAN’s desired functionality with automatic collection and visualiz-
ation of this data a system needs to be defined including an application for later to run
on their server. This application needs to read the received log files, preprocess them and
write the data to a database. From here the data can be visualized using Grafana, which
is the chosen software for analytics and monitoring by GAN. Figure 1.2 shows the data
flow for automatic collection and visualization of the calibration data.

DatabaseDatabase

Machine
(M5081)

Pre-processing
Visualization

(Grafana)
Log generation

Figure 1.2: System description of desired automatic functionality.

Introducing automatic collection and visualization of the calibration data will increase
the utilization of it. And by making the data available in GAN’s monitoring system,
the operators performing the calibrations can get the results visualized within seconds.
This can help increase their understanding of the machine and alert maintenance person-
nel of abnormal calibration values and deviant behaviour in the machine. Further the
maintenance personnel setting the nominal trigger constants used for validation of the
probe calibrations, can use the visualized data to justify their results after replacing or
performing maintenance on the probes in the machine.

This leads to another important aspect which is predictive maintenance, where the main
idea is to monitor the machine condition and predict the machines reliability. This way
maintenance can be planned and performed early to maximize up-time on the machine,
in relation to repairing when something is broken. In general, CNC machine maintenance
can be divided into three main categories: Preventive maintenance, Predictive mainten-
ance and Reactive maintenance. Preventive maintenance is typically schedule based and
maintenance are performed with fixed intervals. Here issues in the machine are usually
identified before they cause a stop in the machine, but preventive maintenance does not
help against unforeseen machine errors. This kind of maintenance is the strategy most
widely used at GAN, where maintenance are performed based on fixed intervals or hour
counters on specific machine parts. On the other side of the scale is reactive maintenance,
which is based on fixing the machine when it is broken and replace parts when they are
worn out. Between these two strategies is predictive maintenance, which uses data from
sensors in the machine to monitor the machine condition and identify possible errors be-
fore they occur in the machine. This strategy can be cost-saving for companies because

17

they can shorten regular maintenance stops by having spare parts available and avoid
unnecessary stops. [2]

The calibration logs contains trigger constants which is machine positions read from the
measurement system on the machine axes. In theory these trigger constants should be
equal after every calibration run, therefore any changes in these values can directly be
used to monitor the machine axes and machine probes, and possibly give an indication on
the machine health. As mentioned in Chapter 1.1 GAN would like to know if these values
can be used for predictive maintenance, and if there are any correlation between variables
in the machine and the calibration runs being outside their tolerance. This way they can
detect critical changes in the behaviour of the machine before it causes defective parts
or machine stops. The work in this project will contribute with conclusions regarding
the use of the calibration data to predict the machine health or equipment health, and
investigate possibilities to use calibration data to foresee an error with a machine learning
model.

1.4 Methods

To accomplish the goals in this project the following methods will be used: Provide
general theory on the machine structure and measuring principles on a concept machine
for this project. Research existing work done regarding machine learning and health
monitoring of CNC machines. Define and simulate the process with automatic collection
and visualization of calibration data with the tools desired by GAN. Explore machine
learning methods for use to utilize calibration data and possibly predict machine stops.
Optionally make a related machine learning model that can later be implemented at
GAN.

18

1.5 Report structure

Chapter 1 gives an introduction to the background of the project, and describes objectives
regarding utilization of probe data and predictive maintenance for the existing system.

Chapter 2 gives a brief description on machine theory and measuring principles for the
concept machine and the calibration logs.

Chapter 3 describes the file transfer and preprocessing of the log files and how the calib-
ration data is stored.

Chapter 4 describes the visualization of the calibration data in Grafana.

Chapter 5 gives a short overview on machine learning and describes previous work done by
GAN and others regarding machine learning in CNC machines. And multistep prediction
of trigger constants with a nonlinear autoregressive neural network is tested.

Chapter 6 discusses the results, solutions and suggested improvements on the automatic
collection and visualization of the calibration data, and the machine learning model
tested.

Chapter 7 brings conclusions to the objectives and goals of the project, and suggestions
for further work.

19

20

2 Machine description

This chapter gives a brief introduction to the main components, construction, concepts
and measuring principles of the concept machine used in this project. The machine is
visualized with a model of the machine made in Siemens NX which is a computer-aided
manufacturing (CAM) software.

2.1 Machine geometry

GAN’s manufacturing site in Kongsberg has over 100 CNC-machines in different shapes,
sizes and configurations. All these machines have different sets of probes and gathers
large sets with data. Therefore one machine which covers several measuring principles
is chosen as the concept machine for this project. This is the Forest Linè V 1250 FA
(M5081) which is a 5-axis vertical machining center. A computer-aided design (CAD)
model of the machine can be seen in Figure 2.1.

21

Z

X
Y

Spindle unit (RAM)

Crossbeam

Column

Table

Base

Figure 2.1: CAD model of the Forest Linè V 1250 FA (M5081) machine. [3]

22

The ”5-axis” term means the number of directions the tool in the machine spindle can
move. In this machine the tool can move along three linear axes and two rotational axes.
From Figure 2.1 the directions of the three linear axes are visualized with the three arrows
in the bottom left corner. The rotating table can be moved along the base towards the
column of the machine in the x-axis. The turquoise spindle box here referred to as the
RAM can be traversed along the crossbeam in the y-axis, and moved up and down towards
the table in the z-axis. The two rotational axes are the rotation of the table referred to
as the C-axis and a rotational spindle head referred to as the B-axis. Figure 2.2 shows
the model of the machine seen from the x-direction. The head with the rotational B-
axis is placed in the green cart and can be changed into the machine to obtain the full
5-axis functionality. The linear axes are equipped with linear encoders used to measure
the position of the axes in relation to the machines zero point, and the rotary axes have
rotary encoders for speed and position control.

Rotational spindle head (B-axis)

Straight spindle head

Figure 2.2: CAD drawing of M5081 with the green cart containing the rotational and straight spindle
head. [3]

23

2.2 Measuring principles

M5081 is equipped with different probes for measuring machine tools and the parts being
processed in the machine. These different measuring probes and measuring principles can
be divided into four categories:

• The in-process gauge (IPG) which is commonly referred to as the part probe at
GAN.

• The probes with an attached cube which is commonly referred to as tool probes at
GAN.

• Blum laser.

• Light sensor.

To ensure accurate measurements with these probes they need to be calibrated frequently.
This is done with various methods, and for the tool probes a master tool is used. The
master tool for calibrating the tool probes have a T shape and touches three sides of the
cube when calibrating. There are two master tools for the tool probes in machine M5081,
one for each of the different cubes in the machine. One of these master tools is also used
to calibrate the light sensor. For calibrating the part probes a calibration ring gauge is
used. The master tools and ring gauge are visualized later in Section 2.3.

2.2.1 Part probe

The part probe used in M5081 is a Renishaw RMP600 high accuracy machine probe,
which can be seen in Figure 2.3 along with the calibration ring gauge. This is the most
common part probe used in GAN’s machines. The part probe is attached to a tool holder
which is changed into the machine spindle. This part probe is used for part set-up to
verify the position of the part relative to the machine and for part verification by in-
process measurements. These in-process measurements are probably more frequent in a
turning machine to measure diameters of the work piece in between cuts, but can also be
used in a milling machine to measure part dimensions as well as machine off sets. The rod
with the small red ball in the end is called the stylus, and the stylus ball is the contact
point between the parts and the measurement probe. When this ball touches the part or
the calibration ring gauge a fast input on the numerical control unit (NCU) is triggered
and the position of the machine axes are read and stored as trigger constants. The part
probe is wireless and powered with batteries. The probe unit in the spindle is the sender
and communicates with the receiver by radio transmission.

24

RMP600 High-
Accuracy machine

probe

Calibration ring
gauge

Figure 2.3: Renishaw RMP600 High-Accuracy machine probe and the calibration ring gauge.
Photo: Walter Johansson

25

2.2.2 Tool probe

The second measuring principle is the tool probe. For machine M5081 this is a probe of
type Renishaw LP2H, which is a touch probe with radio transmission as the Renishaw
probe described in subsection 2.2.1. The difference is that the LP2H probe position is fixed
and the stylus contains a quadratic cube. Figure 2.4 shows the tool probe with the cube
attached to the stylus along with the master tool for calibration, which is changed into
the spindle. The LP2H probe has a higher spring force which makes it more resistant to
machine vibrations which can cause faulty trigger constants. The tool probe is especially
exposed for machine vibrations because the trigger constants are set while the machine
tools are turning. With known machine axis coordinates and a fixed tool probe position,
the length and radius of the machine tools can be measured by touching the different
sides of the cube.

Master tool

Renishaw LP2H tool
probe

Figure 2.4: Master tool for calibration and the Renishaw LP2H tool probe with a 30x30mm cube. Photo:
Walter Johansson

26

2.2.3 Blum laser and cube

The third measuring equipment used in M5081 is the Blum LC50-Digilog laser. The Blum
LC50 laser is a non-contact measurement system with a wide range of applications within
tool measurement and tool monitoring. Possible applications for the Blum LC50 laser
could be monitoring of tool wear and run out measurements to detect poor tool holders.
At GAN LC50 lasers are installed in several machines and are mainly used for measuring
tool length and radius. The laser unit is installed on a bracket with a fixed position next
to the machine table, as seen in Figure 2.5.

Figure 2.5: CAD drawing showing placement of the Blum laser and tool probe.

In addition to the laser unit a Blum TC76 probe is installed on the same bracket as
the laser unit. The probe has a stylus with a cube similar to the Renishaw probe in
subsection 2.2.2. This Blum cube TC76 works in the same way as the Renishaw probe
but is primarily used to measure the alignment of angle heads changed into the spindle.
Both the Blum laser and the Blum cube are calibrated with the same master tool. The
Blum TC76 probe and the master tool can be seen in Figure 2.6.

27

Master tool

Blum TC76 tool
probe

Figure 2.6: Master tool and Blum TC76 tool measuring probe with a 6x6mm cube. Photo: Walter
Johansson

28

2.2.4 Light sensor

The light sensor consists of a Balluff BOS00WF(sender) and a Balluff BOS00WL(re-
ceiver).[4] These Balluff sensors are laser sensors with a fairly high accuracy, but is re-
ferred to as the light sensor at GAN and is used as a protection for the Renishaw cube.
The light sensor is used to measure the tool length with a broad tolerance, meaning it
will only detect if the actual tool is significantly larger or smaller than the desired tool.
This way the light sensor acts as a barrier for the cube to prevent collision if the wrong
tool is changed into the spindle. The light sensor has a fixed position on the same bracket
as the Renishaw cube. An illustration of the light sensor can be seen in Figure 2.7.

Balluff
(Sender)

Balluff
(Receiver)

Balluff
(Sender)

Balluff
(Receiver)

Balluff
(Sender)

Balluff
(Receiver)

Master toolMaster toolMaster tool

Figure 2.7: Visualization of the light sensor at GAN.

The light sensor is calibrated with the same master tool as the Renishaw cube. The
master tool, trigger constants and different logs are explained further in Section 2.3.

29

2.3 Calibration logs

The calibrations done in the machines at GAN are divided into different log types based on
their measuring principle. The calibrations in M5081 are performed in G17, meaning that
the XY-direction is chosen as the axis plane. For machine M5081 there are four different
measuring principles, resulting in four different log types. When calibrating several probes
in different machines with different axis planes, it is difficult to find a uniform descriptive
naming for all the trigger points. Therefore a notation consisting of a two-dimensional
array has been used in the various log files. For the part probes the two-dimensional array
are noted [u,v], where the first index u will be the probe number, and the second index v
will be the different trigger points. The first log is referred to as probelog and holds the
trigger points from the calibration of the part probes. The calibration ring gauge can be
seen in Figure 2.8 where it is seen from above in the machine’s z-direction. The index u
is the probe number for the different part probes the machine magazine holds, and the
second index is the trigger points. Index 0 is the diameter of the stylus ball, 1 and 2 are
the trigger points in the machine’s x-direction, 3 and 4 are the y-direction while 5 is on
top of the ring gauge in the machines z-direction.

[u,2]

[u,4]

[u,1]

[u,3]

[u,5]

Figure 2.8: Trigger points on the calibration ring gauge.

30

The objective when calibrating the part probe is to find the position of the probe ball
relative to the center of the spindle nose. To calculate a possible misalignment of the
stylus a standard Siemens cycle are run in the NCU. This cycle performs two calibration
runs at the desired points visualized in Figure 2.8 with spindle orientation at 0◦ and
180◦. The Siemens cycle calculates the misalignment(skew) of the stylus ball in x and y
direction and stores it in the same two-dimensional array at index 7 and 8.

The second log is Kubelog which contain the trigger points gathered from calibration of
the tool probes. The master tools used for calibration are visualized in Figure 2.9 and
the trigger points on the cubes can be seen in Figure 2.10. As mentioned previously there
are two different cubes in M5081. One Renishaw probe with a quadratic cube of 30mm,
and one Blum probe with a quadratic cube of 6mm. The cubes are calibrated with two
separate master tools that both have similar design.

MachineMachine

Master tool
Renishaw

Machine

Master tool
Renishaw

MachineMachine

Master tool Blum

Machine

Master tool Blum

Machine

Master tool
Renishaw

Machine

Master tool Blum

Figure 2.9: Sketch of the master tools for the Renishaw and Blum probes with trigger points marked in
green.

31

As for probelog, kubelog has a structure with a two-dimensional array [u,v]. The cube in
Figure 2.10 is seen in the machines x-direction. The trigger point with index [u,4] are in
the machine’s z-direction. Because of the positioning, size and mounting of the Renishaw
cube it is not possible to trigger on the surface facing down in the machines z-direction, or
the surfaces in the machines x-direction. Therefore only three trigger points are applicable
for the Renishaw cube. The same trigger points are used on the Blum cube, these trigger
points are visualized on the cube in Figure 2.10.

[u,2]
[u,3]

[u,4]

Figure 2.10: Trigger points for the Renishaw and Blum cubes.

The third log called laserlog consists of the trigger points from calibration of the Blum
laser. The laser beam seen from the machines y+ direction with belonging trigger points
can be seen in Figure 2.11. The calibration of the laser is done with the same master
tool as the Blum cube. [u,0] and [u,1] are the trigger points in the tools length direction
which is the machine’s z-direction, while [u,2] and [u,3] are the trigger points in the tools
radius direction which is the machine’s x-direction.

32

Laser

[u,1]

[u,2]

[u,0]

[u,3]

Figure 2.11: Trigger points on the laser beam with the Blum master tool.

The last log is lyslog which holds the trigger points from calibration of the light sensor.
The light sensors placement makes it difficult to access four trigger points, therefore only
[u,0] in the machine’s z-direction and [u,3] in the machine’s y-direction are relevant. As
mentioned in Chapter 2.2.4 the light sensor acts as a barrier for the Renishaw cube and
has a wide tolerance, therefore it is sufficient enough to gather two trigger constants for
the light sensor.

Light sensor

[u,0]

[u,3]

Figure 2.12: Trigger points on the light sensor with the Blum master tool.

33

With numerous different machines with several measuring principles it is obvious that
there will be a large amount of logs with different set of trigger constants and indexing.
One important aspect with automatically storing, processing and visualizing this calib-
ration data is to have the raw data in a database. This way the data can be accessed
multiple times by several applications and processed again outside the database for ex-
ample for machine learning purposes. The configuration of the different log types up until
the point of this project has been designed in a way to easily being able to manually copy
the data in to excel sheets. This configuration was not optimal to develop further, and
therefore a new configuration of a more uniform log file considered working for possibly
all log types at GAN was developed. The new log type called CALIB_LOG is described
in Table 2.1.

The new log type has a start and end identifier. In case of a transfer of a log file from
the machine to the server fails the log will remain on the machine until the next call for
a file transfer. For calibrations done in between these two transfers the new calibration
data is appended to the existing log file, resulting in a log file possible containing data
from several calibration runs. Therefore it is necessary with a start and end identifier to
safely be able to separate the different logs inside the log file. The MASKINNR variable is
the machine number used to reference the machine at GAN. The INDEX row holds the
probe number equal to the index u in the two-dimensional array notation used earlier in
Chapter 2. The DATE row contains the full timestamp which in combination with the
machine number is used to uniquely identify each calibration run when referencing them
in the database later on in Chapter 3 and 4. x0 − x10 are the trigger constants similar
to the index v in the two-dimensional array notation. nom0 − nom10 are the nominal
values for the trigger constants x0 − x10. These nominal values can be compared to the
trigger constants, which forms the basis for the diff value which is the tolerance that the
trigger constants can deviate from the nominal values. This diff value is a relatively large
tolerance in this context, normally 0.15mm. Which gives:

ABS(xn −nomn)< 0.15mm

The reason for this wide tolerance is natural variations with temperature in the machine
metal and mounting brackets. With a significantly smaller value for the diff tolerance
the calibration runs would be outside the thresholds very often. The benefit with this
tolerance is rather in monitoring the tendency and repeatability to identify changes in the
machine axes and structure. And to detect metal shavings or debris on the calibration
equipment. The delta_diff is a smaller tolerance, normally in the area of 0.02mm and is
calculated the following way:

ABS((xn − xn+1)− (nomn −nomn+1))< 0.02mm

This tolerance can be significantly smaller because it isn’t affected by machine variations
in the same way. The trigger constant on one side of the cube or laser is subtracted

34

from the trigger constant on the opposite side and compared to the sum of the respective
nominal values. Because of bending of the stylus on the probe when triggering and the
laser not triggering exactly at the edge of the laser beam this calculation is not an exact
measure of the cube- or laser diameter, but can be thought of that way. However, it
should remain fairly constant. Any changes in this calculation implies changes in the
laser quality or cube surfaces and can be used to validate the accuracy of the probes and
changes in the machine.

The average variable is a tolerance that is currently only used in two turning machines
with non-rotational tool holders at GAN, but is thought implemented in milling machines
in the future. The average variable is further described in Chapter 4. The last variables
in the table are the alternative temperatures temp0−temp9. Since different machines have
different number of temperature sensors available there is allocated space in the log for
up to ten temperatures. In M5081 there are four temperatures available: Machine tem-
perature, ambient temperature, cooling liquid temperature and spindle oil temperature.
The temperatures are written in the log file at the end of each calibration run and are
therefore synchronized with the calibration data. The use of these temperatures to po-
tentially improve a Machine Learning (ML) model will be further investigated in Chapter
5. A third party software used to transfer the log files with a method mentioned later
in Chapter 3.1 appends a timestamp to the filename before transferring the files. This
timestamp includes year, minute and seconds and is used to separate different log files.
Because of natural limitations in the machine and file transfer it is not possible to perform
two calibrations within a second and therefore the resolution in second is sufficient enough
for unique file naming.

Variables in the logs that are not applicable for the current calibration run are set to
NULL. This way variables that are not applicable for the different visualizations described
in Chapter 4 can be filtered out.

35

Table 2.1: New log format: CALIB_LOG.
Log rows Description
start xxxxxlog Start identifier
maskinnr: Machine number
index: Probe number
date: Timestamp dd-mm-yyyy hh:mm:ss
x0: Trigger constant
x1: Trigger constant
x2: Trigger constant
x3: Trigger constant
x4: Trigger constant
x5: Trigger constant
x6: Trigger constant
x7: Trigger constant
x8: Trigger constant
x9: Trigger constant
x10: Trigger constant
nom0: Nominal value trigger constant
nom1: Nominal value trigger constant
nom2: Nominal value trigger constant
nom3: Nominal value trigger constant
nom4: Nominal value trigger constant
nom5: Nominal value trigger constant
nom6: Nominal value trigger constant
nom7: Nominal value trigger constant
nom8: Nominal value trigger constant
nom9: Nominal value trigger constant
nom10: Nominal value trigger constant
di f f : di f f > ABS(xn −nomn)
delta_di f f : delta_di f f > ABS((xn − xn+1)− (nomn −nomn+1))

average: average > ABS(xn−xn+1
2)

temp0: Alternative temperature
temp1: Alternative temperature
temp2: Alternative temperature
temp3: Alternative temperature
temp4: Alternative temperature
temp5: Alternative temperature
temp6: Alternative temperature
temp7: Alternative temperature
temp8: Alternative temperature
temp9: Alternative temperature
end xxxxxlog End identifier

36

3 Automatic collection of probe data

This chapter describes the communication protocol used to transfer the calibration logs
from the machine to GAN’s server, the application built to preprocess the data and the
database used.

3.1 File transfer

The communication with the machine is performed using Siemens RPC SINUMERIK.
RPC (Remote Procedure Call) is a method used in client-server applications, and the
communication interface between the machine and the host computer is based on the
Ethernet and TCP/IP protocol. GAN has a Windows server is installed as a virtual
machine in their company network and acts as the host for various machines using RPC
communication. At GAN the RPC interface is mainly used for two purposes, file trans-
fer and machine monitoring. A software developed by a third party company is used,
where file transfer can be initiated both from the machine- and host side. Operators can
start transfer of part programs from the host side, and the NC-programmers can request
transfer of for example log files from their programs on the machine. In addition RPC
communication is used in monitoring applications to read status signals such as hour
counters and operating modes. RPC Sinumerik is widely used on both older and newer
machines in GAN’s factory. Therefore it is a desire to continue to transfer the calibration
data in the form of a log file.

3.2 Node-RED application

One initial idea and wish from GAN was to store the raw data from the calibration logs
in a database for further visualization, giving the advantage of making the data available
for multiple applications to run queries against, and perform calculations any number of
times. To process the calibration logs and write the data to a database, an application was
developed in Node-RED. Node-RED is a programming tool for event-driven applications.
It is ideal for wiring together APIs (application programming interface) and handle data
from several hardware devices. Its runtime is built on Node.js and the flow based editor
can combine JavaScript functions and many built-in libraries. [5] Node-RED is used

37

because it is the chosen software for handling data in GKN Aerospace Sweden AB (GAS)
monitoring application called CoPilot. GAS are the developers of CoPilot and GAN are
currently setting up their own CoPilot environment after a test on a selection of their
machines from GAS’ environment. The idea is that the functionality developed in this
project and tested locally can be applicable for integration at GAN when their CoPilot
installation is finished.

The flow developed in Node-RED for processing the calibration logs and writing the data
to a database can be seen in the Figures 3.1 and 3.2. The flow consists of several nodes
which transfer data between them as message objects, where the data is referred to as
payload. The flow of data is from left to right and Figure 3.2 is a continuation from the
SPLIT node seen in Figure 3.1.

Figure 3.1: Part 1 of Filewatcher-flow in Node-RED.

The node called Filewatcher [6] is a pre-made open source node used to detect new files or
changes to files in a selected directory, which in this case is intended set to the directory
the calibration logs from the machine are transferred to. The filename and path is then
pushed to Check f iletype which is a function node using a regular expression (regex) to
validate the filename and type of the received file. Based on the result of this regex test the
result is routed to output one or two, where one is Read CALIB_LOG which reads the file
and passes the result in a message as a single utf8 string, and two is a configurable delay
followed by a move node that moves the file to the error directory. In the case of a valid file
the message from Read CALIB_LOG is passed through a set of function nodes performing
checks and processing the data string. The first node called SORT LOGFILE separates
the different variables in the utf8 string and inserts the data into a two-dimensional array.
This array is sent to the function node SPLIT which checks for start- and end identifiers
and calculates the number of logs, and splits the data into separate messages for each log
in the file.

38

The fourth function node FORMAT QUERY checks the format and length of the array
and throws exceptions if the array doesn’t meet the requirements for the insert query
in the node INSERT . If exceptions are thrown the message is sent through output two,
which moves the file to the Error folder. Otherwise if the message is the last in a sequence
of messages, the log file is moved to the Arkiv folder after the last message is sent. The
INSERT node generates a query with the Mustache template format and passes it to the
toQuery node which moves the payload to a query parameter accepted by the PostgreSQL
node. This node creates a connection to and runs the query against a PostgreSQL data-
base, further described in Chapter 3.3.

Figure 3.2: Part 2 of Filewatcher-flow in Node-RED.

The directory setup with Error and Arkiv folders for processed files is a standard at GAN
used for other applications in their factory. The source code and JSON model for the
described flow in Node-RED are available in Listings B and C.

39

3.3 PostgreSQL database

PostgreSQL is an open source object-relational database that supports SQL (Structured
Query Language) and additional features to store small and large amounts of data. Post-
greSQL is a robust and reliable database system that has a reputation for being the most
advanced Open Source database in the world. To interact with and generate the database
and tables a web-based GUI (Graphical User Interface) tool called pgAdmin was used.
pgAdmin is an open source management platform for use with PostgreSQL databases.[7]
Both pgAdmin and PostgreSQL are used in CoPilot and was therefore chosen for this
project. pgAdmin has its own built-in ERD (Entity relationship diagram) tool that was
used to create the tables for the different log types. The ERD tool generates queries for
the tables that can be reused to expand and generate tables for other logs in the future.
The queries along with other relevant code developed will be delivered with this report
with the purpose to be uploaded in GitLab, which is GAN’s chosen software for source
code and version control.

An overview of the tables created in pgAdmin can be seen in Figure 3.3.

Figure 3.3: The tables created in the PostgreSQL database.

The database consists of the four tables kubelog, probelog, laserlog and lyslog previously
mentioned in Chapter 2.3. The database containing these tables are created with an
extension called TimescaleDB. This extension can be created on PostgreSQL databases
to improve functionality when working with time-series data. The extension does not
influence the PostgreSQL syntax and makes it possible to access a certain time period
without searching through the whole table, making the queries quicker to run. To achieve
this the tables are converted into hypertables by adding a unique index on two columns.
For the tables in Figure 3.3 the columns creating this index are the date : and maskinnr :
columns from Table 2.1. The query for creating the tables in the postgreSQL database
can be seen in Listing D.

40

4 Visualization of calibration data

This chapter describes the monitoring and analytics application Grafana, and the dash-
boards created for monitoring the calibration data at GAN.

Grafana is an open source web application that allows the developer to build graphs,
charts and dashboards, and to query data to be monitored and analyzed. [8] To access
data Grafana needs to connect to a data source, which for this project is the PostgreSQL
database described in Chapter 3.3. Grafana does not validate the safety of the queries
being run and therefore the user provided for connection with Grafana should only be
granted SELECT permissions. This way deleting data and dropping tables will be pre-
vented from the Graphical User Interface (GUI). After setting up the data source the
dashboards seen in Figure 4.1 was created.

Figure 4.1: The dashboards for the different log types created in Grafana.

The dashboards in Grafana are created and customized with an administrator account
and can be implemented into GAN’s Grafana environment in their company network, to
make them available from the GAN employees viewer accounts. Several ways to set up
dashboards for the different log types where considered, however a single dashboard for
each log type was found convenient.

41

Figure 4.2 shows an example of the environmental variables and rows in the kubelog
dashboard. The environmental variables are configured as drop-down menus to be able
to view machines and different probes explicitly. The environmental variables contain
queries run against the database to generate lists of distinct machines and probes, which
can further be used in other queries to filter data. The panels in the dashboards are graphs
and tables which are sorted into rows which can be minimized to increase maneuverability
within the dashboard.

Figure 4.2: Dashboard setup with drop-down menus for environmental variables and rows for panels.

Each dashboard has a global time range, configurable update frequency and links to other
dashboards, as seen in Figure 4.3. The time range is used as a search criteria and views
the actual time range if using the zoom functions in the different panels.

Figure 4.3: Dashboard setup for global time range and links to other dashboards.

The JSON model of the dashboard is the data structure that defines each dashboard.
This model can be exported from each dashboard and imported into GAN’s Grafana
environment for easy implementation.

42

Figure 4.4 shows an example of a panel from kubelog where the trigger constant x2 is
plotted versus the nominal upper and lower limits given by the di f f tolerance from Table
2.1. Each of the dashboards for the different log types have panels for each of the actual
trigger constants versus their respective nominal values. These panels are Grafana’s Time
series graph which gives a good representation of the trigger constants. The panels have
the possibility to change the time range by marking a field in the graph, which changes
the global time range for the dashboard and all belonging panels. The legend in each
panel is at the bottom left corner and shows the variables available. The variables can be
deselected to show only distinct variables or all together. When hovering over the panel
the actual values for each variable are available in the tooltip. This is an important feature
because the old visualization done in MS Excel does not include the unique timestamps
in the tooltip, which makes it more difficult to analyze the data. The query for this panel
can be seen in Figure 4.5.

Figure 4.4: x2 trigger constant plotted versus the nominal limits.

Figure 4.5: Query for the panel showing x2 vs the nominal limits.

43

To increase the readability of the time series each graph has a table linked to it that
follows the same time range. The table for the x2 trigger constant from kubelog can be
seen in Figure 4.6.

Figure 4.6: Table for the x2 trigger constant and nominal limits.

Another panel that is common for several of the dashboards are the graph that shows
the difference between trigger constants with related upper and lower limits. Figure 4.7
shows the difference x2 − x3 versus the nominal limits which is calculated based on the
delta_di f f tolerance from Table 2.1. As mentioned earlier the tolerance for these limits
can be a lot smaller because this check is less affected by machine variations than the di f f
check. Optimally this difference between the respective trigger constants is supposed to
be zero. If the laser were to trigger exactly at the edge of the laser beam, or the probes
triggered immediately when touching the master tool these differences would be exact
measurements of the laser and cube diameter. Because of bending in the stylus of the
probes and accuracy of the laser this is not the case.

Figure 4.7: The difference x2 − x3 versus nominal limits.

44

In addition to increasing utilization and understanding of the calibration data for the
machine operators and engineers, the graphs gives a good overview for maintenance per-
sonnel. The nominal values that forms the basis for the limits seen in the previous figures
are set by the maintenance personnel at Kongsberg Terotech AS (KTT). Previously they
have not had the historical data available when changing a probe and setting new nominal
values, which has often resulted in a unnecessary shifting of the nominal limits. By having
the historical data in the previous figures available while setting new nominal values after
maintenance or replacements of the probes, the maintenance personnel can with higher
certainty declare the machines safe for production after a machine stop or repair.

As mentioned in Chapter 2.3 the part probes are calibrated with a standard Siemens cycle.
Since M5081 is a milling machine with a rotating spindle it is possible to calibrate the
probe with rotation, resulting in the opportunity for the Siemens cycle to calculate the
skew of the stylus ball in the X and Y direction. The results of this calculation are written
in variable x7 and x8 in probelog. By running the calibration cycle at the calibration ring
gauge with 0◦ and 180◦ spindle rotation, the x1,x2 and x3,x4 will be exact opposites while
the displacement of the stylus ball is calculated in variable x7 and x8. In M5081 this
displacement is used in position control to correct the placement of the stylus ball when
using the part probe. An example of the panel showing displacement of the stylus ball in
X and Y direction can be seen in Figures 4.8 and 4.9.

Figure 4.8: Calculated skew on part probe in the x-direction.

Figure 4.9: Calculated skew on part probe in the y-direction.

45

An average value like the skew calculated gives negligible value for other measuring prin-
ciples in M5081, but in for example a turning machine with a non-rotating tool holder
it can be of great use. In a turning machine with no possibility to rotate the part probe
during calibration, there is no compensation in position based on misalignment of the
stylus ball. Therefore GAN has recently introduced average calculation on two turning
machines that uses the average variable from Table 2.1 as tolerance. The average toler-
ance check is not active in M5081 as of today, but is thought used to monitor the skew
in the future.

A temperature panel like the one seen in Figure 4.10 is included in all the Grafana
dashboards. The temperatures shown are the relevant temperatures from each log given
by the variables temp0− temp9 from Table 2.1. Previously the various temperatures in
M5081 was not included in the calibration logs, and therefore there are no history data on
the temperature available for this machine. Machine-, ambient-, coolant- and spindle oil
temperatures are now included in the calibration logs and will be available for monitoring
in the future. As mentioned in Chapter 2.3 an interesting aspect can be if there is any
correlation between temperatures in the machines and the trigger constants, and if they
could potentially be used to improve a ML model.

Figure 4.10: The machine-, ambient-, coolant- and spindle oil temperatures for M5081.

46

5 Machine learning in CNC machining

This chapter will give a short overview on machine learning and describe previous work
done by GAN and others on calibration and vibration data, tool wear and machine dia-
gnostics in CNC machines. Utilization of the calibration data with a nonlinear auto
regressive neural network will be tested, and Principal Component Analysis (PCA) will
be used to investigate possible correlations between the temperature measurements and
the trigger constants available in the machine.

5.1 Machine learning overview

Industry 4.0 often abbreviated I4.0 is a term for the fourth industrial revolution that
involves gathering of large amounts of data through Internet of Things (IOT), as well as
analytics and machine learning techniques used to increase and improve manufacturing.
By introducing new technologies for data gathering in the recent years and retrofitting
older machines with new sensors, GAN gathers a lot of data from the machines in their
factory that with a better understanding probably could be utilized for monitoring and
predictive maintenance. According to Z. M. Cinar Et al. [9] ML is seen as a part of
artificial intelligence and is defined as any program or algorithm that can learn with small
or no additional support, and has already existed for decades in various applications. In
a predictive maintenance perspective ML can be used to predict failure based on models
created of historical data.

Traditionally ML can be divided into the three categories: Supervised learning, Unsu-
pervised learning and Reinforcement learning. The selection of which category to use is
based on the type of data available and how the problem is defined.

Supervised learning is a type of methods where the algorithm uses data sets that are
labeled. Labeled means that the datasets contains the desired solutions. Supervised
learning uses training data sets including the inputs and correct outputs to train a model.
During training, the weights are adjusted until the error is sufficiently minimized through a
validation process. Two important classes for supervised algorithms are classification and
regression. Classification algorithms are used with discrete data where the goal is to find
the decision boundary and divide the data set into two or more classes. This way it can be
possible to map the input variable with the output variable, to be able to predict the class

47

of the output. For regression problems, Linear- and logistical regression algorithms are
often used to understand the relationship between dependent and independent variables.
Regression algorithms works with continuous data and finds the line that best fits the
data set to be able to predict the output. [10] [11]

Unsupervised learning methods uses algorithms that works with unlabeled data sets.
These algorithms can cluster and analyze data to find data groupings and hidden patterns.
Examples of clustering algorithms used in unsupervised learning models can be K-means,
which is an exclusive clustering method and Hierarchical Cluster Analysis (HCA). One-
class SVM and Isolation Forest are examples of anomaly detection algorithms. These can
be used to search through large data sets to find abnormal data points. Another import-
ant category is dimension reduction and visualization, where PCA is most common. PCA
can be used to reduce redundancies and compress data sets as well as for preparation to
visualize the data sets. [12] [11]

Reinforcement learning is a very different approach, where the learning system, often
called agent interprets its environment, acts and then updates its strategy based on a
trial and error manner. [11]

5.2 Previous work on machine learning for CNC machines

In 2021 some research on error detection and probe calibration data in CNC machines
was done for GAN by K.A.S Guldbjørnsen. [13] The aim with the work in his report
was to test a statistical method on data sets provided from GKN and relate these results
to condition-based maintenance and fault recognition. GAN provided calibration data
from a vertical lathe machine called Carnaghi as well as belonging temperature data, and
GAS provided spindle run-out data and bearing data from a milling machine. The report
concluded that it was possible to see a trend in the spindle run-out and bearing data,
because they had a known period where the spindle had a break down. The analysis on
the calibration data set showed possibilities to identify deviations from normal calibration.
The analysis performed was done by scaling the data with a pre processing method called
Z-score, and using PCA and Mahalanobis distance. The work done did not produce
any solution for automatic gathering of the calibration data, nor implementation of the
statistical method at GAN.

Z. Tang et al. [14] performed a study on calibration data from touch probes on a CNC
boring-milling machine with a Siemens 840D SL control system, similar to the control
system on M5081 at GAN. They used probe data from calibrating a touch probe on a
calibration ring gauge for duo active error detection, and wrote a NC-program on the
CNC machine to write log files containing the probe data to an external device host over
LAN. The log files were then processed on the external device/host computer and the
data was stored in a Manufacturing Execution System (MES) database. This is similar to

48

the solution implemented at GAN where the log file is written on the machine and finally
transferred to a host computer, and shows that the analysis and gathering of probe data
are relevant.

GAN’s machine park contains machines from several decades. From machines coming
into production in recent years to machines from before year 2000. Naturally the older
machines don’t have the same technology when it comes to sensor and communication
technology as the newer machines. Therefore retrofitting of older machines to adapt to
I4.0 is an important aspect. D.F.Hesser et al. [15] equipped an old CNC milling machine
with a Bosch XDK programmable sensor device with a built in accelerometer to measure
acceleration data. The aim with their project was to train an Artificial Neural Network
(ANN) to see if they could classify the tool wear and remaining useful life (RUL) of the
machine tool. In the report it is concluded that retrofitting older machines with new
sensors is useful to utilize older machines for I4.0, and calculation of tool wear/RUL can
be achieved with an ANN based on supervised regression, with a sufficient amount of
useful historical data available.

Regarding acceleration data GAS have had monitoring of spindles on numerous machines
for several years. GAN has vibration data available for monitoring from one of their
machines, and are looking at alternatives with additional sensors on other machines to
utilize spindle vibration data. Therefore utilization of vibration data is an interesting
aspect, and vibration data will be available at GAN in the future.

5.3 Machine health monitoring

With the rise of IOT in the industry and easier access to machine specific data, examples of
predictive maintenance and condition monitoring can be found. Y.M Al-Naggar et al. [16]
performed a study where four CNC milling machines was equipped with accelerometers,
where the spindles were the source of vibration. The spindle vibration was sampled
in real time and stored in a database and then processed with Python. A fast fourier
transform (FFT) technique was applied to be able to plot the vibration in the frequency
domain. By using the root mean square (RMS) velocity VRMS, the spindle vibration was
used to determine if the machine was good, satisfactory, unsatisfactory or unacceptable
according to ISO 10816. The decision on the machine condition by comparing the machine
vibration with the vibration severity per ISO 10816 was done manually by inspecting the
GUI, and no ML was utilized. Hence, it was concluded that the vibration monitored from
the sensor mounted on the spindle in the CNC machine could be used to evaluate the
machine condition.

The idea with using machine signals to determine machine health and condition monitor-
ing is an interesting aspect, and to utilize the trigger constants in a predictive maintenance

49

manner and alert before something is about to happen, would be a great achievement for
GAN.

50

5.4 Exploring Machine learning models at GAN

The calibration data for the different measurement principles in machine M5081 are data
with a belonging nominal value. The nominal values are targets for the measured inputs
and therefore a supervised learning approach could be convenient. The trigger constants
gathered are accurate data in the sense that they are measured with precise measurement
systems down to 1 micrometer accuracy. As mentioned earlier di f f and delta_di f f
are strict tolerances used to validate the calibrations in the machine, which means that
a machine learning model would have to have a high degree of accuracy to have any
value in predicting these calibrations. A common error in M5081 are machine stops as a
consequence of the trigger constants from calibrating the cubes exceeding the delta_di f f
tolerance. The cube calibrations are performed with a rotating master tool, which results
in wear on the cubes as more calibrations runs are performed. A goal was therefore to
investigate if the data from kubelog can be used to predict the next machine stop, caused
by a trigger constant exceeding the delta_di f f tolerance. The target in such prediction
will be the variable x2 − x3 as shown in Figure 4.7, which is the difference between the
two trigger constants x2 and x3. This gives a direct correlation between the inputs to the
model and the target.

5.4.1 Multistep Prediction with a Nonlinear Autoregressive Neural Network

To configure, train and test a Nonlinear Autoregressive (NAR) neural network MATLAB
was used. NAR is a neural network that can be trained on a time series and predict
future values for that same time series. The model is trained in open loop form with
real values as feedback, then in closed loop mode the network can predict future values
with internal feedback. The available relevant trigger constants for the Renishaw cube
from the kubelog table was extracted from the PostgreSQL database, resulting in trigger
constants from 1159 calibration runs available for training and testing the neural network.
To be able to use all the trigger constants as one time series and deal with shifting in the
variables due to occasional changes in the nominal values, each variable were subtracted
from its nominal value. Following this outliers were removed with the rmoutliers function
in MATLAB, with median absolute deviations (MAD) which is the default method. The
MATLAB code for creating the target time series and removing the outliers can be seen
in Appendix E.

51

To build and test the NAR neural network with configurable setup, a function called
NARkubelog was created in MATLAB. The code can be seen in Listing F. This function
loads the time series created and extracts a configurable number of trigger constants used
to validate the predictions. The training of the neural network was performed in open
loop mode, meaning that real inputs where fed to the network during training. To predict
the future outputs with internal feedback the network was simulated in closed loop mode,
where the final input states and layer states from the open loop training was used as
initial values for the closed loop simulation. The closed loop architecture of the neural
network can be seen in Figure 5.1.

Figure 5.1: Closed loop architecture of the NAR Neural Network with four feedback delays and ten
neurons in the hidden layer.

The trainlm and trainbr network functions in MATLAB were chosen as two alternatives to
train the model. trainlm is generally a fast backpropagation algorithm using Levenberg-
Marquardt optimization to update the weights and biases, used for supervised problems.
The training is stopped when the network performance fails to improve or stays constant
for a maximum number of epochs. The other training function trainbr where br stands
for Bayesian regularization backpropagation also uses Levenberg-Marquardt optimization
to update the weights and biases, but the training continues until the algorithm finds the
optimal combination of squared errors and weights. [17] [18] When testing and training
the models with the trainlm and trainbr training functions, several configurations with
different number of hidden neurons and delays were tested. A configuration with 10
neurons in the hidden layer, four feedback delays and trainbr as the training function
gave the results seen in the process overview in Figure 5.2. Before training the model
the data was divided into blocks where 80% of the inputs was used for training and 20%
was used to test the network, which is default for the trainbr function. Mean squared
error (MSE) was the quality criterion and the training stopped on Mu after 215 iterations
with a performance of 1.81e−05MSE. Mu is a control parameter that is incremented
and decremented with an increase factor based on the performance value. When the
performance fails to improve for a number of iterations making the Mu parameter exceed
a maximum limit, the training is stopped. Mu, hidden neurons, feedback delays and
the other parameters in the process overview are hyperparameters determined before the
training starts and works as external parameters controlling the learning process, but they
are not part of the final model. For simplicity other hyperparameters where set according

52

to MATLAB’s default values.

Figure 5.2: Process overview after training the neural network with Bayesian regularization backpropaga-
tion algorithm.

A plot used to validate the network performance is the autocorrelation plot seen in Figure
5.3. For an ideal prediction model the autocorrelation function should have one non-zero
value that appear at zero lag. The autocorrelation plot shows the correlation between a
value at one time step and a number of time steps back, and can be used to find patterns
or describe randomness in the data set. The plot was used to find an adequate number of
delays for the model. The correlation values falls approximately in under the confidence
limit for all the different lags which can indicate an appropriate model.

Figure 5.3: Plot of the autocorrelation function after training the neural network with Bayesian regular-
ization backpropagation algorithm.

53

Another plot used to validate the network performance is the regression plot seen in Figure
5.4. This plot displays the outputs with respect to targets for the training set, test set
and finally both combined. Optimally the data should be on the 45 degree dotted line
which would indicate a perfect fit. Even though the data set has some noise after the first
round of removing outliers, R = 0.88659 overall is a fairly accurate result.

Figure 5.4: Regression plots of training set and test set after training the model with Bayesian regulariz-
ation backpropagation algorithm.

54

To get an indication on the outliers and further investigate the network performance the
error histogram seen in Figure 5.5 can be convenient. This histogram shows that the
majority of the instances are gathered around zero error between −0.007 and 0.009. And
the plot indicates an apparent normal distribution where the errors are centered around
the mean, where the noise are white noise from the measurements. The approximately
20 instances outside the mentioned limits can be potential outliers seen on the regression
plot.

Figure 5.5: Error histogram between targets and predicted values after training the nonlinear autore-
gressive neural network.

Finally after validating the network performance and finding the network giving the best
performance, the network was simulated in closed loop mode to predict the future outputs.
The idea with predicting the future outputs is to find a time estimate until the next
machine stop. If it is possible to predict a number of calibrations ahead accurately, and
the number of calibrations per day can be assumed to be somewhat constant, the time
until the next machine stop caused by calibration can be indicated. Figure 5.6 shows the
results after the multistep prediction in closed loop mode. Before training the network the
last 6 instances was extracted from the time series to be used to validate the prediction.

The top subplot shows the real outputs 6 steps ahead indicated by the blue line, and the
predicted outputs from the model indicated by the green line. The bottom subplot shows
the difference between the real output and the predicted output, to better visualize the
magnitude of the error. The plot indicates a maximum absolute error at calibration 4 of

55

Figure 5.6: Plot of the predicted output versus the real targets extracted from the time series, and the
model error.

approximately 6×10−3mm, which is relatively close to the target. However, the predicted
outputs does not seem to follow the same trend as the real outputs. As mentioned earlier
the delta_di f f variable is a small tolerance of about 0.02mm, which means that with a
model with a possible prediction error of 6× 10−3mm, it will be difficult to accurately
predict the time until a calibration is out of tolerance with this model. The MATLAB
code for creating and training the NAR neural network and plotting the predictions can
be seen in Appendix F.

56

5.4.2 PCA

As mentioned previously it can be interesting to investigate the correlation between the
temperature measurements available and the trigger constants. To look into possible
correlations PCA was used. PCA is a dimensionality reduction method used to reduce
the number of variables in a large data set, but maintain as much information as possible.
For the interested reader more information about PCA are available at [19] [20]. Since the
four available temperatures in M5081 was included in the new calibration logs late in the
project period, only 63 samples was available at the time of testing. A dataset containing
the variables x2, x3, x4 and x2−x3 along with the four temperatures was created and loaded
in MATLAB. Further the dataset was normalized and the pca function in MATLAB was
used to get the principal component coefficients, scores and variances. The pca function
centers the data and uses the singular value decomposition algorithm. The plot of the
eight variable vectors and how they contribute to principal component 1 and 2 combined
with the scores can be seen in Figure 5.7.

Figure 5.7: The eight loadings and scores along principal component 1 and 2.

By looking at the first component along the horizontal axis it is clear that it has positive

57

coefficients for the temperature variables, and negative coefficients for the trigger con-
stants. Meanwhile the second component on the vertical axis have positive coefficients
for the variables x2, x2x3, temp1, temp3 and temp4, and negative coefficients for the vari-
ables x3, x4 and temp2. The three loadings x2, x3 and x4 are roughly pointing in opposite
directions of the temperatures temp1, temp2 and temp3, respectively. temp1 is the ma-
chine temperature measured inside the machine room, and temp3 is the temperature of
the cooling liquid being used when machining. These two temperatures are pointing in
approximately the opposite direction of the trigger constant x3. A possible explanation
for this negative correlation can be the fact that the trigger constant x3 is the side of
the cube facing inwards in the machine room, and is most exposed to cooling liquid and
variations in machine room temperature. Similarly x2 is the side of the cube facing to-
wards the tool changer door which is frequently opened, and is exposed to variations in
ambient temperature. Along the vertical axis it can be seen that the loadings x2x3 and
temp4, where temp4 is the temperature of the hydraulic spindle oil, are pointing in the
same direction with relatively high magnitude. This gives an indication that the variables
x2x3 and temp4 are positively correlated. Figure 5.8 shows the percentage of variance ex-
plained by the principal components. Adding the variances for component 1 and 2 gives a
total variance explained by the two components of approximately 64%, which is relatively
low. To describe the data set further principal component 3 are taken into consideration,
giving a total variance explained of approximately 77%. The plot containing scores and
loadings for principal component 1 and 3 can be seen in Figure 5.9.

Figure 5.8: Percentage of total variance explained by each of the principal components.

The plot shows that principle component 3 has a slight positive coefficient for x2x3 and

58

negative coefficients for x4 and temp4. Hence, they belong to the same cluster. This
strengthens the assumption that the variable x2x3 and the spindle oil temperature temp4
are correlated. The x4 variable which is the trigger constant on top of the cube in the
machine’s z-direction is also located in the same cluster. The fact that variations in
spindle temperature affects the trigger constants in the spindle’s travelling direction seems
reasonable. The negative correlations found can indicate a relationship between the trigger
constants and the temperatures measured in and outside of the machine. Taking this into
consideration it is reasonable to believe that temperature measurements can be valuable
inputs to a machine learning model to improve predictions in the future.

Figure 5.9: The eight loadings and scores along Principal component 1 and 3.

59

5.4.3 Spindle vibration data

Regarding potential spindle vibration data from M5081 and other machines at GAN the
findings from Chapter 5.4.2 are interesting. The calibrations with the master tools are
performed with a rotating tool, with a spindle speed in the area of 1000 − 1500rpm.
Increasing vibration in the spindle could indicate increasing temperature because of the
spindle working on a high speed, or possible wear on bearings. Using spindle vibration
data as an additional input could be a good idea considering the correlations between the
trigger constants, and the measured temperatures from the PCA results.

60

6 Discussion

In this chapter the automatic collection of probe data and visualization in Grafana are
discussed. As well as suggestions for future work, and results from creating an optional
machine learning model and the PCA performed.

6.1 Machine theory and automatic collection and visualization

of probe calibration data

One of the main objectives of the project was to give a general theory description regarding
the measuring principles and machine structure of CNC machines, and to define a system
to automatically transfer log files from a CNC machine. Since GAN have several different
CNC machines with different structures it was agreed upon M5081 being the concept
machine for this project. M5081 is a large machine covering several measuring principles
and has a control system and setup similar to many other machines, which would make
the system defined suitable for a number of machines. To give an overview of the different
trigger constants and their relations to the measuring probes in the machine, the square
bracket notation [u,v] was used. Underway in the project after discussing visualization
layout and naming of variables in Grafana with personnel at GAN, this notation was
found insufficient for further use. Therefore a new template for the calibration log with
a more uniform notation was developed. The new calibration template was implemen-
ted in GAN’s logging routine on M5081, tested and found working sufficient. There are
several possibilities in continuously monitoring machine variables over Ethernet in CNC
machines, and there are several reasons that the solution with transferring a log file was
chosen. Firstly M5081 was delivered with a control system without support for an Open
Platform Communications (OPC) Server, which is most common for continuous monitor-
ing of machine variables at GAN. Secondly the third party software used to transfer log
files on M5081 are used of other machines at GAN, making future implementation of the
new calibration log template and changes in the NC-programmers logging routines easier.
Other arguments for choosing the transfer of a log file instead of continuous monitoring
of variables is the local storage of the log file in case of network issues, and the addi-
tional functionality demanded regarding handshake and synchronisation with continuous
monitoring of the event driven trigger constants. After testing CoPilot for some time
GAN are currently setting up their own docker environment for a full scale installation

61

of CoPilot. Since this installation was postponed until the end of the project period, the
defined system in this project had to be tested locally on a windows computer, resulting
in some simplifications. To be able to reuse parts of the functionality developed, the tools
used in CoPilot including Node-RED, Grafana and pgAdmin implementing the postgr-
eSQL database was chosen. The script for creating the tables with hyperindexes in the
postgreSQL database, as well as the JSON model for the Grafana dashboards created
can be exported and used directly for implementation in CoPilot. For the functionality
developed in Node-RED, the functions regarding decoding of the log files can be reused.
But some modifications must be expected on the file watching part, the queries for the
postgreSQL database, and in the Node-RED application code generally to prepare for
environmental variables. The goal with this project was to suggest and define a system
for automatic collection and visualization of calibration data. The functionality was cre-
ated to test and visualize the flow of data from calibration logs to visualization locally.
When implementing the system in GAN’s CoPilot environment additional functionality
regarding logging and error handling should be considered.

6.2 Previous work and machine learning at GAN

In the literature survey performed mostly work regarding data collection from CNC ma-
chines was found. Most of which referred to work regarding acceleration data and RUL of
machine tools. Some relevant work was found regarding classification of machine condi-
tions based on spindle vibration data, but without machine learning methods implemen-
ted. The article by Z. Tang et al. [14] showed the process of monitoring probe data from
a Siemens 840D SL control system similar to M5081, and wrote a log file directly on a
shared network drive on a host computer. This solution could be used at GKN to avoid
using a third party software for transferring the log files with RPC Sinumerik, which is a
rather obsolete solution. When evaluating different machine learning models suitable for
GAN, supervised learning was emphasized because of the calibration data being a labeled
data set. The possibilities for GAN in the short term was to investigate possibilities to
utilize the calibration data available. The trigger constant x2x3 from kubelog have been
used exclusively when training the machine learning model in the project to delimit the
testing. There may be other trigger constants and useful data in the other log types for
use with the machine learning discussed in this report.

62

6.3 NAR neural network and PCA

Until the final part of the project period when the logging of temperature values star-
ted, the only variables available for use with a machine learning model was the trigger
constants. Several ways to utilize the trigger constants for predictive maintenance were
considered. Firstly a multiclass classification approach was considered and thought to
be most intuitive for the engineers and operators at GAN, possibly giving several states
on the cube condition. A model based on regression could also be used to determine
different states. Because of the strict tolerances for the trigger constants the multiclass
classification and regression approaches was found inconvenient. Since the x2x3 variable
being outside of tolerance often is mainly caused by wear on the cube, an idea was to
train a neural network to use for multistep prediction to be able to predict the time
until the next calibration is outside of tolerance, which could indicate remaining life of
the cube. Because the testing of the NAR neural network was exploratory to investig-
ate possibilities with the calibration data available a static machine learning model was
created, meaning it was trained offline and used to predict the future time steps. For
further testing and possibly better results a dynamic model could be used, and more time
could be put into tuning hyperparameters and gathering more data. To investigate the
possible correlation between the trigger constants and the temperatures available, a brief
PCA was performed. The PCA showed correlations between several trigger constants
and the temperatures measured, which can be argued to have a logical explanation. The
PCA was performed with few temperature samples, and a new PCA in the future when
more temperature samples are available is recommended to investigate the correlations
found further. In hindsight knowing the possible correlations with the temperatures in the
machine a Nonlinear Autoregressive with External Input (NARX) model would possibly
give better multistep prediction of the x2x3 variable. For the future when more calibra-
tion data including temperature samples, and possibly spindle vibration measurements
are available, a NARX model with x4, temperatures and spindle vibration as inputs is
recommended for testing, to see if a better prediction of the trigger constant x2x3 can be
done.

For creating and simulating the static neural network MATLAB was used. Node-RED has
the possibility of running a python node which can execute python scripts. In hindsight for
a future implementation of a machine learning model at GAN a python implementation in
Node-RED is likely to be used. Therefore it would have been convenient if the development
and testing of the neural network were done with python as the programming tool in this
project.

63

64

7 Conclusion

The first objectives of this project was to give a problem description including a system
description, present general theory about measuring principles in CNC machines, perform
a literature survey on predictive maintenance and machine learning in CNC machines
and to define a system for automatically transfer, preprocess, store and visualize the
calibration data. A problem description including a system description of the current
solution was presented, and general theory on the 5-axis vertical machining center (M5081)
and its measuring principles was given. In collaboration with GAN M5081 was chosen
as the concept machine because of its similar configuration with many other machines
at GAN. Functionality developed will therefore be applicable on several machines. A
new template for calibration logs was developed in collaboration with GAN and tested
physically on M5081. The defined system was tested with the same tools used in GAN’s
monitoring application CoPilot, and simulated locally on real log files generated by M5081
following the new template. The log files generated were copied into a folder on a computer
to simulate the log file transfer, and visualized in the developed Grafana dashboards. For a
future implementation in GAN’s CoPilot environment, some modifications must be made
in Node-RED regarding the filewatcher, postgreSQL queries and environment variables.
And additional functionality on logging should be developed for troubleshooting. But
the automatic collection and visualization of probe data was tested successfully at a local
installation with the tools desired by GAN.

The literature survey performed addressed relevant work done regarding logging of probe
data on a CNC machine with similar control system as M5081, and spindle vibration data
seems to be widely used to calculate RUL of machine tools and tool wear. The literat-
ure survey produced no results regarding the use of probe calibration data to determine
machine or equipment health. When looking into opportunities for utilizing probe cal-
ibration data with a machine learning model, it became clear that the use of multistep
prediction to indicate time until the next machine stop caused by calibration of the cubes
could be useful. The nonlinear autoregressive neural network developed did not produce
sufficient enough predictions to be able to foresee the next machine stop caused by a
calibration being outside its tolerance. The PCA was performed on a limited amount of
temperature samples but showed possible relationships between several trigger constants
and temperatures. With this in mind and the possible implementation of a vibration
sensor in the spindle on M5081 in the future, it is concluded that a NARX neural network

65

with temperatures and vibration data as inputs should be tested to possibly provide more
accurate predictions.

66

Bibliography

[1] ‘Gkn aerospace in europe.’ (2022), [Online]. Available: https://www.gknaerospace.
com/en/about-gkn-aerospace/locations/gkn-aerospace-in-europe/.

[2] ‘Cnc machine maintenance: Avoid downtime & keep productivity high.’ (2022),
[Online]. Available: https://www.machinemetrics.com/blog/cnc-machine-
maintenance.

[3] S. Köwerich, ‘Picture of cad model provided by stefan köwerich.,’ GKN Aerospace
Norway AS, 2022.

[4] ‘Balluff - b0s00wf.’ (2022), [Online]. Available: https://www.balluff.com/de-
de/products/BOS00WF#cadCaeBtn.

[5] ‘Node-red.’ (2022), [Online]. Available: https://nodered.org/.
[6] ‘Node-red.’ (2022), [Online]. Available: https://flows.nodered.org/node/node-

red-contrib-watchdirectory.
[7] ‘About pgadmin.’ (2022), [Online]. Available: https://www.pgadmin.org/.
[8] ‘About grafana.’ (2022), [Online]. Available: https://grafana.com/docs/grafana/

latest/introduction/.
[9] Z. M. Cinar, A. A. Nuhu, Q. Zeeshan, O. Korhan, M. Asmael and B. Safaei, ‘Ma-

chine learning in predictive maintenance towards sustainable smart manufacturing
in industry 4.0.,’ MDPI, p. 42, 2020.

[10] ‘Supervised learning.’ (2022), [Online]. Available: https://www.ibm.com/cloud/
learn/supervised-learning.

[11] Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow. O’Reilly Me-
dia, Incorporated, 2015.

[12] ‘Unsupervised learning.’ (2022), [Online]. Available: https://www.ibm.com/cloud/
learn/unsupervised-learning.

[13] K. A. S. Guldbjørnsen, ‘Manufacturing analysis and data acquisition in advanced
machining.,’ p. 67, 2021.

[14] Z. Tang, X. Jiang, W. Zi, X. Shen and D. Zhang, ‘Automatic data collecting and
application of the touch probing system on the cnc machine tool.,’ Hindawi, p. 19,
2021.

67

https://www.gknaerospace.com/en/about-gkn-aerospace/locations/gkn-aerospace-in-europe/
https://www.gknaerospace.com/en/about-gkn-aerospace/locations/gkn-aerospace-in-europe/
https://www.machinemetrics.com/blog/cnc-machine-maintenance
https://www.machinemetrics.com/blog/cnc-machine-maintenance
https://www.balluff.com/de-de/products/BOS00WF#cadCaeBtn
https://www.balluff.com/de-de/products/BOS00WF#cadCaeBtn
https://nodered.org/
https://flows.nodered.org/node/node-red-contrib-watchdirectory
https://flows.nodered.org/node/node-red-contrib-watchdirectory
https://www.pgadmin.org/
https://grafana.com/docs/grafana/latest/introduction/
https://grafana.com/docs/grafana/latest/introduction/
https://www.ibm.com/cloud/learn/supervised-learning
https://www.ibm.com/cloud/learn/supervised-learning
https://www.ibm.com/cloud/learn/unsupervised-learning
https://www.ibm.com/cloud/learn/unsupervised-learning

[15] D. F. Hesser and B. Markert, ‘Tool wear monitoring of a retrofitted cnc milling
machine using artificial neural networks.,’ Elsevier, p. 4, 2018.

[16] Y. M. Al-Naggar, N. jamil, M. F. Hassan and A. R. Yusoff, ‘Condition monitoring
based on iot for predictive maintenance of cnc machines.,’ Elsevier, p. 5, 2021.

[17] ‘Trainlm - levenberg-marquardt backpropagation.’ (2022), [Online]. Available: https:
//se.mathworks.com/help/deeplearning/ref/trainlm.html.

[18] ‘Trainbr - bayesian regularization backpropagation.’ (2022), [Online]. Available: https:
//se.mathworks.com/help/deeplearning/ref/trainbr.html;jsessionid=
fc4e850f308ab22c32f2110197a9.

[19] ‘A step-by-step explanation of principal component analysis (pca).’ (2022), [Online].
Available: https : / / builtin . com / data - science / step - step - explanation -
principal-component-analysis.

[20] K. H. Esbensen, Multivariate data analysis - in practice: An introduction to mul-
tivariate data analysis and experimental design. Oslo: Camo, 2001.

68

https://se.mathworks.com/help/deeplearning/ref/trainlm.html
https://se.mathworks.com/help/deeplearning/ref/trainlm.html
https://se.mathworks.com/help/deeplearning/ref/trainbr.html;jsessionid=fc4e850f308ab22c32f2110197a9
https://se.mathworks.com/help/deeplearning/ref/trainbr.html;jsessionid=fc4e850f308ab22c32f2110197a9
https://se.mathworks.com/help/deeplearning/ref/trainbr.html;jsessionid=fc4e850f308ab22c32f2110197a9
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis

Appendix A

The task description for the project.

This appendix contains the task description for the Master’s thesis Automatic data col-
lection, visualization and predictive maintenance during probe calibration in CNC ma-
chines.

69

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

FMH606 Master's Thesis

Title: Automatic collection and visualization of probe data from calibration in CNC-machines
and outlooks for machine learning implementation.

USN supervisor: Håkon Viumdal.

External partner: GKN Aerospace Norway AS, Stefan Köwerich and Kongsberg Terotech, Lars
Ingebrigtsen.

Task background:
All CNC-machines at GKN Aerospace Norway AS are equipped with different types of probes
for measuring tools and parts. These probes need to be calibrated several times a week to
ensure accurate measurements. The measurements (trigger constants) from these
calibration runs are stored in a logfile on the machine. These measurements can give an
excellent status on the machine health if visualized and monitored correctly. This
visualization is today a manual job where the calibration results are copied into an excel
sheet. This process with collecting, processing, and visualizing the data needs to be
automated. The probe calibration data is already stored in a file on the machine and needs
to be transferred over ethernet, processed, and written to a database. The data stored in the
database needs to be visualized. Further GKN would like to know how the data from the
calibrations can be utilized in the future for predictive maintenance.

Task description:

• Problem description including a system description
• General theory about measuring principles in CNC-machines and the machine

structure.
• Perform literature survey on predictive maintenance and machine learning,

emphasizing automated health monitoring of CNC-machines or similar applications.
• Defining a system to automatically transfer log files from machine to server over

Ethernet, and to create and store the calibration data in a database.
• Process and visualize the calibration data, in a way that can later be implemented

into GKNs existing monitoring system and utilized for the process operators and the
engineers that are monitoring the machines.

• Preprocess the data in order to be applied on machine learning algorithms.
• Evaluate various machine learning methods that can be applied for visualization and

monitoring of the machine health.
• Optional: Make a related machine learning model for one of the CNC-machines,

according to the evaluations done in the former point.

Student category: Reserved for IIA Industry Master student at Terotech.

The task is suitable for online students (not present at the campus): Reserved

Practical arrangements:
Access to data sets at GKN Aerospace Norway will be provided.

Supervision:
As a general rule, the student is entitled to 15-20 hours of supervision. This includes
necessary time for the supervisor to prepare for supervision meetings (reading material to
be discussed, etc).

Signatures:

Supervisor (date and signature):

Student (write clearly in all capitalized letters):

Student (date and signature):

Skien, 27.01.2022

WALTER JOHANSSON

Kongsberg 31.01.2022

Appendix B

Source code for JavaScript function nodes in

Node-RED.

This appendix contains the source code for the JavaScript function nodes in the Node-
RED flow developed in this project.

73

1 // Init

2 bool = fa l se ;
3 f i e l d = "" ;
4 l og type = "" ;
5 f i l ename = "" ;
6 moveFile = ’Arkiv’ ;
7

8 // Functions

9 function useRegex (input) {
10 l e t regex = /CALIB LOG+ \d\d\d\d\d\d\d\d\d\d\d\d \ .MPF/ i ;
11 return regex . t e s t (input) ;
12 }
13

14 // Error handling

15 bool = useRegex (msg . f i l e) ;
16 node . s t a tu s (bool) ;
17 i f (bool == fa l se) { node . s t a tu s ("Feil filtype") ; moveFile = ’Error’ ; }
18 i f (msg . type == "none") { return null ; }
19

20

21 // Switch payload

22 i f (moveFile === "Arkiv") {
23 return [msg , null] ;
24 } else i f (moveFile === "Error") {
25 return [null , msg] ;
26 } else {
27 node . e r r o r ("Feilet") ;
28 return null ;
29 }

Listing 1: Check filetype function node in Node-RED.

1 // Init

2 twoDarray = new Array (2) ;
3 oneDarray = new Array (1) ;
4 l e t message = msg . payload ;
5 timestamp = ’’ ;
6 machinenr = ’’ ;
7 l i n e s = message . s p l i t (/\ r \n | \ r | \n/) . l ength ;
8

9 // Create array

10 l ength = message . s p l i t (’ ’) . l ength ;
11 array = [] ;
12 datoarray = [] ;
13 machinearray = [] ;
14 array = message . s p l i t ("\n" , l ength) ;
15 node . s t a tu s (array . l ength) ;
16 // Create two -dimensional array

17 f o r (l e t i = 0 ; i <= array . l ength − 1 ; i++) {
18 i f (array [i] . i n c l ud e s (’START’) | | array [i] . i n c l ud e s (’END’)) {
19 d e l im i t e r = ’ ’ ;
20 }
21 else {
22 d e l im i t e r = ’:’ ;
23 }
24 // Format ’DATE’

25 i f (array [i] . i n c l ud e s (’DATE:’)) {
26 array [i] = array [i] . tr im () ;
27 datoarray [0] = array [i] . s ub s t r i ng (0 , 5) ;
28 datoarray [0] = datoarray [0] . r ep l a c e (’:’ , ’’) ;
29 datoarray [1] = array [i] . subs t r (5) ;
30 datoarray [1] = datoarray [1] . r ep l a c e (’.’ , ’-’) . r ep l a c e (’.’ , ’-’) ;
31 oneDarray = datoarray ;
32 datoarray = [] ;
33 } else i f (array [i] . i n c l ud e s (’MASKINNR ’)) {
34 machinearray [0] = array [i] . s ub s t r i ng (0 , 9) ;
35 machinearray [0] = machinearray [0] . r ep l a c e (’:’ , ’’) ;

36 machinearray [1] = ’M’ + array [i] . subs t r (9) ;
37 // Remove whitespace

38 machinearray [1] = machinearray [1] . r ep l a c e (/\ s /g , "")
39 oneDarray = machinearray ;
40 machinearray = [] ;
41 }
42 else {
43 oneDarray = array [i] . s p l i t (d e l im i t e r) ;
44 // Remove whitespace

45 oneDarray = oneDarray .map(element => {return element . tr im () ; }) ;
46 }
47

48 i f (oneDarray [0] != undef ined) {
49 twoDarray . push (oneDarray) ;
50 }
51 }
52

53 msg . payload = twoDarray ;
54 return msg ;

Listing 2: SORT LOGFILE function node in Node-RED.

1 // Init

2 s t a r t = fa l se ;
3 end = fa l se ;
4 newpayload = [] ;
5 numMessages = 0 ;
6 msg . l a s tmessage = fa l se ;
7

8 i = 2 ;
9 while (i < msg . payload . l ength) {

10 i f (msg . payload [i] [0] == ’START’) {
11 s t a r t = true ;
12 end = fa l se ;
13 }
14 i f (msg . payload [i] [0] == ’END’) {
15 end = true ;
16 s t a r t = fa l se ;
17 }
18 i f (s t a r t == true && end == fa l se) {
19 newpayload . push (msg . payload [i])
20 }
21 i f (s t a r t == fa l se && end == true) {
22 newpayload . push (msg . payload [i])
23 node . send ({ payload : newpayload , f i l e : msg . f i l e , f i l ename : msg . f i l ename ,

las tMessage : msg . l a s tmessage }) ;
24 numMessages = numMessages + 1 ;
25 s t a r t = fa l se ;
26 end = fa l se ;
27 newpayload = [] ;
28 }
29 i++;
30 }
31 msg . l a s tmessage = true ;
32 node . send ({ payload : newpayload , f i l e : msg . f i l e , f i l ename : msg . f i l ename , las tMessage : msg .

l a s tmessage }) ;

Listing 3: SPLIT function node in Node-RED.

1 // Init

2 msg . format = ’ok’ ;
3

4 i f (msg . las tMessage == fa l se)
5 {
6 // Check format

7 i f (msg . payload . l ength != 40) {
8 node . e r r o r (’Feil format p fil’) ;

9 msg . format = ’feil’ ;
10 return [null , msg , null] ;
11 }
12

13 // Switch payload

14 i f (msg . format === "ok") {
15 return [msg , null , null] ;
16 }
17 }
18

19 // Last message , move file

20 i f (msg . las tMessage === true) {
21 return [null , null , msg] ;
22 } else {
23 node . e r r o r ("Error") ;
24 return null ;
25 }

Listing 4: FORMAT QUERY function node in Node-RED.

1 INSERT INTO pub l i c .{{ payload . 0 . 1}} (” time” , machineno , index , x0 , x1 , x2 , x3 , x4 , x5 , x6 , x7
, x8 , x9 , x10 , nom0 , nom1 , nom2 , nom3 , nom4 , nom5 , nom6 , nom7 , nom8 , nom9 , nom10 ,

2 d i f f , d e l t a d i f f , average , temp0 , temp1 , temp2 , temp3 , temp4 , temp5 , temp6 , temp7 , temp8 ,
temp9)

3 va lue s (’ {{payload . 3 . 1}} ’ , ’ {{payload . 1 . 1}} ’ ,{{ payload . 2 . 1}} ,{{ payload . 4 . 1}} ,{{ payload
. 5 . 1}} ,{{ payload . 6 . 1}} ,{{ payload . 7 . 1 } } ,

4 {{payload . 8 . 1}} ,{{ payload . 9 . 1}} ,{{ payload . 10 . 1}} ,{{ payload . 11 . 1}} ,{{ payload . 12 . 1}} ,{{ payload
. 13 . 1}} ,{{ payload . 14 . 1}} ,{{ payload . 15 . 1}} ,{{ payload . 16 . 1}} ,{{ payload . 17 . 1}} ,{{ payload
. 1 8 . 1}} ,

5 {{payload . 19 . 1}} ,{{ payload . 20 . 1}} ,{{ payload . 21 . 1}} ,{{ payload . 22 . 1}} ,{{ payload . 23 . 1}} ,{{
payload . 24 . 1}} ,{{ payload . 25 . 1}} ,{{ payload . 26 . 1}} ,{{ payload . 27 . 1}} ,{{ payload . 28 . 1}} ,{{
payload . 2 9 . 1}} ,

6 {{payload . 30 . 1}} ,{{ payload . 31 . 1}} ,{{ payload . 32 . 1}} ,{{ payload . 33 . 1}} ,{{ payload . 34 . 1}} ,{{
payload . 35 . 1}} ,{{ payload . 36 . 1}} ,{{ payload . 37 . 1}} ,{{ payload . 3 8 . 1 } }) ;

Listing 5: Insert query in Mustache template format from the INSERT node in Node-RED.

78

Appendix C

JSON model for Node-RED flow.

This appendix contains the JSON model for the Node-RED flow.

79

Listing 1: JSON model for the flow in Node-Red.

1 [{"id":"2c38f497.2c2a0c","type":"tab","label":"Filewatcher/
Filelogger","disabled":false,"info":""},{"id":"2c3cccef.41af
24","type":"file in","z":"2c38f497.2c2a0c","name":"Read
CALIB_LOG","filename":"","format":"utf8","chunk":false,"
sendError":false,"encoding":"none","x":510,"y":100,"wires":[
["f894ee9a.b57db"]]},{"id":"42b8d509.3bf0ac","type":"
function","z":"2c38f497.2c2a0c","name":"Check filetype","
func":"// Init\nbool = false;\nfield = \"\";\nlogtype =
\"\";\nfilename = \"\";\nmoveFile = ’Arkiv’;\n\n// Functions
\nfunction useRegex(input) {\n let regex = /CALIB_LOG+_\\
d\\d\\d\\d\\d\\d\\d\\d\\d\\d\\d\\d\\.MPF/i;\n return
regex.test(input);\n}\n\n// Error handling\nbool = useRegex(
msg.file);\nnode.status(bool);\nif (bool == false) { node.
status(\"Feil filtype\"); moveFile = ’Error’; }\nif (msg.
type == \"none\") { return null; }\n\n\n// Switch payload\
nif (moveFile === \"Arkiv\") {\n return [msg, null];\n}
else if (moveFile === \"Error\") {\n return [null, msg]
;\n} else {\n node.error(\"Feilet\");\n return null;\n
}\n\n","outputs":2,"noerr":0,"initialize":"","finalize":"","
libs":[],"x":320,"y":120,"wires":[["2c3cccef.41af24"],["71a7
7f6b.76667"]]},{"id":"f894ee9a.b57db","type":"function","z":
"2c38f497.2c2a0c","name":"SORT LOGFILE","func":"// Init\
ntwoDarray = new Array(2);\noneDarray = new Array(1);\nlet
message = msg.payload;\ntimestamp = ’’;\nmachinenr = ’’;\
nlines = message.split(/\\r\\n|\\r|\\n/).length;\n\n//
Create array\nlength = message.split(’ ’).length;\narray = [
];\ndatoarray = [];\nmachinearray = [];\narray = message.
split(\"\\n\",length);\nnode.status(array.length);\n//
Create two-dimensional array\nfor (let i = 0; i <= array.
length - 1; i++) {\n if(array[i].includes(’START’) ||
array[i].includes(’END’)) {\n delimiter = ’ ’;\n }
\n else {\n delimiter = ’:’;\n }\n //
Format ’DATE’\n if(array[i].includes(’DATE:’)){\n
array[i] = array[i].trim();\n datoarray[0] = array[i]
.substring(0,5);\n datoarray[0] = datoarray[0].
replace(’:’,’’);\n datoarray[1] = array[i].substr(5)
;\n datoarray[1] = datoarray[1].replace(’.’,’-’).
replace(’.’,’-’);\n oneDarray = datoarray;\n
datoarray = [];\n } else if(array[i].includes(’MASKINNR’)
) {\n machinearray[0] = array[i].substring(0,9);\n

machinearray[0] = machinearray[0].replace(’:’,’’);\n
machinearray[1] = ’M’ + array[i].substr(9);\n

// Remove whitespace\n machinearray[1] = machinearray
[1].replace(/\\s/g, \"\")\n oneDarray = machinearray
;\n machinearray = [];\n }\n else {\n
oneDarray = array[i].split(delimiter);\n // Remove
whitespace\n oneDarray = oneDarray.map(element => {
return element.trim();});\n }\n \n if (oneDarray[0]
!= undefined) {\n twoDarray.push(oneDarray);\n }\
n}\n\nmsg.payload = twoDarray;\nreturn msg; \n\n\n\n\n\n\n\n
\n\n\n\n\n\n\n\n\n\n\n\n","outputs":1,"noerr":0,"initialize"
:"","finalize":"","libs":[],"x":700,"y":100,"wires":[["34650
371.1a2dbc"]]},{"id":"232c67e2.5a2918","type":"postgresql","
z":"2c38f497.2c2a0c","name":"PostgreSQL","query":"","
postgreSQLConfig":"1f5943dc.3dc0ec","split":false,"
rowsPerMsg":1,"outputs":1,"x":870,"y":300,"wires":[[]]},{"id
":"8f86443b.03a218","type":"change","z":"2c38f497.2c2a0c","
name":"toQuery","rules":[{"t":"move","p":"payload","pt":"msg
","to":"query","tot":"msg"}],"action":"","property":"","from
":"","to":"","reg":false,"x":700,"y":300,"wires":[["232c67e2
.5a2918"]]},{"id":"3c3d4d31.7dc1e2","type":"fs-ops-move","z"
:"2c38f497.2c2a0c","name":"Error","sourcePath":"D:\\Test\\
Filewatcher\\","sourcePathType":"str","sourceFilename":"file
","sourceFilenameType":"msg","destPath":"D:\\Test\\
Filewatcher\\Error","destPathType":"str","destFilename":"
file","destFilenameType":"msg","link":false,"x":670,"y":340,
"wires":[[]]},{"id":"34650371.1a2dbc","type":"function","z":
"2c38f497.2c2a0c","name":"SPLIT","func":"// Init\nstart =
false;\nend = false;\nnewpayload = [];\nnumMessages = 0;\
nmsg.lastmessage = false;\n\ni = 2;\nwhile(i < msg.payload.
length){\n if(msg.payload[i][0] == ’START’){\n
start = true;\n end = false;\n }\n if(msg.
payload[i][0] == ’END’){\n end = true;\n start
= false;\n }\n if(start == true && end == false){\n

newpayload.push(msg.payload[i])\n }\n if(start
== false && end == true){\n newpayload.push(msg.
payload[i])\n node.send({payload: newpayload, file:
msg.file , filename: msg.filename , lastMessage: msg.
lastmessage});\n numMessages = numMessages + 1;\n

start = false;\n end = false;\n
newpayload = [];\n }\n i++;\n}\nmsg.lastmessage = true
;\nnode.send({payload: newpayload, file: msg.file , filename
: msg.filename , lastMessage: msg.lastmessage});\n\n","
outputs":1,"noerr":0,"initialize":"","finalize":"","libs":[]
,"x":850,"y":100,"wires":[["7673b0c1.b4bd3"]]},{"id":"7673b0

c1.b4bd3","type":"function","z":"2c38f497.2c2a0c","name":"
FORMAT QUERY","func":"// Init\nmsg.format = ’ok’;\n\nif (msg
.lastMessage == false)\n{\n // Check format\n if(
msg.payload.length != 40){\n node.error(’Feil format
p fil’);\n msg.format = ’feil’;\n return [
null, msg, null];\n }\n \n // Switch payload\n
if (msg.format === \"ok\") {\n return [msg, null,
null];\n }\n}\n\n// Last message, move file\nif (msg.
lastMessage === true) {\n return [null, null, msg];\n}
else {\n node.error(\"Error\");\n return null;\n}\n","
outputs":3,"noerr":0,"initialize":"","finalize":"","libs":[]
,"x":370,"y":320,"wires":[["ea913484.bb59b8"],["540d5e5f.867
fd"],["5cc63b82.b48c04"]]},{"id":"ea913484.bb59b8","type":"
template","z":"2c38f497.2c2a0c","name":"INSERT","field":"
payload","fieldType":"msg","format":"handlebars","syntax":"
mustache","template":"INSERT INTO public.{{payload.0.1}} (\"
time\", machineno, index, x0, x1, x2, x3, x4, x5, x6, x7, x8
, x9, x10, nom0, nom1, nom2, nom3, nom4, nom5, nom6, nom7,
nom8, nom9, nom10,\ndiff, delta_diff, average, temp0, temp1,
temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9) \
nvalues (’{{payload.3.1}}’,’{{payload.1.1}}’,{{payload.2.1}}
,{{payload.4.1}},{{payload.5.1}},{{payload.6.1}},{{payload.7
.1}},\n{{payload.8.1}},{{payload.9.1}},{{payload.10.1}},{{
payload.11.1}},{{payload.12.1}},{{payload.13.1}},{{payload.1
4.1}},{{payload.15.1}},{{payload.16.1}},{{payload.17.1}},{{
payload.18.1}},\n{{payload.19.1}},{{payload.20.1}},{{payload
.21.1}},{{payload.22.1}},{{payload.23.1}},{{payload.24.1}},{
{payload.25.1}},{{payload.26.1}},{{payload.27.1}},{{payload.
28.1}},{{payload.29.1}},\n{{payload.30.1}},{{payload.31.1}},
{{payload.32.1}},{{payload.33.1}},{{payload.34.1}},{{payload
.35.1}},{{payload.36.1}},{{payload.37.1}},{{payload.38.1}})
;","output":"str","x":560,"y":300,"wires":[["8f86443b.03a218
"]]},{"id":"540d5e5f.867fd","type":"delay","z":"2c38f497.2c2
a0c","name":"Move","pauseType":"delay","timeout":"2","
timeoutUnits":"seconds","rate":"1","nbRateUnits":"1","
rateUnits":"second","randomFirst":"1","randomLast":"5","
randomUnits":"seconds","drop":false,"x":550,"y":340,"wires":
[["3c3d4d31.7dc1e2"]]},{"id":"784989c5.de9888","type":"fs-
ops-move","z":"2c38f497.2c2a0c","name":"Error","sourcePath":
"topic","sourcePathType":"msg","sourceFilename":"file","
sourceFilenameType":"msg","destPath":"D:\\Test\\Filewatcher
\\Error","destPathType":"str","destFilename":"file","
destFilenameType":"msg","link":false,"x":590,"y":160,"wires"

:[[]]},{"id":"71a77f6b.76667","type":"delay","z":"2c38f497.2
c2a0c","name":"Move","pauseType":"delay","timeout":"2","
timeoutUnits":"seconds","rate":"1","nbRateUnits":"1","
rateUnits":"second","randomFirst":"1","randomLast":"5","
randomUnits":"seconds","drop":false,"x":470,"y":160,"wires":
[["784989c5.de9888"]]},{"id":"f77ccde5.5a2c3","type":"watch-
directory","z":"2c38f497.2c2a0c","folder":"D:\\\\Test\\\\
Filewatcher\\\\","recursive":0,"typeEvent":"create","
ignoreInitial":true,"ignoredFiles":"","ignoredFilesType":"re
","name":"Filewatcher","x":150,"y":120,"wires":[["42b8d509.3
bf0ac"]]},{"id":"5cc63b82.b48c04","type":"delay","z":"2c38f4
97.2c2a0c","name":"Move","pauseType":"delay","timeout":"2","
timeoutUnits":"seconds","rate":"1","nbRateUnits":"1","
rateUnits":"second","randomFirst":"1","randomLast":"5","
randomUnits":"seconds","drop":false,"x":550,"y":380,"wires":
[["9ec236da.eb3a68"]]},{"id":"9ec236da.eb3a68","type":"fs-
ops-move","z":"2c38f497.2c2a0c","name":"Arkiv","sourcePath":
"D:\\Test\\Filewatcher\\","sourcePathType":"str","
sourceFilename":"file","sourceFilenameType":"msg","destPath"
:"D:\\Test\\Filewatcher\\Arkiv","destPathType":"str","
destFilename":"file","destFilenameType":"msg","link":false,"
x":670,"y":380,"wires":[[]]},{"id":"1f5943dc.3dc0ec","type":
"postgreSQLConfig","name":"DB","host":"localhost","
hostFieldType":"str","port":"5432","portFieldType":"num","
database":"probedata","databaseFieldType":"str","ssl":"false
","sslFieldType":"bool","max":"10","maxFieldType":"num","min
":"1","minFieldType":"num","idle":"1000","idleFieldType":"
num","connectionTimeout":"10000","connectionTimeoutFieldType
":"num","user":"nodered","userFieldType":"str","password":"
nodereduser123456789","passwordFieldType":"str"}]

Appendix D

CREATE query for the tables in PostgreSQL

database

This appendix contains the query for creating the tables in the PostgreSQL database.

85

1 CREATE TABLE pub l i c . ’ ’ t ab l e ’ ’ −−Replace ’ ’ tab le ’ ’ with
ac tua l t ab l e name

2 (
3 ” time” timestamp with time zone NOT NULL,
4 machineno charac t e r vary ing (20) COLLATE pg ca ta l og . ” d e f au l t ”

NOT NULL,
5 index in t ege r ,
6 x0 numeric (9 , 4) ,
7 x1 numeric (9 , 4) ,
8 x2 numeric (9 , 4) ,
9 x3 numeric (9 , 4) ,

10 x4 numeric (9 , 4) ,
11 x5 numeric (9 , 4) ,
12 x6 numeric (9 , 4) ,
13 x7 numeric (9 , 4) ,
14 x8 numeric (9 , 4) ,
15 x9 numeric (9 , 4) ,
16 x10 numeric (9 , 4) ,
17 nom0 numeric (9 , 4) ,
18 nom1 numeric (9 , 4) ,
19 nom2 numeric (9 , 4) ,
20 nom3 numeric (9 , 4) ,
21 nom4 numeric (9 , 4) ,
22 nom5 numeric (9 , 4) ,
23 nom6 numeric (9 , 4) ,
24 nom7 numeric (9 , 4) ,
25 nom8 numeric (9 , 4) ,
26 nom9 numeric (9 , 4) ,
27 nom10 numeric (9 , 4) ,
28 d i f f numeric (9 , 4) ,
29 d e l t a d i f f numeric (9 , 4) ,
30 average numeric (9 , 4) ,
31 temp0 numeric (9 , 4) ,
32 temp1 numeric (9 , 4) ,
33 temp2 numeric (9 , 4) ,
34 temp3 numeric (9 , 4) ,
35 temp4 numeric (9 , 4) ,
36 temp5 numeric (9 , 4) ,
37 temp6 numeric (9 , 4) ,
38 temp7 numeric (9 , 4) ,
39 temp8 numeric (9 , 4) ,
40 temp9 numeric (9 , 4)
41) ;
42 −− Convert to hypertab le and c r ea t e index
43 CREATE UNIQUE INDEX ON ’ ’ t ab l e ’ ’ (machineno , time DESC) ; −−

Replace ’ ’ tab le ’ ’ with ac tua l tablename
44 SELECT cr ea t e hype r t ab l e (’ kubelog ’ , ’ time ’) ;
45 −− Edit perm i s s i on s

46 GRANT SELECT ON TABLE pub l i c . ’ ’ t ab l e ’ ’ TO ”nodereduser ” ; −−
Replace ’ ’ tab le ’ ’ with ac tua l tablename

47 GRANT INSERT, REFERENCES, SELECT, TRIGGER, UPDATE ON TABLE
pub l i c . ’ ’ t ab l e ’ ’ TO ”nodereduser ” ; −− Replace ’ ’ tab le ’ ’ with
ac tua l tablename

Appendix E

CreateTargetKubelog code.

This appendix contains the MATLAB code for removing outliers and creating the target
time series.

89

90

Listing E.1: Code for removing outliers and creating the target time series in MATLAB.
1 function CreateTargetNAR ()
2 %%%% Walter Johansson
3 % 03.05.2022
4 % Create arrays and import data
5 data = csvread (’ targetsNAR1 . csv ’ , 1 , 0) ;
6 x2 = data (: , 1) ;
7 x3 = data (: , 2) ;
8 x4 = data (: , 3) ;
9 nom2 = data (: , 4) ;

10 nom3 = data (: , 5) ;
11 nom4 = data (: , 6) ;
12 % I n i t
13 out s id e = [] ;
14 x2_f ina l = [] ;
15 x3_f ina l = [] ;
16 x4_f ina l = [] ;
17 x2x3_f ina l = [] ;
18 % Sub t rac t nominal va lue to remove s h i f t i n g
19 x2_scaled = x2 − nom2 ;
20 x3_scaled = x3 − nom3 ;
21 x4_scaled = x4 − nom4 ;
22 x2x3_scaled = (x2−x3) − (nom2−nom3) ;
23 % Detect o u t l i e r s and f i n d the indexes wi th rmou t l i e r s
24 [A, tfA] = r mou t l i e r s (x2_scaled) ;
25 [B, tfB] = r mou t l i e r s (x3_scaled) ;
26 [C, tfC] = r mou t l i e r s (x4_scaled) ;
27 [D, tfD] = r mou t l i e r s (x2x3_scaled) ;
28 % Combine indexes
29 for i = 1 : length (tfA)
30 i f (tfA (i)==1 | | tfB (i)==1 | | tfC (i)==1 | | tfD (i)==1)
31 out s id e (i) = 1 ;
32 end
33 end
34 % Create new arrays wi thou t o u t l i e r s
35 for i = 1 : length (ou t s id e)
36 i f (ou t s id e (i)~=1)
37 x2_f ina l (end+1) = x2_scaled (i) ;
38 x3_f ina l (end+1) = x3_scaled (i) ;
39 x4_f ina l (end+1) = x4_scaled (i) ;
40 x2x3_f ina l (end+1) = x2x3_scaled (i) ;
41 end
42 end
43 % Transpose arrays
44 x2_f ina l = x2_final ’ ;

91

45 x3_f ina l = x3_final ’ ;
46 x4_f ina l = x4_final ’ ;
47 x2x3_f ina l = x2x3_final ’ ;
48 % Create t a r g e t s e r i e s
49 t a r g e t = [x2_final , x3_final , x4_final , x2x3_f ina l]
50 % Save v a r i a b l e s to f i l e
51 save NARkubelog . mat
52
53 end

92

Appendix F

Nonlinear Autoregressive Neural Network

MATLAB code.

This appendix contains the function for generating, training and testing the Nonlinear
Autoregressive Neural Network created in this project.

93

94

Listing F.1: Code for creating, training and testing Nonlinear Autoregressive Neural Network.
1 function NARkubelog ()
2 %%%% Walter Johansson
3 % 03.05.2022
4 %%%% Load data s e t
5 load NARkubelog . mat t a r g e t
6 %%%% Assign t a r g e t s to y v a r i a b l e
7 y = t a r g e t ;
8 %%%% Define arrays
9 ce l l_x2 = c e l l (1 , length (y)) ;

10 ce l l_x3 = c e l l (1 , length (y)) ;
11 ce l l_x4 = c e l l (1 , length (y)) ;
12 ce l l_x2x3 = c e l l (1 , length (y)) ;
13
14 %%%% F i l l arrays
15 for i =1: length (y)
16 ce l l_x2 { i } = y (i , 1) ;
17 ce l l_x3 { i } = y (i , 2) ;
18 ce l l_x4 { i } = y (i , 3) ;
19 ce l l_x2x3 { i } = y (i , 4) ;
20 end
21
22 %%%% Define t r a i n i n g parameters
23 hidden_neurons = 10 ;
24 t r a i n i n g = cel l_x2x3 (1 : length (y)) ;
25 t e s t n r = 6 ;
26 t e s t = ce l l_x2x3 (length (y)− t e s t n r +1: length (y)) ;
27
28 %%%% Creat ing a NAR network wi th f eedback de l ay s and hidden l a y e r s
29 network = narnet (1 : 4 , hidden_neurons) ;
30
31 %%%% Choose t r a i n i n g func t i on
32 network . tra inFcn = ’ t r a i n b r ’ ;
33
34 %%%% Using prepare t s matlab func t i on to s h i f t and prepare the data
35 [Shi f ted_inputs , d_states , l_state s , s h i f t e d _ t a r g e t s] = . . .
36 pr epa re t s (network , {} , {} , t r a i n i n g) ;
37 %%%% Training the network
38 network = t r a i n (network , Shi f ted_inputs , s h i f t e d _ t a r g e t s . . .
39 , d_states , l_ s t a t e s) ;
40 %%%% Ca lcu l a t e the ou tpu t s and s t a t e s a f t e r open−loop t r a i n i n g
41 [Y, f_input_state , f_ layer_state] = network . . .
42 (Shi f ted_inputs , d_states , l_ s t a t e s) ;
43 %%%% Print performance
44 performance = perform (network , sh i f t ed_ta rge t s ,Y)

95

45 %%%% Close loop func t i on to prepare f o r m u l t i s t e p p r e d i c t i o n
46 [network_closed , i_input_state , i_ layer_state] = . . .
47 c l o s e l o o p (network , f_input_state , f_ layer_state) ;
48 %%%% View network in c l o s e d loop mode
49 %view (network_closed)
50 %%%% Pred ic t ’ t e s tn r ’ o f f u t u r e ou tpu t s
51 Y_closed = network_closed (c e l l (0 , t e s t n r) , i_input_state , i_ layer_state) ;
52 %%%% Ca lcu l a t e error f o r p l o t t i n g
53 e = ce l l 2mat (Y_closed)−ce l l 2mat (t e s t) ;
54
55 %%%%%% P l o t t i n g %%%%%%
56 TS = s ize (Y_closed , 2) ;
57 % Target vs p r e d i c t e d
58 subplot (2 , 1 , 1) ;
59 x1 = 1 :TS ;
60 y1 = ce l l 2mat (t e s t) ;
61 y2 = ce l l 2mat (Y_closed) ;
62 plot (x1 , y1 , ’b ’ , x1 , y2 , ’ g ’)
63 t i t l e (’ Target ␣ vs ␣ pred i c t ed ’) ;
64 legend (’ Target ’ , ’ Pred ic ted ’) ;
65 xlabel (’ C a l i b r a t i o n s ’) ;
66 x t i c k s (1 : length (x1)) ;
67 ylabel (’ D i f f ␣x2x3−Nom␣ [mm] ’) ;
68 % Error
69 subplot (2 , 1 , 2) ;
70 y3 = e ;
71 plot (x1 , y3 , ’ r ’ , x1 , zeros (s ize (x1)) , ’b ’)
72 t i t l e (’ Model␣ e r r o r ’) ;
73 legend (’ Error ’ , ’ Zero␣ e r r o r ’) ;
74 xlabel (’ C a l i b r a t i o n s ’) ;
75 x t i c k s (1 : length (x1)) ;
76 ylabel (’ Target−Pred icted ␣ [mm] ’) ;
77
78 end

96

Appendix G

MATLAB code for PCA.

This appendix contains the function for the PCA.

Listing G.1: Code for PCA.
1 function kubelogPCA ()
2 %%%% Walter Johansson
3 % 04.05.2022
4 %%%% Load d a t a s e t con ta in ing x2 , x3 , x4 , x2x3 , Maskintemp , Omgivelse temp ,
5 %%%% Kjølevæske tanktemp and S p i n d e l o l j e temp
6 load pca1 . mat
7 %%%% I n i t
8 num_component = 3 ;
9 %%%% Normalize d a t a s e t

10 norm = normal ize (inputs) ;
11 %%%% Finding c o e f f i c i e n t s , s core s and percentage o f t o t a l
12 %%%% var iance exp l a ined by each p r i n c i p a l component
13 [c o e f f i c i e n t s , s co re s ,~ ,~ , exp la ined] = pca (norm) ;
14 disp (exp la ined) ;
15 %%%% Plot
16 subplot (2 , 1 , 1)
17 b i p l o t (c o e f f i c i e n t s (: , 1 : num_component) , ’ s c o r e s ’ , . . .
18 s c o r e s (: , 1 : num_component) , ’ v a r l a b e l s ’ ,{ ’ x2 ’ , ’ x3 ’ , . . .
19 ’ x4 ’ , ’ x2x3 ’ , ’ temp1 ’ , ’ temp2 ’ , . . .
20 ’ temp3 ’ , ’ temp4 ’ }) ;
21 subplot (2 , 1 , 2)
22 bar (exp la ined)
23 xlabel (’ P r i n c i p a l ␣components ’) ;
24 ylabel (’%␣ o f ␣ t o t a l ␣ var iance ␣ exp la ined ’) ;
25
26 end

97

	Automatic data collection, visualization and predictive maintenance during probe calibration in CNC machines
	Summary

	Preface
	Contents
	List of Figures
	List of Tables

	Introduction
	Background
	System description
	Objectives and Predictive Maintenance
	Methods
	Report structure

	Machine description
	Machine geometry
	Measuring principles
	Part probe
	Tool probe
	Blum laser and cube
	Light sensor

	Calibration logs

	Automatic collection of probe data
	File transfer
	Node-RED application
	PostgreSQL database

	Visualization of calibration data
	Machine learning in CNC machining
	Machine learning overview
	Previous work on machine learning for CNC machines
	Machine health monitoring
	Exploring Machine learning models at GAN
	Multistep Prediction with a Nonlinear Autoregressive Neural Network
	PCA
	Spindle vibration data

	Discussion
	Machine theory and automatic collection and visualization of probe calibration data
	Previous work and machine learning at GAN
	NAR neural network and PCA

	Conclusion
	Bibliography
	Task Description
	Node-RED
	JSON Model Node-RED
	PostgreSQL
	CreateTargetKubelog.m
	NARkubelog.m
	kubelogPCA.m

